201131438 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種觸摸屏及其製備方法,尤其涉及一種採 用奈米碳管的觸摸屏及其製備方法。 [先前技術3 [0002] 近年來,伴隨著移動電話與觸摸導航系統等各種電子設 備的高性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸摸屏之電子設備逐步增加。這樣的電 子設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的 〇 顯示設備的顯示内容進行視覺確認,一邊利用手指或筆 等按壓觸摸屏來進行操作。由此,可以操作電子設備的 各種功能。 [0003] 按照觸摸屏之工作原理和傳輸介質的不同,先前之觸摸 屏分為四種類型,分別為電阻式、電容式、紅外線式以 及表面聲波式。其中電容式觸摸屏和電阻式觸摸屏之應 用比較廣泛(K. Nod.a,K. Tanimura,Electronics Ο and Communications in Japan, Part 2, Vol. 84,No. 7,P40 (2001 );李樹本,王清弟,吉建華, 光電子技術,Vol. 15,P62 ( 1 995))。 [0004] 先前技術中的電容式和電阻式觸摸屏通常包括一個作為 透明導電層的銦錫氧化物層(IT0層),Kazuhiro Noda等於文獻Production of Transparent Conductive Films with Inserted SiO/nchor Lay-er, and Application to a Resistive Touch Panel (Electronics and Communications in Ja- 099106698 表單編號A0101 第3頁/共44頁 0992012136-0 201131438 pan, Part 2,Vol.84,P39 〜45(2001 ))中介紹了一 種採用ITO/Si〇2/PET層的觸摸屏。然而,ΙΤΟ層作為透 明導電層通常採用離子束濺射或蒸鍍等工藝製備,於製 備的過程,需要較高之真空環境及需要加熱到200〜300°C ,因此,使得ITO層之製備成本較高。此外,ITO層於不 斷彎折後,其彎折處的電阻有所增大,其作為透明導電 層具有機械和化學耐用性不夠好的缺點,且存在電阻不 均勻且電阻值範圍較小的現象。從而導致先前之觸摸屏 存在耐用性差、靈敏度低及準確性較差等缺點。 f% 【發明内容】 [0005] 有鑒於此,確有必要提供一種耐用性好、準確性高及靈 敏度高之觸摸屏及成本較低的觸摸屏之製備方法。 [0006] 一種觸摸屏,包括:一基體、具有一表面;一透明導電 層,該透明導電層設置於所述基體之表面;以及兩個第 一電極及兩個第二電極,該兩個第一電極及兩個第二電 極分別間隔設置且與所述透明導電層電連接,以使所述 透明導電層形成等電位面;其中,所述觸摸屏進一步包 ,/ 括一黏勝層,所述透明導電層包括一奈米碳管層,該奈 米碳管層通過所述黏膠層固定於所述基體之表面,該奈 米碳管層之表面粗糙度的輪廓算術平均偏差(Ra)小於 或等於0. 1微米。 [0007] —種觸摸屏,包括:一第一電極板,該第一電極板板包 括一第一基體及一第一透明導電層,該第一透明導電層 設置於所述第一基體;以及一第二電極板,該第二電極 板包括一第二基體及一第二透明導電層,該第二透明導 099106698 表單編號A0101 第4頁/共44頁 0992012136-0 201131438 電層设置於所述第二基體 第—透明”層W隔透明導電層與所述 板進-步包括-第一黏膠層二其中,所述第-電極 一奈米碳管層,該奈米碳管層^第—透明導電層包括 於所述第一μ _ , 项過所述第一黏膠層固定 廓算術平均偏差奈米碳管層之表面粗糙度的輪 偏差小於或等於〇.1微米。 [0008] Ο [0009] ❹ ::之製備方法,其〜步驟:提供-基體 面;提#至,=:成—待固化的_層於所述基體之表 徒供至>-奈米碳管骐,並 設::述基體之表面並覆蓋所述待固化的二= 力於所述奈米碳管層,使所述奈米碳管層部分包埋 於所述黏膠層中,使得所述奈米碳營層之表面粗縫度的 輪廓算術平料差核或_.咖所述待固化 的黏膠層;以及形成電極。 與先别技術;^比較,本發明提供的觸麟及其製備方法 具有=下優點:第—,奈米碳管具有優異的力學特性使 得奈米碳*層具有良好㈣似轉強度 ,且耐彎折, 故採用奈米碳管層作為透料電層,可以相應的提高觸 摸屏之耐用性’且可適用於柔性可彎折觸摸屏;第二, 由於奈米碳管層由若干奈米碳管組成,且該若干奈米碳 管均勻分佈’故,該奈米碳管層具有均勻的阻值分佈, 因此,採用該奈米碳管層作為透明導電層可以相應的提 高觸摸屏之靈敏度及精確度;第三,由於製備本發明所 提供的觸摸屏中奈米碳管層的原料成本及工藝成本均比 較低,製備方法比較簡單;因此,本發明提供的製備方 099106698 表單編號A0101 第5頁/共44頁 0的2012136-〇 201131438 [0010] [0011] [0012] [0013] 099106698 法具有成本低、壞保及節能的優點。 【實施> 方式】 下面將結合附圖及具體實施例,對本發明提供的觸摸屏 以及使用该觸摸屏之顯不裝置作進一步的詳細說明。 請參閱圖1及圖2 ’本發明第一實施例提供_種電容式觸 摸屏10,該觸摸屏10包括一基體12、一透明導電層14、 一黏膠層16、兩個第一電極18以及兩個第二電極丨7。該 基體12具有一表面121。該透明導電層η通過所述黏膠層 16設置於基體12的表面121 ;所述兩個第一電極18以及 兩個第二電極17分別間隔設置,且與所述透明導電層1 4 電連接,用以在透明導電層14形成等電位面。 所述基體12為一曲面型或平面型的結構。該基體12具有 適當之透明度,且主要起支撐的作用。該基體12由玻璃 、石英、金剛石或塑膠等硬性材料或柔性材料形成。具 體地,所述柔性材料可選擇為聚竣酸蜎(pC)、聚曱基丙 烯酸曱酯(PMMA)或聚對笨£1甲酸备二醇酯(pET)等聚醋 材料’或聚醚砜(PES)、纖▲棄酿、聚氣乙烯(pvc)、苯 並環丁烯(BCB)或丙烯酸樹脂等材料。本實施例中,所述 基體12為-平面型的結構’該基體12為柔性材料聚碳酸 s旨(pc)。形成所述基體12的材料並不限於上述列舉的材 料,只要能使基體12起敎撐的個,並具有適當之透 明度即可。 所述黏膠層16的作用係為了使所述透明導電層14更好地 黏附於所述基體12的表面121。所述黏膠層16係透明的, 該黏膠層16的材料為具有低熔點的熱塑膠或叭 表單編號AOHU S 6頁/共44胃 0992012136-0 201131438 violet Rays)膠,如PVC或ΡΜΜΑ等。所述黏膠層16的 厚度不限,只要其能夠將所述透明導電層14固定於所述 基體12上,且所述透明導電層14部分露出該黏膠層16外 即可。所述黏膠層16的厚度為1奈米〜500微米;優選地, 所述黏膠層16的厚度為1微米〜2微米。本實施例中,所述 黏膠層16的材料為ΡΜΜΑ,該黏膠層16的厚度約為1.'5微 米。 [0014] Ο 所述透明導電層14為一奈米碳管層。所述奈米碳管層由 若干奈米碳管組成,該奈米碳管層中大多數奈米碳管的 延伸方向基本平行於該奈米碳管層的表面。所述奈米碳 管層的厚度不限,可以根據需要選擇;所述奈米碳管層 的厚度為0. 5奈米〜100微米;優選地,該奈米碳管層的厚 度為100奈米~200奈米。由於所述奈米碳管層中的奈米碳 管均勻分佈且具有很好的柔韌性,使得該奈米碳管層具 有很好的柔韌性,可以彎曲折疊成任意形狀而不易破裂 〇 Ο [0015] 所述奈米碳管層中的奈米碳管包括單壁奈米碳管、雙壁 奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈 米碳管的直徑為0. 5奈米~50奈米,雙壁奈米碳管的直徑 為1.0奈米〜50奈米,多壁奈米碳管的直徑為1.5奈米〜50 奈米。所述奈米碳管的長度大於50微米。優選地,該奈 米碳管的長度優選為200微米~900微米。 所述奈米碳管層中的奈米碳管無序或有序排列。所謂無 序排列係指奈米碳管的排列方向無規則。所謂有序排列 係指奈米碳管的排列方向有規則。具體地,當奈米碳管 099106698 表單編號Α0101 第7頁/共44頁 0992012136-0 [0016] 201131438 層包括無序排列的奈米碳管時,奈米碳管相互纏繞或者 各向同性排列;當奈米碳管層包括有序排列的奈米碳管 時,奈米碳管沿一個方向或者多個方向擇優取向排列。 所謂“擇優取向”係指所述奈米碳管層中的大多數奈米 碳管於一個方向或幾個方向上具有較大的取向幾率;即 ,該奈米碳管層中的大多數奈米碳管的轴向基本沿同一 方向或幾個方向延伸。所述奈米碳管層之中的相鄰的奈 米碳管之間具有間隙,從而於奈米碳管層中形成多個間 隙。201131438 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a touch screen and a method of fabricating the same, and more particularly to a touch screen using a carbon nanotube and a method of fabricating the same. [Prior Art 3 [0002] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted in front of display devices such as liquid crystals are gradually increasing. . The user of such an electronic device visually confirms the display content of the 〇 display device located on the back surface of the touch panel by the touch panel, and operates by pressing the touch panel with a finger or a pen. Thereby, various functions of the electronic device can be operated. [0003] According to the working principle of the touch screen and the transmission medium, the previous touch screens are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic wave. Among them, capacitive touch screens and resistive touch screens are widely used (K. Nod.a, K. Tanimura, Electronics Ο and Communications in Japan, Part 2, Vol. 84, No. 7, P40 (2001); Li Shuben, Wang Qingdi, Ji Jianhua, Optoelectronic Technology, Vol. 15, P62 (1 995)). [0004] Capacitive and resistive touch screens of the prior art typically include an indium tin oxide layer (IT0 layer) as a transparent conductive layer, Kazuhiro Noda is equivalent to the publication of Production of Transparent Conductive Films with Inserted SiO/nchor Lay-er, and Application to a Resistive Touch Panel (Electronics and Communications in Ja- 099106698 Form No. A0101 Page 3 / Total 44 Page 0992012136-0 201131438 pan, Part 2, Vol. 84, P39 ~ 45 (2001)) /Si〇2/PET layer touch screen. However, the ruthenium layer is usually prepared by ion beam sputtering or evaporation as a transparent conductive layer. In the preparation process, a high vacuum environment is required and heating to 200 to 300 ° C is required, thereby making the preparation cost of the ITO layer. Higher. In addition, after the ITO layer is continuously bent, the resistance at the bend is increased, which has the disadvantage that the transparent conductive layer has insufficient mechanical and chemical durability, and the resistance is uneven and the resistance value range is small. . As a result, previous touch screens have disadvantages such as poor durability, low sensitivity, and poor accuracy. F% [Summary of the Invention] [0005] In view of the above, it is indeed necessary to provide a touch screen with high durability, high accuracy, and high sensitivity, and a method for preparing a low-cost touch screen. [0006] A touch screen includes: a substrate having a surface; a transparent conductive layer disposed on a surface of the substrate; and two first electrodes and two second electrodes, the two first The electrode and the two second electrodes are respectively disposed at intervals and electrically connected to the transparent conductive layer, so that the transparent conductive layer forms an equipotential surface; wherein the touch screen further includes a viscous layer, the transparent The conductive layer comprises a carbon nanotube layer, the carbon nanotube layer being fixed to the surface of the substrate by the adhesive layer, and the surface roughness of the carbon nanotube layer has an arithmetic mean deviation (Ra) of less than or Is equal to 0.1 micron. [0007] A touch screen includes: a first electrode plate, the first electrode plate includes a first substrate and a first transparent conductive layer, the first transparent conductive layer is disposed on the first substrate; a second electrode plate, the second electrode plate comprises a second substrate and a second transparent conductive layer, the second transparent guide 099106698 Form No. A0101 Page 4 / Total 44 Page 0992012136-0 201131438 Electrical layer is set in said a two-substrate first-transparent layer W-separating transparent conductive layer and the board further comprising - a first adhesive layer 2, wherein the first electrode is a carbon nanotube layer, and the carbon nanotube layer is - The transparent conductive layer is included in the first μ _ , and the wheel deviation of the surface roughness of the arithmetic mean average deviation carbon nanotube layer of the first adhesive layer is less than or equal to 0.1 μm. [0009] 制备 :: preparation method, the steps of: providing: the base surface; mentioning # to, =: into - the layer to be solidified is supplied to the substrate by the apprentice to the >-nanocarbon tube, And: said: the surface of the substrate and covering the layer to be solidified = the force of the carbon nanotube layer, the carbon nanotube The layer portion is embedded in the adhesive layer such that the surface of the nanocarbon camping layer has a rough outline of the contour of the material, or the adhesive layer to be cured; and the electrode is formed. First, the technology and the preparation method of the present invention have the following advantages: first, the carbon nanotubes have excellent mechanical properties, so that the nanocarbon* layer has good (four) like rotation strength and is resistant to bending. Folding, so using the carbon nanotube layer as the dielectric layer, can improve the durability of the touch screen correspondingly and can be applied to the flexible bendable touch screen; second, because the carbon nanotube layer is composed of several carbon nanotubes And the plurality of carbon nanotubes are evenly distributed, so the carbon nanotube layer has a uniform resistance distribution. Therefore, using the carbon nanotube layer as the transparent conductive layer can correspondingly improve the sensitivity and accuracy of the touch screen; Thirdly, since the raw material cost and the process cost of the carbon nanotube layer in the touch screen provided by the invention are relatively low, the preparation method is relatively simple; therefore, the preparation method provided by the present invention 099106698 Form No. A0101 Page 5 of 44 [0013] [0013] The method of 099106698 has the advantages of low cost, bad guarantee, and energy saving. [Implementation] Modes The present invention will be provided below with reference to the accompanying drawings and specific embodiments. The touch screen and the display device using the touch screen are further described in detail. Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a capacitive touch screen 10, which includes a substrate 12 and a transparent conductive layer. 14. An adhesive layer 16, two first electrodes 18 and two second electrodes 7. The substrate 12 has a surface 121. The transparent conductive layer η is disposed on the surface 121 of the substrate 12 through the adhesive layer 16; the two first electrodes 18 and the two second electrodes 17 are respectively spaced apart and electrically connected to the transparent conductive layer 14 For forming an equipotential surface on the transparent conductive layer 14. The base 12 is a curved or planar structure. The substrate 12 has suitable transparency and serves primarily as a support. The base 12 is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. Specifically, the flexible material may be selected from the group consisting of polypyrene phthalate (pC), polydecyl methacrylate (PMMA) or polyacetate such as poly(pET) or polyether sulfone. (PES), fiber ▲ discarded, polyethylene (pvc), benzocyclobutene (BCB) or acrylic resin. In the present embodiment, the base 12 is a -planar structure. The base 12 is a flexible material polycarbonate (pc). The material for forming the base 12 is not limited to the materials listed above, as long as the base 12 can be embossed and has appropriate transparency. The adhesive layer 16 functions to better adhere the transparent conductive layer 14 to the surface 121 of the substrate 12. The adhesive layer 16 is transparent, and the adhesive layer 16 is made of a hot plastic having a low melting point or a form number AOHU S 6 pages/total 44 stomach 0992012136-0 201131438 violet Rays), such as PVC or enamel. . The thickness of the adhesive layer 16 is not limited as long as it can fix the transparent conductive layer 14 to the base 12, and the transparent conductive layer 14 partially exposes the adhesive layer 16. The thickness of the adhesive layer 16 is from 1 nm to 500 μm; preferably, the thickness of the adhesive layer 16 is from 1 μm to 2 μm. In this embodiment, the material of the adhesive layer 16 is ΡΜΜΑ, and the thickness of the adhesive layer 16 is about 1. 5 micrometers. [0014] The transparent conductive layer 14 is a carbon nanotube layer. The carbon nanotube layer is composed of a plurality of carbon nanotubes, and most of the carbon nanotubes in the carbon nanotube layer extend substantially parallel to the surface of the carbon nanotube layer. The thickness of the carbon nanotube layer is not limited, and may be selected as needed; the thickness of the carbon nanotube layer is 0.5 nm to 100 μm; preferably, the thickness of the carbon nanotube layer is 100 nm Meter ~ 200 nm. Since the carbon nanotubes in the carbon nanotube layer are uniformly distributed and have good flexibility, the carbon nanotube layer has good flexibility and can be bent and folded into any shape without being easily broken. The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm, the diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotube is 1.5 nm. ~50 nm. The carbon nanotubes have a length greater than 50 microns. Preferably, the length of the carbon nanotubes is preferably from 200 microns to 900 microns. The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The so-called disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. The so-called ordered arrangement means that the arrangement direction of the carbon nanotubes is regular. Specifically, when the carbon nanotubes 099106698 Form No. Α0101 Page 7 / Total 44 Pages 0992012136-0 [0016] 201131438 The layer includes the disorderly arranged carbon nanotubes, the carbon nanotubes are intertwined or isotropically aligned; When the carbon nanotube layer comprises an ordered array of carbon nanotubes, the carbon nanotubes are arranged in a preferred orientation in one direction or in multiple directions. By "preferable orientation" is meant that most of the carbon nanotubes in the carbon nanotube layer have a greater probability of orientation in one direction or in several directions; that is, most of the naphthalene layers in the carbon nanotube layer The axial direction of the carbon nanotubes extends substantially in the same direction or in several directions. A gap is formed between adjacent carbon nanotubes in the carbon nanotube layer to form a plurality of gaps in the carbon nanotube layer.
[0017] 所述奈米碳管層包括至少一奈米碳管膜。當所述奈米碳 管層包括多個奈米碳管膜時,該奈米碳管膜可以基本平 行無間隙共面設置或層疊設置。所述奈米碳管膜包括奈 米碳管拉膜、奈米碳管碾壓膜和奈米碳管絮化膜。 [0018] 請參閱圖3,所述奈米碳管拉膜係由若干奈米碳管組成的 自支撐結構。所述若干奈米碳管沿同一方向擇優取向排 列。該奈米碳管拉膜中大多數奈米碳管的整體延伸方向 基本朝同一方向。而且,所述大多數奈米碳管的整體延 伸方向基本平行於奈米碳管拉膜的表面。進一步地,所 述奈米碳管拉膜中多數奈米碳管係通過凡德瓦爾力首尾 相連。具體地,所述奈米碳管拉膜中基本朝同一方向延 伸的大多數奈米碳管中每一奈米碳管與於延伸方向上相 鄰的奈米碳管通過凡德瓦爾力首尾相連。當然,所述奈 米碳管拉膜中存在少數隨機排列的奈米碳管,這些奈米 碳管不會對奈米碳管拉膜中大多數奈米碳管的整體取向 排列構成明顯影響。所述奈米碳管拉膜不需要大面積的 099106698 表單編號A0101 第8頁/共44頁 0992012136-0 201131438 [0019] Ο [0020] Ο [0021] 载體支撐,而只要相對兩邊提供支撐力即能整體上懸空 而保持自身膜狀狀態,即將該奈米碳管膜置於(或固定 於)間隔設置的兩個支撐體上時,位於兩個支撐體之間 的奈米碳管膜能夠懸空保持自身膜狀狀態。 具體地,所述奈米碳管拉臈中基本朝同一方向延伸的多 數奈米碳管,並非絕對的直線狀,可以適當之彎曲;或 者並非完全按照延伸方向上排列,可以適當之偏離延伸 方向。因此,不能排除奈米碳管拉膜的基本朝同一方向 延伸的多數奈米碳管中幕列的奈米碳管之間可能存在部 分接觸。 具體地,所述奈米碳管拉膜包括多個連續且定向排列的 奈米碳管片段。該多個奈米碳管片段通過凡德瓦爾力首 尾相連 '每一奈米碳管片段包括多個相互平行的奈米碳 管,該多個相互平行的奈米碳管通過凡德瓦爾力緊密結 合。該奈米碳管片段具有任意的,長度、厚度、均勻性及 形狀。該奈米碳管拉膦中的奈米碳管鉛同一方向擇優取 向排列。 所述奈来奴管拉膜可通過從奈米破管陣列直接拉取獲得 。可以理解,通過將多個奈米碳管拉膜平行且無間隙共 面鋪設或/和層疊鋪設,可以製備不同面積與厚度的奈米 碳管層。每個奈米碳管拉膜的厚度可為〇 5奈米〜1〇〇微米 。當奈米碳管層包括多個層疊設置的奈米碳管拉膜時, 相鄰的奈米碳管拉膜中的奈米碳管的排列方向形成一夹 角a’o 所述奈米碳管拉膜的結構及其製備 方法請參見范守善等人於2〇〇8年8月16日公開的第 099106698 表單煸號A0101 第9頁/共44頁 0992012136-0 201131438 200833862號中華民國公開專利申請公佈本。 [0022] 所述奈米碳管碾壓膜包括均勻分佈的多個奈米碳管,該 多個奈米礙管無序、沿同一方向或不同方向擇優取向排 列,該多個奈米碳管的軸向沿同一方向或不同方向延伸 。所述奈米碳管碾壓膜中的奈米碳管相互部分交疊,並 通過凡德瓦爾力相互吸引,緊密結合。所述奈米碳管碾 壓膜可通過碾壓一奈米碳管陣列獲得。該奈米碳管陣列 形成於一基底表面,所製備的奈米碳管碾壓膜中的奈米 碳管與該奈米碳管陣列的基底的表面成一夾角/3,其中 ,/3大於等於0度且小於等於15度(0° S $15°)。優選 地,所述奈米碳管碾壓膜中的奈米碳管的轴向基本平行 於該奈米碳管碾壓膜的表面。依據碾壓的方式不同,該 奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。該 奈米碳管碾壓膜的面積和厚度不限,可根據實際需要選 擇。該奈米碳管碾壓膜的面積與奈米碳管陣列的尺寸基 本相同。該奈米碳管碾壓膜厚度與奈米碳管陣列的高度 以及碾壓的壓力有關,可為1微米〜100微米。所述奈米碳 管碾壓膜及其製備方法請參見范守善等人於2009年1月1 曰公開的第200900348號中華民國專利申請公佈本。 [0023] 所述奈米碳管絮化膜包括相互纏繞的奈米碳管,該奈米 碳管長度可大於10釐米。所述奈米碳管之間通過凡德瓦 爾力相互吸引、纏繞,形成網絡狀結構。所述奈米碳管 絮化膜各向同性。所述奈米碳管絮化膜中的奈米碳管為 均勻分佈,無規則排列,形成大量的微孔結構。可以理 解,所述奈米碳管絮化膜的長度、寬度和厚度不限,可 099106698 表單編號A0101 第10頁/共44頁 0992012136-0 201131438 ㈣㈣需要選擇’厚度可為1微米~ _微米。所述奈 米碳^絮化膜及其製備方法請參見別⑽年旧^日公開 的第200844041號中華民國專利申請公佈本。 [0024] Ο G [0025] [0026] 所述透明導電層14通過所述黏膠層16固定於所述基體12 上。具體請參閱圖5,由於透明導電層14為一奈米碳管層 ,該奈米碳管層由若干奈米碳管14〇2組成,且該若干奈 米碳官1402之間具有間隙。當該透明導電層14通過黏膠 層16黏附於基體12上時,該黏膠層16部分填充於所述透 明導電層14中的奈米碳管1402年間的間隙中,且填充於 相鄰的奈米碳管140 2之歲的黏膠廣j 6的表面比較平坦。 進一步地,所述透明導電層14通過所述黏膠層16固定於 基體12表面,通過外加壓力的作甩所述奈米碳管層部分 包埋於所述黏膠層16中,部分暴露於所述黏膠層16外。 具體地’所述奈米碳管層中的大多數奈米碳管14〇2部分 表面包埋於黏膠層16中,部分表面暴露於黏膠層丨6外。 從而’ 一方面該奈米碳管層,可通過黏勝層16固定於基體 12表面,另一方面’奈米碳管1402暴露的部分可使得透 明導電層14的表面具有導電性’以實現觸摸屏之功能。 通過黏膠層16固定於基體12之透明導電層14應具有較小 的表面粗糙度,即所述奈米碳管層暴露於黏膠層16外的 表面具有較小之表面粗糙度。優選地,該透明導電層14 的表面粗糙度越小越好,即透明導電層14的表面越平滑 越好,以儘量減少或避免所述觸摸屏10於應用時由於光 學折射現象出現彩色條紋。 請參閱圖6及圖7,圖6可以表現當所述透明導電層14的表 099106698 表單編號Α0101 第11頁/共44頁 0992012136-0 201131438 面粗糙度Ra大於〇. 1微米時的形貌。圖7為當光束經過表 面粗糙度Ra大於0. 1微米的透明導電層14時,光束之傳播 路徑。 [0027] [0028] 請參閱圖7 ’由於表面張力作用的影響,位於奈米碳管 1402之間的間隙中的黏膠層16靠近奈米碳管丨4〇2的部分 會攀爬到奈米碳管1402的表面,從而形成一凹凸結構 1602 ’即於相鄰的兩個奈米碳管14〇2之間,位於中間部 分的黏膠層16的高度會低於靠近奈米碳管14〇2的表面的 部分黏膠層16的高度。當複合光束從基體12垂直入射時 ,由於該黏膠層16的材料與真空的折射率相差較大,位 於奈米碳管1402之間的凹凸結構16〇2相當於光學三棱鏡 ,複合光束經過該光學三棱鏡時會產生色散現象,即— 部分複合光分散成多個單色光。因此,當從觸摸屏1〇射 出的多個分散的單色光進入到使用者的視線時’使用者 就會看到所述觸摸屏1 〇出現彩色:條紋,從而影響觸摸屏 之解析度。所以’所述透明導電層14的表面粗糙度“小 於或等於0.1微米,即,奈米碳管層的表面粗糙度Ra小於 或等於0. 1微米,優選地,該奈米碳管層的表面粗糙度尺3 小於或等於0.01微米。 本實施例中,所述透明導電層14為一層奈米碳管拉膜, 該奈米碳管拉膜的厚度約為丨5 〇奈米。請參閱圖4,所述 透明導電層14的表面粗糙度Ra約為〇 〇〇5微米。該透明 導電層14的表面比較平滑,觸摸屏1〇出現彩色條紋的機 會會減少或不會出現彩色條紋。當所述透明導電層14的 表面粗糙度Ra約為〇. 〇〇5微米,請參閱圖5,所述透明導 099106698 表單編號A0101 第12頁/共44頁 0992012136-0 201131438 電層14中相鄰的奈米碳管】4 〇 2之間的間隙中填充了所述 黏膠層16,所述填充於奈米碳管14G2之間的間隙中的黏 膠層16的表面基本平坦,沒有形'成凹凸結構 。所述奈米 石厌官1402與黏膠材料基本處於同一平面,使得 整個透明 Ο [0029] 導電層14的表面相對平坦、光滑。所述奈米碳管14〇2與 所述黏膠層16的結合處比較平滑,所述複合光束從所述 基體12經過所述黏膠層16射出時色散現象非常不明-或 幾乎不發生色散現象。因此,使用者在使用觸摸屏1〇時 ,看到的彩色條紋比較弱,或幾乎肴不到彩色條紋,進 而使得觸摸屏10的解析度比較高。 Ο 請參閱圖1及圖2,所述兩個第一電極18.間隔設置於所述 透明導電層14或基體12沿第一方向的兩端即圖1中所示之 X方向的兩端;所述兩個第二電極17間隔設置於所述透明 導電層14或基體12沿第二方向的兩端即® 1中所示之γ方 向的兩端。其中,所述第一方向與第二方向只要相交即 可。所述兩個第一電極18以及兩個第二電極17可以設置 於所述透明導電層14上,也可以設置於所述基體12上, 只要保證所述第一電極18以及第二電極17均與所述透明 導電層14電連接,且可以於所述透明導電層14上形成均 勻的電阻網絡即可。具體地,所述第一電極18以及第二 電極17可以設置於透明導電層14的同一表面;也可以設 置於所述基體12的同一表面;還可設置於透明導電層14 與基體12之間;該兩個第一電極18以及兩個第二電極17 還可以設置於透明導電層14的不同表面上。所述兩個第 一電極18以及兩個第二電極17的材料為金屬、奈米碳管 099106698 表單編號Α0101 第13頁/共44頁 0992012136-0 201131438 或其他導電材料,只要確保該兩個第一電極18以及兩個 第一电極17能導電即可。本實施例中,所述第一電極Η 間隔攻置於所述透明導電層14沿X方向的兩端,所述第二 電極17間隔設置於所述透明導電層14沿丫方向的兩端;且 X方向與Y方向正交。所述第一電極18以及第二電極17都 為條形的銀層。 [0030] [0031] [0032] [0033] 本發明提供一種製備上述觸摸屏10的方法,該製備方法 包括以下步驟:(wl〇)提供一基體,具有一表面;( w20)形成一待固化的黏膠層於所述基體之表面;(w3〇 )提供至少一奈米碳管膜;( w4〇 )將所述至少一奈米碳 管膜鋪設於所述基體之表面,形成一奈米碳管層,該奈 米碳管層覆蓋所述待固化的黏膠層;(w5〇)施加一壓力 於所述奈米碳管層’使所述奈米碳管層部分包埋於所述 待固化的黏膠層中’且該奈米碳管層的表面粗糙度以小 於或等於0·1微米;(W60)固化所述黏膠層;(W70) 形成電極。 請參閱圖8 ’所述觸摸屏1 〇的製備拿法具體包括以下步驟 於步驟(wlO)中,首先,提供一基體12,具有一表面 121。其次’清洗所述基體12的表面121。所述清洗方法 包括用乙醇或丙酮等有機溶劑清洗所述基體12的表面12ι 。可以理解’所述對所述基體12的清洗也可採用其他方 法’只需確保所述基體12的表面121無污染物即可。 步驟(w20)通過將熱塑膠或肝膠塗覆於所述基體12的表 099106698 表單編號A0101 第14頁/共44頁 0992012136-0 201131438 面121,以形成黏膠層16。 [0034] 步驟(w30)中的奈米碳管膜由若干奈米碳管組成,且該 大多數奈米碳管的延伸方向平行於該奈米碳管層的表面 。所述奈米碳管膜包括奈米碳管拉膜、奈米碳管碾壓膜 或奈米碳管絮化膜。所述奈米碳管膜的製備方法可以根 據需要選擇。本實施例中,所述奈米碳管膜為奈米碳管 拉膜,該奈米碳管拉膜的製備方法包括以下步驟: [0035] 首先,提供一奈米碳管陣列,優選地,該陣列為超順排 〇 奈米碳管陣列。 [0036] 本發明實施例提供的奈米碳管陣列為單壁奈米碳管陣列 、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種或多 種。本實施例中,該超順排奈米碳管陣列的製備方法採 用化學氣相沈積法,其具體步驟包括:(a)提供一平整 基底,該基底可選用P型或N型矽基底,或選用形成有氧 化層的矽基底,本實施例檯選為採用4英寸的矽基底;( b)於基底表面均勻形成一催化劑層,該催化劑層材料可 〇 選用鐵(Fe)、鈷(Co)、錄(Ni )或其任意組合的合 金之一;(c)將上述形成有催化劑層的基底於700°C ~900°C的空氣中退火約30分鐘〜90分鐘;(d)將處理過 的基底置於反應爐中,於保護氣體環境下加熱到500°C 〜740°C,然後通入碳源氣體反應約5〜30分鐘,生長得到 超順排奈米碳管陣列,其高度為50微米~5毫米。該超順 排奈米碳管陣列為多個彼此平行且垂直於基底生長的奈 米碳管形成的純奈米碳管陣列。通過上述控制生長條件 ,該超順排奈米碳管陣列中基本不含有雜質,如無定型 099106698 表單編號A0101 第15頁/共44頁 0992012136-0 201131438 碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈 米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈米 碳管陣列與上述基底面積基本相同。本實施例中碳源氣 可選用乙炔、乙烯、曱烷等化學性質較活潑的碳氫化合 物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或 惰性氣體,本實施例優選的保護氣體為氬氣。 [0037] 可以理解,本實施例提供的奈米碳管陣列不限於上述製 備方法。也可為石墨電極恒流電弧放電沈積法、雷射蒸 發沈積法等。 [0038] 其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一奈 米碳管膜。其具體包括以下步驟:(a)從上述奈米碳管 陣列中選定部分奈米碳管,本實施例優選為採用具有一 寬度的膠帶接觸奈米碳管陣列以選定部分奈米碳管;(b )以一個速度沿基本垂直於奈米碳管陣列生長方向拉伸 該部分奈米碳管,以形成一速讀的奈米碳管膜。 [0039] 於上述拉伸過程中,該部分奈米碳管於拉力作用下沿拉 伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該 選定的部分奈米碳管分別與奈米碳管陣列中的其他奈米 碳管首尾相連地連續地被拉出,從而形成一奈米碳管膜 〇 [0040] 然後,採用雷射處理上述奈米碳管膜。 [0041] 採用雷射處理上述奈米碳管膜的方法有兩種,一種係固 定奈米碳管膜,移動雷射裝置照射該奈米碳管膜;另外 一種係固定雷射裝置,移動奈米碳管膜使雷射照射該奈 099106698 表單編號A0101 第16頁/共44頁 0992012136-0 201131438 米碳管膜。 [0042] ❹ 由於奈米碳管拉膜中的奈米碳管本身之間存在凡德瓦爾 力,奈米碳管拉膜中的某些奈米碳管容易聚集形成奈米 碳管束,該奈米碳管束直徑較大,影響了奈米碳管拉膜 的透光性。為提高奈米碳管膜的透光性,以功率密度大 於0. lxio4瓦特/平方米的雷射照射該奈米碳管膜,除去 奈米碳管膜中透光性較差的奈米碳管束。採用雷射處理 奈米碳管膜的步驟可以於含氧環境中進行,優選地,於 空氣環境進行。雷射處理後的奈米碳管膜的透光性有顯 著的提高,其透光度大於70%,優選地,透光度大於85% 。可以理解,採用雷射處理奈米碳管膜的目的為進一步 提高奈米碳管膜的透明度,因此本步驟為一可選擇的步 驟。 [0043] Ο 步驟(w40):所述至少一奈米碳管膜鋪設於所述基體12 的表面121,以形成一奈米::碳管.層,該.奈来碳管層覆蓋所 沭倍IfU卜.的叙腺靥1 fi。太眚絲你丨Φ,骆一個本朵磁昝暄 —· ·4 ,夕,ν * Ί ·,碡· ,, < »·—· /Ϊ、 ,·, 、 鋪設於所述待固化的黏膠層16上,以形成一覆蓋於所述 待固化的黏膠層16的奈米碳管層。可以理解,也可以將 多個奈米碳管膜平行共面且無間隙地或層疊地鋪設於所 述待固化的黏膠層16上,以形成一奈米碳管層。由於所 述奈米碳管層漂浮於所述待固化的黏膠層16的表面,所 以所述奈米碳管層的表面粗糙度Ra比較大,起伏不平, 該表面粗糙度Ra大於0. 1微米。若此時固化該待固化的黏 膠層16,如圖5所示,將會使透明導電層的表面粗糙度較 大,容易使得採用該透明導電層的觸摸屏出現彩色條紋 099106698 表單編號A0101 第17頁/共44頁 0992012136-0 201131438 [0044] 步驟(w50)具體包括以下步驟: [0045] 步驟(w51 ):提供一具有一平面42的壓平工具40,並使 該壓平工具40的平面42覆蓋所述奈米碳管層的表面,且 該奈米碳管層設置於該壓平工具40與待固化的黏膠層16 之間。其中,所述壓平工具40的作用係為了所述透明導 電層14的表面粗糙度Ra能夠小於或等於0. 1微米。因此, 所述壓平工具40的表面粗糙度Ra越小越好。優選地,所 述壓平工具40的平面42的表面粗糙度Ra小於或等於0. 01 微米。所述壓平工具40為聚酯膜、聚醚飆膜、纖維素酯 膜、聚氯乙烯膜、苯並環丁烯膜或丙烯酸樹脂膜。本實 施例中,所述壓平工具40的平面42的表面粗糙度Ra於0至 0. 05微米之間。所述壓平工具40為聚酯膜。可以理解, 所述壓平工具40的形狀及材料不限,只要該壓平工具40 具有至少一個平面42,且該屋平工具40的平面42的表面 粗糙度Ra能夠保證所述透明導電層14的表面粗糙度Ra小 於或等於0. 1微米即可。 [0046] 步驟(w52 ):對所述壓平工具40施加一均勻的壓力,該 均勻的壓力通過所述壓平工具作用於所述奈米碳管層。 由於所述奈米碳管層浮於所述待固化的黏膠層16上,於 壓力的作用下,所述奈米碳管層中的奈米碳管能夠浸入 所述待固化的黏膠層16中,使得奈米碳管層的表面粗糙 度Ra小於或等於0. 1微米。具體地,首先,將上述覆蓋有 壓平工具40的基體12放置於一具有軋輥的施壓裝置30中 。所述施壓裝置30具有兩個金屬軋輥32。其次,將所述 099106698 表單編號A0101 第18頁/共44頁 0992012136-0 201131438 覆蓋有壓平工具40的基體12通過所述兩個金屬軋輥32。 通過軋輥32的速度可根據實際需要選擇,只需確保所述 奈米碳管層經過壓平後,其表面粗糙度Ra小於或等於0. 1 微米即可。本實施例中,所述兩個金屬軋輥32的速度分 別控制於1毫米/分~10米/分。 [0047] ❹ ❹ [0048] 於該壓平過程中,對所述壓平工具40施加的壓力一定要 均勻,以保證受到壓力之後的奈米碳管層的表面粗糙度 Ra小於或等於0. 1微米。於所述壓平工具40受到均勻的壓 力的過程中,一方面,所述黏膠層16的材料進入所述奈 米碳管層中的奈米碳管之間的間隙中,並填滿該奈米碳 管層中的奈来碳管之間的間隙;另一方面,由於所述壓 平工具40與奈米碳管層之間的空氣被擠壓出來,從而使 得所述奈米碳管層緊密黏結於所述壓平工具40的表面; 又由於所述壓平工具40的平面42的表面粗糙度Ra小於或 等於0. 1微米,從而保證該奈米碳管層的表面粗糙度Ra小 於或等於0. 1微米。這也就係說,所述壓平工具40受到的 壓力以及該壓平工具40的平面42的表面粗糙度Ra對奈米 碳管層的表面粗縫度Ra有重要的影響。 於步驟(w60)中,固化所述待固化的黏膠層16。然後, 進一步除去所述壓平工具40。由於壓平工具40的表面粗 糙度Ra小於或等於0. 01微米,因此,所述黏膠層16固化 之後,其表面與壓平工具40之間的作用力相對較小,可 以採用機械力直接將所述壓平工具40從所述奈米碳管層 表面撕掉。去除所述壓平工具40之後,所述奈米碳管層 ,即所述透明導電層14的表面非常光滑,其表面粗糙度 099106698 表單編號A0101 第19頁/共44頁 0992012136-0 201131438[0017] The carbon nanotube layer comprises at least one carbon nanotube film. When the carbon nanotube layer comprises a plurality of carbon nanotube membranes, the carbon nanotube membranes may be disposed substantially flush-free coplanar or stacked. The carbon nanotube membrane comprises a carbon nanotube membrane, a carbon nanotube membrane and a carbon nanotube flocculation membrane. [0018] Referring to FIG. 3, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. Most of the carbon nanotubes in the carbon nanotube film are oriented in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes of the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film is connected end to end with a carbon nanotube adjacent to the extending direction by Van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The carbon nanotube film does not need a large area of 099106698 Form No. A0101 Page 8 / Total 44 Page 0992012136-0 201131438 [0019] Ο [0020] 002 [0021] Carrier support, as long as the support is provided on opposite sides That is, when the whole carbon film is suspended and maintained in a film state, that is, when the carbon nanotube film is placed (or fixed) on the two support bodies arranged at intervals, the carbon nanotube film located between the two supports can Suspended to maintain its own membranous state. Specifically, the majority of the carbon nanotubes extending substantially in the same direction in the carbon nanotubes are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated from the extending direction. . Therefore, it is not possible to exclude partial contact between the carbon nanotubes of the majority of the carbon nanotubes in the substantially parallel direction of the carbon nanotube film. Specifically, the carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by Van der Waals force. Each nano carbon tube segment comprises a plurality of mutually parallel carbon nanotubes, and the plurality of mutually parallel carbon nanotubes are closely coupled by Van der Waals force Combine. The carbon nanotube segments have any length, thickness, uniformity, and shape. The carbon nanotube lead in the carbon nanotube phosphine is preferentially aligned in the same direction. The nalea tube can be obtained by pulling directly from the nanotube array. It can be understood that the carbon nanotube layers of different areas and thicknesses can be prepared by laminating a plurality of carbon nanotube films in parallel and without gaps, or/and laminating. The thickness of each nano carbon tube film can be 〇 5 nm ~ 1 〇〇 micron. When the carbon nanotube layer comprises a plurality of stacked carbon nanotube films, the arrangement of the carbon nanotubes in the adjacent carbon nanotube film forms an angle a'o of the nanocarbon For the structure of the tube and its preparation method, please refer to Fan Shoushan et al., 099106698, published on August 16, 2008. Form No. A0101 Page 9 / Total 44 Page 0992012136-0 201131438 200833862 No. Announce this. [0022] The carbon nanotube rolled film comprises a plurality of carbon nanotubes uniformly distributed, the plurality of nanotubes being disordered, arranged in the same direction or in different directions, the plurality of carbon nanotubes The axial direction extends in the same direction or in different directions. The carbon nanotubes in the carbon nanotube rolled film partially overlap each other and are attracted to each other by the van der Waals force, and are tightly bonded. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotube array is formed on a surface of the substrate, and the carbon nanotubes in the prepared carbon nanotube rolled film are at an angle /3 to the surface of the substrate of the carbon nanotube array, wherein /3 is greater than or equal to 0 degrees and less than or equal to 15 degrees (0° S $15°). Preferably, the axial direction of the carbon nanotubes in the carbon nanotube rolled film is substantially parallel to the surface of the carbon nanotube rolled film. The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. The area and thickness of the carbon nanotube rolled film are not limited and can be selected according to actual needs. The area of the carbon nanotube rolled film is substantially the same as the size of the carbon nanotube array. The carbon nanotube film thickness is related to the height of the carbon nanotube array and the pressure of the rolling, and may range from 1 μm to 100 μm. For the carbon nanotube rolled film and the preparation method thereof, please refer to the publication of the patent application No. 200900348 of the Republic of China on January 1, 2009 by Fan Shoushan et al. [0023] The carbon nanotube flocculation membrane comprises intertwined carbon nanotubes, the carbon nanotubes having a length greater than 10 cm. The carbon nanotubes are attracted to each other by the van der Waals force to form a network structure. The carbon nanotube flocculation membrane is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and randomly arranged to form a large number of microporous structures. It can be understood that the length, width and thickness of the carbon nanotube film are not limited, and can be 099106698 Form No. A0101 Page 10 / Total 44 pages 0992012136-0 201131438 (4) (4) Need to select 'thickness can be 1 micron to _ micron. The nanocarbon/froulding film and the preparation method thereof are described in the publication of the Patent Application No. 200844041 of the Republic of China. [0024] [0026] The transparent conductive layer 14 is fixed to the substrate 12 by the adhesive layer 16. Specifically, referring to FIG. 5, since the transparent conductive layer 14 is a carbon nanotube layer, the carbon nanotube layer is composed of a plurality of carbon nanotubes 14〇2, and the gap between the plurality of carbon carbon members 1402. When the transparent conductive layer 14 is adhered to the substrate 12 through the adhesive layer 16, the adhesive layer 16 is partially filled in the gap between the carbon nanotubes 1402 in the transparent conductive layer 14 and filled in the adjacent The surface of the carbon nanotubes 140 2 years old has a relatively flat surface. Further, the transparent conductive layer 14 is fixed on the surface of the substrate 12 through the adhesive layer 16, and the carbon nanotube layer is partially embedded in the adhesive layer 16 by partial pressure, partially exposed to The adhesive layer 16 is outside. Specifically, most of the carbon nanotube 14〇2 portions of the carbon nanotube layer are partially embedded in the adhesive layer 16, and a part of the surface is exposed to the outer layer of the adhesive layer. Thus, on the one hand, the carbon nanotube layer can be fixed to the surface of the substrate 12 through the adhesive layer 16, and on the other hand, the exposed portion of the carbon nanotube 1402 can make the surface of the transparent conductive layer 14 have conductivity' to realize the touch screen. The function. The transparent conductive layer 14 fixed to the substrate 12 by the adhesive layer 16 should have a small surface roughness, i.e., the surface of the carbon nanotube layer exposed to the outside of the adhesive layer 16 has a small surface roughness. Preferably, the surface roughness of the transparent conductive layer 14 is as small as possible, that is, the smoother the surface of the transparent conductive layer 14 is, the better, to minimize or avoid the occurrence of color streaks due to optical refraction in the touch screen 10. Referring to FIG. 6 and FIG. 7, FIG. 6 can be used when the surface roughness Ra of the transparent conductive layer 14 is 099106698, the form number Α0101, and the surface roughness Ra is greater than 〇.1 micrometer. Fig. 7 is a propagation path of the light beam when the light beam passes through the transparent conductive layer 14 having a surface roughness Ra of more than 0.1 μm. [0028] Please refer to FIG. 7 'Because of the influence of surface tension, the portion of the adhesive layer 16 located in the gap between the carbon nanotubes 1402 near the carbon nanotubes 〇4〇2 will climb to the bottom. The surface of the carbon tube 1402 forms a concave-convex structure 1602' between the adjacent two carbon nanotubes 14〇2, and the height of the adhesive layer 16 in the middle portion is lower than that near the carbon nanotube 14 The height of the portion of the adhesive layer 16 of the surface of the crucible 2. When the composite beam is incident perpendicularly from the substrate 12, since the material of the adhesive layer 16 differs greatly from the refractive index of the vacuum, the concave-convex structure 16〇2 located between the carbon nanotubes 1402 corresponds to an optical prism, and the composite beam passes through the When the optical prism is used, dispersion occurs, that is, part of the composite light is dispersed into a plurality of monochromatic lights. Therefore, when a plurality of scattered monochromatic lights emitted from the touch screen 1 进入 enter the line of sight of the user, the user sees that the touch screen 1 〇 appears color: streaks, thereby affecting the resolution of the touch screen. Therefore, the surface roughness of the transparent conductive layer 14 is less than or equal to 0.1 μm, that is, the surface roughness Ra of the carbon nanotube layer is less than or equal to 0.1 μm, preferably, the surface of the carbon nanotube layer. The roughness ruler 3 is less than or equal to 0.01 micrometer. In the embodiment, the transparent conductive layer 14 is a layer of carbon nanotube film, and the thickness of the carbon nanotube film is about 〇5 〇 nanometer. 4. The surface roughness Ra of the transparent conductive layer 14 is about 微米5 μm. The surface of the transparent conductive layer 14 is relatively smooth, and the chance of color streaks on the touch screen 1 减少 is reduced or no color streaks appear. The surface roughness Ra of the transparent conductive layer 14 is about 〇〇5 μm, please refer to FIG. 5, the transparent guide 099106698 Form No. A0101 Page 12 / Total 44 Page 0992012136-0 201131438 Adjacent to the electric layer 14 The carbon nanotubes are filled with the adhesive layer 16 in the gap between the 4 〇 2, and the surface of the adhesive layer 16 filled in the gap between the carbon nanotubes 14G2 is substantially flat and has no shape. Concave-convex structure. The nano-stone is tired of official 1402 and the basic material of the adhesive material In the same plane, the surface of the conductive layer 14 is relatively flat and smooth. The junction of the carbon nanotubes 14〇2 and the adhesive layer 16 is relatively smooth, and the composite beam is from the When the substrate 12 is ejected through the adhesive layer 16, the dispersion phenomenon is very unclear - or almost no dispersion occurs. Therefore, when the user touches the touch screen, the color fringes seen are weak, or almost no color stripes are observed. Further, the resolution of the touch screen 10 is relatively high. Ο Referring to FIG. 1 and FIG. 2 , the two first electrodes 18 are spaced apart from the two ends of the transparent conductive layer 14 or the substrate 12 in the first direction, that is, FIG. 1 . Both ends of the X direction shown in the middle; the two second electrodes 17 are spaced apart from the two ends of the transparent conductive layer 14 or the substrate 12 in the second direction, that is, the γ directions shown in the ® 1 . The first direction and the second direction are only required to be intersected. The two first electrodes 18 and the two second electrodes 17 may be disposed on the transparent conductive layer 14 or may be disposed on the substrate 12 Above, as long as the first electrode 18 is ensured as well The two electrodes 17 are electrically connected to the transparent conductive layer 14, and a uniform resistance network can be formed on the transparent conductive layer 14. Specifically, the first electrode 18 and the second electrode 17 can be disposed in a transparent manner. The same surface of the conductive layer 14 can also be disposed on the same surface of the substrate 12; it can also be disposed between the transparent conductive layer 14 and the substrate 12; the two first electrodes 18 and the two second electrodes 17 can also be disposed On the different surfaces of the transparent conductive layer 14. The materials of the two first electrodes 18 and the two second electrodes 17 are metal, carbon nanotubes 099106698 Form No. 1010101 Page 13 / Total 44 Pages 0992012136-0 201131438 or Other conductive materials are only required to ensure that the two first electrodes 18 and the two first electrodes 17 can conduct electricity. In this embodiment, the first electrode 间隔 is spaced apart from the two ends of the transparent conductive layer 14 in the X direction, and the second electrode 17 is spaced apart from the two ends of the transparent conductive layer 14 in the 丫 direction; And the X direction is orthogonal to the Y direction. The first electrode 18 and the second electrode 17 are both strip-shaped silver layers. [0033] The present invention provides a method of preparing the above touch screen 10, the preparation method comprising the steps of: (wl) providing a substrate having a surface; (w20) forming a to be cured a layer of adhesive on the surface of the substrate; (w3〇) providing at least one carbon nanotube film; (w4〇) laying the at least one carbon nanotube film on the surface of the substrate to form a nanocarbon a tube layer, the carbon nanotube layer covering the adhesive layer to be cured; (w5〇) applying a pressure to the carbon nanotube layer to partially embed the carbon nanotube layer in the layer The surface of the cured adhesive layer is 'and the surface roughness of the carbon nanotube layer is less than or equal to 0.1 micron; (W60) the adhesive layer is cured; (W70) the electrode is formed. Referring to FIG. 8 'the preparation method of the touch screen 1 具体 specifically includes the following steps. In the step (w10), first, a substrate 12 having a surface 121 is provided. Next, the surface 121 of the substrate 12 is cleaned. The cleaning method includes washing the surface 12 of the substrate 12 with an organic solvent such as ethanol or acetone. It will be understood that the cleaning of the substrate 12 may be carried out by other methods. It is only necessary to ensure that the surface 121 of the substrate 12 is free of contaminants. The step (w20) is performed by applying a thermoplastic or liver glue to the substrate 12, Form 099106698, Form No. A0101, Page 14 of 44, 0992012136-0 201131438, to form the adhesive layer 16. [0034] The carbon nanotube film in the step (w30) is composed of a plurality of carbon nanotubes, and the majority of the carbon nanotubes extend in a direction parallel to the surface of the carbon nanotube layer. The carbon nanotube film comprises a carbon nanotube film, a carbon nanotube film or a carbon nanotube film. The preparation method of the carbon nanotube film can be selected as needed. In this embodiment, the carbon nanotube film is a carbon nanotube film, and the method for preparing the carbon nanotube film comprises the following steps: [0035] First, an array of carbon nanotubes is provided, preferably, The array is a super-aligned tantalum carbon nanotube array. [0036] The carbon nanotube array provided by the embodiment of the present invention is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or The germanium substrate formed with the oxide layer is selected, and the substrate is selected to be a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe) or cobalt (Co). And recording (Ni) or any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) treating The substrate is placed in a reaction furnace, heated to 500 ° C to 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-aligned carbon nanotube array having a height of 50 microns to 5 mm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. By controlling the growth conditions described above, the super-sequential carbon nanotube array is substantially free of impurities, such as amorphous 099106698 Form No. A0101 Page 15 of 44 0992012136-0 201131438 Carbon or residual catalyst metal particles, etc. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals forces. The carbon nanotube array is substantially the same area as the above substrate. In the present embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or decane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred protection in this embodiment. The gas is argon. [0037] It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. [0038] Next, a carbon nanotube film is obtained by drawing from a carbon nanotube array using a stretching tool. Specifically, the method comprises the following steps: (a) selecting a portion of the carbon nanotubes from the array of carbon nanotubes, and preferably using a tape having a width to contact the array of carbon nanotubes to select a portion of the carbon nanotubes; b) stretching the portion of the carbon nanotubes at a rate substantially perpendicular to the growth direction of the nanotube array to form a speed-reading carbon nanotube membrane. [0039] During the above stretching process, the portion of the carbon nanotubes are gradually separated from the substrate in the stretching direction by the tensile force, and the selected partial carbon nanotubes are respectively combined with the nanocarbon due to the van der Waals force. The other carbon nanotubes in the tube array are continuously pulled out end to end to form a carbon nanotube film [0040]. Then, the above carbon nanotube film is treated by laser irradiation. [0041] There are two methods for treating the above-mentioned carbon nanotube film by laser, one is to fix the carbon nanotube film, the moving laser device is irradiated to the carbon nanotube film, and the other is to fix the laser device, and the mobile device is moved. The carbon tube film makes the laser illuminate the Nai 099106698 Form No. A0101 Page 16 / Total 44 Page 0992012136-0 201131438 Meter carbon tube film. [0042] ❹ Due to the presence of van der Waals force between the carbon nanotubes in the carbon nanotube film, some of the carbon nanotubes in the carbon nanotube film are easily aggregated to form a carbon nanotube bundle. The diameter of the carbon nanotube bundle is large, which affects the light transmittance of the carbon nanotube film. In order to improve the light transmittance of the carbon nanotube film, the carbon nanotube film is irradiated with a laser having a power density greater than 0. lxio 4 watt/m 2 to remove the poorly transmissive carbon nanotube bundle in the carbon nanotube film. . The step of treating the carbon nanotube film by laser can be carried out in an oxygen-containing environment, preferably in an air atmosphere. The light transmittance of the carbon nanotube film after the laser treatment is remarkably improved, and the light transmittance is more than 70%, and preferably, the light transmittance is more than 85%. It will be appreciated that the purpose of laser processing of the carbon nanotube film is to further enhance the transparency of the carbon nanotube film, so this step is an optional step. [0043] Ο step (w40): the at least one carbon nanotube film is laid on the surface 121 of the substrate 12 to form a nano:: carbon tube layer, which is covered by the carbon nanotube layer Times IfU Bu. The abdomen 靥 1 fi. Too silk, you 丨Φ, Luo, a magnetic 昝暄—··4, 夕, ν * Ί ·, 碡· , , < »··· /Ϊ, ,·, , laying on the to be cured The adhesive layer 16 is formed to form a layer of carbon nanotubes covering the adhesive layer 16 to be cured. It will be understood that a plurality of carbon nanotube films may also be laid in parallel coplanar and without gaps or lamination on the layer of adhesive 16 to be cured to form a layer of carbon nanotubes. The surface roughness Ra is greater than 0.1, the surface roughness Ra of the surface of the carbon nanotube layer is relatively large, undulating, and the surface roughness Ra is greater than 0.1. Micron. If the adhesive layer 16 to be cured is cured at this time, as shown in FIG. 5, the surface roughness of the transparent conductive layer will be large, and the touch screen using the transparent conductive layer may easily appear colored stripes. 099106698 Form No. A0101 No. 17 Page / Total 44 pages 0992012136-0 201131438 [0044] Step (w50) specifically includes the following steps: [0045] Step (w51): providing a flattening tool 40 having a flat surface 42 and making the flat surface of the flattening tool 40 42 covers the surface of the carbon nanotube layer, and the carbon nanotube layer is disposed between the applanation tool 40 and the adhesive layer 16 to be cured. 1微米。 The flatness of the transparent conductive layer 14 can be less than or equal to 0.1 micron. Therefore, the smaller the surface roughness Ra of the applanation tool 40, the better. 01微米。 Preferably, the surface roughness Ra of the plane 42 of the flattening tool 40 is less than or equal to 0.01 microns. The flattening tool 40 is a polyester film, a polyether enamel film, a cellulose ester film, a polyvinyl chloride film, a benzocyclobutene film or an acrylic resin film. In this embodiment, the surface roughness Ra of the plane 42 of the applanation tool 40 is between 0 and 0.05 microns. The applanation tool 40 is a polyester film. It can be understood that the shape and material of the applanation tool 40 are not limited as long as the applanation tool 40 has at least one plane 42 and the surface roughness Ra of the plane 42 of the roofing tool 40 can ensure the transparent conductive layer 14 1微米即可。 The surface roughness Ra is less than or equal to 0.1 microns. [0046] Step (w52): applying a uniform pressure to the applanation tool 40, the uniform pressure acting on the carbon nanotube layer by the applanation tool. Since the carbon nanotube layer floats on the adhesive layer 16 to be cured, the carbon nanotubes in the carbon nanotube layer can be immersed in the adhesive layer to be cured under the action of pressure. 1微米。 The surface roughness Ra of the carbon nanotube layer is less than or equal to 0.1 microns. Specifically, first, the above-mentioned base body 12 covered with the flattening tool 40 is placed in a pressing device 30 having a roll. The pressure applying device 30 has two metal rolls 32. Next, the 099106698 form number A0101 page 18/44 page 0992012136-0 201131438 The substrate 12 covered with the applanation tool 40 passes through the two metal rolls 32. 1微米微米。 The speed of the roll 32 can be selected according to the actual needs, only to ensure that the surface of the carbon nanotube layer after the flattening Ra is less than or equal to 0.1 micron. In this embodiment, the speeds of the two metal rolls 32 are controlled at 1 mm/min to 10 m/min, respectively. [0047] ❹ ❹ [0048] During the flattening process, the pressure applied to the applanation tool 40 must be uniform to ensure that the surface roughness Ra of the carbon nanotube layer after the pressure is less than or equal to 0. 1 micron. During the process of the flattening tool 40 being subjected to a uniform pressure, on the one hand, the material of the adhesive layer 16 enters the gap between the carbon nanotubes in the carbon nanotube layer and fills the gap. a gap between the carbon nanotubes in the carbon nanotube layer; on the other hand, the air between the flattening tool 40 and the carbon nanotube layer is extruded, thereby causing the carbon nanotube The layer is tightly bonded to the surface of the flattening tool 40; and since the surface roughness Ra of the flat surface 42 of the flattening tool 40 is less than or equal to 0.1 micron, the surface roughness Ra of the carbon nanotube layer is ensured. 1微米。 Less than or equal to 0.1 microns. That is to say, the pressure applied by the applanation tool 40 and the surface roughness Ra of the flat surface 42 of the applanation tool 40 have an important influence on the surface roughness Ra of the carbon nanotube layer. In the step (w60), the adhesive layer 16 to be cured is cured. Then, the applanation tool 40 is further removed. Since the surface roughness Ra of the flattening tool 40 is less than or equal to 0.01 μm, after the adhesive layer 16 is cured, the force between the surface and the flattening tool 40 is relatively small, and the mechanical force can be directly used. The applanation tool 40 is torn from the surface of the carbon nanotube layer. After the flattening tool 40 is removed, the surface of the carbon nanotube layer, i.e., the transparent conductive layer 14, is very smooth, and its surface roughness is 099106698. Form No. A0101 Page 19 of 44 0992012136-0 201131438
Ra小於或等於0. 1微米。本實施例中,所述透明導電層14 的表面粗糙度Ra約為0. 005微米,具體可參閱圖4。 [0049] 步驟(w70)具體包括以下步驟:間隔形成兩個第一電極 18、兩個第二電極17於所述透明導電層14的表面,且與 所述透明導電層14電連接,以形成觸摸屏10。具體地, 提供一銀漿,採用絲網印刷、移印或喷塗等方式分別將 銀漿塗覆於上述奈米碳管層上形成四個條形的銀漿;其 中,兩個條形銀漿間隔形成於奈米碳管層上沿第一方向 的兩端,以形成兩個第一電極18 ;另兩個條形銀漿間隔 形成於所述奈米碳管層沿第二方向的兩端,以形成兩個 第二電極17 ;所述第一方向與第二方向正交。然後,放 入烘箱中烘烤10〜60分鐘使所述四個條形銀漿固化,烘烤 溫度為100°C〜120°C,即可得到所述兩個第一電極18及 兩個第二電極17。 [0050] 可以理解,也可以採用上述方法將銀漿塗覆於所述基體 1 2,以形成兩個第一電極18及兩個第二電極1 7,同時亦 應確保所述兩個第一電極18及兩個第二電極17都與所述 透明導電層14電連接。 [0051] 請參閱圖9及圖10,本發明實施例提供一種電阻式觸摸屏 20,該觸摸屏20包括一第一電極板22、一第二電極板24 、多個透明的點狀隔離物26以及一絕緣框架28。其中, 所述第一電極板22與第二電極板24相對間隔設置。所述 多個透明的點狀隔離物26及所述絕緣框架28設置於所述 第一電極板22與第二電極板24之間,且該絕緣框架28設 置於所述第二電極板24的週邊,將所述第一電極板22與 099106698 表單編號A0101 第20頁/共44頁 0992012136-0 201131438 第二電極板24間隔開β [0052] Ο [0053] 所述第一電極板22包括一第一基體220,一第一黏膠層 228、一第一透明導電層222以及兩個第一電極224。讀 第一基體220為平面結構,該第一透明導電層222與兩彻 第一電極224均設置於第一基體22〇的同一表面,所迷第 一黏膠層228設置於所述第一基體220與所述第—透明導 電層222之間。所述兩個第一電極224間隔設置於所迷第 一透明導電層222的表面沿第一方向的兩端即圖9中所示 之X方向的兩端,並與該第二透明導電層222電連接。 ❹ ,所述第二電極板24與第一電極板22間隔設置。所述第二 電極板24包括一第二基體240 ’ 一第;黏膠層248、一第 二透明導電層242以及兩個篇二電極244。該第二基體 240為平面結構,該第二透明導電層242與兩個第二電極 244均設置於第二基體240的同一表面,所述第二黏膠層 248設置於所述第二基體24G及所述第二透明導電層242 之間。所述兩個第二電極244間隔設置於第二透明導電層 242的表面沿第二方向的兩端即圖9中所示之Υ方向的兩端 ,並與第二透明導電層242電連接,且該第二透明導電層 242及兩個第二電極244與所述第一透明導電層222及兩 個第一電極224相對且間隔設置,該間隔的距離為2微米 〜10微米。 其中’所述第一方向與第二方向只要能相交即可,本實 施例中,第一方向即X方向垂直於第二方向即Υ方向,即 兩個第一電極224與兩個第二電極244正交設置。 099106698 表單煸號Α0101 第21頁/共44頁 0992012136-0 [0054] 201131438 [0055] 所述第一基體220為透明的且具有適當柔軟度的薄膜或薄 板。所述第一基體22 0的材料為塑膠或樹脂等柔性材料。 所述第二基體240為透明基板,該第二基體240的材料可 以為玻璃、石英、金剛石等硬性材料,也可以為塑膠及 樹脂等柔性材料。本實施例中,所述第一基體220與第二 基體240的材料均為PET,厚度均為2毫米。 [0056] 所述第一黏膠層228的作用係使所述第一透明導電層222 黏附於所述第一基體220的表面。所述第二黏膠層248的 作用係使所述第二透明導電層242黏附於所述第二基體 240的表面。所述第一黏膠層228及第二黏膠層248的作 用與第一實施例中的黏膠層16的作用相同。所述第一黏 膠層228與第二黏膠層248的材料為具有低熔點的熱塑膠 或UV (Ultraviolet Rays)膠,如,.PVC,PMMA。本 實施例中,所述第一黏膠層228與第二黏膠層248的材料 相同,均為PMMA。 [0057] 所述第一透明導電層222為所述奈米碳管層,且具有透明 可導電的特性。所述奈米碳管層由若干奈米破管組成, 該奈米碳管層中大多數奈米碳管的延伸方向基本平行於 該奈米碳管層的表面,且該奈米碳管層的表面粗糖度Ra 小於或等於0. 1微米,優選地,該奈米碳管層的表面粗輪 度Ra小於或等於0. 01微米。所述第二透明導電層242的 材料也具有透明可導電的特性。該第二透明導電層242可 以與所述第一透明導電層222—樣都為奈米碳管層,也可 以為IT0、ΑΤΟ或其他透明導電材料層。可以理解,當所 述第二透明導電層242為ΙΤ0、ΑΤΟ或其他透明導電材料 099106698 表單編號Α0101 第22頁/共44頁 0992012136-0 201131438 層時,該第二透明導電層242不採用第二黏#層248也< 以固定於所述第二基體240上。本實施例令,所述第一遂 明導電層222及第二透明導電層242沾,1 * ^ „ s 的結構均與第一實施 例中的透明導電層14的結構相同。 [0058] ❹ :述第-透明導電層222中的相鄰的奈米石炭管之間的間隙 中填充了所述第-黏膠層228,所迷填充於奈米碳管之間 =間隙中的第-黏膠層228的表面基本平坦,沒有形成四 —結構。進-步地’所述第-透明導電層m通過所述第 —黏膠層228固定於所述第-基體_的表面。通過外加 壓力的作用’所述奈米碳管層Ip会包埋於所述第一黏朦 層228中;所述奈米碳管層部分暴露於所述第一黏膠層 228外’使得該第一透明導電層222的表面具有導電性。 所述奈米碳管層部分包埋於所述黏膠層中.。由於所述奈 米峻管與所述第一黏膠層228的結合處比較平滑,當所述 複合光束垂直入射時,通過所述第一黏踢層2 2 8的複合光 束發生的色散現象非常不明顯或幾乎不發生色散現象。 Ο 即’從所述第一電極板22射向第二電極板24的光束中大 部分為複合光束或幾乎全部係複合光束。由於所述第二· 電極板24的結構及材料與第一電極板22的結構及材料相 同’該第二透明導電層242中的相鄰的奈米碳管之間的間 隙中也填充了所述第二黏膠層248 ,所述填充於奈米碳管 之間的間隙中的第二黏膠層248的表面基本平坦’沒有形 成凹凸結構。所以,所述複合光束經過該第二黏膠層248 時色散現象非常不明顯或幾乎不發生色散現象。因此, 使用者在使用觸摸屏2 〇時,看到的彩色條紋比較弱,或 099106698 表單編號A0HU 第23頁/共44頁 0992012136-0 201131438 幾乎看不到彩色條紋,進而使得觸摸屏2 0的解析度比較 高。 [0059] 所述第一電極224與所述第二電極244的材料為金屬、奈 米碳管或其他導電材料,只要確保該第一電極224與該第 二電極244能導電即可。本實施例中,該第一電極224與 第二電極244的材料為銀。可以理解,用於柔性觸摸屏上 的上述電極還應具有適當之韌性和易彎折度。 [0060] 所述多個點狀隔離物26設置於第二電極板24的第二透明 導電層242上,且該多個點狀隔離物26彼此間隔設置。所 〇 述絕緣框架28設置於所述第一電極板22與第二電極板24 之間,以確保所述第一透明導電層222與所述第二透明導 電層242相對且間隔設置。所述多個點狀隔離物託與絕緣 框架28均可採用絕緣樹脂或其他絕緣材料製成,並且, 該點狀隔離物26應為一透明材料製成。所述多個點狀隔 離物26與絕緣框架28可使第一電極板22與第二電極板24 電絕緣。可以理解,當觸摸屏2〇尺寸較小時,該多個點 狀隔離物26為可選擇的賴只要該絕緣㈣28能邮 y 所述第一電極板22與第二電極板24電絕緣即可。 [0061] 099106698 响閱圖11,本發明實施例提供一種製備所述觸摸屏2〇 的方法,該方法包括以下步驟:(sl〇)提供一第一基體 22〇,該第一基體220具有一表面2202,(s2〇)形成一 待固化的第—黏膠層228於所述第一基體220的表面2202 ,=s3〇)提供至少一奈米碳管膜;(s40)將所述至少 不米衩官骐舖設於所述第一基體22〇的表面22〇2,形成 不米碳管層,該奈米碳管層覆蓋所述待固化的第一 0992012136-0 表單鵠號AOlfU 冑24頁/共44頁 201131438 Ο [0062]Ra is less than or equal to 0.1 micron. The surface roughness Ra of the transparent conductive layer 14 is about 0.005 micrometers. See FIG. 4 for details. [0049] Step (w70) specifically includes the steps of: forming two first electrodes 18 and two second electrodes 17 on the surface of the transparent conductive layer 14 at intervals, and electrically connecting with the transparent conductive layer 14 to form Touch screen 10. Specifically, a silver paste is provided, and silver paste is respectively applied to the above-mentioned carbon nanotube layer by screen printing, pad printing or spraying to form four strips of silver paste; wherein, two strips of silver The slurry interval is formed on both ends of the carbon nanotube layer in the first direction to form two first electrodes 18; the other two strips of silver paste are spaced apart from each other in the second direction of the carbon nanotube layer Ends to form two second electrodes 17; the first direction is orthogonal to the second direction. Then, it is baked in an oven for 10 to 60 minutes to cure the four strips of silver paste, and the baking temperature is 100 ° C to 120 ° C to obtain the two first electrodes 18 and two Two electrodes 17. [0050] It can be understood that the silver paste can also be applied to the substrate 12 by the above method to form two first electrodes 18 and two second electrodes 1 7 while ensuring the two first Both the electrode 18 and the two second electrodes 17 are electrically connected to the transparent conductive layer 14. [0051] Referring to FIG. 9 and FIG. 10, an embodiment of the present invention provides a resistive touch screen 20, which includes a first electrode plate 22, a second electrode plate 24, and a plurality of transparent dot spacers 26, and An insulating frame 28. The first electrode plate 22 and the second electrode plate 24 are disposed at a relatively interval. The plurality of transparent dot spacers 26 and the insulating frame 28 are disposed between the first electrode plate 22 and the second electrode plate 24, and the insulating frame 28 is disposed on the second electrode plate 24. The first electrode plate 22 and the 099106698 form number A0101 page 20 / page 44 0992012136-0 201131438 are separated from the second electrode plate 24 [0052] [0053] The first electrode plate 22 includes a The first substrate 220 is a first adhesive layer 228, a first transparent conductive layer 222, and two first electrodes 224. The first substrate 220 is a planar structure, and the first transparent conductive layer 222 and the two first electrodes 224 are disposed on the same surface of the first substrate 22, and the first adhesive layer 228 is disposed on the first substrate. 220 is between the first transparent conductive layer 222. The two first electrodes 224 are spaced apart from the two ends of the surface of the first transparent conductive layer 222 in the first direction, that is, the two ends in the X direction shown in FIG. 9 , and the second transparent conductive layer 222 . Electrical connection. The second electrode plate 24 is spaced apart from the first electrode plate 22. The second electrode plate 24 includes a second substrate 240'; an adhesive layer 248, a second transparent conductive layer 242, and two second electrodes 244. The second substrate 240 is a planar structure, the second transparent conductive layer 242 and the two second electrodes 244 are disposed on the same surface of the second substrate 240, and the second adhesive layer 248 is disposed on the second substrate 24G. And between the second transparent conductive layers 242. The two second electrodes 244 are spaced apart from the two ends of the surface of the second transparent conductive layer 242 in the second direction, that is, the two ends in the meandering direction shown in FIG. 9 , and are electrically connected to the second transparent conductive layer 242 . The second transparent conductive layer 242 and the two second electrodes 244 are opposite to and spaced apart from the first transparent conductive layer 222 and the two first electrodes 224, and the distance between the spacers is 2 micrometers to 10 micrometers. Wherein the first direction and the second direction are as long as they can intersect. In this embodiment, the first direction, that is, the X direction is perpendicular to the second direction, that is, the Υ direction, that is, the two first electrodes 224 and the two second electrodes. 244 orthogonal settings. 099106698 Form Α Α 0101 Page 21 of 44 0992012136-0 [0054] The first substrate 220 is a film or sheet that is transparent and has a suitable softness. The material of the first substrate 22 0 is a flexible material such as plastic or resin. The second substrate 240 is a transparent substrate, and the material of the second substrate 240 may be a hard material such as glass, quartz or diamond, or a flexible material such as plastic or resin. In this embodiment, the materials of the first substrate 220 and the second substrate 240 are both PET, and the thickness is 2 mm. [0056] The first adhesive layer 228 functions to adhere the first transparent conductive layer 222 to the surface of the first substrate 220. The second adhesive layer 248 functions to adhere the second transparent conductive layer 242 to the surface of the second substrate 240. The functions of the first adhesive layer 228 and the second adhesive layer 248 are the same as those of the adhesive layer 16 in the first embodiment. The material of the first adhesive layer 228 and the second adhesive layer 248 is a thermoplastic or UV (Ultraviolet Rays) adhesive having a low melting point, such as .PVC, PMMA. In this embodiment, the first adhesive layer 228 and the second adhesive layer 248 have the same material and are all PMMA. [0057] The first transparent conductive layer 222 is the carbon nanotube layer and has a transparent conductive property. The carbon nanotube layer is composed of a plurality of nanotubes, and most of the carbon nanotubes in the carbon nanotube layer extend substantially parallel to the surface of the carbon nanotube layer, and the carbon nanotube layer 01微米。 The surface coarseness Ra of the surface of the carbon nanotube layer is less than or equal to 0. 01 microns. The material of the second transparent conductive layer 242 also has transparent conductive properties. The second transparent conductive layer 242 may be a carbon nanotube layer as the first transparent conductive layer 222, or may be an IT0, germanium or other transparent conductive material layer. It can be understood that when the second transparent conductive layer 242 is a layer of ΙΤ0, ΑΤΟ or other transparent conductive material 099106698 Form No. 1010101, page 22/44 pages 0992012136-0 201131438, the second transparent conductive layer 242 does not adopt the second layer. The adhesive layer 248 is also < fixed to the second substrate 240. In this embodiment, the first conductive layer 222 and the second transparent conductive layer 242 are adhered to each other, and the structures of 1 * ^ s s are the same as those of the transparent conductive layer 14 in the first embodiment. [0058] The gap between the adjacent nano-carboniferous tubes in the first transparent conductive layer 222 is filled with the first-adhesive layer 228, and the first-viscous layer filled in the gap between the carbon nanotubes and the gap The surface of the adhesive layer 228 is substantially flat without forming a four-structure. The first transparent conductive layer m is fixed to the surface of the first substrate by the first adhesive layer 228. The effect of the carbon nanotube layer Ip is embedded in the first adhesive layer 228; the carbon nanotube layer is partially exposed outside the first adhesive layer 228' such that the first transparent The surface of the conductive layer 222 is electrically conductive. The carbon nanotube layer is partially embedded in the adhesive layer. Since the junction of the nano tube and the first adhesive layer 228 is relatively smooth, When the composite beam is incident perpendicularly, the dispersion phenomenon occurring by the composite beam of the first viscous layer 2 2 8 is very inconspicuous or The dispersion phenomenon does not occur. Ο That is, most of the light beams that are emitted from the first electrode plate 22 toward the second electrode plate 24 are composite beams or almost all composite beams. Due to the structure of the second electrode plate 24 And the material is the same as the structure and material of the first electrode plate 22. The gap between the adjacent carbon nanotubes in the second transparent conductive layer 242 is also filled with the second adhesive layer 248, and the filling is performed. The surface of the second adhesive layer 248 in the gap between the carbon nanotubes is substantially flat 'no uneven structure is formed. Therefore, the dispersion phenomenon of the composite light beam passing through the second adhesive layer 248 is very inconspicuous or hardly Dispersion occurs. Therefore, when the user uses the touch screen 2 ,, the color stripes seen are weak, or 099106698 Form No. A0HU Page 23 / Total 44 Page 0992012136-0 201131438 Almost no color streaks are visible, and thus the touch screen 2 is made The resolution of 0 is relatively high. [0059] The material of the first electrode 224 and the second electrode 244 is a metal, a carbon nanotube or other conductive material, as long as the first electrode 224 and the second electrode 244 are ensured. In this embodiment, the material of the first electrode 224 and the second electrode 244 is silver. It is understood that the above electrode for the flexible touch screen should also have appropriate toughness and easy bending. The plurality of dot spacers 26 are disposed on the second transparent conductive layer 242 of the second electrode plate 24, and the plurality of dot spacers 26 are spaced apart from each other. The insulating frame 28 is disposed on the first The electrode plate 22 and the second electrode plate 24 are disposed to ensure that the first transparent conductive layer 222 is opposite to and spaced apart from the second transparent conductive layer 242. The plurality of dot spacers and the insulating frame 28 are both disposed. It may be made of an insulating resin or other insulating material, and the dot spacer 26 should be made of a transparent material. The plurality of dot spacers 26 and the insulating frame 28 electrically insulate the first electrode plate 22 from the second electrode plate 24. It can be understood that when the touch screen 2 is small in size, the plurality of dot spacers 26 are optional as long as the insulating (four) 28 can electrically isolate the first electrode plate 22 from the second electrode plate 24. [0061] 099106698 Referring to FIG. 11, an embodiment of the present invention provides a method for preparing the touch screen 2A, the method comprising the steps of: (sl) providing a first substrate 22, the first substrate 220 having a surface 2202, (s2〇) forming a first-adhesive layer 228 to be cured to provide at least one carbon nanotube film on the surface 2202 of the first substrate 220, = s3〇; (s40) to at least not The 衩 official layer is laid on the surface 22〇2 of the first substrate 22〇 to form a carbon nanotube layer covering the first 0992012136-0 form to be cured AO AOlfU 胄 24 pages / Total 44 pages 201131438 Ο [0062]
[00631 G[00631 G
[0064] [0065] 膠層228,以作為第一透明導電層222 ; (s50)施加一 麇力於所述奈米碳管層,使所述奈米兔管層部分包埋於 所述待固化的黏膠層中,所述泰米碳管層的表面粗糙度 小於或等於〇.1微米;(s6〇)固化所述待固化的第一 黏賸層228 ; (s70)間隔地衫成兩個第—電極224,使 得該兩個第一電極224與所述第〆透明導電層222電連接 ,形成第一電極板22 ; (s8〇)提供一第二基體24〇,形 成z第二透明導電層242於所述第二基體240的表面,從 而形成一第二電極板24 ;以及(s90)封裝所述第一電極 板22與第二電極板24,並使所述第^'锋明導電層222與所 述第二透明導電層242相對間隔設置’形成所述觸摸屏20 〇 . 所述步驟(sl〇)至(s7〇)的實現方式與本發明觸摸屏 0的製備方法中的步驟(wl〇)至(w7i))的實現方式相 同。 所述步驟(S8〇)通過重複所述步驟(sl〇)至(s7〇) 以形成所述第二電極板24。其中’所述第二電極板24進 一步包括兩個第二電極244以及一第二黏膠層248。 可以理解,當所述第二透明導電層242的材料為Iτ〇、 ΑΤΟ或其他透明導電材料層時,可以直接將第二透明導電 層242的漿料採用塗敷、噴塗或印刷等方法形成於所述第 二基體240上,然後再烘乾形成於所述第二基體24〇上的 漿料,即可形成第二透明導電層242。 於所述步驟(s90)中’封裝所述第—電極板以及第二電 099106698 表單編號Α0101 第25頁/共44頁 0992012136-0 201131438 極板24包括以下步驟: [0066] [0067] [0068] [0069] 步驟(s91 ):提供一絕緣框架28,將該絕緣框架28机置 於所述第一電極板22形成有所述第一透明導電層222的— 側的週邊。具體地,首先,塗敷一絕緣黏合劑於所述第 一電極板22形成有第二透明導電層242的一侧的週邊。其 次’將一絕緣框架28通過所述絕緣黏合劑黏結到所述第 一電極板22上。 步驟(s92):形成多個透明點狀隔離物26於所述第二電 極板24。該透明點狀隔離物26的形成方法為:將包含該 多個透明點狀隔離物2 6的漿料塗敷於所述第二電極板2 4 上,尤其係塗敷於所述第二透明導電層242上,烘乾後即 形成所述透明點狀隔離物26。可以理解,所述多個透明 點狀隔離物26也可以形成於所述第一電極板22上。 步驟(s93):採用步驟(s91)的方法將所述第二電極 板24覆蓋於所述絕緣框架28上,直:喪梅述第一電極板22 中的第一透明導電層222和所述第二電桎板24中的第二透 明導電層242相對設置,從而形成觸摸屏2(^其中,需使 所述第一電極板22中的兩個第—電極224和所述第二電極 板24中的兩個第二電極244交又設置。 本發明實施例提供的觸摸屏及其製備方法具有以下優點 :第一,奈米碳管具有優異的力學特性使得奈米碳管層 具有良好的初性及機械強度’且耐彎折,故採用奈米碳 管層作為透明導電層,可以相應的提高觸摸屏之耐用性 :進而提高使用該觸摸屏之顯示裝置的耐用性;第二, 099106698 表單編號A0101 第26頁/共44頁 0992012136-0 201131438 由於奈米碳管層包括多個均勻分佈的奈米碳管,故,該 奈米碳管層也具有均勻的阻值分佈,因此,採用該奈米 碳管層作為透明導電層可以相應的提高觸摸屏之靈敏度 及精確度;第三,由於所述透明導電層的表面比較光滑 ,其表面粗糙度Ra小於或等於0. 1微米,使得所述平行複 合光束通過該透明導電層時發生的色散現象不明顯或幾 乎不發生色散現象,從而可以減弱或避免使觸摸屏之表 面出現彩色條紋,進一步提高觸摸屏之解析度。第四, 由於本實施例所提供的奈米碳管膜無需真空環境和加熱 〇 ^ 過程,故採用上述方法製備的奈米碳管層用作觸摸屏之 透明導電層,具有成本低、環保及節能的優點。第五, 由於本實施例中的奈米碳管膜具有自支撐的特點,可以 採用直接鋪設奈米碳管膜的方法形成所述奈米碳管層, 該方法比較簡單。另外,對於有序奈米碳管膜來說,該 方法可以比較容易地控制奈米碳管膜中的奈米碳管的方 向。第六,本實施例提供的製備方法採用壓平工具將所 述奈米碳管層壓平,保證了製備的透明導電層具有較好 〇 的平整度,有利於減少或避免產生色散現象,從而可以 提高觸摸屏之解析度,而且該方法也比較簡單,易於實 現。 [0070] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 099106698 表單編號A0101 第27頁/共44頁 0992012136-0 201131438 【圖式簡單說明】 [0071] 圖1係本發明第一實施例提供的觸摸屏之俯視圖。 [0072] 圖2係圖1之觸摸屏沿II〜11線剖開的剖面圖。 [0073] 圖3係圖2中之透明導電層的掃描電鏡照片。 [0074] 圖4係圖2之透明導電層的表面形貌圖。 [0075] 圖5係光束經過圖2中之V部分的光路放大圖。 [0076] 圖6係當圖2中之透明導電層的表面粗糙度Ra大於0. 1微米 時的表面形貌圖。 Γ) [0077] 圖7係當圖2中之透明導電層的表面粗糙度Ra大於0. 1微米 時,光束經過圖2中之V部分的光路放大圖。 [0078] 圖8係本發明第一實施例提供的觸摸屏之製備流程圖。 [0079] 圖9係本發明第二實施例提供的觸摸屏之立體結構分解示 意圖。 [0080] 圖10係本發明第二實施例提供的觸摸屏之剖面圖。 〇 [0081] 圖11係本發明第二實施例提供的觸摸屏之製備流程圖。 【主要元件符號說明】 [0082] 觸摸屏:10 ; 20 [0083] 基體:12 [0084] 基體之表面:121 [0085] 透明導電層:1 4 [0086] 奈米碳管:140 2 099106698 表單編號A0101 第28頁/共44頁 0992012136-0 201131438 Ο Ο [0087] 黏膠層’· 1 6 [0088] 凹 凸結構: 1602 [0089] 第 一電極: 18 ; 224 [0090] 第 二電極: 17 ; 244 [0091] 第 一電極板 :22 [0092] 第 一基體: 220 [0093] 第 一透明導 電層: 222 [0094] 第 一黏膠層 :228 [0095] 第 二電極板 :24 [0096] 第 二基體: 240 [0097] 第 二透明導 電層: 242 [0098] 第 二黏膠層 :248 [0099] 點狀隔離物 :26 [0100] 絕緣框架: 28 099106698 表單編號Α0101 第29頁/共44頁 0992012136-0[0065] a glue layer 228 as a first transparent conductive layer 222; (s50) applying a force to the carbon nanotube layer, partially embedding the nano rabbit tube layer in the In the cured adhesive layer, the surface roughness of the silicon nanotube layer is less than or equal to 0.1 micron; (s6〇) curing the first residual layer 228 to be cured; (s70) spacer shirt The two first electrodes 224 are electrically connected to the second transparent conductive layer 222 to form a first electrode plate 22; (s8〇) provides a second substrate 24〇 to form a z second a transparent conductive layer 242 on the surface of the second substrate 240 to form a second electrode plate 24; and (s90) encapsulating the first electrode plate 22 and the second electrode plate 24, and the first electrode The conductive layer 222 is disposed at a distance from the second transparent conductive layer 242 to form the touch screen 20. The implementation of the steps (s1〇 to (s7〇) and the steps in the method for preparing the touch screen 0 of the present invention. The implementation of (wl〇) to (w7i)) is the same. The step (S8〇) is performed by repeating the steps (s1〇) to (s7〇) to form the second electrode plate 24. The second electrode plate 24 further includes two second electrodes 244 and a second adhesive layer 248. It can be understood that when the material of the second transparent conductive layer 242 is Iτ〇, ΑΤΟ or other transparent conductive material layer, the slurry of the second transparent conductive layer 242 can be directly formed by coating, spraying or printing. The second transparent body 242 is formed on the second substrate 240 and then the slurry formed on the second substrate 24 is dried. [0090] [0068] [0069] Step (s91): an insulating frame 28 is provided, and the insulating frame 28 is placed on the periphery of the first electrode plate 22 on the side where the first transparent conductive layer 222 is formed. Specifically, first, an insulating adhesive is applied to the periphery of one side of the first electrode plate 22 on which the second transparent conductive layer 242 is formed. Next, an insulating frame 28 is bonded to the first electrode plate 22 through the insulating adhesive. Step (s92): a plurality of transparent dot spacers 26 are formed on the second electrode plate 24. The transparent dot spacer 26 is formed by applying a slurry containing the plurality of transparent dot spacers 26 to the second electrode plate 24, in particular to the second transparent On the conductive layer 242, the transparent dot spacers 26 are formed after drying. It will be understood that the plurality of transparent dot spacers 26 may also be formed on the first electrode plate 22. Step (s93): covering the second electrode plate 24 on the insulating frame 28 by the method of the step (s91), straightening: the first transparent conductive layer 222 in the first electrode plate 22 and the The second transparent conductive layer 242 of the second electrical board 24 is oppositely disposed to form the touch screen 2 (wherein the two first electrodes 224 and the second electrode plate 24 of the first electrode plate 22 are required to be made) The two second electrodes 244 are disposed and disposed. The touch screen provided by the embodiment of the invention and the preparation method thereof have the following advantages: First, the carbon nanotubes have excellent mechanical properties, so that the carbon nanotube layer has good initiality. And the mechanical strength 'is resistant to bending, so the use of the carbon nanotube layer as a transparent conductive layer can correspondingly improve the durability of the touch screen: thereby improving the durability of the display device using the touch screen; second, 099106698 Form No. A0101 26 pages/total 44 pages 0992012136-0 201131438 Since the carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes, the carbon nanotube layer also has a uniform resistance distribution, and therefore, the nanocarbon is used. Tube layer as transparent conductive The layer can be used to improve the sensitivity and accuracy of the touch screen. Thirdly, since the surface of the transparent conductive layer is relatively smooth, the surface roughness Ra is less than or equal to 0.1 micrometer, so that the parallel composite light beam passes through the transparent conductive layer. The dispersion phenomenon occurs when the dispersion phenomenon is not obvious or hardly occurs, so that the color streaks appear on the surface of the touch screen can be weakened or avoided, and the resolution of the touch screen is further improved. Fourth, since the carbon nanotube film provided in the embodiment does not need to be The vacuum environment and the heating process, so the carbon nanotube layer prepared by the above method is used as a transparent conductive layer of the touch screen, which has the advantages of low cost, environmental protection and energy saving. Fifth, due to the carbon nanotube in the embodiment The film has the characteristics of self-supporting, and the carbon nanotube layer can be formed by directly laying a carbon nanotube film, which is relatively simple. In addition, for an ordered carbon nanotube film, the method can be relatively easy. Control the direction of the carbon nanotubes in the carbon nanotube film. Sixth, the preparation method provided in this embodiment uses a flattening tool to The laminate of the carbon nanotubes is flat, which ensures that the prepared transparent conductive layer has better flatness, which is beneficial to reduce or avoid the occurrence of dispersion, thereby improving the resolution of the touch screen, and the method is relatively simple and easy to implement. [0070] In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and the patent application of the case cannot be limited thereby. The equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the scope of the following claims. 099106698 Form No. A0101 Page 27 of 44 Page 0992012136-0 201131438 BRIEF DESCRIPTION OF THE DRAWINGS [0071] FIG. 1 is a plan view of a touch screen provided by a first embodiment of the present invention. 2 is a cross-sectional view of the touch screen of FIG. 1 taken along line II-11. 3 is a scanning electron micrograph of the transparent conductive layer of FIG. 2. 4 is a topographical view of the transparent conductive layer of FIG. 2. 5 is an enlarged view of an optical path of a light beam passing through a portion V in FIG. 2. Figure 6 is a surface topography diagram when the surface roughness Ra of the transparent conductive layer of Figure 2 is greater than 0.1 μm. 7 is a magnified view of the optical path of the light beam passing through the V portion in FIG. 2 when the surface roughness Ra of the transparent conductive layer in FIG. 2 is greater than 0.1 μm. 8 is a flow chart of preparing a touch screen according to a first embodiment of the present invention. 9 is a perspective exploded view of a touch screen according to a second embodiment of the present invention. 10 is a cross-sectional view of a touch screen according to a second embodiment of the present invention. 11 is a flow chart of preparing a touch screen according to a second embodiment of the present invention. [Description of main component symbols] [0082] Touch screen: 10; 20 [0083] Substrate: 12 [0084] Surface of the substrate: 121 [0085] Transparent conductive layer: 1 4 [0086] Carbon nanotube: 140 2 099106698 Form number A0101 Page 28/44 pages 0992012136-0 201131438 Ο Ο [0087] Adhesive layer '· 1 6 [0088] Concavo-convex structure: 1602 [0089] First electrode: 18; 224 [0090] Second electrode: 17; 244 [0091] First electrode plate: 22 [0092] First substrate: 220 [0093] First transparent conductive layer: 222 [0094] First adhesive layer: 228 [0095] Second electrode plate: 24 [0096] Second substrate: 240 [0097] Second transparent conductive layer: 242 [0098] Second adhesive layer: 248 [0099] Point spacer: 26 [0100] Insulation frame: 28 099106698 Form number Α 0101 Page 29 / total 44 pages 0992012136-0