TW201127772A - A IR-absorption fluorophosphate material of lead-free and water-resistance - Google Patents

A IR-absorption fluorophosphate material of lead-free and water-resistance Download PDF

Info

Publication number
TW201127772A
TW201127772A TW99103266A TW99103266A TW201127772A TW 201127772 A TW201127772 A TW 201127772A TW 99103266 A TW99103266 A TW 99103266A TW 99103266 A TW99103266 A TW 99103266A TW 201127772 A TW201127772 A TW 201127772A
Authority
TW
Taiwan
Prior art keywords
molar percentage
free
lead
absorbing material
mole percent
Prior art date
Application number
TW99103266A
Other languages
Chinese (zh)
Other versions
TWI401229B (en
Inventor
Kai-Shiun Chang
Original Assignee
Kai-Shiun Chang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kai-Shiun Chang filed Critical Kai-Shiun Chang
Priority to TW99103266A priority Critical patent/TWI401229B/en
Publication of TW201127772A publication Critical patent/TW201127772A/en
Application granted granted Critical
Publication of TWI401229B publication Critical patent/TWI401229B/en

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

The invention is a IR-absorption fluorophosphate material of lead-free and watr-resistance. The IR-absorption fluorophosphate material includes: 10-75% mole percent P2O5; 0.01-54% mole percent CaF2; 0.01-45% mole percent AlF3; 0.01-22% mole percent BaF2; 0.01-22% mole percent SrF2; 2-22% mole percent Al2O3; 0.01-10% mole percent YbF2; 0.01-10% mole percent MgF2; 0-10% mole percent CuO; 0-10% mole percent Tm2O3; 0-10% mole percent CoO; 0-5% mole percent FeO; 0.01-10% mole percent K2O; 0.01-10% mole percent Na2O; and 0.01-10% mole percent ZnO. The IR-absorption fluorophosphate material have excellent water-resistance (6.8*10<SP>-9</SP> g/cm<SP>2</SP>-min) and optical properties.

Description

201127772 五、發明說明: 【發明所屬之技術領域】 本發明係關於一種紅外線吸收材料;特別是一 種由無鉛氟磷酸鹽成分所組成的紅外線吸收玻璃且 具備高抗水性(6.8xl0_9 g/cm2-min)效果者。 【先前技術】 近年來由於電子影像設備之蓬勃發展,包括手 機、PDA、數位相機及顯微鏡攝影等,用這種經由 紅外線吸收的材料(吸收谢)完全隔絕紅外線(熱 線),達到影像色調平衡的效果(修正影像偏紅或泛 白問題)。此外紅外線吸收玻璃亦應用於醫學工程及 色彩調整等商機,如手術燈罩、色彩分析儀器及雷 射光筆等應用。201127772 V. Technical Field of the Invention: The present invention relates to an infrared absorbing material; in particular, an infrared absorbing glass composed of a lead-free fluorophosphate component and having high water resistance (6.8 x 10 -9 g/cm 2 - min ) effect. [Prior Art] In recent years, due to the booming development of electronic imaging equipment, including mobile phones, PDAs, digital cameras, and microscope photography, the infrared absorption (hotline) is completely isolated by the infrared absorption material (absorption) to achieve image tonal balance. Effect (correct image redness or whitening problem). In addition, infrared absorbing glass is also used in medical engineering and color adjustment applications such as surgical lamp covers, color analysis instruments and laser light pens.

I 在市場上歐盟規範、綠色環保材料及產品多功 能化,為現今產品開發之重要課題。稟承『綠色製 程-發展與環保並重』的理念。發明中以無鉛材料進 行紅外線吸收玻璃的開發為目標,利用無鉛材料開 發,結合產品的技術創新及提升概念,增加紅外線 吸收材料在國際市場上的競爭力。 氟磷睃鹽玻璃的起源,細說應從I960年Maiman 以摻Cr的Al2〇3晶體製成第一台固態雷射開始。隔 年Snitzer則利用摻Nd的矽酸鹽玻璃製成雷射元 件,達到在外界的激發作用下成為產生強光的元件 201127772 或裝置功能。直到1990年由於高能量雷射光需求的 增加,發現矽睃鹽玻璃無法長時間負荷&gt;10 TW功率 的應用,逐漸被具備優異的光學與激光參數的磷酸 鹽雷射玻璃取而代之。此為磷酸鹽玻璃的第一個商 業化應用例。到目前,大型雷射元件與裝置都已由 磷睃鹽玻璃取代,開啟磷酸鹽玻璃的應用先例。 隨著科學家對磷酸鹽玻璃的深入研究,其結構 也越來越為人所熟知。磷酸鹽玻璃的基本結構為磷 氧四面體[P04]單元,其中包括3個磷氧單鍵(P-0) 與1個磷氧雙鍵(P=〇),但四面體[P〇4]易發生歧化, 出現不對稱結構以及鍵結易斷裂變形等狀況,導致 磷酸鹽玻璃黏度小、化學穩定性差及熱膨脹係數大 等問題。其中化學穩定性不良,嚴重影饗磷酸鹽玻 璃被商業化廣泛使用的可能性。 本發明加入氟化磷酸鹽、氧化物及紅外線吸收 劑形成無鉛氟磷酸鹽紅外線吸收材料。其中P-ο基 與F發生鍵結反應,形成P-F鍵結而產生HF反應 物,此過程有利於0-H基從材料中逸出,最終在材 料熔體中和大氣間達到除去O-H基的效果。可大大 提高材料抗水解性,所以含有高量氟化物磷酸鹽在 大氣環境中,呈現相當穩定較一般磷酸鹽材料。 從文獻中得知,欲提高磷酸鹽化學穩定性,可 利用鹼金族、PbO、W03及SrO等氧化物,使玻璃I In the market, EU regulations, green materials and products are more functional, which is an important issue for today's product development. Inheriting the concept of “green process – development and environmental protection”. In the invention, the development of infrared absorbing glass with lead-free materials is aimed at developing non-lead materials, and combining the technological innovation and upgrading concepts of products to increase the competitiveness of infrared absorbing materials in the international market. The origin of fluorophosphonium salt glass should be elaborated from the first solid-state laser made by Maiman in 1960 with Cr-doped Al2〇3 crystal. In the next year, Snitzer uses Nd-doped tellurite glass to make laser components, which can become a component that produces strong light under external excitation. 201127772 or device function. Until 1990, due to the increase in demand for high-energy laser light, it was found that strontium salt glass could not be used for a long time load of &gt;10 TW power, and was gradually replaced by phosphate laser glass with excellent optical and laser parameters. This is the first commercial application of phosphate glass. To date, large laser components and devices have been replaced by phosphonium salt glass, setting a precedent for phosphate glass. With the in-depth study of phosphate glass by scientists, its structure is becoming more and more familiar. The basic structure of phosphate glass is a phosphorus-oxytetrahedral [P04] unit, which includes three phosphorus-oxygen single bonds (P-0) and one phosphorus-oxygen double bond (P=〇), but tetrahedron [P〇4] It is prone to disproportionation, asymmetry structure and easy fracture and deformation of the bond, which leads to problems such as small viscosity of phosphate glass, poor chemical stability and large thermal expansion coefficient. Among them, the chemical stability is poor, which seriously affects the possibility that phosphate glass is widely used commercially. The present invention incorporates a fluorinated phosphate, an oxide and an infrared absorbing agent to form a lead-free fluorophosphate infrared absorbing material. The P-o group reacts with F to form a PF bond to produce an HF reactant. This process facilitates the escape of the 0-H group from the material, and finally reaches the OH group in the material melt and the atmosphere. effect. It can greatly improve the hydrolysis resistance of the material, so it contains a high amount of fluoride phosphate in the atmosphere, showing a relatively stable phosphate material. It is known from the literature that in order to improve the chemical stability of phosphate, the oxides such as alkali gold, PbO, W03 and SrO can be used to make the glass

LSI 5 201127772 從層狀結構轉向鏈狀結構。主要是縮短磷氧四面體 [P〇4]結構,藉由金屬離子(Cu、Fe、Tm及Co)來增 強鍵結強度,而達到抗水性效果。例如1997年4月 11日公開之美國專利第5,609,660號中披露之一峨 酸鹽玻璃組成物,該材料利用氮化處理,使磷酸鹽 玻璃在85°C/85%RH的環境中經過84hr測試,重量 流失&lt;0·01 % ,明顯提升化學穩定性,但無法達成紅 外線吸收效果,只能單獨應用於光通訊用光纖、光 棒、放大器及雷射玻璃等。 2004年6月11日公開之中華民國專利第591061 號中披露之一近紅外線遮蔽薄膜组成物,該材料由 於可見光穿透率(400-620 nm)低於70〇/〇無法應用於 電子影像設備,而且紅外線遮蔽不足(&gt;8〇〇nm),無 法有效珥絕熱線,使商業應用價值大幅下降。 2〇1〇年1月10曰公開之中華民國專利第 1319383號中彼露之一典型材料非鍍膜式低熔紅外 光遮蔽玻璃,該磷酸鹽材料利用pb〇及其它氧化物 提高化學穩定性。但使用氧化鉛材料無法達到無鉛 環保製程’且抗水性(3 5χ1〇-7以咖2-—)效果仍未明顧提 高到應用償值,只能停留於研究階段並無法商品化。 由於上述專利均無法商業化應用,因此發明人 為建立台灣可自主性材料,擺脫台灣玻璃產業中長 期依賴日本、美國及德國供應等問題,經過長年研 201127772 究终於完成此項發明,望藉此利於社獲。 【發明内容】 本發明之主要目的係在提供一種可解決前揭之 黏度小、化學穩定性差、熱膨脹係數大及抗水性不足 等缺失。因而發明抗水性無鉛氟磷酸鹽紅外線吸收材 料’其可維持高可見光穿透(4〇〇-62〇nm平均&gt;90%)特 性’並提供隔熱源、電子影像補正及各種紅外線吸收 I 之設備使用。 另一目的在提供一種抗水性無鉛材料,其能利 用無錯氟化物材料提高抗水性(6·8χ10-9 g/cm2_min)效 果’同時保持良好的紅外線咴收特性。 為了達成上述之目的,本發明提供一種抗水性 無鉛氟磷酸鹽紅外線吸收材料,主要包含下列成分之 氟壤酸鹽材料·· 10-75%莫耳百分比之ρ2〇5 ; 〇·〇ι_54%莫耳百 φ 分比之Cap2 ; 0.01*45%莫耳百分比之AIF3 ; 0.01·22%莫耳百 分比之BaF2 ; 0.01-22%莫耳百分比之SrF2 ; 2-22%莫耳百分 比之Al2〇3 ; 〇.〇ΐ·ι〇%莫耳百分比之莫耳百分 比之MgF2 ; 〇·ΐ〇%莫耳百分比之QiO ; 0-10%莫耳百分比之 Tm2〇3; 0·10%莫耳百分比之CoO ; 0-5%莫耳百分比之Fe〇 ; 0 01_10%莫耳百分比之K20 ; 0.01-10%莫耳百分比之Na2〇; 以及0.01-10%莫耳百分比之2UO。 由於本發明確實利用無鉛氟化物增進抗水性效 果,因此依法申請發明專利。 201127772 【實施方式】 本發明之抗水性無鉛氟填酸鹽紅外線吸收材料 為氟磷酸鹽、氧化物及紅外線吸收劑所组成,可藉 由調整莫耳百分比濃度及變更吸收劑,來改變紅外 線吸收光譜及材料物理性質。以下,列舉較佳具艘 實施例說明如下。 • 本發明中抗水性無鉛氟磷酸鹽紅外線吸收材 料,係包含氟化物如CaF2、A1F3、BaF2、SrF2、YbF2及 MgF2,氧化物如 P203、a1203、K20、Na20 及 Zn〇,及紅外 線吸收剤如CuO,、Tm2〇3、CoO及FeO。而該組成之各成分莫 耳百分比如下:10·75%莫耳百分比之p2〇5 ; 0.01-54%莫耳百 分比之CaFs ; 0.01«45%莫耳百分比之A1F3 ; 0.01-22%莫耳百 分比之BaF2 ; 0.01-22%莫耳百分比之SrF2 ; 2-22%莫耳百分 比之Al2〇3 ; 0.01-10%莫耳百分比之YbF2; 〇 〇1_丨〇%莫耳百分 鲁 比之; 0-10%莫耳百分比之CuO ; 0-10%莫耳百分比之LSI 5 201127772 From a layered structure to a chain structure. The main reason is to shorten the structure of the phosphorus-oxygen tetrahedron [P〇4], and to enhance the bonding strength by metal ions (Cu, Fe, Tm and Co) to achieve a water-resistance effect. For example, a bismuth silicate glass composition is disclosed in U.S. Patent No. 5,609,660, the disclosure of which is incorporated herein by reference. , weight loss &lt; 0·01 %, significantly improve chemical stability, but can not achieve infrared absorption effect, can only be used alone in optical fiber, optical rod, amplifier and laser glass. A near-infrared masking film composition disclosed in the Republic of China Patent No. 591061 of June 11, 2004, which is not applicable to electronic imaging equipment because the visible light transmittance (400-620 nm) is less than 70 〇/〇. And the lack of infrared shielding (&gt;8〇〇nm) cannot effectively eliminate the hotline, which greatly reduces the value of commercial applications. One of the typical materials of the Republic of China Patent No. 1319383, which is a non-coated low-melting infrared light-shielding glass, which utilizes pb〇 and other oxides to improve chemical stability. However, the use of lead oxide materials cannot achieve lead-free environmentally friendly processes, and the water-resistance (3 5χ1〇-7 to coffee 2--) effect has not been raised to the application compensation level, and can only stay in the research stage and cannot be commercialized. Since none of the above patents can be commercialized, the inventors have finally completed the invention in order to establish Taiwan's autonomous materials and get rid of the long-term dependence of Taiwan's glass industry on the supply of Japan, the United States and Germany. Conducive to the community. SUMMARY OF THE INVENTION The main object of the present invention is to provide a defect which can solve the problems of small viscosity, poor chemical stability, large thermal expansion coefficient and insufficient water resistance. Therefore, the invention discloses a water-resistant lead-free fluorophosphate infrared absorbing material which can maintain high visible light penetration (4 〇〇 - 62 〇 nm average > 90%) characteristics and provides a heat source, electronic image correction and various infrared absorption I. Equipment. Another object is to provide a water-resistant lead-free material which can improve the water resistance (6·8 χ 10-9 g/cm 2 _min) effect by using an error-free fluoride material while maintaining good infrared absorption characteristics. In order to achieve the above object, the present invention provides a water-resistant lead-free fluorophosphate infrared absorbing material mainly comprising the following components of fluoroclay material··10-75% molar percentage of ρ2〇5; 〇·〇ι_54% Caps; argon argon ratio of Cap2; 0.01*45% molar percentage of AIF3; 0.01·22% molar percentage of BaF2; 0.01-22% molar percentage of SrF2; 2-22% molar percentage of Al2〇3; 〇·〇ΐ·ι〇% molar percentage of the molar percentage of MgF2; 〇·ΐ〇% molar percentage of QiO; 0-10% molar percentage of Tm2〇3; 0·10% molar percentage of CoO 0-5% molar percentage of Fe 〇; 0 01_10% molar percentage of K20; 0.01-10% molar percentage of Na2 〇; and 0.01-10% molar percentage of 2UO. Since the present invention does utilize lead-free fluoride to enhance the water resistance effect, it has applied for a patent for invention according to law. 201127772 [Embodiment] The water-resistant lead-free fluorine-filled acid salt infrared absorbing material of the present invention is composed of a fluorophosphate, an oxide and an infrared absorbing agent, and the infrared absorption spectrum can be changed by adjusting the molar percentage concentration and changing the absorbent. And the physical properties of the material. Hereinafter, a preferred embodiment will be described below. • The water-resistant lead-free fluorophosphate infrared absorbing material of the present invention comprises fluorides such as CaF2, A1F3, BaF2, SrF2, YbF2 and MgF2, oxides such as P203, a1203, K20, Na20 and Zn〇, and infrared absorption such as CuO, Tm2〇3, CoO and FeO. The percentage of the molar components of the composition is as follows: 10·75% molar percentage of p2〇5; 0.01-54% molar percentage of CaFs; 0.01 «45% molar percentage of A1F3; 0.01-22% molar percentage BaF2; 0.01-22% molar percentage of SrF2; 2-22% molar percentage of Al2〇3; 0.01-10% molar percentage of YbF2; 〇〇1_丨〇% molar percentage of Ruby; 0-10% molar percentage of CuO; 0-10% molar percentage

Tm2〇3; 0-10%莫耳百分比之Co〇 ; 〇_5%莫耳百分比之Fe〇 ; 0.01-10%莫耳百分比之K20 ; 0.01-10%莫耳百分比之Na2〇; 以及0.01-10%莫耳百分比之ZnO。 上述組成物中 P2〇5、CaF2、A1F3、BaF2、SrF2、Al2〇3、 YbF2、MgF2、K2〇、Na20及ZnO為形成玻璃主體結構,只要 在上述範圍内即可;本發明較佳實施例為p2〇5、CaF2、A1F3、 BaF2、SrF2、Al2〇3、YbF2、MgF2、K20、Na20 及 ZnO 之總莫 201127772 耳百分比佔整體比例8〇·98%。另一較佳實施例為其p2〇5、 CaF2、A1F3、BaF2、SrF2、Al2〇3、YbF2、MgF2 之總莫耳百分 比佔整體比例60-80%,以防止材料產生失透現象。其中發明 之抗水性無鉛氟磷酸鹽紅外線吸收材料其κ2〇、Na2〇及Zn〇 之總莫耳百分比佔整想比例10-25%,其可大幅降低玻璃液的 黏度、溶化溫度,是良好的助熔劑。另外發明之抗水性無船氣 磷酸鹽紅外線吸收材料其CuO、Tm2〇3、CoO及FeO之總莫 耳百分比佔整體比例1-15% ,其為影響紅外線吸收光譜,可大 幅提升紅外線吸收效果,此材料製成只要在前述範固内即可。 製作時’需先按比例調配原料並均句混合完成混合料,再 將混合料置入耐熱坩堝中,以800-1200Ϊ(依材料组成而定)進 行玻璃熔煉,恆溫2hr後(材料完全熔融)將材料注入石墨模中 成型,經390450°C溫度恆溫10hr達到完全退火,再進行研磨 拋光作業,而取得抗水性無鉛氟磷酸鹽紅外線吸收材料。此材 料特性分別為:玻璃轉換溫度(Tg)約39(M70eC,軟化溫度(Ts) 約410-540°C,熱膨脹係數(c〇約90-100χ10·7/ΐ,密度約 2.6-3.2g/cm2,硬度(Moh,s)約 4-5 ,折射率(¾)約 1.52-1.65 ,抗 水性(70°C/100%RH)最佳為6.8xl0-9g/cm2-min。其中抗水性是 指材料在拋光後試片浸入70eC的去離子水中,所求得之單位 表面積所溶出之重量損失量。另外光學性質是將材料拋光成鏡 面後,利用SHIMADZU-UV-1601/UV-NIR光譜儀進行量測而 測得之性質。 發明之组成與光學特性,特舉較佳具體實施例說明如下。 201127772 實例一 本實例之製作過程如上述’將表一之材料進行混合熔煉 後,以#800碳化珍研磨液進行研磨,再以#1200氧化鈽拋光液 進行拋光,製成厚度l&quot;0.3mm之鏡面玻璃試片,以UV-NIR光 譜儀進行測試。所得之抗水性無鉛氟磷酸鹽紅外線吸收材料光 譜圖,如圖一所示。 表一 _ 單位:mol% p205 CaF2 A1F3 BaF2 BaF2 SrF2 YbF2 MgF2 61.00 0.02 0.02 0.02 5.81 5.19 0.02 0.70 ai2o3 K20 Na20 ZnO CuO Tm2〇3 CoO FeO 14.73 0.72 6.19 1.61 3.40 0.01 0.55 0.01 膏例二 本實例之製作過程如上述,將表二之材料進行混合熔煉 後,所得之抗水性無鉛氟磷酸里紅外線吸收材料羌譜圖,如圖 二所示。 表二 單位:mol% P2〇5 CaF2 A1F3 BaF2 BaF2 SrF2 YbF2 MgF2 79.15 0.02 0.02 0.02 0.05 0.05 0.02 0.40 AI2O3 K20 Na20 ZnO CuO Tm2〇3 CoO FeO 7.05 3.30 1.00 3.86 5.04 0.01 0.01 0.00 201127772 實例三 本實例之製作過程如上述,將表三之材料進行混合熔煉 後’所得之抗水性無鉛氟磷酸鹽紅外線吸收材料光譜圓,如圖 三所示。 表三 單位:mol% P2〇5 CaF2 aif3 BaF2 BaF2 SrF2 YbF2 MgF2 70.96 0.02 0.02 0.02 0.03 0.03 0.02 0.40 AI2O3 κ2ο Na20 ZnO CuO Tm2〇3 CoO FeO 6.61 6.07 4.10 4.90 6.80 0.01 0.00 0.01 本發明所揭示抗水性無鉛氟磷酸鹽紅外線吸收材料 之可見光(400-620nm)平均穿透率&gt;80%,較佳玻璃組 成平均穿透率&gt;90%。而紅外光(750-1100nm)平均穿 透率&lt;5%,較佳玻璃组成平均穿透率&lt;0.1%。此外, 本發明在高溫高濕(7(TC/100%RH)環境下進行抗水 性測試,達到抗水性=2.5乂10'8以〇112-111111,較佳抗水性=6.8)&lt; l(T9g/cm2-min。其結果顯示,均較文獻中與商業用之罐酸鹽紅 外線吸收材料抗水破壞能力佳,具備較長之耐候壽命。 本發明之抗水性無鉛氟磷酸盥紅外線吸收材料 其理論上可阻隔100%熱線光源(&gt;780nm),應用於綠 能隔熱建材玻璃上,可在夏天節省室内能源消耗、 白天曰照可見光的高穿透率可協助室内達到照明的 效果。此外於電子影像裝置、醤療工程、光織照明 及雷射元件上皆具實用價值。 201127772 綜合上述結果顯示,本發明無論在功效、應用 及創新性,均優異於習知之技術特徵,為「紅外線 吸收材料」開啟新的里程碑。 【圖式簡單說明】 圖一係根據本發明之實例一光譜圖。 圖二係根據本發明之實例二光譜圊。 圖三係根據本發明之實例三光譜囷。Tm2〇3; 0-10% molar percentage of Co〇; 〇_5% molar percentage of Fe〇; 0.01-10% molar percentage of K20; 0.01-10% molar percentage of Na2〇; and 0.01- 10% molar percentage of ZnO. In the above composition, P2〇5, CaF2, A1F3, BaF2, SrF2, Al2〇3, YbF2, MgF2, K2〇, Na20 and ZnO are formed into a glass main structure, as long as it is within the above range; preferred embodiment of the present invention The total percentage of 201127772 ears of p2〇5, CaF2, A1F3, BaF2, SrF2, Al2〇3, YbF2, MgF2, K20, Na20 and ZnO accounts for 8〇·98% of the total. In another preferred embodiment, the total molar percentage of p2〇5, CaF2, A1F3, BaF2, SrF2, Al2〇3, YbF2, and MgF2 is 60-80% of the total ratio to prevent devitrification of the material. The water-repellent lead-free fluorophosphate infrared absorbing material of the invention has a total molar percentage of κ2〇, Na2〇 and Zn〇 of 10-25%, which can greatly reduce the viscosity and melting temperature of the glass liquid, and is good. Flux. In addition, the water-resistant non-ship-type phosphate infrared absorbing material of the invention has a total molar percentage of CuO, Tm2〇3, CoO and FeO of 1-15%, which affects the infrared absorption spectrum and can greatly enhance the infrared absorption effect. This material can be made as long as it is within the aforementioned range. At the time of production, the raw materials need to be proportioned firstly and mixed in a uniform sentence, and then the mixture is placed in a heat-resistant crucible, and the glass is smelted at 800-1200 Torr (depending on the composition of the material), and after constant temperature for 2 hr (the material is completely melted) The material is injected into a graphite mold to form a complete annealing at a temperature of 390450 ° C for 10 hr, and then subjected to grinding and polishing operations to obtain a water-resistant lead-free fluorophosphate infrared absorbing material. The material properties are: glass transition temperature (Tg) of about 39 (M70eC, softening temperature (Ts) of about 410-540 ° C, thermal expansion coefficient (c〇 about 90-100χ10·7 / ΐ, density of about 2.6-3.2g / Cm2, hardness (Moh, s) is about 4-5, refractive index (3⁄4) is about 1.52-1.65, and water resistance (70 °C / 100% RH) is preferably 6.8xl0-9g/cm2-min. Refers to the weight loss of the material surface area obtained by immersing the test piece in deionized water of 70eC after polishing. The optical property is to polish the material into a mirror surface and then use SHIMADZU-UV-1601/UV-NIR spectrometer. Properties measured by measurement. Composition and optical characteristics of the invention, preferred embodiments are described below. 201127772 Example 1 The production process of this example is as described above, after the material of Table 1 is mixed and smelted, carbonized by #800. The polishing liquid is ground and polished with #1200 cerium oxide polishing solution to prepare a mirror glass test piece with thickness l&quot;0.3mm, which is tested by UV-NIR spectrometer. The obtained water-resistant lead-free fluorophosphate infrared absorption material spectrum Figure, as shown in Figure 1. Table 1 _ Unit: mol% p205 CaF2 A1F3 BaF2 BaF2 SrF2 YbF2 MgF2 61.00 0.02 0.02 0.02 5.81 5.19 0.02 0.70 ai2o3 K20 Na20 ZnO CuO Tm2〇3 CoO FeO 14.73 0.72 6.19 1.61 3.40 0.01 0.55 0.01 Paste 2 The production process of this example is as described above, and the materials of Table 2 are mixed and smelted. After that, the obtained water-repellent lead-free fluorophosphate infrared absorption material 羌 spectrum is shown in Fig. 2. Table 2 Unit: mol% P2〇5 CaF2 A1F3 BaF2 BaF2 SrF2 YbF2 MgF2 79.15 0.02 0.02 0.02 0.05 0.05 0.02 0.40 AI2O3 K20 Na20 ZnO CuO Tm2〇3 CoO FeO 7.05 3.30 1.00 3.86 5.04 0.01 0.01 0.00 201127772 Example 3 The production process of the example is as follows. After the materials of Table 3 are mixed and smelted, the obtained water-resistant lead-free fluorophosphate infrared absorbing material has a spectral circle. As shown in Figure 3. Table 3 Unit: mol% P2〇5 CaF2 aif3 BaF2 BaF2 SrF2 YbF2 MgF2 70.96 0.02 0.02 0.02 0.03 0.03 0.02 0.40 AI2O3 κ2ο Na20 ZnO CuO Tm2〇3 CoO FeO 6.61 6.07 4.10 4.90 6.80 0.01 0.00 0.01 The visible light (400-620 nm) average transmittance of the disclosed water-free lead-free fluorophosphate infrared absorbing material &gt; 80%, preferably glass composition, average penetration rate &gt; 90%. The average transmittance of infrared light (750-1100 nm) is &lt; 5%, and the average transmittance of glass composition is preferably &lt; 0.1%. In addition, the present invention performs water resistance test under high temperature and high humidity (7 (TC/100% RH) environment to achieve water resistance = 2.5 乂 10'8 to 〇 112-111111, preferably water resistance = 6.8) &lt; l ( T9g/cm2-min. The results show that both of the commercially available canned acid sodium absorbing materials have better water resistance resistance and longer weathering life. The water-resistant lead-free fluorophosphate ytterbium infrared absorbing material of the present invention In theory, it can block 100% hot-line light source (> 780nm) and can be applied to green energy-insulating building materials glass, which can save indoor energy consumption in summer and high penetration rate of visible light during daytime to help the indoor lighting effect. It has practical value in electronic imaging devices, sputum therapy, light-illuminated lighting and laser components. 201127772 The above results show that the present invention is superior to the conventional technical features in terms of efficacy, application and innovation, and is "infrared The absorbing material opens a new milestone. [Simplified illustration of the drawings] Figure 1 is a spectrum diagram according to an example of the present invention. Figure 2 is a second spectrum spectroscopy according to the present invention. Figure 3 is a graph according to the present invention. Example Three spectra granary.

IS1 12IS1 12

Claims (1)

201127772 六、申請專利範圍: 1. 一種抗水性無鉛氟磷酸鹽紅外線吸收材料,係包含下 列成分: 10-75%莫耳百分比之p2〇5 ; 0·01-54%莫耳百分比之CaF2 ; 0.01*45%莫耳百分比之A1F3 ; 0.01-22%莫耳百分比之BaF2 ; 〇·〇1-22%莫耳百分比之SrF2 ; 2-22%莫耳百分比之a12〇3 ; 0.01-10%莫耳百分比之YbF2 ; 0.01-10%莫耳百分比之MgF2 ; 0-10%莫耳百分比之Cu0 ; 0-10%莫耳百分比之Tm2〇3 ; 0-10%莫耳百分比之C〇〇 ; 0-5%莫耳百分比之Fe〇 ; M1-10%莫耳百分比之K20 ; 〇.〇1·10%莫耳百分比之Na20 ;以及 0.01-10%莫耳百分比之Zn〇。 2. 如申請專利範園第1項之抗水性無鉛氟磷酸鹽紅外線 吸收材料,其中 P205、CaF2、AlF3、BaF2、SrF2、Al203、YbF2、 MgF2、K20、Na20及ZnO之總莫耳百分比佔整體比例80-98% 之範圍。 [S 13 201127772 3.如申請專利範圍第1項之抗水性無鉛氟磷酸鹽紅外線吸 收材料,其中 P2〇5、CaF2、A1F3、BaF2、SrF2、Al2〇3、 及MgF2之總莫耳百分比佔整體比例60-80%之範圍。 4·如申請專利範園第1項之抗水性無鉛氟磷酸鹽紅外線吸 收材料,其中K2〇、Na2〇及ZnO之總莫耳百分比佔整體比例 10-25%之範圍。 5·如申請專利範圍第1項或第2項或第3項之抗水性無鉛氟碟 酸鹽紅外線吸收材料,其中CuO、Tm203、CoO及FeO之 鲁 總莫耳百分比佔整體比例M5〇/。之範圍。 6. 如申請專利範圍第〗項之無鉛氟填酸鹽紅外線吸收材料,其中 BaF2較佳之莫耳百分比21·1〇2%之範圍。 7. 如申請專利範圍第1項之無鉛氟鱗酸鹽紅外線吸收材料,其中 SrFs較佳之莫耳百分比2·ρ9.20/〇之範園。 8. 如申請專利範圍第1項之無鉛氟碟酸鹽紅外線吸收材料,其中 MgFz較佳之莫耳百分比〇 1-3 3%之範圍。 • 9·如申請專利範圍第1項之無鉛氟壤酸鹽紅外線吸收材料,其應 用於影像鏡頭之色彩校正用。 IS1 14201127772 VI. Scope of application for patents: 1. A water-resistant lead-free fluorophosphate infrared absorbing material containing the following components: 10-75% molar percentage of p2〇5; 0·01-54% molar percentage of CaF2; 0.01 *45% molar percentage of A1F3; 0.01-22% molar percentage of BaF2; 〇·〇1-22% molar percentage of SrF2; 2-22% molar percentage of a12〇3; 0.01-10% molar Percentage of YbF2; 0.01-10% molar percentage of MgF2; 0-10% molar percentage of Cu0; 0-10% molar percentage of Tm2〇3; 0-10% molar percentage of C〇〇; 0- 5% molar percentage of Fe 〇; M1-10% molar percentage of K20; 〇.〇1·10% molar percentage of Na20; and 0.01-10% molar percentage of Zn〇. 2. For example, apply for the water-resistant lead-free fluorophosphate infrared absorbing material in the first paragraph of the patent garden, in which the total molar percentage of P205, CaF2, AlF3, BaF2, SrF2, Al203, YbF2, MgF2, K20, Na20 and ZnO accounts for the whole. The ratio is in the range of 80-98%. [S 13 201127772 3. For example, the water-resistant lead-free fluorophosphate infrared absorbing material of claim 1 of the patent scope, wherein the total molar percentage of P2〇5, CaF2, A1F3, BaF2, SrF2, Al2〇3, and MgF2 accounts for the whole The ratio is in the range of 60-80%. 4. For example, apply for the water-resistant lead-free fluorophosphate infrared absorbing material in the first paragraph of the patent garden, in which the total molar percentage of K2〇, Na2〇 and ZnO accounts for 10-25% of the total proportion. 5. For example, the water-resistant lead-free fluorodisc sodium absorbing material of the first or second or third item of the patent application, wherein the total molar percentage of CuO, Tm203, CoO and FeO is M5〇/. The scope. 6. For the lead-free fluorolate acid infrared absorbing material of the patent application scope, the preferred molar percentage of BaF2 is 21·1〇2%. 7. For example, the lead-free fluoroscale acid infrared absorbing material of claim 1 of the patent scope, wherein the SrFs preferably has a molar percentage of 2·ρ 9.20/〇. 8. The lead-free fluorodisc sodium absorbing material according to claim 1 of the patent scope, wherein MgFz preferably has a molar percentage 〇 1-3 3%. • 9· For example, the lead-free fluoroclay infrared absorbing material of Patent Application No. 1 shall be applied to the color correction of the image lens. IS1 14
TW99103266A 2010-02-04 2010-02-04 A ir-absorption fluorophosphate material of lead-free and water-resistance TWI401229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99103266A TWI401229B (en) 2010-02-04 2010-02-04 A ir-absorption fluorophosphate material of lead-free and water-resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99103266A TWI401229B (en) 2010-02-04 2010-02-04 A ir-absorption fluorophosphate material of lead-free and water-resistance

Publications (2)

Publication Number Publication Date
TW201127772A true TW201127772A (en) 2011-08-16
TWI401229B TWI401229B (en) 2013-07-11

Family

ID=45024959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99103266A TWI401229B (en) 2010-02-04 2010-02-04 A ir-absorption fluorophosphate material of lead-free and water-resistance

Country Status (1)

Country Link
TW (1) TWI401229B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138082A (en) * 2020-01-13 2020-05-12 苏州众为光电有限公司 High-stability glass optical fiber and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493417B2 (en) * 2004-06-09 2010-06-30 Hoya株式会社 Glass for semiconductor package window, glass window for semiconductor package and semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138082A (en) * 2020-01-13 2020-05-12 苏州众为光电有限公司 High-stability glass optical fiber and preparation method thereof
CN111138082B (en) * 2020-01-13 2022-06-17 苏州众为光电有限公司 High-stability glass optical fiber and preparation method thereof

Also Published As

Publication number Publication date
TWI401229B (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP2021138614A (en) Transparent, near-infrared-shielding glass ceramic
JP6341836B2 (en) Optical glass and optical element
JP2018188353A (en) Filter glass
JPWO2012057232A1 (en) Glass plate and method for producing the same
CZ287067B6 (en) Crystal glass exhibiting high light transmittance, free of lead and barium
JP2012148964A (en) Fluorophosphate glass
JP2008303141A (en) Optical glass
CN107434354A (en) Alumina silicate glass, antibiotic glass and preparation method thereof
JP6047226B2 (en) Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter
CN110156317B (en) Ultraviolet, visible and near-infrared light absorbing glass and preparation method and application thereof
JP2009096662A (en) Glass composition
JP6047227B2 (en) Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter
JP2011057509A (en) Optical glass
WO2016159362A1 (en) Glass article
JP6537806B2 (en) Infrared transmitting glass, optical element and preform
JP2006248850A (en) Glass for near-infrared absorbing filter
JP2003160354A (en) Highly transparent glass plate and method of manufacturing the highly transparent glass plate
JP3899825B2 (en) Optical waveguide device and manufacturing method thereof
JPH06234546A (en) Near infrared-ray cutting filter glass
TW201127772A (en) A IR-absorption fluorophosphate material of lead-free and water-resistance
JP3749276B2 (en) Infrared transmission glass
WO2019044563A1 (en) Glass
TW201714847A (en) High-transmission glass
WO2013161967A1 (en) Glass plate
JPWO2008038779A1 (en) Glass composition and glass article using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees