TW201128977A - Method and system for multi-user detection using two-stage processing - Google Patents

Method and system for multi-user detection using two-stage processing Download PDF

Info

Publication number
TW201128977A
TW201128977A TW099114083A TW99114083A TW201128977A TW 201128977 A TW201128977 A TW 201128977A TW 099114083 A TW099114083 A TW 099114083A TW 99114083 A TW99114083 A TW 99114083A TW 201128977 A TW201128977 A TW 201128977A
Authority
TW
Taiwan
Prior art keywords
matrix
user
symbol
received
symbols
Prior art date
Application number
TW099114083A
Other languages
Chinese (zh)
Inventor
wen-jun Li
Ying-Qun Yu
Farrokh Abrishamkar
Divaydeep Sikri
In-Sung Kang
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201128977A publication Critical patent/TW201128977A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • H04B1/71052Joint detection techniques, e.g. linear detectors using decorrelation matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

Systems and methods for multi-user detection in a multiple access system are provided. In one aspect, an apparatus is provided. The apparatus comprises a processing unit configured to process received chips into received symbols for a plurality of users and a computation unit configured to compute a multi-user matrix using a Hadamard matrix, wherein the multi-user matrix relates user symbols for the plurality of users to the received symbols. The apparatus further comprises a detection unit configured to detect the user symbols for the plurality of users using the received symbols and the computed multi-user matrix.

Description

201128977 六、發明說明: 【發明所屬之技術領域】201128977 VI. Description of the invention: [Technical field to which the invention pertains]

於用於多工存取系統中的多使用者偵 ’且更特定言之係關 測的方法和系統。 【先前技術】 在無線通訊系統中,許多使用者在無線通道上通訊。例 如,分碼多工存取(CDMA)調制技術是用於促進存在大 量系統使用者的通訊的若干技術之一。亦可以使用其他多 工存取通訊系統技術,諸如,分時多工存取(tdma )和 分頻多工存取(FDMA)。 由於在無線通訊系統中存在用於多個使用者的多個資 料傳輸,因此需要減輕多使用者干擾(MUI))和符號間干 擾以及(例如)其他雜訊。傳統上,在接收機中在碼片級 上執行干擾消除,其中複雜性隨著使用者數目以及所涉及 的迭代夹數直接上升。碼片級于擾消除較複雜,並且會涉 =问級虏算法和實施困難性。此複雜性導致接收機容易遭 J a誤傳播。因此,需要用於在克服碼片級干擾消除的 、.’的同時提供準確的多使用者干擾和符號間干擾消除 的系統和方法。 【發明内容】 在本發明的一個態樣中,提供了 一種多使用者偵測方 法包括·將已接收碼片處理為用於複數個使用者 201128977 的已接收符號;及使用哈達瑪矩陣計算多使用者矩陣,其 中該多使用者矩陣將用於該複數個使用者的使用者符號 與已接收符號相關聯。該方法進一步包括使用該等已接收 符號和所計算的多使用者矩陣來偵測用於該複數個使用 者的該等使用者符號。 在本發明的另一個態樣中,提供了一種裝置。該裝置包 括.處理單7L,其被配置為將已接收碼片處理為用於複數 個使用者的已接收符號;及計算單元,其被配置為使用哈 達瑪矩陣汁算多使用者矩陣,其中該多使用者矩陣將用於 該複數個使用者的使用者符號與該等已接收符號相關 聯。該裝置進一步包括偵測單元,其被配置為使用該等已 接收符號和所計算的多使用者矩陣來偵測用於該複數個 使用者的該等使用者符號。 在本發明的又一個態樣中,提供了一種裝置。該裝置包 括·用於將已接收碼片處理為用於複數個使用者的已接收 符號的構件;及甩於使用哈達瑪矩陣計算多使用者矩陣的 構件,其中該多使用者矩陣將用於該複數個使用者的使用 者符號與該等已接收符號相關聯。該裝置進一步包括用於 使用該等已接收符號和所計算的多使用者矩陣來偵測用 於該複數個使用者的該等使用者符號的構件。 在本發明的又一個態樣中,提供了一種具有儲存在其上 的才曰7的機器可讀取媒體。該等指令可由一或多個處理器 執行並且包括用於以下操作的代碼:將已接收螞片處理為 用於複數個使用者的已接收符號;及使用哈達瑪矩陣計算 201128977 多使用者矩陣,其中該多使用者矩陣將用於該複數個使用 者的使用者符號與該等已接收符號相關聯^該等指令進一 步包括用於使用該等已接收符號和所計算的多使用者矩 陣來偵測用於該複數個使用者的該等使用者符號的代碼。 在本發明的又一個態樣中,提供了一種裝置。該裝置包 括至少一個處理器’其被配置為:將已接收碼片處理為用 於複數個使用者的已接收符號;使用哈達瑪矩陣計算多使 用者矩陣,其中該多使用者矩陣將用於該複數個使用者的 使用者符號與該等已接收符號相關聯;及使用該等已接收 符號和所計算的多使用者矩陣來偵測用於該複數個使用 者的該等使用者符號。 應理解,根據以下【實施方式】,本領域的熟練技藝人 士將容易想到對本發明技術的其他配置,在以下【實施方 式】中’以說明的方式展示並且描述了本發明技術的各種 配置。如將認識到’本發明技術能夠具有其他不同的配 _置並且在不脫離本發明技術的範嗜·的前提下,其若干細 節可以在各種其他方面進行修改。因此,應該將附圖和【實 施方式】視為本質上是說明性的而非限制性的。 【實施方式】 在以下【實施方式】中,闡述了大量特定細節以提供對 本發明技術的透徹理解。然而,對於本領域一般技藝人士 顯而易見的是,在沒有此等特定細節其中一些的情況下亦 可以實施本發明技術。在其他實例中,未詳細圖示熟知的 201128977 結構和技術,以便不會混淆本發明技術。 本文所用的用語「示例性」意謂「作為實例或說明」。 _ 本文所描述的任何「示例性」態樣或設計無需被解釋為優 於或者勝過其他態樣或設計。 • 現在詳細參考本發明技術的各態樣,在附圖中圖示其實 例,其中類似的元件符號在通篇代表類似的元件。 應該理解,本文揭示的處理中的步驟的特定的次序或層 次是示例性方法的一個實例。應該理解’基於設計偏好, 可以重新排列在該處理中的步驟的特定次序或層次而仍 然保持在本發明的範疇中。附屬的方法請求項以示例性次 序提供了各種步驟的元素,並且其並非意欲限於所提供的 特定次序和層次。 圖1是根據本發明的某些態樣,支援多値使用者的無線 通訊系統的圖。通訊系統100為多個細胞服務區 102A-102G (被稱為細胞服務區1〇2)提供通訊,每個細胞 服務區由相應的基地台104A_1〇4G(被稱為基地台1〇4) 進行服務。^然,在通訊系統i 〇〇中可以包括任何數目的 、·田胞服務區1 02和基地台104。在示例性的通訊系統i 〇〇 中,其中一些基地台1〇4具有多個接收天線,而其他基地 - 台僅具有一個接收天線。類似地,其中一些基地台104具 有夕個發射天線,而其他基地台僅具有單個發射天線。 行動站106A-106H (被稱為行動站ι〇6)可以代表,例 如,蜂巢式電話、PDA等等,並且亦可以被稱為行動設備、 使用者裝備(UE)、無線通訊設備、终端、站、行動裝備【 7 201128977 (ME)或-些其他術語。如圖!中所示,各種行動站ι〇6 可以散佈在整個通訊系統100中,並且在任何給定時刻, . 每個行動站1〇6在下行鏈路和上行鏈路上與至少一個基地 台104通訊。 不同的技術可以用於各種多工存取通訊系統,諸如:(1) 使用不同的正交碼序列為不同的使用者發送資料的cdma 系統,(2)在不同的頻率次頻帶上為不同使用者發送資料 的FDMA系統’(3)在不同的時槽中為不同使用者發送資 料的TDMA系統’(4 )在不同的空間通道上為不同使用者 發送資料的分空間多工存取(SDMA )系統,(5 )在不同 的頻率次頻帶上為不同使用者發送資料的正交分頻多工 存取(OFDMA)系統,等等。 圖2疋根據本發明的特定態樣,在無線通訊系統丨中 使用的行動站106的方塊圖。行動站1〇6可以包括接收機 200,其被配置為使用天線22〇接收被發送信號。接收機 200可通訊地耦合到前端處理單元210,前端處理單元21〇 可用於使用例如通道匹配濾波器及/或均衡器來對接收到 的信號進行濾波。行動站106可以包括解攪頻和解展頻單 -元230’解攪頻和解展頻單元230對前端處理單元210的 • 輸出進行解攪頻和解展頻。行動站106可以進一步包括處 理單元240、可通訊地耦合的記憶體25〇和可通訊地耦合 的偵測單元260 ’偵測單元260用於多使用者偵測並且在 下文中更詳細地對其進行描述。行動站106不限於任何特 定配置’並且行動站106中可以包括元件的任何組合以及 8 201128977 其他元件。 圖3是根據本發明的特定態樣,單使用者通道模型的 圖如圖3中所示,使用者符號被從發射機(未圖示) 發射該發射機可以處於例如基地台1〇4中。使用者符號 亦可以被稱為用於使用者的資料符號,並且可以藉由使用 一移相鍵控(BPSK)調制、正交移相鍵控(QPSK )調 制、正交調幅(QAM )或其他態樣將一或多個資料位元映 射到貝料符號來獲得。注意,M代表使用者符號咖的符 號週期。由此’前—個使用者符號會被標示為並且 後一個使用者符號會被標示為+ 〇。使用例如沃爾什 (Walsh)妈对對使用者符號Μ-進行展頻並且使用碼 對“進行攪頻。沃爾什碼可以具有展頻因數#,其中 沃爾什碼包括由橫跨一個符號週期的#個碼片構成的 序歹在方塊310中在通道;^上發送該屐頻和攪頻的結果。 盯動站106在接收機2〇〇處使用天線22〇接收碼片隨 後在前,處理單元210處對其進行濾波,並且在解授頻和 ,單元230處使用解攪頻碼尸對其進行解攪頻並 且使用解展頻碼一⑻對其進行解展頻,隨後在求和方塊 :2:處對其進行求和。將在行動&amp; 1〇6處所得的已接收符 號軚=為求和方塊320對一個符號週期上的已解展 頻的仏號進行求和’以獲得每個已接收符號咖。 、。、皮器3 00「{c}」代表總濾波器,其是通道3 1 〇六與 滤波器加/的迴旋。可以使用基於引導頻的通道估計及、/ 或資料辅助式通道估計(们請其進—步進行論述)來估 201128977 計通道310 A。以通道匹配濾波器為例,濾波器/可以是基 於通道估汁&amp;的反時共輛A的。當總濾波器300的長 度小於2ΛΓ+1時(其中#是展頻因數),可以藉由以下方程 式(1)表示關於符號週期w的已接收符號: z(m) 1)+α。(/η) Ζ&gt;(/η)+α丨(w)厶(m + 1) ( 1) 根據c(7) ' ·π;⑻和尸⑻,可以如方程式(2)-方程式(4) 中所示來表示矩陣Ι〆%)、〈…和。 mN-l-d &quot; ^ (2) 〇i(m)^c(d-N) ^w*[n + d-N)p*[n + d- Ν]Μ{ή\ρ[η] + ά]·φί\ρ[η\ (4) 圖4(a)是根據本發明的特定態樣,多使用者通道模型 的圖。圖4(a)圖示了使用者符號集合。〆^^}的傳輸,而 不是如圖3中所示的發送使用者符號办化)。亦即可以向 多個使用者1到發送符號办/历^到6心~^。可以將符號 到所j以向量形式表示為。則因此,可以對每 個使用者符號到應用各別的展頻碼(例如, 沃爾什碼)到WArttw。當然,沃爾什碼的使用僅僅是 示例性的,並且在不脫離本發明的範疇的前提下可以使用 其他展頻技術。此外,可以對各別使用者符號幻「讲)到^^〔所) 應用各別的增益心到发心。注意,在不脫離本發明的範疇 的前提下’可以對各別使用者符號_烟w〜應用不 同的或類似的展頻碼或增益^在應用攪頻碼p(心之前可 r η- λA method and system for multi-user reconnaissance and more specifically for multiplexed access systems. [Prior Art] In a wireless communication system, many users communicate on a wireless channel. For example, code division multiplex access (CDMA) modulation techniques are one of several techniques for facilitating communication for a large number of system users. Other multiplex access communication system technologies such as time division multiplex access (tdma) and frequency division multiplex access (FDMA) can also be used. Since there are multiple data transmissions for multiple users in a wireless communication system, there is a need to mitigate multi-user interference (MUI) and inter-symbol interference and, for example, other noise. Traditionally, interference cancellation has been performed at the chip level in the receiver, where complexity increases directly with the number of users and the number of iterations involved. Chip-level interference cancellation is more complex and involves the problem-level algorithm and implementation difficulties. This complexity causes the receiver to be susceptible to J a mispropagation. Accordingly, there is a need for systems and methods for providing accurate multi-user interference and inter-symbol interference cancellation while overcoming chip-level interference cancellation. SUMMARY OF THE INVENTION In one aspect of the present invention, a multi-user detection method is provided that includes: processing received chips into received symbols for a plurality of users 201128977; and calculating using a Hadamard matrix A user matrix, wherein the multi-user matrix associates user symbols for the plurality of users with received symbols. The method further includes detecting the user symbols for the plurality of users using the received symbols and the calculated multi-user matrix. In another aspect of the invention, an apparatus is provided. The apparatus includes a processing unit 7L configured to process received chips into received symbols for a plurality of users, and a computing unit configured to calculate a multi-user matrix using a Hadamard matrix juice, wherein The multi-user matrix associates user symbols for the plurality of users with the received symbols. The apparatus further includes a detection unit configured to detect the user symbols for the plurality of users using the received symbols and the calculated multi-user matrix. In yet another aspect of the invention, an apparatus is provided. The apparatus includes: means for processing the received chips into received symbols for a plurality of users; and means for computing a multi-user matrix using a Hadamard matrix, wherein the multi-user matrix is to be used The user symbols of the plurality of users are associated with the received symbols. The apparatus further includes means for detecting the user symbols for the plurality of users using the received symbols and the calculated multi-user matrix. In yet another aspect of the invention, a machine readable medium having a magazine 7 stored thereon is provided. The instructions are executable by one or more processors and include code for processing the received razor as received symbols for a plurality of users; and calculating the 201128977 multi-user matrix using a Hadamard matrix, Wherein the multi-user matrix associates user symbols for the plurality of users with the received symbols, the instructions further comprising for detecting the received symbols and the calculated multi-user matrix A code for the user symbols for the plurality of users. In yet another aspect of the invention, an apparatus is provided. The apparatus includes at least one processor configured to: process the received chips into received symbols for a plurality of users; calculate a multi-user matrix using a Hadamard matrix, wherein the multi-user matrix is to be used The user symbols of the plurality of users are associated with the received symbols; and the received symbols and the calculated multi-user matrix are used to detect the user symbols for the plurality of users. It is to be understood that other configurations of the present technology will be readily apparent to those skilled in the art in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; It will be appreciated that the invention may be embodied in various other forms and various modifications can be made in various other aspects without departing from the scope of the invention. Therefore, the drawings and the embodiments are to be regarded as illustrative and not restrictive. [Embodiment] In the following [Embodiment], a large number of specific details are set forth to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known 201128977 structures and techniques have not been illustrated in detail so as not to obscure the inventive technology. The term "exemplary" as used herein means "serving as an example or description." _ Any "exemplary" aspect or design described herein need not be construed as superior or superior to other aspects or designs. DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to the claims claims It is understood that the specific order or hierarchy of steps in the processes disclosed herein is an example of an exemplary method. It will be understood that the specific order or hierarchy of steps in the process can be rearranged and still remain within the scope of the invention. The dependent method request items provide elements of the various steps in an exemplary order and are not intended to be limited to the specific order and hierarchy provided. 1 is a diagram of a wireless communication system supporting multiple users in accordance with certain aspects of the present invention. The communication system 100 provides communication for a plurality of cell service areas 102A-102G (referred to as cell service areas 1〇2), each cell service area being performed by a corresponding base station 104A_1〇4G (referred to as a base station 1〇4). service. Of course, any number of field cell service areas 102 and base stations 104 can be included in the communication system i. In the exemplary communication system i , , some of the base stations 1 〇 4 have multiple receive antennas, while the other base stations have only one receive antenna. Similarly, some of the base stations 104 have a single transmit antenna, while other base stations have only a single transmit antenna. Mobile stations 106A-106H (referred to as mobile stations ι 6) may represent, for example, cellular telephones, PDAs, etc., and may also be referred to as mobile devices, user equipment (UE), wireless communication devices, terminals, Station, mobile equipment [7 201128977 (ME) or - some other terms. As shown! As shown, various mobile stations ι 6 can be interspersed throughout communication system 100, and at any given time, each mobile station 1-6 communicates with at least one base station 104 on the downlink and uplink. Different technologies can be used for various multiplex access communication systems, such as: (1) cdma systems that use different orthogonal code sequences to transmit data to different users, and (2) different uses in different frequency sub-bands. FDMA system that sends data '(3) TDMA system that sends data for different users in different time slots' (4) Space-division multiplex access (SDMA) for transmitting data to different users on different spatial channels a system, (5) an orthogonal frequency division multiplexing access (OFDMA) system that transmits data for different users on different frequency sub-bands, and the like. Figure 2 is a block diagram of a mobile station 106 for use in a wireless communication system in accordance with a particular aspect of the present invention. The mobile station 1-6 may include a receiver 200 configured to receive the transmitted signal using the antenna 22A. Receiver 200 is communicatively coupled to front end processing unit 210, which can be used to filter received signals using, for example, channel matched filters and/or equalizers. The mobile station 106 can include a de-buffering and despreading single-element 230' de-sampling and de-spreading unit 230 to de-amplify and de-spread the output of the front-end processing unit 210. The mobile station 106 can further include a processing unit 240, a communicably coupled memory 25A, and a communicatively coupled detection unit 260. The detection unit 260 is for multi-user detection and is described in more detail below. description. The mobile station 106 is not limited to any particular configuration&apos; and any combination of components and 8 201128977 other components may be included in the mobile station 106. 3 is a diagram of a single user channel model in accordance with a particular aspect of the present invention. As shown in FIG. 3, a user symbol is transmitted from a transmitter (not shown). The transmitter may be located, for example, in a base station 1〇4. . The user symbol can also be referred to as a data symbol for the user, and can be implemented by using phase shift keying (BPSK) modulation, quadrature phase shift keying (QPSK) modulation, quadrature amplitude modulation (QAM), or the like. The aspect is obtained by mapping one or more data bits to a batten symbol. Note that M represents the symbol period of the user's symbol coffee. Thus the 'previous user symbol will be marked as and the next user symbol will be marked as + 〇. Use, for example, Walsh to spread the user symbol Μ - and use the code pair to "crush. The Walsh code can have a spread factor #, where the Walsh code consists of spanning a symbol The sequence of # chips of the cycle transmits the result of the chirp and the agitation on the channel in block 310. The stalk station 106 uses the antenna 22 at the receiver 2〇〇 to receive the chip and then precedes it. The processing unit 210 filters it, and at the de-tuning, the unit 230 de-scrambles it using the de-scrambling code and despreads it using the despreading code one (8), and then seeks And block: 2: sum it. The received symbols 将 = obtained at action &amp; 1〇6 are summed for summing block 320 for the de-spread apostrophes over a symbol period' To get each received symbol coffee, ., ., leather machine 3 00 "{c}" represents the total filter, which is the cyclotron of channel 3 1 与6 and filter plus /. Channels based on pilot frequency and/or data-assisted channel estimation (discussed further) can be used to estimate 201128977 channel 310 A. Taking a channel matched filter as an example, the filter / can be based on the channel estimation &amp; When the length of the total filter 300 is less than 2 ΛΓ +1 (where # is the spreading factor), the received symbol with respect to the symbol period w can be expressed by the following equation (1): z(m) 1) + α. (/η) Ζ&gt;(/η)+α丨(w)厶(m + 1) (1) According to c(7) ' ·π; (8) and corpse (8), can be as equation (2) - equation (4) Shown in the matrix Ι〆%), <... and . mN-ld &quot; ^ (2) 〇i(m)^c(dN) ^w*[n + dN)p*[n + d- Ν]Μ{ή\ρ[η] + ά]·φί\ ρ[η\ (4) Figure 4(a) is a diagram of a multi-user channel model in accordance with a particular aspect of the present invention. Figure 4(a) illustrates a set of user symbols. The transmission of 〆^^}, instead of the transmission of the user symbol as shown in Fig. 3). That is, it is possible to send a symbol/calendar to a plurality of users 1 to 6 hearts~^. The symbol to j can be represented as a vector. Therefore, it is possible to apply a separate spreading code (for example, Walsh code) to WArttw for each user symbol. Of course, the use of Walsh codes is merely exemplary and other spread spectrum techniques can be used without departing from the scope of the present invention. In addition, it is possible to apply a separate gain to each user's symbol illusion to "^". It is noted that the individual user symbols can be used without departing from the scope of the present invention. Smoke w~ apply different or similar spread spectrum code or gain ^ in the application of the frequency code p (before the heart can r η- λ

ί i J 10 201128977 以在組合器400處對用於不同使用者的展頻信號進行組 合。經由通道3 1 〇 /2傳輸所得的組合信號。 行動站106在接收機2〇〇處使用天線22〇接收碼片,隨 後在前端處理單元21〇處對其進行濾波。可以實施各種前 端濾波技術(例如,前端通道匹配濾波器及/或均衡)。隨 後在解攪頻和解展頻單元230處,使用解攪頻碼ρπγ&quot;對 纽;慮波的碼片進行解攪頻並且使用解展頻碼到 W (&gt;2)對其進行解展頻。解禮頻碼〆卩心和解展頻碼你、 到可以分別是攪頻碼〆…和展頻碼…到… 的共軛。藉由各別的求和方塊320,在一個符號週期上對 每個已解展頻的信號求和,以獲得已接收符號。到 心(所)所得的已接收符號到Zhfw)表示在行動站1〇6 處接收到的符號。 可以將所得的已接收符號。(历彡到表示成向量 ,如以下方程式(5)中所示: - ^-i(m)G6(w-l) + ^0(m)G0(w) + y41(wi)G!^(«2+l) (5 )=](切)&lt;5善(所) 其中G是增益矩陣415(參見圖4(c))並且0是層排式 (stacked)增益矩陣42〇 (參見圖4 (b)),其可以被表示 為如方程式(6)所示: 不 201128977 k{m) = (7) 色是使用者符號^「/^到^的向量且可以被表 成如方程式(7)中所示: 咖) ,k(m) = k{m~\y • bNu{m)_ 6(m + l) 可以被稱為多使用者干擾矩陣4ι〇 如方程式(8)所示: 並且被表示為 A(m) = [A^(m) A,(m) 根據某些實施例,Jd i A〇n)和 AKm)是 Nu 乘 Nu 多 使用者干擾(MM)矩陣和肩矩陣,其中^是服務細胞服 務區102巾的代碼通道的數目^下將參考圖$來更詳細 地論述對矩陣儿〆㈤、㈤和的決定。 方程式⑸中所得的表達式可以重寫為如下方程式⑺ 中所示:i i J 10 201128977 to combine the spread spectrum signals for different users at combiner 400. The resulting combined signal is transmitted via channel 3 1 〇 /2. The mobile station 106 receives the chips at the receiver 2〇〇 using the antenna 22, and then filters them at the front end processing unit 21〇. Various front-end filtering techniques (e.g., front-end channel matched filters and/or equalization) can be implemented. Then, at the de-buffering and de-spreading unit 230, the de-buffered code ρπγ&quot; is used; the chips of the wave are de-amplified and despread using the de-spreading code to W (&gt; 2) . The solution of the frequency code and the decoding of the frequency code, you can be the conjugate of the frequency code 〆 ... and the spread code ... to .... Each de-spread signal is summed over a symbol period by a respective summation block 320 to obtain the received symbols. The received symbols to the heart (to Zhfw) indicate the symbols received at the mobile station 1〇6. The resulting received symbols can be taken. (The history is expressed as a vector, as shown in the following equation (5): - ^-i(m)G6(wl) + ^0(m)G0(w) + y41(wi)G!^(«2 +l) (5)=](cut)&lt;5good(where) where G is the gain matrix 415 (see Figure 4(c)) and 0 is the stacked gain matrix 42〇 (see Figure 4 ( b)), which can be expressed as shown in equation (6): not 201128977 k{m) = (7) The color is the vector of the user symbol ^"/^ to ^ and can be expressed as equation (7) Shown in: coffee), k(m) = k{m~\y • bNu{m)_ 6(m + l) can be called multiuser interference matrix 4ι as shown in equation (8): Expressed as A(m) = [A^(m) A, (m) According to some embodiments, Jd i A〇n) and AKm) are Nu multi-Nu multi-user interference (MM) matrices and shoulder matrices, Where ^ is the number of code channels of the service cell service area 102. The decision on the matrix (5), (5) and sum will be discussed in more detail with reference to Figure $. The expression obtained in Equation (5) can be rewritten as Equation (7) below. Shown in:

I 2(^) = 24 (w)G0(w + /) (9) 作為前述方程式的結果’可以如圖4(b)中所示來表示 使用者符號^咖到W;^和已接收符號Ww)的 傳輸的簡化式模型。在圖4(b)巾,層排式增益矩陣0被 標不為420並且多使用者干擾矩陣々魂標示為彻(如 圖4(a)中的虛線所圖示的 圖4(〇疋根據本發明的某些態樣,包含雜訊的簡化式 多使用者通道模型的圖。如圖4(c)中所示,在方塊415 r- λ 12 201128977 中對使用者符號進行增益定標,並且在方塊425中對 其進行展頻和攪頻。經由通道310 a發送所得的信號,並 且在傳輸期間所得的信號會遭受到雜訊。在前端處理單元 2 1 0中對在接收機處所接收到的信號進行濾波,並且在解 攪頻和解展頻單元23〇處對其進行解攪頻和解展頻。所得 的已接枚符號可以用方程式(1〇)來表示,其中用^ 來表示雜訊。 z(m) = A(m)Gb(m)-[-v(m) (1〇) 則因此,可以用單個表達式來展示所得的已接收符號 (例如,解展頻CDMA信號),該表達式表示了多使 用者符號間干擾(ISI)、多使用者干擾(MUI)以及其他 未說月的雜訊。該單個表達式表示解展頻信號的符號 級的時變的多使用者模型’如方程式(11)中所示。 _戶义1(_咖])+^(w)处㈤仏i(w)G^+i)t㈤ 作為^代,可以將方程式 = Σ Ai (m)Gb(m + /) + v(m) 1〇寫成方程式(12 12) 圖5是根據本發明的某些態樣,在無線通訊系統中在接 收機處使用兩級處理的多使用者侦㈣統的示意圖。第_ 級5〇0代表碼片級’即在接枚機200 (圖2中所示)處接 收碼片咖時。已接收碼片咖在濾波器21〇 (例如,通 道匹配滤波器及/或均衡器)處受到前端處理。將 13 201128977 210的輸出輸入到解攪頻和解展頻單 个凡230,在解攪頻 和解展頻單元230中,使用解攪頻碼〆( 、 τ掏出yf/i)進行 解攪頻並且使用解展頻碼到對其進行解展 頻’例如’以前儲存在記憶體25〇中之解播 听欖頻碼〆(…和 解展頻碼一糊前儲存在記憶體25〇。解攪頻 和解展頻單元230輸出已接收符號々〔~到^ 。, 在一個態樣中,解攪頻和解展頻單元23〇包括解攪頻混 合器315和解展頻混合器317,解攪頻混合器315將經$ 波的碼與解授頻碼户⑽混合,並1解展頻混合 317將已解攪頻的碼片與解展頻碼到一心混人。 解攪頻和解展頻單元23〇亦包括求和方塊32〇,用於在—I 2(^) = 24 (w)G0(w + /) (9) As a result of the foregoing equation, 'user symbol ^ can be represented as shown in Fig. 4(b); ^ and received symbols A simplified model of the transmission of WW). In Figure 4(b), the layered gain matrix 0 is labeled 420 and the multiuser interference matrix is marked as clear (as shown by the dashed line in Figure 4(a). Some aspects of the present invention include a simplified multi-user channel model of noise. As shown in Figure 4(c), the user symbol is scaled in block 415 r- λ 12 201128977, And it is spread and agitated in block 425. The resulting signal is transmitted via channel 310a and the resulting signal is subject to noise during transmission. Received at the receiver in front end processing unit 2 1 0 The obtained signal is filtered, and de-amplified and de-spreaded at the de-amplifier and de-spreading unit 23〇. The obtained connected symbols can be expressed by the equation (1〇), where ^ is used to indicate the impurity. z(m) = A(m)Gb(m)-[-v(m) (1〇) Therefore, a single expression can be used to display the resulting received symbols (eg, despread CDMA signals). , the expression represents multi-user inter-symbol interference (ISI), multi-user interference (MUI), and other unspoken moon noise The single expression represents a time-varying multi-user model of the symbol-level of the despread signal as shown in equation (11). _Huiyi 1 (_咖))+^(w)(5)仏i(w G^+i)t(f) As a generation, the equation = Σ Ai (m) Gb(m + /) + v(m) 1〇 can be written as an equation (12 12). Figure 5 is a view of some aspects of the invention. A schematic diagram of a multi-user Detective (four) system using two levels of processing at the receiver in a wireless communication system. The _ level 5 〇 0 represents the chip level 'that is received at the splicer 200 (shown in Figure 2) When the chip is in the chip, the received chip is subjected to the front end processing at the filter 21 (for example, the channel matched filter and/or the equalizer). The output of 13 201128977 210 is input to the de-amplifier and the de-spreading single. 230. In the de-buffering and de-spreading unit 230, de-buffering is performed using the descrambling code 〆 ( , τ 掏 yf / i) and the de-spreading code is used to de-spread it 'for example' before storage. In the memory 25〇, the decoding frequency is stored in the memory 25〇. The de-buffering and de-spreading unit 230 outputs the received symbol ~[~ to ^ In one aspect, the de-buffering and de-spreading unit 23A includes a de-mixing mixer 315 and a despreading mixer 317, which will pass the $-wave code and de-frequency code (10) Mixing, and 1 de-spreading mix 317 combines the de-spreaded chips with the de-spreading code. The de-buffering and de-spreading unit 23〇 also includes a summing block 32〇 for

個符號週期上對解展頻信號進行求和,以獲得已接收符號 匀〈/Wj 到 2^(^)。 J 應該理解’可以按照與圖5的實例中所示的次序不同的 次序來排列多使用者偵測系統的濾波、解攪頻和解展頻操 作,來獲得已接收符號〜㈣到Ww)。例如,解檀頻和解 展頻操作可以在缝之前執行。因此,多使用者偵測系統 不限於濾波、解攪頻和解展頻操作的特定次序。 如上所不,總濾波器300 c代表通道310 /z與濾波器21〇 /的迴旋。因此,咐等於咐與洲的迴旋,其中可以計 算为⑺和/⑺並將其儲存在記憶體25〇中。根據 和〆…可以如方程式(13)-方程式(15)中所示來表示 矩陣和々Μ。 [’)!广 |V)n 以 201128977 (13) [^, («)](, =ZjC{d-N) Z w* [« + - N]p *[n + d- Λ^]νν [ri\p[ri\ M — ( 14) [&lt;】= Σc⑷ £ w* [n^^p^n + d^^plri] 叫 rt*(w-t)AT-rf ( 1 $ ) 第二級510代表符號級,在此符號級,獲得解攪頻和解 展頻單元230的輸出(亦即,所得的已接收符號〜〈讲夕到 2心…)。以上方程式(11 )提供了符號級的時變的多使用 者模型’其將已接收符號z; 到、)與所要的使用者符 號心fm)到相關聯。使用方程式(以及所計算的 矩陣义〆和山、增益矩陣和已接收符號,可 以求解出所要的使用者符號。 根據某些實施例,肩矩陣儿y和烏可以很小,從而可以 由雜訊iifm)將其吸收,得到總干擾。因此,可以如方 程式(16)中所示表示 i(fn)=AQ(m)GbXm)+^_(m) (16) 圖6是根據本發明的某些態樣,在無線通訊系統中使用 :級處理和多使用者干擾矩陣的多使用者偵測系統的示 意圖。圖6與ffl 5類似’但是包括矩陣計算單元24〇和该 測單元260。如以上參考圖5所描述,進行相同的第一級 和第二級51〇的處理。然而,根據某些態樣,矩陣計 算單元240可以例如計算多使用者干擾矩陣棒),並且 向傾測單元260發送該矩陣。在給定了多使用者干擾矩陣 和已接收符號咖的值的情況下’偵測單&amp; 26〇藉由 1 S5 15 201128977 例如求解出方程式(16)巾的所要的錢㈣來偵測所要 的使用者符號咖)。該尖頭上標表示所偵測的使用者符 號,該所偵測的使用者符號提供了對於在發射機端(例 如’基地纟104)處的使用者符號的估計。注意,已接收 符號咖是先前藉由對已接收碼片進行解攪頻和解展頻而 決定的,ίο?是先前已知的或者可以被估計的。以下論述 用以估計用於不同使用纟的增纟的方法的㈣。基於方程 式(16),偵測單元260可以使用各種偵測和估計技術來 決定所要的使用者符號,諸如,最小均方誤差估計 (MMSE)、極大概度摘測(MLD)或球形解碼(sd)、最 大後驗偵測(MAPD)和切片(slieing)e亦可以使用本領 域已知的其他技術。雖然為了易於說明的目的而在圖6中 分開圖示了矩陣計算單元24〇和偵測單元26〇,但是可以 由同一處理器或多個處理器來執行其操作。 在一個態樣中,多使用者干擾矩陣是用於將每個 已接收符號〜»到2心&gt;)與相應的使用者符號以及其他 使用者符號相關聯的乘Arw的矩陣。例如,對於已接收 符號多使用者干擾矩陣⑷的係數[心(…l」將已 接收符號與相應的使用者符號沁相關聯。另外, 在多使用者干擾矩陣的第一行中的其他係數 [AWh,2到分別將已接收符號〜^與其他使 用者符號到相關聯,此等其他使用者符號 到6心»貝獻了對於已接收符號的多使用者干擾。此 同樣可以應用於其他已接收符號。 16 201128977 因此,當求解方程式(16)中的使用者符號卜到办心 時,該態樣中的多使用者干擾矩陣^說明了多使用者 干擾。因此,多使用者干擾矩陣為以;提供了符號級的多 使用者使用者符號偵測,其在無需執行複雜的碼片級多使 用者干擾消除的情況下說明了多使用者干擾。因此,藉由 在符號級使用範圍廣闊的強力且先進的接收機,可以準確 地偵測所要的符號。 圖7是圖示根據本發明的某些態樣,在無線通訊系統中 使用兩級處理的多使用者偵測方法的流程圖。在操作 中,在作為行動站106的一部分的接收機2〇〇處接收碼 片。程序從操作700持續到操作71〇,在操作71〇中,將 碼片處理為用於複數個使用者的一或多個已接收符號 。例如,可以對已接收碼片進行濾波,且隨後解攪頻 和解展頻為已接收符號。 程序從操作710持續到操作72〇,在操作72〇中,根據 已知的代碼、濾波器係數和通道估計來計算多使用者干擾 矩陣(例如,基於方程式(13 。例如,可以使用 基於引導頻的通道估計或者資料輔助式通道估計(其在以 下描述)來估計通道。 程序從操作720持續到操作730,在操作730中,使用 所計算的矩陣和已接收符號,基於用於將所要的使 用者符號與已接收符號相關聯的符號級模型來 偵測所要的使用者符號。例如,可以藉由方程式(1 6 )來 表示該符號級的、時變的多使用者模型。在該實例中,可 17 201128977 以藉由使用包括MMSE、MLD、SD、MAPD和切片的各種 技術求解方程式(1 6 )中的使用者符號,來偵測使用 者符號以叫。矩陣不僅將用於每個使用者的已接收符 號與用於各別使用者的所要的使用者符號相關聯,而且將 其與用於其他使用者的使用者符號相關聯。因此,矩陣 說明了多使用者干擾。 為了說明多使用者符號間干擾,在操作72〇中亦可以計 鼻肩矩陣和尤〆。隨後在操作73〇中可以使用已 接收符號^^和矩陣、烏和儿〆…,例如,藉由 求解方程式(12)中的使用者符號^,來偵測使用者符 號。可以使用肩矩陣山和丄〆…中的一個來偵測使 用者符號,而不是使用兩個肩矩陣。在此狀況下,當 求解方程式(12)中的使用者符號時,省略方程式(12) 中對應於未被使用的肩矩陣的項。 圖8是圖示根據本發明的某些態樣,發送碼片的程序的 流程圖。例如’可以在基地台1〇4或其他發射機處執行該 程序,以向行動站1〇6或其他接收設備發送碼片。 在操作800中,對將要發送的一或多個使用者符號應用 各別的增益。可以使用用於應用增益的任何—般構件,並 且該等各別的增益可以彼此相同或不同。例如,基地台可 以使用基於來自行動站的回饋的功率適應方案來調整應 用於使用者符號的增益。 程序從操作800持續 頻瑪分別應用於該一或 到操作810,在操作81〇中,將展 多個經增益定標的符號。可以實施 18 201128977 傳統的CDMA展頻技術,諸如應用沃爾什碼。例如,可以 對使用者符號進行展頻以分開用於不同使用者的使用者 符號。在操作820令,使用组合器4〇〇對該一或多個展頻 符號進行組合。 程序從操作820持續到操作830,在操作83G中,對组 合信號進行攪頻。例如,可以對組合信號進行授頻以將組 合信號與來自(例如’由其他基地台1〇4進行服務的)立 他細胞服務區的信號分開。此後,在操作84〇中,在通道 310 A上發送組合信號(參見圖3)。 圖9是圖示根據本發明的某些態樣,用於將碼片處理為 用於複數個使用者的—或多個已接收符號的方法的流程 圖。可以在行動# 1〇6或其他接收設傷處執行該程序。 在操作900中,由前她垮畑0口 — 丄 』知處理早兀210使用濾波器21()y 對已接收碼片進行涛读 β II , W皮如本文所示,可以使用例如通道 匹配濾'波器及/或均衡器來執行前端處理。然而,在不脫離 本發明的料的前提下可以實施其他渡波技術。 程序從操作900持續到操作91〇,在操作91〇中使用 解授頻碼ρ * 對經濾波的碼片進行解授頻,解擾頻喝ρ » 是基於先前在發射端用於對信號進行擾頻的授頻瑪Ρ⑻的 共扼的。此後’在操作920中使用解展頻碼對已解擾頻的 碼片進行解展頻’該解展頻碼是基於先前在發射機端用於 ㈣Μ行展㈣(例如)沃爾什碼的共輛的。每個解展 頻碼可以對應於不同的使用者或代碼通道。可以由解擾頻 和解展頻單元23〇執杆組The despread signals are summed over the symbol periods to obtain the received symbols evenly </Wj to 2^(^). J should understand that the filtering, de-buffering and de-spreading operations of the multi-user detection system can be arranged in a different order than that shown in the example of Fig. 5 to obtain the received symbols ~(4) to Ww). For example, the solution and the spread-spectrum operation can be performed before the seam. Therefore, the multi-user detection system is not limited to the specific order of filtering, de-buffering, and de-spreading operations. As above, the total filter 300c represents the cyclotron of the channel 310/z and the filter 21〇. Therefore, 咐 is equal to the maneuver of the continent, which can be calculated as (7) and / (7) and stored in the memory 25〇. According to and 〆, the matrix and 々Μ can be expressed as shown in equation (13) - equation (15). [')!广|V)n to 201128977 (13) [^, («)](, =ZjC{dN) Z w* [« + - N]p *[n + d- Λ^]νν [ri \p[ri\ M — ( 14) [&lt;]= Σc(4) £ w* [n^^p^n + d^^plri] rt*(wt)AT-rf ( 1 $ ) The second level 510 represents Symbol level, at which the output of the de-buffering and de-spreading unit 230 is obtained (i.e., the resulting received symbols are ~ < 夕至2心...). Equation (11) above provides a symbol-level time-varying multi-user model that associates the received symbol z; to, with the desired user symbol fm). Using the equations (and the calculated matrix meanings and mountains, the gain matrix, and the received symbols, the desired user symbol can be solved. According to some embodiments, the shoulder matrix can be small and can be used by noise. Iifm) absorbs it and gets total interference. Therefore, i(fn)=AQ(m)GbXm)+^_(m) (16) can be expressed as shown in the equation (16). FIG. 6 is a diagram of use in a wireless communication system according to some aspects of the present invention. : Schematic diagram of a multi-user detection system for level processing and multi-user interference matrices. Fig. 6 is similar to ffl 5' but includes a matrix calculation unit 24A and the measurement unit 260. The same processing of the first stage and the second stage 51 is performed as described above with reference to FIG. However, according to some aspects, matrix calculation unit 240 may, for example, calculate a multi-user interference matrix bar) and transmit the matrix to tilting unit 260. In the case where the multi-user interference matrix and the value of the received symbol coffee are given, the 'detection list' is detected by 1 S5 15 201128977, for example, to solve the required money (4) of the equation (16) towel. User symbol coffee). The pointed superscript indicates the detected user symbol, and the detected user symbol provides an estimate of the user symbol at the transmitter (e.g., 'base 104'). Note that the received symbol coffee was previously determined by de-sampling and de-spreading the received chips, which were previously known or can be estimated. The following discussion (4) is used to estimate the method for the increase in enthalpy for different uses. Based on equation (16), detection unit 260 can use various detection and estimation techniques to determine desired user symbols, such as minimum mean square error estimation (MMSE), extreme probation (MLD), or sphere decoding (sd). ), maximum a posteriori detection (MAPD) and slieing e may also use other techniques known in the art. Although the matrix calculation unit 24A and the detection unit 26A are separately illustrated in Fig. 6 for ease of explanation, the operation may be performed by the same processor or a plurality of processors. In one aspect, the multi-user interference matrix is a matrix of Arws associated with the corresponding user symbols and other user symbols associated with each received symbol ~» to 2 hearts&gt;). For example, for the received symbol multi-user interference matrix (4) coefficient [heart (...l) associates the received symbol with the corresponding user symbol 。. In addition, other coefficients in the first row of the multi-user interference matrix [AWh, 2 to associate the received symbols ~^ with other user symbols, respectively, and these other user symbols to 6 hearts» have contributed multi-user interference to the received symbols. This can also be applied to other The symbol has been received. 16 201128977 Therefore, when solving the user symbol in equation (16), the multi-user interference matrix in the pattern illustrates multi-user interference. Therefore, the multi-user interference matrix Provides symbol-level multi-user user symbol detection that illustrates multi-user interference without the need to perform complex chip-level multi-user interference cancellation. Therefore, by using the symbol level A wide, powerful and advanced receiver that accurately detects the desired symbol. Figure 7 is a diagram illustrating the use of two-stage processing in a wireless communication system in accordance with certain aspects of the present invention. A flowchart of a multi-user detection method. In operation, a chip is received at a receiver 2 that is part of the mobile station 106. The program continues from operation 700 to operation 71, in operation 71, the code is The slice is processed into one or more received symbols for a plurality of users. For example, the received chips may be filtered and then de-amplified and de-spread into received symbols. The program continues from operation 710 to operation 72. 〇, in operation 72, the multi-user interference matrix is calculated based on known codes, filter coefficients, and channel estimates (eg, based on equations (13. For example, pilot-based channel estimation or data-assisted channels may be used) Estimates (which are described below) to estimate the channel. The program continues from operation 720 to operation 730, in which the calculated matrix and received symbols are used, based on being used to associate the desired user symbol with the received symbol. The symbol level model is used to detect the desired user symbol. For example, the symbol-level, time-varying multi-user model can be represented by equation (16). In this example, 17 201128977 can be used to detect user symbols in various equations by using various techniques including MMSE, MLD, SD, MAPD, and slicing to detect user symbols. The matrix will not only be used. Each user's received symbols are associated with the desired user symbol for the respective user and are associated with the user symbol for the other user. Thus, the matrix illustrates multi-user interference. To illustrate multi-user intersymbol interference, the nasal shoulder matrix and the 〆 can also be counted in operation 72. The received symbols ^^ and matrix, Uwa and 〆 can then be used in operation 73〇, for example, by Solve the user symbol ^ in equation (12) to detect the user symbol. You can use one of the shoulder matrix mountains and 丄〆... to detect the user symbol instead of using two shoulder matrices. In this case, when the user symbol in the equation (12) is solved, the term corresponding to the unused shoulder matrix in the equation (12) is omitted. Figure 8 is a flow chart illustrating a procedure for transmitting chips in accordance with certain aspects of the present invention. For example, the program can be executed at base station 1 or other transmitters to transmit chips to mobile station 1 〇 6 or other receiving devices. In operation 800, respective gains are applied to one or more user symbols to be transmitted. Any of the general components for applying the gain can be used, and the respective gains can be the same or different from each other. For example, the base station can adjust the gain applied to the user symbol using a power adaptation scheme based on feedback from the mobile station. The program continues to apply the frequency from operation 800 to the one or to operation 810, and in operation 81, a plurality of gain-scaled symbols are displayed. It is possible to implement 18 201128977 traditional CDMA spread spectrum techniques, such as applying Walsh codes. For example, user symbols can be spread to separate user symbols for different users. At operation 820, the one or more spread symbols are combined using a combiner 4'. The program continues from operation 820 to operation 830 where the combined signal is agitated. For example, the combined signal can be frequency multiplexed to separate the combined signal from signals from a cell service area (e.g., 'served by other base stations 1 〇 4). Thereafter, in operation 84, a combined signal is transmitted on channel 310 A (see Fig. 3). Figure 9 is a flow diagram illustrating a method for processing a chip into - or a plurality of received symbols for a plurality of users, in accordance with certain aspects of the present invention. This procedure can be performed at Action #1〇6 or other receiving injury locations. In operation 900, the processing of the received chips by the filter 21() y is performed by the filter 21 II , , , , 使用 使用 使用 , , , β β β β β β β β β β 已 已 已 已 已 已 已 已 已The filter and/or equalizer are used to perform front-end processing. However, other waveover techniques can be implemented without departing from the materials of the present invention. The program continues from operation 900 to operation 91, and the demodulated chip ρ is de-asserted using the de-asserted code ρ* in operation 91, which is based on the previous use of the signal at the transmitting end. The scrambling of the frequency-frequency Mart (8) is common. Thereafter, the descrambled chip is despread using the despreading code in operation 920. The despreading code is based on the previous (four) Μ (4) (for example) Walsh code at the transmitter end. A total of vehicles. Each despreading code can correspond to a different user or code channel. Can be de-scrambled and de-spreading unit 23

Si 仃解展頻和解攪頻.可以將解展頻碼丨 19 201128977 和解搜頻碼預先程式編寫到記憶體25〇中,記憶體25〇可 通訊地耦合到解攪頻和解展頻單元23 0。 程序從操作920持續到操作930,在操作930中,在_ 個4號週期上對用於每個使用者的解展頻碼片進行求 和,以獲得用於各別使用者的已接收符號。可以藉由各別 的求和方塊320執行該求和。亦可以按照不同的次序執行 圖9中的操作以獲得已接收符號。 圖是根據本發明的某些態樣,在無線通訊系統1〇〇 中使用的行動站106的方塊圖。圖1〇中的行動站1〇6包 括用於接收碼片的模組1000。行動站1〇6亦包括用於將碼 片處理為用於複數個使用者的一或多個已接收符號的模 組1010’其中經由前端處理單元對碼片進行濾波且隨後對 碼片進行解攪頻和解展頻並且輸出為符號。 行動站106進一步包括用於計算多使用者干擾矩陣的模 組1020。如上所述,可以根據已知的代碼、濾波器係數和 通道估計來計算多使用者干擾矩陣j。 行動站106進一步包括模組1030,其使用所計算的矩陣 和已接收符號,基於用於將所要的使用者符號 與已接收符號釭W相關聯的符號級的時變的多使兩者 模型來/貞測使用者符號^(w)。例如,可以用方程式(16) 表示該符號級的時變的多使用者模型《在該實例中,藉由 使用包括MMSE、MLD、SD、MAPD和切片的各種技術求 解方程式(16)中的使用者符號^^j來偵測使用者符號 b(m) 0 r λ 20 201128977 多使用者干擾矩陣和肩矩陣的高效計算 根據本發明的某些態樣,提供了用於計算多使用者干擾 矩陣和肩矩陣的有效方法和系統。在一個態樣中,當用沃 爾什碼來對使用者符號進行展頻時,可以使用下文中詳述 的快速哈達瑪(Hadamard )變換(FHTs )高效地計算多使 用者干擾矩陣和肩矩陣。 圖Π是根據一個態樣的多通道模型的圖。在圖U中, 將符號週期m的使用者符號0//„;到按照列向量形 式表示為色其中#„是使用者或代碼通道的數目。將 增益矩陣g(方塊m〇)應用於使用者符號增益矩 陣cp是胸對角矩陣,其將增益①到仏應用於各別 的使用者符〇號6〆^/到,並且可以如下提供: G= ··. ° 辦j ( 17) 隨後用展頻矩陣酽對經增益定標的使用者符號進行展 頻(方塊1120)。展頻矩陣酽是wxw矩陣,其將包含# 値碼片的沃爾什碼應用於每個經增益定標的使用者符 號。展頻矩陣#可以如下提供: W= Wj ·· Wj. L J ( 18) 其中见是用於表示用於第一個使用者的沃爾什碼的h i列向量,並且4是用於第Nu個使用者的沃爾什碼的# Xl列向量。每一個*爾什碼I到H乂包括則固碼片。 隨後藉由授頻料户㈣對展頻使用者符號進行檀頻(方塊 21 201128977 1130)。攪頻矩陣/YW是# x iV對角矩陣,其將包含#個 碼片的攪頻碼應用於展頻使用者符號。可以如下提供攪頻 矩陣户(^): &gt;((m-l)A〇 〇 Ί P(m)~ · ' ° 山19) 其中化-Μ至…叫表示對應於符號週期所的授頻碼的 AM固碼片&amp;碼片索引。在展頻和攪頻之後,在通道△(方 塊1132)上發送所得的碼片。可以如圖u中所示,將符 號週期所的被發送碼片表示成h 1列向量_。關於符 號週期所的被發送碼片可以如下提供: [(m) = P{m)WGb{m) ^ 2 〇 ^ 則個符號週期讲-1和下一個符號週期W+1的被發送碼 片可以分別如下提供: 其中假設對於符號週期w]、⑺和w+1,沃爾什碼和增 益疋相同的。在該態樣中,;夭爾什碼可以在每個符號週期 進行重複。 在通道/z(方塊U32)上向接收機發送該等被發送碼片, 並且在接收機處由前H皮器/ (方塊1135)對其進行濾、 波符號週期w的遽波器/的輸出可以表示為# X 1 % @ 量’其可以如下所示: ▲-ί)&quot;] y{m) = C ί_(ηι) jXm + l) i Si 22 (23) 201128977 其中C是總遽波器(方塊114 0 )的矩陣,總遽波器是由 通道办與濾波器/的迴旋提供的。將符號週期w-1和w+1 的被發送碼片包括在的表達式中,以說明符號間干 擾°總濾波器矩陣C可以用如下提供的# X 3#托波力茲 矩陣來表示: cHV+i] ··. c[—1] *** c[—Λ^+l] c[—TV] W C[N-1] ... c[i] 4〇] 4-1] - 4--^+1] C= ^ ·_· ···: ·. 4^-1] ; ··· .-· c[-l] ,_ c[A^ ··· c[l] cf〇i L Cq (24) 其中遽波器長度橫跨2#個碼片(-#到jy),並且c /、 C〇和C;表示總濾波器矩陣C中分別應用於前一個、當前 和下一個符號週期的被發送碼片的部分。可以用Q 來表示總濾波器矩陣c。將方程式(20) _方程式(22)中 關於被發送碼月的表達式插入方程式(23)中關於濾波器 輪出zfwj的表達式中,得到: 1 l(m) = Σ C,P(m+lWGb{m + /) ,=_I (25) 在由前端濾波器/進行濾波之後,用解攪頻矩陣户 (方塊11 5 0 )對濾波器輸出進行解攪頻,該矩陣是攪 頻r矩陣的厄密共輕。在解授頻之;麦用解展頻矩陣 π (方塊1160)對已解授頻的據波器輸出進行解展頻,該 矩陣是展頻矩P車π的轉置。解授頻和解展頻得到用於使用 者i到的已接收符號办;。可以如下提供已接收符號 ?~(m): [S} 23 201128977 (26) lijn) = WT PH (rn)yim) 將關於的表達式插入方程式(26)中得到. (27) z(m) = WTPH QP{m + l)WGb{m+/) . /=-1 基於方程式(27),可以分別如下表示符號週期_多 使用者干擾矩陣和肩矩陣4:Si decomposes the spread spectrum and de-amplifier. The despreading code 201119 201128977 and the solution search code can be pre-programmed into the memory 25〇, and the memory 25〇 can be communicatively coupled to the de-buffering and de-spreading unit 23 0 . The program continues from operation 920 to operation 930, in which the despreading chips for each user are summed over _ number 4 cycles to obtain received symbols for the respective users. . This summation can be performed by separate summing blocks 320. The operations in Fig. 9 can also be performed in a different order to obtain received symbols. The Figure is a block diagram of a mobile station 106 for use in a wireless communication system 1A in accordance with certain aspects of the present invention. The mobile station 1〇6 in Fig. 1 includes a module 1000 for receiving chips. The mobile station 1 6 also includes a module 1010' for processing chips into one or more received symbols for a plurality of users, wherein the chips are filtered via the front end processing unit and then the chips are solved The frequency is summed and spread out and output as a symbol. The mobile station 106 further includes a modular set 1020 for computing a multi-user interference matrix. As described above, the multi-user interference matrix j can be calculated from known codes, filter coefficients, and channel estimates. The mobile station 106 further includes a module 1030 that uses the calculated matrix and received symbols to model both based on the time-variant of the symbol level used to associate the desired user symbol with the received symbol 釭W. / Detect the user symbol ^(w). For example, a time-varying multi-user model of the symbol level can be represented by equation (16). In this example, the use of equation (16) is solved by using various techniques including MMSE, MLD, SD, MAPD, and slice. Symbol ^^j to detect user symbol b(m) 0 r λ 20 201128977 Efficient calculation of multi-user interference matrix and shoulder matrix According to some aspects of the present invention, a multi-user interference matrix is provided for calculation An effective method and system for the shoulder matrix. In one aspect, when using Walsh codes to spread the user symbols, the multi-user interference matrix and shoulder matrix can be efficiently computed using the Fast Hadamard Transform (FHTs) detailed below. . Figure Π is a diagram of a multi-channel model based on an aspect. In Figure U, the user symbol 0//„; of the symbol period m is represented as a color in the form of a column vector where #„ is the number of users or code channels. Applying the gain matrix g (block m〇) to the user symbol gain matrix cp is a chest diagonal matrix that applies gains 1 to 各 to the respective user symbols 〆^//, and can be provided as follows: G= ··· ° Do j ( 17) Then use the spread spectrum matrix 展 to spread the gain-scaled user symbol (block 1120). The spread spectrum matrix 酽 is a wxw matrix that applies a Walsh code containing #値 chips to each of the gain-scaled user symbols. The spread spectrum matrix # can be provided as follows: W = Wj ·· Wj. LJ (18) where is the hi column vector used to represent the Walsh code for the first user, and 4 is for the Nuth The # Xl column vector of the user's Walsh code. Each * 什 code I to H 乂 includes a solid chip. Then, the frequency-spreading user symbol is used for the frequency-frequency user symbol (block 21 201128977 1130). The frequency aliasing matrix /YW is a # x iV diagonal matrix that applies an agitation code containing # chips to the spread spectrum user symbol. The frequency-stacking matrix household (^) can be provided as follows: &gt;((ml)A〇〇Ί P(m)~ · '°山19) where Μ-Μ to... is the frequency code corresponding to the symbol period. AM solid chip &amp; chip index. After spreading and agitation, the resulting chips are transmitted on channel Δ (block 1132). The transmitted chip of the symbol period can be represented as h 1 column vector_ as shown in FIG. The transmitted chip for the symbol period can be provided as follows: [(m) = P{m) WGb{m) ^ 2 〇^ The number of transmitted symbols of the symbol period -1 and the next symbol period W+1 It can be provided as follows: where it is assumed that for the symbol periods w], (7) and w+1, the Walsh code and the gain 疋 are the same. In this aspect, the 夭 什 code can be repeated every symbol period. The transmitted chips are transmitted to the receiver on channel /z (block U32) and filtered by the front H-picker / (block 1135) at the receiver, the chopper of the wave symbol period w / The output can be expressed as # X 1 % @量' which can be as follows: ▲-ί)&quot;] y{m) = C ί_(ηι) jXm + l) i Si 22 (23) 201128977 where C is the total 遽The matrix of the waver (block 114 0 ), the total chopper is provided by the channel and the cyclotron of the filter /. The transmitted chips of the symbol periods w-1 and w+1 are included in the expression to illustrate the intersymbol interference. The total filter matrix C can be represented by the #X3# torpitz matrix provided below: cHV+i] ··. c[-1] *** c[—Λ^+l] c[—TV] WC[N-1] ... c[i] 4〇] 4-1] - 4 --^+1] C= ^ ·_· ···: ·. 4^-1] ; ··· .-· c[-l] , _ c[A^ ··· c[l] cf〇 i L Cq (24) where the chopper length spans 2# chips (-# to jy), and c /, C〇 and C; represents the total filter matrix C applied to the previous, current and lower respectively The portion of a symbol period that is sent a chip. The total filter matrix c can be represented by Q. The expression of the transmitted code month in equation (20)_equation (22) is inserted into the expression in the equation (23) for the filter wheel zfwj, which yields: 1 l(m) = Σ C, P(m +lWGb{m + /) , =_I (25) After filtering by the front-end filter/filtering, the filter output is de-amplified with the de-sampling matrix (block 11 5 0), which is the frequency-crushing r The matrix of Hermione is light. The frequency is despreaded by the despreading frequency matrix π (block 1160), which despreads the demodulated frequency data output, which is the transposition of the spread frequency moment P π. The deciphering frequency and the despreading frequency are obtained for the received symbols to be used by the user i; The received symbols can be provided as follows?~(m): [S} 23 201128977 (26) lijn) = WT PH (rn)yim) Insert the relevant expression into equation (26). (27) z(m) = WTPH QP{m + l)WGb{m+/) . /=-1 Based on equation (27), the symbol period_multiuser interference matrix and shoulder matrix 4 can be represented as follows:

A_l{rn) = WTPH{m)C_lP{m-\)W 為㈣= ㈣c〇p㈣妒(29) A (^) = WTPH (jn)CxP{m + l)fV ^ 3 〇 ^ 使用方程式(28)-方程式(3〇),可以計算多使用者干 擾矩陣和肩矩陣斤‘心在—個態樣中,可以使用快 速哈達瑪變換(FHTS)來高效地計算多使用者干擾矩陣和 肩矩陣,如下所述。 其中可 FHT操作計算哈達瑪矩陣與一個向量的乘積 藉由以「下來遞迴地定義2n階哈達瑪矩陣. VH^ Η. 1 卞 Η, -Η. Η., (31 ) -1 其Τ藉申以下來提供η2:A_l{rn) = WTPH{m)C_lP{m-\)W is (4)= (4)c〇p(4)妒(29) A (^) = WTPH (jn)CxP{m + l)fV ^ 3 〇^ Use equation (28 )--(3〇), which can calculate the multi-user interference matrix and the shoulder matrix, and can use the fast Hadamard transform (FHTS) to efficiently calculate the multi-user interference matrix and the shoulder matrix. As described below. The FHT operation can calculate the product of the Hadamard matrix and a vector by "recursively defining the 2n-order Hadamard matrix. VH^ Η. 1 卞Η, -Η. Η., (31) -1 Apply below to provide η2:

A (32) 亦可以使用而操作來計算哈達瑪矩陣與一個矩陣ό :積’因為矩陣可以藉由多個向量來表示。已開發了在言 异上尚效的系統和方法來執行FHT操作。例如可以^ 1996年㈣丨日發表的標題為「MethQdandAppa_f〇A (32) can also be used to calculate the Hadamard matrix and a matrix ό: product' because the matrix can be represented by multiple vectors. Systems and methods that are otherwise effective have been developed to perform FHT operations. For example, the title of "MethQdandAppa_f〇" published on the next day of 1996 (4)

SISI

Performing a Fast Hada_d Transf_」的美國專利第 咖州號中找到對於在計算上高效的贿操作的描 24 201128977 述,以引用的方式將該專 _、奸 寻利的說明書併入本文。 可以錯由對沃爾什矩 z,^ piL # . 的仃或列進行重排序來將沃爾 碎可m:達瑪矩陣。或者,沃爾什矩陣中的沃爾什 碼=被排序為形成啥達瑪矩陣,在該狀況下, 矩陣無需進行變換。可以利用沃爾什 用FHT操作來高效地 便 二办 T异在方程式(28)-方程式(30) 中的夕使用者干擾矩陣和肩矩陣。 在一個態樣中,方葙十r 0 0、 式(28)—方程式(30)中的展頻矩 陣W是沃爾什矩陣,1中可 ’、了 乂藉由對該矩陣FT的行或列 m 進行重排序來將錢換成哈達瑪料m(28)方程 式(30)中的解展頻矩陣π是展頻矩陣^的轉置,該展 頻矩陣V可以被視為是沃爾什矩陣,其中亦可以藉由對矩 陣扩的行或列進行重排序來將其變換成哈達瑪矩陣。在 該態樣中,可以藉由對沃爾什矩㈣的行或列進行重排序 以將沃爾什矩陣r變換成相應的哈達瑪矩陣,並且以類似 时式對另-矩陣的行或列進行重排序,來使用fht操作 高效地計算方程式(28)-方程式(μ)中的沃爾什矩陣^ 與該另一矩陣的乘積。該另—矩陣可以是方程式(28) _ 方程式(30)中的一個矩陣或多個矩陣的組合。隨後使用 FHT操作來計异相應的哈達瑪矩陣與該另一矩陣(其行或 列被重排序)的乘積。在FHT操作之後,可以以與沃爾什 矩陣F相反的方式對所得的矩陣的行或列進行重排序,以 獲得所要的乘積。若沃爾什矩陣F中的沃爾什碼已被排序 為構成哈達瑪矩陣’則無需該重排序操作,在該狀況下, 25 201128977 可以直接將FHT操作應用於沃爾什矩陣π。 亦可以以類似的方式使用FHT操作來計算方程式() '方程式。〇)中的沃爾什矩陣^與另一矩陣的乘積。可 以基於例如能夠導致高效的硬體及/或軟體實施的選擇,選 擇方程式(20-方程式(3〇)十的矩陣來進行fht操作。 以下提供了使用FHT操作來高效地計算多使用 陣和肩矩陣的兩個實例。 提例中,可以使用FHT操作來高效地計算如下所 提供的乘積: A(m) = WTM ( 33 ) 爾疋解展頻矩陣’在該實例中其是包括複數個沃 並…如下提供的組合矩陣: (Γ二:與::二積*計算干㈣“的㈣式 而择作^ 對應於解㈣㈣。為了應用 重沃爾什矩陣π中的行(沃爾什碼)進 灯重排序來將沃爾什料W㈣成 似於矩陣π的方式番心 m乂用類 式重排序矩陣尨的行。在對行重排序之 後,可以如下提供該乘積: 排序之A description of the computationally efficient bribery operation is found in the U.S. Patent No. 5, issued to the United States of America, the entire disclosure of which is incorporated herein by reference. It is possible to reorder the 仃 or column of the Walsh moment z, ^ piL # . to smash the m: damma matrix. Alternatively, the Walsh codes in the Walsh matrix are ordered to form a 啥Dama matrix, in which case the matrix does not need to be transformed. Walsh can be used to efficiently perform the E-user interference matrix and the shoulder matrix in equation (28)-equation (30) with FHT operation. In one aspect, the spread spectrum matrix W in the equation (30) - equation (30) is a Walsh matrix, and 1 can be ', by 行 the row of the matrix FT or The column m is reordered to replace the money with Hadamard m(28). The despreading matrix π in equation (30) is the transposition of the spread spectrum matrix ^, which can be regarded as Walsh. A matrix in which a row or column of a matrix expansion can also be transformed into a Hadamard matrix by reordering it. In this aspect, the Walsh matrix r can be transformed into a corresponding Hadamard matrix by reordering the rows or columns of the Walsh moments (four), and the rows or columns of the other matrix are similar in time series. Reordering is performed to efficiently calculate the product of the Walsh matrix ^ in equation (28) - equation (μ) and the other matrix using the fht operation. The other matrix may be a matrix of equations (28) _ equation (30) or a combination of multiple matrices. The FHT operation is then used to account for the product of the corresponding Hadamard matrix and the other matrix whose rows or columns are reordered. After the FHT operation, the rows or columns of the resulting matrix can be reordered in the opposite manner to the Walsh matrix F to obtain the desired product. If the Walsh code in the Walsh matrix F has been ordered to form a Hadamard matrix, then the reordering operation is not required. In this case, 25 201128977 can directly apply the FHT operation to the Walsh matrix π. The equation () equation can also be calculated using FHT operations in a similar manner. The product of the Walsh matrix ^ in 〇) and another matrix. The equation (20-equation (3〇) ten matrix can be selected for the fht operation based on, for example, a choice that can result in efficient hardware and/or software implementation. The following provides an efficient use of FHT operations to calculate multi-use mats and shoulders. Two examples of matrices. In the example, the FHT operation can be used to efficiently calculate the product as follows: A(m) = WTM ( 33 ) 疋 疋 spread spread matrix 'in this example it includes multiple vo And...the combination matrix provided as follows: (Γ二:和::二积*算干(四)“(四)式)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The reordering of the lights to make the Walsh material W(4) into a matrix π-like way to reorder the rows of the matrix 类. After reordering the rows, the product can be provided as follows:

Aq (rn) = HM 其μ是對應於π的哈達瑪矩陣,並且 行了重排序之後的矩 疋在對叮進 地計算方程式(35)中您後可以使用而操作來高效 與矩陣〜的方A::積。在FHT操作之後’可以用 式對所得的矩陣的行進行重排序,丨 26 201128977 以獲得干擾矩陣。可以使用FHT操作以類似的方式計 算肩矩陣义/和山。 亦可以使用FHT操作計算方程式(33 )中的矩陣Μβ在 一個態樣中,可以使用特性: Μ=[Μτ]τ ( 37 ) 用以下來表示矩陣Μ: M=[[PH(m)C0P(m)Wf]r ^36) 其中『是轉置。可以按如下重寫方程式(36): M-[W\p^m)fCrpr{m)]T ( 3g) M^[WTP\m)C〇T{pH(m)f]T ^39) MHW\P\m)C0TP*{m))]T ( 4〇) 在一個態樣中,使用FHT操作來高效地計算方程式(4〇) 中的矩陣M。為此目的,藉由重排序矩陣γ的行來將矩 陣灰變換成相應的哈達瑪矩陣,並且以類似的方式重排 序組合㈣,(Ο㈣的行^在對行進行重排序之後,可 以使用贿操作高效地計算該乘積。在贿操作之後, 用與W的行相反时式對所得的料的行進行重排序。 最後’在對行進行重料H所得的矩陣進行轉置, 來獲得矩陣Μ。可以使用FHT操❹類似的方式來計算用 於肩矩陣和山的矩陣从。 些態樣,在無線通訊系統 測的程序的流程圖。在作 200處接收碼片。在操作 於複數個使用者的一或多 圖12a是圖示根據本發明的某 中使用哈達瑪矩陣的多使用者偵 為行動站106的一部分的接收機 122〇中’將已接收碼片處理為用 27 201128977 個已接收符號。 程序從操作1220持續到操作1230,在操作123〇中使 用哈達瑪矩陣計算多使用者干擾矩陣。例如,可以藉由將 方程=⑺)中的沃爾什矩陣變換成哈達瑪矩陣並二使用 FHT操作將該哈達瑪矩陣與方程式(29)中的另—矩陣或 2其他多個矩陣的組合相乘,來計算多使用者干擾矩陣: =沃爾什矩陣已是哈達瑪形式’則可以使用贿操作將沃 爾什矩陣直接與該另一矩陣相乘。 程序從操作⑽持續到操作_,在操作⑽中 用所計算的多使用者+福_ _ #使用者干擾矩陣和已接收符號來偵測所要 的使用者符號。 if 矩陣圖不根據本發明的某些態樣,用於使用哈達瑪 ^車叶算多使用者干擾料的程序㈣_。在操作⑵2 中’例如’藉由對沃爾什陵 的仃或列進行重排序,將沃 車變換成哈達瑪矩陣。該沃爾什矩陣可以是包括複 干擾的展頻矩陣或解展頻矩陣。當計算多使用者 擾矩陣時,對應於該沃爾什矩陣 y- . f KJ σ适碼矩陣可以被儲 子在記憶體中並從記憶體中取回。 程序從操作!232持續到操作丨 认裣殖κ 社部作1234令,將 。瑪矩陣與另—矩陣相乘。例如,亨另_ &amp; * 頻矩陣、解自_ &quot; 矩陣可以是攪 該另一矩陸沾—+ , 早戈者八組合。可以對 沃爾件:! 重排序,以便與操作…的 十矩陣的行或列的重排序相 來執行㈣⑽中的乘法以實規一了以使用贿操作 j人沄以實現尚效計算。 ^ 28 201128977 程序從操作1234持續到操作1236,在操作1236中,對 ,操作1234所得到的矩陣的行或列進行重排序。例如’ 可U按照與沃爾什矩陣相反的方式對所得的矩陣的行或 歹I進仃重排序。若該沃爾什矩陣的沃_什碼已被排序為哈 達瑪矩陣形式,則可以省略上述重排序操作。在此狀況 下可以直接使用FHT操作來將沃爾什矩陣乘以該另一矩 車以片算矩陣丄;、、(。另外,可以使用FHT操作 來執行解展頻。 程序從操作1236持續到操作1238,在操作1238中,使 用由操作1234所得到的矩陣來計算多使用者干擾矩陣。 圖12c疋根據本發明的某些態樣’在無線通訊系統1⑽ 中所使用的行動站106的方塊圖。圖12c中的行動站1〇6 匕括模組1250 ’其用於將碼片處理為用於複數個使用者的 或夕個已接收符號,其中經由前端處理單元對碼片進行 '&lt;«波且隨後對其進行解攪頻和解展頻並且輸出為符號 L(m) 〇 仃動站106進一步包括模組1260,其用於使用哈達瑪矩 陣计算多使用者干擾矩陣。如上所述,哈達瑪矩陣允許使 用FHT操作來高效地計算多使用者干擾矩陣。行動站I% 進步包括模組1270 ,其用於使用多使用者干擾矩陣(例 如,基於方程式(16))和已接收符號?來偵測使用者 符號。 圖13是根據本發明的某些態樣,用於計算多使用者干 擾矩陣和肩矩陣义7、乂〇、山的系統1305的示意圖》在該【 29 201128977 態樣中,系統削包括矩陣計算單&amp; uiG、代 1320、通道估計單元133G和據波器計算單元代: 單元⑽向矩陣計算單元131()提供解㈣碼〆⑻和解 展頻碼冰»到w W小代碼單元132〇可以將用於多個 細胞服務區的解授頻碼和解展頻碼儲存在記憶冑25 ”圖 2中所圖示)中,並且可以輸出用於當前對行動站1〇6進 行服務的細胞服務區的代碼。代碼單元132〇亦可以向矩 陣汁算單% 131G提供檀頻碼咐和展頻碼〜⑻到^㈤ (圖13中未圖示)。或者,代碼單元132〇可以向矩陣計 算單元1310提供攪頻碼或解攪頻碼中的一個,在該狀況 下,矩陣計算單元1310可以根據接收到的代碼導出攪頻 碼或解攪頻碼。此同樣適用於展頻碼和解展頻碼。 通道估計單元133 0向矩陣計算單元131〇提供通道估計 Λ。通道估計單元1330可以使用基於引導頻的通道估計、 資料辅助式通道估計或者任何其他通道估計技術來估計 通道。以下更詳細地描述資料辅助式通道估計。 濾波器計算單元13 40向矩陣計算單元丨3 1 〇提供濾波器 /參數。在一個態樣中,濾波器計算單元134〇可以計算用 於别端濾波器的濾波器係數,並且基於所計算的濾波器係 數向矩陣計算單元U 1 〇提供濾波器y參數。以通道匹配濾 波器(CMF )為例,濾波器係數並且由此的濾波器,參數 可以是基於通道估計A的反時共軛;^〈-…的。 在一個態樣中’矩陣計算單元13 10可以使用接收到的 通道估計A和濾波器/參數,來計算總濾波器矩陣c (例[ 30 201128977 如,基於方程式(24))。矩障 一 矩陴汁异早兀1310隨後可以使 用總遽波器矩陣C和你垃3;丨it 接收到的代碼導出的攪頻矩陣、解 授頻矩陣、展頻矩陣和解展瓶拓陆 干和鮮展頻矩陣,來計算多使用者干擾 矩陣和肩矩陣d ,、丄、d , 0个(例如’基於方程式(28)-方 程式(3G))。當如上所述使用沃爾什碼進行展頻時,矩陣 計算單元131〇可以使用贿操作來高效地計算多使用者 :擾矩陣和肩矩陣。矩陣計算單A uig隨後可以向偵測 單-或者包括本發明所述的任何偵測單元的任何其他 债測單元提供所計算的多使用者干擾矩陣和肩矩陣扣、 A〇、A,。 多使用者干擾消除 在本發明的-個態樣中’提供了具有符號級的多使用者 干擾消除的多使用者偵測系統和方法。在該態樣中,初始 地偵測符號週期m- 1、m和w+!的使用者符號,並且使用 初始偵測的使用者符號來計算符號週期⑺的多使甩者干 擾。隨後從符號週期w的已接收符號中移除(消除)所計 算的多使用者干擾。隨後從已移除了所計算的多使用者干 擾的已接收符號重新摘測符號週期w的使用者符號。 在該態樣中’可以分別將符號週期、所和W + 1的初 始偵測的使用者符號以向量形式表示為_-1)、&amp;m)和 Λ 咖+ 1)。可以使用包括本發明中所述的任一偵測技術在内的 任何偵測技術,來執行該初始使用者符號偵測。例如,可 以使用方程式(16)從某一符號週期的已接收符號初始地 偵測該符號週期的使用者符號’其中忽略了符號間干擾以[ρ 31 201128977 簡化價測計算。在該實例中,—旦知道了方程式(i6)中 的干擾矩陣、增益矩陣和已接收資料符號,就可以將包括 MMSE、MLD、SD、MAPD和切片在内的各種技術應用於 方程式(1 6 ),以求解出所要的使用者符號。 '在初始地偵測了符號週期W-1和w + 1的使用者符號 咖-!)和咖+1)之後,可以如下計算符號週期瓜的多使用者 符號間干擾:Aq (rn) = HM, μ is the Hadamard matrix corresponding to π, and the matrix after reordering is used in the calculation of equation (35) for hypersynthesis and can be used to operate efficiently with the matrix ~ A:: Product. The rows of the resulting matrix can be reordered after the FHT operation, 丨 26 201128977 to obtain the interference matrix. The shoulder matrix meaning/sum hill can be calculated in a similar manner using the FHT operation. It is also possible to use the FHT operation to calculate the matrix Μβ in equation (33). In one aspect, the characteristic can be used: Μ=[Μτ]τ ( 37 ) is used to represent the matrix Μ: M=[[PH(m)C0P( m)Wf]r ^36) where "is transposed. Equation (36) can be rewritten as follows: M-[W\p^m)fCrpr{m)]T (3g) M^[WTP\m)C〇T{pH(m)f]T ^39) MHW \P\m)C0TP*{m))]T ( 4〇) In one aspect, the FHT operation is used to efficiently calculate the matrix M in the equation (4〇). For this purpose, the matrix is gray transformed into the corresponding Hadamard matrix by reordering the rows of the matrix γ, and the combination (4) is reordered in a similar manner, and the row of (Ο) can be used after reordering the rows. The operation calculates the product efficiently. After the bribe operation, the rows of the obtained material are reordered in the opposite way to the row of W. Finally, the matrix obtained by re-feeding the H to the row is transposed to obtain a matrix. A similar method can be used to calculate the matrix for the shoulder matrix and the mountain. From these aspects, the flow chart of the program measured in the wireless communication system. The chip is received at 200. In operation, multiple operations are used. One or more of FIG. 12a is a receiver 122 illustrating a portion of a multi-user detection mobile station 106 using a Hadamard matrix in accordance with the present invention, 'processing received chips into 27 201128977 The program is received from operation 1220 to operation 1230, and the multi-user interference matrix is calculated using the Hadamard matrix in operation 123. For example, the Walsh matrix in equation = (7)) can be transformed into The Hadamard matrix and the FHT operation multiply the Hadamard matrix with the other matrix of the equation (29) or two other matrices to calculate the multiuser interference matrix: = Walsh matrix is already Hada The Mar form can then use the bribe operation to multiply the Walsh matrix directly with the other matrix. The program continues from operation (10) to operation _, and the desired multi-user + ___ user interference matrix and received symbols are used in operation (10) to detect the desired user symbol. The if matrix diagram is not used in accordance with certain aspects of the present invention for the use of Hadamard vehicles to calculate multi-user interference material (4)_. In operation (2) 2, for example, the car is transformed into a Hadamard matrix by reordering the columns or columns of the Walsh Mausoleum. The Walsh matrix may be a spread spectrum matrix or a despreading matrix including complex interference. When calculating the multi-user scrambling matrix, the matrix corresponding to the Walsh matrix y-.f KJ σ can be stored in the memory and retrieved from the memory. Program from operation! 232 continued to operate 裣 Recognize 裣 κ 社 社 社 社 社 社 社 社 社 社 社 社 社 社 社The matrix is multiplied by another matrix. For example, the hen _ &amp; * frequency matrix, the solution from the _ &quot; matrix can be a mixture of the other moments of the land - +, the early division of the eight. Can be on the Wal-Mart:! Reordering, in order to perform the reordering of the rows or columns of the ten matrix of the operation... (4) The multiplication in (10) is implemented in order to use the bribe operation to achieve an effective calculation. ^ 28 201128977 The program continues from operation 1234 to operation 1236, in which the rows or columns of the matrix obtained by operation 1234 are reordered. For example, 'U can reorder the rows or 歹I of the resulting matrix in the opposite way to the Walsh matrix. If the Walsh code of the Walsh matrix has been sorted into a Hadamard matrix form, the above reordering operation can be omitted. In this case, the FHT operation can be directly used to multiply the Walsh matrix by the other rectangular car to calculate the matrix 丄;, (in addition, the FHT operation can be used to perform the despreading. The program continues from operation 1236 to Operation 1238, in operation 1238, the matrix obtained by operation 1234 is used to calculate a multi-user interference matrix. Figure 12c is a block diagram of a mobile station 106 used in wireless communication system 1 (10) in accordance with certain aspects of the present invention. Figure 2. The mobile station 1 in Figure 12c includes a module 1250' for processing chips into a plurality of user or received symbols, wherein the chips are '&lt;&gt; The wave is then de-amplified and despread and output as symbol L(m). The station 106 further includes a module 1260 for computing a multi-user interference matrix using a Hadamard matrix. The Hadamard Matrix allows the use of FHT operations to efficiently compute multi-user interference matrices. The Mobile Station I% advancement includes a module 1270 for using a multi-user interference matrix (eg, based on equation (16)) and received Figure 13 is a schematic diagram of a system 1305 for computing a multi-user interference matrix and shoulder matrix meanings 7, 乂〇, and mountains according to certain aspects of the present invention. [29 201128977 In the aspect, the system shaving includes matrix calculation single &amp; uiG, generation 1320, channel estimation unit 133G, and data calculation unit generation: unit (10) provides solution (4) code 〆 (8) and despread code ice to matrix calculation unit 131 () » The de-spreading code and the despreading code for the plurality of cell service areas can be stored in the memory port 25" as illustrated in FIG. 2) and can be output for the current pair of mobile stations. 1. The code of the cell service area for service. The code unit 132 can also provide the matrix frequency code 咐 and the spreading code ~(8) to ^(5) (not shown in FIG. 13) to the matrix juice calculation unit. The code unit 132A may provide one of the agitation code or the de-spoofing code to the matrix calculation unit 1310. In this case, the matrix calculation unit 1310 may derive the agitation code or the de-agglomeration code according to the received code. Applicable to the spread spectrum code and the despreading code. Channel estimation unit 133 0 provides channel estimation 向 to matrix calculation unit 131. Channel estimation unit 1330 may estimate the channel using pilot frequency based channel estimation, data assisted channel estimation, or any other channel estimation technique. The data is described in more detail below. Auxiliary channel estimation. The filter calculation unit 13 40 provides a filter/parameter to the matrix calculation unit 。3 1 。. In one aspect, the filter calculation unit 134 〇 can calculate the filter coefficients for the other end filter, And providing a filter y parameter to the matrix calculation unit U 1 〇 based on the calculated filter coefficients. Taking a channel matched filter (CMF) as an example, a filter coefficient and thus a filter, the parameter may be based on channel estimation A Converse conjugate; ^<-... In one aspect, the matrix calculation unit 13 10 can calculate the total filter matrix c using the received channel estimate A and filter/parameters (example [30 201128977 eg, based on equation (24)). The matrix barrier can be used to use the total chopper matrix C and the 33; 丨it received code derived from the frequency matrix, the demodulation matrix, the spread spectrum matrix and the solution bottle extension And the fresh spread spectrum matrix is used to calculate the multiuser interference matrix and the shoulder matrix d , , 丄, d , 0 (for example, 'based on equation (28) - equation (3G)). When the Walsh code is used for spread spectrum as described above, the matrix calculation unit 131 can use the bribe operation to efficiently calculate the multi-user: the scrambling matrix and the shoulder matrix. The matrix calculation unit A uig can then provide the calculated multi-user interference matrix and shoulder matrix buckle, A 〇, A, to the detection unit - or any other debt measurement unit including any of the detection units described herein. Multi-user interference cancellation provides a multi-user detection system and method with symbol level multi-user interference cancellation in one aspect of the present invention. In this aspect, the user symbols of the symbol periods m-1, m, and w+! are initially detected, and the initially detected user symbols are used to calculate the symbol period (7) which is more disturbing. The calculated multi-user interference is then removed (cancelled) from the received symbols of symbol period w. The user symbol of symbol period w is then re-extracted from the received symbols from which the calculated multi-user interference has been removed. In this aspect, the symbol period, the user symbol of the initial detection of W + 1 and the W + 1 can be respectively expressed as _-1), &amp;m) and +ca + 1). The initial user symbol detection can be performed using any detection technique, including any of the detection techniques described in this disclosure. For example, Equation (16) can be used to initially detect a user symbol for a symbol period from a received symbol of a symbol period, wherein intersymbol interference is ignored [ρ 31 201128977 Simplified Price Calculation. In this example, once the interference matrix, gain matrix, and received data symbols in equation (i6) are known, various techniques including MMSE, MLD, SD, MAPD, and slice can be applied to the equation (1 6 ) to solve the desired user symbol. After the initial detection of the symbol periods W-1 and w + 1 user symbols -!) and the coffee +1), the multi-user intersymbol interference of the symbol period melon can be calculated as follows:

A AA A

Lnter - ^〇ι(ιτι) = Α_χ (m)Gb(jn -1) + {m)Gb{m +1) (-41) 其中-·()和《()疋肩矩陣(其可以分別使用方程式(^ : 和(14)來計算),並且G是增益矩陣(其可以由方程式 (17)提供)。對於每個使用者,方程式(41)說明了來 自其他使用者的符號間干擾以及來自同一使用者的前一 個使用者符號和後一個使用者符號的符號間干擾。 在初始地偵測了符號週期w的使用者符號之後,可 以如下計算來自符號週期讲中的使用者符號的多使用者干 擾: /B,w«-Bier(/M) = 4)(7w)G0(7w)-diag{4l(/w)}G|(m) ^42)Lnter - ^〇ι(ιτι) = Α_χ (m)Gb(jn -1) + {m)Gb{m +1) (-41) where -·() and "() shoulder matrix (which can be used separately The equations (^: and (14) are calculated), and G is the gain matrix (which can be provided by equation (17).) For each user, equation (41) illustrates intersymbol interference from other users and from Inter-symbol interference between the previous user symbol of the same user and the latter user symbol. After initially detecting the user symbol of the symbol period w, the multi-use of the user symbol from the symbol period can be calculated as follows Interference: /B,w«-Bier(/M) = 4)(7w)G0(7w)-diag{4l(/w)}G|(m) ^42)

J 其中為㈨是多使用者干擾矩陣(其可以使用方程式(13) 來計算),並且(㈣丨是對角矩陣,在該對角矩陣中僅保 留多使用者干擾矩陣中的對角係數(亦即,非對角係數是 零)。多使用者干擾矩陣Λ㈣不僅將已接收符號與多使用者 干擾相關聯,而且將已接收資料符號與其各別的所要的使 用者符號相關聯。因此,在方程式(42 )中使用對角矩陣 來減去中的由各別的所要的使用者符號 32 201128977 所貢獻的部分,從而在方程式(42)僅保留多使用者干擾。 可以組合方程式(41)和方程式(42)中提供的干擾, 以如下表示符號週期m的多使用者干擾|(m): = + +4,(OT)G0(w)-diag{4,(w)}Gi(w). (43) 在方程式(43)中所計算的符號週期历的多使用者干擾 Λ 說明了來自符號週期w中的使用者符號的多使用者干 擾以及來自前一個符號週期1和下一個符號週期w+ i中 的使用者符號的多使用者符號間干擾。方程式(43)中的 符號間干擾可以被省略,以簡化多使用者干擾計算。 在使用初始偵測的使用者符號&amp;&gt;-1)、€(»1)和《(m + 1)計算多 使用者干擾少《)之後’可以按照如下從已接收符號中移除 (消除)所計算的多使用者干擾: z(m) = z(m)-I(m) (44) 其中2㈣是符號週期所的已接收符號的向量,並且iO)是 符號週期m的已移除了所計算的干擾的已接收符號的向 量。將來自方程式(43)的多使用者干擾的表達式插入方 程式(44 ),得到: lim) = z{m) - \a_, {m)Gb{m -1) + A+1 (m)Gb(m +1)} -+ diag{\{m)} Gb(m) ( 4 5 ) 在從已接收符號中移除了所計算的干擾以獲得致m)之 後’可以從重新偵測所要的使用者符號i(m)。 因此,該態樣在符號級上使用關於從該初始偵測獲得的 符號週期m-1、m和w+1的使用者符號的資訊,來計算多 使用者干擾。隨後’從符號週期w的已接收符號中移除(消r r 33 201128977 除)所計算的多使用者干擾,從而從已接收符號中消除多 使用者干擾。此類多使用者干擾消除以消除增益提供了改 良的多使用者{貞測。此外’在符號級上計算並且從已接收 符號中移除多使用者干擾而無需執行複雜的碼片級的多 使用者干擾消除。 在一個態樣中,按照如下使用切片來從已移除了所計算 的干擾的已接收符號重新偵測所要的使用者符號: Λ b(m) = slice(z(m)) ( 4 6 ) 以二元移相鍵控(BPSK )調制為例,可以如下提供切片: slice(z(m)) = sign{Re(z(m))) ^ ^ 在BPSK調制的實例中,可以基於經干擾消除的已接收 符號2(m)的符號(sign )來判定使用者符號的位元值。以每 個符號代表兩個位元的正交移相鍵控(qPSK )調制為例, 可以如下提供切片: 血啦㈣) = *si明{Re(如㈣)} ( 48) 在QPSK調制的實例中’可以基於經干擾消除的已接收 符號於《)的實部和虛部的符號來判定使用者符號的兩個位 元值。除了 ^片之外,可以使用其他偵測技術來重新偵測 使用者符號。而且,可以針對使用者符號使用其他調 制方案’例如,16-正交調幅(qaM),在該調制中每個使 用者符號攜帶四位元的資訊。另外,在對使用者符號的初 始债測中可以使用以上切片。 圖14是根據本發明的某些態樣,具有干擾消除的多使 用者偵測系統1405的示意圖。偵測系統14〇5可以位於無: 34 201128977 線通訊系統中的行動站中。偵測系統14〇5包括:用於對 已接收碼片進行濾波的濾波器141〇、用於對經濾波的 碼片進行解攪頻的解攪頻單元1415、和用於將已解攪頻碼 片解展頻為已接收資料符號的解展頻單元。濾波 器1410可以包括均衡器及/或通道匹配濾波器。在濾波之 後,解攪頻單元14 1 5使用解攪頻碼對經濾波的碼片進行 解攪頻。解展頻單元1420隨後使用一組解展頻碼對已解 攪頻碼片進行解展頻^在一個態樣令,每個解展頻碼可以 對應於不同的使用者並且可用於獲得用於相應的使用者 的已接收符號。在該態樣中,解展頻單元142〇在每個符 號週期期間使用該组解展頻碼輸出一組已接收符號。 偵測系統1405進一步包括偵測單元i 43 〇、矩陣計算單 元1440、干擾消除單元145〇和重新偵測單元146〇。偵測 單το 1430執行在每個符號週期期間從已接收符號的 對所要的使用者符號的初始偵測。偵測單元143〇可以使 用包括本發明中所述的任一偵測技術在内的任何偵測技 術,來初始地偵測使用者符號&amp;/W)。 干擾消除單元1450從偵測單元143〇接收每個符號週期 的初始偵測的使用者符號ί(叫。在一個態樣中,干擾消除 單元1450使用方程式(43)以及來自偵測單元143〇的符 號週期m-1、w和W+1各別的初始偵測的使用者符號 〕)、I⑽和&amp;m + l) ’來計算符號週期⑺的多使用者干擾 Z(W)。在該態樣中,消除單元145〇可以藉由將在至少三個 符號週期的時段上來自制單元U3〇的初始㈣的使用 35 201128977 者符號儲存到記㈣(例如,緩衝器)中,來 符號_-1)、I㈣和‘+1)。,能媒由工植丄 和』;。在該態樣中,干擾消除單元1450 進行等待,直到接收到符號週期w+〗的初始偵測的使用者 符號S(w+1)之後才返回並且計算符號週期w的多使用者干 擾1(历)。 在计算了多使用者干擾之後,干擾消除單元1450從已 接收符號红岣中移除所計算的干優l(m),以便獲得已移除 了所計算的干擾的已接收符號f(w)。 重新偵測單元1460接收已移除了所計算的干擾的已接 收符號办〇,從办0重新偵測所要的使用者符號|(w),並且 Λ 輸出該等使用者符號。例如,重新偵測單元丨46〇可以 藉由對已移除了所計算的干擾的已接收符號沙執行切 Λ 片’來重新偵測所要的使用者符號&amp;m)。 矩陣計异單元1440計算每個符號週期的干擾矩陣和肩 矩陣,並且將此等矩陣提供給偵測單元143〇 和干擾消除單元1450。矩陣計算單元1440可以使用fht 操作及/或任何技術來計算矩陣j + y。 圖15是根據本發明的某些態樣,具有干擾消除的多使 用者偵測系統1505的示意圖。偵測系統15〇5可以位於無 線通訊系統中的接收機中。偵測系統i 5〇5包括用於對已 接收碼片進行濾波的濾波器1510以及解攪頻和解展 頻單元1520 »濾波器1510可以包括均衡器及/或通道匹配 濾波器(CFM)。 r· λ 解搜頻和解展頻單元15 20包括解授頻混合器1 5 1 5、複 36 201128977 數個解展頻混合器1522和複數個相應的求和方塊1525。 解攪頻混合器1515將經濾波的已接收碼片…與解攪頻 . 碼〆(心混合以便對經濾波的已接收碼片少㈨進行解攪 • 頻。解攪頻碼PVW可以是在發射機端(例如,基地台) 使用的攪頻碼的共軛。解展頻混合器1522隨後將已解攪 頻信號與分別對應於多個使用者丨到使用者的一組解 展頻碼心*(^)到混合。解展頻碼心^^到 可以是在發射機端(例如,基地台j 〇4 )使用的展頻碼的 共軛。將來自每個解展頻混合器1522的解展頻信號輸入 到各別的求和方塊1S25,求和方塊1525在一個符號週期 上對解展頻信號進行累積,以產生用於相應使用者的已接 收符號。解攪頻和解展頻單元1520輸出在每個符號週期 期間的用於多個使用者的—組已接收符號到 之心&gt;)。因此,解攪頻和解展頻單元152〇將經濾波的已接 收碼片從碼片級轉換到符號級。該組已接收符號。到 之心…)亦可以以向量形式表示為。 偵測系統1505亦包括偵測單元153〇、消除和重新偵測 早兀1560、代碼單元1535和矩陣計算單元154〇 ^偵測單 元1530執行從已接收符號匀化^到z心&gt;)的對所要的使用 . 者符號的初始偵測。偵測單元1530可以使用包括本發明 所論述的任一偵測技術在内的任何偵測技術,來初始地偵 測使用者符號ί㈣到L㈨。例如’偵測單元i 5 3 〇可以藉由 使用包括MMSE、MLD、SD、MAPD和切片在内的多種不 同技術中的任’種求解方程式(16) +的所要的使用者符 37 201128977 號,來初始地偵測使用者符號《〇)到。使用者符號&amp;㈣ 到&amp;㈣亦可以以向量形式表示為。 消除和重新偵測單元1 560從偵測單元1 530接收每個符 Λ 號週期的初始偵測的使用者符號以m)到心(m),並且使用來 自偵測單元1530的符號週期所]、^和;„+1各別的初始偵 測的使用者符號來計算符號週期w的多使用者干擾(例 如,基於方程式(43 ))。在該態樣中,消除和重新偵測單 兀1560可以包括記憶體25〇 (圖2中所示),以用於儲存 在至少二個符號週期的時段上來自偵測單元153〇的初始 偵測的使用者符號。消除和重新偵測單元丨56〇隨後可以 使用所儲存的關於符號週期丨、所、讲+丨的初始偵測的使 用者符號來計算符號週期所的多使用者干擾。消除和重新 债測單S 156〇從符號週期m的已接收符號咖到 中移除符號週期m的所計算的干擾。消除和重㈣測單元 〇隨後從气移除了所計算的干擾的已接收符號重新偵 I?用/符號咖)到〜㈨,並輸出重新谓測的使用者符號 到》。重新偵測的便用者符號$(m)到k(m)可以以向量 形式表示為&amp;W)。 里 代碼單元1535向解婚相A &amp; „ 一 ⑽_和解展頻單it 1520和矩陣計算 ^元1565提供解授頻碼和解展_。解展頻碼可以錯存 =Γ°(圖15中未圖示)中。矩陣計算單元⑽ 期的干擾矩陣和肩矩陣、Ά,並 矩陣。&amp; το 1530^肖除和重新偵測單元测提供此等 i Sj 38 201128977 圖16a是圖示根據本發明的某些態樣,具有干擾消除的 多使用者偵測的程序的流程圖。可以在例如行動站1〇6處 執行該程序,則貞測來自發射機端(例如,基地台104) 的使用者符號,其中所偵測的使用者符號是對發射機端的 使用者符號的估計。 在操作1610中,從已接收符號初始地偵測使用者符號。 例如可以藉由使用包括MMse、、ΜΑρ〇和切 :在内的各種技術的任一種求解方程.式(i6 ”的使用者 符號,來從某一符號週期#已接收符冑初始地_該符號 週期的使用者符號。 程序從操作1610持續到操作162〇,在操作162〇中使 用初始偵測的使用者符號來計算多使用者干擾。例如,可 以使用方程式(43)和符號週期所]、所和w + 1的初始偵 測的使用者符號來計算符號週期w的多使用者干擾。 程序從操作1620持續到操作163〇,在操作163〇中從 已接收符號中移除所計算的多使用者干擾。 程序從操作1630持續到程序1640,在操作164〇中,從 已移除了所計算的干擾的已接收符號重新偵測使用者符 號。例如,藉由對已移除了所計算的干擾的已接收符號進 行切片來重新偵測使用者符號。J where (9) is a multiuser interference matrix (which can be calculated using equation (13)), and ((4) 丨 is a diagonal matrix in which only the diagonal coefficients in the multiuser interference matrix are retained ( That is, the non-diagonal coefficient is zero. The multi-user interference matrix 四 (4) not only associates the received symbols with multi-user interference, but also associates the received data symbols with their respective desired user symbols. The diagonal matrix is used in equation (42) to subtract the portion contributed by the respective desired user symbol 32 201128977, thereby retaining only multi-user interference in equation (42). Equation (41) can be combined. And the interference provided in equation (42), to represent the multi-user interference of the symbol period m as follows: (m): = + +4, (OT)G0(w)-diag{4,(w)}Gi(w (43) Multi-user interference 符号 of the symbol period calendar calculated in equation (43) illustrates multi-user interference from the user symbol in symbol period w and from the previous symbol period 1 and the next symbol Multiple users of user symbols in period w+ i Inter-symbol interference. Inter-symbol interference in equation (43) can be omitted to simplify multi-user interference calculations. Use the initial detected user symbols &amp;&gt;-1), €(»1), and (( m + 1) After calculating the multi-user interference less "), the calculated multi-user interference can be removed (cancelled) from the received symbols as follows: z(m) = z(m)-I(m) ( 44) where 2 (four) is the vector of the received symbols of the symbol period, and iO) is the vector of the received symbols of the symbol period m from which the calculated interference has been removed. Inserting the expression of multiuser interference from equation (43) into equation (44) yields: lim) = z{m) - \a_, {m)Gb{m -1) + A+1 (m)Gb (m +1)} -+ diag{\{m)} Gb(m) ( 4 5 ) After removing the calculated interference from the received symbol to obtain m), 'can re-detect the desired User symbol i(m). Therefore, the aspect uses the information on the symbol of the symbol periods m-1, m, and w+1 obtained from the initial detection at the symbol level to calculate multi-user interference. The multi-user interference calculated from the received symbols of symbol period w is then removed (excluding r r 33 201128977), thereby eliminating multi-user interference from the received symbols. Such multi-user interference cancellation to eliminate gain provides an improved multi-user. In addition, multi-user interference is calculated at the symbol level and removed from the received symbols without the need to perform complex chip-level multi-user interference cancellation. In one aspect, the slice is used to re-detect the desired user symbol from the received symbols from which the calculated interference has been removed as follows: Λ b(m) = slice(z(m)) ( 4 6 ) Taking Binary Phase Shift Keying (BPSK) modulation as an example, a slice can be provided as follows: slice(z(m)) = sign{Re(z(m))) ^ ^ In the case of BPSK modulation, it can be based on interference The symbol (sign) of the received symbol 2(m) is removed to determine the bit value of the user symbol. Taking the example of quadrature phase shift keying (qPSK) modulation with two symbols per symbol, the slice can be provided as follows: Blood (4)) = *si Ming {Re (eg (4))} (48) Modulated in QPSK In the example, the two bit values of the user symbol can be determined based on the symbols of the real and imaginary parts of the received symbol of the interference cancellation. In addition to the slice, other detection techniques can be used to re-detect the user symbol. Moreover, other modulation schemes can be used for user symbols, e.g., 16-quadrature amplitude modulation (qaM), in which each user symbol carries four-bit information. In addition, the above slice can be used in the initial debt test of the user symbol. Figure 14 is a schematic illustration of a multi-user detection system 1405 with interference cancellation in accordance with certain aspects of the present invention. The detection system 14〇5 can be located in the No. 34 201128977 line communication system in the mobile station. The detection system 14〇5 includes: a filter 141〇 for filtering the received chips, a de-buffering unit 1415 for de-sampling the filtered chips, and a descrambled frequency The chip despreading frequency is the despreading unit of the received data symbol. Filter 1410 can include an equalizer and/or a channel matched filter. After filtering, the de-buffering unit 14 15 de-aliases the filtered chips using the de-sampling code. The despreading unit 1420 then despreads the de-spreaded chips using a set of despreading codes. In one aspect, each despreading code can correspond to a different user and can be used to obtain The received symbol of the corresponding user. In this aspect, the despreading unit 142 outputs a set of received symbols using the set of despreading codes during each symbol period. The detection system 1405 further includes a detection unit i 43 〇, a matrix calculation unit 1440, an interference cancellation unit 145 〇, and a re-detection unit 146 。. Detection Single τ 1430 performs an initial detection of the desired user symbol from the received symbol during each symbol period. The detecting unit 143 can initially detect the user symbol &amp; /W using any detection technique including any of the detection techniques described in the present invention. The interference cancellation unit 1450 receives the initial detected user symbol ί for each symbol period from the detecting unit 143 (in one aspect, the interference cancellation unit 1450 uses the equation (43) and the detection unit 143 〇 The initial detected user symbols for each of the symbol periods m-1, w, and W+1]), I(10), and &m + l) ' are used to calculate the multi-user interference Z(W) for the symbol period (7). In this aspect, the cancellation unit 145 〇 can be symbolized by storing the initial (four) usage 35 201128977 symbol of the slave unit U3 在 in a period of at least three symbol periods into a note (four) (eg, a buffer). _-1), I (four) and '+1). , can be mediated by the plant and plant and ;; In this aspect, the interference cancellation unit 1450 waits until the user symbol S(w+1) of the initial detection of the symbol period w+ is received, and returns the multi-user interference 1 of the symbol period w. ). After calculating the multi-user interference, the interference cancellation unit 1450 removes the calculated dryness l(m) from the received symbol red, in order to obtain the received symbol f(w) from which the calculated interference has been removed. . The re-detection unit 1460 receives the received symbol handling device from which the calculated interference has been removed, re-detects the desired user symbol |(w) from the office 0, and outputs the user symbols. For example, the re-detection unit 丨 46 重新 can re-detect the desired user symbol &amp; m) by performing a slice ’ on the received symbol sand from which the calculated interference has been removed. The matrix discriminating unit 1440 calculates the interference matrix and the shoulder matrix for each symbol period, and supplies the matrices to the detecting unit 143 and the interference canceling unit 1450. Matrix computing unit 1440 can calculate matrix j + y using the fht operation and/or any technique. Figure 15 is a schematic illustration of a multi-user detection system 1505 with interference cancellation in accordance with certain aspects of the present invention. The detection system 15〇5 can be located in a receiver in a wireless communication system. The detection system i 5〇5 includes a filter 1510 for filtering received chips and a de-amplifying and de-spreading unit 1520. The filter 1510 may include an equalizer and/or a channel matched filter (CFM). The r· λ solution search and despreading unit 15 20 includes a de-frequency mixer 1 5 1 5 , a complex 36 201128977 number of despreading mixers 1522 and a plurality of corresponding summing blocks 1525. The de-buffer mixer 1515 combines the filtered received chips with the de-buffering code (the heart is mixed to de-sample the filtered received chips). The de-scrambling code PVW can be The conjugate of the agitation code used by the transmitter (e.g., the base station). The despreading mixer 1522 then pairs the de-amplified signal with a set of despreading codes corresponding to multiple users to the user. The heart*(^) to the mixture. The despreading code center ^^ can be the conjugate of the spreading code used at the transmitter end (eg, base station j 〇 4 ). It will come from each despreading mixer 1522 The despread signal is input to a respective summation block 1S25, and the summation block 1525 accumulates the despread signal over a symbol period to generate received symbols for the corresponding user. De-scrambling and despreading Unit 1520 outputs a set of received symbols to the heart for multiple users during each symbol period. Thus, the de-buffering and de-spreading unit 152 converts the filtered received chips from the chip level to the symbol level. The group has received the symbol. To the heart...) can also be expressed in vector form. The detection system 1505 also includes a detection unit 153, an erasing and re-detection early 1560, a code unit 1535, and a matrix calculation unit 154. The detection unit 1530 performs the process of receiving symbol homogenization from the heart to the heart. Initial detection of the desired symbol. Detection unit 1530 can initially detect user symbols ί(4) through L(9) using any detection technique, including any of the detection techniques discussed herein. For example, the 'detection unit i 5 3 求解 can solve the desired user character of the equation (16) + by using any of a variety of different techniques including MMSE, MLD, SD, MAPD, and slice 37 201128977, To initially detect the user symbol "〇". User symbols &amp; (4) to &amp; (4) can also be represented in vector form. The cancel and re-detection unit 1 560 receives the initial detected user symbol for each symbol period from the detecting unit 1 530 by m) to the heart (m), and uses the symbol period from the detecting unit 1530] , ^ and ; +1 each of the initial detected user symbols to calculate the multi-user interference of the symbol period w (eg, based on equation (43)). In this aspect, the elimination and re-detection of the unit The 1560 can include a memory 25 (shown in Figure 2) for storing user symbols from the initial detection of the detection unit 153 within a period of at least two symbol periods. Elimination and re-detection unit 56〇 can then use the stored user symbols for the initial detection of the symbol period 丨, 、, 丨+丨 to calculate the multi-user interference for the symbol period. Elimination and re-debt measurement S 156〇 from the symbol period m The received symbol is removed to remove the calculated interference of the symbol period m. The elimination and the heavy (four) measurement unit 〇 then remove the calculated interference from the received symbol re-detected I use / symbol coffee) to ~ (9), and output the user name of the re-measurement To the re-detected casual user symbol $(m) to k(m) can be expressed as a vector in the form of &amp;W). The code unit 1535 is to the dismissal phase A &amp; „ one (10)_ and the solution spread list It 1520 and the matrix calculation ^ 1565 provide the demultiplexed code and the solution _. The despreading code can be staggered = Γ° (not shown in Figure 15). Matrix calculation unit (10) period of interference matrix and shoulder matrix, Ά, and matrix. &amp; το 1530^ 除 和 and re-detection unit measurements provide such i Sj 38 201128977 Figure 16a is a flow chart illustrating a procedure for multi-user detection with interference cancellation in accordance with certain aspects of the present invention. The program can be executed, for example, at the mobile station 1-6, and the user symbol from the transmitter (e.g., base station 104) is speculated, wherein the detected user symbol is an estimate of the user symbol at the transmitter. In operation 1610, the user symbol is initially detected from the received symbols. For example, the equation can be solved by using any of various techniques including MMse, ΜΑρ〇, and cut: the user symbol of equation (i6), from a certain symbol period #received symbol 胄 initial _ the symbol The user symbol of the cycle. The program continues from operation 1610 to operation 162, and uses the initially detected user symbol to calculate multi-user interference in operation 162. For example, equation (43) and symbol period can be used, The user symbol of the initial detection of w + 1 is used to calculate the multi-user interference of the symbol period w. The program continues from operation 1620 to operation 163, and the calculated number is removed from the received symbols in operation 163. User Interference. The program continues from operation 1630 to program 1640, where the user symbol is re-detected from the received symbol from which the calculated interference has been removed, for example, by having removed the calculated symbol. The interfered received symbols are sliced to re-detect the user symbol.

ί SI 圖16b是根據本發明的某些態樣,在無線通訊系統1 〇〇 中使用的行動站106的方塊圖。圖i6b的行動站1〇6包括 模組1650’其用於將碼片處理為用於複數個使用者的一或 多個已接收符號’其中經由前端處理單元對碼片進行渡 39 201128977 波’且隨後對其進行解攪頻和解展頻並輸出為符號。 行動站106進一步包括模組166〇,其用於從已接收符號 偵測使用者符號。例如,可以藉由對已接收符號進行切片 來偵測使用者符號。行動站丨〇6進一步包括模组丨67〇,其 用於使用所偵測的使用者符號來計算多使用者干擾(例 如,基於方程式(43))。行動站106進一步包括:模組168〇, 其用於從已接收符號中移除所計算的多使用者干擾;及模 組1690,其用於從已移除(消除)了所計算的多使用者干 擾的已接收符號重新偵測使用者符號。 圖17是根據本發明的某些態樣,具有迭代干擾消除的 多使用者偵測系統1705的示意圖。偵測系統17〇5可以位 於無線通訊系統中的接收機中。根據該態樣的偵測系統 n〇5類似於圖14中的偵測系統刚5 ’其中使用迭代程序 來精煉重新偵測的使用者符號。 在-個態樣中’在迭代程序中重複多使用者消除和重新 偵測,以精煉重新偵測的使用者符號。在該實例中,可以 按,如下提供針對每次迭代的多使用者干 以 f)㈣=卜㈣ Gf + -% + 1)} . ~Mm)Gk (w) + diag{4,(m)}G6 Vm), 一 C 49 ) •O·丄 Λ(*) 其中t是迭代索引,⑼)是針對迭代丨的多 擾,並且0%-1)、0%)和广V+l)分 刀別疋來自符號週期 的前一次迭代w的重新悄測的使用者符 號。 對於每次迭代, 可以如下提供已移除了 多使用者干擾的 40 201128977 已接收使用者符號: !(*)㈣=£(w) - (m) ( 5 〇 ) 其中是迭代索引,是已接收符號的向量,並且iw(m) 是已移除(減去)了針對迭代A的多使用者干擾的已接收 符號的向量。在計算了針對迭代无的㈣之後,可以使用 任何偵測技術來重新偵測針對迭代t的使用者符號。例 如’可以按照如下藉由對㈣進行切片來重新偵測針對迭 代灸的使用者符號|W(m):. Λ(λ) k (jn) = slice{tk\m)) ( 51 ) 在針對迭代灸重新偵測了使用者符號f\m)之後,該針對 迭代免的使用者符號Θ㈣可用於計算針對下一次迭代JK1 的多使用者干擾,或者可以被偵測系統17〇5輸出而無需 更多的迭代。 亦可以按照類似於Γ㈣的方式,針對迭代免重新偵測前 二個符號週期和下一個符號週期的使用者符號彡(”㈦-丨)和 《()(/« + 1)。加心 - 例如’可以使用分別來自符號週期w-2、m-ι和所 的則一次迭代11的重新偵測的使用者符號Γ-%-2)、 , 和-(w) ’來計算前一個符號週期fV-i)的干擾 z (w_1)。隨後可以從符號週期讲]的已接收符號巧中 移除所計算的干擾fVl),以便進行重新偵測。可以用類 似方式針對迭代免重新债測下一個符號週期的使用者符 號泛(W+1)。 在一個態樣中,可以逐個區塊地處理已接收符號,其中 在一個L個符號週期(例如’ 100個符號週期)的區塊上⑸ 41 201128977 收集已接收符號’冑其儲存在記憶體中,並且一起進行處 理。在-個㈣中的每次迭代期間,在進入到下一次迭代 之削’可以針對當前迭代重新偵測該區塊中的全部符號週 期的使用者符號。以此方式,對於該區塊中的每個符號週 期的干擾計算可以存取來自前一次迭代的、在該區塊中的 刖一個符號週期和下一個符號週期的重新偵測的使用者 符號。 亦可以逐個符號地處理已接收符號。在該態樣中,對於 當前符號週期的干擾計算可以使用先前儲存的、前一個符 號週期的重新偵測的使用者符號,並且針對全部迭代使用 下一個符號週期的初始偵測的使用者符號。 在另一個態樣中’對於當前符號的干擾計算可以針對全 部迭代使用前一個符號週期和下一個符號週期的初始偵 測的使用者符號。因_此,在該態樣中,在每次迭代中僅更 新當前符號週期的使用者符號。 在圖17中所示的實例中,偵測單元173〇初始地偵測使 Λ 用者符號4(w) ’其可以類似於圖14中的初始该測。如圖17 中所示,可以按照迭代索引將初始偵測的使用者符號表示 -(〇) 為泛㈤),其中灸=〇。消除干擾單元175〇隨後使用該初始偵 «(0) 測的使用者符號全㈣來計算針對第一次迭代免=1的多使用 Λ(1) 者干擾Ζ (/Μ)’並且從已接收符號中移除所計算的多使 Λ(Ι) 用者干擾Z⑽。重新偵測單元1760隨後從已移除了所計 算的多使用者干擾Ζ⑻的已接收符號i(1)㈣重新偵測針對 -(1) 第一次迭代的使用者符號4⑻。隨後可以使用回饋路徑 42 201128977 將來自重新㈣單元⑽的重新偵測的使用者符 號-㈣回饋給干擾消除單元1750,以執行另一次迭代(例 如,基於方程式(49) _方程式(51))。 偵測系統1705可以執行任何次數的迭代(例如,一或 多次)來精煉重新谓測的使用者符號。例如,偵測系統17〇5 可以執行迭代,直到針對連續迭代的重新偵測的使用者符 號收斂(例#,在針對連續迭代的使用者符號《間的差異 很小)且/或滿足其他標準為止。在另一個實例中,可以將 迭代的預定次數程式編寫到偵測系統17〇5中。在該實例 中母執行一次迭代,偵測系統1 7 0 5可以遞增計數器, 並且S s十數器到達所程式編寫的迭代次數時停止迭代。 在一個態樣中,重新偵測單元176〇與干擾消除單元175〇 之間的回饋路徑1752可以包括緩衝器1755,用於臨時地 儲存來自重新偵測單元1760的使用者符號以便進行下一 個迭代。在該態樣中,緩衝器1755可用於儲存在一個L 個符號週期(例如,1〇〇個符號週期)的區塊上的重新偵 測的使用者符號,以實施如上所述的逐個區塊的處理。 雖然在圖17中分開圖示偵測單元173〇和重新偵測單元 1760,但是可以用一個共用的偵測單元來執行兩者的操 作。另外,偵測單元1730和重新偵測單元176〇兩者可以 使用同一偵測技術,例如,切片。在該實例中,可以藉由 將同一偵測技術應用於已接收符號訌㈤來執行初始使用者 符號偵測。 圖1 8是圖示根據本發明的某些態樣,具有迭代干擾消 43 201128977 除的多使用者㈣的程序的流程圖。在操作咖中,從 已接收符號初始地偵測使用者符號。 /序從操作181G持續到操作刪,在操作助中,計 异夕使用者干擾。針對第—次迭代,可以使用在操作⑻〇 中的初始偵測的使用者符號來計算多使用者干擾。對於後 續的迭代’可以使用來自前-次迭代中的操作1840的重 新偵測的使用者符號來計算多 使用者干擾,其將在以下進 '步論述。 程序從操作1820持續到操作刪,在操作刪中,從 已接收符號中移除來自操#1820的所計算的多使用者干 程序從操作刪持續到操作1840,在操作刪中,從 n已移除了所計算的干擾的已接收符號重新偵測使用者符 :,J如T以藉由對已移除了所計算的干擾的已接收符 號進行切片,來重新偵測使用者符號。 ^序從操作1840持續到操作1850,在操作185〇中,決 ,是否需要另-次迭代。若需要另一次迭代,則程序返回 操作182G以執;^下―次迭代。在此狀況下,在操作丄㈣ 中使用來自前一次迭代中的操作1840的重新偵測的使用 者符號來重新計算多使用者干擾。隨後在操作1830中從 已接收符號中移除重新計算的多使用者干擾,並且在操作 840中從已移除了重新計算的干擾的已接收符號重新偵 測使用者符號。程序隨後持續到操作185〇,以決定是否需 要又-人迭代。操作1820到操作185〇可以重複任何次數❶ ί Jl ί 44 201128977 若在操作1850中不需要另一次迭代,則在操作i86〇中 可以輸出當前重新偵測的使用者符號。操作185〇可以使 用任何上述技術來決定是否需要另—次迭代。 圖19疋根據本發明的某些態樣,具有迭代干擾消除的 夕使用者偵測系統1905的示意圖。偵測系統丨9〇5可以位 於無線通訊系統中的行動站中。 偵測系統1905包括減法單元191〇、符號偵測器192〇、 緩衝器1 93 0和干擾什算單元1 940。偵測系統丨9〇5接收已 接收符號irm),並且在多次迭代内迭代地執行多使用者干 擾消除和使用者符號偵測。 現在將以符號週期w的使用者符號p㈨的多使用者偵 測為例,來論述偵測系統i 905的操作。如严㈣4所示, 將多使用者干擾初始化為零,其中迭代索引无=〇。因此, 減法丁元1910最初不從已接收符號中移除多使用者 干擾,並且最初向符號偵測器192〇輸入已接收符號幻。 符號偵測器1920從已接收符號初始地偵測使用者符 石(〇) f 號-㈣。例如,符號偵測器1920可以藉由對已接收符號 進行切片或者使用包括本發明所論述的任一偵測技術 在内的其他偵測技術,來初始地偵測使用者符號fh)。 將符號週期m的初始偵測的使用者符號β㈣臨時健存 在緩衝器1930中。另外,符號偵測器1920初始地偵測符 號週期m-1和w+i的使用者符號,並且亦將其臨時儲存在 緩衝器1930中。隨後將符號週期m-1、m和的初始债 測的使用者符號從缓衝器1930輸出到干擾計算單元 45 201128977 1940。干擾計算單元194〇使用初始偵測的使用者符號 i(〇V IN £(〇),、 ,-(0) —⑼-)、_㈣和合—1),計算針對第一次迭代灸=1的多使 C⑴ 用者干擾-(例如,基於方程式(49))。為了基於方程式 (49)計算多使用者干擾Z ,干擾計算單元1940可以從 矩陣計算單元,例如圖1 3中的矩陣計算單元1 3 1 〇,接收 多使用者干擾矩陣和肩矩陣/&quot;〈⑷和山^„)。在圖19 中用[()]表示此等矩陣和山〔讲〉。 減法單元1910從已接收符號中移除(亦即,消除) 針對第一次迭代的多使用者干擾2()。向符號偵測器1920 輸入已移除了所計算的多使用者干擾Ζ()〇2)的已接收符號ί SI Figure 16b is a block diagram of a mobile station 106 for use in a wireless communication system 1A in accordance with certain aspects of the present invention. The mobile station 1〇6 of Figure i6b includes a module 1650' for processing chips into one or more received symbols for a plurality of users 'where the chips are crossed via the front-end processing unit 39 201128977 Wave' And then it is de-amplified and despread and output as symbols. The mobile station 106 further includes a module 166〇 for detecting user symbols from received symbols. For example, the user symbol can be detected by slicing the received symbols. The mobile station 6 further includes a module 丨 67〇 for calculating multi-user interference using the detected user symbols (e.g., based on equation (43)). The mobile station 106 further includes: a module 168〇 for removing the calculated multi-user interference from the received symbols; and a module 1690 for removing (eliminating) the calculated multi-use from The received symbol that interferes with the user re-detects the user symbol. 17 is a schematic diagram of a multi-user detection system 1705 with iterative interference cancellation in accordance with certain aspects of the present invention. The detection system 17〇5 can be located in a receiver in a wireless communication system. The detection system n〇5 according to this aspect is similar to the detection system in Figure 14 except that an iterative procedure is used to refine the re-detected user symbols. Repeat the multi-user elimination and re-detection in the iterative process to refine the re-detected user symbols. In this example, the multi-users for each iteration can be provided as follows: f) (four) = bu (four) Gf + -% + 1)} . ~Mm)Gk (w) + diag{4, (m) }G6 Vm), a C 49 ) •O·丄Λ(*) where t is the iterative index, (9)) is the multi-interference for iterations, and 0%-1), 0%) and wide V+l) The knives are re-evaluated user symbols from the previous iteration w of the symbol period. For each iteration, 40 201128977 Received User Symbols with Multi-User Interference removed are available as follows: !(*)(4)=£(w) - (m) ( 5 〇) where is the iterative index, which is A vector of symbols is received, and iw(m) is a vector of received symbols that have been removed (subtracted) for multiuser interference for iteration A. After calculating (4) for iterations, any detection technique can be used to re-detect the user symbol for iteration t. For example, the user symbol |W(m) for iterative moxibustion can be re-detected by slicing (4) as follows: Λ(λ) k (jn) = slice{tk\m)) ( 51 ) After the iterative moxibustion re-detects the user symbol f\m), the iterative-free user symbol 四 (4) can be used to calculate the multi-user interference for the next iteration JK1, or can be detected by the detection system 17〇5 without More iterations. It is also possible to re-detect the user symbols ”("(7)-丨) and "()(/« + 1) for the first two symbol periods and the next symbol period for iterations in a manner similar to Γ(4). For example, 'the user symbol Γ-%-2), , and -(w) ' from the symbol periods w-2, m- and the re-detection of the one iteration 11 respectively can be used to calculate the previous symbol period. fV-i) interference z (w_1). The calculated interference fVl) can then be removed from the received symbol of the symbol period for re-detection. It can be similarly repeated for iterations. The user symbol of a symbol period is ubiquitous (W+1). In one aspect, the received symbols can be processed block by block, where on a block of L symbol periods (eg '100 symbol periods) (5) 41 201128977 Collecting received symbols '胄 It is stored in memory and processed together. During each iteration of - (4), after entering the next iteration, the block can be re-detected for the current iteration User symbol for all symbol periods in . In this manner, the interference calculation for each symbol period in the block can access the user symbol from the previous iteration of the re-detection of one symbol period and the next symbol period in the block. The received symbols can be processed symbol by symbol. In this aspect, the interference calculation for the current symbol period can use the previously stored re-detected user symbol for the previous symbol period and use the next symbol period for all iterations. The user symbol of the initial detection. In another aspect, the interference calculation for the current symbol can use the user symbol of the initial detection of the previous symbol period and the next symbol period for all iterations. In this aspect, only the user symbol of the current symbol period is updated in each iteration. In the example shown in Fig. 17, the detecting unit 173 initially detects that the user symbol 4(w) is ' This can be similar to the initial measurement in Figure 14. As shown in Figure 17, the initially detected user symbol can be represented by an iterative index - (〇) as a general (five)) Wherein moxibustion = 〇. The interference cancellation unit 175 〇 then uses the user symbol (4) of the initial detection «(0) to calculate the multi-use Λ(1) interference Ζ (/Μ) for the first iteration. And removing the calculated multi-intercept (Ι) user interference Z(10) from the received symbols. The re-detection unit 1760 then removes the received multi-user interference Ζ(8) received symbols i(1) (4) Re-detecting the user symbol 4 (8) for the first iteration of - (1). The user symbol - (4) from the re-detection of the re-(4) unit (10) can then be fed back to the interference cancellation unit 1750 using the feedback path 42 201128977 to Perform another iteration (for example, based on equation (49) _ equation (51)). The detection system 1705 can perform any number of iterations (e.g., one or more times) to refine the re-evaluated user symbols. For example, the detection system 17〇5 can perform iterations until the user symbol for the re-detection of successive iterations converges (example #, the difference between the user symbols for successive iterations is small) and/or meets other criteria. until. In another example, a predetermined number of iterations can be programmed into the detection system 17〇5. In this example, the parent performs an iteration, the detection system 1 75 can increment the counter, and the S s timer stops iterating when it reaches the programmed number of iterations. In one aspect, the feedback path 1752 between the re-detection unit 176 and the interference cancellation unit 175A may include a buffer 1755 for temporarily storing user symbols from the re-detection unit 1760 for the next iteration. . In this aspect, buffer 1755 can be used to store re-detected user symbols on a block of L symbol periods (eg, 1 symbol period) to implement block-by-block as described above. Processing. Although the detecting unit 173A and the re-detecting unit 1760 are separately illustrated in Fig. 17, a common detecting unit can be used to perform both operations. In addition, both detection unit 1730 and re-detection unit 176 can use the same detection technique, such as slicing. In this example, initial user symbol detection can be performed by applying the same detection technique to the received symbol 五 (5). Figure 18 is a flow chart illustrating a multi-user (four) procedure with iterative interference cancellation 43 201128977 in accordance with certain aspects of the present invention. In the operating coffee, the user symbol is initially detected from the received symbol. The sequence is continued from operation 181G to the operation deletion, and in the operation assistance, the user is disturbed. For the first iteration, the user symbol of the initial detection in operation (8) 可以 can be used to calculate multi-user interference. The multi-user interference can be calculated for the subsequent iterations using the re-detected user symbols from operation 1840 in the previous-iteration, which will be discussed below. The program continues from operation 1820 to the operation deletion. In the operation deletion, the calculated multi-user dry program from the operation #1820 is removed from the received symbol from the operation deletion to operation 1840, and in the operation deletion, the n has been The received symbol re-detected user character with the calculated interference removed: J, such as T, to re-detect the user symbol by slicing the received symbol from which the calculated interference has been removed. The sequence continues from operation 1840 to operation 1850, and in operation 185, it is determined whether another iteration is required. If another iteration is required, the program returns to operation 182G to perform the next iteration. In this case, the user symbol from the re-detection of operation 1840 in the previous iteration is used in operation 四 (4) to recalculate the multi-user interference. The recalculated multi-user interference is then removed from the received symbols in operation 1830, and the user symbols are re-detected from the received symbols from which the recalculated interference has been removed in operation 840. The program then continues to operation 185 to determine if a further-human iteration is required. Operation 1820 to operation 185 can be repeated any number of times. J J Jl ί 44 201128977 If another iteration is not required in operation 1850, the currently re-detected user symbol can be output in operation i86. Operation 185 can use any of the above techniques to determine if another iteration is needed. Figure 19 is a schematic illustration of an evening user detection system 1905 with iterative interference cancellation, in accordance with certain aspects of the present invention. The detection system 丨9〇5 can be located in a mobile station in a wireless communication system. The detection system 1905 includes a subtraction unit 191, a symbol detector 192, a buffer 1 93 0, and an interference unit 1 940. The detection system 丨9〇5 receives the received symbol irm) and iteratively performs multi-user interference cancellation and user symbol detection over multiple iterations. The operation of the detection system i 905 will now be discussed by taking the multi-user detection of the user symbol p (9) of the symbol period w as an example. As shown in (4) 4, the multiuser interference is initialized to zero, where the iteration index has no =〇. Therefore, the subtraction metric 1910 initially does not remove multi-user interference from the received symbols and initially inputs the received symbol illusion to the symbol detector 192. The symbol detector 1920 initially detects the user's rune (〇) f-(4) from the received symbols. For example, symbol detector 1920 can initially detect user symbol fh) by slicing the received symbols or using other detection techniques including any of the detection techniques discussed herein. The user symbol β(4) of the initial detection of the symbol period m is temporarily stored in the buffer 1930. Additionally, symbol detector 1920 initially detects the user symbols for symbol periods m-1 and w+i and also temporarily stores them in buffer 1930. The user symbols of the initial debt periods of the symbol periods m-1, m and are then output from the buffer 1930 to the interference calculation unit 45 201128977 1940. The interference calculation unit 194 uses the initially detected user symbols i (〇V IN £(〇), , , -(0) - (9)-), _(four), and -1) to calculate the moxibustion=1 for the first iteration. More than C(1) user interference - (for example, based on equation (49)). To calculate the multi-user interference Z based on equation (49), the interference calculation unit 1940 can receive the multi-user interference matrix and the shoulder matrix from the matrix calculation unit, such as the matrix calculation unit 1 3 1 图 in FIG. (4) 和山^„). In Figure 19, [()] is used to represent these matrices and mountains. The subtraction unit 1910 removes (ie, eliminates) the received symbols for the first iteration. Interference 2(). Enter the received symbol with the calculated multiuser interference Ζ()〇2) removed from the symbol detector 1920

-(1) , X 互(w)。符號偵測器1 920從已移除了所計算的多使用者干 A 、 ^(1) 擾-(w的已接收符號Z㈣重新偵測針對第一次迭代的使 ^(1) 用者符號全㈣。隨後可以向緩衝器193〇回饋針對第一次 λ(1) 迭代的重新偵測的使用者符號S㈣,以便用於第二次迭代 k=l。 干擾計算單元1 940使用來自第一次迭代的重新偵測的 使用者符號’重新計算針對第二次迭代的多使用者干擾 0(2) 〇 -。減法皁元1910從已接收符號中移除針對第二次 -(2) 迭代的多使用者干擾-。隨後向符號偵測器192〇輸入已 λ(2) 移除了所計算的多使用者干擾Ζ㈣的已接收符號f⑽。符 號偵測器1920從已移除了所計算的多使用者干擾严㈣的 已接收符號$⑽重新偵測針對第二次迭代的使用者符號 α(2) 全㈣。可以經由緩衝器1930向干擾計算單元194〇回饋該 針對第二次迭代的重新偵測的使用者符號|(2)㈣,以執行第 46 201128977 三次迭代。偵測系統1905可以執行任何次數的迭代,例 如,直到針對連續迭代的使用者符號收斂為止。 在一個態樣中,干擾計算單元194〇使用來自前一次迭 代免_ 1的所偵測的使用者符號&amp; (所-1)、f &gt;㈣和P % + 1), &quot;-(Λ-ϊ) ' 來計算針對迭代灸的多使用者干擾。在圖19中用匕(W)j來 表示來自前一次迭代f1的所偵測的使用者符號4 h-1)、 Γ%)和 f_1)(m+D。 細胞服務區間干擾消除 以上在細胞服務區内干擾的上下文中論述了多使用者 干擾消除,其中多使用者干擾是由同一細胞服務區中的多 個使用者引起的(例如’由同一基地台104進行服務的多 個使用者)。無線通訊系統中的行動站1 〇6亦可能受到細 胞服務區間干擾,其中干擾是由其他細胞服務區中的使用 者引起的。例如,當行動站106位於服務細胞服務區的邊 緣附近時,行動站106可能更易受到細胞服務區間干擾的 影響,其中在服務細胞服務區的邊緣處來自鄰近細胞服務 區的干擾較強。現在參考圖1中的實例,由細胞服務區 1 〇2D進行服務的行動站1 06D可能受到來自細胞服務區 1 02F和1 〇2G的細胞服務區間干擾。 在一個態樣中’提供了用於消除細胞服務區間干擾的系 統和方法。在該態樣中’在行動站106中從已接收碼片計 算並且移除(消除)來自一或多個干擾細胞服務區的細胞 服務區間干擾。在從已接收碼片中移除了細胞服務區間干 Γ Γ·' Λ ί Μ 47 201128977 擾之後,可以例如使用本發明所述的任何系統和方法來處 理已接收碼片以偵測關於服務細胞服務區的使用者符 號。服務細胞服務區是對應於所要的使用者符號的細胞服 務區’並且可以被稱為目標細胞服務區。 圖2 0疋根據本發明的某些態樣,細胞服務區間干擾消 除系統2005的示意圖。在該態樣中,細胞服務區間干擾 消除系統2005能夠從已接收碼片中消除細胞服務區 間干擾。隨後,可以例如藉由圖6、圖14、圖15和圖17 中的任一個偵測系統處理細胞服務區間干擾消除之後的 已接收碼片,以偵測關於目標細胞服務區的使用者符號。 例如’細胞服務區間干擾消除之後的已接收碼片可以首先 被濾波器和解攪頻和解展頻單元處理為已接收符號。隨 後可以例如使用圖1 9中提供關於目標細胞服務區的多 使用者干擾消除的多使用者偵測系統,來從已接故符號偵 測關於目標細胞服務區的使用者符號。 細胞服務區間干擾消除系統2〇〇5包括各別第一細胞服 務區計算單元、第二細胞服務區計算單元、和第三細胞服 務區計算單元2010a-20l0c,以及各別第一減法方塊第 二減法方塊、第三減法方塊和第四減法方塊2〇2〇a2〇2〇d。 每個細胞服務區計算單元2010a_2〇1〇c被配置為計算關於 所選細胞服務區的接收碼片。在一個態樣中,第—細胞服 務區計算單元2〇1〇a計算關於目標細胞服務區的接收碼 片,並且第二細胞服務區計算單元和第三細胞服務區計算 單元中的每一個分別計算關於第一干擾細胞服務區和第 48 201128977 一干擾細胞服務區的接收碼片。可以使用以下進一步詳述 的圖21中所圖示的示例性的細胞服務區計算單元211〇來 實施每個細胞服務區計算單元201〇a_2〇1〇c。 細胞服務區間干擾消除系統2005亦包括細胞服務區排 序單元2030。在一個態樣中’細胞服務區排序單元2〇3〇 可以按某個次序放置干擾細胞服務區’並且基於該次序向 每個細胞服務區計算單元2010b-2010c指派干擾細胞服務 區。將目標細胞服務區(亦即,服務細胞服務區)指派給 細胞服務區計算單元2〇 1 〇a。例如,細胞服務區排序單元 2030可以從多個干擾細胞服務區(例如,從天線22〇和接 收機200 )接收引導頻信號,量測接收到的引導頻信號的 仏號強度’並且基於接收機處的干擾細胞服務區的相對信 號強度來對干擾細胞服務區進行排序。例如,可以按照信 號強度的降冪來對干擾細胞服務區進行排序。因此,按照 信號強度的降冪向第二細胞服務區計算單元2〇1〇b和第三 細胞服務區計算單元2〇1〇c指派干擾細胞服務區。 在操作中’第一細胞服務區計算單元2〇丨〇a接收已接收 碼片’並且計算和輸出關於目標細胞服務區的接收碼 片X〆心。第一減法方塊2〇2〇a從已接收碼片中移除所 十算的關於目4示細胞服務區的接收碼片。向第二細胞 服務區計算單元2〇1〇b輸入第一減法方塊2〇2〇a的輸出。 因此’在到達第二細胞服務區計算單元201 Ob之前,從已 接收碼片㈠中移除所計算的關於目標細胞服務區的接收 碼片心。此舉從已接收碼片4心中移除了目標細胞服務 49 201128977 區的貝獻,實現了對關於干擾細胞服務區的接收碼片的 可靠的計算。 第-細胞服務區計算單元2嶋計算並且輪出關於第一 干擾細胞服務區(例如,具有最高功率的干擾細胞服務區) 的接收碼片咖。第二減法單元2〇施從第一減法單元 2020a的輸出中移除了關於第一干擾細胞服務區的接收碼 片向第三細胞服務區計算單元2〇i〇c輸入第二減法 方鬼020b的輸丨。.因此,在到達第三細胞服務區計算單 兀2010C之則,從已接收碼片咖中移除了分別關於目標 細胞服務區和第—干擾細胞服務區的接收碼片々⑻和 X〆〜。此舉從已接收碼片中移除了目標細胞服務區和第一 干擾細胞服務區的貢獻,實現了對關於第二干擾細胞服務 區的接收碼片的更可靠的計算。第三細胞服務區計算單元 2010c计算並且輸出關於第二干擾細胞服務區的接收碼片 X3(n)。 第三減法單元2020c和第四減法單元2〇2〇d分別從已接 收碼片/^/2)中移除所計算的關於第—干擾細胞服務區和第 干擾,•田胞服務區的接收碼片…和h〈心。因此,從已 接收碼片咖中消除了來自該等干擾細胞服務區的細胞服 務區間干擾。可以將細胞服務區間干擾消除之後的已接收 瑪片(亦即”⑻㈨,⑻處理為關於目標細胞服 務區的已接收符號,以偵測關於目標細胞服務區的使用者 符號圖2〇中的細胞服務區間干擾消除系統可以藉由省 略第三細胞服務區計算單元2〇1〇c,來執行僅針對一個干 50 201128977 擾細胞服務區的細胞服務區間干擾消除。另外,該細胞服 務區間干擾消除系統可以藉由增加額外的細胞服務區計 算單元而被調適為針對三個或三個以上干擾細胞服務區 執行細胞服務區間干擾消除。雖然為了圖示簡單的目的在 圖19中分開圖示了細胞服務區計算單元2〇丨〇a_2〇〖〇c,但 是可以用同一細胞服務區計算單元來執行此等細胞服務 區計算單元的操作。例如’可以使用同一細胞服務區計算 單元來順序地計算關於不同細胞服務區的接收碼片。 圖21是根據本發明的某些態樣,細胞服務區計算單元 2110的示意圖。細胞服務區計算單元2110接收已接收碼 片r (n J ’並輸出關於所選細胞服務區或工作細胞服務區的 接收碼片xfW。細胞服務區計算單元2110亦可以接收已移 除了先前所計算的關於其他細胞服務區的接收碼片的已 接收碼片rW。細胞服務區計算單元211〇包括濾波器 2120、解攪頻和解展頻單元213〇和偵測單元214〇。渡波 器2120對已接收碼片進行濾波,並且可以包括均衡器及/ 或通道匹配濾波器。對於濾波器2 1 20包括均衡器的實例, 可以使用頻域均衡器(F D E )來實施該均衡器。濾波器2丨2 〇 可以基於(例如)使用來自所選細胞服務區的引導頻信號 的關於所選細胞服務區的通道估計,來對已接收碼片進行 渡波。 在遽波之後,解攪頻和解展頻單元213〇使用用於所選 細胞服務區的解攪頻碼對已接收碼片進行解攪頻6解授頻 和解展頻單元2130隨後使用用於所選細胞服務區的一組-(1) , X mutual (w). The symbol detector 1 920 re-detects the ^(1) user symbol for the first iteration from the calculated multi-user dry A, ^(1) scrambling-(w received symbol Z(4) All (4). The user symbol S (4) for the re-detection of the first λ(1) iteration can then be fed back to the buffer 193 以便 for use in the second iteration k=l. The interference calculation unit 1 940 is used from the first The re-detected user symbol for the second iteration 'recalculates the multi-user interference 0(2) 〇- for the second iteration. The subtraction soap element 1910 is removed from the received symbol for the second-(2) iteration Multi-user interference - then input to the symbol detector 192 已 λ (2) removes the calculated multi-user interference 四 (4) received symbol f (10). The symbol detector 1920 has been removed from the calculation The multi-user interference (4) received symbol $(10) re-detects the user symbol α(2) all (4) for the second iteration. The interference calculation unit 194 can be fed back to the interference calculation unit 194 via the buffer 1930 for the second iteration. The re-detected user symbol | (2) (d) to perform the third iteration of the 46th 201128977. The detection system 1905 can perform any number of iterations, for example, until the user symbols for successive iterations converge. In one aspect, the interference calculation unit 194 uses the detected user from the previous iteration. The symbols & (-1), f &gt; (4) and P % + 1), &quot;-(Λ-ϊ)' are used to calculate multi-user interference for iterative moxibustion. In Fig. 19, 匕(W)j is used to represent the detected user symbols 4 h-1), Γ%) and f_1) from the previous iteration f1 (m+D. Cell service interval interference is eliminated above the cell Multi-user interference cancellation is discussed in the context of interference within a service area, where multiple user interference is caused by multiple users in the same cell service area (eg, 'multiple users served by the same base station 104) The mobile station 1 〇6 in the wireless communication system may also be interfered by the cell service interval, where the interference is caused by users in other cell service areas. For example, when the mobile station 106 is located near the edge of the serving cell service area, The mobile station 106 may be more susceptible to interference from cell service intervals, where interference from adjacent cell service areas is stronger at the edge of the serving cell service area. Referring now to the example in Figure 1, served by the cell service area 1 〇 2D The mobile station 1 06D may be interfered with by the cell service interval from the cell service area 102F and 1 〇 2G. In one aspect, 'the system for eliminating cell service interval interference is provided' And method. In this aspect, cell service interval interference from one or more interfering cell service areas is calculated and removed (eliminated) from the received chip in the mobile station 106. Moving from the received chip In addition to the cell service interval, the system can process the received chips to detect user symbols for the serving cell service area, for example, using any of the systems and methods described herein. The cell service area is a cell service area corresponding to the desired user symbol and may be referred to as a target cell service area. Figure 20 is a schematic diagram of a cell service interval interference cancellation system 2005 in accordance with certain aspects of the present invention. In this aspect, the cell service interval interference cancellation system 2005 can eliminate cell service interval interference from the received chips. Subsequently, it can be processed, for example, by any of the detection systems of FIG. 6, FIG. 14, FIG. 15, and FIG. The cell service interval interferes with the received chips after the cancellation to detect user symbols for the target cell service area. For example, 'cell service interval interference cancellation The received chips may first be processed as received symbols by the filter and de-amplifying and de-spreading units. A multi-user detection system for multi-user interference cancellation with respect to the target cell service area may then be used, for example, in Figure 19. To detect the user symbol of the target cell service area from the received symbol. The cell service interval interference cancellation system 2〇〇5 includes a respective first cell service area calculation unit, a second cell service area calculation unit, and a The three-cell service area calculation unit 2010a-2010c, and the respective first subtraction block second subtraction block, third subtraction block, and fourth subtraction block 2〇2〇a2〇2〇d. Each cell service area calculation unit 2010a_2〇 1〇c is configured to calculate received chips for the selected cell service area. In one aspect, the first cell service area calculating unit 2〇1〇a calculates a received chip with respect to the target cell service area, and each of the second cell service area calculating unit and the third cell service area calculating unit respectively Received chips for the first interfering cell service area and the 48th 201128977 interfering cell service area. Each of the cell service area calculation units 201〇a_2〇1〇c can be implemented using the exemplary cell service area calculation unit 211〇 illustrated in Fig. 21, which is further detailed below. The cell service interval interference cancellation system 2005 also includes a cell service area sequencing unit 2030. In one aspect, the 'cell service area sorting unit 2〇3〇 can place the interfering cell service area' in a certain order and assign an interfering cell service area to each of the cell service area calculating units 2010b-2010c based on the order. The target cell service area (i.e., the serving cell service area) is assigned to the cell service area computing unit 2〇 1 〇a. For example, cell service area sorting unit 2030 can receive pilot frequency signals from a plurality of interfering cell service areas (eg, from antenna 22A and receiver 200), measure the received signal strength of the pilot frequency signal' and based on the receiver The relative signal strength of the interfering cell service area is used to rank the interfering cell service areas. For example, the interfering cell service area can be ordered by the power of the signal. Therefore, the interference cell service area is assigned to the second cell service area calculating unit 2〇1〇b and the third cell service area calculating unit 2〇1〇c in accordance with the power reduction of the signal intensity. In operation, the 'first cell service area calculating unit 2'a receives the received chip' and calculates and outputs the received chip X〆 about the target cell service area. The first subtraction block 2〇2〇a removes the received chips from the received chips into the cell service area. The output of the first subtraction block 2〇2〇a is input to the second cell service area calculation unit 2〇1〇b. Therefore, the calculated received chip core with respect to the target cell service area is removed from the received chip (1) before reaching the second cell service area calculating unit 201 Ob. This removes the target cell service from the heart of the received chip 4, which is a reliable calculation of the received chips for the interfering cell service area. The first-cell service area calculation unit 2 calculates and rotates the received chip coffee for the first interfering cell service area (e.g., the interfering cell service area having the highest power). The second subtraction unit 2 removes the received chip from the first subtraction unit service area and outputs the second subtraction party ghost 020b to the third cell service area calculation unit 2〇i〇c from the output of the first subtraction unit 2020a. Loss. Therefore, upon reaching the third cell service area calculation unit 2010C, the received chips 々(8) and X〆~ for the target cell service area and the interfering cell service area are respectively removed from the received chip coffee. . This removes the contribution of the target cell service area and the first interfering cell service area from the received chips, enabling a more reliable calculation of the received chips for the second interfering cell service area. The third cell service area calculating unit 2010c calculates and outputs the received chip X3(n) regarding the second interfering cell service area. The third subtraction unit 2020c and the fourth subtraction unit 2〇2〇d respectively remove the calculated reception of the first interfering cell service area and the first interference, • field cell service area from the received chip /^/2) Chips... and h<hearts. Therefore, cell service interval interference from the interfering cell service areas is eliminated from the received chip coffee. The received wafers (i.e., "(8)(9), (8) after the cell service interval interference cancellation can be processed as received symbols for the target cell service area to detect the cells in the user symbol of the target cell service area. The service interval interference cancellation system can perform cell service interval interference cancellation for only one dry 50 201128977 disturbing cell service area by omitting the third cell service area calculating unit 2〇1〇c. In addition, the cell service interval interference cancellation system Cell service interval interference cancellation can be performed for three or more interfering cell service areas by adding additional cell service area calculation units. Although cell services are separately illustrated in Figure 19 for simplicity of illustration. The area calculation unit 2〇丨〇a_2〇〖〇c, but the same cell service area calculation unit can be used to perform the operations of the cell service area calculation units. For example, the same cell service area calculation unit can be used to sequentially calculate different Received chips for the cell service area. Figure 21 is a view of cells in accordance with certain aspects of the present invention. A schematic diagram of the area calculation unit 2110. The cell service area calculation unit 2110 receives the received chip r (n J ' and outputs a received chip xfW regarding the selected cell service area or the working cell service area. The cell service area calculation unit 2110 also The received chip rW having the previously calculated received chips for other cell service areas may be received. The cell service area calculation unit 211 includes a filter 2120, a de-buffering frequency, and a de-spreading unit 213, and detecting The unit 214. The waver 2120 filters the received chips and may include an equalizer and/or a channel matched filter. For the filter 2 1 20 including an example of an equalizer, a frequency domain equalizer (FDE) may be used. The equalizer is implemented. The filter 2丨2 渡 can modulate the received chips based on, for example, channel estimates for the selected cell service area using pilot signals from the selected cell service area. Thereafter, the de-buffering and de-spreading unit 213 解 de-amplifies the received chips using the de-sampling code for the selected cell service area, and de-synchronizes and de-spreads the unit. 2130 then uses a set of cells for the selected cell service area

1 J 51 201128977 解展頻碼對已解搜頻信號進行解展頻,其中每個解展頻碼 可以對應於所選細胞服務區的不同使用者。解攪頻和解展 頻單元13 〇可以將用於不同細胞服務區的複數個解授頻 碼儲存在記憶體中並且可以取回對應於所選細胞服務區 的解授頻碼。解搜頻和解展頻單A 2130輸出關於所選細 胞服務區@組已接收符號【㈣。^貞測單元2丨4()隨後從 關於所選細胞服務區的已接收符冑偵測使用者符號 胸。偵測單元214G可以使用切片或其他偵測技術來债測 關於所選細胞服務區的使用者符號㈣。所彳貞測的使用者 符號色rmj提供了對於所選細胞服務區的發射機端(例如, 基地台)處的使用者符號的估計。 細胞服務區計算單元2110進一步包括增益單元2150、 展頻和攪頻單元2160以及碼片計算單元217〇。增益單元 2150以及展頻和攪頻單元216〇按照與所選細胞服務區的 發射機端(例如,基地台)類似的方式處理使用者符號 ’以估計從所選細胞服務區的發射機端發射的碼片。 增益早兀2150將一組增益應用於使用者符號^例如, 增益單元2150可以將不同的增益應用於每個使用者符號 。以下淪述了用於估計增益的方法的實例。 。展頻和攪頻單元2160隨後使用一組展頻碼對使用者符 號進行展頻,組合所得的展頻信號,並且對組合的展頻信 號進行搜頻以產生發送崎片㈣。展頻和授頻單元216〇可 以使用與所選細胞服務區的發射機端所使用的展頻碼和 攪頻碼相同的展頻碼和攪頻碼。展頻和攪頻單元216〇可 52 201128977 以將用於不同細胞服務區的複數個攪頻碼儲存到記憶體 中並且取回對應於所選細胞服務區的攪頻碼。因此,細胞 服務區計算單元2 11 0可以複製在所選細胞服務區的發射 機端所執行的處理,以計算發送碼片。 細胞服務區計算單元217〇隨後處理關於所選細胞服務 區的發送碼片,以計算關於所選細胞服務區的接收碼 片°在一個態樣中’細胞服務區計算單元2丨7〇藉由將 發送碼片與關於所選細胞服務區的通道估計心進行 迴旋來汁鼻關於所選細胞服務區的接收瑪片X 例如, 可以使用基於引導頻的通道估計,根據從所選細胞服務區 的基地台接收的引導頻信號,來估計關於所選細胞服務區 的通道估計;。 圖22a是圖示根據本發明的某些態樣,用於計算關於所 選細胞服務區的接收碼片的程序的流程圖。在操作22〇5 中’偵測關於所選細胞服務區的使用者符號。例如,可以 藉由執行圖21中的濾波器212〇、解攪頻和解展頻單元 2130和偵測單元214〇的操作,來從已接收碼片偵測關於 所選細胞服務區的使用者符號。 程序從操作2205持續到操作221〇,在操作221〇中使 用所㈣的使用者符號來估計關於所選細胞服務區的發 送碼片。例如,可以藉由以類似於所選細胞服務區的發射 機端的方式處理所偵測的使用者符號,來估計發送碼片。 程序從操作2210持續到操作2215,在操作2215中,計 算關於所選細胞服務區的接收碼片。例如,可以藉由將所 53 201128977 、u碼片與關於所選細胞服務區的通道估計進行 匕旋,來計算關於所選細胞服務區的接收碼片。 是圖示根據本發明的某些隸,細胞服務區間干 程序的流程圖。在操作2220巾,在接收機處接收 碼片。已接收碼片可以表示為咖,並且包括來自目標細 胞服務區以及-或多個干擾細胞服務區的貢獻。已接收碼 片咖可以是由行動站1G6的接收機細接收的碼片。 程序從刼作2220持續到操作2225,在操作2225中,對 夕個干擾細胞服務區進行排序。例如,可以基於在接收機 處的多_ f I細胞月艮務區的相對信㈣度來對其進行排 序。 程序從操作2225持續到操作223〇,在操作223〇中,基 於干擾細胞服務區的次序,連續地計算關於每個干擾細胞 服務區的接收碼片。例如,可以首先從已移除了關於目標 細胞服務區的接收碼片的已接收碼片^計算關於第一干 擾細胞服務區的接收碼片。隨後,可以從已移除(消除) 了關於目標細胞服務區和第一干擾細胞服務區的接收碼 片的已接收碼片叶W計算關於第二干擾細胞服務區的接收 碼片。可以從已移除了關於目標細胞服務區和先前計算的 干擾細胞服務區的接收碼片的已接收碼片計算關於每 一個後續干擾細胞服務區的接收碼片。此舉從已接收碼片 中移除了目標細胞服務區和先前計算的干擾細胞服務區 的貢獻,從而實現了針對關於後續干擾細胞服務區的接收 碼片的更可靠的計算。首先計算關於具有較高信號強度的 54 201128977 干擾細胞服務區的接收碼片,因為其比具有較弱信號強度 的干擾細胞服務區更可靠。 程序從操作2230持續到操作2235 ’在操作2235中,從 已接收碼片中移除所計算的關於干擾細胞服務區的接 收碼片。在操作2235中從已接收碼片中消除了細胞服務 區間干擾之後’可以將已接收碼片處理為已接收符號,以 使用包括本發明所論述的任一偵測技術在内的任何偵測 技術來偵測關於目標細胞服務區的使用者符號。 圖22c是圖示根據本發明的某些態樣,細胞服務區間干 擾消除和多使用者偵測的程序的流程圖。在操作225〇中, 例如,使用圖22a中所圖示的程序來計算關於干擾細胞服 務區的接收碼片。在操作2255中,從已接收碼片中移除 (/肖除)所計具的關於干擾細胞服務區的接收碼片。在操 作2 2 6 0中,將已移除了關於干擾細胞服務區的接收碼片 的已接收碼片處理為已接收符號。此可以(例如)藉由對 已移除了關於干擾細胞服務區的接收碼片的已接收碼片 進行濾波、解攪頻和解展頻來完成。在操作2265中,基 於已接收符號來偵測關於目標細胞服務區的使用者符 號。此可以(例如)藉由對已接收符號進行切片來完成。 圖22d是根據本發明的某些態樣,在無線通訊系統1〇〇 中使用的行動站106的方塊圖。圖22d的行動站1〇6包括: 模組2270 ’其用於計算關於干擾細胞服務區的接收碼片; 及模組2275’其用於從已接收碼片中移除所計算的關於干 擾細胞服務區的接收碼片。行動站1〇6進一步包括:模組 55 201128977 2280其用於將已移除(消除)了關於干擾細胞服務區的 接收碼 &gt;;的已接收碼片處理為已接收符號;及模组2285, 其用於基於已接收符號來 &lt;貞測關於目標細胞服務區的使 用者符號。 資料輔助式通道估計 在一個痞樣中,使用從已接收符號偵測的使用者符號來 增強通道估計。此可以被稱為資料輔助式通道估計。在論 述資料輔助式通道估計之前,首先論述基於引導頻的通道 估計的實例是有益的。 在基於引導頻的通道估計中,引導頻信號從發射機端 (例如,基地台1 04 )發送到接收機(例如,行動站1 〇6 )。 引導頻信號是接收機預先已知的信號,並且接收機使用引 導頻信號來估計發送端與接收機之間的通道λ。以CE)MA 為例’引導頻信號可以包括已知的符號序列。 以單使用者通訊系統為例,可以將發射機端的被發送碼 片表示為: t{n) = bx{n)g\wx{n)p{n) + b2{n)g2Wi{n)p{n) ^ 5 2 ) 其中是引導頻信號的符號,且6〆…是用於使用者 的使用者符號。亦可以用下標零來指示引導頻符號。在方 程式(52)中,按照碼片索引《將引導頻符號幻表示 為6〆《^),其中在#個碼片的跨度上的對應於一個符 號(其中7V是展頻因數)》類似地,按照碼片索引”將使 用者符號表示為&amp;⑻。藉由在方程式(52)中添加 對於用於多個使用者的額外使用者符號,包括其相應的增 56 201128977 益和展頻碼 統。 可以將方程式(52)應用於多使用者通訊系 可以根據離散迴旋和雜却 和雜訊’將接收機處的已接收碼 片表示為通道/2盘姑1 /、破發运碼片的迴旋: ^(«) = 2 h(d)t{n -d) + v(ri) “〇 (53) 其中乃是離散迴旋巧範圍。 方程式(52)中關於的表達式插入方程式(η) 中#到: '1 J 51 201128977 The despreading frequency code despreads the de-sequenced signals, each of which can correspond to a different user of the selected cell service area. The de-buffering and de-spreading unit 13 储存 can store a plurality of decimation codes for different cell service areas in the memory and can retrieve the de-duplication code corresponding to the selected cell service area. The solution search and de-spreading single A 2130 output is about the selected cell service area @group received symbols [(4). ^ Detecting unit 2丨4() then detects the user symbol chest from the received symbols for the selected cell service area. Detection unit 214G may use slices or other detection techniques to debate user symbols for the selected cell service area (4). The measured user symbol color rmj provides an estimate of the user symbol at the transmitter end (e.g., base station) of the selected cell service area. The cell service area calculation unit 2110 further includes a gain unit 2150, a spread spectrum and frequency agitation unit 2160, and a chip calculation unit 217A. The gain unit 2150 and the spread spectrum and frequency mixing unit 216 处理 process the user symbol 'in a manner similar to the transmitter end (eg, base station) of the selected cell service area to estimate the transmission from the transmitter end of the selected cell service area Chips. The gain early 2150 applies a set of gains to the user symbol. For example, the gain unit 2150 can apply different gains to each user symbol. An example of a method for estimating the gain is described below. . The spread spectrum and frequency mixing unit 2160 then spreads the user symbols using a set of spreading codes, combines the resulting spread spectrum signals, and frequency-combines the combined spread spectrum signals to produce a transmission slice (4). The spread spectrum and frequency unit 216 can use the same spreading code and agitation code as the spreading code and the agitation code used at the transmitter end of the selected cell service area. Spreading and frequency mixing unit 216 52 52 201128977 to store a plurality of agitation codes for different cell service areas into the memory and retrieve the agitation code corresponding to the selected cell service area. Therefore, the cell service area calculating unit 210 can copy the processing performed at the transmitter side of the selected cell service area to calculate the transmitted chip. The cell service area calculation unit 217〇 then processes the transmitted chips for the selected cell service area to calculate the received chips for the selected cell service area. In one aspect, the 'cell service area calculation unit 2丨7〇 Transmitting the transmitted chip to the channel estimation heart with respect to the selected cell service area to the receiving piece of the selected cell service area. For example, a pilot frequency based channel estimation may be used, depending on the channel from the selected cell service area. The pilot signal received by the base station to estimate channel estimates for the selected cell service area; Figure 22a is a flow chart illustrating a procedure for calculating received chips for a selected cell service area in accordance with certain aspects of the present invention. In operation 22〇5, the user symbol for the selected cell service area is detected. For example, the user symbol for the selected cell service area can be detected from the received chip by performing the operations of the filter 212 〇, the de-buffering and de-spreading unit 2130 and the detecting unit 214 图 in FIG. 21 . . The program continues from operation 2205 to operation 221, where the user symbol of (4) is used in operation 221A to estimate the transmitted chips for the selected cell service area. For example, the transmitted chip can be estimated by processing the detected user symbols in a manner similar to the transmitter side of the selected cell service area. The program continues from operation 2210 to operation 2215 where the received chips for the selected cell service area are calculated. For example, the received chips for the selected cell service area can be calculated by mediating the 53 201128977, u chips and channel estimates for the selected cell service area. It is a flow chart illustrating some of the cellular service interval routines in accordance with the present invention. At operation 2220, the chip is received at the receiver. Received chips can be represented as coffee and include contributions from the target cell service area and/or multiple interfering cell service areas. The received code chip can be a chip that is finely received by the receiver of the mobile station 1G6. The program continues from operation 2220 to operation 2225 where the interfering cell service areas are ordered. For example, it may be ordered based on the relative signal (four) degrees of the multi-f I cells at the receiver. The program continues from operation 2225 to operation 223, in which the received chips for each interfering cell service area are continuously calculated based on the order of the interfering cell service areas. For example, the received chips for the first interfered cell service area may be calculated first from the received chips that have removed the received chips for the target cell service area. The received chips for the second interfering cell service area can then be calculated from the received chip leaves W that have removed (eliminated) the received chips for the target cell service area and the first interfering cell service area. Received chips for each subsequent interfering cell service area may be calculated from received chips from which received chips for the target cell service area and the previously calculated interfering cell service area have been removed. This removes the contribution of the target cell service area and the previously calculated interfering cell service area from the received chips, thereby enabling a more reliable calculation of the received chips for subsequent interfering cell service areas. The received chips for the 54 201128977 Interfering Cell Service Area with higher signal strength are first calculated because they are more reliable than interfering cell service areas with weaker signal strength. The program continues from operation 2230 to operation 2235'. In operation 2235, the calculated received chips for the interfering cell service area are removed from the received chips. After the cell service interval interference is removed from the received chips in operation 2235, the received chips may be processed as received symbols to use any detection technique including any of the detection techniques discussed herein. To detect user symbols about the target cell service area. Figure 22c is a flow chart illustrating a procedure for cell service interval interference cancellation and multi-user detection in accordance with certain aspects of the present invention. In operation 225, for example, the received code for the interfering cell service area is calculated using the procedure illustrated in Figure 22a. In operation 2255, the received chips for the interfering cell service area are removed from the received chips. In operation 2 2 60, the received chips from which the received chips of the interfering cell service area have been removed are processed as received symbols. This can be done, for example, by filtering, de-buffering, and despreading the received chips from which the received chips of the interfering cell service area have been removed. In operation 2265, the user symbol for the target cell service area is detected based on the received symbols. This can be done, for example, by slicing the received symbols. Figure 22d is a block diagram of a mobile station 106 for use in a wireless communication system 1A in accordance with certain aspects of the present invention. The mobile station 1〇6 of Figure 22d includes: a module 2270' for computing a received chip with respect to an interfering cell service area; and a module 2275' for removing the calculated interfering cell from the received chip The receiving chip of the service area. The mobile station 1-6 further includes: a module 55 201128977 2280 for processing the received chips that have been removed (eliminated) the received code for the interfering cell service area into received symbols; and the module 2285 It is used to &lt;specify the user symbol for the target cell service area based on the received symbols. Data-Aided Channel Estimation In one instance, channel estimates are enhanced using user symbols from received symbol detection. This can be referred to as data-assisted channel estimation. Before discussing data-assisted channel estimation, it is useful to first discuss an example of channel estimation based on pilot frequency. In pilot frequency based channel estimation, the pilot frequency signal is transmitted from the transmitter (e.g., base station 104) to the receiver (e.g., mobile station 1 〇 6). The pilot signal is a signal known in advance by the receiver, and the receiver uses the pilot signal to estimate the channel λ between the transmitter and the receiver. Taking CE)MA as an example, the pilot signal can include a known sequence of symbols. Taking a single-user communication system as an example, the transmitted chip at the transmitter can be expressed as: t{n) = bx{n)g\wx{n)p{n) + b2{n)g2Wi{n)p {n) ^ 5 2 ) where is the sign of the pilot signal, and 6〆... is the user symbol for the user. The pilot frequency symbol can also be indicated by a subscript zero. In equation (52), according to the chip index, the pilot frequency symbol is phantomly represented as 6 〆 "^", where the span of # chips corresponds to one symbol (where 7V is the spreading factor). The user symbol is represented as &amp; (8) according to the chip index. By adding additional user symbols for multiple users in equation (52), including its corresponding increase 56 201128977 benefit and spread code The equation (52) can be applied to a multi-user communication system that can represent the received chips at the receiver as channel/2/1, according to the discrete cyclotron and the noise and noise. Cyclotron: ^(«) = 2 h(d)t{n -d) + v(ri) "〇(53) where is the discrete revolving range. The expression about equation (52) is inserted into equation (η)# to: '

D 咖) = 卜細松松咖__師__⑻ (54) 在方程式(54)中,引導頻符號卜⑻是接收機預先已知 的,而使用者符號則不是接收機預先已知的。由於使 用者符號办不是接收機預先已知的,所以可以將方程式 (54)中的第二個求和項與雜訊結合在一起作為未知 項。因此,可以將已接收碼片厂⑻表示為: ,⑻=Σ 办⑷ 6和 _ 客1 Wl(« — — d) + ν'(«) rf=〇 (55) 其中該未知項由如下提供:D 咖) = 卜细松松咖__师__(8) (54) In equation (54), the pilot symbol (8) is known in advance by the receiver, and the user symbol is not known in advance by the receiver. Since the user symbol is not known to the receiver in advance, the second summation in equation (54) can be combined with the noise as an unknown. Therefore, the received chip factory (8) can be expressed as: , (8) = 办 (4) 6 and _ guest 1 Wl (« — — d) + ν '(«) rf = 〇 (55) where the unknown is provided by :

D ν Χη) = Σ Kd)b2(n - d)g2Wi{n -d)p(n~d) + v(n) rf=0 (56) 在接收機處,已接收碼片r(X&gt;、引導頻符號幻、展頻 碼w;⑻和攪頻碼是已知的。因此,在基於引導頻的通 道估計中可以使用方程式(55),以藉由使用已知的技術 求解A 來估計通道h。引導頻符號6可以是常數,在 此狀況下,在方程式(55)中可以簡單地將引導頻符號表rs] 57 201128977 示為h。方程式(55 )可以擴展到多使用者通訊系統,在 該系統中,可以將用於多個使用者的使用者符號結合到該 未知項v丫W中,因為其是接收機預先未知的。 在上述基於引導頻的通道估計的實例中,接收機使用引 導頻信號作為接收機預先已知的參考信號,以根據已接收 碼片r 估計通道Λ。該方法的一個缺點是未知信號v 丫力 的功率可能會很高,此降低了所估計的通道&amp;的精度。 在一個態樣中,使用從已接收符號偵測的使用者符號來 建立虛擬引導頻信號,其被用來增強通道估計。在該態樣 中’藉由將所偵測的使用者符號視為已知符號,來從所偵 測的使用者符號中建立虛擬引導頻信號,以便用於通道估 計的目的。虛擬引導頻信號不是在發射機端(例如,基地 台104 )與接收機端(例如,行動站1 )之間發送的實 際引導頻信號。 可以使用包括本發明所論述的任一债測技術在内的任 何偵測技術,來偵測使用者符號。在方程式(54 )的實例 中’可以用所偵測的使用者符號忘(m)(其按照碼片索引” 被表示為2())替代使用者符號6〆《),從而將方程式(55) 重寫為: ^(«) - Σ Kd)(bi(n - d)gim(n -d) + b2(n- d)g2\vi{n - d))p{n-d)^v'(n) (57) 其中巧未知項如下提供: ^ ^ ^^d^2^n~d^~b2in~d))g^{n-d)p{n-d) + v{ri) (58) 因此,在方程式(57 )中可以使用所偵測的使用者符號 r ·*« &gt; i 58 201128977 ~(n)來建立虛擬引導頻信號,以提供對通道;j的增強型估 計。如上所述,藉由將所偵測的使用者符號兔(《)視為已知 符號來建立虛擬引導頻信號,以便用於方程式(57)中的 通道估計的目的。若所偵測的使用者符號&amp;⑻接近實際使 用者符號6〆《),則在方程式(57 )中可以極大地降低未知 信號v丫;^的功率,此增強了通道估計。可以藉由使用用於 多個使用者的所偵測的使用者符號產生多個虛擬引導頻 信號,來將方程式(57 )擴展到多個使用者。 圖23是根據本發明的某些態樣,通道估計系統23〇5的 示意圖。通道估計系統2305可以位於無線通訊系統中的 接收機中。通道估計系統23 05包括用於對已接收碼片 進行渡波的濾波器單元2310、解攪頻和解展頻單元232〇 以及偵測單元2330。濾波器單元2310可以包括均衡器及/ 或通道匹配濾波器(CFM )。 解授頻和解展頻單元2320包括解授頻混合器2315、複 數個解展頻混合器2322和複數個相應的求和方塊2325。 解攪頻混合器2315將經濾波的已接收碼片〆w與解攪頻 碼混合’以對經濾波的已接收碼片進行解攪頻。 上標「e」指示經濾波的碼片被用於估計通道办。 解展頻混合器2322隨後將已解攪頻信號與—組解展頻 碼w*〆&quot;到混合。將來自每個解展頻混合器2322 的解展頻信號輸入到各別的求和方塊2325,求和方塊2325 在一個符號週期上對解展頻信號進行累積,以產生關於相 應使用者的已接收符號。將已接收符號輸入到偵測單元 59 201128977 2330 ’谓測單元2330從已接收符號偵測使用者符號#㈣到 夂()。偵測單元2330可以使用任何偵測技術,包括切片 或本發明所論述的任何其他偵測技術。若使用者符號之— 對應於已知的引導頻符號,則可以(例如,從記憶體)輪 出該已知的引導頻符號作為使用者符號今㈣到奴⑽之一。 通道估計系統2305進一步包括增益單元2335、展頻和 攪頻單元2340以及通道計算單元aw。增益單元Mb包 括複數個增益混合器2337,其將一組增益心到发心分別應 用於所债測的使用者符號 &lt;㈣到匕㈣。展頻和攪頻單元 2340包括複數個展頻混合器2342、組合器23们以及攪頻 混合器2345。展頻混合器2342將經增益定標的使用者符 號與一組展頻碼〜0)到混合’組合器23q對展頻 信號進行組合’且授頻混合H 2345 #址合後的信號與擾 頻碼合。該等展頻碼和授頻碼可以與發射機端所使 用的展頻碼和攪頻碼相同,從而使得展頻和攪頻單元U牝 的輸出f(w)提供了對發射機端的被發送碼片的估叶。 可以如下提供展頻和攪頻單元234〇的輪出: ί («)=成(n)giwi〇i) + …+1 ⑻g2W2(„))p(„) ( 5 $ ) 其中按照碼片索引„來表示所偵測的使用者符號 個態樣中,方程式(59)中的符號心之— 11在 道 乂是已知的引 导頻符號’而其他符號是所偵測的使用者符號。因 以基於所偵測的使用者符號以及已知的引 可 -4. _ μ 鴻付號,藉由 對所该測的使用者符號和引導頻符號進行 獲得’W,來計算所估計的被發送碼片如 &amp; =授頻以 [S] 因為W提供了 60 201128977 對被發送碼片的估計,因此可以藉由小)與通道&amp;的迴旋將 已接收碼片表示為:D ν Χη) = Σ Kd)b2(n - d)g2Wi{n -d)p(n~d) + v(n) rf=0 (56) At the receiver, the received chip r(X&gt; , pilot symbol illusion, spreading code w; (8) and the agitation code are known. Therefore, equation (55) can be used in channel estimation based on pilot frequency to estimate A by using known techniques. Channel h. The pilot frequency symbol 6 can be a constant. In this case, the pilot frequency symbol table rs] 57 201128977 can be simply shown as h in equation (55). Equation (55) can be extended to a multi-user communication system. In this system, user symbols for multiple users can be incorporated into the unknown v丫W because it is unknown to the receiver. In the above example of pilot frequency based channel estimation, reception The pilot uses the pilot frequency signal as a reference signal known in advance by the receiver to estimate the channel 根据 based on the received chip r. One disadvantage of this method is that the power of the unknown signal v 丫 force may be high, which reduces the estimated Channel &amp; precision. In one aspect, the user symbol detected from the received symbol is used. Number to establish a virtual pilot frequency signal, which is used to enhance channel estimation. In this aspect, 'create virtual from the detected user symbol by treating the detected user symbol as a known symbol. The pilot signal is used for channel estimation purposes. The virtual pilot signal is not the actual pilot signal transmitted between the transmitter (eg, base station 104) and the receiver (eg, mobile station 1). Any detection technique, including any of the debt measurement techniques discussed herein, to detect user symbols. In the example of equation (54), the detected user symbol can be used to forget (m) The equation (55) is rewritten as follows: ^(«) - Σ Kd)(bi(n - d)gim(n - according to the chip index "represented as 2()) instead of the user symbol 6〆"). d) + b2(n-d)g2\vi{n - d))p{nd)^v'(n) (57) where the unknown is provided as follows: ^ ^ ^^d^2^n~d^ ~b2in~d))g^{nd)p{nd) + v{ri) (58) Therefore, the detected user symbol r ·*« &gt; i 58 201128977 ~ can be used in equation (57) (n) to establish a virtual pilot frequency signal, Providing an enhanced estimate of the channel; j. As described above, the virtual pilot frequency signal is established by treating the detected user symbol rabbit (") as a known symbol for use in the channel in equation (57) The purpose of the estimation. If the detected user symbol &amp; (8) is close to the actual user symbol 6 〆 "), the power of the unknown signal v 丫 ; ^ can be greatly reduced in equation (57 ), which enhances the channel estimation . Equation (57) can be extended to multiple users by generating multiple virtual pilot frequency signals using the detected user symbols for multiple users. Figure 23 is a schematic illustration of a channel estimation system 23〇5, in accordance with certain aspects of the present invention. Channel estimation system 2305 can be located in a receiver in a wireless communication system. The channel estimation system 239 includes a filter unit 2310 for fetching received chips, a de-sampling and de-spreading unit 232, and a detecting unit 2330. Filter unit 2310 can include an equalizer and/or a channel matched filter (CFM). The de-frequency and de-spreading unit 2320 includes a de-frequency mixer 2315, a plurality of despreading mixers 2322, and a plurality of corresponding summing blocks 2325. The de-buffer mixer 2315 mixes the filtered received chips 〆w with the descrambled code to de-buffer the filtered received chips. The superscript "e" indicates that the filtered chip is used to estimate the channel. The despreading mixer 2322 then mixes the despread frequency signal with the set of despread codes w*〆&quot;. The despread signal from each despread mixer 2322 is input to a respective summation block 2325 which accumulates the despread signal over a symbol period to produce a corresponding user&apos;s Receive symbols. Inputting the received symbols to the detection unit 59 201128977 2330 The preamble unit 2330 detects the user symbols #(4) to 夂() from the received symbols. Detection unit 2330 can use any detection technique, including slicing or any other detection technique discussed herein. If the user symbol - corresponding to a known pilot frequency symbol, the known pilot frequency symbol can be rotated (e.g., from memory) as one of the user symbols (4) to slave (10). Channel estimation system 2305 further includes a gain unit 2335, a spread spectrum and frequency agitation unit 2340, and a channel calculation unit aw. The gain unit Mb includes a plurality of gain mixers 2337 that apply a set of gain heart-to-centers to the user symbols &lt;(4) to 匕(4) of the debt test. The spread spectrum and frequency mixing unit 2340 includes a plurality of spread spectrum mixers 2342, combiners 23, and a mixer mixer 2345. The spread spectrum mixer 2342 combines the gain-scaled user symbol with a set of spread code ~0) to the hybrid 'combiner 23q to combine the spread spectrum signal' and the frequency-mixed H 2345 # address combined signal and scrambling Code. The spreading code and the pilot code can be the same as the spreading code and the agitation code used by the transmitter, so that the output f(w) of the spreading and frequency-stamping unit U牝 is sent to the transmitter. The estimated leaf of the chip. The round-trip and frequency-stamping unit 234〇 can be provided as follows: ί («)=成(n)giwi〇i) + ...+1 (8)g2W2(„))p(„) ( 5 $ ) where according to the chip index „To indicate the detected user symbol, the symbolic heart in equation (59)—11 is a known pilot symbol in the channel and the other symbols are the detected user symbols. Calculating the estimated transmitted by obtaining the 'W for the measured user symbol and the pilot symbol based on the detected user symbol and the known reference - 4. _ μ Hong Fu number Chips such as &amp; = are frequencyd to [S] because W provides 60 201128977 estimates of the transmitted chips, so the received chips can be represented by small rounds with the channel &amp;

D ㈣ (60) 將方程式(59)中關於?(《)的表達式插入方程式(6〇)中 得到: /*⑻=g V)⑽„ -咖―_ +. +匕(„ _咖岭 (61) 通道估計單元2050隨後可以使用來自展頻和攪頻單元 234〇的輪入()、已接收碼片厂㈤和方程式(6〇)來估計 通道。在該態樣中,在方程式(61 )中將已偵測使用者 符號’到人()視為已知的符號,以便用於通道估計的目 的此舉降低了未知信號v 的功率,從而增強了通道估 計。 在一個態樣中,可以藉由按照如下計算在碼片長度3上 的已接收碼片广㈨與所估計的被發送碼片%)的互相關來 獲得經定標的通道估計》(/): A 八 Λ Σκ«&gt; *(«-/) h(l) = ^--- A ( 62) 其中()是在碼片/處的經定標的通道估計。 通道计算單元23 50可以向圖13中的矩陣計算單元丨31〇 提供該通道估計’以計算矩陣心、“或其他系統。 該資料辅助式通道估計提供了更準確的通道估計&amp;,得到 了更準確的所計算的矩陣1厂30、。此外,通道計算 單元2350可以向濾波器提供該通道估計,以計算濾波器 Γ η- Λ ί 二 s 61 201128977 的濾波器係數。例如,可以向前端濾波器210、1410、1510 或任何其他渡波器提供該資料辅助式通道估言十。通道估計 系統23 05中的濾波器231〇可以使用從基於引導頻的通道 估汁中得出的通道估計,因為資料辅助式通道估計是在濾 波器23 10之後執行的。 在一個態樣中,增益單元2335可以基於對在傳輸端的 相應增益的估計,在混合器2337處將相同或不同的增益 應用於所偵測的使用者符號β㈣到匕㈣。在一個態樣中, 通道叶鼻單元2350可以將該等增益與增益閾值進行比 較’以排除具有低增益的使用者符號,在估計通道時此類 符號可能較不可靠。在該態樣中’將高於增益閾值的增益 應用於其各別的使用者符號Κ⑽到匕⑻並且用於估計通 道。不使用低於增益閾值的增益及其各別的使用者符號 ㈣到&amp;(W)來估計通道。增益單元亦可以將統一的增益應 用於使用者符號。 現在將論述根據本發明的一個態樣,用於估計關於不同 使用者符號的增益的程序。在該態樣中,藉由對連續符號 週期w和w+1的已接收引導頻符號進行差分,來估計關於 每個使用者符號或代碼通道的增益,其可以如下提供: □Z〇(//1) = z〇— z〇+1) ( 63 ) 其中下標零代表引導頻符號。假設被發送引導頻符號對 於每個符號週期皆為相同的’則已接收引導頻符號之間的 差異是由於雜訊而導致的。因此’引導頻差分提供了在接 收機處對雜訊的估計。可以按照如下,基於已接收引導頻 62 201128977 符號的差分來估計雜訊功率&amp;2(/w): 0-2(m) = + (1 _ 1} (64) . 可以使用具有-個分接點的無限脈衝回應(敗)滤波器 ,來實施方程式(64),其中α是濾波器係數並且是來 ^前-個符號週期的雜訊功率估計。對於已估計了 ⑽的細胞服務區,可以將雜訊功率〜)估計應用於該細 胞服務區的每個使用者或代碼通道。可以如下提供代碼通 道ί的功率: 2 (65) 其中’()疋關於與其中一個使用者相對應的代碼通道ζ· 的已接收符號。可以使用具有一個分接點的nR ;慮波器來 實施方程式(65 ) ’其中α是濾波器係數並且队如―!)是來自 前一個符號週期w-i的功率估計。隨後可以按照如下來估 計關於^定代碼通道或使用者的增益&amp;,㈣: &amp;,0) = /於,〇7)-&amp;2〇) (66). 雜訊功率的初始值可以是零。增益單元2335可以基於 方程式(66 )計算被應用於各別所偵測的使用者符號斤(m)到 ( \ m 的一組增益A到幻/«。亦可以使用以上增益估計技術 來估計增益矩陣G的增益。 在一個態樣中’在執行該資料輔助式通道估計之前,渡 波器2310可以使用由基於引導頻的通道估計所提供的通 道估計A。在該態樣中,通道計算單元235〇可以按照如下 使用濾-波器2 3 10的輸出_ye 來估計總濾、波器c (…: 63 201128977 Λ(«) = £ο(ίί)?(η-£/) + ν.(η) d—-° ( 67) 上述方程式類似於方程式(60 ),其中由?(《)與總濾波器 的迴旋來提供濾波器輸出:通道計算單元2350 可以使用來自展頻和攪頻單元234〇的輸出ί(„)、濾波器輸 出h㈨和方程式(67 )來估計總濾波器。亦可以類似 於方程式(62),藉由計算濾波器輸出少e~;與所估計的被 發送碼片()的互相關來估計總濾波$ c㈤,其中用經渡波 的碼片L 來代替該互相關中的已接收碼片〆。 濾波器2310可以基於使用基於引導頻的通道估計或延 遲了一個符號週期的資料辅助式通道估計的初始通道估 计A,來對所接收的^進行濾波。此外,通道計算單元 可以將所估计的總遽波器c 提供給矩陣計算單元 (例如,矩陣計算單元131〇),在此狀況下,矩陣計算單 元並非必須要使料道估計0纽H/參數來單獨計算 總渡波器咖。在該態#中,通道計算單元235〇可以從滤 波器23 1 〇接收經遽波的輸出心),以估計總m。⑻。 圖24a是圖示根據本發明的某些態樣,#收機處的通道 估汁程序的流程圖。在操作鳩中,可以將已接收碼片 處理為已接收符號。例如,可以對已純碼#進行遽波, 且隨後將其解攪頻和解展頻為已接收符號。 程序從操作2400持續到操作241〇,在操作241〇中從 已接收符號债測使用者符號。例如,可以藉由對已接收符 號進仃切片來偵測使用者符號。亦可以使用其他偵測技 64 201128977 術。 程序從操作2410持續到操作2415,在操作2415中,基 於所偵測的使用者符號來估計被發送碼片。此可以藉由 (例如)對所偵測的使用者符號進行展頻和攪頻以估計從 發射機埃發送的碼片來完成。程序從操作2415持續到操 作2420,在操作242〇中,使用已接收碼片和所估計的被 發送碼片來估計通道(例如,基於方程式(6〇))。 圖24b是根據本發明的某些態樣,在無線通訊系統1〇〇 中使用的行動站106的方塊圖。圖2413的行動站1〇6包括: 模’’且2450 ’其用於將已接收碼片處理為已接收符號;及模 且2455,其用於從已接收符號偵測使用者符號。行動站 106進一步包括:模組246〇,其用於基於所偵測的使用者 符號來估計被發送碼片;及模組2465,其用於基於已接收 媽片和所估計的被發送碼片來估計通道。 圖24c是圖示根據本發明的某些態樣,用於估計總渡波 器c㈨的程序的流程圖,其中總濾波器亡㈨表示通道办與 濾波器/的迴旋。在操作247〇中,在接收機處由濾波器對 已接收碼片進行濾波。 程序從操作2470持續到操作2475,在操作2475中,將 經渡波的碼片處理為已接收符號。例如’可以將經滤波的 碼片解擾頻和解展頻為已接收符號。 程序從操作2475持續到操作248〇,在操作248〇中從 已接收符號偵測使用者符號。例如,藉由對已接收符 號進行切片來偵測使用者符號。亦可以使用其他偵測技⑸ 65 201128977 術。 程序從操作2480持續到操作2485,在操作2485中,使 用經濾波的碼片和所偵測的使用者符號來估計總濾波器 (例如,基於方程式(67 ))。例如,可以對所偵測的 使用者符號進行展頻和攪頻,以估計在發射機端的被發送 碼片。另外,可以將所偵測的使用者符號與一或多個已知 的引導頻符號一起用於估計被發送碼片。隨後,可以使用 所估汁的被發送碼片和經濾波的碼片來估計總濾波器。〔心 (例如,基於方程式(67))。 對正交調幅(QAM )符號的高效偵測 根據本發明的某些態樣,提供了用於QAM符號的偵測 的高效系統和方法。在一個態樣中,藉由以下來偵測qam 符號:將相應的QAM群集分解成多個子群集(例如,QpsK 群集),偵測該QAM符號的與子群集相對應的分量,並且 組合所偵測的分量以偵測該qAM符號。QAM可以是i 6 QAM、64 QAM或任何其他M階qAM。在論述使用群集 分解的QAM符號偵測之前,論述qAM的實例是有益的。 圖25a是示例性的16 QAM群集的圖。16 QAM群集包 括16個群集點2510,代表一個16 qAM符號的丨6個不同 的複合值。將該16 QAM群集分割成四個象限 255〇a-2550d,每個象限具有該16個群集點251〇中的四 個。每個群集點2510具有可分別與相應的符號的實部和 虛部相對應的同相(I)分量和正交(Q)分量。—個16 qam 符號攜帶四個位元的資訊。 66 201128977 圖25b是示例性的正交移相鍵控(QpSK:)群集的圖。 QPSK群集包括四個群集點25 12,代表一個qpsK符號的 四個不同值。將QPSK群集分割成四個象限2552a 2552d, 每個象限具有其中一個群集點2512。QpSK符號攜帶兩個 位元的資訊。 圖26是根據本發明的一個態樣,被分解成兩個子群集 的16 QAM群集的圖。第一子群集262〇包括以16 qAM群 集的原點為中心的四個群集點261〇a_2610d。第一子群集 2620在16 QAM群集的每個象限245〇a_245〇d中分別具有 一個群集點261〇a-2610d。第二子群集263〇包括以第一子 群集2620的群集點261〇a_261〇d之一為中心的四個群集點 2650a-2650d。被第二子群集263〇作為中心的群集點 2610a-2610d取決於16 QAM群集中的與所要的QAM符號 相對應的象限2450a-2450d。在圖26所示的實例令,所要 的QAM符號對應於16QAM群集的象限245〇a。在該態樣 中了以用QPSK群集來表示第一子群集2620,其中用因 數2來定標QPSK群集點的幅度,並且可以用QpsK群集 來表示第二子群集2630。 在一個態樣中,16 QAM符號可以按照如下表示為分別 與第一子群集和第二子群集相對應的分量V和y之和: kV + V方程式(68) 在該態樣中 與第一子群集和 合分量Ρ和 藉由以下來偵測16 QAM符號:偵測分別 ’第一子群集相對應的分量和62,並且組 以偵測該16 QAM符號。 67 201128977 QAM群集分解可以應用於除了 16_qAM群集之外的其 他QAM群集。例如,可以藉由將用於分解16 QAM群集 的方法擴展到64 qAM群集,來將64 QAM群集分解成三 個子群集(例如,QpsK群集)。在該實例中,可以藉由組 σ 64 QAM符號的與三個子群集相對應的三個分量,來偵 測該64-QAM符號。 圖27是根據本發明的某些態樣,多使用者a qam偵測 系統2705的示意圖。該偵測系統可以位於無線通訊系統 中的接收機中。偵測系統2705包括第一偵測旱元2710、 疋標器2720、緩衝器2730、重建單元274〇、減法單元2750 和第二偵測單元2760。 在一個態樣中,第一偵測單元27 i 〇可以包括QpSK切片 器(slicer )’其被配置為接收符號幻並且偵測關於每個 已接收符號的QPSK符號。第一偵測單元2710可以基於已 接收符號的實部和虛部的符號,來偵測關於已接收符號的 QPSK符號。例如,若已接收符號的實部和虛部的符號皆 為正的’則第一偵測單元2710可以針對該已接收符號偵 測到與QPSK群集的象限2552a中的群集點251〇相對應的 QPSK符號。第一偵測單元271〇亦可以使用最小距離偵 測’最小距離偵測決定與已接收符號具有最小距離的群集 點。隨後藉由定標器2720定標關於每個已接收符號的 QPSK符號’以獲得關於已接收符號的i6_qam使用者符 號的第一已偵測分量定標器2720藉由定標QPSK符 號以對應於第一子群集2620中的群集點.2610a-2610d之一 68 201128977 來完成該操作。 緩衝器2730儲存在多個符號週期上的關於已接收符號 的第一已偵測分量€㈣。在一個態樣中,緩衝器儲存 符號週期m-1、w和w+i各別的第一已偵測分量、 k ipt) 來表示第一已偵測分量 €㈣、^+1)。在圖27中用 -() ' :㈣、$(7W + 1)。重建單元2740隨後重建已接收符號 工中由以下所貢獻的产⑽部分:各別使用者符號的第 一已偵測分量ί 〇);及由符號週期丨、w和讲+丨各別的 第一已摘測分量^ (^)、S㈣、£^ + 1)所導致的多使用者干 擾。重建單元247〇可以如下計算产㈣: 严⑽=77J + /) ,=售 ~ ( 69) 其中G是對角增益矩陣’並且a分別表示矩陣义广j ,其中/=-1、0和卜在圖27中用來表示矩陣( d d + 。 減法單元2750按照如下從已接收符號中移除产㈣: = z(m) -150 (jn) ( 7 0 ) 其中互㈣是已移除了产⑽的已接收符號。方程式 (70 )中的操作移除了已接收符號y⑷中由各別使用者符 號έ(π)的第—已偵測分量S㈣所貢獻的部分❶此允許藉由對 sc 5㈣進行QPSK切片來偵測使用者符號&amp;rn)的第二 心 .里 全(w)。方程式(7〇)中的操作亦移除了由符號週期w l、所 和w+1各別的第一分量S(讲-1)、S(m)、S(w + 1)所導致的多使 用者干擾。此提供了實現對第二分量€㈨的更準確偵測的 69 201128977 多使用者干擾消除。 第一偵測單元2 7 6 0隨後從互(m)偵測所要的使用者符號 二㈣的第二分量ί Ο)。第二偵測單元2 7 6 〇可以藉由對产⑻ 進行QPSK切片來實現該操作。組合器277〇隨後將第一分 量全㈣與各別的第二分量全㈣組合,以獲得關於已接收符 號的所偵測的使用者符號€〇)。 因此,圖27中的多使用者16 QAM偵測系統2705將所 接收的16 QAM符號分解成兩個分量,其中使用子群集(例 如,QPSK群集)來偵測每個分量並且在第二分量的偵測 之前移除來自第一分量的多使用者干擾,以便增強偵測。 圖28a是圖示根據本發明的某些態樣,多使用者子群集 偵測的程序的流程圖。在操作28〇〇中,從已接收符號偵 測使用者符號的第一分量。以16 QAM偵測為例,使用者 苻號的第一分量可以對應於16_QAM群集的第一子群集 2620。 '、 μ程序從操作2800持續到操作281〇,在操作281〇中計 鼻已接收符號中由使用者符號的第一分量以及由於使用 :符號的第一分量所導致的多使用者干擾所貢獻的部 刀例如,可以基於方程式(69)來計算已接收符號的該 部分。 程序從操作2810持續到操作282〇,在操作282〇中,從 移除了該所β十算的部分的已接收符號積測使用者符號 的第二分量。 程序從操作2820持續到操作283〇,在操作283〇中,將 70 201128977 所偵測岐用者符號的第—分量與使用者符號的各別的 第二分量組合,以偵測使用者符號。 . _ 28b是根據本發明的某些態樣,在無線通訊系統100 • t使用的行動站1G6的方塊圖。圖勘的行動站咖包括: 模組2850,其用於將已接收碼片處理為已接收符號;及模 、.且2855,其用於從已接收符號偵測使用者符號的第一分 置。打動站106進一步包括:模組286〇,其用於計算已接 收符號中由使用者符號的第—分董所導致的部分;及模組 2865 ’其用於基於已移除了該所計算的部分的已接收符號 來债測使用者符號的第二分量。行動站1〇6進—步包括模 組2870 ’其用於藉由將使用者符號的第一分量與使用者符 號的各別的第二分量组合來偵測使用者符號。 圖29是根據本發明的某些態樣,具有迭代干擾消除的 夕使_用者QAM偵測系統2905的示意圖。偵測系統29〇5 可以位於無線通訊系統中的接收機中。偵測系統“Μ包 括減法單元2910、重新偵測單元292〇、缓衝器293〇和干 擾計算單元2940。 在一個態樣中,干擾計算單元294〇使用從子群集偵測 系統(例如,圖27中的子群集偵測系統27〇5 )偵測的使 •用者符號咖)作為初始偵測的使用者符號,來計算針對第 一次迭代的多使用者干擾。例如,干擾計算單元294〇可 以使用來自子群集偵測系統的符號週期州〗、历和坊+丨各 別的所偵測的使用者符號‘-1)、&amp;„〇、《(/?1+1),基於方程式 (49 )來計算符號週期所的多使用者干擾。在圖29中, 71 201128977 來自子群集偵測系統的所偵測的使用者符號^⑻的迭代 索引a是零,因為其是用於初始偵測的使用者符號的。 減法單元2910從已接收符號中移除(減去)針對 第一次迭代(A:=l )所計算的多使用者干擾|(1)㈨。重新偵 1單元2920隨後從已移除了所計算的干擾的已接收符號 2 (w)重新偵測使用者符號。 在一個態樣中,重新偵測單元2920按照如下對已移除 了所計算的干擾的已接收符號1(1)㈣執行單使用者最大概 度偵測(MLD ): ’♦,卞⑷㈣-[物)uHf(71) 其中對於第一次迭代灸=丨’ z•是使用者索引,[4(m)],+ f是用 於將用於使用f的已接收符號與用於使用者/的所要的 使用者符號相關聯的矩陣A〇的係數,並且ό是可能的 群集點。該MLD操作決定了使得誤差機率最小化的群集 點b 〇 可以經由緩衝器293〇向干擾計算單元294〇回饋針對第 一次迭代的重新偵測的使用者符號|(1)㈨,以便使用來自第 一次迭代的、符號週期所—i 使用者符號、P%)、 、m和m + 1各別的重新偵測的 -(1) _ (W+1),來重新計算針對第二 次迭代的多使用者干擾z( )(rn)。隨後可以從已接收符號制 中移除針對第二次迭代的所計算的多使用者干擾f)(m),以 290i 便重新偵測針對第二次迭代的使用者符號。4貞測系統 可以執行任何次數的迭代(,以精煉重新偵測的使用者符 72 201128977 -&lt;jt) 號合㈣。為了簡化計算,干擾計算單元2940可以對於全 部迭代使用符號週期m-i和m + i的初始偵測的使用者符 號,在此狀況下,僅更新符號週期w的使用者符號。 存在多個展頻因數的情況下的使用者符號偵測和干擾 消除 根據本發明的某些態樣’提供了用於在存在多個展頻因 數的情況下執行使用者符號偵測和干擾消除的方法和系 統。 在一個態樣中’通訊系統可以使用具有不同展頻因數的 代碼對使用者符號進行展頻。例如,基於通用行動電信系 統(UMTS )的通訊系統可以支援使用不同展頻因數的通 訊協定。該等通訊協定可以包括高速下行鏈路封包存取 (HSDPA)和版本99 (R99)’其中HSDPA具有展頻因數 16,R99可以具有展頻因數2k,其中k在2和8之間。 可以基於正交可變展頻因數(OVSF)樹或其他手段來選 擇關於不同展頻因數的代碼。圖30圖示根據本發明的一 個態樣’示例性OVSF樹的圖。OVSF樹包括多個級別, 其中每個級別對應於一不同的展頻因數。圖3〇圖示了 OVSF樹的分別與展頻因數(SF ) 1、2、4和8相對應的 前四個級別。用於每個展頻因數的樹級別包括一組相互正 交的代碼。例如’用於SF = 4的樹級別包括一組四個相互 正交的代碼3020a-3020d。在每個展頻因數處的代碼在更 南階的展頻因數處具有多個子代碼。例如,在§ρ = 2處的 代碼3010a在SF=4處具有兩個子代碼3020a-3020b,在 t i 73 201128977 SF = 8處具有四個子代碼3030a-3030d,以此類推β —個代 碼可以被其子代碼視為父代瑪。例如,代碼3 〇 1 〇 a可以被 其子代碼3020a-3020b和3030a-3030d視為父代碼。 每個父代碼在下一個樹級別中具有兩個直接子代碼。例 如,代碼3010a在下一個樹級別中具有兩個直接子代碼 3020a-3020b。對於每個父代碼’第一直接子代碼是一個包 含重複兩次的父代碼的序列,並且第二直接子代碼是一個 包含父代碼隨後緊接著父代碼的反數的序列。對於父代 碼,其每個子代碼可以藉由一個包含重複多次的父代碼的 序列來表示’其中父代碼的每次重複皆乘以係數一或負 一。另外,對於父代碼,其每個子代碼皆與在與該父代碼 及其子代碼相同的展頻因數處的其他代碼正交。 現在將論述根據本發明的一個態樣,用於在存在兩個或 兩個以上不同的展頻因數的情況下執行符號偵測和干擾 消除的方法。在一個實例中,在展頻因數16處存在馬個 展頻碼,並且在展頻因數256處存在乂個展頻碼。在該實 例中,在基於UTMS的系統中,在展頻因數16處的展頻 碼可以對應於HSDPA信號,並且在展頻因數256處的展 頻碼可以對應於R99信號。展頻因數16和256僅僅是可 能的展頻因數的實例,且亦可以使用其他展頻因數。 可以分別用 和心、......、以7來表示關於 展頻因數16的使用者符號和增益,並且可以分別用 A ,、 · . } N2和gl 、......、以2’來表示關於展頻因數 256的使用者符號和增益。可以將關於展頻因數μ的使用 74 201128977 者符號 b;、...... &gt; r ^ , θ « 心;按照向置形式表示為会(所),其中所是 用於展頻因數16㈣號索引,並且可以將關於展頻因數 的使用者符號卜,........按照向量形式表示為 泛,JL tb , w是用於展頻因數256的符號索引。在該實例 中,在展頻因數256處的使用者符號........bN2,的一 個符號週期橫跨在展頻因數16處的使用者符號沁........ 心/的16個符號週期。 可以將在展頻因數256處的用於使用者符號卜,的展頻 碼表示為一個包含展頻因數16處的父代碼你的16個重複 的序列。圖31是圖示在展頻因數256處的用於使用者符 號心的、包含父代碼w的16個重複的展頻碼的圖。用等 於一或負一的係數ai[m]來乘以父代碼你的每個重複,其中 w是用於展頻因數16的符號索引,並且z•是代碼索引,對 於展頻因數256,其範圍是從1到。 在一個態樣中,展頻因數256處的展頻碼冰^到冰们,共 享在展頻因數16處的一個共用父代碼w,其中該父代碼w 正交於在展頻因數16處使用的展頻碼w;到vvw中的每一 個,從而使得在兩個展頻因數處的展頻碼是相互正交的。 此一個實例在圖32中圖示,其中將在展頻因數16處可獲 得的代碼中的%個代碼分配給展頻碼到,並且將 上述代碼中的一個分配給展頻因數256處的展頻碼W7’到D (four) (60) What about equation (59)? The expression of (") is inserted into the equation (6〇) to get: /*(8)=g V)(10)„ -咖-_ +. +匕(„ _ 咖岭(61) Channel estimation unit 2050 can then use from the spread spectrum And the wheeling () of the frequency-stamping unit 234, the received chip factory (5), and the equation (6〇) to estimate the channel. In this aspect, the detected user symbol 'to the person in equation (61) () is considered a known symbol for the purpose of channel estimation. This reduces the power of the unknown signal v, thereby enhancing the channel estimation. In one aspect, it can be calculated on the chip length 3 as follows. The cross-correlation of the received chips (9) with the estimated transmitted chip %) to obtain the scaled channel estimate" (/): A Λ Σ « « & * * * * * * * * * * * * * * * * * * * ^--- A ( 62) where () is the scaled channel estimate at the chip/section. The channel calculation unit 23 50 may provide the channel estimate 'to calculate the matrix center, 'or other system to the matrix calculation unit 丨 31 图 in FIG. 13 . The data-assisted channel estimation provides a more accurate channel estimate &amp; More accurate calculation of the matrix 1 plant 30. In addition, the channel calculation unit 2350 can provide the channel estimate to the filter to calculate the filter coefficients of the filter Γ η - Λ ί 2 s 61 201128977. For example, it can be forwarded to the front end The filter 210, 1410, 1510 or any other waver provides the data-assisted channel estimation. The filter 231 in the channel estimation system 239 can use the channel estimate derived from the pilot-based channel estimation. Since the data-aided channel estimation is performed after the filter 23 10. In one aspect, the gain unit 2335 can apply the same or different gains at the mixer 2337 based on an estimate of the corresponding gain at the transmission end. The detected user symbols β(4) to 匕(4). In one aspect, the channel leaf nose unit 2350 can compare the gains to the gain thresholds. To exclude user symbols with low gain, such symbols may be less reliable when estimating channels. In this aspect, 'gains above the gain threshold are applied to their respective user symbols 10(10) to 匕(8) and used For estimating the channel, the gain below the gain threshold and its respective user symbols (4) to &amp; (W) are not used to estimate the channel. The gain unit can also apply a uniform gain to the user symbol. An aspect of the invention is a program for estimating gains for different user symbols. In this aspect, each of the successive pilot symbols w and w+1 is differentially estimated to estimate each The gain of the user symbol or code channel, which can be provided as follows: □Z〇(//1) = z〇— z〇+1) ( 63 ) where the subscript zero represents the pilot frequency symbol. It is assumed that the pilot frequency symbol is transmitted for Each symbol period is the same 'the difference between the received pilot symbols is due to noise. Therefore, the 'guided frequency difference provides an estimate of the noise at the receiver. It can be as follows, Estimating the noise power & 2(/w) based on the difference of the received pilot frequency 62 201128977 symbol: 0-2(m) = + (1 _ 1} (64) . You can use unlimited with one tap point The impulse response (loss) filter is used to implement equation (64), where α is the filter coefficient and is the noise power estimate for the first - symbol period. For the cell service area that has been estimated (10), the noise can be Power ~) Estimate the user or code channel applied to the cell's service area. The power of the code channel ί can be provided as follows: 2 (65) where '()疋 is related to the code channel corresponding to one of the usersζ The received symbol. An nR with one tap point can be used; the equation (65) is implemented by the filter [where a is the filter coefficient and the team is like "!") is the power estimate from the previous symbol period w-i. Then you can estimate the gain &amp;amp; (4) for the code channel or user as follows: &amp;, 0) = /, 〇7)-&amp;2〇) (66). The initial value of the noise power can be It is zero. The gain unit 2335 can calculate a set of gains A to phantom/« applied to the user symbols (m) to ( \ m detected by the respective equations based on equation (66). The gain estimation technique can also be used to estimate the gain matrix. Gain of G. In one aspect, 'Before performing the data-assisted channel estimation, the waver 2310 can use the channel estimate A provided by the pilot-based channel estimation. In this aspect, the channel calculation unit 235〇 The total filter, wave c can be estimated using the output_ye of filter-filter 2 3 10 as follows (...: 63 201128977 Λ(«) = £ο(ίί)?(η-£/) + ν.(η D--° ( 67) The above equation is similar to equation (60), where the filter output is provided by ?(") and the total filter's convolution: the channel calculation unit 2350 can use the spread spectrum and frequency mixing unit 234〇 The output ί(„), filter output h(9), and equation (67) are used to estimate the total filter. It can also be similar to equation (62) by calculating the filter output with less e~; and the estimated transmitted chip ( Cross-correlation to estimate the total filtering $c(f), which uses the wave The slice L is used instead of the received chip 中 in the cross-correlation. The filter 2310 can be based on the received channel estimate using the pilot-based channel estimation or the data-aided channel estimation of one symbol period delayed by one channel. ^ Perform filtering. Further, the channel calculation unit may supply the estimated total chopper c to the matrix calculation unit (for example, the matrix calculation unit 131A). In this case, the matrix calculation unit does not have to make the channel estimation 0. The new H/parameters are used to calculate the total waver. In this state #, the channel calculation unit 235〇 can receive the output of the chopped wave from the filter 23 1 , to estimate the total m. (8). A flow chart showing the channel estimation procedure at the receiving station according to some aspects of the present invention. In operation ,, the received chips can be processed into received symbols. For example, the pure code # can be processed. The wave, and then de-sampling and de-spreading it into received symbols. The program continues from operation 2400 to operation 241, and the user symbol is received from the received symbol in operation 241. For example, The received symbol is sliced to detect the user symbol. Other detection techniques can also be used. The program continues from operation 2410 to operation 2415. In operation 2415, the transmitted code is estimated based on the detected user symbol. This may be accomplished by, for example, spreading and scrambling the detected user symbols to estimate the chips transmitted from the transmitter. The program continues from operation 2415 to operation 2420, in operation 242. Estimating the channel using the received chips and the estimated transmitted chips (eg, based on equation (6〇)). Figure 24b is a diagram of a wireless communication system used in accordance with certain aspects of the present invention. A block diagram of the mobile station 106. The mobile station 1-6 of Figure 2413 includes: modulo '' and 2450' for processing received chips as received symbols; and modulo 2455 for detecting user symbols from received symbols. The mobile station 106 further includes: a module 246〇 for estimating the transmitted chip based on the detected user symbol; and a module 2465 for basing based on the received mat and the estimated transmitted chip To estimate the channel. Figure 24c is a flow chart illustrating the procedure for estimating the total ferrocoupler c(9) in accordance with certain aspects of the present invention, wherein the total filter dead (nine) represents the loop of the channel and the filter/. In operation 247, the received chips are filtered by the filter at the receiver. The program continues from operation 2470 to operation 2475, where the processed chips are processed into received symbols. For example, the filtered chips can be descrambled and despread into received symbols. The program continues from operation 2475 to operation 248, where the user symbol is detected from the received symbol. For example, the user symbol is detected by slicing the received symbol. Other detection techniques (5) 65 201128977 can also be used. The program continues from operation 2480 to operation 2485, where the filtered chip and the detected user symbol are used to estimate the total filter (e.g., based on equation (67)). For example, the detected user symbols can be spread and buffered to estimate the transmitted chips at the transmitter. In addition, the detected user symbols can be used with one or more known pilot symbols to estimate the transmitted chip. The total filter can then be estimated using the transmitted chips and filtered chips of the estimated juice. [Heart (for example, based on equation (67)). Efficient Detection of Quadrature Amplitude Modulation (QAM) Symbols In accordance with certain aspects of the present invention, an efficient system and method for detection of QAM symbols is provided. In one aspect, the qam symbol is detected by decomposing the corresponding QAM cluster into multiple sub-clusters (eg, a QpsK cluster), detecting the components of the QAM symbol corresponding to the sub-cluster, and combining the detected The measured component is used to detect the qAM symbol. The QAM can be i 6 QAM, 64 QAM or any other M-order qAM. An example of qAM is useful before discussing the use of clustered decomposition of QAM symbol detection. Figure 25a is a diagram of an exemplary 16 QAM cluster. The 16 QAM cluster consists of 16 cluster points 2510 representing 丨6 different composite values for a 16 qAM symbol. The 16 QAM cluster is divided into four quadrants 255〇a-2550d, each of which has four of the 16 cluster points 251〇. Each cluster point 2510 has an in-phase (I) component and a quadrature (Q) component that can correspond to the real and imaginary parts of the respective symbols, respectively. A 16 qam symbol carries four bits of information. 66 201128977 Figure 25b is a diagram of an exemplary quadrature phase shift keying (QpSK:) cluster. The QPSK cluster consists of four cluster points 25 12 representing four different values for a qpsK symbol. The QPSK cluster is partitioned into four quadrants 2552a 2552d, each of which has one of the cluster points 2512. The QpSK symbol carries two bits of information. Figure 26 is a diagram of a 16 QAM cluster that is broken down into two sub-clusters in accordance with one aspect of the present invention. The first sub-cluster 262 〇 includes four cluster points 261 〇 a_2 610d centered at the origin of the 16 qAM cluster. The first sub-cluster 2620 has one cluster point 261〇a-2610d in each quadrant 245〇a_245〇d of the 16 QAM cluster, respectively. The second sub-cluster 263 〇 includes four cluster points 2650a-2650d centered on one of the cluster points 261 〇 a — 261 〇 d of the first sub-cluster 2620. The cluster points 2610a-2610d centered by the second sub-cluster 263〇 depend on the quadrants 2450a-2450d in the 16 QAM cluster corresponding to the desired QAM symbols. In the example shown in Figure 26, the desired QAM symbol corresponds to the quadrant 245〇a of the 16QAM cluster. In this aspect, the first sub-cluster 2620 is represented by a QPSK cluster, where the magnitude of the QPSK cluster point is scaled with a factor of 2, and the second sub-cluster 2630 can be represented by a QpsK cluster. In one aspect, the 16 QAM symbols can be represented as the sum of the components V and y corresponding to the first sub-cluster and the second sub-cluster, respectively, as follows: kV + V equation (68) in this aspect and first The sub-cluster and the combined component and detect the 16 QAM symbols by detecting the respective components and 62 corresponding to the first sub-cluster and grouping to detect the 16 QAM symbols. 67 201128977 QAM cluster decomposition can be applied to other QAM clusters except the 16_qAM cluster. For example, a 64 QAM cluster can be broken down into three sub-clusters (e.g., a QpsK cluster) by extending the method for decomposing the 16 QAM cluster to a 64 qAM cluster. In this example, the 64-QAM symbol can be detected by three components corresponding to the three sub-clusters of the group σ 64 QAM symbols. Figure 27 is a schematic illustration of a multi-user a qam detection system 2705 in accordance with certain aspects of the present invention. The detection system can be located in a receiver in a wireless communication system. The detection system 2705 includes a first detection drought element 2710, a target unit 2720, a buffer 2730, a reconstruction unit 274A, a subtraction unit 2750, and a second detection unit 2760. In one aspect, the first detection unit 27 i 〇 can include a QpSK slicer' that is configured to receive symbolic illusions and detect QPSK symbols for each received symbol. The first detecting unit 2710 can detect the QPSK symbol regarding the received symbol based on the symbols of the real and imaginary parts of the received symbol. For example, if the symbols of the real and imaginary parts of the received symbol are both positive, the first detecting unit 2710 can detect, for the received symbol, the cluster point 251 中 in the quadrant 2552a of the QPSK cluster. QPSK symbol. The first detecting unit 271 can also use the minimum distance detection 'minimum distance detection to determine the cluster point having the smallest distance from the received symbol. The QPSK symbol ' for each received symbol is then scaled by the scaler 2720 to obtain a first detected component scaler 2720 for the i6_qam user symbol of the received symbol by scaling the QPSK symbol to correspond to This is done by one of the cluster points .2610a-2610d in the first sub-cluster 2620, 68 201128977. Buffer 2730 stores the first detected component (4) of the received symbols over a plurality of symbol periods. In one aspect, the buffer stores the first detected component of each of the symbol periods m-1, w, and w+i, k ipt) to represent the first detected component €(four), ^+1). In Fig. 27, -() ' : (4), $(7W + 1). The reconstruction unit 2740 then reconstructs the portion of the received symbol that is contributed by (10): the first detected component of the individual user symbol ί 〇); and the symbol period 丨, w, and 丨+丨 respectively A multi-user interference caused by the measured components ^ (^), S (four), £^ + 1). The reconstruction unit 247 can calculate the production (4) as follows: Strict (10) = 77J + /), = Sale ~ (69) where G is the diagonal gain matrix ' and a denotes the matrix meaning j, respectively, where /=-1, 0 and Used to represent the matrix in Figure 27 ( dd + . The subtraction unit 2750 removes the production from the received symbols as follows (4): = z(m) -150 (jn) ( 7 0 ) where mutual (4) is removed The received symbol of (10). The operation in equation (70) removes the portion of the received symbol y(4) contributed by the first detected component S(4) of the respective user symbol έ(π), which is allowed by sc 5 (4) Perform QPSK slicing to detect the second heart of the user symbol &amp; rn). The operation in equation (7〇) also removes the first component S (speak-1), S(m), S(w + 1) caused by the symbol period w1, and w+1, respectively. User interference. This provides a multi-user interference cancellation that achieves a more accurate detection of the second component (9). The first detecting unit 2 7 6 0 then detects the desired user symbol two (four) second component ί Ο from the mutual (m). The second detecting unit 2 7 6 can achieve this operation by performing QPSK slicing on the production (8). The combiner 277 then combines the first component all (four) with the respective second component all (four) to obtain the detected user symbol for the received symbol. Thus, the multi-user 16 QAM detection system 2705 of FIG. 27 decomposes the received 16 QAM symbols into two components, wherein a sub-cluster (eg, a QPSK cluster) is used to detect each component and in the second component. Multi-user interference from the first component is removed prior to detection to enhance detection. Figure 28a is a flow chart illustrating a procedure for multi-user sub-cluster detection in accordance with certain aspects of the present invention. In operation 28, the first component of the user symbol is detected from the received symbol. Taking 16 QAM detection as an example, the first component of the user nickname may correspond to the first sub-cluster 2620 of the 16_QAM cluster. ', the μ program continues from operation 2800 to operation 281, in operation 281, the first component of the user symbol in the received symbol and the multi-user interference due to the use of: the first component of the symbol For example, the portion of the received symbol can be calculated based on equation (69). The program continues from operation 2810 to operation 282, in which the second component of the user symbol is measured from the received symbols of the portion of the beta calculation. The program continues from operation 2820 to operation 283. In operation 283, the first component of the detected user symbol of 70 201128977 is combined with the respective second component of the user symbol to detect the user symbol. _ 28b is a block diagram of a mobile station 1G6 used in a wireless communication system 100 t according to certain aspects of the present invention. The mobile station of the map includes: a module 2850 for processing received chips into received symbols; and a mode, and 2855, for detecting the first division of the user symbol from the received symbols . The motion station 106 further includes: a module 286〇 for calculating a portion of the received symbol caused by the first branch of the user symbol; and a module 2865' for calculating the calculated based on the removed A portion of the received symbols are used to measure the second component of the user symbol. The mobile station includes a module 2870' for detecting a user symbol by combining a first component of the user symbol with a respective second component of the user symbol. 29 is a schematic diagram of an instant user-user QAM detection system 2905 with iterative interference cancellation, in accordance with certain aspects of the present invention. The detection system 29〇5 can be located in a receiver in a wireless communication system. The detection system "includes a subtraction unit 2910, a re-detection unit 292", a buffer 293", and an interference calculation unit 2940. In one aspect, the interference calculation unit 294 uses a slave sub-cluster detection system (eg, a map) The sub-cluster detection system 27〇5) detects the user symbol of the user as the initial detected user symbol to calculate multi-user interference for the first iteration. For example, the interference calculation unit 294 〇 You can use the symbol period state, calendar and square + from the sub-cluster detection system to detect the user symbols '-1), &amp; 〇, and ((/?1+1), based on Equation (49) is used to calculate the multi-user interference for the symbol period. In Figure 29, 71 201128977 The iterative index a of the detected user symbol ^(8) from the sub-cluster detection system is zero because it is the user symbol for the initial detection. The subtraction unit 2910 removes (subtracts) the multi-user interference | (1) (9) calculated for the first iteration (A:=l) from the received symbols. The re-detection unit 1920 then re-detects the user symbol from the received symbol 2 (w) from which the calculated interference has been removed. In one aspect, the re-detection unit 2920 performs a single-user maximum likelihood detection (MLD) for the received symbols 1(1)(4) from which the calculated interference has been removed as follows: '♦, 卞(4)(d)- [object] uHf (71) where for the first iteration moxibustion = 丨 ' z • is the user index, [4 (m)], + f is used for the use of f received symbols and for the user / The coefficient of the matrix A 相关 associated with the desired user symbol, and ό is a possible cluster point. The MLD operation determines that the cluster point b 使得 that minimizes the error probability can be fed back to the interference calculation unit 294 via the buffer 293 to the user symbol |(1) (9) for the re-detection of the first iteration, so that the The first iteration of the symbol period - i user symbol, P%), m, and m + 1 each re-detected - (1) _ (W + 1), to recalculate for the second time Iterative multiuser interference z()(rn). The calculated multi-user interference f)(m) for the second iteration can then be removed from the received symbology, and the user symbol for the second iteration is re-detected at 290i. 4 The system can perform any number of iterations (to refine the re-detected user character 72 201128977 -&lt;jt) number (4). To simplify the calculation, the interference calculation unit 2940 can use the initial detected user symbols of the symbol periods m-i and m + i for all iterations, in which case only the user symbols of the symbol period w are updated. User symbol detection and interference cancellation in the presence of multiple spreading factors - provides a method for performing user symbol detection and interference cancellation in the presence of multiple spreading factors, in accordance with certain aspects of the present invention And system. In one aspect, the communication system can spread the user symbols using codes with different spreading factors. For example, a communication system based on the Universal Mobile Telecommunications System (UMTS) can support communication protocols using different spreading factors. The communication protocols may include High Speed Downlink Packet Access (HSDPA) and Release 99 (R99)' where HSDPA has a spread spectrum factor 16, R99 may have a spread spectrum factor of 2k, where k is between 2 and 8. Codes for different spreading factors can be selected based on an Orthogonal Variable Spreading Factor (OVSF) tree or other means. Figure 30 illustrates a diagram of an exemplary 'exemplary OVSF tree in accordance with the present invention. The OVSF tree includes multiple levels, each of which corresponds to a different spread factor. Figure 3A illustrates the first four levels of the OVSF tree corresponding to the spreading factor (SF) 1, 2, 4, and 8, respectively. The tree level for each spreading factor includes a set of codes that are orthogonal to each other. For example, the tree level for SF = 4 includes a set of four mutually orthogonal codes 3020a-3020d. The code at each spreading factor has multiple subcodes at the more advanced spreading factor. For example, code 3010a at § ρ = 2 has two subcodes 3020a-3020b at SF=4, four subcodes 3030a-3030d at ti 73 201128977 SF=8, and so on. Its subcode is treated as a parent. For example, code 3 〇 1 〇 a can be treated as parent code by its subcodes 3020a-3020b and 3030a-3030d. Each parent code has two direct subcodes in the next tree level. For example, code 3010a has two direct subcodes 3020a-3020b in the next tree level. For each parent code, the first direct subcode is a sequence containing the parent code that is repeated twice, and the second direct subcode is a sequence containing the parent code followed by the inverse of the parent code. For a parent code, each subcode can be represented by a sequence containing parent code that is repeated multiple times, where each repetition of the parent code is multiplied by a factor of one or a negative one. In addition, for the parent code, each of its subcodes is orthogonal to other code at the same spreading factor as the parent code and its subcode. A method for performing symbol detection and interference cancellation in the presence of two or more different spreading factors will now be discussed in accordance with an aspect of the present invention. In one example, there is a horse spreading code at the spreading factor of 16, and there are one spreading code at the spreading factor 256. In this example, in a UTMS based system, the spread code at the spread spectrum factor 16 may correspond to the HSDPA signal, and the spread code at the spread spectrum factor 256 may correspond to the R99 signal. Spreading factors 16 and 256 are only examples of possible spreading factors, and other spreading factors can be used. The user symbol and gain with respect to the spreading factor of 16 can be expressed by the sum, ..., and 7, respectively, and can be respectively A, , · . . . } N2 and gl, ..., The user symbol and gain for the spread spectrum factor of 256 are represented by 2'. The use of the spread factor μ can be used. 74 201128977 The symbol b;, ... &gt; r ^ , θ « heart; expressed in the form of a face, which is used for the spread factor 16 (4) index, and the user symbol bu, ..... about the spreading factor can be expressed as a pan in vector form, JL tb , w is a symbol index for the spreading factor 256. In this example, a symbol period of the user symbol .....bN2 at the spread spectrum factor 256 spans the user symbol at the spread factor 16 沁........ Heart/16 symbol period. The spreading code for the user symbol at the spreading factor of 256 can be represented as a sequence of 16 repetitions containing the parent code at the spreading factor of 16. Figure 31 is a diagram illustrating 16 repeated spreading codes for the user symbol heart at the spreading factor 256, including the parent code w. Multiply each repetition of the parent code by a factor ai[m] equal to one or negative one, where w is the symbol index for the spread spectrum factor of 16, and z• is the code index, for the spread factor 256, The range is from 1 to. In one aspect, the spreading code at the spreading factor of 256 is applied to the ice, sharing a common parent code w at the spreading factor 16, wherein the parent code w is orthogonal to the use at the spreading factor of 16. Each of the spread codes w; to vvw such that the spread codes at the two spread factors are mutually orthogonal. An example of this is illustrated in Figure 32, where % of the codes available at the spread spectrum factor 16 are assigned to the spread spectrum code, and one of the above codes is assigned to the exhibition at the spread spectrum factor 256. Frequency code W7' to

WiV2 ’的父代碼w。 在一個態樣中,可以按照如下初始地偵測關於展頻因數 16的使用者符號: ί Si 75 201128977 b(m) = slice(z(m)) (72) 其中^0)是所债測的使用者符號,並且是關於展頻 因數1 6的已接收符號。可以藉由分別使用關於展頻因數 16的解攪頻碼和解展頻碼對已接收碼片進行解攪頻和解 展頻來獲得已接收符號。亦可以按照如下初始地偵測 關於展頻因數256的使用者符號: bXm') = slice(zXm')) ( 73 ) 其中是所偵測的使用者符號並且2伽,)是關於展頻因 數256的已接收符號。可以藉由分別使用關於展頻因數256 的解授頻碼和解展頻碼對已接收碼片進行解授頻和解展 頻來獲得已接收符號g’K)。 在一個態樣中,可以按照如下,根據關於兩個展頻因數 的初始貞測的使用者符號,在展頻因數16的級別上計算 組合干擾估計:The parent code w of WiV2 ’. In one aspect, the user symbol for the spread spectrum factor 16 can be initially detected as follows: ί Si 75 201128977 b(m) = slice(z(m)) (72) where ^0) is the debt test The user symbol and is the received symbol for the spread factor of 16. The received symbols can be obtained by de-sampling and de-spreading the received chips using the de-sampling code and the de-spreading code for the spreading factor 16, respectively. The user symbol for the spread spectrum factor 256 can also be initially detected as follows: bXm') = slice(zXm')) (73) where is the detected user symbol and 2 gamma,) is about the spread factor 256 received symbols. The received symbol g'K) can be obtained by de-emphasizing and de-spreading the received chips using the de-spreading code and the despreading code for the spreading factor 256, respectively. In one aspect, the combined interference estimate can be calculated at the spread spectrum factor of 16 based on the user symbols for the initial guess of the two spreading factors as follows:

Zc(^)= X (74)Zc(^)= X (74)

A 其中L㈣是組合的使用者符號,其包括關於展頻因數1 6 的所偵測的使甩者符號仏《)以及關於展頻因數256的所偵 測的使用者符號在符號週期w上的投影。可以將該組合的 使用者符號匕㈣表示為: k (m)A where L(d) is a combined user symbol comprising the detected 甩 symbol 仏 ") for the spreading factor 16 and the detected user symbol for the spreading factor 256 over the symbol period w projection. The user symbol 匕 (4) of the combination can be expressed as: k (m)

A 6wl〇) (75 其中最底下的項表示關於展頻因數256的所偵測的使用 76 201128977 :=在符號週期…投影…來提供關於展 56的每個㈣測的使用者符號對該投影的貢獻, 其中私是各別的增益,《,[叫是右綷 在符唬週處用於各別展 頻碼的係數,是在展頻 6處的初始偵測的使用者 符號(例如’基於方㈣(73)),並幻是心展頻因數 W的代碼索引,其範圍是從^①。在該實例中,每個 關於展頻因數256的初始❹】的使用者符一在關於展頻 因數16的16個符號週期w上是怪定的。可以將對角增益 矩陣,表示為: Γ^ιA 6wl〇) (75 where the bottommost item represents the detected use of the spread spectrum factor of 256. 201128977 := in the symbol period...projection... to provide a user symbol for each (four) measurement of the exhibition 56 to the projection The contribution, in which the private is the individual gain, ", [called the coefficient used by the right 綷 at the symbol week for the respective spreading code, is the user symbol of the initial detection at the spread spectrum 6 (eg ' Based on square (four) (73)), and the magic is the code index of the heart spread factor W, the range is from ^1. In this example, each user character about the initial spread factor of 256 is in the The 16-symbol period w of the spreading factor of 16 is odd. The diagonal gain matrix can be expressed as: Γ^ι

G 0 76) 其中心到仏是展頻因數16處的使用者符號的各別的 增益’並且係數一反映出,纟方程式(68)中考慮了在展 頻因數256處的使用者符號的增益。可以按照如;正規化 方程式(76)中的增益&amp;·: (m) λ bm(m) ί 免’a,[/w]4' 厂 ~ η kcim) :77) 其中由如下提供:G 0 76) The center to 仏 is the individual gain of the user symbol at the spreading factor of 16' and the coefficient one reflects that the user symbol at the spreading factor 256 is considered in the equation (68). Gain. It can be as follows: Normalize the gain &amp;·: (m) λ bm(m) ί in the equation (76), 'a, [/w] 4' factory ~ η kcim) : 77) which is provided by:

Si=g(' 'twr 78 在此狀況下’增益矩陣(5由如下提供· 77 79) 201128977Si=g(' 'twr 78 in this case' gain matrix (5 is provided below · 77 79) 201128977

GG

Sm JEs V /=1 可以基於方程式(28) _方程式(3〇)來計算矩陣a 乂〇、3/ ’其中可以將展頻矩陣妒表示為:Sm JEs V /=1 The matrix a 乂〇, 3/ ′ can be calculated based on equation (28) _ equation (3〇), where the spread spectrum matrix 妒 can be expressed as:

WlWl

Wm W (80) 其中到是用於展頻因數16處的使用者符號的展 頻碼,並且正一是關於展頻因數256的展頻碼在展頻因數 16處的父代碼。在該實例中,用包括16個碼片的列向量 來表示展頻碼里;到和父代碼及^中的每一個。展頻矩 陣妒可以是iVx#矩陣,其中#對應於展頻因數16。在 該實例中,可以存在多達15個關於展頻因數16的展頻碼 (例如,#尸15 ),因為上述可獲得的展頻碼中的一個被用 於關於展頻因數256的展頻碼的父代碼。 可以分別基於方程式(24)和方程式(19)得出總濾波 器矩陣C和攪頻矩陣尸,其中維度#對應於較低的展頻因 數(例如,對於以上實例,1 6 )。 在該態樣中,組合干擾4(岣說明了來自關於兩個展頻因 數的使用者符號的多使用者干擾,並且在較低的展頻因數 (例如,16 )的級別上計算該乙㈣,此簡化了干擾計算。 在計算了組合干擾以之後,可以從展頻因數16處的已 接收符號?/mj中移除該組合干擾,其中該等已接收符號包 78 201128977 括對應於展頻因數16處的使用者符號的已接收符號以7到 〜㈣以及藉由基於關於展頻因數256處的代碼的父代碼冰 來對已解攪頻的已接收碼片進行解展頻所得到的已接收 符號。可以如下提供已接收符號: 咖) z{m) = zm(m) U,㈨ J (81) 其中^叫到〜㈣是對應於展頻因數16處的使用者符號的 已接收符號,並且是基於該父代碼的已接收符號。可 以將已移除了組合干擾的已接收符號表示為: z(m) = z(m) - ^(/w)G0c(»2 + l) 形 一 (82) 其中式叫是移除了組合干擾之後的已接收符號。該等已 移除了組合干擾的已接收符號2(w)包括:l/m)到,其對 應於關於展頻因數16的使用者符號;及ΐ'(π),其基於關於 展頻因數256的父代碼w。從已接收符號中移除組合干擾 提供了對來自在兩個展頻因數處的使用者符號的多使用 者干擾的消除。此舉實現了對在兩個展頻因數處的使用者 符號的更準確的重新偵測,此將在以下論述。 在一個態樣中’使用已移除了組合干擾的已接收符號 來重新偵測關於展頻因數16的使用者符號。可以按照 如下使用切片來重新&quot;ί貞測關於展頻因數16的每個使用者 符號: 4 ㈣=没/ce {咖)+ [fl。㈣];g,i,㈣} ( 8 3 )Wm W (80) where is the spreading code for the user symbol at the spreading factor of 16, and the positive one is the parent code for the spreading factor of the spreading factor of 256 at the spreading factor of 16. In this example, a column vector comprising 16 chips is used to represent each of the spread code; to and the parent code and ^. Spreading moments The array can be an iVx# matrix, where # corresponds to a spread factor of 16. In this example, there may be up to 15 spreading codes for the spreading factor of 16 (eg, #尸15), as one of the above available spreading codes is used for spread spectrum with a spreading factor of 256. The parent code of the code. The total filter matrix C and the aliasing matrix corpse can be derived based on equations (24) and equations (19), respectively, where dimension # corresponds to a lower spreading factor (e.g., for the above example, 16). In this aspect, the combined interference 4 (岣 illustrates multi-user interference from user symbols for two spreading factors, and the B (four) is calculated at a lower spread factor (eg, 16) level. This simplifies the interference calculation. After the combined interference is calculated, the combined interference can be removed from the received symbols ?/mj at the spread spectrum factor 16, wherein the received symbol packets 78 201128977 include the spread spectrum The received symbols of the user symbol at factor 16 are obtained by despreading the demodulated received chips by 7 to ~ (4) and by the parent code ice based on the code at the spreading factor 256. The symbol has been received. The received symbol can be provided as follows: coffee) z{m) = zm(m) U, (9) J (81) where ^ to ~ (4) is the received corresponding to the user symbol at the spreading factor of 16. Symbol, and is a received symbol based on the parent code. The received symbols from which the combined interference has been removed can be expressed as: z(m) = z(m) - ^(/w)G0c(»2 + l) Form one (82) where the expression is removed Received symbols after interference. The received symbols 2(w) from which the combined interference has been removed include: l/m) to, which corresponds to the user symbol with respect to the spreading factor of 16; and ΐ '(π), which is based on the spreading factor 256 parent code w. Removing the combined interference from the received symbols provides for the elimination of multi-user interference from the user symbols at the two spreading factors. This achieves a more accurate re-detection of the user symbols at the two spreading factors, as will be discussed below. In one aspect, the user symbols for the spread spectrum factor 16 are re-detected using the received symbols from which the combined interference has been removed. You can use the slice as follows to re-measure each user symbol with a spread factor of 16: 4 (four) = no /ce {cafe) + [fl. (4)];g,i,(d)} (8 3 )

A 其中是重新福測的使用者符號並且z•是用於展頻因 79 201128977 數16的代碼索引,其範圍是從i到。使用|αβ㈣]⑽項 來重新加上初始偵測的使用者符號ζ㈣的貢獻,其在方程 式(82)中藉由所計算的組合干擾移除。h(m)],.,項代表矩 陣的在第/行和第ζ·列中的係數。 在一個態樣中,使用已移除了組合干擾的已接收符號 2(m)來重新债測在展頻因數256處的使用者符號。為了重 新偵測在展頻因數256處的使用者符號,計算在展頻因數 16處的1 6個相應的已接收符號,且隨後將其相干地組合, 以估計關於在展頻因數256處的使用者符號的已接收符 號。可以將對展頻因數256處的已接收符號作出貢獻的、 在展頻因數16處的16個已接收符號中的每一個表示為: ’⑽=Γ(_[α。㈣KU ·V ( 8 4) 其中z’㈣是在展頻因數16處的已移除了組合干擾的已 接收符號’/«是用於展頻因數16的符號索引,並且z•是用 於展頻因數256的代碼索引,其範圍是從i到。使用 ί。㈠L,w J k :項來重新加上初始偵測的使用者符號心的 貝獻,其在方程式(82)中藉由所計算的組合干擾移除。 計算在16個符號週期上的已接收符號V(w),將VO)與各別 的係數相乘且隨後將其相干地組合。隨後按照如下對 組合的已接收符號進行切片,以偵測關於展頻因數256的 使用者符號:A is the user symbol of the re-test and z• is the code index for the spread spectrum 79 201128977 number 16, which ranges from i to. The contribution of the initially detected user symbol 四(4) is re-added using |αβ(4)](10), which is removed by the calculated combined interference in equation (82). The h(m)],., term represents the coefficients of the matrix in the /row and ζ· columns. In one aspect, the received symbol 2(m) from which the combined interference has been removed is used to re-debate the user symbol at the spreading factor 256. In order to re-detect the user symbols at the spread spectrum factor 256, 16 corresponding received symbols at the spread spectrum factor 16 are calculated and then coherently combined to estimate about the spread spectrum factor 256. The received symbol of the user symbol. Each of the 16 received symbols at the spread spectrum factor 16 that contributes to the received symbols at the spread spectrum factor of 256 may be represented as: '(10)=Γ(_[α.(四) KU ·V ( 8 4 Where z'(iv) is the received symbol '/« at the spreading factor 16 from which the combined interference has been removed is the symbol index for the spreading factor 16, and z• is the code index for the spreading factor 256 , the range is from i to. Use ί. (a) L, w J k : the item to re-add the initial detection of the user's symbolic heart, which is removed by the calculated combination interference in equation (82) The received symbols V(w) over 16 symbol periods are calculated, VO) is multiplied by the respective coefficients and then combined coherently. The combined received symbols are then sliced as follows to detect user symbols for a spread spectrum factor of 256:

(85) Λ 其中是在展頻因數256處的重新偵測的使用者符號。 201128977 圖33是圖示基於方程式( 因數256的使用者符號 頻 84)和方程式(U),關於展 S., ,的重新偵測的圖。在方塊 33叫到方塊331(M6中,分別針對符號週期㈣到_16 計算咖,其中ζ·㈣是基於已移除了組合干擾的父代碼的已 接收符號(例如,基於方程式(82)。 加法器3320-1到加法残339η μ、 J次益3320-16隨後分別針對符號週期 W=1 到》ί=16 將 Ι·α〇㈣私’4’ 箱 &amp; ) 、 項與(w)相加。初始偵測的 使用者符號V對應於將被.重新㈣的使时符號,並且其 對於符號週期7W = 1到w= 16是怪定的。 加法器3320-1到加法器332〇_16的輸出分別得到在方塊 333(M到方塊3330_16中的在展頻因數16處的16個已接 收符號z,㈣(例如’基於方程式(8 4 ))。每個已接收符號f,,(/n) 皆對展頻因數256處的與將被重新偵測的使用者符號相對 應的已接收符號有貢獻。 乘法器3340-1到乘法器3340_16隨後將16個已接收符 號^㈣與各別的係數AM相乘,並且加法器335〇組合該等 已接收符號。隨後由切片器3360對加法器3350的輸出進 行切片’以重新偵測展頻因數256處的使用者符號(例 如,基於方程式(85))。 可以在迭代程序中使用關於兩個展頻因數的重新偵測 的使用者符號,來進一步精煉重新偵測的使用者符號。在 該態樣中,根據以下表達式,使用來自前一次迭代丨的 重新偵測的使用者符號來重新計算針對迭代&amp;的組合干 擾’並且將其從已接收符號中移除: 81 201128977 ’一,。,丨 (86) 其中A是迭代索引。隨後根據以下表達式,針對迭代女 重新福測關於展頻因數16的使用者符號: b\k\m) = 5//ce{zf(w) + [a0(m)].f 〗(87 ) 亦可以根據以下表達式,針對迭代&amp;重新偵測關於展頻 因數256的使用者符號: zM) = ^{k\rn) + {a0{m)]NNa\m]gi^&lt;k^ \ 〇〇 ) bi ,(i) = SliceWa, [τη]ζ,. '(w) j U=i J ( 89 ) 圖34是根據本發明的某些態樣,能夠針對多個展頻因 數偵測符號並且執行干擾消除的多使用者偵測系統34〇〇 的示意圖。 偵測系統3400包括解攪頻單元34〇5、第一解展頻單元 3410和第一切片器單元3450。解攪頻單元34〇5用解攪頻 碼對經濾波的已接收碼片進行解攪頻,並且第一解展 頻單元3410使用關於展頻因數16的解展頻碼對已解授頻 的碼片進行解展頻。第一解展頻單元3410輸出關於展頻 因數16的一組已接收付號’其可以由方程式(81) 提供。已接收符號?/wj可以包括使用關於展頻因數16的 解展頻碼所獲得的已接收符號4㈣到〜㈨。如上所述,已 接收符號?/w)亦可以包括使用關於展頻因數256的解展頻 碼的父代碼所獲得的已接收符號^(㈣。將已接收符號^(㈨到 叫輸入到第一切片器3450,其從已接收符號Mm)到〜(㈨ 偵測關於展頻因數16的使用者符號έ(叫(例如,基於方程 82 201128977 式(72))。 偵測系統3400亦包括第二解展頻單元342〇和第二切片 益單兀3460。第二解展頻單元342〇使用關於展頻因數256 的解展頻碼來對已解攪頻的碼片進行解展頻。解展頻單元 3420輸出關於展頻因數2S6的一組已接收符號,其中 w是對應於256個碼片的符號週期。將已接收符號互,(m·)輸 入到第二切片器3460,其從已接收符號偵測關於展頻 因數256的使用者符號Hm1)(例如,基於方程式(乃))。 偵測系統3400進一步包括干擾消除單元347〇、重新偵 測單兀3475和參數計算單元348〇。干擾消除單元347〇從 第一切片器單元3 4 5 0接收關於展頻因數1 6的所偵測的使 用者符號&amp;(w),並且從第二切片器單元346〇接收關於展頻 因數256的所偵測的使用者符號。干擾消除單元347〇 使用關於兩個展頻因數的所偵測的使用者符號來計算組 合干擾’並且從展頻因數16處的已接收符號中移除 該組合干擾(例如,基於方程式(82))。重新偵測單元3475 隨後從已移除了所計算的干擾的已接收符號重新偵測關 於展頻因數16的使用者符號(例如’基於方程式(83))。 重新偵測單元3475亦從已移除了所計算的干擾的已接收 符號重新偵測關於展頻因數256的使用者符號(例如,基 於方程式(84)和方程式(85))。 可以經由回餚路徑3485向干擾消除單元3470回饋關於 兩個展頻因數的重新價測的使用者符號β干擾消除單元 3470隨後可以使用重新偵測的使用者符號來重新計算組 83 201128977 合干擾,並且從已接收符號中移除該重新計算的組合干擾 (例如,基於方程式(86))。重新偵測單元3475隨後從 已移除了重新計算的干擾的已接收符號重新偵測關於展 頻因數16的使用者符號(例如,基於方程式(87))。重 新摘測單Λ 3475亦從已移除了重新計算的干擾的已接收 符號重新债測關於展頻因數16的使用者符號(例如,基 於方程S (88)和方程&lt; (89))。可以將以上迭代重複^ 何次數,以便精煉重新偵測的使用.者符號。在圖Μ中, 用於使用者符號的上標是是迭代索引,其中對於從第一切 月器3450和第二切片器346〇輸出的使用者符號,女=〇。 參數計算單元3480計算矩陣心、w並且將該等 矩陣提供給干擾消除單元3470和重新偵測單元3475。 圖35a是圖示根據本發明的某些態樣,在存在多個展頻 因數的情況下,具有多使用者干擾消除的使用者符號偵測 程序的/爪程圖。可以在接收機(例如,行動站丨〇6 )處執 行該程序。 在操作3510中,使用關於第一展頻因數和第二展頻因 數的已偵測使用者符號,來計算組合干擾(例如,基於方 程式(75))。該組合干擾說明了來自關於兩個展頻因數的 使用者符號的多使用者干擾。可以從與第一展頻因數(例 如16 )相對應的已接收符號偵測關於第一展頻因數的使 用者符號。例如,可以藉由對與第一展頻因數相對應的已 接收符號進行切片,來偵測關於第一展頻因數的使用者符 號(例如,基於方程式(72 ))。可以藉由使用關於第一展f 84 201128977 頻因數的解展頻碼對已解攪頻的碼片進行解展頻,來獲得 與第一展頻因數相對應的已接收符號。可以從與第二展頻 因數(例如,256 )相對應的已接收符號偵測關於第二展 頻因數的使用者符號。例如,可以藉由對與第二展頻因數 相對應的已接收符號進行切片,來偵測關於第二展頻因數 的使用者符號(例如,基於方程式(73))» 在操作3520中,從與第一展頻因數相對應的已接收符 號中移除所計算的組合干擾(例如,基於方程式(82))。 最後,在操作3530中,從已移除了所計算的組合干擾 的已接收符號重新偵測關於第一展頻因數的使用者符號 (例如,基於方程式(83 ))。 圖3 5 b疋根據本發明的某些態樣,在無線通訊系統^⑻ 中使用的行動站106的方塊圖。圖35b中的行動站1〇6包 括模組3550,其用於基於關於第一展頻因數和第二展頻因 數的所偵測的使用者符號來計算組合干擾。該組合干擾說 明了來自關於兩個展頻因數的使用者符號的多使用者干 擾。行動站106進一步包括:模組356〇,其用於從與第一 展頻因數相對應的已接收符號中移除該組合干擾;及模組 3 565,其用於基於已移除了組合干擾的已接收符號來重新 偵測關於第一展頻因數的使用者符號。 圖36是圖示根據本發明的某些態樣,在存在多個展頻 因數的情況下’另一個具有多使用者干擾消除的使用者符 號读測程序的流程圖。可以使用圖3 6中的程序來偵測關 於第二展頻因數(例如,256 )的使用者符號。 85 201128977 $操作361()中,獲得已移除了組合干擾的複數個已接 收·^號(例如’基於方程式(84 ))。例如,可以藉由在關 於第一展頻因數的多個符號週期(例如,16個符號週期) 上重複圖35中的操作351〇_354〇,來獲得已移除了組合干 擾的該複數個已接收符號。 在操作3620中,將已移除了組合干擾的該複數個已接 收符號中的每一個與各別的係數相乘。 在操作3630中,將與各別的係數相乘後的複數個已接 收符號進行組合。 在操作3640中,從組合的已接收符號重新偵測關於第 二展頻因數(例如,256 )的使用者符號。例如,可以藉 由對組合的已接收符號進行切片來重新偵測使用者符號 (例如,基於方程式(8 5 ))。 展頻因數16和展頻因數256僅僅是示例性的,並且上 述方法和系統可以應用於其他展頻因數。另外,在關於更 高展頻因數的展頻碼對應於較低展頻因數處的一個以上 父代碼的情況中亦可以應用該等方法和系統。 例如’關於更高展頻因數(例如,256 )的展頻碼可以 包括兩組展頻碼’其中每組展頻碼在較低展頻因數(例 如’ 16 )處具有不同的父代碼。在該實例中,可以將組合 的使用者符號表示為: 86 201128977 bc(m) = λγ&quot;&gt; λb/VW】 (90 ^ ^ Ys^F][m)b^ 其中η 是與第一組展頻碼相對應的所偵測的使 A/口】 上 用者符號在符號週期w上的投影,並且是與第 二組展頻碼相對應的所偵細的使用者符號在符號週期' 的投p。可以將气程式(%)中的增益矩陣G表示為: gi(85) Λ where is the user symbol for re-detection at a spreading factor of 256. 201128977 Figure 33 is a diagram illustrating re-detection based on the equation (factor 264 of factor 256) and equation (U), with respect to S., . At block 33, block 331 is called (M6, the coffee is calculated for symbol periods (4) through _16, respectively, where ζ·(d) is based on the received symbols of the parent code from which the combined interference has been removed (eg, based on equation (82)). Adder 3320-1 to addition 339 η μ, J times benefit 3320-16 and then for symbol period W=1 to ί ί=16 Ι·α〇(4) private '4' box &amp; ), item and (w) The initial detected user symbol V corresponds to the time symbol to be re- (four), and it is strange for the symbol period 7W = 1 to w = 16. Adder 3320-1 to adder 332〇 The output of _16 yields 16 received symbols z at the spreading factor of 16 in block 333 (M to block 3330_16, respectively) (eg, 'based on equation (8 4 )). Each received symbol f, (/n) contributes to the received symbols corresponding to the user symbols to be re-detected at the spreading factor of 256. Multiplier 3340-1 to multiplier 3340_16 then 16 received symbols ^(4) The respective coefficients AM are multiplied, and the adder 335 〇 combines the received symbols. The adder 335 is then paired by the slicer 3360. The output of 0 is sliced 'to re-detect the user symbol at the spreading factor of 256 (eg, based on equation (85)). User symbols for re-detection of the two spreading factors can be used in the iterative process, To further refine the re-detected user symbol. In this aspect, the re-detected user symbol from the previous iteration is used to recalculate the combined interference for iteration &amp; and according to the following expression Removed from received symbols: 81 201128977 'One, ., 丨 (86) where A is the iterative index. Then according to the following expression, the user symbol for the spread factor 16 is re-tested for the iteration: b\k \m) = 5//ce{zf(w) + [a0(m)].f (87) It is also possible to re-detect the user symbol for the spreading factor of 256 for iteration & zM) = ^{k\rn) + {a0{m)]NNa\m]gi^&lt;k^ \ 〇〇) bi ,(i) = SliceWa, [τη]ζ,. '(w) j U = i J ( 89 ) Figure 34 is a multi-user detection capable of detecting symbols and performing interference cancellation for multiple spreading factors in accordance with certain aspects of the present invention. A schematic of the system 34〇〇. The detection system 3400 includes a de-sampling unit 34〇5, a first de-spreading unit 3410, and a first slicer unit 3450. The de-buffering unit 34〇5 de-asserts the filtered received chips with a de-spreading code, and the first de-spreading unit 3410 uses the de-spreading code pair with respect to the spreading factor of 16 to de-frequency-distributed The chip is despread. The first despreading unit 3410 outputs a set of received payouts' for the spread spectrum factor 16 which may be provided by equation (81). Received symbols? /wj may include received symbols 4 (four) to ~ (nine) obtained using the despreading code for the spreading factor of 16. As mentioned above, has the symbol been received? /w) may also include the received symbol ^((4) obtained using the parent code of the despreading code of the spreading factor of 256. The received symbol ^((9) to the caller is input to the first slicer 3450, which The received symbols Mm) to ~ ((9) detect the user symbol 关于 about the spreading factor 16 (called (for example, based on Equation 82 201128977 (72)). The detection system 3400 also includes the second de-spreading unit 342〇 And the second slice benefit unit 兀 3460. The second de-spreading unit 342 解 despreads the de-amplified chips using the despreading code of the spreading factor 256. The de-spreading unit 3420 outputs the exhibition. A set of received symbols having a frequency factor of 2S6, where w is a symbol period corresponding to 256 chips. The received symbols are mutually input, (m·) is input to a second slicer 3460, which detects from the received symbols The user symbol Hm1) of the frequency factor 256 (for example, based on the equation). The detection system 3400 further includes an interference cancellation unit 347A, a re-detection unit 3475, and a parameter calculation unit 348. The interference cancellation unit 347 The first slicer unit 3 4 50 receives the spread spectrum factor of 16. The detected user symbol &amp; (w), and the detected user symbol for the spread spectrum factor 256 is received from the second slicer unit 346. The interference cancellation unit 347 uses the two spread factor factors. The detected user symbol is used to calculate the combined interference' and the combined interference is removed from the received symbols at the spread spectrum factor 16 (eg, based on equation (82)). The re-detection unit 3475 then removes the removed The calculated received symbols of the interference re-detect the user symbol for the spreading factor of 16 (eg, based on equation (83)). The re-detection unit 3475 also re-detects the received symbols from which the calculated interference has been removed. The user symbol for the spread factor 256 is measured (eg, based on equation (84) and equation (85)). The user for the re-valuation of the two spread factors can be fed back to the interference cancellation unit 3470 via the return path 3485. The symbol beta interference cancellation unit 3470 can then recalculate the group 83 201128977 combined interference using the re-detected user symbol and remove the recalculated combined interference from the received symbols. (For example, based on equation (86)). Re-detection unit 3475 then re-detects the user symbol for the spread spectrum factor 16 from the received symbols from which the recalculated interference has been removed (eg, based on equation (87)) The re-sampling unit 3475 also re-debies the user symbol for the spread factor 16 from the received symbols that have removed the recalculated interference (eg, based on equation S (88) and equation &lt; (89)) The above iterations can be repeated for a number of times in order to refine the use of the re-detection. In the figure, the superscript for the user symbol is an iterative index, where for the first trachea 3450 and the The user symbol of the output of the two slicer 346〇, female = 〇. The parameter calculation unit 3480 calculates the matrix centers, w and supplies the matrices to the interference cancellation unit 3470 and the re-detection unit 3475. Figure 35a is a block diagram showing a user symbol detection procedure with multi-user interference cancellation in the presence of multiple spreading factors, in accordance with certain aspects of the present invention. This procedure can be performed at the receiver (e.g., mobile station 丨〇 6). In operation 3510, the combined interference is calculated using the detected user symbols for the first spreading factor and the second spreading factor (e.g., based on the equation (75)). This combined interference illustrates multi-user interference from user symbols for two spreading factors. The user symbol for the first spreading factor can be detected from the received symbols corresponding to the first spreading factor (e.g., 16). For example, the user symbol for the first spreading factor can be detected (e.g., based on equation (72)) by slicing the received symbols corresponding to the first spreading factor. The received symbols corresponding to the first spreading factor can be obtained by despreading the de-amplified chips using a despreading code for the frequency factor of the first exhibition f 84 201128977. The user symbol for the second spreading factor can be detected from the received symbols corresponding to the second spreading factor (e.g., 256). For example, the user symbol for the second spreading factor can be detected by slicing the received symbol corresponding to the second spreading factor (eg, based on equation (73)). The calculated combined interference is removed from the received symbols corresponding to the first spreading factor (eg, based on equation (82)). Finally, in operation 3530, the user symbol for the first spreading factor is re-detected from the received symbols from which the calculated combined interference has been removed (e.g., based on equation (83)). Figure 3 5b is a block diagram of a mobile station 106 for use in a wireless communication system (8) in accordance with certain aspects of the present invention. The mobile station 1〇6 in Fig. 35b includes a module 3550 for calculating combined interference based on the detected user symbols for the first spreading factor and the second spreading factor. This combined interference illustrates multi-user interference from user symbols for two spreading factors. The mobile station 106 further includes: a module 356〇 for removing the combined interference from the received symbols corresponding to the first spreading factor; and a module 3 565 for removing the combined interference based on The received symbols are used to re-detect the user symbol for the first spreading factor. Figure 36 is a flow diagram illustrating another user symbol reading program with multi-user interference cancellation in the presence of multiple spreading factors, in accordance with certain aspects of the present invention. The program in Figure 36 can be used to detect user symbols for the second spreading factor (e.g., 256). 85 201128977 $ Operation 361(), obtains a plurality of received ·^ numbers (eg, based on equation (84)) from which combined interference has been removed. For example, the plurality of combined interferences may be obtained by repeating the operation 351〇_354〇 in FIG. 35 over a plurality of symbol periods (eg, 16 symbol periods) with respect to the first spreading factor. The symbol has been received. In operation 3620, each of the plurality of received symbols from which the combined interference has been removed is multiplied by a respective coefficient. In operation 3630, a plurality of received symbols multiplied by the respective coefficients are combined. In operation 3640, the user symbol for the second spreading factor (e.g., 256) is re-detected from the combined received symbols. For example, the user symbol can be re-detected by slicing the combined received symbols (e.g., based on equation (85)). Spreading factor 16 and spreading factor 256 are merely exemplary, and the above methods and systems can be applied to other spreading factors. In addition, the methods and systems can also be applied in the case where the spreading code for a higher spreading factor corresponds to more than one parent code at a lower spreading factor. For example, a spreading code for a higher spreading factor (e.g., 256) may include two sets of spreading codes&apos; wherein each set of spreading codes has a different parent code at a lower spreading factor (e.g., &apos; 16 ). In this example, the combined user symbol can be expressed as: 86 201128977 bc(m) = λγ&quot;&gt; λb/VW] (90 ^ ^ Ys^F][m)b^ where η is the first group The detected spreading code corresponding to the user symbol on the A/port] on the symbol period w, and the detected user symbol corresponding to the second group of spreading codes in the symbol period Cast p. The gain matrix G in the gas program (%) can be expressed as: gi

GG

Sm (91 ) 可I:乂由以下提供方程式(80)中的展頻矩陣灰: 奶…心巫⑴㈤2】 -(92) 其中見到&amp;/是在較低展頻因 的展頻碼,射1] 歎處的用於使用者符號 的展頸碼,[[]是在較高錢因 代碼,且㈣是在較高展頻因數處二第' 组展頻碼的父 碼。可「以如,提供已接收符號: -組展頻碼的父代 咖)Ί zrnim) Z1%) (93) U2】(咬 其中〆η 是從與在較高展頻因數處的第 、组展頻碼的父 S] 87 201128977 代碼相對應的解展頻碼獲得的已接收符號,並且z[2]是從 與在較高展頻因數處的第二組展頻碼的父代碼相對應的 解展頻碼獲得的已接收符號。在該實例中,可以例如基於 方程式(86 )到方程式(89 ),執行關於兩個展頻因數的 組合干擾消除和使用者符號偵測。 本領域的一般技藝人士將理解,可以使用各種不同的技 術和技藝中的任何一個來表示資訊和信號。例如,在以上 說明書中提及的資料、指令、命令、資訊、信號、位元、 符號和碼片可以用電壓、電流、電磁波、磁場或磁性粒子、 光場或光學粒子或者其任何組合來表示。 本領域一般技藝人士將進一步瞭解,結合本文揭示的實 施例描述的各種說明性的邏輯模組、電路和演算法可以實 施為電子硬體、電腦軟體或兩者的組合。為了清楚地說明 硬體和軟體之間的可交換性,上文對各種說明性的元件、 方塊、模組、電路和步驟皆圍繞其功能性進行了整體描 述。至於此類功能性是實施為硬體還是實施為軟體,則取 決於特定的應用和對整個系統所施加的設計約束條件。本 領域熟練技藝人士可以針對每個特定應用,以變通的方式 實施所描述的功紐’但是,此類實施決策不應解釋為導 致脫離本發明的保護範脅。 可以用通用處理器、數位信號處理器(DSP)、特定應用 積體電路(ASIC)、現場可程式閘陣列(FpGA)或其他可 程式邏輯設備、個別開門或者電晶體邏輯裝置、個別硬體 元件或被設計為執行本文所描述功㈣其任何組合,來實 88 201128977 施或執行結合本文揭示的實施例所描述的各種說明性的 邏輯區塊、模組和電路。通用處理器可以是微處理器,但 替代地,該處理器可以是任何一般的處理器、控制器、微 控制器或者狀態機。處理器亦可以實施為計算設備的組 口例如,Dsp和微處理器的組合、複數個微處理器、一 或多個微處理器與DSP核心的結合,或者任何其他此類配 在-或多個示例性實施例中,可以用硬體、軟體、韌體 =其任何組合來實施所描述的功能。若用軟體來實施功 能,則可以將功能作為機器可讀取媒體上的Η固指令 或代碼進仃儲存或傳輸。機器可讀取媒體包括電腦儲存媒 體和通訊媒體’通訊媒體包括有助於將電腦程式從一個地 傳遞到$冑地方的任何媒體。儲存媒體可以是電腦可 存取的任何可用媒體。舉例而言(但並非限制),此類機 器可讀取媒體可以包括RAM、ROM、eepr〇m、cd_r〇m 或其他光伽存n、磁碟料器或其他磁㈣存設借或可 用於以指令或資料結構的形式來攜帶或儲存所要的程式 碼並且可由電腦存取的的任何其他媒體。另外,任何連接 被適當地稱為是機n可讀取媒體n若軟體是使用同 轴電纜、光纖電纜、雙絞線、數位用戶線路(dsl)或諸 如紅外線、無線電和微波之類的無線技術來制站、飼服 器或其他遠端源傳輸的,則同軸電纜、光纖電纜、雙絞線、 峨或諸如紅外線、無線電和微波之類的無線技術包括在 媒體的定義i如本文所使料磁碟或光碟包括㈣光碟? 89 201128977 (叫鍾射光碟、光碟、數位多功能光碟(, 和藍光光碟,其令磁碟通常以磁性方式再現資料,= 用鍾射以光學方式再現資m的組合亦應包括考 可讀取媒體的範疇中。 提供了對於所揭示㈣樣㈣切述,讀使本領域的 任何-般技藝人士能夠實現或使用本發明。對於本領域一 般技藝人士而言,對此等態樣的各種修改皆為顯而易見 的,並且本文定義的一般性原理可以在不脫離本發明的保 護範,的情況下適用於其他態樣…,本發明並非意欲 限於本文所示的態樣,而是與本文揭示的原理和新賴性特 徵的最廣泛範傳相一致。 圖式簡單說明】 圖1是根據本發明的某些態樣,具有多健用者的無線 通訊系統的圖。 圖2是根據本發明的某些態樣,在無線通訊系統中所使 用的行動站的方塊圖。 圖3是根據本發明的某些態樣,單使用者通道模型的圖。 圖4 ( a )是根據本發明的某些態樣,多使用者通道模型 的圖。 圖4 ( b )是根據本發明的某些態樣,簡化式多使用者通 道模型的圖。 圖4(c)疋根據本發明的某些態樣,包括雜訊的簡化式 多使用者通道模型的圖。 90 201128977 圖5是根據本發明的某些態樣,在 兩級處理的多使用者―系統的示意 圖6是根據本發明的某些態樣,使用 者干擾矩陣的多使用者偵測系統的示遣 無線通訊系統中使 圖0 兩級處理和多使 圖。 用 用 圖7疋圖不根據本發明的某些態樣 使用者偵測方法的流程圖。 圖8是圖示根據本發明的某些態樣 的方法的流程圖。 使用兩級處理的多 向接收機發送碼片 用 圖 圖9是^根據本發明的某錢樣,用於1處理為 於複數個使用者的—或多個已接收符號的方法的流程 圖_10是根據本發明的某些態樣,在無線通訊系統中使 用的行動站的方塊圖。 是根據本發明的某些態樣’多通道模型的圖。 圖12a S圖示根據本發明的某些態樣,多使用者偵測方 法的流程圖。 圖 是圖示根據本發明的某些態樣’用於計算多使用 者干擾矩陣的方法的流程圖。 是根據本發明的某些態樣,在無線通訊系統中使 用的行動站的方塊圖。 圖13疋根據本發明的某些態樣,用於計算多使用者干 擾矩陣和肩矩陣(shQulder )的系統的示意圖。 圖14是根據本發明的某些態樣’具有干擾消除的多使 用者偵測系統的示意圖。 91 201128977 圖15是根據本發明的某些態樣’具有干擾消除的多使 用者偵測系統的示意圖。 圖16a是圖示根據本發明的某些態樣,具有干擾消除的 多使用者偵測方法的流程圖。 圖16b是根據本發明的某些態樣,在無線通訊系統中使 用的行動站的方塊圖。 圖17是根據本發明的某些態樣,具有迭代干擾消除的 夕使用者该測糸統的示意圖。 圖8疋圖示根據本發明的某些態樣,具有迭代干擾消 除的多使用者偵測方法的流程圖。 圖19是根據本發明的某些態樣’具有迭代干擾消除的 多使用者偵測系統的示意圖。 圖20疋根據本發明的某些態樣,具有細胞服務區間干 擾消除的偵測系統的示意圖。 圖21疋根據本發明的某些態樣,細胞服務區計算單元 的示意圖。 圖22a疋圖不根據本發明的某些態樣,計算關於細胞服 務區的接收碼片的方法的流程圖。 圖22b是圖示根據本發明的某些態樣,細胞服務區間干 擾消除方法的流程圖。 圖22c是圖示根據本發明的某些態樣’細胞服務區間消 除和多使用者❹彳的方法的流程圖。 圖22d是根據本發明的某些態樣,在無線通訊系統中使 用的行動站的方塊圖。 92 201128977 根據本發明的某些態樣’通道估計系統的示意 圖。 圖24a疋圖不根據本發明的某些態樣,通道估計方法的 流程圖。 圖⑽是圖示根據本發明的某些態樣,總滤波器估計方 法的流程圖。 是根據本發明的某些態樣,在無線通訊系統中使 用的行動站的方塊圖。 圖仏是根據本發明的某些態樣,示例性的16 QAM群 集的圖。 圖25b疋根據本發明的某些態樣,示例性的QpsK群集 的圖。 一 圖26疋根據本發明的某些態樣,被分解成子群集的示 例性的16 QAM群集的圖。 圖7疋根據本發明的某些態樣,多使用者“Μ子群集 福測系統的示意圖。 圖…是圖示根據本發明的某些態樣,多使用者子群集 偵測方法的流程圖。 圊28b是根據本發明的某些態樣,在無線通訊系統中使 用的行動站的方塊圖。 圖29是根據本發明的某些態樣,具有迭代干擾消除的 多使用者QAM偵測系統的示意圖。 圖3〇疋根據本發明的某些態樣,正交可變展頻因數 (OVSF )樹的圖。 93 201128977 展 圖31是根據本發明的某此筚 頻碼的圖.。 、二.H0、?、父代碼來表示 同的展頻因數處 圖32是根據本發明的某些態樣’在不 的展頻碼的圖。 圖33是圖示根據本發 的流程圖。 明的某些態樣,使用者符號偵 測 圖34是根據本發明的 ^ ^ ·Β, - ^ 二〜、樣’此夠針對多個展頻因 圖。 卩干擾核的多使用者该测系統的示意 :35a是圖示根據本發明的某些態樣,在存在多個 數的情況中的多使用者偵測方法的流程圓。 圖35b是根據本發明的某 用的行動站的方塊圖。 在無線通訊系統中使 圖36是圖示根據本發明的某些態樣,在存在多個展 因數的情況中的多使用者偵測方法的流程圖。展頻 【主要元件符號說明】 ^ it / ^ 1〇〇 通訊系統/無線通訊系 102A 細胞服務區 102B 細胞服務區 102C 細胞服務區 102D 細胞服務區 102E 細胞服務區 102F 細胞服務區 統 94 201128977 102G 細胞服務區 104A 基地台 104B 基地台 104C 基地台 104D 基地台 104E 基地台 104F 基地台 104G 基地台 106 行動站 106A 行動站 106B 行動站 106C 行動站 106D 行動站 106E 行動站 106F 行動站 106G 行動站 106H 行動站 200 接收機 210 前端處理單元/濾波器/前端濾波器 220 天線 230 解攪頻和解展頻單元 240 處理單元/矩陣計算單元 250 記憶體 260 偵測單元 95 201128977 300 總濾波器 310 方塊/通道 315 解攪頻混合器 3 17 解展頻混合器 320 求和方塊 400 組合器 410 多使用者干擾矩陣 415 增益矩陣/方塊 420 層排式增益矩陣 425 方塊 500 第一級 510 第二級 700 操作 710 操作 720 操作 730 操作 800 操作 810 操作 820 操作 830 操作 840 操作 900 操作 910 操作 920 操作 96 201128977 930 操作 1000 模組 1010 模組 1020 模組 1030 模組 1110 方塊 1120 方塊 1130 方塊 1132 方塊 1135 方塊 1140 方塊 1150 方塊 1160 方塊 1220 操作 1230 操作 1232 操作 1234 操作 1236 操作 1238 操作 1240 操作 1250 模組 1260 模組 1270 模組 1305 系統 201128977 13 10 1320 1330 1340 1405 1410 1415 1420 1430 1440 1450 1460 1505 1510 1515 1520 1522 1525 1530 1535 1540 1560 1610 1620 矩陣計算單元 代碼單元 通道估計單元 濾波器計算單元 多使用者偵測系統 遽波器/前端滤波器 解攪頻單元 解展頻單元 偵測單元 矩陣計算單元 干擾消除單元 重新偵測單元 多使用者偵測系統 遽波器/前端濾波器 解攪頻混合器 解攪頻和解展頻單元 解展頻混合器 求和方塊 偵測單元 代碼单元 矩陣計算單元 消除和重新偵測單元 操作 操作 98 201128977 1630 操作 1640 操作 1650 模組 1660 模組 1670 模組 1680 模組 1690 模組 1705 多使用者偵測系統 1730 偵測單元 1750 消除干擾單元/干擾 1752 回饋路徑 1755 缓衝器 1760 重新偵測單元 1810 操作 1820 操作 1830 操作 1840 操作 1850 操作 1860 操作 1905 多使用者偵測系統 1910 減法單元 1920 符號偵測器 1930 緩衝器 1940 干擾計算單元 消除單元 99 201128977 2005 細胞服務區間干擾消除系統 2010a 第一細胞服務區計算單元 2010b 第二細胞服務區計算單元 2010c 第三細胞服務區計算單元 ' 2020a 第一減法方塊/第一減法單元 2020b 第二減法方塊/第二減法單元 2020c 第三減法方塊/第三減法單元 2020d 第四減法方塊/第四減法單元 2030 細胞服務區排序單元 2110 細胞服務區計算單元 2120 渡波器 2130 解攪頻和解展頻單元 2140 偵測單元 2150 增益單元 2160 展頻和攪頻單元 2170 碼片計算單元/細胞服務區計算單元 2205 操作 2210 操作 • 2215 操作 . 2220 操作 2225 操作 2230 操作 2235 操作 2250 操作 100 201128977 2255 2260 2265 2270 2275 2280 2285 2305 23 10 2315 2320 2322 23 2 5 2330 2335 2337 2340 2342 2343 2345 2350 2400 2410 2415 操作 操作 操作 模組 模組 模組 模組 通道估計系統 濾波器單元/濾波器 解攪頻混合器 解攪頻和解展頻單元 解展頻混合器 求和方塊 偵測單元 增益單元 增益混合器 展頻和攪頻單元 展頻混合器 組合器 攪頻混合器 通道計算單元 操作 操作 操作 101 201128977 2420 操作 2450 模組 2450a 象限 2450b 象限 2450c 象限 2450d 象限 2455 模組 2460 模組 2465 模組 2470 操作 2475 操作 2480 操作 2485 操作 2510 群集點 2512 群集點 2550a 象限 2550b 象限 25 5 0c 象限 2550d 象限 2 552a 象限 2552b 象限 2552c 象限 2552d 象限 2610a 群集點 201128977 2610b 群集點 2610c 群集點 2610d 群集點 2620 第一子群集 2630 第二子群集 2650a 群集點 2650b 群集點 2650c 群集點 2650d 群集點 2705 多使用者1 6 QAM偵測系統/子群集偵測系統 2710 第一偵測單元 2720 定標器 2730 缓衝器 2740 重建單元 2750 減法單元 2760 第二偵測單元 2770 組合器 2800 操作 2810 操作 2820 操作 2830 操作 2850 模組 2855 模組 2860 模組 103 201128977 2865 模組 2870 模組 2905 多使用者QAM偵測系統 2910 減法單元 2920 重新偵測單元 2930 緩衝器 2940 干擾計算單元 3010a 代碼 3020a 子代碼 3020b 子代碼 3020c 代碼 3020d 代碼 3030a 子代碼 3030b 子代碼 3030c 子代碼 3030d 子代碼 3310-1 方塊 3310-16 方塊 3320-1 加法器 3320-16 加法器 3330-1 方塊 3330-16 方塊 3340-1 乘法器 3340-16 乘法器 104 201128977 3350 3360 3400 3405 3410 3420 3450 3460 3470 3475 3480 3485 3510 3520 3530 3550 3560 3565 3610 3620 3630 3640 加法器 切片器 多使用者偵測系統 解攪頻單元 第一解展頻單元 第二解展頻單元 第一切片器單元/第一切片器 第二切片器單元/第二切片器 干擾消除單元 重新偵測單元 參數計算單元 回饋路徑 操作 操作 操作 模組 模組 模組 操作 操作 操作 操作 105Sm (91 ) I: 乂 The following provides the spread spectrum matrix in equation (80): Milk... Heart Witch (1) (5) 2] - (92) where &amp;/ is the spread spectrum code at the lower spread spectrum, Shot 1] The sigh of the neck code for the user symbol, [[] is the higher money code, and (4) is the parent code of the second group's spreading code at the higher spreading factor. "For example, provide the received symbols: - the parent coffee of the group spread code) Ί zrnim) Z1%) (93) U2] (bite where 〆η is from the group with the higher spread factor The parent of the spread spectrum code 87 201128977 The corresponding symbol obtained by the despreading code, and z[2] corresponds to the parent code of the second set of spreading codes at the higher spreading factor. Received symbols obtained by despreading the frequency code. In this example, combined interference cancellation and user symbol detection for two spreading factors can be performed, for example, based on equations (86) through (89). One of ordinary skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, the materials, instructions, commands, information, signals, bits, symbols, and chips mentioned in the above specification. It can be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or optical particles, or any combination thereof. Those of ordinary skill in the art will further appreciate the various illustrative logic described in connection with the embodiments disclosed herein. Modules, circuits, and algorithms can be implemented as electronic hardware, computer software, or a combination of both. In order to clearly illustrate the interchangeability between hardware and software, various illustrative components, blocks, and modules are described above. The circuits, and the steps are all described in their entirety. As to whether such functionality is implemented as hardware or as software, it depends on the particular application and the design constraints imposed on the overall system. A person skilled in the art can implement the described functions in a modified manner for each particular application. However, such implementation decisions should not be construed as causing a departure from the scope of the present invention. A general purpose processor, digital signal processor (DSP) can be used. ), application specific integrated circuit (ASIC), field programmable gate array (FpGA) or other programmable logic device, individual open gate or transistor logic device, individual hardware components or designed to perform the functions described herein (4) any of them Combinations, implementations, and implementations of various illustrative logic blocks, modules, and modules described in connection with the embodiments disclosed herein The general purpose processor may be a microprocessor, but in the alternative, the processor may be any general processor, controller, microcontroller, or state machine. The processor may also be implemented as a group of computing devices, for example, Dsp Combination with a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration, or in some exemplary embodiments, may be hardware, software, Firmware = any combination of them to perform the described functions. If the software is used to implement the function, the function can be stored or transmitted as a tamping instruction or code on the machine readable medium. The machine readable medium includes the computer. Storage Media and Communication Media 'Communication media includes any media that helps to transfer computer programs from one place to another. The storage medium can be any available media that is accessible to the computer. By way of example, but not limitation, such machine-readable media may include RAM, ROM, eepr〇m, cd_r〇m or other optical gamma n, disk hopper or other magnetic (4) storage or may be used Any other medium that carries or stores the desired code and is accessible by the computer in the form of an instruction or data structure. In addition, any connection is appropriately referred to as a machine n readable medium n if the software is using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (dsl) or wireless technology such as infrared, radio and microwave. For transmission to a station, feeder, or other remote source, coaxial cable, fiber optic cable, twisted pair, cable, or wireless technologies such as infrared, radio, and microwave are included in the definition of the media. Does the disk or disc include (4) discs? 89 201128977 (called a clock-disc, optical disc, digital versatile disc (, and Blu-ray disc, which allows the disc to reproduce data magnetically, = the combination of optical reproduction with a clock shot should also include reading In the context of the media, a description of the disclosed (four) (four) description is provided to enable any person skilled in the art to practice or use the invention. Various modifications of such aspects will be apparent to those of ordinary skill in the art It is obvious that the general principles defined herein may be applied to other aspects without departing from the scope of the invention, and the invention is not intended to be limited to the embodiments shown herein, but rather The principle is consistent with the broadest scope of the novel features. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagram of a wireless communication system with multiple users in accordance with certain aspects of the present invention. Figure 2 is a diagram of a wireless communication system having multiple users in accordance with the present invention. In some aspects, a block diagram of a mobile station used in a wireless communication system. Figure 3 is a diagram of a single user channel model in accordance with certain aspects of the present invention. Figure 4 (a) is based on Some aspects of the invention, a diagram of a multi-user channel model. Figure 4 (b) is a diagram of a simplified multi-user channel model in accordance with certain aspects of the present invention. Figure 4 (c) Some aspects, including a diagram of a simplified multi-user channel model of noise. 90 201128977 FIG. 5 is a schematic diagram of a multi-user-system in two stages processed in accordance with the present invention, in accordance with certain aspects of the present invention. In some aspects of the multi-user detection system of the user interference matrix, the two-stage processing and multi-patterning of Figure 0 are used. Figure 7 is not a certain aspect of the present invention. Figure 8 is a flow chart illustrating a method in accordance with certain aspects of the present invention. Flowchart_10 for a method of processing 1 or more received symbols for a plurality of users is a block of a mobile station used in a wireless communication system in accordance with certain aspects of the present invention. Figure. is a certain aspect of the present invention 'multichannel Figure 12a is a flow diagram of a multi-user detection method in accordance with certain aspects of the present invention. The Figure is a diagram illustrating the use of a multi-user interference matrix in accordance with certain aspects of the present invention. A flowchart of a method is a block diagram of a mobile station used in a wireless communication system in accordance with certain aspects of the present invention. Figure 13 is a diagram of a multi-user interference matrix and shoulders for use in accordance with certain aspects of the present invention. Schematic diagram of a matrix (shQulder) system. Figure 14 is a schematic diagram of a multi-user detection system with interference cancellation in accordance with certain aspects of the present invention. 91 201128977 Figure 15 is a diagram of some aspects of the present invention having interference Schematic diagram of the eliminated multi-user detection system. Figure 16a is a flow chart illustrating a multi-user detection method with interference cancellation in accordance with certain aspects of the present invention. Figure 16b is a block diagram of a mobile station for use in a wireless communication system in accordance with certain aspects of the present invention. Figure 17 is a schematic illustration of an instant user with iterative interference cancellation in accordance with certain aspects of the present invention. Figure 8A is a flow chart showing a multi-user detection method with iterative interference cancellation in accordance with certain aspects of the present invention. Figure 19 is a schematic illustration of a multi-user detection system with iterative interference cancellation in accordance with certain aspects of the present invention. Figure 20 is a schematic illustration of a detection system with cell service interval interference cancellation, in accordance with certain aspects of the present invention. Figure 21 is a schematic illustration of a cell service area calculation unit in accordance with certain aspects of the present invention. Figure 22a is a flow diagram of a method of calculating received chips for a cell service area, in accordance with certain aspects of the present invention. Figure 22b is a flow chart illustrating a cell service interval interference cancellation method in accordance with certain aspects of the present invention. Figure 22c is a flow chart illustrating a method of cell service interval elimination and multi-user ❹彳 according to certain aspects of the present invention. Figure 22d is a block diagram of a mobile station for use in a wireless communication system in accordance with certain aspects of the present invention. 92 201128977 Schematic diagram of certain aspects of a channel estimation system in accordance with the present invention. Figure 24a is a flow chart showing a method of channel estimation not according to some aspects of the present invention. Figure (10) is a flow chart illustrating a total filter estimation method in accordance with certain aspects of the present invention. Is a block diagram of a mobile station used in a wireless communication system in accordance with certain aspects of the present invention. Figure 仏 is a diagram of an exemplary 16 QAM cluster in accordance with certain aspects of the present invention. Figure 25b is a diagram of an exemplary QpsK cluster in accordance with certain aspects of the present invention. Figure 26 is a diagram of an exemplary 16 QAM cluster that is decomposed into sub-clusters in accordance with certain aspects of the present invention. Figure 7 is a schematic diagram of a multi-user "tweet cluster test system according to some aspects of the present invention. Figure is a flow chart illustrating a multi-user sub-cluster detection method in accordance with certain aspects of the present invention.圊 28b is a block diagram of a mobile station used in a wireless communication system in accordance with certain aspects of the present invention. Figure 29 is a multi-user QAM detection system with iterative interference cancellation in accordance with certain aspects of the present invention. Figure 3 is a diagram of an orthogonal variable spreading factor (OVSF) tree in accordance with certain aspects of the present invention. 93 201128977 Figure 31 is a diagram of some of the chirp codes in accordance with the present invention. 2. H0, ?, parent code to indicate the same spread spectrum factor. Figure 32 is a diagram of some of the aspects of the present invention based on the spread spectrum code. Figure 33 is a flow chart illustrating the present invention. In some aspects, the user symbol detection map 34 is in accordance with the present invention, ^ ^ · Β, - ^ two ~, sample 'this is sufficient for multiple spread spectrum diagrams. 卩 interference core multi-user system Illustrated: 35a is illustrated in accordance with certain aspects of the present invention, in the presence of multiple numbers Figure 35b is a block diagram of a mobile station in accordance with the present invention. Figure 36 is a diagram illustrating, in a wireless communication system, a plurality of spreading factors in accordance with certain aspects of the present invention. Flowchart of multi-user detection method in the case of the spread. [Main component symbol description] ^ it / ^ 1〇〇 communication system / wireless communication system 102A cell service area 102B cell service area 102C cell service area 102D cell service Area 102E Cell Service Area 102F Cell Service Area System 94 201128977 102G Cell Service Area 104A Base Station 104B Base Station 104C Base Station 104D Base Station 104E Base Station 104F Base Station 104G Base Station 106 Mobile Station 106A Mobile Station 106B Mobile Station 106C Mobile Station 106D Mobile Station 106E Mobile Station 106F Mobile Station 106G Mobile Station 106H Mobile Station 200 Receiver 210 Front End Processing Unit / Filter / Front End Filter 220 Antenna 230 De-amplifying Frequency and De-spreading Unit 240 Processing Unit / Matrix Computing Unit 250 Memory 260 Detecting Measurement unit 95 201128977 300 total filter 310 block / channel 315 Mixer Mixer 3 17 Spread Spectrum Mixer 320 Summation Block 400 Combiner 410 Multi-User Interference Matrix 415 Gain Matrix/Block 420 Layer Row Gain Matrix 425 Block 500 First Level 510 Second Stage 700 Operation 710 Operation 720 Operation 730 Operation 800 Operation 810 Operation 820 Operation 830 Operation 840 Operation 900 Operation 910 Operation 920 Operation 96 201128977 930 Operation 1000 Module 1010 Module 1020 Module 1030 Module 1110 Block 1120 Block 1130 Block 1132 Block 1135 Block 1140 Block 1150 Block 1160 Block 1220 Operation 1230 Operation 1232 Operation 1234 Operation 1236 Operation 1238 Operation 1240 Operation 1250 Module 1260 Module 1270 Module 1305 System 201128977 13 10 1320 1330 1340 1405 1410 1415 1420 1430 1440 1450 1460 1505 1510 1515 1520 1522 1525 1530 1535 1540 1560 1610 1620 matrix calculation unit code unit channel estimation unit filter calculation unit multi-user detection system chopper/front-end filter de-buffering unit de-spreading unit detection unit matrix calculation unit interference elimination Element re-detection unit multi-user detection system chopper/front-end filter de-mixing mixer de-scrambling and de-spreading unit de-spreading mixer summation square detection unit code unit matrix calculation unit elimination and re-detection Measurement unit operation 98 201128977 1630 Operation 1640 Operation 1650 Module 1660 Module 1670 Module 1680 Module 1690 Module 1705 Multi-user detection system 1730 Detection unit 1750 Elimination of interference unit / interference 1752 Feedback path 1755 Buffer 1760 Re-detection unit 1810 Operation 1820 Operation 1830 Operation 1840 Operation 1850 Operation 1860 Operation 1905 Multi-user detection system 1910 Subtraction unit 1920 Symbol detector 1930 Buffer 1940 Interference calculation unit elimination unit 99 201128977 2005 Cell service interval interference cancellation system 2010a First Cell Service Area Calculation Unit 2010b Second Cell Service Area Calculation Unit 2010c Third Cell Service Area Calculation Unit '2020a First Subtraction Block/First Subtraction Unit 2020b Second Subtraction Block/Second Subtraction Unit 2020c Third Subtraction Block/ Third subtraction Yuan 2020d fourth subtraction block/fourth subtraction unit 2030 cell service area sorting unit 2110 cell service area calculation unit 2120 waver 2130 de-sampling frequency and de-spreading unit 2140 detection unit 2150 gain unit 2160 spread spectrum and frequency-stamping unit 2170 yards Slice calculation unit / cell service area calculation unit 2205 Operation 2210 Operation • 2215 Operation. 2220 Operation 2225 Operation 2230 Operation 2235 Operation 2250 Operation 100 201128977 2255 2260 2265 2270 2275 2280 2285 2305 23 10 2315 2320 2322 23 2 5 2330 2335 2337 2340 2342 2343 2345 2350 2400 2410 2415 Operation and operation operation module module module module channel estimation system filter unit / filter de-mixing frequency mixer de-buffering frequency and de-spreading unit de-spreading mixer summing square detection unit gain Unit Gain Mixer Spread Spectrum and Mixing Unit Spread Spectrum Mixer Mixer Mixing Mixer Channel Calculation Unit Operation Operation 101 201128977 2420 Operation 2450 Module 2450a Quadrant 2450b Quadrant 2450c Quadrant 2450d Quadrant 2455 Module 2460 Module 2465 Module 2470 operation 2475 Operation 2480 Operation 2485 Operation 2510 Cluster Point 2512 Cluster Point 2550a Quadrant 2550b Quadrant 25 5 0c Quadrant 2550d Quadrant 2 552a Quadrant 2552b Quadrant 2552c Quadrant 2552d Quadrant 2610a Cluster Point 201128977 2610b Cluster Point 2610c Cluster Point 2610d Cluster Point 2620 First Subcluster 2630 Second sub-cluster 2650a Cluster point 2650b Cluster point 2650c Cluster point 2650d Cluster point 2705 Multi-user 1 6 QAM detection system / sub-cluster detection system 2710 First detection unit 2720 Scaler 2730 Buffer 2740 Reconstruction unit 2750 Subtraction unit 2760 Second detection unit 2770 Combiner 2800 Operation 2810 Operation 2820 Operation 2830 Operation 2850 Module 2855 Module 2860 Module 103 201128977 2865 Module 2870 Module 2905 Multi-user QAM detection system 2910 Subtraction unit 2920 Re-detection Measurement unit 2930 Buffer 2940 Interference calculation unit 3010a Code 3020a Subcode 3020b Subcode 3020c Code 3020d Code 3030a Subcode 3030b Subcode 3030c Subcode 3030d Subcode3310-1 Block 3310-16 Block 3320 -1 Adder 3320-16 Adder 3330-1 Block 3330-16 Block 3340-1 Multiplier 3340-16 Multiplier 104 201128977 3350 3360 3400 3405 3410 3420 3450 3460 3470 3475 3480 3485 3510 3520 3530 3550 3560 3565 3610 3620 3630 3640 Adder Slicer Multi-user Detection System De-scrambling Unit First De-spreading Unit Second De-spreading Unit First Slicer Unit/First Slicer Second Slicer Unit/Second Slicer Interference Elimination unit re-detection unit parameter calculation unit feedback path operation operation operation module module operation operation operation operation 105

Claims (1)

201128977 七、申請專利範圍: 1. 一種用於一無線通訊系統中的多使用者偵測的方法, 包括以下步驟: . 將已接收碼片處理為用於複數個使用者的已接收符號; 使用一哈達瑪矩陣計算一多使用者矩陣,其中該多使用者 矩陣將用於該複數個使用者的使用者符號與該等已接收 符號相關聯;及 使用該等已接收符號和該計算的多使用者矩陣來债測用 於該複數個使用者的該等使用者符號。 2.如請求項!之方法,其中對於每個使用者該多使用 者矩陣將用於其他使用者的該等使用者符號中的—或多 個與用於铵使用者的該已接收符號相關聯。 τ 〇异战夕便用者矩陣 3.如請求項1之方法,其 包括以下步驟: 將一沃爾什矩陣變換為該哈達瑪矩陣; 使用快速哈達瑪變換(FHT)操作將料料料與另— 矩陣相乘;及 基於該哈達瑪矩陣與該另—矩陣的該相乘來計算該 用者矩陣。 如請求項3之方 法,其中該另一矩陣包括 搜頻矩陣 106 201128977 或者一解攪頻矩 陣 5. 如請求項^ 估…二方法’其中該另一矩陣包括表示-通道 '、、波器的—迴旋的一總濾波器矩陣。 頻碼1之方法,其巾該哈達瑪矩陣包括複數個展 =碼或者複數個解展頻碼,並且該方法進—步包括以下^ =用快=哈達瑪變換(FHT)操作將該哈 矩陣相乘;及 、 ί:::違瑪矩陣與該另一矩陣的該相乘來計算該多 用者矩陣。 另 使 7:如請求項6之方法,其中該另-矩陣包括 或者一解檀頻矩陣。 攪頻矩陣 8·如請求項6之方法,其中該另_矩睁包括表示一 估计與m的—迴旋的__總濾波器矩陣。 通道 解展β項6之方法’其中料達瑪矩陣包括該複數個 =頻碼,並且將該等已接收碼片處理為該等已接收符號 的步驟包括以下㈣:使用該複數個解展頻 收碼片進行解展頻。 r ο *ν ί ϋ 107 201128977 1 〇. —種多使用者偵測系統,包括: 一處理單元,其被配置為將已接收碼片處理為用於複數個 使用者的已接收符號; 一計算單元’其被配置為使用一哈達瑪矩陣計算一多使用 者矩陣’其中該多使用者矩陣將用於該複數個使用者的使 用者符號與該等已接收符號相關聯;及 一摘測單元’其被配置為使用該等已接收符號和該計算的 多使用者矩陣來偵測用於該複數個使用者的該等使用者 符號。 11. 如請求項10之系統,其中對於每個使用者,該多使用 者矩陣將用於其他使用者的該等使用者符號中的一戋多 個與用於該使用者的該已接收符號相關聯.。 12. 如請求項10之系統,其中該計算單元被配置為: 將一沃爾什矩陣變換為該哈達瑪矩陣; 使用快速哈達瑪變換(FHT)操作將該哈達瑪矩陣與另一 矩陣相乘;及 ' 基於該哈達瑪矩陣與該另一矩陣的該相乘來計算該多使 一矩陣包括一攪頻矩陣 1 3.如請求項12之系統,其中該另 或者一解搜頻矩陣。 108 201128977 14.如請求項玉2 估計與一濾坡器 之糸統’其中該另一矩隨4 Φ 祀卩早包括表示一通道 的一迴旋的一總濾波器矩陣。 .如1〇之系統,其中該哈達瑪 頻碼或者複數個解展頻碼,並且該二括複數個展 使用快速哈達 ::破配置為: 矩陣相乘;及換()㈣將該哈達瑪矩陣與另一 達碼矩陣與該另一矩陣的該相乘來計算該多使 矩陣包括一攪頻矩陣 16,如請求項15之系統,其中該另一 或者一解搜頻矩陣。 17.如請求項15之系統’其中該另一矩陣包括表示一通道 估計與1'波器的-迴旋的—總渡波器矩陣。 18.如請求項15之系統,其中該哈達瑪矩陣包括該複數個 解展頻碼’並且該處理單元被配置為:使㈣複數個解展 頻碼對該等已接收碼片進行解展頻。 19. 一種裝置,包括: 用於複數個使用者的已接收符 用於將已接收碼片處理為 號的構件; 用於使用一哈達瑪矩陣計算— 多使用者矩陣的構件,其中 V S] 109 201128977 該多使用者矩陣將用於該複數個使用者的使用者符號與 該等已接收符號相關聯;及 用於使用該等已接收符號和該計算的多使用者矩陣來伯 測用於該複數個使用者的該等使用者符號的構件。 20·如請求項19之裝置,其中對於每個使用者,該多使用 者矩陣將用於其他使用者的該等使用者符號中的一或多 個與甩於該使用者的該已接收符號相關聯。 21.如請求項19之裝置,其中該用於計算該多使用者矩陣 的構件包括: 用於將一沃爾什矩陣變換為該哈達瑪矩陣的構件; 用於使用快速哈達碼變換(FHT)操作將該哈達瑪矩陣與 另一矩陣相乘的構件;及 用於基於該哈達瑪矩陣與該另一矩陣的該相乘來計算該 夕使用者矩陣的構件。 22·如請求項21 或者一解攪頻矩 之裝置,其中該另一矩陣包括一攪頻矩陣 陣。 23 ·如請求項 估計與一濾波 21之裝置,其中該另一矩陣包括表示一通道 器的一迴旋的一總渡波器矩陣。 24. 月求項19之裝置,纟中該哈達瑪矩_包括複數個展 110 201128977 頻瑪或者複數個解展頻碼,並且該裝置進—步包括: 用於使用快速哈達瑪變拖「p口τp &amp; 巧變換(FHT)刼作將該哈達瑪矩陣盥 另一矩陣相乘的構件;及 皁一、 用於基於該哈達 運瑪矩陣與該另一矩陣的該相乘來 多使用者矩陣的構件。 水寸^該 25.如請求項24之f &lt;裒置,其中該另一矩陣包括一 或者-解搜頻矩陣。 復鴻矩 26.如請求項24之奘w , 0 ^ 裝置,其中該另一矩陣包括表示一通g 估4與-渡波器的—迴旋的—總滤波器矩陣。 明求項24之|置’其中該哈達瑪矩陣包括該複數令 解展頻碼,並且該用於^α 亚1。亥用於將該等已接收碼片處理為該等已 收符號的構件包括:用於使㈣複數個解展頻碼對該^ 接收碼片進行解展頻的構件。 28. -種具有儲存在其上的指令的機器可讀取媒體,該筹 指令可由-或多個處理器執行並且該等指令包括用於〇 下操作的代碼·· 將已接收碼片處理為用於複數個使用者的已接收符號; 使用-哈達瑪矩陣計算—多使用者矩陣,其中該多使用者 矩陣將用於該複數個使用者的使用者符號與該等已接收 符號相關聯;及 111 201128977 使用該等已接收符號和該計算的多使用者矩陣來偵測用 於該複數個使用者的該等使用者符號。 29.如請求項28之機器可讀取媒體,其中對於每個使用 者,該多使用者矩陣將用於其他使用者的該等使用者符號 中的一或多個與用於該使用者的該已接收符號相關聯。 3 0.如吻求項28之機器可讀取媒體,其中該用於計算該多 使用者矩陣的代螞包括用於以下操作的代碼: 將一沃爾什矩陣變換為該哈達瑪矩陣; 操作將該哈達瑪矩陣與另一 矩陣的該相乘來計算該多使 使用快速哈達瑪變換(fht ) 矩陣相乘;及 基於該哈達瑪矩陣與該另一 用者矩陣。 31.如請求項3〇之機器 擾頻矩陣或者—解搏 機态可讀取媒體,其中該另一矩陣包括 解授頻矩陣。201128977 VII. Patent Application Range: 1. A method for multi-user detection in a wireless communication system, comprising the steps of: processing a received chip into received symbols for a plurality of users; a Hadamard matrix computing a multi-user matrix, wherein the multi-user matrix associates user symbols for the plurality of users with the received symbols; and using the received symbols and the calculated The user matrix is used to measure the user symbols for the plurality of users. 2. As requested! The method wherein, for each user, the multi-user matrix associates one or more of the user symbols for other users with the received symbol for the ammonium user. τ 〇 战 用 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Another - matrix multiplication; and calculating the user matrix based on the multiplication of the Hadamard matrix with the another matrix. The method of claim 3, wherein the another matrix comprises a frequency search matrix 106 201128977 or a de-scrambling matrix 5. As the request item estimates two methods 'where the other matrix includes a representation-channel', a wave device - A total filter matrix of the convolution. In the method of frequency code 1, the Hadamard matrix includes a plurality of spreading codes or a plurality of despreading codes, and the method further comprises the following ^= using a fast = Hadamard transform (FHT) operation to phase the matrix Multiply the ; and , ί::: violation matrix with the other matrix to calculate the multiuser matrix. Further, 7: The method of claim 6, wherein the another-matrix comprises or a singular frequency matrix. The method of claim 6, wherein the other method comprises a __total filter matrix representing an estimate of the convolution with m. The method of channel decomposing the β term 6 'where the material dharma matrix includes the plurality of frequency codes, and the step of processing the received chips into the received symbols includes the following (4): using the complex despreading frequency Receive the code to perform the spread spectrum. r ο *ν ί ϋ 107 201128977 1 〇. A multi-user detection system comprising: a processing unit configured to process received chips into received symbols for a plurality of users; The unit 'is configured to calculate a multi-user matrix using a Hadamard matrix', wherein the multi-user matrix associates user symbols for the plurality of users with the received symbols; and a metrology unit 'It is configured to use the received symbols and the computed multi-user matrix to detect the user symbols for the plurality of users. 11. The system of claim 10, wherein for each user, the multi-user matrix uses one or more of the user symbols for other users and the received symbol for the user Associated.. 12. The system of claim 10, wherein the computing unit is configured to: transform a Walsh matrix into the Hadamard matrix; multiply the Hadamard matrix with another matrix using a fast Hadamard transform (FHT) operation And 'based on the multiplication of the Hadamard matrix with the other matrix to calculate the multi-matrix matrix comprising a frequency-stabilizing matrix 1. 3. The system of claim 12, wherein the other or a solution-frequency searching matrix. 108 201128977 14. As requested in claim j. 2, an estimate of the system with a filter, where the other moment, with 4 Φ 祀卩, includes a total filter matrix representing a convolution of a channel. Such as the system of 1〇, wherein the Hadamard frequency code or a plurality of despreading frequency codes, and the second plurality of exhibitions use the fast Hada:: the broken configuration is: matrix multiplication; and the () (four) the Hadamard matrix Computation of the multi-matrix matrix with the other matrix to calculate the multi-matrix matrix includes a scrambling matrix 16, such as the system of claim 15, wherein the other or a de-frequency search matrix. 17. The system of claim 15 wherein the another matrix comprises a total ferriser matrix representing a channel estimate and a 1' wave. 18. The system of claim 15, wherein the Hadamard matrix comprises the plurality of despreading codes' and the processing unit is configured to: (4) complex despreading codes to despread the received chips . 19. An apparatus comprising: means for receiving a received number of received symbols for a plurality of users; for computing using a Hadamard matrix - a component of a multi-user matrix, wherein VS] 109 201128977 the multi-user matrix associates user symbols for the plurality of users with the received symbols; and for using the received symbols and the calculated multi-user matrix for the test A component of the user symbols of a plurality of users. 20. The device of claim 19, wherein for each user, the multi-user matrix uses one or more of the user symbols for other users and the received symbol for the user Associated. 21. The apparatus of claim 19, wherein the means for computing the multi-user matrix comprises: means for transforming a Walsh matrix into the Hadamard matrix; for using a Fast Hadamard Code Transform (FHT) a means for multiplying the Hadamard matrix by another matrix; and means for computing the evening user matrix based on the multiplication of the Hadamard matrix with the other matrix. 22. A device as claimed in claim 21 or a frequency-distorting moment, wherein the other matrix comprises a frequency-staggered matrix. A device as estimated by a request and a filter 21, wherein the other matrix comprises a total waver matrix representing a convolution of a channel. 24. The device of item 19 of the month, the Hadamard moment in the middle of the _ includes a plurality of exhibitions 110 201128977 frequency or a plurality of despreading codes, and the device further comprises: for using the fast Hadamard tow "p port Τp &amp; FHT is a component that multiplies the Hadamard matrix by another matrix; and soap is used to multiply the multi-user matrix based on the multiplication of the Hadamard matrix with the other matrix The water element ^ 25. The f &lt; device of claim 24, wherein the other matrix comprises a - or solution search matrix. Complex moment 26. as claimed in item 24, 0 ^ device Wherein the other matrix comprises a -to-rotation-total-mechanical filter matrix representing a pass-to-wave estimator. The ambiguity of the item 24 is set to where the Hadamard matrix includes the complex order despreading code, and The means for processing the received chips into the received symbols includes: means for despreading (4) the plurality of despreading codes to the received chips. 28. A machine readable medium having instructions stored thereon, The instructions may be executed by - or a plurality of processors and the instructions include code for the operation of the squatting · processing the received chips into received symbols for a plurality of users; using - Hadamard matrix calculation - multi-use Matrix, wherein the multi-user matrix associates user symbols for the plurality of users with the received symbols; and 111 201128977 uses the received symbols and the computed multi-user matrix to detect The user symbols for the plurality of users. 29. The machine readable medium of claim 28, wherein for each user, the multi-user matrix is to be used by the other users One or more of the symbols are associated with the received symbol for the user. 3 0. A machine readable medium such as the kiss item 28, wherein the proxy for calculating the multi-user matrix includes Code for: transforming a Walsh matrix into the Hadamard matrix; operating the multiplication of the Hadamard matrix with another matrix to calculate the multi-use fast hadamard transform (fht) Matrix multiplication; and based on the Hadamard matrix and the other user matrix. 31. The machine scrambling matrix of claim 3 or the detuned state readable medium, wherein the other matrix comprises a de-frequency matrix. 可讀取媒體,其中該另 研;瓶,丹甲琢另一矩陣包括 一迴旋的一總濾波器矩陣。The readable medium, wherein the other is researched; the bottle, the other matrix of the scorpion scorpion includes a total filter matrix of a convolution. 取媒體,其中該哈達瑪矩陣包 解展頻碼,並且該等指令進一 112 201128977 使用快速哈達碑_ 矩陣相乘;及料(FHT)操作將該哈料”與另- ::該:達瑪矩陣與該另—矩陣的該相乘來計算 用者矩陣。 1 1 α通多使 34.如請求項u + μ 一矩陣包括 之機器可讀取媒體,其中該另 一授頻矩陣或去 _ _ ^ 又考—解攪頻矩陣。 35.二求項33之機器可讀取媒體,其中該另一矩陣包括 八、估汁與一濾波器的一迴旋的一總濾波器矩陣。 36·如3月求項33之機器可讀取媒體,纟中該哈達瑪矩陣包 括該複數個解展頻蜗,並且該用於將該等已接收碼片處理 為該等已接收符號的代妈包括:用於使用該複數個解展頻 碼對該等已接收碼片進行解展頻的代碼。 37. —種裝置,包括: 至少一個處理器,其被配置為: 將已接收碼片處理為用於複數個使用者的已接收符號; 使用一哈達瑪矩陣計算一多使用者矩陣,其十該多使用者 矩陣將用於該複數個使用者的使用者符號與該等已接收 符號相關聯;及 ί Si 使用該等已接收符號和該計算的多使用者矩陣來偵測用 於該複數個使用者的該等使用者符號。 113 201128977 38.如請求項37之裝置,其中對於每個使用者,該多使用 者矩陣將用於其他使用者的該等使用者符號中的一或多 個與用於該使用者的該已接收符號相關聯。 39·如請求項37之裝置,其中該至少一個處理器被配置為 藉由以下來計算該多使用者矩陣: 將一沃爾什矩陣變換為該哈達瑪矩陣; 使用快速哈達瑪變換(FHT)操作將該哈達瑪矩陣與另一 矩陣相乘;及 基於該哈達瑪矩陣與該另一矩陣的該相乘來計算該多使 用者矩陣。 4〇·如請求項39之裝置’其中該另—矩陣包括一授頻矩陣 或者一解攪頻矩陣。 請求項39之裝置,其中該另一矩陣包括表示-通道 D 濾波器的一迴旋的一總濾波器矩陣。 頻碼或者37之裝置’其中該哈達瑪矩陣包括複數個展 / _展頻碼,並且該至少—個處理器被配置 另 ==哈達瑪變換(FHT)操作將 矩陣相乘;及 S] 114 201128977 基於該哈達瑪矩陣與該另 用者矩陣。 一矩陣的該相乘來計算該多使 43 .如請求項42 或者一解攪頻矩 之裝置,其中該另一矩陣包括—攪頻矩陣 陣。 4 4 ·如請求項 估計與一濾波 42之裝置,其中該另一矩陣包括表示一通道 器的一迴旋的一總濾波器矩陣。 45.如請求項42之裝置,其中該哈達瑪矩陣包括該複數個 解展頻碼,並且該至少—個處理器被配置為藉由使用該複 數個解展頻瑪對料已接進行解展頻,來將該等已 接收碼&gt;1處理為料已接從符號。Taking the media, wherein the Hadamard matrix package decomposes the spreading code, and the instructions are further entered into a 2011 201128977 using a fast Hada monument _ matrix multiplication; and the material (FHT) operation will be the same as the other - :: the: Dharma The matrix is multiplied by the other matrix to calculate the user matrix. 1 1 通通多使34. As the request term u + μ a matrix includes the machine readable medium, wherein the other frequency matrix or _ _ ^ again test - solve the frequency matrix. 35. The machine of the second item 33 can read the medium, wherein the other matrix comprises eight, a total filter matrix of the juice and a spin of a filter. The machine of claim 3 may read the medium, wherein the Hadamard matrix includes the plurality of despreading worms, and the proxy for processing the received chips as the received symbols comprises: A code for despreading the received chips using the plurality of despreading codes. 37. An apparatus comprising: at least one processor configured to: process received chips for use Received symbols for a plurality of users; using a Hadamard moment Computing a multi-user matrix, wherein the multi-user matrix associates user symbols for the plurality of users with the received symbols; and ί Si uses the received symbols and the multi-use of the calculation The matrix is used to detect the user symbols for the plurality of users. 113 201128977 38. The device of claim 37, wherein for each user, the multi-user matrix is to be used by other users One or more of the user symbols are associated with the received symbol for the user. 39. The apparatus of claim 37, wherein the at least one processor is configured to calculate the multi-use by Matrix: transforming a Walsh matrix into the Hadamard matrix; multiplying the Hadamard matrix by another matrix using a fast Hadamard transform (FHT) operation; and based on the Hadamard matrix and the other matrix Multiplying to calculate the multi-user matrix. 4. The apparatus of claim 39, wherein the other matrix comprises a frequency-abanding matrix or a de-scrambling matrix. The device of claim 39, wherein the other The array includes a total filter matrix representing a convolution of the -channel D filter. A frequency code or a device of 37' wherein the Hadamard matrix includes a plurality of spreading/_spreading codes, and the at least one processor is configured another = = Hadamard transform (FHT) operation multiplies the matrix; and S] 114 201128977 based on the Hadamard matrix and the additional user matrix. The multiplication of a matrix calculates the multiplicity 43. As requested in item 42 or a solution A device for amplifying a frequency, wherein the other matrix comprises a frequency-stacking matrix. 4 4 - means for requesting an estimate and a filter 42, wherein the other matrix comprises a total filter representing a cyclotron of a channel matrix. 45. The apparatus of claim 42, wherein the Hadamard matrix comprises the plurality of despreading codes, and the at least one processor is configured to be decoupled by using the plurality of despreading horses Frequency, to process the received code &gt; 1 as a received symbol. 115115
TW099114083A 2009-05-04 2010-05-03 Method and system for multi-user detection using two-stage processing TW201128977A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/435,114 US8599677B2 (en) 2009-05-04 2009-05-04 Method and system for multi-user detection using two-stage processing

Publications (1)

Publication Number Publication Date
TW201128977A true TW201128977A (en) 2011-08-16

Family

ID=42566555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114083A TW201128977A (en) 2009-05-04 2010-05-03 Method and system for multi-user detection using two-stage processing

Country Status (3)

Country Link
US (1) US8599677B2 (en)
TW (1) TW201128977A (en)
WO (1) WO2010129440A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10588107B2 (en) 2012-10-26 2020-03-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods of positioning in a system comprising measuring nodes with multiple receiving points
TWI641243B (en) * 2017-10-02 2018-11-11 明泰科技股份有限公司 Multi antenna network system and base station, server and signal processing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69532190T2 (en) 1994-06-23 2004-08-12 Ntt Mobile Communications Network Inc. METHOD AND ARRANGEMENT FOR RECEIVING A CODE DIVISION MULTIPLEX SIGNAL
FI96651C (en) 1994-08-25 1996-07-25 Nokia Telecommunications Oy Reception procedure and recipients
US5757767A (en) * 1995-04-18 1998-05-26 Qualcomm Incorporated Method and apparatus for joint transmission of multiple data signals in spread spectrum communication systems
US5818887A (en) 1996-07-26 1998-10-06 Motorola, Inc. Method for receiving a signal in a digital radio frequency communication system
US5864548A (en) * 1997-01-06 1999-01-26 Cwill Telecommunications, Inc. Method and apparatus for fast modulation in synchronous CDMA communications
SE9700212L (en) * 1997-01-24 1998-07-25 Ericsson Telefon Ab L M Procedure and arrangement in a communication system
US6278702B1 (en) * 1998-12-02 2001-08-21 Nortel Networks Limited Method for limiting the dynamic range of a CDMA signal
EP1128564A1 (en) * 2000-02-28 2001-08-29 Lucent Technologies Inc. Multi-user detection CDMA receivers in mobile telecommunications systems
FI20041311A0 (en) * 2004-10-08 2004-10-08 Nokia Corp Lohkomodulaatio
US8340216B2 (en) * 2005-03-18 2012-12-25 Qualcomm Incorporated Space-time scrambling for cellular systems

Also Published As

Publication number Publication date
US20100278035A1 (en) 2010-11-04
WO2010129440A1 (en) 2010-11-11
US8599677B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
JP5346074B2 (en) Method and apparatus for successive interference cancellation with covariance route processing
JP4034189B2 (en) High speed joint detection
TW201126974A (en) Method and system for symbol detection using sub-constellations
TW201136201A (en) Method and system for multi-user interference cancellation
US20050025267A1 (en) Reduced complexity sliding window based equalizer
EP1332565A2 (en) Single user detection
JP5922084B2 (en) Method and system for interference cancellation
TW201126926A (en) Method and system for multi-user detection in the presence of multiple spreading factors
TW201128977A (en) Method and system for multi-user detection using two-stage processing
TW201128976A (en) Method and system for data-aided channel estimation
TW201126928A (en) Method and system for multi-user detection using two-stage processing
TW201126927A (en) Method and system for inter-cell interference cancellation
TWI342692B (en) Method and apparatus for channel and noise estimation
EP1413066B1 (en) Device for joint detection of cdma codes for multipath downlink
De Computationally-efficient algorithms for multiuser detection in short code wideband CDMA TDD systems
US20140226633A1 (en) Method and Apparatus for Code Activation, Computer Program and Storage Medium Thereof
CN101902246A (en) Method and equipment for detecting multicast single-frequency network received signal