TW201126776A - Solid-state lighting device and light source module - Google Patents

Solid-state lighting device and light source module Download PDF

Info

Publication number
TW201126776A
TW201126776A TW99101602A TW99101602A TW201126776A TW 201126776 A TW201126776 A TW 201126776A TW 99101602 A TW99101602 A TW 99101602A TW 99101602 A TW99101602 A TW 99101602A TW 201126776 A TW201126776 A TW 201126776A
Authority
TW
Taiwan
Prior art keywords
state light
solid
light emitting
solid state
hole
Prior art date
Application number
TW99101602A
Other languages
Chinese (zh)
Inventor
Chih-Ming Lai
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW99101602A priority Critical patent/TW201126776A/en
Publication of TW201126776A publication Critical patent/TW201126776A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

The present invention relates to a solid-state lighting device capable of dissipating heat efficiently. The solid-state lighting device includes a solid-state lighting chip, a substrate, two conducting layers, and a heat sink. The substrate includes a first surface and a second surface opposite to the first surface. A groove is defined in the first surface to receive the solid-state lighting chip. The substrate further includes a through hole extending from the solid-state lighting chip to the second surface. The two conducting layers are electrically connected to the solid-state lighting chip and extend to the first surface of the substrate respectively, and separate from one another. The heat sink is filled in the hole and thermally contacts the solid-state lighting chip. In addition, a light source module including the solid-state lighting device is also related in the present invention.

Description

201126776 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種固態發光元件,以及一種包含該固態發 光元件之光源模組。 【先前技術】 [0002] 發光二極體(Light Emi tting Diode, LED)作為固態 發光元件,其電、光特性及壽命對溫度敏感。通常,較 高之溫度會導致低落之内部量子效應並且壽命亦會明顯 縮短;而半導體之電阻隨溫度升高而降低,滑落之電阻 將帶來較大之電流及更多之熱能,造成熱累積現象之發 生;此一熱破壞迴圈通常會加速破壞發光二極體之工作 效能。 [0003] 如圖1所示,一種典型之發光二極體100包括:一封裝體 102,一發光二極體晶片104及一樹脂層106。該封裝體 102係經由在一預製之金屬框架1 020上注入塑膠1 022而 成形,該發光二極體晶片104設置於該金屬框架1 020上且 與金屬框架1020電性連接,該樹脂層106與該封裝體102 相結合以密封該發光二極體晶片104。工作時,該發光二 極體晶片104發光時所產生之熱量經由該金屬框架1 020進 行散熱。惟,由於該金屬框架1 020既作為一電極電連接 該發光二極體晶片104又用於對發光二極體晶片104進行 散熱,此一方面將增加發光二極體100之熱阻,從而導致 該發光二極體100之整體散熱性能不佳,另一方面也可能 給發光二極體100之導熱性能帶來不良之影響。 [0004] 有鑒於此,有必要提供一種散熱性能良好之固態發光元 099101602 表單編號A0101 第4頁/共30頁 0992003133-0 201126776 [0005] [0006] ❹ [0007] ❹ 件,以及一種包含該固態發光元件之光源模組。 【發明内容】 下面將以實施例說明一種具有良好散熱性能之固態發光 元件,以及一種包含該固態發光元件之光源模組。 一種固態發光元件,其包括一固態發光晶片、一基體、 兩個導電層,以及一導熱塊。該基體具有一第一表面及 一相對該第一表面之第二表面,該第一表面上開設一收 容該固態發光晶片之凹槽,且該基體具有由該固態發光 晶片延伸至該第二表面之通孔。該兩個導電層分別與該 固態發光晶片電連接並延伸至基體之第一表面,且相互 隔離。該導熱塊填充於該通孔内且與該固態發光晶片形 成熱接觸。 以及一種光源模組,其包括至少一固態發光元件、一電 路板,以及一散熱裝置。該固態發光元件包括一固態發 光晶片、一基體、兩個導電層,以及一導熱塊。該基體 具有一第一表面及一相對該第一表面之.第二表面,該第 一表面上開設一收容該固態發光晶片之凹槽,且該基體 具有由該固態發光晶片延伸至該第二表面之通孔。該兩 個導電層分別與該固態發光晶片電連接並延伸至基體之 第一表面,且相互隔離。該導熱塊填充於該通孔内且與 該固態發光晶片形成熱接觸。該電路板鄰近基體之第一 表面設置並與該兩個導電層電接觸,且該電路板開設至 少一對應於該固態發光晶片之光通孔,該固態發光晶片 發出之光可經由該光通孔透射至外界。該散熱裝置位於 該基體遠離該電路板之一侧且與該導熱塊熱接觸。 099101602 表單編號A0101 第5頁/共30頁 0992003133-0 201126776 [0008] [0009] [0010] [0011] 相對於習知技術,所述固態發光元件之基體上開設有凹 槽及通孔,該凹槽用於收容固態發光晶片,該通孔中填 充有與該固態發光晶片熱接觸之導熱塊,同時固態發光 晶片藉由該凹槽之底面延伸至該第一表面上之兩個導電 層對其供電,故,該固態發光元件熱電分離,並具有良 好之散熱性能。 【實施方式】 下面將結合圖式對本發明實施例作進—步之詳細說明。 凊參閱圖2,本發明第一實施例提供一種固態發光元件1〇 其包括·一固態發光晶片11、一基體122、兩個導電層 120,一導熱塊15,以及一透光保護層17。 該固態發光晶片11可具體為一 LED晶片i j,其具有一上表 面110,及一相對該上表面11〇之下表面112,且該上表 面110上設置一正電極(圖未示)及一負電極(圖未示)。具 體地’該LED晶片11可包含:構也滅如Ai .j.n Ga P(〇 X y (1 - x - y ) v201126776 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a solid-state light-emitting element, and a light source module including the solid-state light-emitting element. [Prior Art] [0002] A Light Emitting Diode (LED) is a solid-state light-emitting element whose electrical, optical characteristics and lifetime are sensitive to temperature. Generally, higher temperatures result in low internal quantum effects and a much shorter lifetime; while semiconductor resistance decreases with increasing temperature, and slipping resistance will result in larger currents and more thermal energy, resulting in heat buildup. The occurrence of a phenomenon; this thermal destruction of the loop usually accelerates the destruction of the working efficiency of the light-emitting diode. As shown in FIG. 1, a typical light emitting diode 100 includes a package body 102, a light emitting diode chip 104 and a resin layer 106. The package body 102 is formed by injecting a plastic 1 022 onto a prefabricated metal frame 1 020. The LED substrate 104 is disposed on the metal frame 1 020 and electrically connected to the metal frame 1020. The resin layer 106 is electrically connected. The package body 102 is combined to seal the light emitting diode wafer 104. In operation, heat generated when the LED chip 104 emits light is dissipated via the metal frame 1 020. However, since the metal frame 1 020 is electrically connected to the light emitting diode wafer 104 as an electrode and used to dissipate the light emitting diode wafer 104, the thermal resistance of the light emitting diode 100 is increased on the one hand, thereby causing The overall heat dissipation performance of the light-emitting diode 100 is not good, and on the other hand, the thermal conductivity of the light-emitting diode 100 may be adversely affected. [0004] In view of the above, it is necessary to provide a solid-state light-emitting element with good heat dissipation performance 099101602 Form No. A0101 Page 4 / Total 30 Page 0992003133-0 201126776 [0005] [0006] 0007 [0007] A light source module for a solid state light emitting element. SUMMARY OF THE INVENTION A solid state light emitting device having good heat dissipation performance and a light source module including the solid state light emitting device will be described below by way of embodiments. A solid state light emitting device comprising a solid state light emitting chip, a substrate, two conductive layers, and a thermally conductive block. The substrate has a first surface and a second surface opposite to the first surface, the first surface defines a recess for receiving the solid-state light-emitting chip, and the substrate has a surface extending from the solid-state light-emitting chip to the second surface Through hole. The two conductive layers are electrically connected to the solid state light emitting chip and extend to the first surface of the substrate, respectively, and are isolated from each other. The thermally conductive block fills the via and forms thermal contact with the solid state light emitting wafer. And a light source module comprising at least one solid state light emitting element, a circuit board, and a heat sink. The solid state light emitting device comprises a solid state light emitting chip, a substrate, two conductive layers, and a thermally conductive block. The substrate has a first surface and a second surface opposite to the first surface, the first surface defines a recess for receiving the solid-state light-emitting chip, and the substrate has a solid-state light-emitting chip extending to the second surface Through hole in the surface. The two conductive layers are electrically connected to the solid state light emitting chip and extend to the first surface of the substrate, and are isolated from each other. The thermally conductive block fills the via and forms thermal contact with the solid state light emitting wafer. The circuit board is disposed adjacent to the first surface of the substrate and is in electrical contact with the two conductive layers, and the circuit board defines at least one optical through hole corresponding to the solid state light emitting chip, and the light emitted by the solid state light emitting chip can pass through the light through The holes are transmitted to the outside. The heat sink is located on a side of the substrate away from the circuit board and in thermal contact with the heat conducting block. 099101602 Form No. A0101 Page 5 / Total 30 Pages 0992003133-0 201126776 [0010] [0011] [0011] The solid-state light-emitting element has a groove and a through hole formed therein. The recess is configured to receive a solid-state light-emitting chip, the through-hole is filled with a heat-conducting block in thermal contact with the solid-state light-emitting chip, and the solid-state light-emitting chip extends to the two conductive layer pairs on the first surface by a bottom surface of the groove The power supply is such that the solid state light emitting element is thermally and electrically separated and has good heat dissipation performance. [Embodiment] Hereinafter, a detailed description of the embodiments of the present invention will be made in conjunction with the drawings. Referring to FIG. 2, a first embodiment of the present invention provides a solid state light emitting device 1 comprising a solid state light emitting wafer 11, a substrate 122, two conductive layers 120, a heat conducting block 15, and a light transmissive protective layer 17. The solid-state light-emitting chip 11 can be specifically an LED chip ij having an upper surface 110 and a lower surface 112 opposite to the upper surface 11 , and a positive electrode (not shown) and a first surface 110 are disposed on the upper surface 110 . Negative electrode (not shown). Specifically, the LED wafer 11 may include: a structure such as Ai.j.n Ga P(〇 X y (1 - x - y ) v

SxS 卜 OSySl,x+ym 或脅化物如 AlInGaAs,包 含磷化物或砷化物之LED晶片Γί可發出黃光至紅光波段之 可見光。當然,該LED晶片11亦可採用其他材料,如氮化 物半導體(InxA1yGa(卜x_y)N,OSxU,,x+y S 1 )等。該LED晶片11之基底(substrate)為一本徵/純 質半導體(intrinsic semiconductor),或係不刻意 摻雜其他雜質之半導體(unintentionally doped semiconductor)。該基底之載子濃度(carrier concentration) 小於或等於 5xl06cm—3 , 由於載子濃度越 低’該基底之導電率就越低,從而起到隔絕電流流經基 099101602 表單編號A0101 第6頁/共30頁 0992003133-0 201126776 底之作用,故,該基底之載子濃度優選小於或等於2x 106cm 3。該基底可採用災晶石、SiC、Si、ZnO、GaN、 GaAs、GaP、AIN等材料製成,當然,該基底亦可採用導 熱率較佳且導電率較低之材料,如鑽石等製成。 [0012] ❹ [0013] 該兩個導電層120分別部分為該基體122所包覆以支撐該 基體122。該基體122之材料可係液晶聚合物(Liquid Crystal Polymer,LCP),或係熱塑性樹脂,如聚苯二 甲酸醯氨樹脂、聚對苯二曱酸丁二醇(PBT)等。另,該基 體122可混合白色顏料物質如鈦氧化物或鋁氧化物等,以 提高其承受高溫之能力,同時提升其光反射效率。SxS Bu OSySl, x+ym or a threat such as AlInGaAs, an LED wafer containing phosphide or arsenide can emit visible light in the yellow to red wavelength range. Of course, the LED chip 11 may also be made of other materials such as a nitride semiconductor (InxA1yGa (bx_y)N, OSxU, x+y S 1 ). The substrate of the LED wafer 11 is an intrinsic semiconductor or an unintentionally doped semiconductor. The carrier concentration of the substrate is less than or equal to 5xl06cm-3, the lower the carrier concentration is, the lower the conductivity of the substrate is, so that the isolation current flows through the base 099101602 Form No. A0101 Page 6 / Total The effect of the bottom is 30 pages 0992003133-0 201126776, so the carrier concentration of the substrate is preferably less than or equal to 2 x 106 cm 3 . The substrate can be made of materials such as disaster spar, SiC, Si, ZnO, GaN, GaAs, GaP, AIN, etc., of course, the substrate can also be made of materials with better thermal conductivity and lower conductivity, such as diamonds. . [0012] The two conductive layers 120 are partially covered by the substrate 122 to support the substrate 122, respectively. The material of the substrate 122 may be liquid crystal polymer (LCP), or a thermoplastic resin such as phthalic acid resin, polybutylene terephthalate (PBT) or the like. Alternatively, the substrate 122 may be mixed with a white pigment material such as titanium oxide or aluminum oxide to increase its ability to withstand high temperatures while increasing its light reflection efficiency.

該基體122具有一第一表面1220及一相對該第一表面 1220之第二表面1222,以及一連接該第一、第二表面 1220、1 222之側面1223。該第一表面上1 220開設一用 於收容該固態發光晶片11之凹槽122A,且該基體122對 應該凹槽122A具有一底面1 224及一環繞該底面1224且與 該底面相接之侧面1226。該底面1224上開設一通孔122B ,該通孔122B貫穿該第二表面1222且與該凹槽122A相貫 通。可理解,該基體之側面1226可塗覆一光反射層 (ref lect ive layer) 13,以將固態發光晶片11發出之 光線反射出該凹槽122A。 [0014] 本實施例中,該兩個導電層120分別為彎折狀,具體地, 該兩個導電層120分別由凹槽122A之底面1 224延伸至基 體122之側面1223,再沿著該側面1 223延伸至基體122之 第一表面1 220上。該導電層120鄰近該凹槽122A底面 1224之部分具有一暴露於該凹槽122A内之安裝面1 200, 099101602 表單編號A0101 第7頁/共30頁 0992003133-0 201126776 δ亥女裝面1200與s玄底面1224共面。另,該導電層i2〇覆 蓋該第一表面1220之部分具有一暴露於該固態發光元件 10外之端面12 0 2。可理解地,該導電層12 0亦可經由其 他路徑延伸至第一表面1220上’例如,由凹槽122A底面 1224沿著凹槽122A之側面1 226延伸至第一表面1220上 ,或係由凹槽122A底面1224延伸至基體122之内部,再 進一步延伸至第一表面1 220上,其並不局限於具體實施 例。該導熱塊(heat sink)15填充於該通孔122B内,其 具有一接觸面150及一相對該接觸面150之底面152。該 通孔122B可為一柱狀通孔,如圓孔或係方孔,對應地, 該導熱塊15亦可為柱狀,如圓枉狀或棱柱狀。本實施例 中,該導熱塊15完全填充該通孔122B,其底面152與該 基體122之第二表面1222共面,優選地,.該導熱塊15之 接觸面150與該導電層120之安裝面1200共面。 [0015] 該固態發光晶片11設置於該凹槽122A内,該導熱塊15支 撐該固態發光晶片11。具體地,該固態發光晶片U之下 ·.; ''+j:+ 表面112與該導熱塊15之瑪眉面150藉由使用導熱膠,如 銀膠(Ag epoxy)進行連接,從而使得該固態發光晶片j j 與該導熱塊15形成熱接觸。該固態發光晶片11與該導熱 塊15亦可使用共燒接合法(solder bonding process) 相連接,具體為於該固態發光晶片11與該導熱塊15之間 設置錫球,在溫度達230〇C之南溫爐内使得錫球炫融,並 經冷卻後使得固態發光晶片11與導熱塊15相連接於一起 。可理解地,該固態發光晶片11與該導熱塊15還可藉由 共晶接合法(eutectic process)相連接,具體為於高 099101602 表單編號A0101 第8頁/共30頁 0992003133-0 201126776 溫及超聲波(u 11rason i c )環境下壓合該固態發光晶片11 ,使得該固態發光晶片11與該導熱塊15鍵合(bonding) 。另’該固態發光晶片11之正負電極藉由打線連接(wire bonding)至該導電層120之安裝面1200上。 [0016] Ο 〇 [0017] 該透光保護層17用於填充凹槽122A以密封該固態發光晶 片11。具體地’該透光保護層17之材料可為樹脂 (resin)、矽樹脂(silicone)、環氧樹脂(epoxy resin) ' 聚甲基丙稀酸甲酯 (PMMA) , 或玻璃等 。本實施例 中’該透光保護層17充分填充該凹槽122A且密封該凹槽 .. ... ..... 122A之底面1224及侧面1226,其填真高度與該基體122 之第一表面1220相平齊。進一步地,讓透光保護層17内 可填充光轉換物質’如螢光粉等以將固態發光晶片11發 出之光轉換成為其他色光,並經混光後出射。該螢光粉 可包括紅、黃、綠色螢光粉,其材料可為硫化物 (Sulfides)、鋁酸鹽(Aluminates)、氧化物(Oxides) 、石夕酸鹽(Silicates)或氮化物(Nitredes)等。具體地 ,該螢光粉可為 Ca2Al12〇i9:Mn,(Ca,The base 122 has a first surface 1220 and a second surface 1222 opposite to the first surface 1220, and a side surface 1223 connecting the first and second surfaces 1220, 1222. The first surface 1 220 defines a recess 122A for receiving the solid-state light-emitting chip 11, and the base 122 has a bottom surface 1 224 corresponding to the recess 122A and a side surrounding the bottom surface 1224 and contacting the bottom surface. 1226. A through hole 122B is defined in the bottom surface 1224. The through hole 122B extends through the second surface 1222 and communicates with the groove 122A. It can be understood that the side 1226 of the substrate can be coated with a ref ive layer 13 to reflect the light emitted by the solid state light emitting wafer 11 out of the recess 122A. [0014] In this embodiment, the two conductive layers 120 are respectively bent. Specifically, the two conductive layers 120 extend from the bottom surface 1 224 of the recess 122A to the side surface 1223 of the base 122, and then Side 1 223 extends onto first surface 1 220 of substrate 122. The portion of the conductive layer 120 adjacent to the bottom surface 1224 of the recess 122A has a mounting surface 1200 exposed to the recess 122A. 099101602 Form No. A0101 Page 7 / Total 30 Page 0992003133-0 201126776 δ海女装面1200 s Xuan bottom 1224 is coplanar. In addition, the portion of the conductive layer i2 that covers the first surface 1220 has an end surface 12 0 2 exposed to the outside of the solid state light emitting device 10. It can be understood that the conductive layer 120 can also extend onto the first surface 1220 via other paths 'eg, extending from the bottom surface 1224 of the recess 122A along the side 1 226 of the recess 122A to the first surface 1220, or The bottom surface 1224 of the recess 122A extends to the interior of the base 122 and further extends to the first surface 1 220, which is not limited to the specific embodiment. The heat sink 15 is filled in the through hole 122B and has a contact surface 150 and a bottom surface 152 opposite to the contact surface 150. The through hole 122B may be a columnar through hole, such as a circular hole or a square hole. Correspondingly, the heat conducting block 15 may also be columnar, such as a circular or prismatic shape. In this embodiment, the heat conducting block 15 completely fills the through hole 122B, and the bottom surface 152 is coplanar with the second surface 1222 of the base 122. Preferably, the contact surface 150 of the heat conducting block 15 and the conductive layer 120 are mounted. Face 1200 is coplanar. [0015] The solid state light emitting wafer 11 is disposed in the recess 122A, and the heat conducting block 15 supports the solid state light emitting wafer 11. Specifically, the solid-state light-emitting wafer U is under the surface of the surface of the heat-conducting block 15 and is connected by using a thermal conductive adhesive such as Ag epoxy. The solid state light emitting wafer jj is in thermal contact with the thermally conductive bump 15. The solid-state light-emitting chip 11 and the heat-conducting block 15 may also be connected by a solder bonding process, in particular, a solder ball is disposed between the solid-state light-emitting chip 11 and the heat-conducting block 15 at a temperature of 230 〇C. The solder ball is smelted in the south furnace, and after cooling, the solid-state light-emitting chip 11 and the heat-conducting block 15 are connected together. It can be understood that the solid-state light-emitting chip 11 and the heat-conducting block 15 can also be connected by a eutectic process, specifically at 099101602, Form No. A0101, Page 8 / Total 30, 0992003133-0, 201126776. The solid-state light-emitting wafer 11 is pressed in an ultrasonic (u 11rason ic ) environment such that the solid-state light-emitting wafer 11 is bonded to the heat-conductive block 15 . The positive and negative electrodes of the solid state light-emitting wafer 11 are wire bonded to the mounting surface 1200 of the conductive layer 120. [0016] The light-transmissive protective layer 17 is used to fill the recess 122A to seal the solid-state light-emitting wafer 11. Specifically, the material of the light-transmitting protective layer 17 may be a resin, a silicone, an epoxy resin, a polymethyl methacrylate (PMMA), or a glass. In the embodiment, the light-transmissive protective layer 17 sufficiently fills the groove 122A and seals the bottom surface 1224 and the side surface 1226 of the groove. The filling height and the base 122 are A surface 1220 is flush. Further, the light-transmitting protective layer 17 may be filled with a light-converting substance such as phosphor powder or the like to convert the light emitted from the solid-state light-emitting wafer 11 into other color lights, and after being mixed and emitted. The phosphor powder may include red, yellow, and green phosphor powder, and the material may be Sulfides, Aluminates, Oxides, Siliconates, or Nitrides. )Wait. Specifically, the phosphor powder may be Ca2Al12〇i9:Mn, (Ca,

Sr,Ba)Al2〇4:Eu, Y3A15012Ce3+(YAG), Tb3Al5〇12: Ce3+(YAG), BaMgAl1〇〇i7:Eu2+(Mn2+),Sr,Ba)Al2〇4:Eu, Y3A15012Ce3+(YAG), Tb3Al5〇12: Ce3+(YAG), BaMgAl1〇〇i7:Eu2+(Mn2+),

Ca2Si5N8:Eu2 + , (Ca, Sr, Ba)S:Eu2 + , (Mg’ Ca,Sr,Ba)2Si〇4: Eu2 +,(Mg,Ca,Sr,Ba)3Si2〇7: Eu2+, Ca8Mg(Si〇4)4Cl2:Eu2+, Y2〇2S:Eu3+, (Sr,Ca2Si5N8:Eu2 + , (Ca, Sr, Ba)S:Eu2 + , (Mg' Ca,Sr,Ba)2Si〇4: Eu2 +,(Mg,Ca,Sr,Ba)3Si2〇7: Eu2+, Ca8Mg( Si〇4)4Cl2: Eu2+, Y2〇2S: Eu3+, (Sr,

Ca, Ba)SiOyNz:Eu2 + , (Ca,Mg, Y)SiwAlx〇yNz:Eu2 +,CdS,CdTe或CdSe等。 工作時’外部電源(圖未示)藉由兩個導電層12〇對固態發 099101602 表單編號A0101 0992003133-0 201126776 光晶片11通電。一方面’固態發光晶片11發射之光線經 透光保護層17後透射出透光保護層I7 ;另—方面’該固 態發光晶片11發出之熱量可經導熱塊15傳導至外界進行 散熱。由於兩個導電層120與導熱塊丨5相互分離’故’該 固態發光晶片11導電及導熱之路徑<相互隔離’互不干 擾。 [0018] 參見圖3,本發明第二實施例提供一種固態發光元件2〇, 其與第一實施例所提供之固態發光元件10基本相同,不 同之處在於:透光保護層27填充之高度並不與基體222之 第一表面2220相平齊,而係與導電層22〇之端面2202相 平齊。該固態發光元件20可藉由該端面2202與其他外部 元件(圖未示),如導光板等相結合,梃而使得該透光保 護層27與該外部元件緊密貼合。 [0019] 參見圖4,本發明第三實施例提供一種固態發光元件30, 其與第一實施例所提供之固態發先元件10基本相同,不 --. :: :: :; . 同之處在於:透光保護層37密封固態發光晶片31但未密 封凹槽322A之側面3226,且該透光保護層37呈圓冠狀。 另’導熱塊35部分填充基體322之通孔322B,該導熱塊 35遠離該固態發光晶片31之底面352與基體322之第二表 面3222形成一階梯面。 [0020] 099101602 參見圖5 ’本發明第四實施例提供一種固態發光元件4〇, 其與第一實施例所提供之固態發光元件1〇基本相同,不 同之處在於:基體422所開設之通孔422B呈T形分佈,具 體地,該通孔422B鄰近固態發光晶片41 一端之尺寸大於 其遠離固態發光晶片41 一端之尺寸。對應地,導熱塊45 0992003133-0 表單編號A0101 第10頁/共30頁 201126776 配合該通孔422Β之形狀充分填充該通孔422Β,即該導熱 塊45亦呈τ形分佈,其可較穩固地卡扣於基體422之通孔 422B 内。 [0021] Ο 參見圖6,本發明第五實施例提供一種固態發光元件50, 其與第一實施例所提供之固態發光元件10基本相同,不 同之處在於:基體522所開設之通孔522B呈倒T形分佈, 具體地,該通孔522B鄰近固態發光晶片51—端之尺寸小 於其遠離固態發光晶片51—端之尺寸。對應地,導熱塊 55配合該通孔522B之形狀填充該通祁5226,即該導熱塊 35亦呈倒τ形分佈,該導熱塊55遠離固態發光晶片51之一 端具有較大之面積,其可較佳地進行導熱。進一步地, 該導熱塊55遠離固態發光晶片51之一端進一步延伸凸出 基體522之第二表面5222,使得該導熱塊55之底面552與 該第一表面5222形成一階梯面。 [0022] 參見圖7,本發明第六實施例提供一種固態發光元件60, 其與第一實施例所提供之固態發光元件1〇基本相同,不 同之處在於:基體622所開設之通孔622B為一階梯孔,其 包括一鄰近固態發光晶片61之第一孔622a,一遠離固態 發光晶片51之第二孔622b,以及位於第一、第二孔622a 、622b之間且貫通該第一、第二孔622a、622b之第三孔 622c,該第一、第二孔622a、622b之尺寸分別大於第三 孔622c之尺寸。優選地,第二孔622b之尺寸大於第一孔 622a之尺寸《對應地,導熱塊65配合該通孔622B之形狀 填充該通孔622B ’即該導熱塊65亦呈階梯狀。進一步地 ’該導熱塊65遠離固態發光晶片61之一端進一步延伸並 099101602 表單編號A0101 第11頁/共30頁 0992003133-0 201126776 凸出基體622之第二表面6222,使得該導熱塊65之底面 652與s亥第一表面6222形成一階梯面。另,透光保護層 67密封固態發光晶片61並填充整個凹槽622A,且進一步 延伸出導電層620之端面6202形成一圓冠狀。 [0023] 請參閱圖8,本發明還提供一種光源模組7〇,該光源模組 7 0可採用第一至第六實施例中任意一種固態發光元件 10~60。下面僅以第六實施例中之固態發光元件6〇之情況 為例對該光源模組70進行說明。 [0024] 圖8所示之光源模組70包括一固態發光元件6〇,一電路板 72,以及一散熱裝置74。該固態發光元件6〇包括兩個導 電層620,以及一部分包覆該兩個導電層620之基體622 〇 [0025] 電路板72具有一第三表面720,一與第三表面720相對之 第四表面722。該電路板72由該第三表面720向内開設一 對應透光保護層67之光通扣724。安翁時,電路板72可藉 由錫球經熱回焊與導電層620之端面6202相連接,該透光 保護層67貫穿該電路板72之光通孔724且凸出該導電層 620之端面6202。 [0〇26]該散熱裝置74包括一基座740,以及由該基座740向遠離 基座740之一端延伸出來之複數個散熱鰭片742。該基座 740可藉由錫球經熱回焊與固態發光元件60之導熱塊65相 連接。本實施例中,該基座740具有一平面744,該錫球 置於該平面744與導熱塊65之底面652之間進行連接。 [0027] 工 作時’電路板72藉由外部電源(圖未示)對其供電,電 099101602 表單鳊號A0101 第12頁/共30頁 0992003133-0 201126776 流經兩個導電層6 2 0後對固態發光晶片61 $ t 固態發光晶片61發射之光線經透光保I蔓^^ 6 7 光保護層67 ;另一方面,該固態發光晶片6丨發 ’ 可經導熱塊65傳導至散熱裝置74進行散&。 方面, 出透 之熱量 [0028] Ο 由於兩個導電層620與導熱塊65相互分%= ’該固態發弁晶 片61導電及導熱之路控可相互隔離,坊 玟,於保障對固離 發光晶片61進行供電以使其發光之前裎π ,該固態發朵 晶片61發出之熱量可較佳地經由導熱塊65傳 置74進行散熱,該光源模組70同時具有較佳之發光…·" 及較佳之散熱效率。 [0029] 請參閱圖9 ’本發明還提供一種光源模姐8〇,其包括兩個 第五實施例之固態發光元件50 ’ 一電路板82,以及一散 熱裝置84,其中,該散熱裝置84包括一基座840及複數個 散熱鰭片842。該光源模組80與上述之光源模組70相類似Ca, Ba) SiOyNz: Eu2 + , (Ca, Mg, Y) SiwAlx〇yNz: Eu2+, CdS, CdTe or CdSe, and the like. When working, the external power supply (not shown) is powered by the two conductive layers 12〇 to the solid state 099101602 Form No. A0101 0992003133-0 201126776. On the one hand, the light emitted by the solid-state light-emitting chip 11 is transmitted through the light-transmitting protective layer 17 and transmitted through the light-transmitting protective layer I7; the heat emitted from the solid-state light-emitting chip 11 can be conducted to the outside through the heat-conducting block 15 for heat dissipation. Since the two conductive layers 120 and the heat conducting block 丨5 are separated from each other, the path of conduction and heat conduction of the solid state light-emitting wafer 11 <is isolated from each other' does not interfere with each other. [0018] Referring to FIG. 3, a second embodiment of the present invention provides a solid state light emitting device 2, which is substantially the same as the solid state light emitting device 10 provided in the first embodiment, except that the height of the transparent protective layer 27 is filled. It is not flush with the first surface 2220 of the base 222, and is flush with the end surface 2202 of the conductive layer 22〇. The solid-state light-emitting element 20 can be combined with other external components (not shown), such as a light guide plate, etc., so that the light-transmissive protective layer 27 is in close contact with the external component. [0019] Referring to FIG. 4, a third embodiment of the present invention provides a solid state light emitting device 30 which is substantially the same as the solid state generating device 10 provided in the first embodiment, and does not have a ---: ::::; The light transmissive protective layer 37 seals the solid-state light-emitting chip 31 but does not seal the side surface 3226 of the recess 322A, and the light-transmitting protective layer 37 has a round crown shape. The heat conducting block 35 partially fills the through hole 322B of the base 322. The heat conducting block 35 forms a stepped surface away from the bottom surface 352 of the solid state light emitting chip 31 and the second surface 3222 of the base 322. [0020] 099101602 Referring to FIG. 5, a fourth embodiment of the present invention provides a solid state light emitting device 4A which is substantially the same as the solid state light emitting device 1A provided in the first embodiment, except that the substrate 422 is opened. The hole 422B has a T-shaped distribution. Specifically, the size of the through hole 422B adjacent to one end of the solid-state light-emitting chip 41 is larger than the size of one end away from the solid-state light-emitting chip 41. Correspondingly, the heat conducting block 45 0992003133-0 Form No. A0101 Page 10 / Total 30 pages 201126776 The shape of the through hole 422 配合 is sufficient to fill the through hole 422 Β, that is, the heat conducting block 45 is also distributed in a zigzag shape, which can be more stably The buckle is inserted into the through hole 422B of the base 422. [0021] Referring to FIG. 6, a fifth embodiment of the present invention provides a solid state light emitting device 50, which is substantially the same as the solid state light emitting device 10 provided in the first embodiment, except that the through hole 522B of the base 522 is provided. In an inverted T-shaped distribution, specifically, the through hole 522B is adjacent to the solid-state light-emitting chip 51. The size of the end is smaller than the size of the end of the solid-state light-emitting chip 51. Correspondingly, the heat conducting block 55 fills the through hole 5226 with the shape of the through hole 522B, that is, the heat conducting block 35 is also distributed in an inverted τ shape, and the heat conducting block 55 has a larger area away from one end of the solid state light emitting chip 51, which can be Thermal conduction is preferably performed. Further, the heat conducting block 55 extends away from one end of the solid state light emitting chip 51 to further extend the second surface 5222 of the base 522 such that the bottom surface 552 of the heat conducting block 55 forms a stepped surface with the first surface 5222. [0022] Referring to FIG. 7, a sixth embodiment of the present invention provides a solid state light emitting device 60, which is substantially the same as the solid state light emitting device 1A provided in the first embodiment, except that the through hole 622B is provided in the base 622. a stepped hole, comprising a first hole 622a adjacent to the solid state light emitting chip 61, a second hole 622b away from the solid state light emitting chip 51, and located between the first and second holes 622a, 622b and penetrating the first hole The third holes 622c of the second holes 622a, 622b, the first and second holes 622a, 622b are respectively larger in size than the third holes 622c. Preferably, the size of the second hole 622b is larger than the size of the first hole 622a. Correspondingly, the heat conducting block 65 fills the through hole 622B with the shape of the through hole 622B, that is, the heat conducting block 65 is also stepped. Further, the heat conducting block 65 is further extended away from one end of the solid state light emitting chip 61 and 099101602 Form No. A0101 Page 11 / Total 30 pages 0992003133-0 201126776 The second surface 6222 of the base 622 is protruded such that the bottom surface 652 of the heat conducting block 65 Forming a step surface with the first surface 6222 of the shai. In addition, the light-transmissive protective layer 67 seals the solid-state light-emitting chip 61 and fills the entire groove 622A, and further extends the end surface 6202 of the conductive layer 620 to form a circular crown shape. Referring to FIG. 8, the present invention further provides a light source module 7A. The light source module 70 can adopt any of the solid state light emitting elements 10 to 60 of the first to sixth embodiments. The light source module 70 will be described below by taking only the case of the solid state light emitting device 6 in the sixth embodiment as an example. [0024] The light source module 70 shown in FIG. 8 includes a solid state light emitting element 6A, a circuit board 72, and a heat sink 74. The solid state light emitting device 6 includes two conductive layers 620 and a portion of the substrate 622 covering the two conductive layers 620. [0025] The circuit board 72 has a third surface 720, and a fourth surface 720 opposite to the third surface 720. Surface 722. The circuit board 72 defines a light flux 724 corresponding to the transparent protective layer 67 inwardly from the third surface 720. During the aging, the circuit board 72 can be connected to the end surface 6202 of the conductive layer 620 by thermal reflow, and the transparent protective layer 67 penetrates the optical via 724 of the circuit board 72 and protrudes from the conductive layer 620. End face 6202. [0〇26] The heat sink 74 includes a base 740 and a plurality of heat sink fins 742 extending from the base 740 away from one end of the base 740. The susceptor 740 can be connected to the thermally conductive block 65 of the solid state light emitting device 60 by thermal reflow of solder balls. In this embodiment, the base 740 has a flat surface 744, and the solder ball is placed between the flat surface 744 and the bottom surface 652 of the heat conducting block 65. [0027] During operation, the circuit board 72 is powered by an external power source (not shown). The electric 099101602 form nickname A0101 page 12/total 30 page 0992003133-0 201126776 flows through two conductive layers 6 2 0 The solid-state light-emitting chip 61 $ t emits light from the solid-state light-emitting chip 61 through the light-transmitting protective layer 67; on the other hand, the solid-state light-emitting chip 6 emits light through the heat conducting block 65 to the heat sink 74 Carry out the dispersion & In terms of heat, the heat is transmitted [0028] Ο Since the two conductive layers 620 and the heat conducting block 65 are separated from each other, the path of the conductive and heat conduction of the solid hair stranded wafer 61 can be isolated from each other. Before the wafer 61 is powered to illuminate π, the heat generated by the solid-state wafer 61 can be dissipated through the heat-transfer block 65 to dissipate heat. The light source module 70 has better illumination at the same time. Better heat dissipation efficiency. [0029] Please refer to FIG. 9 'The present invention further provides a light source module 8 〇 comprising two solid-state light-emitting elements 50 ′ of a fifth embodiment, a circuit board 82 , and a heat sink 84 , wherein the heat sink 84 A pedestal 840 and a plurality of heat dissipation fins 842 are included. The light source module 80 is similar to the light source module 70 described above.

,區別在於:散熱裝置84之基座840開設用於收容導熱塊 55之收容槽846。 [0030] 該收容槽846之數目對應該固態發光元件50之數目’具體 為兩個,且其開設於基座840之平面844上。另,該電路 板82上所開設之光通孔824配合固態發光元件50中凹槽 522Α之開口,從而使得固態發光晶片51發射之光線無遮 擋地穿過該光通孔824並出射至外界。 [〇〇31] 由於固態發光元件50之導熱塊55凸出基體522之底面552 ,故,該兩個收容槽846可將對應導熱塊55凸出於底面 552之部分收容於其中,從而增加該導熱塊55與散熱裝置 099101602 表單編號Α0101 第13頁/共30頁 0992003133-0 201126776 84之接觸面積,並使得散熱裝置84與固態發光元件50較 穩固地接合於一起。優選地’基體522之第二表面5222與 基座840之平面844相接觸。 [0032] 請參閱圖10,本發明進一步提供一種光源模組90,其包 括兩個第三實施例之固態發光元件30,一電路板92,以 及一散熱裝置94,其中,該散熱裝置94包括一基座940及 複數個散熱鰭片942。該光源模組90與上述之光源模組80 相類似,區別在於:該電路板92為一柔性印刷電路板 (flexible printed circuit board,FPCB),其彎 折並鄰近固態發光元件3 〇中基髏3 2 2之第一表面3 2 2 0及 側面3223設置,該電路板92同時與位於談第一表面3220 及側面3223上之導電層320相接觸。該電路板92之基材 可為聚脂(PET)、聚亞醯胺薄膜(PI)、聚乙烯環烷(PEN) 、薄型之環氧樹脂,或係玻璃纖維材料(FR4)等《另,該 基座940具有複數個由其平面944向外延伸形成之凸起 948 ’該凸起948延伸至固態發光元#3〇之通孔322B並與 導熱塊35相接觸,從而增知蜂等熱塊3 5與散熱裝置94之 : .丨...: 接觸面積’並使得散熱裝置94與固態發光元件3〇較穩固 地接合於一起。優選地’基體322之第二表面3222與基座 940之平面944相接觸’從而可藉由黏合劑黏合在一起。 [0033] 综上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 099101602 表單編號A0101 第Η頁/共30頁 0992003133-0 201126776 【圖式簡單說明】 [0034] 圖1係習知技術中一種固態發光元件之截面示意圖。 [0035] 圖2係本發明第一實施例之固態發光元件之截面示意圖。 [0036] 圖3係本發明第二實施例之固態發光元件之截面示意圖。 [0037] 圖4係本發明第三實施例之固態發光元件之截面示意圖。 [0038] 圖5係本發明第四實施例之固態發光元件之截面示意圖。 [0039] 圖6係本發明第五實施例之固態發光元件之截面示意圖。The difference is that the base 840 of the heat sink 84 defines a receiving slot 846 for receiving the heat conducting block 55. [0030] The number of the receiving slots 846 corresponds to the number of solid state light emitting elements 50, specifically two, and is disposed on the plane 844 of the base 840. In addition, the optical through hole 824 formed in the circuit board 82 cooperates with the opening of the recess 522 in the solid state light emitting element 50, so that the light emitted from the solid state light emitting chip 51 passes through the optical through hole 824 and exits to the outside. The heat receiving block 55 of the solid state light emitting device 50 protrudes from the bottom surface 552 of the base 522. Therefore, the two receiving grooves 846 can receive the portion of the corresponding heat conducting block 55 protruding from the bottom surface 552 therein, thereby increasing the The heat conducting block 55 and the heat sink 099101602 form number Α 0101 page 13 / total 30 pages 0992003133-0 201126776 84 contact area, and the heat sink 84 and the solid state light emitting element 50 are more firmly joined together. Preferably, the second surface 5222 of the base 522 is in contact with the plane 844 of the base 840. Referring to FIG. 10, the present invention further provides a light source module 90 including two solid-state light-emitting elements 30 of a third embodiment, a circuit board 92, and a heat sink 94, wherein the heat sink 94 includes A susceptor 940 and a plurality of heat dissipation fins 942. The light source module 90 is similar to the light source module 80 described above, except that the circuit board 92 is a flexible printed circuit board (FPCB) that is bent and adjacent to the solid state light emitting device. The first surface 3 2 2 0 and the side surface 3223 of the 3 2 2 are disposed, and the circuit board 92 is simultaneously in contact with the conductive layer 320 on the first surface 3220 and the side surface 3223. The substrate of the circuit board 92 may be a polyester (PET), a polyimide film (PI), a polyethylene naphthenic (PEN), a thin epoxy resin, or a glass fiber material (FR4). The susceptor 940 has a plurality of protrusions 948 formed by the plane 944 extending outwardly. The protrusion 948 extends to the through hole 322B of the solid state light emitting element #3〇 and is in contact with the heat conducting block 35, thereby enhancing the heat of the bee. Block 35 and heat sink 94: .丨...: contact area' and allows heat sink 94 to be more securely bonded to solid state light emitting element 3A. Preferably, the second surface 3222 of the substrate 322 is in contact with the plane 944 of the pedestal 940 so that it can be bonded together by an adhesive. [0033] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. 099101602 Form No. A0101 Page/Total 30 Pages 0992003133-0 201126776 [Simplified Schematic] [0034] FIG. 1 is a schematic cross-sectional view of a solid state light emitting device in the prior art. 2 is a schematic cross-sectional view showing a solid state light emitting device according to a first embodiment of the present invention. 3 is a schematic cross-sectional view showing a solid state light emitting device according to a second embodiment of the present invention. 4 is a schematic cross-sectional view showing a solid state light emitting device according to a third embodiment of the present invention. 5 is a schematic cross-sectional view showing a solid state light emitting device according to a fourth embodiment of the present invention. 6 is a schematic cross-sectional view showing a solid state light emitting device according to a fifth embodiment of the present invention.

[0040] 圖7係本發明第六實施例之固態發光元件之截面示意圖。 [0041] 圖8係採用圖7所示固態發光元件之光源模組之載面示意 圖。 [0042] 圖9係採用圖6所示固態發光元件之光源模組之截面示意 圖。 [0043] 圖10係採用圖4所示固態發光元件之光源模組之截面示意 圖.。 【主要元件符號說明】 [0044] 發光二極體:100 [0045] 封裝體:102 [0046] 發光二極體晶片:104 [0047] 樹脂層:106 [0048] 金屬框架:1020 [0049] 塑膠:1022 099101602 表單編號A0101 第15頁/共30頁 0992003133-0 201126776 [0050]固態發光元件:10、20、30、40、50、60 [0051] 固態發光晶片:11、31、41、51、61 [0052] 光反射層:13 [0053] 導熱塊:15、35、45、55、65 [0054] 透光保護層:17、27、37、67 [0055] 上表面:110 [0056] 下表面:112 [0057] 導電層:120、220、620、320 [0058] 基體:122、222、322、422 ' 522 ' 622 [0059] 接觸面:150 [0060] 底面:152、1224、352、552、652 [0061] 安裝面:1200 [0062] 端面:1 202、2202、6202 [0063] 第一表面:1220、2220、3220 [0064] 第二表面:1 222、3222、5222、6222 [0065] 側面:1 223、1226、32237 is a schematic cross-sectional view showing a solid state light emitting device according to a sixth embodiment of the present invention. 8 is a schematic view showing the surface of a light source module using the solid-state light-emitting element shown in FIG. 7. 9 is a schematic cross-sectional view showing a light source module using the solid-state light-emitting element shown in FIG. 6. 10 is a schematic cross-sectional view of a light source module employing the solid state light emitting device of FIG. 4. [Main Component Symbol Description] [0044] Light Emitting Diode: 100 [0045] Package: 102 [0046] Light Emitting Diode Wafer: 104 [0047] Resin Layer: 106 [0048] Metal Frame: 1020 [0049] Plastic :1022 099101602 Form No. A0101 Page 15 / Total 30 Pages 0992003133-0 201126776 [0050] Solid state light emitting elements: 10, 20, 30, 40, 50, 60 [0051] Solid state light emitting chips: 11, 31, 41, 51, 61 [0052] Light reflecting layer: 13 [0053] Thermal conductive block: 15, 35, 45, 55, 65 [0054] Light-transmitting protective layer: 17, 27, 37, 67 [0055] Upper surface: 110 [0056] Surface: 112 [0057] Conductive layer: 120, 220, 620, 320 [0058] Base: 122, 222, 322, 422 '522 ' 622 [0059] Contact surface: 150 [0060] Bottom surface: 152, 1224, 352, 552, 652 [0061] Mounting surface: 1200 [0062] End face: 1 202, 2202, 6202 [0063] First surface: 1220, 2220, 3220 [0064] Second surface: 1 222, 3222, 5222, 6222 [0065] ] Side: 1 223, 1226, 3223

[0066] 凹槽:122A、322A、522A、622A[0066] Grooves: 122A, 322A, 522A, 622A

[0067] 通孔:122B、322B、422B、522B、622B[0067] Through holes: 122B, 322B, 422B, 522B, 622B

[0068] 第一孔:622a 099101602 表單編號A0101 第16頁/共30頁 0992003133-0 201126776 [0069] [0070] [0071] [0072] [0073] [0074] [0075][0068] First hole: 622a 099101602 Form number A0101 Page 16 / Total 30 page 0992003133-0 201126776 [0069] [0074] [0073] [0075]

[0076] [0077] [0078] [0079] [0080] [0081] Ο 第二孔:622b 第三孔:622c 光源模組:70、80、90 電路板:72、82、92 第三表面:720 第四表面:722 光通孔:724、824 散熱裝置:74、84、94 基座:740、840、940 散熱鰭片:742、842、942 平面:744、844、944 收容槽:846 凸起:948 099101602 表單編號A0101 第17頁/共30頁 0992003133-0[0078] [0078] [0081] Ο second hole: 622b third hole: 622c light source module: 70, 80, 90 circuit board: 72, 82, 92 third surface: 720 Fourth surface: 722 Optical through hole: 724, 824 Heat sink: 74, 84, 94 Base: 740, 840, 940 Heat sink fin: 742, 842, 942 Plane: 744, 844, 944 Storage slot: 846 convex From: 948 099101602 Form No. A0101 Page 17 / Total 30 Pages 0992003133-0

Claims (1)

201126776 七、申請專利範圍: 1 種固態發光元件,其包括: 一固態發光晶片; 一基體’其具有—第—表面及—相對該第-表面之第二表 面,該第-表面上開設-收容該固態發光晶片之凹槽,該 基體具有由該固態發光晶片延伸至該第二表面之通孔; 兩個導電層,每個導電層與該固態發光晶片電連接並延伸 至基體之第-表面,該兩個導電層相互隔離;以及 —導熱塊,其填充於該通孔内且與_態發光晶片形成熱 接觸。 … 2 .如申請專利範圍第丨項所述之固態發光元件,其中,該通 孔為一柱狀通孔。 3.如申請專利範圍第i項所述之固態發光元件,其中,該通 孔鄰近該固態發光晶片之一端之尺寸大於其遠離該固態發 光晶片之一端之尺寸。 4 .如申請專利範圍第」項所述之固態發光元件,其令,該通 ,近該固態發光晶片之一端之尺寸及其遠離該固二 晶片之一端之尺寸大於位於該兩端之間之部分之尺寸。 如申清專利範圍第1項所述之固態發光元件,其中,該導 熱塊由該通孔進一步延伸凸出該基體之第二表面,该導孰 塊遠離該固態發光晶片之一端面與該第二表面形成一階梯 面。 6 .如申請專利範圍第J項所述之固態發光元件其中,該導 熱塊部分填充該通孔,該導熱塊遠離該固態 1一 端面與該第二表面形成一階梯面。 曰曰片 099101602 表單編號A0101 第18頁/共30頁 0992003133-0 201126776 7 .如申請專利範圍第1項所述之固態發光元件,其中,該固 態發光晶片包括發光二極體晶片。 8 .如申請專利範圍第1項所述之固態發光元件,其中,該固 態發光晶片與該兩個導電層打線連接。 9 . 一種光源模組,其包括: 至少一固態發光元件,該至少一固態發光元件包括: 一固態發光晶片, 一基體,其具有一第一表面及一相對該第一表面之第二表 面,該第一表面上開設一收容該固態發光晶片之凹槽,該 〇 ^ 基體具有由該固態發光晶片延伸至該第二表面之通孔, 兩個導電層,每個導電層與該固態發光晶片電連接並延伸 至基體之第一表面,該兩個導電層相互隔離,以及 一導熱塊,其填充於該通孔内且與該固態發光晶片形成熱 接觸; 一電路板,其鄰近基體之第一表面設置並與該兩個導電層 電接觸,且該電路板開設至少一對應於該固態發光晶片之 光通孔,該固態發光晶片發出之光可經由該光通孔透射至 Ο ^ 外界;以及 一散熱裝置,其位於該基體遠離該電路板之一側且與該導 熱塊熱接觸。 10 .如申請專利範圍第9項所述之光源模組,其中,該導熱塊 由該通孔進一步延伸凸出該基體之第二表面,該導熱塊遠 離該固態發光晶片之一端面與該第二表面形成一階梯面。 11 .如申請專利範圍第10項所述之光源模組,其中,該散熱裝 置包括至少一對應於該導熱塊之收容槽,該導熱塊凸出該 第二表面之部分收容於該收容槽内。 099101602 表單編號A0101 第19頁/共30頁 0992003133-0 201126776 12 .如申請專利範圍第9項所述之光源模組,其中,該導熱塊 部分填充該通孔,該導熱塊遠離該固態發光晶片之一端面 與該第二表面形成一階梯面。 13 .如申請專利範圍第12項所述之光源模組,其中,該散熱裝 置具有至少一凸起,該凸起延伸至固態發光元件之通孔並 與導熱塊熱接觸。 099101602 表單編號A0101 第20頁/共30頁 0992003133-0201126776 VII. Patent application scope: A solid-state light-emitting component, comprising: a solid-state light-emitting chip; a substrate having a first surface and a second surface opposite to the first surface, the first surface being opened-arranged a recess of the solid state light emitting chip, the substrate having a through hole extending from the solid state light emitting chip to the second surface; two conductive layers each electrically connected to the solid state light emitting chip and extending to a first surface of the substrate The two conductive layers are isolated from each other; and a thermally conductive block is filled in the via and in thermal contact with the gamma-emitting wafer. The solid-state light-emitting element according to claim 2, wherein the through hole is a columnar through hole. 3. The solid state light emitting device of claim 1, wherein the through hole is adjacent to one end of the solid state light emitting chip to a size larger than a dimension of one end of the solid state light emitting chip. 4. The solid state light-emitting device of claim 1, wherein the size of one end of the solid-state light-emitting chip and a distance from one end of the solid-state wafer are greater than between the two ends. Part of the size. The solid-state light-emitting device of claim 1, wherein the heat-conducting block further extends from the through-hole to protrude from a second surface of the substrate, the guide block being away from an end surface of the solid-state light-emitting chip and the first The two surfaces form a step surface. 6. The solid state light emitting device of claim J, wherein the heat conducting block partially fills the through hole, and the heat conducting block forms a stepped surface with the second surface away from the solid surface. The solid-state light-emitting element of claim 1, wherein the solid-state light-emitting chip comprises a light-emitting diode wafer. The solid-state light-emitting element according to claim 1 is the same. 8. The solid state light emitting device of claim 1, wherein the solid state light emitting wafer is wire bonded to the two conductive layers. 9. A light source module, comprising: at least one solid state light emitting element, the at least one solid state light emitting element comprising: a solid state light emitting chip, a substrate having a first surface and a second surface opposite the first surface Forming a recess for receiving the solid-state light-emitting chip on the first surface, the substrate having a through hole extending from the solid-state light-emitting chip to the second surface, two conductive layers, each conductive layer and the solid-state light-emitting chip Electrically connecting and extending to the first surface of the substrate, the two conductive layers are isolated from each other, and a heat conducting block filled in the through hole and in thermal contact with the solid state light emitting chip; a circuit board adjacent to the substrate a surface is disposed in electrical contact with the two conductive layers, and the circuit board defines at least one optical through hole corresponding to the solid state light emitting chip, and the light emitted by the solid state light emitting chip can be transmitted to the outside through the light through hole; And a heat dissipating device located on the side of the substrate away from the circuit board and in thermal contact with the heat conducting block. The light source module of claim 9, wherein the heat conducting block further extends from the through hole to protrude from a second surface of the substrate, the heat conducting block being away from an end surface of the solid state light emitting chip and the first The two surfaces form a step surface. The light source module of claim 10, wherein the heat dissipating device comprises at least one receiving groove corresponding to the heat conducting block, and a portion of the heat conducting block protruding from the second surface is received in the receiving groove . The light source module of claim 9, wherein the heat conducting block partially fills the through hole, and the heat conducting block is away from the solid state light emitting chip, wherein the heat conducting block partially fills the through hole. One of the end faces forms a stepped surface with the second surface. The light source module of claim 12, wherein the heat dissipating device has at least one protrusion that extends to the through hole of the solid state light emitting element and is in thermal contact with the heat conducting block. 099101602 Form number A0101 Page 20 of 30 0992003133-0
TW99101602A 2010-01-21 2010-01-21 Solid-state lighting device and light source module TW201126776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99101602A TW201126776A (en) 2010-01-21 2010-01-21 Solid-state lighting device and light source module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101602A TW201126776A (en) 2010-01-21 2010-01-21 Solid-state lighting device and light source module

Publications (1)

Publication Number Publication Date
TW201126776A true TW201126776A (en) 2011-08-01

Family

ID=45024628

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101602A TW201126776A (en) 2010-01-21 2010-01-21 Solid-state lighting device and light source module

Country Status (1)

Country Link
TW (1) TW201126776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291820B2 (en) 2013-12-12 2016-03-22 Au Optronics Corporation Display module and head up display
CN116053261A (en) * 2023-01-28 2023-05-02 微龛(广州)半导体有限公司 High-precision thin film resistor device and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291820B2 (en) 2013-12-12 2016-03-22 Au Optronics Corporation Display module and head up display
CN116053261A (en) * 2023-01-28 2023-05-02 微龛(广州)半导体有限公司 High-precision thin film resistor device and preparation method thereof

Similar Documents

Publication Publication Date Title
US10340429B2 (en) Light emitting device
KR100738933B1 (en) Led module for illumination
US7872277B2 (en) Light emitting diode device
US8067782B2 (en) LED package and light source device using same
US20110175512A1 (en) Light emitting diode and light source module having same
KR101451266B1 (en) Led light module
JP5745495B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING SYSTEM HAVING THE SAME
US20150003038A1 (en) Led assembly with omnidirectional light field
JP2007528588A (en) LED illumination light source and LED illumination device
TW201135991A (en) Solid-state lighting device and light source module incorporating the same
CN101807657B (en) Light emitting device package and lighting system including same
KR20080030584A (en) Package structure of semiconductor light-emitting device
JP2009177187A (en) Light-emitting diode package
JP2007043125A (en) Light-emitting device
US9801274B2 (en) Light emitting device
JP2007324547A (en) Light emitting diode light source, illuminator, display unit, and traffic signal
US20110175511A1 (en) Light emitting diode and light source module having same
US8907371B2 (en) Light emitting diode package and light emitting device having the same
KR101943824B1 (en) Light emitting device, light emitting device package and lighting system
TWM327548U (en) Light emitting semiconductor device
KR100764461B1 (en) Semiconductor Package Having a Buffer Layer
KR101202168B1 (en) High voltage led package
JP2009302145A (en) Light-emitting device
TW201126776A (en) Solid-state lighting device and light source module
JP2011176054A (en) Light emitting device