TW201127767A - Defrosting glass and car using the same - Google Patents

Defrosting glass and car using the same Download PDF

Info

Publication number
TW201127767A
TW201127767A TW99103119A TW99103119A TW201127767A TW 201127767 A TW201127767 A TW 201127767A TW 99103119 A TW99103119 A TW 99103119A TW 99103119 A TW99103119 A TW 99103119A TW 201127767 A TW201127767 A TW 201127767A
Authority
TW
Taiwan
Prior art keywords
electrode
carbon nanotube
glass
nanotube film
defrosting
Prior art date
Application number
TW99103119A
Other languages
Chinese (zh)
Other versions
TWI394730B (en
Inventor
yu-quan Wang
Liang Liu
Original Assignee
Beijing Funate Innovation Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Funate Innovation Tech filed Critical Beijing Funate Innovation Tech
Priority to TW99103119A priority Critical patent/TWI394730B/en
Publication of TW201127767A publication Critical patent/TW201127767A/en
Application granted granted Critical
Publication of TWI394730B publication Critical patent/TWI394730B/en

Links

Landscapes

  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The invention relates to an defrosting glass. The defrosting glass includes a glass matrix including a top surface, one layer of carbon nanotube film, a polymer protective layer, at least one first electrode and at least one second electrode. The one layer of carbon nanotube film is positioned on the top surface of the glass matrix. The polymer protective layer is coated on the one layer of carbon nanotube film. The at least one first electrode is spaced with the at least one second electrode. The carbon nanotube film includes a plurality of carbon nanotubes oriented in a same direction and joined end to end by van der Waals attractive force. The invention also provides a car using the defrosting glass.

Description

201127767六、發明說明: [0001] 【發明所屬之技術領域】 本發明涉及一種除霜破壤應用 【先前技術】 該除霜破璃的汽車。 [0002] 冬季氣溫低,早上起來開車, ^ , ^ ^ ^ u 車破螭上常會有一層薄霜/ 霧,想要除去也不是报容易。 主要原因就是車玻璃與外 界接觸皿度較低’車内的水蒸氣凝結在玻璃上形成的 ’要想除掉這種霜/霧,有兩_法,要麼把玻璃的溫度 Ο 升高,要餘車_濕度降下來。切技術巾,多採用 先在汽車窗上設置條料電電極,然後在於條形導電電 極上塗刷金屬粉末的複合導錢料,從而形成—層導電 薄膜。使用時對該導電薄膜進行通電加熱,就可以除掉 形成在汽車玻璃上的霜/霧。 [0003] 然而,先前技術中,通過在玻璃表面塗金屬粉末的複201127767 VI. Description of the Invention: [0001] The present invention relates to a defrosting and diarrhea application [Prior Art] The defrosting and glazing automobile. [0002] The temperature in winter is low. When you get up in the morning, ^ , ^ ^ ^ u There is often a thin layer of frost/fog on the broken car. It is not easy to remove it. The main reason is that the glass of the car is in contact with the outside world. The water vapor in the car is condensed on the glass. To remove the frost/fog, there are two methods, or the temperature of the glass is raised. Car _ humidity dropped. For the technical towel, the strip electrode is first placed on the window of the car, and then the composite conductive material of the metal powder is coated on the strip-shaped conductive electrode to form a layer of conductive film. When the conductive film is electrically heated during use, the frost/fog formed on the automobile glass can be removed. [0003] However, in the prior art, by applying a metal powder to the surface of the glass

合導電漿料的方法形成除霜用的導電薄膜,使得導電薄 膜不是以一個整體的結構設置於玻璃表面,導電薄膜與 玻璃之間的黏合不夠牢固’使用B寺該導電薄膜會產生部 分脫落的問題’造成在汽車玻璃的漿料部分脫落的地方 ’得不到加熱,容易重新形成霜/霧。從而影響汽車除霜 的效果。 【發明内容】 [0004] 有鑒於此,提供一種新型的性能比較穩定,具有較好的 除霜效果的除霜玻璃實為必要。 [0005] —種除霜玻璃,包括:一玻璃基體具有一表面;一奈米 碳管膜設置於玻璃基體的表面;一高分子保護層覆蓋所 099103119 表單編號A0101 第3頁/共23頁 0992005865-0 201127767 述奈米碳管膜;以及至少一第一電極及至少一第二電極 間隔設置,並與所述奈米碳管膜電連接。所述奈米碳管 膜為由複數奈米碳管組成,所述複數奈米碳管通過凡德 瓦爾力首尾相連沿一個方向擇優取向排列。 [0006] 一種汽車,包括一除霜玻璃、一電路系統及一控制系統 。該除霜玻璃包括:一玻璃基體具有一表面;一奈米碳 管膜設置於玻璃基體的表面;一高分子保護層覆蓋所述 奈米碳管膜;以及至少兩個電極間隔設置於所述高分子 保護層與玻璃基體之間,並與所述奈米碳管膜電連接。 所述奈米碳管膜由複數奈米碳管組成,所述複數奈米碳 管首尾相連基本沿一個方向擇優取向排列。所述電路系 統通過導線與所述至少兩個電極電連接。所述控制系統 通過控制所述電路系統向奈米碳管膜提供電壓,使奈米 碳管膜加熱玻璃除霜。 [0007] 與先前技術相比較,所述除霜玻璃包括一奈米碳管膜黏 附於玻璃基體,通過給奈米碳管膜通電的方式實現對玻 璃的加熱除霜,所述奈米碳管膜由複數奈米碳管組成, 所述複數奈米碳管首尾相連基本沿一個方向擇優取向排 列。由於奈米碳管具有極大的長徑比,使得奈米碳管與 玻璃基體之間的黏附力較強,該奈米碳管膜不易從玻璃 上脫落。 【實施方式】 [0008] 以下將結合附圖詳細說明本發明的除霜玻璃及該除霜玻 璃的應用。 請參閱圖1及圖2,本發明實施例提供一種除霜玻璃10, 099103119 表單編號A0101 第4頁/共23頁 [0009] 201127767 Ο [0010] [0011] ❹ [0012] 099103119 該除霜玻璃10包括一玻璃基體18、一黏結劑層17、一奈 米碳管膜16、一第一電極12、一第二電極14和一高分子 保護層15。所述黏結劑層17設置於玻璃基體18的表面。 所述奈米碳管膜1 6設置於所述黏結劑層1 7的表面。所述 第一電極12和第二電極14間隔設置,並與所述奈米碳管 膜16電接觸,用於給所述奈米碳管膜16施加電壓,使所 述奈米碳管膜16中流過電流。所述高分子保護層15設置 於所述奈米碳管膜16的表面,並將所述第一電極12和第 二電極14及所述奈米碳管膜16覆蓋,用於避免所述奈米 碳管膜16被外力破壞。 所述玻璃基體18形狀不限,該玻璃基體18在使用時可根 據需要彎折成任意形狀,其具有一表面用於支撐奈米碳 管膜16或者黏結劑層17。優選地,所述玻璃基體18為一 板狀基底。其中,玻璃基體18的大小不限,可依據實際 需要進行改變。 所述黏結劑層17用來將所述奈米碳管膜16設置於所述玻 璃基體18的表面。該黏結劑層17可通過絲網印刷的方式 形成於所述玻璃基體18表面。可以理解,由於奈米碳管 膜16本身具有黏性,可以利用本身的黏性設置於所述玻 璃基體18的表面,故所述黏結劑層17為一可選擇的結構 。本實施例中,所述奈米碳管膜16通過黏結劑層17黏附 於所述玻璃基體18的表面,該黏結劑層17為矽膠層。 請參見圖3,所述奈米碳管膜16是由若干奈米碳管組成的 自支撐結構。所述若干奈米碳管為沿同一方向擇優取向 排列。所述擇優取向是指在奈米碳管膜16中大多數奈米 表單編號Α0101 第5頁/共23頁 0992005865-0 201127767 碳管的整體延伸方向基本朝同一方向。而且,所述大多 數奈米碳管的整體延伸方向基本平行於奈米碳管膜16的 表面。進一步地,所述奈米碳管膜16中大多數奈米碳管 是通過凡德瓦爾力首尾相連。具體地,所述奈米碳管膜 16中基本朝同一方向延伸的大多數奈米碳管中每一奈米 碳管與在延伸方向上相鄰的奈米碳管通過凡德瓦爾力首 尾相連。當然,所述奈米碳管膜16中存在少數隨機排列 的奈米碳管,這些奈米碳管不會對奈米碳管膜16中大多 數奈米碳管的整體取向排列構成明顯影響。所述自支撐 為奈米碳管膜16不需要大面積的載體支撐,而只要相對 兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態, 即將該奈米碳管膜16置於(或固定於)間隔設置的兩個 支撐體上時,位於兩個支撐體之間的奈米碳管膜16能夠 懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管 膜16中存在連續的通過凡德瓦爾力首尾相連延伸排列的 奈米碳管而實現。並且,該奈米碳管膜16的相鄰奈米碳 管之間存在間隙,使得該奈米碳管膜16具有的透光性, 該奈米碳管膜16的透光率在60%〜95%之間,可以理解, 隨著奈米碳管膜16的厚度增加其透光率也會隨之下降。 由於該奈米碳管膜16中的奈米碳管之間存在間隙,當該 奈米碳管膜16通過黏結劑層1 7黏附於玻璃基體18上時, 黏結劑層17的黏結劑將滲透進入所述間隙中,使得奈米 碳管膜1 6緊密地黏結在玻璃基體18表面,該奈米碳管膜 16不易從玻璃基體18上脫落。 [0013] 具體地,所述奈米碳管膜16中基本朝同一方向延伸的多 099103119 表單編號A0101 第6頁/共23頁 0992005865-0 201127767 [0014] Ο [0015] Ο [0016] 數奈米碳管,並非絕對的直線狀,可以適當的彎曲;或 者並非完全按照延伸方向上排列,可以適當的偏離延伸 方向。因此,不能排除奈米碳管膜16的基本朝同一方向 延伸的多數奈米碳管中並列的奈米碳管之間可能存在部 分接觸。 該奈米碳管膜16中的奈米碳管為單壁奈米碳管、雙壁奈 米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米 碳管的直徑為0. 5奈米〜10奈米,雙壁奈米碳管的直徑為1 奈米〜15奈米,多壁奈米碳管的直徑為1.5奈米〜50奈米 。奈米碳管的長度大於50微米,優選地,奈米碳管的長 度為200~900微米。 該奈米碳管膜16的面積和厚度不限,可根據實際需要選 擇。可以理解,奈米碳管膜16的熱回應速度與其厚度有 關,本實施例中,該奈米碳管膜16的厚度為10微米至500 微米。在相同面積的情況下,奈米碳管膜16的厚度越大 ,熱回應速度越慢;反之,奈米碳管膜16的厚度越小, 熱回應速度越快。本實施例中,奈米碳管膜16的厚度為 100微米。利用奈米碳管膜16本身的黏性,將該奈米碳管 膜16設置於玻璃基體18的表面,由於奈米碳管膜16中的 奈米碳管具有極大的長徑比(大於1000:1 ),並且所述 大多數奈米碳管的整體延伸方向基本平行於奈米碳管膜 16的表面,使得該奈米碳管膜16與玻璃基體18的表面具 有較強的結合力,使得奈米碳管膜16均勻地貼合在玻璃 基體18的表面。 所述第一電極12和第二電極14由導電材料組成,該第一 099103119 表單編號Α0101 第7頁/共23頁 0992005865-0 201127767 電極12和第二電極14為長條形,材料可為導電薄膜、金 屬片或者金屬引線。優選地’第一電極12和第二電極14 ^為條形的導電㈣。該導電薄膜的厚度為0. 5奈米]00 微米。該導電薄膜的材料可以為金屬、合金、銦錫氧化 物(ITO)、銻錫氧化物(AT〇)、導電銀膠、導電聚合 物或導電性奈米破管等。該金屬或合金材料可以為链、 銅、鎢、銷、金、鈦、敛、把、錄或其任意組合的合金 。本實施财,所述第一電極12和第二電極14的材料為 金屬鈀膜,厚度為5奈米。所述金屬鈀與奈米碳管具有較 好的潤濕效果,有利於所述第一電極12及第二電極14與 所述奈米碳管膜16之間形成良好的電接觸,減少歐姆接 觸電阻。當所述第一電極丨2及第二電極14採用銦錫氧化 物(ITO)、銻錫氧化物(AT0)材料時,第一電極12及 第二電極14為透明電極。 [0017] 所述的第一電極12和第二電極14平行間隔踔置,並分別 與奈米碳管膜16電連接,可以設置在奈米碳管膜16的同 一表面上也可以設置在奈米碳管膜16的不同表面上,並 所述奈米碳管膜16中的奈米碳管沿第一電極12到第二電 極14擇優取向排列。其中,第一電極12和第二電極14間 隔設置,以使奈米碳管膜16應用於除霜玻璃1〇時接入的 阻值避免短路現象產生。由於奈米碳管膜16本身有报好 的黏附性,故第一電極12和第二電極14直接可與奈米碳 管膜16黏附在一起。 另外’當所述第一電極12及第二電極14為條形金屬片時 ,所述的第一電極12和第二電極14也可通過一導電黏結 099103119 表單編號A0101 第8頁/共23頁 0992005865-0 [0018] 201127767 [0019] Ο [0020] [0021] [0022] 劑(圖未示)設置於該奈米碳管膜16的表面上,導電黏結 劑在實現第一電極12和第二電極14與奈米碳管膜16電接 觸的同時,還可以將所述第一電極12和第二電極14更好 地固定於奈米碳管膜1 6的表面上。本實施例優選的導電 黏結劑為銀膠。 可以理解,第一電極12和第二電極14的結構和材料均不 限,其設置目的是為了使所述奈米碳管膜16中流過電流 。因此,所述第一電極12和第二電極14只需要導電,並 與所述奈米碳管膜16之間形成電接觸都在本發明的保護 範圍内。 所述高分子保護層15的材料為一透明高分子材料,可以 是熱塑性聚合物或熱固性聚合物的一種或多種,如纖維 素、聚對苯二曱酸乙酯、壓克力樹脂、聚乙烯、聚丙烯 、聚苯乙烯、聚氣乙烯、酚醛樹脂、環氧樹脂、矽膠及 聚酯等中的一種或多種。所述高分子保護層15厚度不限 ,可以根據實際情況選擇。所述高分子保護層15覆蓋於 所述第一電極12、第二電極14和奈米碳管膜16之上,可 以使該除霜玻璃10在絕緣狀態下使用,同時還可以避免 所述奈米碳管膜16遭受外力的破壞。本實施例中,該高 分子保護層15的材料為環氧樹脂,其厚度為200微米。 可以理解,本發明實施例中的除霜玻璃1 0還可以包括多 層奈米碳管膜16。當所述汽車玻璃貼膜10包括多層奈米 碳管膜16時,該多層奈米碳管膜16可以重疊交叉設置。 請參見圖4,本發明實施例的除霜玻璃10在使用時,可先 099103119 表單編號A0101 第9頁/共23頁 0992005865-0 201127767 將第一電極12和第二電極14連接導線後接入電源u。在 接入電源11後,所述除霜玻璃1〇中的奈米碳管膜16即被 加熱,從而將熱量使得可以快速傳遞至玻璃基體18,從 而升溫將形成於除霜玻璃10表面的霜/霧除去。由於奈米 碳管具有良好的導電性能,熱穩定性以及較高的電熱轉 換效率,從而本實施例中的除霜玻璃10亦具有較高的電 熱轉換效率。 [0023] [0024] 請參見圖5,所述除霜玻璃10亦可以包括複數第一電極12 及複數第二電極14,該複數第一電極12及複數第二電極 14平行間隔設置’並與所述奈米碳管膜16電連接,且所 述奈米碳管膜16中的奈米碳管沿第一電極12到第二電極 14的方向擇優取向排列。使用時,所述複數第一電極 以及複數第二電極14通過導線分別於電源u的兩個電極 電連接,從而在每兩個相鄰的第一電極12以及第二電極 14之間形成相同的電勢差,從而可以降低所述奈米啟管 膜16的加熱電壓,更易於控制除霜玻璃1〇的電熱轉換。 明參閱圖6,本發明實施例提供,應用所述除霜玻璃 的車20,該除霜玻璃1〇安裝於汽車2〇的車窗,做為汽 車的擋風玻璃。該除霜玻璃1〇的玻璃基體18形成有奈米 碳管膜16的表面朝向車厢内,玻璃基體18的另一表面暴 露在車厢外部的空氣中。所述除霜玻璃1〇的第一電極12 及第-電極14與汽車的供電系統電連接,所述奈米碳管 膜16可通過八車的供電系統通入電流’從而發熱。另外 ,當所述第一電極12及第二電極14為透明電極時,如採 用ιτο膜時’由於所述奈米碳管膜16為透明薄膜,該除霜 099103119 表單編號A0101 第頁/共23頁 0992005865-0 201127767 [0025] Ο 玻璃10整體上具有透明的特點,因此該除霜玻璃10<應 用於π車的各個車窗,並不局限於汽車的後擋風玻璃。 明參閱圖7,本發明的除霜玻璃10應用於汽車20,汽車進 一步包括一控制系統22,開關23,感測器24,供電系統 25。所述控制系統22與所述供電系統25電連接,用於控 制所述供電系統25的電壓,所述供電系統25通過所述第 電極12及第二電極14與所述除霜玻璃1〇電連接用於給 所述除霜破璃1〇供電。所述開關23與所述控制系統22電 連接並由Ά車的乘員或駕敏裊控制。另外,所述感測 器24與所述控制系統22電連接,並感受汽車擋風玻璃上 是否有霜/霧’並將信號傳送給控制系統22。該控制系統 22可以根據感測器24發出的信號,控制除霜玻璃1〇進行 除霜。所述感測器24還可感受玻璃上的溫度,太低的時 候加熱,達到一定溫度上的時候停止加熱,可實現自動 調.節控制》The conductive paste is formed into a conductive film for defrosting, so that the conductive film is not disposed on the surface of the glass in an integral structure, and the adhesion between the conductive film and the glass is not strong enough. The problem 'causes the part where the slurry of the automobile glass falls off' is not heated, and it is easy to reform the frost/fog. This affects the effect of car defrosting. SUMMARY OF THE INVENTION [0004] In view of the above, it is necessary to provide a novel defrosting glass having relatively stable performance and having a good defrosting effect. [0005] A defrosting glass comprising: a glass substrate having a surface; a carbon nanotube film disposed on the surface of the glass substrate; a polymeric protective layer covering the 099103119 Form No. A0101 Page 3 / Total 23 Page 0992005865 -0 201127767 The carbon nanotube film; and at least one first electrode and at least one second electrode are spaced apart from each other and electrically connected to the carbon nanotube film. The carbon nanotube film is composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation in one direction by van der Waals force. [0006] An automobile includes a defrosting glass, a circuit system, and a control system. The defrosting glass comprises: a glass substrate having a surface; a carbon nanotube film disposed on a surface of the glass substrate; a polymer protective layer covering the carbon nanotube film; and at least two electrodes spaced apart from the The polymer protective layer is electrically connected to the glass substrate and to the carbon nanotube film. The carbon nanotube film is composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged end to end in a preferred orientation in one direction. The circuit system is electrically connected to the at least two electrodes by wires. The control system defrosts the carbon nanotube film by controlling the circuit system to supply a voltage to the carbon nanotube film. [0007] Compared with the prior art, the defrosting glass includes a carbon nanotube film adhered to the glass substrate, and the defrosting of the glass is achieved by energizing the carbon nanotube film, the carbon nanotube The membrane is composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged end to end in a preferred orientation in one direction. Due to the large aspect ratio of the carbon nanotubes, the adhesion between the carbon nanotubes and the glass substrate is strong, and the carbon nanotube film is not easily detached from the glass. [Embodiment] The application of the defrosting glass of the present invention and the defrosting glass will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , an embodiment of the present invention provides a defrosting glass 10 , 099103119 Form No. A0101 Page 4 / Total 23 [0009] 201127767 Ο [0010] [0011] ❹ [0012] 099103119 The defrosting glass 10 includes a glass substrate 18, a binder layer 17, a carbon nanotube film 16, a first electrode 12, a second electrode 14, and a polymeric protective layer 15. The adhesive layer 17 is disposed on the surface of the glass substrate 18. The carbon nanotube film 16 is disposed on the surface of the binder layer 17. The first electrode 12 and the second electrode 14 are spaced apart from each other and are in electrical contact with the carbon nanotube film 16 for applying a voltage to the carbon nanotube film 16 to make the carbon nanotube film 16 Current flows in the middle. The polymer protective layer 15 is disposed on the surface of the carbon nanotube film 16 and covers the first electrode 12 and the second electrode 14 and the carbon nanotube film 16 for avoiding the The carbon nanotube film 16 is destroyed by an external force. The shape of the glass substrate 18 is not limited. The glass substrate 18 can be bent into any shape as needed, and has a surface for supporting the carbon nanotube film 16 or the adhesive layer 17. Preferably, the glass substrate 18 is a plate-like substrate. The size of the glass substrate 18 is not limited and can be changed according to actual needs. The binder layer 17 is used to set the carbon nanotube film 16 on the surface of the glass substrate 18. The adhesive layer 17 can be formed on the surface of the glass substrate 18 by screen printing. It can be understood that since the carbon nanotube film 16 itself has viscosity and can be disposed on the surface of the glass substrate 18 by its own viscosity, the adhesive layer 17 is an optional structure. In this embodiment, the carbon nanotube film 16 is adhered to the surface of the glass substrate 18 by a binder layer 17, and the adhesive layer 17 is a silicone layer. Referring to Figure 3, the carbon nanotube membrane 16 is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation refers to the majority of the nano-forms in the carbon nanotube film 16. Form No. 1010101 Page 5 of 23 0992005865-0 201127767 The overall extension direction of the carbon tubes is substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film 16. Further, most of the carbon nanotubes in the carbon nanotube membrane 16 are connected end to end by Van der Waals force. Specifically, each of the majority of the carbon nanotubes extending substantially in the same direction in the carbon nanotube film 16 and the carbon nanotubes adjacent in the extending direction are connected end to end by Van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film 16, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film 16. The self-supporting carbon nanotube film 16 does not require a large-area carrier support, but can maintain a self-membrane state by simply providing a supporting force on both sides, that is, placing the carbon nanotube film 16 (or When fixed to the two support bodies arranged at intervals, the carbon nanotube film 16 located between the two supports can be suspended to maintain the self-film state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending in series through the van der Waals force in the carbon nanotube film 16. Moreover, there is a gap between adjacent carbon nanotubes of the carbon nanotube film 16, so that the carbon nanotube film 16 has light transmissivity, and the transmittance of the carbon nanotube film 16 is 60%~ Between 95%, it is understood that as the thickness of the carbon nanotube film 16 increases, its light transmittance also decreases. Since there is a gap between the carbon nanotubes in the carbon nanotube film 16, when the carbon nanotube film 16 is adhered to the glass substrate 18 through the adhesive layer 17, the adhesive of the adhesive layer 17 will penetrate. Into the gap, the carbon nanotube film 16 is tightly bonded to the surface of the glass substrate 18, and the carbon nanotube film 16 is not easily detached from the glass substrate 18. [0013] Specifically, the carbon nanotube film 16 has a plurality of 099103119 extending substantially in the same direction. Form No. A0101 Page 6/23 pages 0992005865-0 201127767 [0015] Ο [0016] The carbon nanotubes are not absolutely linear and can be bent properly; or they are not completely aligned in the direction of extension, and can be appropriately offset from the direction of extension. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes of the carbon nanotube film 16 which extend substantially in the same direction. The carbon nanotubes in the carbon nanotube film 16 are one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, the diameter of the double-walled carbon nanotube is 1 nm to 15 nm, and the diameter of the multi-walled carbon nanotube is 1.5 nm. ~ 50 nm. The length of the carbon nanotubes is greater than 50 microns, and preferably, the length of the carbon nanotubes is from 200 to 900 microns. The area and thickness of the carbon nanotube film 16 are not limited and can be selected according to actual needs. It can be understood that the thermal response speed of the carbon nanotube film 16 is related to its thickness. In the present embodiment, the carbon nanotube film 16 has a thickness of 10 μm to 500 μm. In the case of the same area, the larger the thickness of the carbon nanotube film 16, the slower the heat response speed; conversely, the smaller the thickness of the carbon nanotube film 16, the faster the heat response speed. In the present embodiment, the carbon nanotube film 16 has a thickness of 100 μm. The carbon nanotube film 16 is disposed on the surface of the glass substrate 18 by utilizing the viscosity of the carbon nanotube film 16 itself, since the carbon nanotubes in the carbon nanotube film 16 have an extremely large aspect ratio (greater than 1000). :1), and the overall extending direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film 16, so that the carbon nanotube film 16 has a strong bonding force with the surface of the glass substrate 18. The carbon nanotube film 16 is uniformly attached to the surface of the glass substrate 18. The first electrode 12 and the second electrode 14 are composed of a conductive material, the first 099103119 Form No. 1010101 Page 7 / Total 23 Page 0992005865-0 201127767 The electrode 12 and the second electrode 14 are elongated, and the material can be electrically conductive Film, metal sheet or metal lead. Preferably, the first electrode 12 and the second electrode 14 are strip-shaped conductive (four). The thickness of the conductive film is 0.5 nm] 00 μm. The material of the electroconductive thin film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (AT〇), conductive silver paste, conductive polymer or conductive nanotube. The metal or alloy material may be an alloy of chains, copper, tungsten, pins, gold, titanium, condensed, rolled, recorded or any combination thereof. In the implementation, the material of the first electrode 12 and the second electrode 14 is a metal palladium film and has a thickness of 5 nm. The metal palladium has good wetting effect with the carbon nanotubes, which is favorable for forming good electrical contact between the first electrode 12 and the second electrode 14 and the carbon nanotube film 16, and reducing ohmic contact. resistance. When the first electrode 丨2 and the second electrode 14 are made of indium tin oxide (ITO) or antimony tin oxide (AT0) material, the first electrode 12 and the second electrode 14 are transparent electrodes. [0017] The first electrode 12 and the second electrode 14 are disposed in parallel with each other, and are respectively electrically connected to the carbon nanotube film 16, and may be disposed on the same surface of the carbon nanotube film 16 or may be disposed on the same surface. On the different surfaces of the carbon nanotube film 16, and the carbon nanotubes in the carbon nanotube film 16 are arranged in a preferred orientation along the first electrode 12 to the second electrode 14. Wherein, the first electrode 12 and the second electrode 14 are spaced apart so that the resistance of the carbon nanotube film 16 applied to the defrosting glass 1 避免 is prevented from being short-circuited. Since the carbon nanotube film 16 itself has a good adhesion, the first electrode 12 and the second electrode 14 can be directly adhered to the carbon nanotube film 16. In addition, when the first electrode 12 and the second electrode 14 are strip-shaped metal sheets, the first electrode 12 and the second electrode 14 can also pass a conductive adhesive 099103119. Form No. A0101 Page 8 of 23 0992005865-0 [0018] [0019] [0022] [0022] [0022] A reagent (not shown) is disposed on the surface of the carbon nanotube film 16, and the conductive adhesive is used to realize the first electrode 12 and While the two electrodes 14 are in electrical contact with the carbon nanotube film 16, the first electrode 12 and the second electrode 14 can be better fixed to the surface of the carbon nanotube film 16. The preferred conductive bonding agent of this embodiment is a silver paste. It can be understood that the structure and material of the first electrode 12 and the second electrode 14 are not limited, and the purpose thereof is to make a current flow in the carbon nanotube film 16. Therefore, it is within the scope of the present invention that the first electrode 12 and the second electrode 14 need only be electrically conductive and form electrical contact with the carbon nanotube film 16. The material of the polymer protective layer 15 is a transparent polymer material, which may be one or more of a thermoplastic polymer or a thermosetting polymer, such as cellulose, polyethylene terephthalate, acrylic resin, polyethylene. One or more of polypropylene, polystyrene, polyethylene, phenolic resin, epoxy resin, silicone and polyester. The thickness of the polymer protective layer 15 is not limited and can be selected according to actual conditions. The polymer protective layer 15 covers the first electrode 12, the second electrode 14, and the carbon nanotube film 16, so that the defrosting glass 10 can be used in an insulated state, and the naphthalene can be avoided. The carbon nanotube film 16 is damaged by an external force. In this embodiment, the material of the high molecular protective layer 15 is an epoxy resin having a thickness of 200 μm. It is to be understood that the defrosting glass 10 in the embodiment of the present invention may further include a multi-layered carbon nanotube film 16. When the automotive glass film 10 includes a plurality of layers of carbon nanotube film 16, the multilayered carbon nanotube film 16 may be overlapped and disposed. Referring to FIG. 4, the defrosting glass 10 of the embodiment of the present invention can be connected to the first electrode 12 and the second electrode 14 after being connected to the wire by 099103119, form number A0101, page 9 / total page 23, 0992005865-0, 201127767. Power u. After the power source 11 is connected, the carbon nanotube film 16 in the defrosting glass 1 is heated, so that heat can be quickly transferred to the glass substrate 18, thereby warming the frost which will be formed on the surface of the defrosting glass 10. / Fog removed. Since the carbon nanotube has good electrical conductivity, thermal stability and high electrothermal conversion efficiency, the defrosting glass 10 in this embodiment also has high electrothermal conversion efficiency. [0024] Referring to FIG. 5, the defrosting glass 10 may further include a plurality of first electrodes 12 and a plurality of second electrodes 14, and the plurality of first electrodes 12 and the plurality of second electrodes 14 are disposed in parallel with each other. The carbon nanotube film 16 is electrically connected, and the carbon nanotubes in the carbon nanotube film 16 are aligned in a preferred orientation along the direction from the first electrode 12 to the second electrode 14. In use, the plurality of first electrodes and the plurality of second electrodes 14 are electrically connected to the two electrodes of the power source u through wires, thereby forming the same between each two adjacent first electrodes 12 and the second electrodes 14. The potential difference makes it possible to lower the heating voltage of the nanopipe film 16, and it is easier to control the electrothermal conversion of the defroster glass. Referring to Fig. 6, an embodiment of the present invention provides a vehicle 20 to which the defrosting glass is applied. The defrosting glass 1 is mounted on a window of a car 2 as a windshield of a car. The glass substrate 18 of the defrosting glass 1 is formed with the surface of the carbon nanotube film 16 facing the inside of the vehicle compartment, and the other surface of the glass substrate 18 is exposed to the air outside the compartment. The first electrode 12 and the first electrode 14 of the defrosting glass 1 are electrically connected to a power supply system of the automobile, and the carbon nanotube film 16 can be supplied with electric current through the power supply system of the eight cars to generate heat. In addition, when the first electrode 12 and the second electrode 14 are transparent electrodes, such as when using the ιτ film, the defrosting 099103119 Form No. A0101 Page 23 of 23 Page 0992005865-0 201127767 [0025] The enamel glass 10 has a transparent feature as a whole, so that the defrosting glass 10<the various windows applied to the π car are not limited to the rear windshield of the automobile. Referring to Figure 7, the defrosting glass 10 of the present invention is applied to an automobile 20 which further includes a control system 22, a switch 23, a sensor 24, and a power supply system 25. The control system 22 is electrically connected to the power supply system 25 for controlling the voltage of the power supply system 25, and the power supply system 25 is electrically connected to the defrosting glass 1 through the first electrode 12 and the second electrode 14. The connection is for supplying power to the defrosting glass. The switch 23 is electrically coupled to the control system 22 and is controlled by an occupant or driver of the brake. Additionally, the sensor 24 is electrically coupled to the control system 22 and senses whether there is frost/mist on the windshield of the vehicle and transmits the signal to the control system 22. The control system 22 can control the defrost glass 1 to perform defrosting based on the signal from the sensor 24. The sensor 24 can also feel the temperature on the glass, heat when it is too low, and stop heating when it reaches a certain temperature, which can realize automatic adjustment.

[0026] Ο [0027] 099103119 可以理解’本發明提供的除霜玻璃並不僅限於在汽車除 霜領域内應用’遂可以應用於建築玻璃,以及其他需要 通過加熱玻璃除霜的領域。 相對於先前技術所述除霜玻璃具有以下優點:第一,所 述除霜玻璃包括一奈米碳管膜,通過給奈米碳管膜通電 的方式實現對玻璃的加熱除霜,所述奈米碳管膜由複數 奈米碳管組成,由於奈米碳管具有極大的長徑比,使得 奈米碳管與玻璃基體之間的黏附力較強,所述複數奈米 碳管首尾相連基本沿一個方向擇優取向排列,該奈米碳 管膜為一個自支撐的整體結構,該奈米碳管膜不易從玻 表單編號Α0101 第11頁/共23頁 0992005865-0 201127767 璃上脫落。該奈米碳管膜不易從玻璃上脫落。第二,由 於奈米碳管具有良好的導電性能以及熱穩定性,具有比 較高的電熱轉換效率,從而本發明中的除霜玻璃亦具有 較高的電熱轉換效率。第三,奈米碳管膜為透明膜',不 影響視覺效果,當使用透明導電膜作為第一電極及第二 電極的時候,整體上是一個全透明的結構,可以應用於 汽車的各個車窗,並不局限於汽車後窗。 [0028] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0029] 圖1為本發明實施例提供的除霜玻璃的結構示意圖。 [0030] 圖2為圖1的 - 剖面示意圖。 [0031] 圖3為本發明實施例提供的包括沿同一方向擇優取向排列 的奈米碳管的奈米碳管膜的掃描電鏡照片。 [0032] 圖4為圖1中的除霜玻璃使用時的結構示意圖。 [0033] 圖5為本發明實施例提供的包括複數第一電極及第二電極 的除霜玻璃的結構示意圖。 [0034] 圖6為本發明實施例的除霜玻璃應用於汽車時的結構示意 圖。 [0035] 圖7為本發明實施例的除霜玻璃應用於汽車時的工作模組 099103119 表單編號A0101 第12頁/共23頁 0992005865-0 201127767 示意圖。 【主要元件符號說明】 [0036] 除霜玻璃:10 [0037] 電源:11 [0038] 第一電極:12 [0039] 第二電極:14 [0040] 高分子保護層:15 C [0041] 奈米碳管膜:16 [0042] 黏結劑層:17 [0043] 玻璃基體:18 [0044] 汽車:20 [0045] 控制系統:22 [0046] 開關:23 Ο [0047] 感測器:24 [0048] 供電系統.2 5 099103119 表單編號Α0101 第13頁/共23頁 0992005865-0[0027] 099103119 It is to be understood that the defrosting glass provided by the present invention is not limited to application in the field of automotive defrosting, and can be applied to architectural glass, and other fields requiring defrosting by heated glass. The defrosting glass has the following advantages over the prior art: First, the defrosting glass comprises a carbon nanotube film, and the defrosting of the glass is achieved by energizing the carbon nanotube film. The carbon nanotube film is composed of a plurality of carbon nanotubes. Since the carbon nanotubes have an extremely large aspect ratio, the adhesion between the carbon nanotubes and the glass substrate is strong, and the plurality of carbon nanotubes are connected end to end. Arranged in a preferred orientation in one direction, the carbon nanotube film is a self-supporting monolithic structure, and the carbon nanotube film is not easily peeled off from the glass form number Α0101 page 11/23 pages 0992005865-0 201127767. The carbon nanotube film is not easily detached from the glass. Second, since the carbon nanotubes have good electrical conductivity and thermal stability, and have higher electrothermal conversion efficiency, the defrosting glass of the present invention also has higher electrothermal conversion efficiency. Third, the carbon nanotube film is a transparent film, which does not affect the visual effect. When a transparent conductive film is used as the first electrode and the second electrode, the whole is a completely transparent structure, which can be applied to various vehicles of the automobile. The window is not limited to the rear window of the car. [0028] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0029] FIG. 1 is a schematic structural view of a defrosting glass according to an embodiment of the present invention. 2 is a cross-sectional view of FIG. 1 . 3 is a scanning electron micrograph of a carbon nanotube film including carbon nanotubes arranged in a preferred orientation in the same direction according to an embodiment of the present invention. 4 is a schematic structural view of the defrosting glass of FIG. 1 in use. [0033] FIG. 5 is a schematic structural diagram of a defrosting glass including a plurality of first electrodes and second electrodes according to an embodiment of the present invention. 6 is a schematic view showing the structure of a defrosting glass used in an automobile according to an embodiment of the present invention. 7 is a working module of a defrost glass applied to a car according to an embodiment of the present invention. 099103119 Form No. A0101 Page 12 of 23 0992005865-0 201127767 Schematic. [Main component symbol description] [0036] Defrost glass: 10 [0037] Power supply: 11 [0038] First electrode: 12 [0039] Second electrode: 14 [0040] Polymer protective layer: 15 C [0041] Meter Carbon Film: 16 [0042] Bond Layer: 17 [0043] Glass Base: 18 [0044] Automotive: 20 [0045] Control System: 22 [0046] Switch: 23 Ο [0047] Sensor: 24 [ 0048] Power Supply System. 2 5 099103119 Form Number Α 0101 Page 13 / Total 23 Page 0992005865-0

Claims (1)

201127767 七、申請專利範圍: 1 . 一種除霜玻璃,包括: 一玻璃基體具有一表面,其改良在於,進一步包括: 一奈米碳管膜設置於所述玻璃基體的表面,所述奈米碳管 膜為由複數奈米碳管組成,所述複數奈米碳管通過凡德瓦 爾力首尾相連沿一個方向擇優取向排列; 一高分子保護層覆蓋所述奈米碳管膜;以及 至少一第一電極及一第二電極間隔設置並與所述奈米碳管 膜電連接。 2 .如申請專利範圍第1項所述的除霜玻璃,其中,所述第一 電極及第二電極為長條形,所述第一電極及第二電極相互 平行且間隔設置。 3 .如申請專利範圍第2項所述的除霜玻璃,其中,所述第一 電極及第二電極為導電薄膜、金屬片或者金屬引線。 4. 如申請專利範圍第3項所述的除霜玻璃,其中,所述導電 薄膜的材料為銘、銅、鎢、在目、金、欽、鈦、把、絶或上 述金屬任意組合的合金。 5. 如申請專利範圍第3項所述的除霜玻璃,其中,所述第一 電極及第二電極為透明導電薄膜,該透明導電薄膜的材料 為氧化銦錫。 6. 如申請專利範圍第2項所述的除霜玻璃,其中,所述第一 電極及第二電極設置於所述奈米碳管膜表面。 7 .如申請專利範圍第2項所述的除霜玻璃,其中,所述奈米 碳管膜中的奈米碳管沿第一電極到第二電極的方向擇優取 向排列。 099103119 表單編號A0101 第14頁/共23頁 0992005865-0 201127767 8 .如申請專利範圍第2項所述的除霜玻璃,其中,所述除霜 玻璃包括複數平行間隔交替排列的第一電極及第二電極。 9 .如申請專利範圍第1項所述的除霜玻璃,其中,所述奈米 礙管膜中大多數奈米碳管的整體延伸方向基本朝同一方向 〇 10 .如申請專利範圍第1項所述的除霜玻璃,其中,所述奈米 碳管膜的厚度為50微米至500微米。 11 .如申請專利範圍第1項所述的除霜玻璃,其中,所述除霜 玻璃進一步包括一黏結劑層設置於所述奈米碳管膜與玻璃 0 基體之間,所述奈米碳管膜通過該黏結劑層黏附於所述玻 璃基體。 12 .如申請專利範圍第1項所述的除霜玻璃,其中,所述高分 子保護層的材料為透明高分子材料,包括纖維素、聚對苯 二甲酸乙酯、壓克力樹脂、聚乙烯、聚丙烯、聚苯乙烯、 聚氣乙烯、酚醛樹脂、環氧樹脂、矽膠及聚酯中的一種或 多種。 ❹ 13 . —種除霜玻璃,包括: 一玻璃基體具有一表面,其改良在於,進一步包括: 多層奈米碳管膜交叉設置於所述玻璃基體的表面,所述奈 米碳管膜為由複數奈米碳管組成,所述複數奈米碳管通過 凡德瓦爾力首尾相連沿一個方向擇優取向排列; 一高分子保護層覆蓋所述奈米碳管膜;以及 至少一第一電極及一第二電極間隔設置並與所述多層奈米 碳管膜電連接。 14 . 一種應用如申請專利範圍第1至13項中任一項所述的除霜 玻璃的汽車,包括:一電路系統,所述電路系統通過導線 099103119 表單編號A0101 第15頁/共23頁 0992005865-0 201127767 與所述除霜玻璃的至少一第一電極及至少一第二電極電連 接;以及一控制系統,所述控制系統通過控制所述電路系 統向奈米碳管膜提供電壓,使奈米碳管膜加熱玻璃除霜。 099103119 表單編號A0101 第16頁/共23頁 0992005865-0201127767 VII. Patent application scope: 1. A defrosting glass, comprising: a glass substrate having a surface, the improvement comprising: further comprising: a carbon nanotube film disposed on a surface of the glass substrate, the nano carbon The tubular film is composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation by a van der Waals force in a direction; a polymer protective layer covers the carbon nanotube film; and at least one An electrode and a second electrode are spaced apart and electrically connected to the carbon nanotube film. The defrosting glass according to claim 1, wherein the first electrode and the second electrode are elongated, and the first electrode and the second electrode are parallel to each other and spaced apart from each other. 3. The defrosting glass of claim 2, wherein the first electrode and the second electrode are conductive films, metal sheets or metal leads. 4. The defrosting glass according to claim 3, wherein the material of the conductive film is an alloy of Ming, copper, tungsten, any combination of metal, gold, zirconia, titanium, titanium, or any of the above metals. . 5. The defrosting glass of claim 3, wherein the first electrode and the second electrode are transparent conductive films, and the transparent conductive film is made of indium tin oxide. 6. The defrosting glass of claim 2, wherein the first electrode and the second electrode are disposed on a surface of the carbon nanotube film. 7. The defrosting glass of claim 2, wherein the carbon nanotubes in the carbon nanotube film are preferentially aligned along the direction from the first electrode to the second electrode. The defrosting glass according to claim 2, wherein the defrosting glass comprises a plurality of first electrodes alternately arranged in parallel intervals and a plurality of defrosting glasses according to claim 2, wherein the defrosting glass comprises: Two electrodes. 9. The defrosting glass of claim 1, wherein the majority of the carbon nanotubes in the nano-membrane film extend substantially in the same direction 〇10 as in the first aspect of the patent application. The defrosting glass, wherein the carbon nanotube film has a thickness of 50 μm to 500 μm. The defrosting glass of claim 1, wherein the defrosting glass further comprises a layer of a binder disposed between the carbon nanotube film and the glass substrate, the nanocarbon The tube film is adhered to the glass substrate through the layer of the adhesive. The defrosting glass according to claim 1, wherein the material of the polymer protective layer is a transparent polymer material, including cellulose, polyethylene terephthalate, acrylic resin, and poly One or more of ethylene, polypropylene, polystyrene, polyethylene, phenolic resin, epoxy resin, silicone and polyester. ❹13. A defrosting glass, comprising: a glass substrate having a surface, the improvement comprising: further comprising: a plurality of layers of carbon nanotube film disposed on a surface of the glass substrate, wherein the carbon nanotube film is a plurality of carbon nanotubes, wherein the plurality of carbon nanotubes are arranged in a preferred orientation in one direction by van der Waals force; a polymer protective layer covering the carbon nanotube film; and at least a first electrode and a The second electrode is spaced apart and electrically connected to the multilayered carbon nanotube film. 14. A vehicle for use in a defrosting glass according to any one of claims 1 to 13, comprising: a circuit system through a wire 099103119 Form No. A0101 Page 15 / Total 23 Page 0992005865 -0 201127767 electrically coupled to at least a first electrode and at least a second electrode of the defrosting glass; and a control system that provides a voltage to the carbon nanotube membrane by controlling the circuitry to The carbon tube film heats the glass to defrost. 099103119 Form No. A0101 Page 16 of 23 0992005865-0
TW99103119A 2010-02-03 2010-02-03 Defrosting glass and car using the same TWI394730B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99103119A TWI394730B (en) 2010-02-03 2010-02-03 Defrosting glass and car using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99103119A TWI394730B (en) 2010-02-03 2010-02-03 Defrosting glass and car using the same

Publications (2)

Publication Number Publication Date
TW201127767A true TW201127767A (en) 2011-08-16
TWI394730B TWI394730B (en) 2013-05-01

Family

ID=45024958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99103119A TWI394730B (en) 2010-02-03 2010-02-03 Defrosting glass and car using the same

Country Status (1)

Country Link
TW (1) TWI394730B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225888B2 (en) 2012-11-06 2019-03-05 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube defrost windows

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513175A (en) * 2006-06-30 2010-04-30 カーディナル・シージー・カンパニー Carbon nanotube glazing technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225888B2 (en) 2012-11-06 2019-03-05 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube defrost windows

Also Published As

Publication number Publication date
TWI394730B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
CN102111926B (en) Defrosting glass and vehicle using same
TWI532406B (en) Defrosting glass, defrosting lamp and car using the same
JP5662449B2 (en) Electric heating window
US11363684B2 (en) Carbon nanotube defrost windows
KR101004171B1 (en) Heating element and method for manufacturing the same
CN102883486B (en) Graphene based transparent electric heating film and production method thereof
CN103444259B (en) For utilizing electric heater to the method for clear glass deicing and assembly
JP2010147024A (en) Heating planar element, and mounting method thereof
WO2015189890A1 (en) Heat generating body
JP2010517231A (en) Heating element and heatable glass plate with this heating element
CN202799224U (en) Transparent electric heating film based on graphene
CN205546005U (en) Car rear windshield defogging defroster and car
CN104118149A (en) Explosion-proof heat-insulation film with functions of demisting and defrosting and preparation method of explosion-proof heat-insulation film with functions of demisting and defrosting
CN109958380A (en) Hydrophobic window and the house and automobile for using the hydrophobic window
CN101977863A (en) Heater and manufacturing method for same
CN109957131A (en) Hydrophobic membrane
TW201127767A (en) Defrosting glass and car using the same
JP7402803B2 (en) Method and composition for deicing a transparent window using an electric heating device
JPH1069965A (en) Sheet-shaped heater
KR102143693B1 (en) Heating glass for vehicle and method for preparing the same
CN211445598U (en) Heating film with good light transmission
CN220896866U (en) High-permeability automobile glass heating film
TWI462630B (en) Planar heating source
JP6288363B1 (en) Vehicle glass equipment
CN101616512B (en) Line heat source