TW201131159A - Macro inspection system with positioning function and related positioning method - Google Patents

Macro inspection system with positioning function and related positioning method Download PDF

Info

Publication number
TW201131159A
TW201131159A TW99106456A TW99106456A TW201131159A TW 201131159 A TW201131159 A TW 201131159A TW 99106456 A TW99106456 A TW 99106456A TW 99106456 A TW99106456 A TW 99106456A TW 201131159 A TW201131159 A TW 201131159A
Authority
TW
Taiwan
Prior art keywords
panel
image capturing
image
capturing unit
coordinate
Prior art date
Application number
TW99106456A
Other languages
Chinese (zh)
Inventor
Ching-Neng Chen
Chao-Huang Wu
Ching-Chun Chien
Wen-Cheng Hsu
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW99106456A priority Critical patent/TW201131159A/en
Publication of TW201131159A publication Critical patent/TW201131159A/en

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A macro inspection system includes a base for loading a panel, a multi-axial driving device disposed on the base, and a detecting device disposed on the multi-axial driving device for positioning a defect on the panel. The detecting device includes a first image capturing unit and a second image capturing unit for obtaining an image of at least three references on the panel and an image of the defect on the panel, and a processor for acquiring a first coordinates of the at least three references and a second coordinates of the defect on the panel, calculating a conversion function of the panel relative to the base, and calculating a relative coordinates of the defect corresponding to a coordinate system of the panel according to the conversion function.

Description

201131159 六、發明說明: 【發明所屬之技術領域】 本發明係有關__種巨觀檢查機及其操作方法,尤指一種 具有定址功能的巨觀檢查機及其定位操作方法。 【先前技術】 傳統的巨觀檢查設備係用來檢查—面板之晝素缺陷 由一定位褒置取得該缺陷點之座標,以 利後‘補人貞使用雷祕補機進行修復。—般來說,傳统 的巨觀檢查設備係利用雷射指示器標定面板上晝素缺陷點 2置’雷《示㈣藉㈣服馬達驅動’並依據光學尺或 磁性尺取仔雷射指示器標定面板上畫素缺陷點時的座標。 由於傳統巨觀檢查設備在進行面板檢查時,面板的位置 /、巨硯檢查設備的座標沒有經過相對定位即將面板安裝於 2檢查設備上,因此£觀财設備所取得畫錄陷點之座 ^無法精確地反映出其於面板上的相對座標,故容易造成後 、,男修補人貞錢行修復時發生於面板域不财素缺陷點 201131159 此外,一般雷射指示器的雷射光點大小約2〜3毫米, 但每個面板晝素大小約僅為100〜250微米,意即雷射指示 器的雷射光點於面板上約會涵蓋1〇2個晝素,因此傳統的巨 觀檢查設備無法精確地於面板上指出晝素缺陷點的位置。故 如何設計出可精確定位面板畫素缺陷點之巨觀檢查設備即 為現今面板產業所需努力之重要課題。 【發明内容】 本發明係提供一種具有定址功能的巨觀檢查機及其定 位方法,以解決上述之問題。 本發明之申請專利範圍係揭露一種具有定址功能的巨 觀檢查機,其包含有一基座,用來承載一面板;一多軸傳動 裝置,設置於該基座上;以及一偵測裝置,設置於該多軸傳 動裝置上,該偵測裝置係用來定位該面板上一缺陷點之位 置。該偵測裝置包含有一第一影像擷取單元,用來取得該面 板上至少一參考點之影像;一第二影像擷取單元,用來取得 該面板上一待測區之影像以及至少一參考點之影像;以及一 處理器,電連接於該多軸傳動裝置、該第一影像擷取單元、 以及該第二影像擷取單元,該處理器利用該第一影像擷取單 元以及該第二影像擷取單元分別取得該面板上至少三參考 201131159 以及該缺陷點於該基座 上 第一座標系統之三個第—座 一第二座標’依制三個第—座料算_ 該基座之—轉換函數,以及依據該轉換函數以 計算出該缺陷點於該面板上—第二座標系統之相對 本發明之申請專利範圍另揭露一種用來定位一面板上 -缺陷點之方法,其包含有安裝—面板於—基虹利用— 第Γ影像搁取單元或一第二影像操取單元取得該面板上至 少二參考點於絲座之H標系統之三個第―座於.— 處理器依據該三個第-絲計算該面㈣對於該基鼓一 轉換函數;利肋第二景彡㈣取單元取得該面板上該缺陷點 於该第一座標系統之一第二座標;以及該處理器依據該轉換 函數以及該第二座標計算出該缺陷點於該面板上一第二座 標糸統之相對座標。 【實施方式】 請參閱第1圖至第4圖,第丨圖為本發明較佳實施例具 有定址功能之一巨觀檢查機10之外觀示意圖,第2圖為巨 觀檢查機10於另-視角之外觀示意圖,第3圖為巨觀檢查 機10之正視圖,帛4圖為巨觀檢查機1〇之側視圖。巨觀檢 查機10係用來檢測-面板12之晝素缺_。巨觀檢查機1〇 包含有-基座14,用來承載面板12;—多軸傳動裝置16, 201131159 設置於基座14上;以及一偵測裝置18,設置於多軸傳動裝 置16上。偵測裝置18係用來定位面板12上一缺陷點之位 置。一般來說,基座14係用來固定面板12,意即面板12 不會相對於基座14有平移或旋轉的位移量。偵測裝置18係 藉由多軸傳動裝置16沿著X方向以及Y方向帶動,透過人 眼觀察發現面板12上的缺陷點,再以多軸傳動裝置16帶動 偵測裝置18至缺陷點的位置以進行精確定位。其中多軸傳 動裝置16可為一滾珠螺桿、一時規皮帶輪、一線性馬達、 * 或一伺服馬達,端視設計需求而定。 請參閱第1圖至第4圖與第5圖,第5圖為本發明較佳 實施例偵測裝置18之放大示意圖。偵測裝置18包含有一第 一影像擷取單元20,用來取得面板12上至少一參考點之影 像;一第二影像擷取單元22,用來取得面板12上待測區之 影像或至少一參考點之影像;以及一處理器24,電連接於多 • 軸傳動裝置16、第一影像擷取單元20、以及第二影像擷取 單元22。處理器24利用第一影像擷取單元20以及第二影像 擷取單元22分別取得面板12上至少三個參考點以及缺陷點 於基座14之一第一座標系統之三個第一座標以及一第二座 標,且依據參考點之三個第一座標計算面板12相對於基座 - 14之一轉換函數,以及依據轉換函數以及缺陷點之第二座標 計算出缺陷點於面板12上一第二座標系統之相對座標。 201131159 舉例來說’如第i圖至第4圖所示,面板i2上係可# f固十字參考點(形成面板12之第二座標系統),第: 象貞取早兀2〇藉由多軸傳動裝置16帶動至三個參考點以 ::擷取相對應影像’且第二影像掏取單元22藉由 =6另外帶動至缺陷咖^ 及第二? 一光學尺’用來依據第—影像擷取單元2。以 二::Γ取單元22於多軸傳動裳置16上位置提供相對 理器24。當第一影像摘取單元2〇分別移動到三 (例如⑴,川物2)、㈣3))後第處二^的座標 三备定仞土一 说豸理A 24即可利用 面板12相對基座14的—轉換函數,其” H P(x,y)=㈣y+c。此組轉換函數即為面板 :=上的-位移轉換量,且隨著每-片待測面板二 出二广立置不同,都有不同的轉換函數。接著再計算 點於面板12上㈣二座料,統之相對座 =此之外,巨觀檢查機1G另透過_顯示螢幕28 =第:,像擷取單元2。以及第二影像擷取m 旦^ 一 4擷取單元2G以及第二影像操取單元22所取叙 顯讀幕28的中央顯示參考點的十字線時,即表 讀錄單元2G準確移至該參考點的 供參考點的座標。而當顯示勞幕2並了^ 像時,即表示第:綱取單元缺陷點的影 藉以提供㈣㈣座標。 料移域㈣的位置, 201131159 偵測裝置18另包含有一指示輔助器26,設置於第二影 像擷取單元22上。指示輔助器26係用來指示第二影像擷取 單元22於面板12上之取像位置,以使使用者可控制第二影 像擷取單元22之待測區移動至缺陷點以擷取所需影像。一 般來說,指示輔助器可為一雷射筆。本發明之指示輔助器26 係輔助第二影像擷取單元22以目測判斷法移動至缺陷點。 此外,當第二影像擷取單元22移動至缺陷點時,第二影像 擷取單元22另可用來放大缺陷點之影像,以使使用者更易 於辨認面板12上是否有亮、暗點,故指示輔助器26不會因 其指示光點面積涵蓋大範圍的面板晝素而降低晝素缺陷點 的定位精確度。 請參閱第6圖,第6圖為本發明較佳實施例定位面板12 上缺陷點之流程圖。該方法包含有下列步驟: 步驟100 :安裝面板12於基座14上; 步驟102 :第一影像擷取單元20或第二影像擷取單元22藉 由多軸傳動裝置16帶動至面板12上至少三個參 考點,此時顯示螢幕28上顯示取得之影像,該三 個參考點分別位於第一影像擷取單元20或第二 影像擷取單元22取得的影像中央; 步驟104 :依據第一影像擷取單元20或第二影像擷取單元 201131159 22於多軸傳動裝置16上之位置取得三個參考點 於基座14之第一座標系統之三個第一座標; 步驟106 :處理器24依據三個第一座標計算面板12之第二 座標系統相對於基座14之第一座標系統之一轉 換函數; 步驟108 :指示輔助器26指示第二影像擷取單元22於面板 12上之取像位置; 步驟110 :第二影像擷取單元22藉由多軸傳動裝置16帶動 至面板12上缺陷點,此時顯示螢幕28上顯示第 二影像擷取單元22所取得之影像; 步驟112 :第二影像擷取單元22放大缺陷點之影像,使缺陷 點更易觀察,並移動第二影像擷取單元22直到缺 陷點位於第二影像擷取單元22所取得的影像中 央; 步驟114 :依據第二影像擷取單元22於多軸傳動裝置16上 之位置取得缺陷點於第一座標系統之第二座標; 步驟116:處理器24依據轉換函數以及第二座標計算出缺陷 點於面板12上第二座標系統之相對座標; 步驟118 :結束。 於此針對上述之步驟進行詳細說明。首先,將面板12 安裝於基座14後,使用者藉由多軸傳動裝置16控制第一影 像擷取單元20或第二影像擷取單元22依序移動至面板12 201131159 上三個參考點,直到三個參考點分別位於第一影像擷取單元 . 20或第二影像擷取單元22所取得的影像中央,顯示螢幕28 : 上則顯示第一影像擷取單元20或第二影像擷取單元22所擷 取之相對應影像。而第一影像擷取單元20或第二影像擷取 單元22於多軸傳動裝置16上對應該三個參考點的三個位置 即分別為三個參考點於基座14上於第一座標系統之相對應 座標,此時處理器24可依據三個參考點之座標計算出面板 12本身之第二座標系統相對於基座14之第一座標系統的轉 ^ 換函數。接下來使用者藉由多軸傳動裝置16控制第二影像 擷取單元22之待測區於面板12上移動以定位缺陷點。由於 肉眼難以辨認出小面積的缺陷點,故偵測裝置18可藉由指 示輔助器26,例如雷射筆,於指示第二影像擷取單元22在 面板12上取像位置時提供光源,以使顯示螢幕28顯示第二 影像擷取單元22之待測區的清晰影像。此時第二影像擷取 單元22可依所需倍率放大待測區之影像,以使使用者易於 • 辨認待測區之範圍内是否包含有晝素缺陷點,例如一亮點或 一暗點。當使用者判斷第二影像擷取單元22所取得之影像 範圍内包含有晝素缺陷點時,處理器24可依據第二影像擷 取單元22於多軸傳動裝置16上之位置取得缺陷點於基座14 之第一座標系統之第二座標以及上述轉換函數,計算出缺陷 • 點於面板12上第二座標系統之相對座標,以利後續修補人 員可依據缺陷點於第二座標系統之相對座標快速地找出面 板12上晝素缺陷點的位置。於此實施例中,處理器24係利 11 201131159 用三角定位法偵測缺陷點於面板12之第二座標系統之相對 座標,故參考點之數目可不限於上述實施例所述定位技術, · 端視實際需求而定。 - 综上所述,本發明具有定址功能之巨觀檢查機10係利 用多軸傳動裝置16帶動第一影像擷取單元20與第二影像擷 取單元22以取得面板12相對於基座14之轉換函數。當巨 觀檢查機10藉由第二影像擷取單元22之放大影像功能找出 面板12上畫素缺陷點時,偵測裝置18之處理器24即可將 畫素缺陷點於基座14上第一座標系統之第二座標代入轉換 函數,藉以快速且準確地取得晝素缺陷點於面板12上第二 座標糸統之相對座標。 相較於先前技術,本發明之巨觀檢查機額外增設具有放 大影像功能之影像擷取裝置以偵測面板之畫素缺陷點,故可 改善操作效率以及偵測準確度。此外,本發明之複數個影像 · 擷取裝置可快速地分別對面板上複數個參考點以及缺陷點 取像,故可縮短轉換晝素缺陷點於不同座標系統之座標變化 值的計算時間,提高巨觀檢查機之檢查效率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專 -利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 12 201131159 【圖式簡單說明】 第1圖為本發明較佳實施例巨觀檢查機之外觀示意圖。 第2圖為巨觀檢查機於另一視角之外觀示意圖。 第3圖為巨觀檢查機之正視圖。 第4圖為巨觀檢查機之側視圖。 第5圖為本發明較佳實施例偵測裝置之放大示意圖。 第6圖為本發明較佳實施例定位面板上缺陷點之流程圖。 【主要元件符號說明】 10 巨觀檢查機 12 面板 14 基座 16 多軸傳動裝置 18 偵測裝置 20 第一影像擷取單元 22 第二影像擷取單元 24 處理器 26 指示輔助器 28 顯示螢幕 步驟 100、102、104、106、108、110、112、114、116、118 13201131159 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a giant inspection machine and an operation method thereof, and more particularly to a giant inspection machine having an address function and a positioning operation method thereof. [Prior Art] The traditional giant inspection equipment is used to check the defects of the panel. The coordinates of the defect point are obtained by a positioning device, so that the sufficiency is repaired by using the mine. In general, the traditional giant inspection equipment uses the laser pointer to calibrate the surface of the panel with the defect point 2, 'Ray' (4) (four) service motor drive ' and according to the optical ruler or magnetic ruler to take the laser pointer The coordinates when the pixel is marked on the panel. Since the traditional giant inspection equipment is in the panel inspection, the position of the panel/the coordinates of the giant inspection equipment is not installed relative to the panel, and the panel is installed on the inspection equipment. It is impossible to accurately reflect the relative coordinates on the panel, so it is easy to cause the rear, and the men’s patching money repair occurs when the panel domain is not financially defective. 201131159 In addition, the laser spot size of the general laser pointer is about 2~3mm, but the size of each panel is only about 100~250μm, which means that the laser spot of the laser pointer covers 1〇2 pixels on the panel, so the traditional giant inspection equipment can't Precisely indicate the location of the defect points on the panel. Therefore, how to design a giant inspection equipment that can accurately locate the defects of panel pixels is an important task for the current panel industry. SUMMARY OF THE INVENTION The present invention provides a giant inspection machine having an address function and a positioning method thereof to solve the above problems. The patent application scope of the present invention discloses a giant inspection machine having an address function, comprising a base for carrying a panel; a multi-axis transmission device disposed on the base; and a detecting device, setting In the multi-axis transmission, the detecting device is used to position a defect point on the panel. The detecting device includes a first image capturing unit for acquiring an image of at least one reference point on the panel, and a second image capturing unit for acquiring an image of a region to be tested on the panel and at least one reference An image of the point; and a processor electrically coupled to the multi-axis transmission device, the first image capturing unit, and the second image capturing unit, the processor utilizing the first image capturing unit and the second The image capturing unit respectively obtains at least three references 201131159 on the panel and three third coordinates of the first coordinate system of the defect point on the pedestal. a conversion function, and a method for calculating the defect point on the panel according to the conversion function - a method for positioning an on-board defect point, which comprises a method for positioning an on-board defect point There is an installation—the panel is used—the base image capture unit or a second image manipulation unit obtains at least two reference points on the panel of the H-standard system of the silk seat. The processor calculates a conversion function for the base (4) for the base drum according to the three first-wires; and the second ridge (4) taking unit obtains the second coordinate of the defect point on the panel in the first coordinate system; The processor calculates a relative coordinate of the defect point on a second coordinate system on the panel according to the conversion function and the second coordinate. [Embodiment] Please refer to FIG. 1 to FIG. 4, which are schematic diagrams showing the appearance of a giant inspection machine 10 having an address function according to a preferred embodiment of the present invention, and FIG. 2 is a perspective view of the giant inspection machine 10. A schematic view of the appearance of the viewing angle, Fig. 3 is a front view of the giant inspection machine 10, and Fig. 4 is a side view of the giant inspection machine. The giant inspection machine 10 is used to detect the absence of the panel 12. The giant inspection machine 1A includes a base 14 for carrying the panel 12; a multi-axis transmission device 16, 201131159 disposed on the base 14; and a detecting device 18 disposed on the multi-axis transmission device 16. The detecting device 18 is used to position a defect point on the panel 12. In general, the base 14 is used to secure the panel 12, meaning that the panel 12 does not have a translational or rotational displacement relative to the base 14. The detecting device 18 is driven by the multi-axis transmission device 16 along the X direction and the Y direction, and the defect point on the panel 12 is observed through the human eye, and then the multi-axis transmission device 16 drives the detection device 18 to the position of the defect point. For precise positioning. The multi-axis transmission device 16 can be a ball screw, a timing pulley, a linear motor, a * or a servo motor, depending on the design requirements. Please refer to Figures 1 to 4 and Figure 5, which is an enlarged schematic view of a detecting device 18 according to a preferred embodiment of the present invention. The detecting device 18 includes a first image capturing unit 20 for acquiring images of at least one reference point on the panel 12, and a second image capturing unit 22 for acquiring images or at least one of the areas to be tested on the panel 12. An image of the reference point; and a processor 24 electrically coupled to the multi-axis transmission 16, the first image capturing unit 20, and the second image capturing unit 22. The processor 24 uses the first image capturing unit 20 and the second image capturing unit 22 to obtain at least three reference points on the panel 12 and three first coordinates of the first coordinate system of the defect point 14 and the first coordinate system. a second coordinate, and calculating a conversion function of the panel 12 relative to the pedestal 14 according to the three first coordinates of the reference point, and calculating a defect point on the panel 12 according to the conversion function and the second coordinate of the defect point The relative coordinates of the coordinate system. 201131159 For example, 'As shown in Figures i to 4, the panel i2 can be used to fix the cross reference point (the second coordinate system forming the panel 12), the first: the image is taken as early as 2 The shaft transmission 16 is driven to three reference points to:: draw the corresponding image 'and the second image capturing unit 22 is further driven to the defective coffee and the second by =6? An optical scale 'is used to follow the first image capturing unit 2. The second unit is provided at a position on the multi-axis drive unit 16 by a second:: pick-up unit 22. When the first image capturing unit 2〇 moves to three (for example, (1), Chuanwu 2), (4) 3)), the coordinates of the second place, the third set of the earth, the A 24 can be used to use the panel 12 Block 14 - transfer function, its "HP (x, y) = (four) y + c. This set of conversion function is the panel - = upper displacement displacement, and with each - panel to be tested two out two wide Different, there are different conversion functions. Then calculate the point on the panel 12 (four) two materials, the opposite seat = this, the giant inspection machine 1G through the _ display screen 28 = the first: like capture The unit 2 and the second image capturing unit 2G and the second image capturing unit 22 take the cross line of the reference point of the center of the reading screen 28, that is, the table reading unit 2G is accurate. Move to the coordinates of the reference point for the reference point. When the screen 2 is displayed and the image is displayed, it means that the image of the defect point of the element is provided by (4) (4) coordinates. The position of the material shifting field (4), 201131159 18 further includes an indication aid 26 disposed on the second image capturing unit 22. The indicating aid 26 is used to indicate the second image The image capturing position of the capturing unit 22 on the panel 12 is such that the user can control the area to be tested of the second image capturing unit 22 to move to the defect point to capture the desired image. Generally, the indicating aid can be The pointing assistant 26 of the present invention assists the second image capturing unit 22 to move to the defect point by visual judgment. Further, when the second image capturing unit 22 moves to the defect point, the second image The capturing unit 22 can also be used to enlarge the image of the defect point, so that the user can more easily recognize whether there are bright or dark spots on the panel 12. Therefore, the indicating aid 26 does not cover a wide range of panel elements because of the indicated spot area. The positioning accuracy of the defect points of the halogen is reduced. Please refer to Fig. 6, which is a flow chart of the defect points on the positioning panel 12 according to the preferred embodiment of the present invention. The method comprises the following steps: Step 100: Mounting the panel 12 On the pedestal 14; Step 102: The first image capturing unit 20 or the second image capturing unit 22 is driven by the multi-axis transmission device 16 to at least three reference points on the panel 12, and the display screen is displayed on the display screen 28 Image, the three The reference point is located at the center of the image obtained by the first image capturing unit 20 or the second image capturing unit 22; Step 104: According to the first image capturing unit 20 or the second image capturing unit 201131159 22 in the multi-axis transmission device 16 The upper position obtains three first coordinates of the first coordinate system of the base 14 of the base 14; Step 106: The processor 24 calculates the second coordinate system of the panel 12 with respect to the base 14 according to the three first coordinates a conversion function of the first calibration system; Step 108: Instructing the auxiliary device 26 to indicate the image capturing position of the second image capturing unit 22 on the panel 12; Step 110: The second image capturing unit 22 is driven by the multi-axis transmission device 16 The defect image is displayed on the panel 12, and the image captured by the second image capturing unit 22 is displayed on the display screen 28; Step 112: The second image capturing unit 22 enlarges the image of the defect point to make the defect point easier to observe, and Moving the second image capturing unit 22 until the defect point is located in the center of the image obtained by the second image capturing unit 22; Step 114: obtaining the position of the second image capturing unit 22 on the multi-axis transmission device 16 The defect is located at the second coordinate of the first coordinate system; Step 116: The processor 24 calculates the relative coordinates of the defect point on the second coordinate system on the panel 12 according to the conversion function and the second coordinate; Step 118: End. The above steps are described in detail herein. First, after the panel 12 is mounted on the pedestal 14, the user controls the first image capturing unit 20 or the second image capturing unit 22 to sequentially move to the three reference points on the panel 12 201131159 by the multi-axis transmission device 16 . Until the three reference points are respectively located in the center of the image obtained by the first image capturing unit 20 or the second image capturing unit 22, the display screen 28: the first image capturing unit 20 or the second image capturing unit is displayed 22 corresponding images taken. The three positions of the first image capturing unit 20 or the second image capturing unit 22 corresponding to the three reference points on the multi-axis transmission device 16 are respectively three reference points on the pedestal 14 on the first coordinate system. Corresponding coordinates, at this time, the processor 24 can calculate the conversion function of the second coordinate system of the panel 12 itself relative to the first coordinate system of the susceptor 14 according to the coordinates of the three reference points. Next, the user controls the area to be tested of the second image capturing unit 22 to move on the panel 12 by the multi-axis transmission device 16 to locate the defect point. Since the small-area defect point is difficult to be recognized by the naked eye, the detecting device 18 can provide a light source by indicating the auxiliary device 26, such as a laser pointer, when instructing the second image capturing unit 22 to take an image position on the panel 12, The display screen 28 is caused to display a clear image of the area to be tested of the second image capturing unit 22. At this time, the second image capturing unit 22 can enlarge the image of the area to be tested according to the required magnification, so that the user can easily recognize whether the defect area, such as a bright point or a dark point, is included in the range of the area to be tested. When the user determines that the image range obtained by the second image capturing unit 22 includes the pixel defect point, the processor 24 can obtain the defect point according to the position of the second image capturing unit 22 on the multi-axis transmission device 16 The second coordinate of the first coordinate system of the pedestal 14 and the conversion function are used to calculate the defect • the relative coordinates of the second coordinate system on the panel 12, so that the subsequent repair personnel can rely on the defect point to the second coordinate system. The coordinates quickly find the location of the defect points on the panel 12. In this embodiment, the processor 24 utilizes the triangulation method to detect the relative coordinates of the defect point on the second coordinate system of the panel 12, so the number of reference points may not be limited to the positioning technology described in the above embodiment. Depending on actual needs. In summary, the giant inspection machine 10 having the addressing function of the present invention utilizes the multi-axis transmission device 16 to drive the first image capturing unit 20 and the second image capturing unit 22 to obtain the panel 12 relative to the base 14. Conversion function. When the giant inspection machine 10 finds the pixel defect point on the panel 12 by the enlarged image function of the second image capturing unit 22, the processor 24 of the detecting device 18 can point the pixel defect on the susceptor 14. The second coordinate of the first standard system is substituted into the conversion function to quickly and accurately obtain the relative coordinates of the second coordinate system of the pixel defect point on the panel 12. Compared with the prior art, the giant inspection machine of the present invention additionally adds an image capturing device with an image expanding function to detect the pixel defect points of the panel, thereby improving the operation efficiency and the detection accuracy. In addition, the plurality of image capturing devices of the present invention can quickly take images of a plurality of reference points and defect points on the panel, thereby shortening the calculation time of converting the coordinate values of the pixel defects in different coordinate systems, and improving Inspection efficiency of Juguan inspection machine. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the specific scope of the application of the present invention are intended to be within the scope of the present invention. 12 201131159 [Simple description of the drawings] Fig. 1 is a schematic view showing the appearance of a giant inspection machine according to a preferred embodiment of the present invention. Figure 2 is a schematic view of the appearance of the giant inspection machine from another perspective. Figure 3 is a front view of the giant inspection machine. Figure 4 is a side view of the giant inspection machine. FIG. 5 is an enlarged schematic view of a detecting device according to a preferred embodiment of the present invention. Figure 6 is a flow chart of a defect point on a positioning panel in accordance with a preferred embodiment of the present invention. [Main component symbol description] 10 Giant inspection machine 12 Panel 14 Base 16 Multi-axis transmission device 18 Detection device 20 First image capturing unit 22 Second image capturing unit 24 Processor 26 Instructing the auxiliary device 28 to display the screen steps 100, 102, 104, 106, 108, 110, 112, 114, 116, 118 13

Claims (1)

201131159 七、申請專利範圍·· L 一種具有定址功能的巨觀檢查機,其包含有: —基座,用來承載一面板; 夕軸傳動裝置’設置於該基座上;以及 -偵測裝^ ’設置於該多轴傳動裝置上,該制裝置係 '疋位。亥面板上一缺陷點之位置,該偵測裝置包 含有: —第―影像擷取單元’用來取得該面板上至少一參 考點之影像; —第二影像擷取單元’料取得該面板上—待測區 —之影像以及至少一參考點之影像;以及 —處理。器,電連接於該多軸傳動裝置、該第—影像掏 取早元以及該第二影像擷取單元,該處理器利用 °亥第衫像擷取單元以及該第二影像擷取單元 分別取得該©板上至少三參考點以及該缺陷點 於》亥基座上一第一座標系統之三個第一座標以 及一第二座標’依據該三個第一座標計算該面板 相對於該基座之-轉換函數,以及依據該轉換函 數以及該第二座標計算出該缺陷點於該面板上 一第二座標系統之相對座標。 2.如請求項1所述之巨觀檢查機,其中該偵測裝置另包含 201131159 有: 一指示輔助器,設置於該第二影像擷取單元上,該指示 輔助器係用來指示該第二影像擷取單元於該面板上 之取像位置。 3.如請求項2所述之巨觀檢查機,其中該指示輔助器係為 一雷射筆。 • 4.如請求項1所述之巨觀檢查機,其中該多軸傳動裝置為 一滚珠螺桿、一時規皮帶輪、一線性馬達、或一伺服馬達。 5. 如請求項4所述之巨觀檢查機,其中該多軸傳動裝置另 包含一光學尺,用來依據該第一影像擷取單元以及該第二 影像擷取單元的位置提供該第一座標以及該第二座標給 該處理器。 6. 如請求項1所述之巨觀檢查機,其另包含有: 一顯示螢幕,電連接於該第一影像擷取單元以及該第二 影像擷取單元,該顯示螢幕係用來顯示該第一影像 . 擷取單元以及該第二影像擷取單元所取得之影像。 7. 如請求項1所述之巨觀檢查機,其中該第二影像擷取單 元另用來放大該待測區之影像。 15 201131159 8. —種用來定位一面板上一缺陷點之方法,其向含有. 安裝一面板於一基座上; ’ 利用-第-影像操取單元或—第二影像掏取單元取得該 面板上至少三參考點於該基座之—第—輯系統之 三個第一座標; 一處理器依據該三個第―座標計算該面板相對於該 之一轉換函數; 利用該第二影㈣取單元取得該面板上該缺陷點於該第 一座標系統之一第二座標;以及 該處理器依據該轉換函數以及該第二鋪計算出該缺陷 點於該面板上-第二座標系統之相對座標。 9· t請求項8所述之料,其巾利㈣第—影_取單元 或-第二影像擷取單元取得該面板上至少三參考點之該 —個第一座標包含步驟: “第讀擷取單7C或該第二影像擷取單元藉由一多轴 傳動裝置帶動至該三參考點;以及 依據。亥第_影像操取單m影像齡單元於該多 軸傳動裝置上之位置產生該三個第一座標。 1〇.^?求項8所述之方法,其中利用該第二影像掏取單元 仔起板上該缺陷點之該第二座標包含步驟: 16 201131159 該第二影像擷取單元藉由一多軸傳動裝置帶動至該缺陷 , 點;以及 . 依據該第二影像擷取單元於該多軸傳動裝置上之位置產 生該第二座標。 11. 如請求項10所述之方法,其中利用該第二影像擷取單元 取得該面板上該缺陷點之該第二座標另包含步驟: 該第二影像擷取單元放大該缺陷點之影像。 12. 如請求項10所述之方法,其中利用該第二影像擷取單 元取得該面板上該缺陷點之該第二座標另包含步驟: 一指示輔助器指示該第二影像擷取單元於該面板上之取 像位置。 13. 如請求項8所述之方法,其另包含有: 於一顯示螢幕上顯示該第一影像擷取單元以及該第二影 像擷取單元所取得之影像。 14. 如請求項8所述之方法,其中該處理器係利用三角定位 法偵測出該面板上之該缺陷點於該面板上該座標系統之 相對座標。 八、圖式: 17201131159 VII. Application for patent scope·· L A giant inspection machine with addressing function, which comprises: a base for carrying a panel; an ecliptic transmission 'on the base; and - a detection device ^ 'Set on the multi-axis transmission, the device is '疋 position. The detecting device includes: - the first image capturing unit is configured to obtain an image of the at least one reference point on the panel; the second image capturing unit is configured to obtain the panel - the image of the area to be tested - and the image of at least one reference point; and - processing. And the second image capturing unit is respectively connected to the multi-axis transmission device, the image capturing device and the second image capturing unit, and the processor is respectively obtained by using the image capturing unit and the second image capturing unit At least three reference points on the panel and the three first coordinates of the first coordinate system and a second coordinate on the pedestal of the pedestal, the panel is calculated relative to the pedestal according to the three first coordinates a conversion function, and calculating a relative coordinate of the defect point on a second coordinate system on the panel according to the conversion function and the second coordinate. 2. The giant inspection machine according to claim 1, wherein the detecting device further comprises 201131159: an indicating aid is disposed on the second image capturing unit, the indicating aid is used to indicate the first The image capturing position of the image capturing unit on the panel. 3. The giant inspection machine of claim 2, wherein the indicator aid is a laser pointer. 4. The giant inspection machine of claim 1, wherein the multi-axis transmission is a ball screw, a timing pulley, a linear motor, or a servo motor. 5. The apparatus of claim 4, wherein the multi-axis transmission device further comprises an optical scale for providing the first image according to the positions of the first image capturing unit and the second image capturing unit. The coordinates and the second coordinate are given to the processor. 6. The giant inspection machine of claim 1, further comprising: a display screen electrically connected to the first image capturing unit and the second image capturing unit, the display screen is for displaying the The first image. The capture unit and the image obtained by the second image capture unit. 7. The jumbo inspection machine according to claim 1, wherein the second image capturing unit is further used to enlarge an image of the area to be tested. 15 201131159 8. A method for locating a defect point on a board, which comprises: mounting a panel on a pedestal; 'using-the first image manipulation unit or the second image capturing unit At least three reference points on the panel are three first coordinates of the first-stage system of the pedestal; a processor calculates a conversion function of the panel relative to the one according to the three first-coordinates; using the second shadow (four) Taking the unit to obtain the defect on the panel to the second coordinate of the first coordinate system; and the processor calculates the defect point on the panel according to the conversion function and the second shop-the second coordinate system coordinate. The material described in claim 8 has a step of: the first coordinate of the at least three reference points on the panel is obtained by the towel (4) the first image capturing unit or the second image capturing unit. The capture unit 7C or the second image capture unit is driven to the three reference points by a multi-axis transmission; and the position of the single-m image-age unit on the multi-axis transmission is generated according to the image The method of claim 8, wherein the second image capturing unit picks up the second coordinate of the defect point on the board includes the following steps: 16 201131159 The second image The capture unit is driven to the defect by a multi-axis transmission; and the second coordinate is generated based on the position of the second image capture unit on the multi-axis transmission. The method of using the second image capturing unit to obtain the second coordinate of the defect point on the panel further comprises the step of: the second image capturing unit amplifying the image of the defect point. 12. The method of claim 10 Method of utilizing the second image The capturing unit obtains the second coordinate of the defect point on the panel, and further includes the following steps: an indication aid indicating the image capturing position of the second image capturing unit on the panel. 13. The method according to claim 8 The method further includes: displaying the first image capturing unit and the image obtained by the second image capturing unit on a display screen. 14. The method of claim 8, wherein the processor utilizes a triangle The positioning method detects the defect on the panel and the relative coordinates of the coordinate system on the panel. 8. Pattern: 17
TW99106456A 2010-03-05 2010-03-05 Macro inspection system with positioning function and related positioning method TW201131159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99106456A TW201131159A (en) 2010-03-05 2010-03-05 Macro inspection system with positioning function and related positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99106456A TW201131159A (en) 2010-03-05 2010-03-05 Macro inspection system with positioning function and related positioning method

Publications (1)

Publication Number Publication Date
TW201131159A true TW201131159A (en) 2011-09-16

Family

ID=50180313

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99106456A TW201131159A (en) 2010-03-05 2010-03-05 Macro inspection system with positioning function and related positioning method

Country Status (1)

Country Link
TW (1) TW201131159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007120A (en) * 2014-05-09 2014-08-27 雄华机械(苏州)有限公司 Rotatable appearance inspection equipment support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007120A (en) * 2014-05-09 2014-08-27 雄华机械(苏州)有限公司 Rotatable appearance inspection equipment support
CN104007120B (en) * 2014-05-09 2016-05-25 雄华机械(苏州)有限公司 A kind of rotating appearance detection device support

Similar Documents

Publication Publication Date Title
US9488589B2 (en) Mapping damaged regions on objects
JP6029475B2 (en) Wall diagnosis result recording system, wall diagnosis result recording method, and wall diagnosis result recording program
EP2098820A3 (en) Geographical data collecting device
JP2009210388A5 (en)
CN109001208A (en) A kind of defect positioning device and defect positioning method of display panel
JP2014055864A (en) Image measurement device, manufacturing method of the same and program for image measurement device
JP2009522560A (en) Method for operating a measurement system with a scanning probe microscope and measurement system
EP1924083A3 (en) Portable device
JP2007322162A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP2014134471A (en) Wall surface diagnosis result recording system, wall surface diagnosis result recording method and wall surface diagnosis result recording program
CN104990689A (en) Positioning method and positioning device in optical test
CN111189401B (en) Real-time automatic measurement method and system for shield tail clearance
JP2010249589A (en) Method and device for measuring strain
JP2011180007A (en) Structure examination system and position measuring apparatus used for the same
US20120296599A1 (en) Temperature sensing system and method
CN106773158A (en) A kind of movable type seeks liquid crystal display pixel qualities analytical equipment and a method certainly
CN102365677A (en) Image display device and image processing method
JP2015109321A (en) Electronic component mounting apparatus
JP2008281771A (en) Microscopic-measurement apparatus
TW201131159A (en) Macro inspection system with positioning function and related positioning method
CN106200036B (en) Lighting detection equipment
JP5702634B2 (en) Camera resolution automatic measurement method, automatic adjustment method, and image inspection method and apparatus
JP4778855B2 (en) Optical measuring device
KR20090074388A (en) Apparatus for inspecting of display panel and method thereof
JP2005274272A (en) Calibration method in line sensor camera, and visual examination apparatus