JP2010249589A - Method and device for measuring strain - Google Patents

Method and device for measuring strain Download PDF

Info

Publication number
JP2010249589A
JP2010249589A JP2009097658A JP2009097658A JP2010249589A JP 2010249589 A JP2010249589 A JP 2010249589A JP 2009097658 A JP2009097658 A JP 2009097658A JP 2009097658 A JP2009097658 A JP 2009097658A JP 2010249589 A JP2010249589 A JP 2010249589A
Authority
JP
Japan
Prior art keywords
measured
laser
measurement
strain
speckle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097658A
Other languages
Japanese (ja)
Inventor
Koichi Kobayashi
幸一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seiki Seisaku-sho Ltd
Original Assignee
Toyo Seiki Seisaku-sho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seiki Seisaku-sho Ltd filed Critical Toyo Seiki Seisaku-sho Ltd
Priority to JP2009097658A priority Critical patent/JP2010249589A/en
Publication of JP2010249589A publication Critical patent/JP2010249589A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strain measuring method and a strain measuring device for noncontactly and easily measuring wide-range strain distribution in a measuring object such as plastic, rubber, metal, structure, and structural material. <P>SOLUTION: The strain measuring device includes: a laser light projector 1 for radiating a measurement spot 9 of the measuring object 5 with laser light 4; a light receiving part 2 for picking up an image of a laser speckle pattern 3 being reflection light of the laser light 4; an image processing means for seeking the center of gravity point 12 of each speckle of the picked-up image of the laser speckle pattern 3; and a measurement means for measuring the strain of the measuring object 5 by detecting the amount and direction of movement of the center of gravity point 12 of each speckle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラスチック、ゴム、金属などの試験片、その他構造物および構造材料等の被測定物の歪み分布を非接触にて計測する歪み計測方法及び歪み計測装置に関する。   The present invention relates to a strain measurement method and a strain measurement apparatus for measuring a strain distribution of a measurement object such as a test piece such as plastic, rubber, metal, and other structures and structural materials in a non-contact manner.

従来、被測定物の歪みを計測する方法としては、被測定物に抵抗線歪みゲージを貼り付けて計測する計測方法、あるいは、レーザ光をビームスプリッタで二光束に分け、被測定物の歪みの方向に角度を持たせて重ねて照射して干渉させ、被測定物の変形前後におけるスペックルパターンの変化から歪み量を求める二光束法による電子スペックル干渉法(ESPI)が知られている。   Conventionally, as a method of measuring the strain of the object to be measured, a measuring method in which a resistance wire strain gauge is attached to the object to be measured, or a laser beam is divided into two light beams by a beam splitter, and the distortion of the object to be measured is measured. There is known an electronic speckle interferometry (ESPI) based on a two-beam method in which an amount of distortion is obtained from a change in a speckle pattern before and after deformation of an object to be measured by overlapping and irradiating with an angle in a direction.

抵抗線歪みゲージによる計測方法は、計測の事前処理として被測定物へ抵抗線歪みゲージを取り付ける必要があり、計測箇所への取り付け方向ならびに取り付け強度にも注意を必要とし、計測者の熟練を要する。さらに、計測中において、被測定物に亀裂や破断を生じた場合には、抵抗線歪みゲージが外れたり、抵抗線歪みゲージに損傷や破壊が生じたりする可能性がある。この為、抵抗線歪みゲージによる計測方法は、被測定物の歪み方向に正しく抵抗線歪みゲージを取り付ける必要があり、抵抗線歪みゲージの計測範囲内で一方向の計測に限定され、ゴムやプラスチックなど伸び率の大きい歪み計測には不向きである。   In the measurement method using a resistance wire strain gauge, it is necessary to attach a resistance wire strain gauge to the object to be measured as a pre-processing of measurement, and it is necessary to pay attention to the direction and strength of attachment to the measurement location, requiring skill of the measurer. . Furthermore, when a measurement object is cracked or broken during measurement, the resistance wire strain gauge may come off, or the resistance wire strain gauge may be damaged or broken. For this reason, the measuring method using a resistance wire strain gauge requires that the resistance wire strain gauge be correctly attached in the strain direction of the object to be measured, and is limited to one-way measurement within the measurement range of the resistance wire strain gauge. It is not suitable for strain measurement with large elongation.

電子スペックル干渉法は、照射するレーザ光をビームスプリッタにより2つの光路に分岐し、被測定物の歪み方向に2方向から角度を持たせて重ねて照射する必要があり、光学系が精密かつ煩雑となり、計測箇所の歪み方向を予め推測し、歪み方向と平行となるようにレーザ光を重ねて照射する必要があり、被測定物は小さく、狭い範囲内の一方向性のみの歪み計測に限定されていた。   In electronic speckle interferometry, it is necessary to irradiate laser light to be split into two optical paths by means of a beam splitter, and to irradiate with an angle from two directions in the strain direction of the object to be measured. It becomes complicated, it is necessary to estimate the distortion direction of the measurement location in advance, and to irradiate the laser beam so that it is parallel to the distortion direction. The object to be measured is small, and distortion measurement only in one direction within a narrow range. It was limited.

また、本願の発明者により、レーザスペックルパターンを利用し、試験片に非接触でポアソン比をリアルタイムで計測する歪み計測方法及び装置が提案され(特許文献1参照)、また、被計測物に照射するレーザ光をレーザ投光機と被計測物との間に焦点を有するクロス光としたレーザ反射光による被計測物の高精度変位計測方法とその装置が提案されている(特許文献2参照)。   Further, the inventor of the present application has proposed a strain measurement method and apparatus that uses a laser speckle pattern to measure a Poisson's ratio in real time without contact with a test piece (see Patent Document 1). A highly accurate displacement measurement method and apparatus for a measurement object using laser reflected light, in which the irradiated laser light is cross light having a focal point between the laser projector and the measurement object, have been proposed (see Patent Document 2). ).

特開2007−64864号公報JP 2007-64864 A 特開2008−304190号公報JP 2008-304190 A

抵抗線歪みゲージによる計測方法によれば、被測定物の歪み方向を予め予測して抵抗線歪みゲージを貼り付け、貼り付ける強度や歪み量を予測するなど計測者の熟練を要し、抵抗線歪みゲージの計測範囲内で一方向の計測に限定され、伸び率の大きい被測定物の歪み計測には不向きであるという課題があった。   According to the measurement method using a resistance wire strain gauge, the strain direction of the object to be measured is predicted in advance, the resistance wire strain gauge is attached, the strength and strain amount to be applied are predicted, and the skill of the measurer is required. There is a problem that it is limited to measurement in one direction within the measurement range of the strain gauge and is not suitable for strain measurement of an object to be measured having a large elongation rate.

電子スペックル干渉法によれば、レーザ光をビームスプリッタで2分岐し、計測箇所の歪み方向を予め予測して2分岐したレーザ光を重ね合わせて照射し、狭い範囲内の一方向の計測に限定され、伸び率の大きい被測定物の歪み計測には不向きであり、また、光学系が精密かつ煩雑になるという課題があった。   According to the electronic speckle interferometry, the laser beam is split into two by a beam splitter, the distortion direction of the measurement location is predicted in advance, and the two split laser beams are overlapped and irradiated to measure in one direction within a narrow range. There is a problem that it is limited and unsuitable for strain measurement of an object to be measured having a large elongation rate, and the optical system becomes precise and complicated.

また、特許文献1に記載の歪み計測方法及び装置は、計測系を試験片の伸び方向に沿って自動追尾するようにしてあるために、歪み方向が一定でない被測定物を測定対象とする場合や、複数の計測系により複数箇所の歪みを計測する場合には、装置の構成が複雑になるという課題があった。   In addition, since the strain measurement method and apparatus described in Patent Document 1 automatically tracks the measurement system along the direction of elongation of the test piece, a measurement object whose strain direction is not constant is to be measured. In addition, when measuring strains at a plurality of locations using a plurality of measurement systems, there is a problem that the configuration of the apparatus becomes complicated.

そこで、本発明は、プラスチック、ゴム、金属および構造物、構造材などにおける被測定物の広範囲の歪み分布を非接触で容易に計測することができる歪み計測方法及び歪み計測装置を提供するものである。   Accordingly, the present invention provides a strain measurement method and a strain measurement apparatus that can easily measure a wide range of strain distribution of an object to be measured in plastic, rubber, metal, structures, structural materials, and the like, in a non-contact manner. is there.

本発明は、上記課題を解決するために、被測定物の計測箇所にレーザ光を照射し、前記レーザ光の反射光であるレーザスペックルパターンを受光部で撮像し、撮像したレーザスペックルパターンの各スペックルの重心点を求め、各スペックルの重心点の移動量と移動方向を検出して被測定物の歪みを計測する歪み計測方法を提供するものである。   In order to solve the above-described problem, the present invention irradiates a measurement spot of a measurement object with laser light, images a laser speckle pattern, which is reflected light of the laser light, in a light receiving unit, and picks up the imaged laser speckle pattern A strain measuring method is provided in which the center of gravity of each speckle is obtained, the amount of movement and the direction of movement of the center of gravity of each speckle is detected, and the strain of the object to be measured is measured.

また、本発明の歪み計測方法は、複数の計測箇所にレーザ光を照射して被測定物の歪みを計測するものである。   In addition, the strain measurement method of the present invention measures the strain of the object to be measured by irradiating a plurality of measurement locations with laser light.

また、本発明は、被測定物の計測箇所にレーザ光を照射するレーザ投光機と、前記レーザ光の反射光であるレーザスペックルパターンを撮像する受光部と、撮像したレーザスペックルパターンの各スペックルの重心点を求める画像処理手段と、各スペックルの重心点の移動量と移動方向を検出して被測定物の歪みを計測する計測手段とからなる歪み計測装置を提供するものである。   In addition, the present invention provides a laser projector that irradiates a measurement site of a measurement object with a laser beam, a light receiving unit that images a laser speckle pattern that is a reflected light of the laser beam, and a laser speckle pattern that has been captured. The present invention provides a distortion measuring device comprising an image processing means for obtaining the center of gravity of each speckle and a measuring means for detecting the amount and direction of movement of the center of gravity of each speckle to measure the distortion of the object to be measured. is there.

また、本発明の歪み計測装置は、複数組のレーザ投光機と受光部を備え、複数の計測箇所にレーザ光を照射するようにしたものである。   In addition, the strain measuring apparatus of the present invention includes a plurality of sets of laser projectors and light receiving units, and irradiates a plurality of measurement locations with laser light.

また、本発明の歪み計測装置は、前記計測手段が、異なるスペックルの重心点の移動量と移動方向を加算して被測定物の歪みを計測する手段を備えたものである。   In the distortion measuring apparatus of the present invention, the measuring means includes means for measuring the distortion of the object to be measured by adding the moving amount and moving direction of the center of gravity points of different speckles.

本発明の歪み計測方法は、被測定物の計測箇所にレーザ光を照射し、前記レーザ光の反射光であるレーザスペックルパターンを受光部で撮像し、撮像したレーザスペックルパターンの各スペックルの重心点を求め、各スペックルの重心点の移動量と移動方向を検出して被測定物の歪みを計測する構成を有することにより、歪みの計測に際して、事前処理や特別な標識を必要とせず、複雑な光学系も用いず、微小な歪みから大変形の歪みまで、被測定物にレーザ光を照射し、被測定物の歪み量と歪み方向に対応して平行移動するスペックルの重心点の動きを連続して計測することができ、容易にかつ非接触で被測定物の歪み分布を計測することができる効果がある。   The strain measurement method of the present invention irradiates a measurement site of an object to be measured with laser light, images a laser speckle pattern that is reflected light of the laser light with a light receiving unit, and each speckle of the captured laser speckle pattern. By measuring the center of gravity of each speckle and detecting the amount and direction of movement of the center of gravity of each speckle to measure the distortion of the object to be measured, pre-processing and special signs are required for measuring the distortion. The center of gravity of the speckle that moves in parallel with the amount and direction of distortion of the object to be measured by irradiating the object to be measured with laser light from minute distortion to large deformation without using a complicated optical system. The movement of the point can be continuously measured, and there is an effect that the strain distribution of the object to be measured can be easily measured without contact.

また、本発明の歪み計測方法は、複数の計測箇所にレーザ光を照射して被測定物の歪みを計測することにより、大きな被測定物においても全体の歪み分布を計測することができる効果がある。   In addition, the strain measurement method of the present invention has an effect that the entire strain distribution can be measured even in a large measurement object by irradiating a plurality of measurement points with laser light to measure the distortion of the measurement object. is there.

また、本発明の歪み計測装置は、被測定物の計測箇所にレーザ光を照射するレーザ投光機と、前記レーザ光の反射光であるレーザスペックルパターンを撮像する受光部と、撮像したレーザスペックルパターンの各スペックルの重心点を求める画像処理手段と、各スペックルの重心点の移動量と移動方向を検出して被測定物の歪みを計測する計測手段とからなる構成を有することにより、歪みの計測に際して、事前処理や特別な標識を必要とせず、複雑な光学系も用いず、微小な歪みから大変形の歪みまで、被測定物にレーザ光を照射し、被測定物の歪み量と歪み方向に対応して平行移動するスペックルの重心点の動きを連続して計測することができ、容易にかつ非接触で被測定物の歪み分布を計測することができる効果がある。   In addition, the strain measuring apparatus of the present invention includes a laser projector that irradiates a measurement site of a measurement object with a laser beam, a light receiving unit that images a laser speckle pattern that is a reflected light of the laser beam, and an imaged laser. The image processing means for obtaining the center of gravity of each speckle of the speckle pattern, and the measuring means for detecting the movement amount and direction of the center of gravity of each speckle to measure the distortion of the object to be measured. Therefore, when measuring distortion, pre-processing and special labeling are not required, and no complicated optical system is used. It is possible to continuously measure the movement of the center of gravity of the speckle that moves in parallel according to the amount of distortion and the direction of distortion, and to measure the strain distribution of the object to be measured easily and non-contactedly. .

また、本発明の歪み計測装置は、複数組のレーザ投光機と受光部を備え、複数の計測箇所にレーザ光を照射するようにしたことにより、大きな被測定物においても全体の歪み分布を計測することができる効果がある。   In addition, the strain measuring apparatus of the present invention includes a plurality of sets of laser projectors and light receiving units, and irradiates a plurality of measurement points with laser light, so that the entire strain distribution can be obtained even for a large object to be measured. There is an effect that can be measured.

また、本発明の歪み計測装置は、前記計測手段が、異なるスペックルの重心点の移動量と移動方向を加算して被測定物の歪みを計測する手段を備えたことにより、被測定物の歪み量が大きく、各スペックルが撮像範囲を超えて移動する場合でも、異なるスペックルの重心点の動きを加算するから、スペックルの重心点の動きを連続して計測することができ、伸縮率の大きい被測定物の歪みを計測することが可能になる効果がある。   Further, the strain measuring apparatus of the present invention is characterized in that the measuring means includes means for measuring the strain of the measured object by adding the moving amount and moving direction of the center of gravity points of different speckles. Even if the amount of distortion is large and each speckle moves beyond the imaging range, the movement of the center of gravity of the different speckles is added, so the movement of the center of gravity of the speckle can be continuously measured and expanded and contracted. There is an effect that it is possible to measure the distortion of the measurement object having a large rate.

本発明歪み計測装置の一実施例を示す構成図。The block diagram which shows one Example of this invention distortion measuring device. その一実施例のスペックルパターン発生状態を示す図。The figure which shows the speckle pattern generation | occurrence | production state of the one Example. 本発明歪み計測装置の他の実施例を示す構成図。The block diagram which shows the other Example of this invention distortion measuring device. その実施例のスペックルパターン発生状態を示す図。The figure which shows the speckle pattern generation | occurrence | production state of the Example. スペックルパターン発生・撮像構成を示す図。The figure which shows a speckle pattern generation and imaging structure.

本発明の実施の形態を図示する実施例に基づいて説明する。
本発明に係る歪み計測装置は、被測定物5の計測箇所9にレーザ光4を照射するレーザ投光機1と、前記レーザ光4の反射光であるレーザスペックルパターン3を撮像する受光部2と、撮像したレーザスペックルパターン3の各スペックルの重心点12を求める画像処理手段と、各スペックルの重心点12の移動量と移動方向を検出して被測定物5の歪みを計測する計測手段とから構成してある。
Embodiments of the present invention will be described based on examples shown in the drawings.
The distortion measuring apparatus according to the present invention includes a laser projector 1 that irradiates a measurement spot 9 of a measurement object 5 with a laser beam 4 and a light receiving unit that images a laser speckle pattern 3 that is a reflected light of the laser beam 4. 2, image processing means for obtaining the center of gravity 12 of each speckle of the captured laser speckle pattern 3, and the amount and direction of movement of the center of gravity 12 of each speckle are detected to measure the distortion of the object 5 to be measured. Measuring means.

図5は、スペックルパターンの発生及び撮像の構成を示す図である。
図5に示すように、直進性、高輝度、単色光、干渉性に優れたレーザ光4を被測定物5に照射すると、照射レーザ光4は被測定物5の粗面に基づいて空間で乱反射し、レーザスペックルパターン3が発生する。このレーザスペックルパターン3は、被測定物5の表面における2次元的な歪みや変形に伴って平行移動する性質があるから、受光部2でレーザスペックルパターン3を連続撮像し、画像処理装置6にて撮像したレーザスペックル3の移動方向と移動量を検出することにより、被測定物5の表面の歪み方向と歪み量を導き出すことができ、非接触かつ高応答の歪み計測装置を得ることができる。
FIG. 5 is a diagram showing the configuration of speckle pattern generation and imaging.
As shown in FIG. 5, when the object to be measured 5 is irradiated with the laser beam 4 excellent in straightness, high luminance, monochromatic light, and coherence, the irradiation laser light 4 is generated in a space based on the rough surface of the object to be measured 5. Diffuse reflection causes laser speckle pattern 3 to occur. Since this laser speckle pattern 3 has the property of moving in parallel with two-dimensional distortion and deformation on the surface of the object 5 to be measured, the laser speckle pattern 3 is continuously imaged by the light receiving unit 2, and the image processing apparatus By detecting the moving direction and moving amount of the laser speckle 3 imaged at 6, the distortion direction and the distortion amount of the surface of the object to be measured 5 can be derived, and a non-contact and high response distortion measuring device is obtained. be able to.

図1〜図4に示すように、本発明のレーザスペックルパターンによる非接触型歪み分布計測方法は、被測定物5の計測箇所9にレーザ光4を照射し、被測定物5の表面の粗面に基づいて空間に発生したレーザスペックルパターン3をCCDカメラなどの受光部2で連続撮像し、レーザスペックルパターン3の各スペックルの重心点12を求め、被測定物5の歪みに伴いスペックルの重心点12が移動する性質を利用し、スペックルの重心点12の移動量と移動方向を同時に検出して、被測定物の歪み分布を計測するものである。なお、被測定物5の歪み量が大きく、各スペックルが移動して撮像範囲を逸脱する場合には、新たに撮像範囲に入って撮像される各スペックルの重心点12の移動を加算し続けることにより、大きな歪み量でも連続して計測することが可能である。   As shown in FIGS. 1 to 4, the non-contact type strain distribution measuring method using the laser speckle pattern of the present invention irradiates the measurement spot 9 of the object 5 with the laser beam 4, and the surface of the object 5 is measured. The laser speckle pattern 3 generated in the space based on the rough surface is continuously imaged by the light receiving unit 2 such as a CCD camera, the center of gravity 12 of each speckle of the laser speckle pattern 3 is obtained, and the distortion of the object to be measured 5 is obtained. Accordingly, the movement of the speckle centroid point 12 and the movement direction of the speckle centroid point 12 are detected simultaneously to measure the strain distribution of the object to be measured. In addition, when the amount of distortion of the DUT 5 is large and each speckle moves and deviates from the imaging range, the movement of the barycentric point 12 of each speckle newly entered and imaged is added. By continuing, it is possible to continuously measure even a large amount of distortion.

図1は、被測定物5の狭い領域(計測箇所9)における歪み分布計測系を示している。図1において、10は被測定物5を支持する支持台であり、8は被測定物5に上部から尖端荷重を加える荷重装置である。荷重装置8が、支持台10に載置した被測定物5の上部より荷重を加えると、被測定物5に荷重が加わり歪みが発生する。   FIG. 1 shows a strain distribution measurement system in a narrow region (measurement location 9) of the object 5 to be measured. In FIG. 1, reference numeral 10 denotes a support base that supports the object to be measured 5, and 8 denotes a load device that applies a point load to the object to be measured 5 from above. When the load device 8 applies a load from above the object to be measured 5 placed on the support base 10, the load is applied to the object to be measured 5 and distortion occurs.

レーザ投光機1は、被測定物5に安定したレーザスペックルパターン3を描くために高輝度で指向性を備えた可視光を使用し、レーザ素子、冷却回路、駆動回路、及びレンズより構成され、ビーム光を照射することができるようにしてある。レーザ投光機1のレンズは、照射するレーザ光4のビーム径を変えることができるように設けてあり、レーザ光4を照射する領域を可変にしてある。また、レーザ光4は、被測定物5の微細な歪みを検出できるようにクロス光を使用することができる他、ストレート光やスポット光を使用することも可能である。   The laser projector 1 uses visible light having high brightness and directivity in order to draw a stable laser speckle pattern 3 on the object 5 to be measured, and includes a laser element, a cooling circuit, a driving circuit, and a lens. The beam light can be irradiated. The lens of the laser projector 1 is provided so that the beam diameter of the laser beam 4 to be irradiated can be changed, and the region to which the laser beam 4 is irradiated is made variable. Further, the laser light 4 can use cross light as well as straight light or spot light so that minute distortion of the object to be measured 5 can be detected.

受光部2は、CCD素子と、該CCD素子の前方に設けた外来光を遮断する暗視筒とからなり、レーザスペックルパターン3を直接撮像するように構成してある。受光部2は、被測定物5に描くレーザスペックルパターン3を撮像し、NTSC信号(アナログ信号)で画像処理装置6へ出力する機能を有している。   The light receiving unit 2 includes a CCD element and a night vision tube provided in front of the CCD element that blocks external light, and is configured to directly image the laser speckle pattern 3. The light receiving unit 2 has a function of capturing an image of the laser speckle pattern 3 drawn on the object to be measured 5 and outputting the image to the image processing device 6 using an NTSC signal (analog signal).

画像処理装置6は、受光部2で撮像したスペックルパターン3のNTSC信号を入力し、スペックルパターン3の各スペックルの重心点12を求める画像処理手段を備えている。この画像処理手段は、継続的に各スペックルの重心点12を求めることができるように構成してあり、重心点12の移動量と移動方向を検出して各スペックルの移動を検出することができる。なお、重心点の計算には、公知の計算方法を使用することができる。   The image processing device 6 includes image processing means for inputting the NTSC signal of the speckle pattern 3 captured by the light receiving unit 2 and obtaining the center of gravity 12 of each speckle of the speckle pattern 3. This image processing means is configured to continuously obtain the center of gravity 12 of each speckle, and detects the movement of each speckle by detecting the amount and direction of movement of the center of gravity 12. Can do. A known calculation method can be used for calculating the center of gravity.

また、画像処理装置6は、画像処理手段で検出された各スペックルの重心点12の移動量と移動方向に基づいて、被測定物5の歪みを計測する計測手段を備えている。また、画像処理装置6は、スペックルパターン3及びその重心点、被測定物5の歪み情報を表示装置7に出力するようにしてある。計測手段は、被測定物5の歪み具合をポアソン比などで数値化したり、重心点の位置関係の変化を模式的に表したりすることができる。   In addition, the image processing apparatus 6 includes a measuring unit that measures the distortion of the DUT 5 based on the movement amount and movement direction of the center of gravity 12 of each speckle detected by the image processing unit. Further, the image processing device 6 outputs the speckle pattern 3 and its center of gravity, and distortion information of the object to be measured 5 to the display device 7. The measuring means can digitize the degree of distortion of the DUT 5 using a Poisson's ratio or the like, and can schematically represent a change in the positional relationship between the center of gravity points.

図2は、図1に示す実施例において撮像されたスペックルパターン3を示している。図2は、被測定物5に荷重を加えた状態を示している。被測定物5に荷重を加える前では、スペックルパターン3は静止しているが、被測定物5に荷重が加わると、荷重の大きさに比例して被測定物5に歪みが生じ、スペックルパターン3が歪み方向と平行に移動する状態(図中の矢印)が示されている。   FIG. 2 shows the speckle pattern 3 imaged in the embodiment shown in FIG. FIG. 2 shows a state in which a load is applied to the DUT 5. Before the load is applied to the object to be measured 5, the speckle pattern 3 is stationary. However, when a load is applied to the object to be measured 5, the object to be measured 5 is distorted in proportion to the magnitude of the load. A state (arrow in the figure) where the blue pattern 3 moves in parallel with the strain direction is shown.

図1及び図2に示すように、スペックルパターン3は、被測定物5の表面における歪み方向に平行して移動する性質があるから、荷重装置8により加えられる尖端荷重に対して放射状に各スペックルの重心点12(図中の黒点)が移動する。従って、本発明に係る歪み計測装置は、撮像したスペックルパターン3における各スペックルの重心点12の移動量と移動方向を画像処理装置6にて演算することにより、荷重に対する被測定物5の歪み分布を計測することができる。   As shown in FIG. 1 and FIG. 2, the speckle pattern 3 has a property of moving in parallel with the strain direction on the surface of the object 5 to be measured. The barycentric point 12 (black point in the figure) of the speckle moves. Therefore, the distortion measuring device according to the present invention calculates the amount of movement and the direction of movement of the center of gravity 12 of each speckle in the captured speckle pattern 3 by the image processing device 6 so that the object to be measured 5 against the load can be measured. Strain distribution can be measured.

図3は、被測定物5の広い領域(計測箇所9a〜9e)における歪み分布計測系を示している。図3に示す実施例において、11a〜11eは、図5に示すレーザ投光機1と受光部2で構成された計測系である。計測箇所9a〜9eは、被測定物5の適宜な計測位置を示すものであり、図示の実施例では、計測系11a〜11eが、被測定物5の中央部と四隅部にレーザ光4を照射して、被測定物5の広い領域の歪み分布を計測することができるようにしてある。レーザ投光機1と受光部2は、一体化して設けることにより、計測系11a〜11eを移動して、任意の計測箇所9a〜9eにおいて歪みを計測することも可能である。   FIG. 3 shows a strain distribution measurement system in a wide area (measurement points 9a to 9e) of the object 5 to be measured. In the embodiment shown in FIG. 3, reference numerals 11 a to 11 e are measurement systems constituted by the laser projector 1 and the light receiving unit 2 shown in FIG. 5. The measurement locations 9a to 9e indicate appropriate measurement positions of the object 5 to be measured. In the illustrated embodiment, the measurement systems 11a to 11e emit laser beams 4 at the center and four corners of the object 5 to be measured. Irradiation enables measurement of the strain distribution over a wide area of the DUT 5. By providing the laser projector 1 and the light receiving unit 2 in an integrated manner, it is also possible to move the measurement systems 11a to 11e and measure distortion at arbitrary measurement locations 9a to 9e.

図3は、尖端荷重に対する被測定物5の広域範囲の歪みを計測する方法を示している。図3に示すように、荷重装置8が、支持台10に載置した被測定物5の上部より荷重を加えると、被測定物5に荷重が加わり歪みが発生する。   FIG. 3 shows a method of measuring a wide-range strain of the DUT 5 with respect to the tip load. As shown in FIG. 3, when the load device 8 applies a load from above the object to be measured 5 placed on the support base 10, the load is applied to the object to be measured 5 and distortion occurs.

図4は、図3中の各計測箇所9a〜9eにおけるスペックルパターンを示している。図4は、被測定物5に荷重を加えた状態を示している。被測定物5に荷重を加える前では、各計測箇所9a〜9eにおけるスペックルパターン3は静止しているが、被測定物5に荷重が加わると、荷重の大きさに比例して被測定物5に歪みが生じ、各計測箇所9a〜9eのスペックルパターン3が歪み方向と平行に移動する状態が示されている。   FIG. 4 shows a speckle pattern at each measurement location 9a to 9e in FIG. FIG. 4 shows a state in which a load is applied to the DUT 5. Before the load is applied to the object to be measured 5, the speckle pattern 3 at each of the measurement points 9a to 9e is stationary. However, when a load is applied to the object to be measured 5, the object to be measured is proportional to the magnitude of the load. 5 shows a state where distortion occurs and the speckle pattern 3 at each of the measurement points 9a to 9e moves in parallel with the distortion direction.

画像処理装置6は、画像処理手段と計測手段を備えている。画像処理手段は、各計測箇所9a〜9eにおけるスペックルの重心点12を求め、これら重心点12の移動量と移動方向を検出して各スペックルの移動を検出することができるように構成してある。計測手段は、被測定物5における計測箇所9a〜9eの位置データと、画像処理手段で検出された計測箇所9a〜9eにおける各スペックルの重心点12の移動量と移動方向に基づいて、被測定物5の広い領域の歪み分布を計測することができるようにしてある。   The image processing device 6 includes image processing means and measurement means. The image processing means is configured to obtain the speckle centroid points 12 at the measurement points 9a to 9e, and detect the movement and direction of the centroid points 12 to detect the movement of each speckle. It is. The measuring means is based on the position data of the measurement points 9a to 9e on the object to be measured 5 and the amount and direction of movement of the center of gravity 12 of each speckle at the measurement points 9a to 9e detected by the image processing means. The strain distribution in a wide area of the measurement object 5 can be measured.

図示の実施例において、画像処理装置6は、複数の計測系11a〜11e間の処理(歪み分布処理)を時分割処理し、表示装置7に計測系11a〜11eの位置関係を表示し、且つ、各計測系11a〜11eにおける歪み値(左右並びに上下移動量)を表示することができるように構成してある。画像処理装置6は、各計測系11a〜11eから収集する画像情報を、例えば、位相限定相関法、統計干渉、相互相関法などにより順次(時分割)処理し、処理された画像データから歪み値を求めるようにしてある。   In the illustrated embodiment, the image processing device 6 performs time-sharing processing (distortion distribution processing) between the plurality of measurement systems 11a to 11e, displays the positional relationship of the measurement systems 11a to 11e on the display device 7, and The distortion values (left and right and vertical movement amounts) in each measurement system 11a to 11e can be displayed. The image processing apparatus 6 sequentially (time division) processes image information collected from each of the measurement systems 11a to 11e by, for example, a phase-only correlation method, statistical interference, a cross-correlation method, and the like, and obtains a distortion value from the processed image data. Is to ask.

なお、画像処理装置6は、各計測系11a〜11eに個別に設けて歪み値を求め、求められた各計測系の歪み値を一括収集する別のコンピュータを備え、表示装置7に各計測系の位置関係を表示するとともに歪み値を表示出力するように構成することも可能である。このように、画像処理装置6を個別に設けることにより、被測定物5の歪み分布計測を高速に得ることができる。   The image processing apparatus 6 includes a separate computer that is individually provided in each of the measurement systems 11a to 11e to obtain a distortion value, and collects the obtained distortion values of each measurement system at once. The display apparatus 7 includes each measurement system. It is also possible to display the positional relationship and display the distortion value. Thus, by providing the image processing apparatus 6 individually, the strain distribution measurement of the DUT 5 can be obtained at high speed.

上記実施例では、画像処理手段として重心点12の移動量と移動方向を例に示しており、精度は1μmであるが、既存の画像処理である相互相関法や位相限定相関法、統計干渉法などを用いることにより、瞬間的な歪みの計測やサブミクロン単位の精度での計測も可能である。   In the above embodiment, the moving amount and moving direction of the centroid 12 are shown as an example of the image processing means, and the accuracy is 1 μm. However, the cross-correlation method, the phase-only correlation method, the statistical interference method, which are existing image processing, are used. Can be used to measure instantaneous distortion and submicron accuracy.

本発明に係る歪み計測方法及び装置は、上記実施例に示すように、被測定物5へ尖端荷重を加える場合に限らず、風洞試験、流体試験、引張試験機用伸び計、振動試験、疲労試験に於ける被測定物5の歪み分布計測など、多種の用途に適用可能である。
また、本発明に係る歪み計測方法及び装置は、計測系11を多数用いることにより、被測定物5の総合的な歪み分布計測を可能とするものである。
The strain measurement method and apparatus according to the present invention are not limited to the application of a tip load to the object to be measured 5 as shown in the above-described embodiment, but include a wind tunnel test, a fluid test, an extensometer for a tensile tester, a vibration test, and fatigue. The present invention can be applied to various uses such as strain distribution measurement of an object to be measured 5 in a test.
In addition, the strain measurement method and apparatus according to the present invention enables comprehensive strain distribution measurement of the DUT 5 by using a large number of measurement systems 11.

また、航空機の翼など大きな被測定物5の歪み分布を同時に計測する場合には、一体化したレーザ投光機1と受光部2を被測定物5の適宜な各位置に設置し、同時計測することにより、総合的な歪み計測をすることができる。   Further, in the case of simultaneously measuring the strain distribution of a large object 5 such as an aircraft wing, the integrated laser projector 1 and light receiving unit 2 are installed at appropriate positions on the object 5 and simultaneously measured. By doing so, comprehensive distortion measurement can be performed.

1 レーザ投光機
2 受光部
3 スペックルパターン
4 レーザ光
5 被測定物
6 画像処理装置
7 表示装置
8 荷重装置
9 計測箇所
10 支持台
11 計測系
12 重心点
DESCRIPTION OF SYMBOLS 1 Laser projector 2 Light-receiving part 3 Speckle pattern 4 Laser light 5 Measured object 6 Image processing apparatus 7 Display apparatus 8 Load apparatus 9 Measurement location 10 Support base 11 Measurement system 12 Center of gravity

Claims (5)

被測定物の計測箇所にレーザ光を照射し、前記レーザ光の反射光であるレーザスペックルパターンを受光部で撮像し、撮像したレーザスペックルパターンの各スペックルの重心点を求め、各スペックルの重心点の移動量と移動方向を検出して被測定物の歪みを計測する歪み計測方法。   Laser light is irradiated to the measurement location of the object to be measured, the laser speckle pattern, which is the reflected light of the laser light, is picked up by the light receiving unit, the center of gravity of each speckle of the picked up laser speckle pattern is obtained, and each spec A strain measurement method that measures the strain of the object to be measured by detecting the amount of movement and the direction of movement of the center of gravity of the object. 複数の計測箇所にレーザ光を照射して被測定物の歪みを計測する請求項1に記載の歪み計測方法。   The strain measurement method according to claim 1, wherein the strain of the object to be measured is measured by irradiating a plurality of measurement locations with laser light. 被測定物の計測箇所にレーザ光を照射するレーザ投光機と、前記レーザ光の反射光であるレーザスペックルパターンを撮像する受光部と、撮像したレーザスペックルパターンの各スペックルの重心点を求める画像処理手段と、各スペックルの重心点の移動量と移動方向を検出して被測定物の歪みを計測する計測手段とからなる歪み計測装置。   A laser projector that irradiates a laser beam to a measurement location of the object to be measured, a light receiving unit that images a laser speckle pattern that is a reflected light of the laser beam, and a barycentric point of each speckle of the captured laser speckle pattern A distortion measuring apparatus comprising: an image processing means for obtaining a difference; and a measuring means for detecting the movement amount and direction of the center of gravity of each speckle to measure the distortion of the object to be measured. 複数組のレーザ投光機と受光部を備え、複数の計測箇所にレーザ光を照射するようにした請求項3に記載の歪み計測装置。   The distortion measuring apparatus according to claim 3, comprising a plurality of sets of laser projectors and light receiving units, and irradiating a plurality of measurement locations with laser light. 前記計測手段が、異なるスペックルの重心点の移動量と移動方向を加算して被測定物の歪みを計測する手段を備えた請求項3又は4に記載の歪み計測装置。   The distortion measuring apparatus according to claim 3 or 4, wherein the measuring means includes means for measuring the distortion of the object to be measured by adding the moving amount and moving direction of the center of gravity of different speckles.
JP2009097658A 2009-04-14 2009-04-14 Method and device for measuring strain Pending JP2010249589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097658A JP2010249589A (en) 2009-04-14 2009-04-14 Method and device for measuring strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097658A JP2010249589A (en) 2009-04-14 2009-04-14 Method and device for measuring strain

Publications (1)

Publication Number Publication Date
JP2010249589A true JP2010249589A (en) 2010-11-04

Family

ID=43312099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097658A Pending JP2010249589A (en) 2009-04-14 2009-04-14 Method and device for measuring strain

Country Status (1)

Country Link
JP (1) JP2010249589A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103363919A (en) * 2013-07-15 2013-10-23 国家电网公司 Device and method for measuring strain of high-temperature pipeline of power plant based on white light speckle technology
CN105806243A (en) * 2016-04-19 2016-07-27 辽宁工程技术大学 Optical measurement method for strain rate field inside object with parallel front and back surfaces
CN108955555A (en) * 2018-08-09 2018-12-07 合肥工业大学 High-precision high temperature deformation measurement method
JP2020159747A (en) * 2019-03-25 2020-10-01 株式会社熊谷組 Method for estimating current stress of structure and device therefor
JP2021183932A (en) * 2020-05-22 2021-12-02 株式会社島津製作所 Strain distribution measurement system and strain distribution measurement method
CN114136228A (en) * 2021-11-29 2022-03-04 沈阳师范大学 Thermal deformation detection system based on laser speckle method, detection method and application
CN115655555A (en) * 2022-10-19 2023-01-31 北京航空航天大学 Fastener pretightening force measuring method based on laser speckle correlation method
CN117214166A (en) * 2023-09-12 2023-12-12 中国科学院力学研究所 System and method for measuring residual stress field of metal material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074928A (en) * 1993-06-15 1995-01-10 Shimadzu Corp Strain measuring apparatus
JPH0949705A (en) * 1995-08-08 1997-02-18 Kishimoto Sangyo Kk Method for measuring moving amount of object to be measured by image processing of speckle pattern generated by irradiation of laser light
JP2001201320A (en) * 2000-01-19 2001-07-27 Kishimoto Sangyo Co Ltd Elongation measuring method and device for test piece
JP2002162355A (en) * 2000-11-27 2002-06-07 Hiroyuki Konno Method and apparatus for directly picking up image of grained spot pattern by reflected laser light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074928A (en) * 1993-06-15 1995-01-10 Shimadzu Corp Strain measuring apparatus
JPH0949705A (en) * 1995-08-08 1997-02-18 Kishimoto Sangyo Kk Method for measuring moving amount of object to be measured by image processing of speckle pattern generated by irradiation of laser light
JP2001201320A (en) * 2000-01-19 2001-07-27 Kishimoto Sangyo Co Ltd Elongation measuring method and device for test piece
JP2002162355A (en) * 2000-11-27 2002-06-07 Hiroyuki Konno Method and apparatus for directly picking up image of grained spot pattern by reflected laser light

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103363919A (en) * 2013-07-15 2013-10-23 国家电网公司 Device and method for measuring strain of high-temperature pipeline of power plant based on white light speckle technology
CN105806243A (en) * 2016-04-19 2016-07-27 辽宁工程技术大学 Optical measurement method for strain rate field inside object with parallel front and back surfaces
CN108955555A (en) * 2018-08-09 2018-12-07 合肥工业大学 High-precision high temperature deformation measurement method
JP2020159747A (en) * 2019-03-25 2020-10-01 株式会社熊谷組 Method for estimating current stress of structure and device therefor
JP2021183932A (en) * 2020-05-22 2021-12-02 株式会社島津製作所 Strain distribution measurement system and strain distribution measurement method
JP7405003B2 (en) 2020-05-22 2023-12-26 株式会社島津製作所 Strain distribution measurement system and strain distribution measurement method
CN114136228A (en) * 2021-11-29 2022-03-04 沈阳师范大学 Thermal deformation detection system based on laser speckle method, detection method and application
CN114136228B (en) * 2021-11-29 2023-06-02 沈阳师范大学 Thermal deformation detection system, detection method and application based on laser speckle method
CN115655555A (en) * 2022-10-19 2023-01-31 北京航空航天大学 Fastener pretightening force measuring method based on laser speckle correlation method
CN115655555B (en) * 2022-10-19 2024-04-26 北京航空航天大学 Fastener pretightening force measuring method based on laser speckle correlation method
CN117214166A (en) * 2023-09-12 2023-12-12 中国科学院力学研究所 System and method for measuring residual stress field of metal material

Similar Documents

Publication Publication Date Title
JP2010249589A (en) Method and device for measuring strain
Ribeiro et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system
CN105960569B (en) The method of three-dimension object is checked using two dimensional image processing
CN108802043B (en) Tunnel detection device, tunnel detection system and tunnel defect information extraction method
Summan et al. Spatial calibration of large volume photogrammetry based metrology systems
KR101309443B1 (en) Apparatus and method for monitoring a structure using motion capture method
AU2016308995A1 (en) Method, device, and program for measuring displacement and vibration of object by single camera
CN101109620A (en) Method for standardizing structural parameter of structure optical vision sensor
JP2011191282A (en) Displacement measuring method using moire fringe
JP2009264852A (en) Phase analysis method of grid image and displacement measurement method of object using the same, and shape measurement method of object
CN110806182A (en) High-precision optical extensometer and measuring method based on telecentric lens
Petz et al. Tactile–optical probes for three-dimensional microparts
JP2008292296A (en) Method for measuring film thickness of transparency film and its apparatus
CN110268221A (en) Cotton rope measuring device and cotton rope measurement method
Franco et al. Static and dynamic displacement measurements of structural elements using low cost RGB-D cameras
JP5130513B2 (en) Three-dimensional displacement strain measuring method and apparatus
JP2008014882A (en) Three-dimensional measuring device
JP2015108582A (en) Three-dimensional measurement method and device
CN110763146A (en) High-precision optical extensometer and measuring method based on double cameras
CN104655027B (en) The detection method and system of little height
JP2006317200A5 (en)
JP2015007591A (en) Vehicle body rigidity test method and vehicle body rigidity test device
TW201800717A (en) Optical interferometric apparatus for real-time full-field thickness inspection
JP2020193820A5 (en)
Tian et al. Application of digital image correlation for long-distance bridge deflection measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Effective date: 20120626

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130409

Free format text: JAPANESE INTERMEDIATE CODE: A02