TW201126744A - Methods of texturing surfaces for controlled reflection - Google Patents

Methods of texturing surfaces for controlled reflection Download PDF

Info

Publication number
TW201126744A
TW201126744A TW099138097A TW99138097A TW201126744A TW 201126744 A TW201126744 A TW 201126744A TW 099138097 A TW099138097 A TW 099138097A TW 99138097 A TW99138097 A TW 99138097A TW 201126744 A TW201126744 A TW 201126744A
Authority
TW
Taiwan
Prior art keywords
substrate
metal
micro
composition
surfactant
Prior art date
Application number
TW099138097A
Other languages
Chinese (zh)
Inventor
Tian-Niu Chen
Michael B Korzenski
Ping Jiang
Lawrence H Dubois
Original Assignee
Advanced Tech Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Tech Materials filed Critical Advanced Tech Materials
Publication of TW201126744A publication Critical patent/TW201126744A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Novel methods for the texturing of photovoltaic cells is described, wherein texturing minimizes reflectance losses and hence increases solar cell efficiency. In one aspect, a microstamp with the mirror inverse of the optimum surface structure is described. The photovoltaic cell substrate to be etched and the microstamp are immersed in a bath and pressed together to yield the optimum surface structure. In another aspect, nanoscale structures are introduced to the surface of a photovoltaic cell by depositing nanoparticles or introducing metal induced pitting to a substrate surface. In still another aspect, remote plasma source (RPS) or reactive ion etching (RIE), is used to etch nanoscale features into a silicon-containing substrate.

Description

201126744 六、發明說明: 【發明所屬之技術領域】 本發明大致係關於表面紋理化方法,更特定令之係、 理化表面以減小反射率及因此提高光伏打魏^關於、’文 【先前技術】 率。 光電裝置仰賴材料的光學及電子性質來產生或偵身‘ 幸昌射或自周圍電磁輕射產生電力。光敏光電裝置將電=電磁 轉變為電力。太陽能電池(亦稱為光伏打(p观置)被=7 J哀境光產生電功率。PV裝置被用於驅動功率消耗負载Λ,Α以 提供例如照明、加熱,或操作諸如電腦或遠端監測或通訊= 備的電子設備。此等功率產生應用通常涉及將電池或其他能 量儲存裝置充電,以致當無法取得來自域或其他環境光^ 之直接照明時,可繼續設備操作。 太陽能電池之特徵在於其可將入射太陽功率轉變為有用 電功率之效率。利用結晶矽之裝置主宰商業應用,且其中一 些已達到23%或更大之效率。然而’有效率的單晶石夕基裝 置’尤其係大表面積者’由於製造大晶體而無顯著效率降級 作用所固有的問題,因而製造困難且昂貴。 控制光伏打電池中之光散射可大大地提高效能。舉例來 說,單晶矽(s_Si)反射大約35%之入射可見光。表面典型上 係使用驗(例如,NaOH或KOH)及醇(例如,異丙醇)之混合 物在大於6(TC下各向異性紋理化約3G分鐘。所得表面由於 099138097 4 201126744 在矽之不同晶面之間的蝕刻速率差異((111)<<(11〇)$(1⑻)) 而具有正方錐結構。在寬廣光譜範圍内的光反射降至低於 10%,因此轉化效率典型上增加3個百分點(絕對值)。 多晶(p-Si)或多結晶體(mc-si)矽(自在扁帶中生長或沈積 於基板上之人造剛玉切割得)由於在單一晶格中有許多晶面 經暴露且紋理化看來係無規,而甚難有效地紋理化。典型 上,基板係於HF及HNO3之混合物中在低於之溫度下 蝕刻。雖然表面可經由表面蝕刻再度製成為「黑色」(即反 射率低於數百分比),但所得表面相當粗縫,以致電子及電 洞之表面復合速度(SRV)變得相當高,導致所得電池具有低 轉化效率。此等「黑色」表面可經化學蝕刻以移除一些粗糙 度,且因此改良電性質,但此會導致增加的反射率。此外, 由於各p-Si基板具有經暴露石夕平面之不同混合物,因而很 難達成可再現的大量生產。因&,-# p-Si光伏打電池係 不利用任何表面紋理化而製造。 濕式化學處理之一種替代選擇係基於反應性離子蝕刻 (RIE)之電漿處理,其具有處理較安全、較少廢棄物處置、 減/使用去離子水及單側蝕刻的優勢。換言之,電漿製程由 於需要真空系統,因而會附隨額外的成本及複雜度。此外, ㊉用的電聚餘刻氣體(諸如CF4、c2F6及sf6)具有較C02嚴 重數千倍的全球暖化潛勢(美國溫室氣體排放及儲存存量 ( 0ry of U.S. Greenhouse Gas Emissions and Sinks): 099138097 5 201126744 2002)。然而,不同於需要表面瑕疵來產生活性紋理化部位 的濕式化學紋理化方法,電漿製程容許紋理化多晶體材料而 無切割損傷。實際上,電漿紋理化產生具有與使用濕式酸性 各向同性紋理化所得者相似至稍高之轉化效率的光伏打電 池。電漿處理亦特別適用於無表面損傷所產生之晶圓,諸如 在低成本Si基板上之Si扁帶及磊晶層,對其無簡單的濕式 化學紋理化方法可資利用。缺點係RIE仰賴離子轟搫,豆 會產生表面下損傷。受損區域隨後必須藉由使用損傷移除蝕 刻(DRE)來移除。如預期,DRE會增加表面的反射率,但係 在伏打裝置處理中最小化表面復合速度的必要權衡之气。 【發明内容】 在一態樣中,描述一種基板之受控紋理化方法,該方法包 括將微型壓印器及待蝕刻之基板一起浸泡於槽中,並將微型 壓印器壓向基板。 在另一態樣中,描述一種將奈米級表面粗糙度引入至基板 表面之方法,該方法包括⑴將奈米粒子沈積於基板表面上; (ii)將金屬誘導孔蝕引入至基板表面;(iii)使用遠端電漿源 (RPS)或反應性離子蚀刻(RIE),或(iv)將微型壓印器及待餘 刻之基板一起浸泡於槽中,並將微型壓印器壓向基板,以使 奈米級特徵蝕刻至基板表面中。 在又另一態樣中,描述一種基板之受控紋理化方法,其中 該方法包括用微型壓印器遮蓋待蝕刻之基板及使用氣相餘 099138097 6 201126744 刻來蝕刻基板,以於其上引入紋理。 在又另-態樣中,描述-種餘刻劑組成物,盆包含至小— 種驗性成份、至少-種界面活性劑、至少—種金屬鹽、及= 由該等成份倾成’或基本上由料成份所組成,其中 刻劑組成物實質上不含任何低彿點醇成份。 μ 在另-態樣中,描述-種Μ刻劑組成物,1包含至,卜— 胺驗鹽、至少-種界面活性劑、至少―種金屬鹽、201126744 VI. Description of the Invention: [Technical Field] The present invention relates generally to a surface texturing method, more specifically, a physicochemical surface to reduce reflectance and thus improve photovoltaic performance, and 】 Rate. Optoelectronic devices rely on the optical and electronic properties of the material to generate or detect ‘Shengchang shots or generate electricity from surrounding electromagnetic light. The photosensitive optoelectronic device converts electricity = electromagnetic into electricity. Solar cells (also known as photovoltaic devices) are electrically powered by = 7 J. The PV device is used to drive power consumption loads, such as to provide illumination, heating, or operation such as computer or remote monitoring. Or communication = backup electronic devices. These power generation applications typically involve charging a battery or other energy storage device so that device operation can continue when direct illumination from a domain or other ambient light is not available. It converts the incident solar power into the efficiency of useful electrical power. Devices that use crystallization enthalpies dominate commercial applications, and some of them have achieved efficiencies of 23% or greater. However, 'efficient single crystal slab-based devices' are particularly large Surface area 'is inherently problematic due to the large efficiency of manufacturing large crystals, and thus is difficult and expensive to manufacture. Controlling light scattering in photovoltaic cells can greatly improve performance. For example, single crystal germanium (s_Si) reflection is approximately 35% of incident visible light. The surface is typically used in large mixtures (eg, NaOH or KOH) and alcohols (eg, isopropanol). 6 (Anisotropic texturing at TC for about 3G minutes. The resulting surface has a etch rate difference ((111) <<(11〇)$(1(8))))) depending on the difference in etch rate between different crystal faces of 矽 0 099138097 4 201126744 Square pyramid structure. Light reflection in a broad spectral range is reduced to less than 10%, so conversion efficiency is typically increased by 3 percentage points (absolute value). Polycrystalline (p-Si) or polycrystalline (mc-si) 矽 ( The artificial corundum grown in the flat ribbon or deposited on the substrate is cut. Since many crystal faces in a single crystal lattice are exposed and textured, they appear to be random, and it is difficult to effectively texture. Typically, the substrate is attached to The mixture of HF and HNO3 is etched at a temperature lower than the temperature. Although the surface can be made "black" by surface etching (ie, the reflectance is less than a few percent), the resulting surface is rather coarse, so that the surface of the electron and the hole The composite speed (SRV) becomes quite high, resulting in a low conversion efficiency of the resulting battery. These "black" surfaces can be chemically etched to remove some roughness, and thus improve electrical properties, but this can result in increased reflectivity. In addition, due to Each p-Si substrate has a different mixture of exposed stone planes, and thus it is difficult to achieve reproducible mass production. The &, -# p-Si photovoltaic cell is manufactured without any surface texturing. An alternative to processing is reactive ion etching (RIE) based plasma treatment, which has the advantages of safer handling, less waste disposal, reduced/use of deionized water, and one-sided etching. In other words, the plasma process is due to A vacuum system is required, which in turn entails additional cost and complexity. In addition, the ten-use electrorecognition gases (such as CF4, c2F6, and sf6) have thousands of times more global warming potential than CO2 (US greenhouse gases) 0ry of US Greenhouse Gas Emissions and Sinks: 099138097 5 201126744 2002). However, unlike wet chemical texturing methods that require surface imperfections to create active textured sites, the plasma process allows for the texturing of polycrystalline materials without cutting damage. In fact, plasma texturing produces photovoltaic cells with similar to slightly higher conversion efficiencies than those obtained using wet acidic isotropic texturing. Plasma treatment is also particularly useful for wafers produced without surface damage, such as Si ribbons and epitaxial layers on low cost Si substrates, without the use of simple wet chemical texturing methods. The disadvantage is that the RIE relies on ion bombardment, which causes subsurface damage. The damaged area must then be removed by using Damage Removal etch (DRE). As expected, DRE increases the reflectivity of the surface, but is a necessary trade-off for minimizing surface recombination speed in voltaic device processing. SUMMARY OF THE INVENTION In one aspect, a method of controlled texturing of a substrate is described. The method includes immersing a microimprinter and a substrate to be etched together in a bath and pressing the microimprinter against the substrate. In another aspect, a method of introducing nanoscale surface roughness to a substrate surface is described, the method comprising: (1) depositing nanoparticle on a surface of a substrate; (ii) introducing metal induced pitting into the surface of the substrate; (iii) using a remote plasma source (RPS) or reactive ion etching (RIE), or (iv) soaking the microimprinter and the substrate to be immersed in the bath, and pressing the microimprinter toward The substrate is etched into the surface of the substrate. In yet another aspect, a method of controlled texturing of a substrate is described, wherein the method includes masking a substrate to be etched with a micro embossing device and etching the substrate using a vapor phase residual 099138097 6 201126744 for introduction thereon Texture. In yet another aspect, a remnant composition is described, the pot comprising a small-indicative component, at least one surfactant, at least one metal salt, and = being pour into the component' or It consists essentially of ingredients, wherein the engraved composition is substantially free of any low-dot alcohol component. μ In the other aspect, a description of the engraving composition, 1 includes, a salt test, at least one surfactant, at least a metal salt,

由該等成㈣組成’或基本上由該等成份所組成,其中該飯 刻劑組成物貫質上不含任何低彿點醇成份。 X /又另―態樣中,描述—種將微米級表面_度引入至丰 =材狀方法’财法包括使半導师料與_劑組成物 以使+導體材料之表面粗糙化之條件下接觸,其中該餘 刻劑組成物包含至少-種鹼性成份、至少—種界面活性劑、 ^種盃屬鹽及水’其中該則劑組成物實質上不含任 何低沸點醇成份。 另一態樣係關於-種將微米級表面粗輪度引入至基板表 β方法°亥方法包括(i)使用韻刻劑組成物;或(ii)將微型 壓印益及待侧之基板—起浸泡於射,並將微@壓印器壓 向基板’以使微米級特_刻至基板表面卜 f他態樣、特徵及優點將可自隨後揭示内容及隨附申請專 利範圍而更加完全明白。 【實施方式】 099138097 201126744 本發明大致係關於表面紋 里化方法,更特定言之係關於紋 理化表面以減小反射率,而 — 質提高表面復合速度及因此 提高光伏打電池之效率。 「實質上不含」在本文係定 1重量%,更佳小於0.5重量0/〇 含」係對應於0重量%。 義為小於2重量%,較佳小於 ’及最佳小於0.1重量%。「不 士本文所使用之、約」係意指對應於所述值的土州。 士本文所疋義之光伏打裝置」包括含有至少一種半導體 材料之光伏打電池。 文中之術4半導體」係、指當經由熱或電磁激發誘導電荷 載體時可導電之材料。傳統上,感光性光電裝置係由許多無 機半導體(例如,結晶、多晶及非砂、钟化鎵、蹄化锡、 砷化銅銦鎵(CIGS)等等)構成。半導體材料可經摻雜或未摻 雜。 應明瞭術語「單晶Si」係與術語「單晶體Si」為同義。 ,應明瞭術語「多晶Si」係與術語「多晶體Si」為同義。 如本文所定義之「硫族化合物」係對應於由硫族離子(例 如’硫化物、砸化物、蹄化物)及正電性金屬所組成之分子。 如本文所使用之「貴金屬」包括釕、錢、把、銀、餓、銀、 在白及金。用於本說明目的之所有其他金屬皆被視為非貴金 屬。 如本文所使用之「氣相沈積」包括物理氣相沈積諸如 099138097 8 201126744 錢、难射沈積、電子束沈積等及化學氣相沈積、原子層沈積、 及其變型。 、 在第-態樣中,描述-種_劑組成物及〆種使用該組成 物將微米級表面粗糙度狀至半導體㈣之方法。該钱刻叫 組成物可包含至少-種界面活性劑、至少—種金屬趟、1 水’由該等成份所組成,或基本_]^料成份軌成,盆中 鎌刻餘成物實質上不含任何低_醇成份。在—具體例 中,該_劑組成物可包含至少—種驗性成份、至少一種界 面活性劑、至少一種金屬鹽、及水,由該等成份所組成,或 基本上由轉絲所組成,其中該钮刻劑組成物實質上不含 任何低沸轉成份。在另―具體财,舰義組成物可包 含至少-種胺鏡鹽、至少—種界面活性劑、至少_種金屬 及水,由鱗成份所組成,或基本上由該等成份所組成, 其中該侧劑組成物實質± *含任何低_醇成份。如本文 所定義’「低沸點醇成份」係對應於沸點低於約9〇。匸之直鏈 或分支鏈CrC6醇,其包括,但不限於,甲醇、乙醇、異丙 醇、及第二丁醇。在另一具體例中,該蝕刻劑組成物實質上 不含直鏈或分支鏈crc6醇(例如,曱醇、乙醇、丙醇 醇、戊醇、己醇)成份。 涵蓋的鹼性成份包括鹼金屬氫氧化物、碳酸鹽、碳酸氫鹽 及四級銨氫氧化物,諸如NaOH、KOH、RbOH、CsOH、It consists of or consists essentially of the constituents, wherein the rice cooker composition does not substantially contain any low-dose alcohol component. In the X / and other aspects, the description of the method of introducing the micron-scale surface _ degree into the abundance = material method's method includes the conditions for the semiconductor material and the _ composition to roughen the surface of the + conductor material. The lower contact, wherein the residual agent composition comprises at least an alkaline component, at least one surfactant, a cup of a salt, and water, wherein the composition of the agent is substantially free of any low boiling alcohol component. Another aspect relates to introducing a micron-scale surface coarse rotation to a substrate table. The method comprises: (i) using a rhyme composition; or (ii) micro-imprinting the substrate to be side-- Soaking in the shot and pressing the micro@embossor toward the substrate' to make the micron-level features to the surface of the substrate will be more complete from the subsequent disclosure and the scope of the patent application. understand. [Embodiment] 099138097 201126744 The present invention is generally directed to a surface sizing method, and more particularly to a textured surface to reduce reflectivity, while improving the surface recombination speed and thereby increasing the efficiency of photovoltaic cells. "Substantially free" is defined herein as 1% by weight, more preferably less than 0.5% by weight, based on 0% by weight. It is less than 2% by weight, preferably less than ' and most preferably less than 0.1% by weight. "Is not used in this article" means the state of Tuzhou corresponding to the stated value. The photovoltaic device referred to herein is a photovoltaic cell comprising at least one semiconductor material. The term "semiconductor" in the text refers to a material which is electrically conductive when the charge carrier is induced by thermal or electromagnetic excitation. Traditionally, photosensitive optoelectronic devices have been constructed from a number of inorganic semiconductors (e.g., crystalline, polycrystalline and non-sand, galvanized, hoofed tin, copper indium gallium arsenide (CIGS), etc.). The semiconductor material can be doped or undoped. It should be understood that the term "single crystal Si" is synonymous with the term "single crystal Si". It should be understood that the term "polycrystalline Si" is synonymous with the term "polycrystalline Si". A "chalcogenide" as defined herein corresponds to a molecule composed of chalcogenide ions (e.g., 'sulfide, telluride, hoof compound) and a positively charged metal. As used herein, "precious metals" include bismuth, money, put, silver, hungry, silver, in white and gold. All other metals used for the purposes of this description are considered to be non-precious metals. "Vapor deposition" as used herein includes physical vapor deposition such as 099138097 8 201126744, refractory deposition, electron beam deposition, etc., and chemical vapor deposition, atomic layer deposition, and variations thereof. In the first aspect, a method of using the composition to impart a micron-scale surface roughness to the semiconductor (4) is described. The money engraved composition may comprise at least one type of surfactant, at least one type of metal ruthenium, 1 water' consisting of the components, or a basic composition of the ingredients, and the remaining components in the pot are substantially Does not contain any low-alcohol components. In a specific embodiment, the composition of the agent may comprise at least one type of inspecting component, at least one surfactant, at least one metal salt, and water, consisting of, or consisting essentially of, a rotating wire. Wherein the button engraving composition is substantially free of any low boiling component. In another embodiment, the ship-like composition may comprise, or consist essentially of, at least one amine mirror salt, at least one surfactant, at least one metal, and water, wherein The side composition is substantially ±-containing any low-alcohol component. "Low boiling alcohol component" as defined herein corresponds to a boiling point of less than about 9 Torr. A linear or branched chain CrC6 alcohol of hydrazine, including, but not limited to, methanol, ethanol, isopropanol, and second butanol. In another embodiment, the etchant composition is substantially free of linear or branched crc6 alcohol (e.g., decyl alcohol, ethanol, propanol, pentanol, hexanol) components. The basic components covered include alkali metal hydroxides, carbonates, hydrogencarbonates, and quaternary ammonium hydroxides such as NaOH, KOH, RbOH, CsOH,

Na2C03、NaHC03、K2c〇3、KHC03、CsOH、及 NR4OH, 099138097 9 201126744 其中R可彼此相同或不同,且係選自由CrC6燒基(例如, 曱基、乙基、丙基、丁基、戊基、己基)、C6_Ci。芳基(例如, 节基)、及其組合組成之群。較佳地,該至少—種驗性成份 包含NaOH、KOH、RbOH、CsOH、或其組合,再更佳為 NaOH、KOH、或 NaOH/KOH 之組合。 涵蓋的胺羧酸鹽包括胺五倍子酸鹽及胺水揚酸鹽,其中該 胺羧酸鹽係於原位或離地產生。胺五倍子酸鹽包含至少一種 烷醇胺、五倍子酸、水、吡啡、視需要之至少—種氧化劑及 視需要之至少一種界面活性劑,由其所組成,或基本上由其 所組成。胺水揚酸鹽包含至少一種烷醇胺、水揚酸、水、吼 讲、視需要之至少一種氧化劑及視需要之至少一種界面活性 劑,由其所組成,或基本上由其所組成。 涵蓋的金屬鹽包括II族(例如,鎂、與、錄、鋇)、iv族 金屬(例如’矽、鍺、錫、鉛)、銅、鑭、或其任何組合,其 中該金屬可為陽離子或多原子陰離子之原子。舉例來說,涵 蓋的金屬鹽包括,但不限於,Ca(OH)2、Sr(OH)2、Ba(OH)2、Na2C03, NaHC03, K2c〇3, KHC03, CsOH, and NR4OH, 099138097 9 201126744 wherein R may be the same or different from each other, and is selected from a CrC6 alkyl group (eg, fluorenyl, ethyl, propyl, butyl, pentyl) , hexyl), C6_Ci. A group of aryl groups (eg, agglomerates), and combinations thereof. Preferably, the at least one of the inspective components comprises NaOH, KOH, RbOH, CsOH, or a combination thereof, more preferably NaOH, KOH, or a combination of NaOH/KOH. Amine amine carboxylates encompasses amine gallate and amine salicylate, wherein the amine carboxylate is produced in situ or off-site. The amine gallate salt comprises, consists of, or consists essentially of at least one alkanolamine, gallic acid, water, pyridyl, optionally at least one oxidizing agent, and optionally at least one surfactant. The amine salicylate comprises, consists of, or consists essentially of at least one alkanolamine, salicylic acid, water, hydrazine, optionally at least one oxidizing agent, and optionally at least one surfactant. Metal salts encompassed include Group II (eg, magnesium, yttrium, yttrium, lanthanum), Group iv metals (eg, '矽, 锗, tin, lead), copper, bismuth, or any combination thereof, wherein the metal can be cationic or An atom of a polyatomic anion. For example, the metal salts covered include, but are not limited to, Ca(OH)2, Sr(OH)2, Ba(OH)2.

CaO、SrO、BaO、Ca(N03)2、Sr(N03)2、Ba(N03)2、CuS04 · 5H20、CaS04、SrS04、BaS04、Cu(OH)2、Na2(Ge03)、 Na2(Sn03)、Na4(Si04)、K2(Ge03)、K4(Si04)、K2(Sn03)、 LaCl3 · 7H20、La2(S04)3、及其水合物、SnCl4 · 5H20、及 其組合。較佳地,該金屬鹽包括CaOH或BaOH。或者,該 金屬鹽包括CaO或BaO,且將分別經歷原位轉化為Ca(OH)2 099138097 10 201126744 或 Ba(OH)2。 涵蓋的界面活性劑包括,不限於 離子、及/或秘鮮界面活_。舉例料,= 子界面活性劑可包括氟烧基界面活性劑、乙氧基化^ = .性二=醇、聚丙二醇、聚乙二醇或聚丙二㈣… 一烷基本%g欠、聚丙烯酸酯聚合物、二# 矽氧或經改質聚石夕氧聚合物 “軋乙稀、聚 ^ 所屬—醇或經改質的 醇、及烷基酚聚縮水甘油醚、 、一 I刹^一 n 脫水山梨糖醇酯(例如,脫水 知早月桂酸醋、脫水山梨糖醇單標摘酸酉旨、脫水山半 糖醇單硬脂酸酯、脫水山梨糠 貺K山采 知更脂酸醋、脫水山梨糖醇 早、編曰(即Span 80)、脫水山梨糖醇三油酸酷)、聚山半醇 醋界面活性劑(例如,聚氧伸乙基(2〇)脫水山梨糖醇單月桂酸 酉旨、聚氧伸乙基(20)脫水山梨糖醇單棕摘酸醋、料伸乙基 (20)脫水山梨糖醇單硬脂酸§旨、聚氧伸乙基⑽脫水山梨糖 醇單油酸S旨、聚氧伸乙基脫水山梨糖醇三油動旨、聚氧伸乙 基脫水山梨糖醇三硬脂酸酯)、烷基多糖苷(例如,trit〇ntm BG-10)以及包含前述至少一者之組合。涵蓋於文中所述組成 物中之陰離子界面活性劑包括,但不限於,氟界面活性劑諸 如 ZONYL® UR 及 ZONYL® FS-62(DuP〇nt Canada he., Mississauga, Ontario, Canada),燒基硫酸鈉諸如乙基己基硫 酸鈉(NIAPROOF® 08),烷基硫酸銨,烷基(C1Q-C18)羧酸銨 鹽,磺酸琥珀酸鈉及其酯(例如,磺酸琥珀酸二辛基鈉 099138097 11 201126744 〇DSS;)),烷基(Cio-C!8)磺酸鈉鹽,及二陰離子磺酸酯界面活 性劑 DowFax™(The Dow Chemical Company, Midland, Mich” 118人)諸如烧基一苯氧化物二續酸酯〇(^1?狀顶3132。涵蓋的 陽離子界面活性劑包括烷基銨鹽諸如溴化鯨蠟基三曱銨 (CTAB)及鯨蠟基三甲基硫酸氫銨。適當的兩性離子界面活 性劑包括羧酸知:、硫酸銨、胺氧化物(例如,二甲基十二烧 基胺氧化物(DMAO))、N-十二烷基_n,N-二曱基甜菜鹼、甜 菜鹼、磺酸甜菜鹼、烷基銨基丙基硫酸酯、及其類似物。或 者,該4界面活性劑可包括水溶性聚合物,包括,但不限於, 聚乙二醇(PEG)、聚氧化乙烯(peo)、聚丙二醇(ppG)、聚乙 烯基吼洛啶酮(PVP)、陽離子聚合物、非離子聚合物、陰離 子聚合物、羥乙基纖維素(HEC)、丙烯醯胺聚合物、聚(丙烯 酸)、羧曱基纖維素(CMC)、羧曱基纖維素鈉(Na CMC)、羥 丙基曱基纖維素、聚乙烯基吡咯啶酮尺30、31〇〇人!1丑1^聚 合物、DOWT”L膠粉末(DLP)、ETHOCEL™乙基纖維素聚 合物、KYTAMERTMpC聚合物、METH〇CELTM纖維素醚、 POLYOX™水溶性樹脂、SoftCAT™聚合物、UCARETM聚合 物、UCONTM流體、PPG-PEG-PPG嵌段共聚物、 PEG-PPG-PEG嵌段共聚物、及其組合。該等水溶性聚合物 可為短鏈或長鏈聚合物,且可與文中所述之非離子、陰離 子、陽離子、及/或兩性離子界面活性劑組合。較佳地,該 至少一種界面活性劑包括DSS、TRITONTM BG-10、Span 099138097 12 201126744 80、DMAO、或其組合。 視情況,該界面活性劑可包括通稱為消泡劑之物質,包 括,但不限於,聚矽氧油基、礦物油基、天然油基、炔屬基、 及磷酸酯基試劑。更佳地,該等消泡劑包括,但不限於,氧 化乙烯/氧化丙烯嵌段共聚物,諸如Pluronic®(BASF®)產 物(例如,Pluronic®17R2、Pluronic®17R4、Pluronic®31Rl 及Pluronic®25R2),醇烧氧化物諸如Plurafac®產物 (BASF®)(例如,Plurafac®PA20),脂肪醇烧氧化物諸如CaO, SrO, BaO, Ca(N03)2, Sr(N03)2, Ba(N03)2, CuS04 · 5H20, CaS04, SrS04, BaS04, Cu(OH)2, Na2(Ge03), Na2(Sn03), Na4 (Si04), K2 (Ge03), K4 (Si04), K2 (Sn03), LaCl3 · 7H20, La2 (S04) 3, and hydrates thereof, SnCl4 · 5H20, and combinations thereof. Preferably, the metal salt comprises CaOH or BaOH. Alternatively, the metal salt comprises CaO or BaO and will undergo in situ conversion to Ca(OH)2 099138097 10 201126744 or Ba(OH) 2 , respectively. Surfactants encompassed include, without limitation, ions, and/or secret interface interactions. For example, the sub-interface active agent may include a fluoroalkyl surfactant, ethoxylation, a bis-alcohol, a polypropylene glycol, a polyethylene glycol, or a polypropylene (tetra). Ester polymer, # 矽 或 or modified poly sulphite polymer “rolled ethylene, poly---alcohol or modified alcohol, and alkylphenol polyglycidyl ether, one I brake n sorbitan ester (for example, dehydrated early lauric acid vinegar, sorbitan single-labeled acid extract, dehydrated mountain half-sugar monostearate, dehydrated sorbet 糠贶 K mountain mining know more vinegar , sorbitan early, codification (that is, Span 80), sorbitan trioleate, and poly-salt vinegar surfactant (for example, polyoxyethylene ethyl (2 〇) sorbitan Lauric acid, polyoxyethylene ethyl (20) sorbitan single palm pickled vinegar, ethyl acetate (20) sorbitan monostearate §, polyoxyethylene ethyl (10) sorbitan Alcohol monooleic acid S, polyoxyethylene ethyl sorbitan trioleate, polyoxyethyl sorbitan tristearate, alkyl polyglycoside (example) For example, trit〇ntm BG-10) and combinations comprising at least one of the foregoing. The anionic surfactants encompassed in the compositions described herein include, but are not limited to, fluorosurfactants such as ZONYL® UR and ZONYL® FS- 62 (DuP〇nt Canada he., Mississauga, Ontario, Canada), sodium sulfonate such as sodium hexyl sulfate (NIAPROOF® 08), ammonium alkyl sulfate, alkyl (C1Q-C18) ammonium carboxylate, sulfonate Sodium succinate and its esters (for example, dioctyl sulfosuccinate 099138097 11 201126744 〇DSS;)), alkyl (Cio-C! 8) sulfonate sodium salt, and dianion sulfonate surfactant DowFaxTM (The Dow Chemical Company, Midland, Mich "118 people) such as alkyl-phenoxy oxide dicarboxylate 〇 (^1? top 3132. Covered cationic surfactants include alkyl ammonium salts such as brominated whales Wax-based triammonium (CTAB) and cetyltrimethylammonium hydrogen sulfate. Suitable zwitterionic surfactants include carboxylic acids: ammonium sulfate, amine oxides (eg, dimethyl dodecylamine oxidation) (DMAO), N-dodecyl_n,N-dimercaptobetaine, betaine, sulfonic acid betaine, Alkyl ammonium propyl sulfate, and the like. Alternatively, the 4 surfactant may include water soluble polymers including, but not limited to, polyethylene glycol (PEG), polyethylene oxide (peo), poly Propylene glycol (ppG), polyvinyl oxalidone (PVP), cationic polymer, nonionic polymer, anionic polymer, hydroxyethyl cellulose (HEC), acrylamide polymer, poly(acrylic acid), carboxy Mercapto cellulose (CMC), sodium carboxymethyl cellulose (Na CMC), hydroxypropyl fluorenyl cellulose, polyvinyl pyrrolidone ruler 30, 31 〇〇 people! 1 ugly 1 ^ polymer, DOWT" L-Gum Powder (DLP), ETHOCELTM Ethyl Cellulose Polymer, KYTAMERTMpC Polymer, METH® CELTM Cellulose Ether, POLYOXTM Water Soluble Resin, SoftCATTM Polymer, UCARETM Polymer, UCONTM Fluid, PPG-PEG-PPG Block copolymers, PEG-PPG-PEG block copolymers, and combinations thereof. The water soluble polymers can be short chain or long chain polymers and can be combined with the nonionic, anionic, cationic, and/or zwitterionic surfactants described herein. Preferably, the at least one surfactant comprises DSS, TRITONTM BG-10, Span 099138097 12 201126744 80, DMAO, or a combination thereof. Optionally, the surfactant may include materials commonly known as defoamers, including, but not limited to, polyoxyalkylene based, mineral oil based, natural oil based, acetylenic, and phosphate based agents. More preferably, such antifoaming agents include, but are not limited to, ethylene oxide/propylene oxide block copolymers such as Pluronic® (BASF®) products (eg, Pluronic® 17R2, Pluronic® 17R4, Pluronic® 31Rl, and Pluronic®) 25R2), alcoholic oxides such as Plurafac® product (BASF®) (eg, Plurafac® PA20), fatty alcohols such as oxides

Surfonic®(Huntsmen)(例如,Surfonic®Pl),與非離子乳化劑 換混之碟酸醋諸如 Defoamer M(Ortho Chemicals Australia Pty. Ltd.)、及 Super Defoamer 225(Varn Products)、及其組合。 包含至少一種驗性成份、至少一種界面活性劑、至少一種 金屬鹽、及水’由其所組成’或基本上由其所組成之第—態 樣之蝕刻劑組成物(其中該蝕刻劑組成物實質上不含任何低 漭點醇成份)中之各成份的量(基於組成物之總重量)係: 「_ —- 量(重量%) 較佳量(重量%) Ί 驗性成份 約1至約20重量% 約5至约15重量' 界面活性齊|J 至多5重量% 約0.01至約〇·〇5重量。 金屬鹽 至多1重量% 約 0.005 至約 0.5 重~ 包含至少一種胺羧酸鹽、至少一種界面活性劑、至少一種 金屬鹽、及水,由其所組成,或基本上由其所組成之第一態 樣之餘刻劑組成物(其中該㈣劑組成物實f上不含任何低 沸點醇成份)中之各成份的量(基於組成物之 總重量)係: 099138097 13 201126744 量(重量%) 量(重量%) 胺羧酸鹽 約1至約20重量〇/0 約5至約15重量% 界面活性劑 至多5重量°/〇 ϋ_1〇1至約0.05重量% 金屬鹽 至多1重量°/〇 _f^005至約0.5重量% 文中所述之第一態樣之組成物具有大於約12,更佳大於 約13之ρ Η。應明瞭文中所述之第—態樣之組成物的p H可 取決於所用成份及其量而大於14。 在另一具體例中,前述第一態樣之組成物進一步包括半導 體材料’其中該半導體材料可包括矽、砷化鎵、碲化鎘、或 砷化銅銦鎵(CIGS)。舉例來說,第—態樣之組成物可包括至 少一種驗性成份、至少一種界面活性劑、至少一種金屬鹽、 半導體材料、及水,其中該蝕刻劑組成物實質上不含任何低 沸點醇成份,其中該半導體材料包括矽、砷化鎵、碲化鎘、 或砷化銅銦鎵(CIGS)。或者,第一態樣之組成物可包括至少 一種胺羧酸鹽、至少一種界面活性劑、至少一種金屬鹽、半 導體材料、及水,其中該蝕刻劑組成物實質上不含任何低沸 點醇成份,其中該半導體材料包括矽、砷化鎵、碲化鎘、或 砷化銅銦鎵(CIGS)。該半導體材料可溶解及/或懸浮於蝕刻 劑組成物中。 使用蝕刻劑組成物於將微米級表面粗糙度引入至半導體 材料之方法包括使半導體材料與钱刻劑組成物在足以蝕刻 半導體材料之表面之條件下接觸。較佳地,所引入之粗糙度 為微米級表面粗糙度,其中蝕刻至表面中之角錐具有約2 099138097 201126744 、,,勺10微米之橫向尺寸’其具有角錐在表面上之 蓋。如本文联義’「良好覆蓋」係相#於鲍化铸體材 料之表面的至少9〇% ’較佳至少95%,及最佳粗糖化半導 體材料之表面的至少99%。熟悉技術人士翻瞭糾至基板 表面中之肖錐可㈣於表面上之其他角錐為相同尺寸或不 同尺寸。 在移除應用中,第-態樣之姓刻劑組成物可以任何適當的 方式施用至待粗糙化之半導體基板,例如,藉由將_ :組 成物噴塗於表面上,藉由浸泡基板(於—定量_刻劑組成 物中)’藉由使基板與經該蝕刻劑組成物飽和之另一材料(例 如,塾、或纖維吸收性塗布器元件)接觸,藉由使該基板與 循環的蝕刻劑組成物接觸,或藉由任何其他藉以使蝕刻劑組 成物與待粗輪化之半導體基板接觸之適當的手段、方式戋技 術。當必要時,可遮蓋基板之後表面,以避免暴露至姓刻劑 組成物。 在使用第一態樣之組成物於粗糙化半導體材料時,典型上 使組成物與基板在約20°c至約20(TC,較佳約7〇〇c至約 l〇〇°C,再更佳約8〇°C至約90°c範圍内之溫度下接觸約1〇 秒至約120分鐘之時間。該等接觸時間及溫度係為說明性, 及可使用任何其他可有效地將半導體材料粗猶:化之適宜的 時間及溫度條件。 在達成期望的粗糙化後,可藉由沖洗將蝕刻劑組成物自其 099138097 15 201126744 先前經施用之裝置移除。較佳地,用於第一態樣之組成物的 冲洗溶液包括去離子水。其後可使用氮氣或一旋轉乾燥循環 將經粗糙化的半導體材料乾燥。 在第二態樣中,描述一種半導體材料之受控紋理化之新穎 方法,其中製造一具有最佳表面結構之微型壓印器。該微型 壓印器可為最佳表面結構之反鏡像,具有增強特定位置中蝕 刻之特徵的陽極,及/或具有確保表面之特定部分經蝕刻而 其他部分未經蝕刻之特徵的遮罩。該微型壓印器可由包括, 但不限於,金屬、陶瓷、玻璃及塑膠/聚合物之各種材料製 造,且可使用諸如微機械加工、微影術、壓花等等之任何方 法製得。將待蝕刻之半導體材料基板及微型壓印器浸泡於槽 中並壓在一起。可於微型壓印器中增加孔洞,以確保蝕刻化 學到達基板表面’且可容易地移除姓刻產物。亦可使用震動 及/或脈衝。該微型壓印器可為任何尺寸,在任一時刻僅覆 蓋一部分基板或足夠大以覆蓋多個基板。最好係僅基板之正 面經紋理化,而無需遮蓋背面。在一具體例中,壓印器及基 板可交替地施壓及移除數次,以確保適當的流體轉移。在另 一具體例中’微型壓印器可輕微可撓,以使基板破裂最小 化。在又另一具體例中’可在上及下表面上施加一電位,以 增進蝕刻速率。在又另一具體例中,如熟悉技藝人士所可輕 易明瞭,可在表面紋理化的同時颠刻用於金屬線之溝渠,而 免除對於雷射劃線的需求、成本及時間,儘管此處仍涵蓋雷 099138097 16 201126744 射劃線溝渠。 合0 热悉技藝人士應明瞭此處涵蓋具體例之任何組 微型壓印器上包括規則或不規則的形狀陣列,其包括,作 不限於.夕面體諸如立方體、四面體、八面體、十二面體、 十面體,知^主諸如三角枉、長方體、矩形稜柱、五角挺、 ,、角柱、八角杈;角錐諸如三角錐、正方錐及五角錐;半球 形,其他基於球形的形狀;及基於橢圓形的形狀。規則或不 規則陣列可包括任何數目之具有不同對稱性之各種尺寸的 不同形狀。較佳地,當微型壓印器包括蝕刻劑孔洞時,該微 型壓印器包括一親水性表面以使在蝕刻劑孔洞處的表面茫 力問題減至最小。應明瞭蝕刻劑孔洞可為任何尺寸,只要微 型壓印器之完整性不受損即可。若需要,可使用背側壓力強 迫槽液通過較小的韻刻劑孔洞。 雖然不希望受限於理論,但當使用微型壓印器時存在數種 可能的作用機構,其包括,但不限於:在壓力最高處,基板 的蝕刻速率應最高;微型壓印器可通過任何殘餘的表面氧化 物斷裂’且因此增加蝕刻速率;壓力可誘發基板中之非晶 性,其隨後可作為蝕刻止停;及/或微型壓印器可在蝕刻化 學可能侵蝕基板處作為可移除「遮罩」限制。該機構將取決 於所使用之特定化學(例如,酸性、鹼性、添加劑/界面活 性劑等)之選擇、時間、溫度及/或壓力等等。 在施加微型壓印器至基板及蝕刻製程後,基板表面較佳經 099138097 17 201126744 沖洗,以移除蝕刻劑以及任何反應產物。壓印器可再利用多 次。在一具體例中,可有利地使用多個壓印器來賦與基板表 面愈來愈粗糙的紋理^在各此等製程步驟期間可改變蝕刻化 學,以最佳化光伏打電池效能.可增添額外的製程步驟、化 學添加劑、及/或製程化學來最小化表面復合速度。 有利地,第一態樣之方法可獲得具有最佳紋理之可再現的 表面結構。該紋理可為自微米級至奈米級至介於微米級及奈 米級之間之尺寸混合的各種尺寸。 在第二態樣之方法的一具體例中,半導體材料係使用如文 中所述之第一態樣之組成物及方法粗糙化的微米級,其後使 用第二態樣之方法(即微型壓印n)達成奈米級表面粗經化。 在第二態樣之方法的另一具體例中,半導體材料係使用第 二態樣之方法(即使用微米級微型壓印器)粗糙化的微米 級,其後使用第二態樣之方法(即使用奈米級微型壓印器)達 成奈米級表面粗彳造化。 關於單晶矽表面,可配合微型壓印器使用各向異性蝕刻或 各向同性蝕刻。關於多晶矽,由於多個晶面經暴露,因而預 期各向同性蝕刻將最有利。各向異性蝕刻的實例包括⑴鹼 (例如’ NaOH及KOH)及視需要之醇(例如,異丙醇)之混合 物;(ii)含或不含水之乙二胺及鄰笨二酚;(iii)含水肼;(iv) 胺五倍子酸鹽(例如,烷醇胺與五倍子酸、水、吡畊、視需 要之氧化劑及視需要之界面活性劑);(v)第一態樣之蝕刻劑 099138097 18 201126744 組成物。最常用的濕式各向同性_劑為硝酸、氫氣酸、及 視需要之醋酸的溶液。其他㈣劑為熟悉技術人士所知曉。 此钮刻過耗優先純錢發生,目此,#存在切割^傷 時’触刻(及因此紋理化)會與晶體取向無關地發生。如前所 指,微型壓印器可增進或抑韻刻速率,因此賦與特定的表 面紋理。最好以需要使切割損傷減至最小的_步驟1 此簡化總體電池製造過程。 酸性各向同性鞋刻在p_Si或mc_Si上導致較傳統各向同 性钱刻低的反射,因此導致較佳的電池轉化效率。於酸性紋 理化後,必需將晶圓浸泡於稀Na0H或KOH溶液中,以移 除在紋理化步驟期間形成的一多孔矽薄層。隨後接著一中和 步驟,以在發射體擴散之前自表面移除所有的Na+或K+離 子。雖然此濕式紋理化過程可有效產生較高轉化效率,但其 係夕步驟、化學捃集、且易產生大量廢棄物。此過程可藉由 連同酸氟化物使用氧化劑,替代浸泡於稀Na0H或κ〇Η溶 液中來簡化,以氧化新鮮蝕刻的矽表面並避免產生多孔矽 層。避免苛性蝕刻劑(即NaOH及ΚΟΗ)可免除對中和步驟 的需求。 或者,可將黏性鹼性矽蝕刻糊擠壓於微型壓印器與矽表面 之間,例如,如以Kukelbeck等人之名義,且標題為「用於 石夕表面及層之|虫刻糊(Etching Pastes for Silicon Surfaces and Layers)」之美國專利公開申請案第2005/0247674號中所 099138097 19 201126744 述,將其全體内容併入本文為參考資料❶ 本文涵蓋的氧化劑包括,但不限於,曱磺酸(MSA)、臭氧、 4炮空氣、乙石黃酸、苯石黃酸、2-羥基乙石黃酸、環己胺基續酸、 正丙磺酸、正丁磺酸、或正辛磺酸、過氧化氫(H2〇2)、FeCl3(水 合及未水合)、發氧方(2KHS〇5 · KHS〇4 · k2S〇4)、銨多原 子鹽(例如,過氧單硫酸銨、亞氣酸銨(NH4C1〇2)、氯酸銨 (NH4C103)、碘酸銨(νη4Ι03)、過硼酸銨(NH4B03)、過氯酸 銨(NH4Cl〇4)、過碘酸銨(νη4Ι03)、過硫酸銨((NH4)2S208)、 次氯酸銨(NH4C10)、鈉多原子鹽(例如,過硫酸鈉 (Na2S208)、次氣酸鈉(NaCIO)、钟多原子鹽(例如,埃酸鉀 (KI〇3)、過錳酸鉀(ΚΜη〇4)、過硫酸鉀、硝酸(hn〇3)、過硫 酸卸(I〈2S2〇8)、次氣酸鉀(KC10)、四曱基錄多原子鹽(例如, 亞氯酸四曱基銨((n(ch3)4)cio2)、氯酸四曱基銨 ((N(CH3)4)Cl〇3)、碘酸四曱基銨((N(Ch3)4)i〇3)、過硼酸四 曱基錄((N(CH3)4)B〇3)、過氯酸四甲基録((n(CH3)4)C104)、 過碘酸四甲基銨((n(ch3)4)io4)、過硫酸四甲基銨 ((n(ch3)4)s2o8))、四丁基録多原子鹽(例如,過氧單硫酸四 丁基銨、過氧單硫酸、硝酸鐵(Fe(N〇3)3)、硝酸按鈽(CAN)、 脲過氧化氫((co(nh2)2)h2o2)、過乙酸(CH3(CO)OOH)、及 其組合。 本文涵蓋的酸氟化物包括,但不限於,氟化氫(HF);氟化 銨(NHJ);氟化四烷基銨(NILjF);烷基氟化氫(NRH3F);氟 099138097 20 201126744 化氫銨(NH#2);二烷基氟化氫銨(NR2H2F);三烷基氟化氫 錢(NRsHF);三烷基氟化三氳銨(NR3:3HF);無水氟化氫吡 0疋複合物;無水氟化氫三乙胺複合物;胺氟化氫複合物;及 其組合,其中R可彼此相同或不同,且係選自由直鏈或分 支鏈CrC6烷基(例如,曱基、乙基、丙基、丁基、戊基、 己基)組成之群,及其中該胺包括直鏈或分支鏈Ci_c2〇烷基 胺經取代或未經取代之C6_Ciq芳基胺、二醇胺、烷醇胺、 及胺_N_氧化物,包括,但不限於H 2_乙基。比咬;2_ 甲氧基吼錢其衍生物諸如3_甲氧基㈣;2十比咬;吼唆 衍生物;二甲D比唆;口辰°定;口瓜啡;三乙胺;三乙醇胺;乙胺、 甲胺、異丁胺、第三丁胺、三丁胺、二丙胺、二甲胺'二乙 二醇胺;單乙醇胺;轉;異今坐;^三。坐;*比咬; 密定’比片’。合讲,喹琳;異喹啉;σ引哚;味唾;甲基嗎 琳I氧化物__ ;三甲祕氧化物;三乙胺化 物;β比咬-N-fU卜舶7 . μ,《 一 ,-乙基嗎啉-Ν-氧化物;Ν-曱基吡咯咬 Ν氧化物,:^乙基吼略咬抓氧化物;卜甲基味。坐;二 胺;二異丁胺H笨胺魅物;及其組合。,、丙 亦可使用_子、_子、非離子及兩 劑,藉由控制表面張力來早, 于表面雜 理化表面可以半球形的開孔表示,其分別表干= 099138097 ㈣寬度㈣度,及,之半徑(參見,例如,圖2)。表 面效理的讀主要係由㈣的表面張力所料,同時紋縣 21 201126744 度係由蝕刻化學/速率/時間所決定。£&gt;、a及r之間的關 係為· I&gt;2 = Srh -4h2 換言之,反射率係取決於/^及乃,及需要大的;值來 獲得低反射率(參見,例如,Nishimoto, Y.等人,乂五 *S^c·,146, 457-461 (1999))。測量結果與此模擬相當一致。涵 蓋使用的界面活性劑已於上文介紹。在一較佳具體例中,非 離子界面活性劑可為乙氧基化氟界面活性劑諸如Z〇NYL® FSO-100 氟界面活性劑(DuPont Canada Inc., Mississauga,Surfonic® (Huntsmen) (e.g., Surfonic® Pl), a sour vinegar blended with a nonionic emulsifier such as Defoamer M (Ortho Chemicals Australia Pty. Ltd.), and Super Defoamer 225 (Varn Products), and combinations thereof. An etchant composition comprising at least one anatizing component, at least one surfactant, at least one metal salt, and a first or second etchant composition comprising (or consisting of) water (wherein the etchant composition) The amount of each component (substantially free of any low-point alcohol component) based on the total weight of the composition is: "_-- quantity (% by weight) preferred amount (% by weight) Ί test composition about 1 to About 20% by weight, about 5 to about 15% by weight of the interface activity, J, up to 5% by weight, from about 0.01 to about 〇·〇5 by weight. The metal salt is at most 1% by weight, from about 0.005 to about 0.5% by weight, containing at least one amine carboxylate. a composition of at least one surfactant, at least one metal salt, and water, or a composition of a first aspect consisting essentially of the composition (wherein the (four) agent composition does not contain The amount of each component in any low boiling alcohol component (based on the total weight of the composition) is: 099138097 13 201126744 Quantity (% by weight) Amount (% by weight) Amine carboxylate is from about 1 to about 20 weights 0/0 about 5 Up to about 15% by weight of surfactants up to 5 weights °/〇ϋ_1〇1 to about 0.05% by weight metal salt up to 1 weight °/〇_f^005 to about 0.5% by weight The first aspect of the composition described herein has a composition greater than about 12, more preferably greater than about 13. ρ Η. It should be understood that the p H of the composition of the first aspect described herein may be greater than 14 depending on the component used and its amount. In another embodiment, the composition of the first aspect further includes a semiconductor material. Wherein the semiconductor material may comprise germanium, gallium arsenide, cadmium telluride, or copper indium gallium arsenide (CIGS). For example, the composition of the first aspect may include at least one test composition, at least one interface activity And at least one metal salt, a semiconductor material, and water, wherein the etchant composition is substantially free of any low boiling alcohol component, wherein the semiconductor material comprises bismuth, gallium arsenide, cadmium telluride, or copper indium gallium arsenide. (CIGS). Alternatively, the composition of the first aspect may comprise at least one amine carboxylate, at least one surfactant, at least one metal salt, a semiconductor material, and water, wherein the etchant composition is substantially free of any Low boiling alcohol component, The semiconductor material includes germanium, gallium arsenide, cadmium telluride, or copper indium gallium arsenide (CIGS). The semiconductor material can be dissolved and/or suspended in the etchant composition. The etchant composition is used in a micron order. The method of introducing surface roughness into the semiconductor material includes contacting the semiconductor material with the carbon engraving composition under conditions sufficient to etch the surface of the semiconductor material. Preferably, the roughness introduced is a micron-scale surface roughness, wherein etching is performed to The pyramid in the surface has a lateral dimension of about 2 099138097 201126744, and a spoon of 10 micrometers. It has a cover with a pyramid on the surface. As described herein, the "good coverage" phase is at least the surface of the Bowing cast material. 9〇% 'preferably at least 95%, and at least 99% of the surface of the optimally saccharified semiconductor material. Those skilled in the art can turn to the slanting cone in the surface of the substrate. (4) The other pyramids on the surface are the same size or different sizes. In the removal application, the first-order surname composition can be applied to the semiconductor substrate to be roughened in any suitable manner, for example, by spraying the _: composition onto the surface by soaking the substrate (in - quantitative _ engraving composition) 'by contacting the substrate with another material (eg, ruthenium, or fiber absorbing applicator member) saturated with the etchant composition, by etching the substrate with the cycle The composition is contacted, or by any other suitable means, means for contacting the etchant composition with the semiconductor substrate to be coarsened. When necessary, the back surface of the substrate can be covered to avoid exposure to the surname composition. When the composition of the first aspect is used to roughen the semiconductor material, the composition is typically applied to the substrate at a temperature of from about 20 ° C to about 20 (TC, preferably from about 7 ° C to about 10 ° C, and then More preferably, the contact time is from about 1 〇 ° C to about 90 ° C for about 1 sec to about 120 minutes. The contact times and temperatures are illustrative, and any other semiconductor can be used effectively. The material is rough and suitable for the time and temperature conditions. After the desired roughening is achieved, the etchant composition can be removed by flushing from its previously applied device by 099138097 15 201126744. Preferably, for the first The rinsing solution of the composition of the aspect includes deionized water. Thereafter, the roughened semiconductor material can be dried using nitrogen or a spin drying cycle. In the second aspect, a controlled texturing of the semiconductor material is described. A novel method in which a micro-imprinter having an optimum surface structure is fabricated. The micro-imprinter can be an anti-mirror image of an optimum surface structure, has an anode that enhances etching characteristics in a specific position, and/or has a surface ensuring Specific part A mask that is etched and has other features that are not etched. The micro-imprinter can be fabricated from a variety of materials including, but not limited to, metal, ceramic, glass, and plastic/polymer, and can be used, such as micromachining, micro Any method of shadowing, embossing, etc. is prepared. The semiconductor material substrate and the micro-imprinter to be etched are immersed in the groove and pressed together, and holes can be added in the micro-imprinter to ensure that the etching chemistry reaches the substrate. The surface can be easily removed. The shock and/or pulse can also be used. The micro-imprinter can be of any size, covering only a portion of the substrate at any one time or large enough to cover multiple substrates. Only the front side of the substrate is textured without covering the back side. In one embodiment, the stamp and substrate can be alternately pressed and removed several times to ensure proper fluid transfer. In another specific example, 'micro The stamper can be slightly flexible to minimize substrate breakage. In yet another embodiment, a potential can be applied to the upper and lower surfaces to increase the etch rate. In yet another embodiment. As will be readily apparent to those skilled in the art, it is possible to etch the trenches for metal lines while the surface is textured, eliminating the need for laser scribing, cost and time, although it still covers Ray 099138097 16 201126744 Wire Ditch. It will be understood by those skilled in the art that any group of micro-imprinters covered by a specific example herein includes a regular or irregular array of shapes, including, without limitation, an evening body such as a cube, a tetrahedron, or eight. Face, dodecahedron, decahedron, known as the main 诸如, such as triangular 枉, cuboid, rectangular prism, pentagonal, 角, 角角; 角 cone such as triangular cone, square pyramid and pentagonal cone; hemispherical, other based The shape of the sphere; and the shape based on the ellipse. The regular or irregular array may comprise any number of different shapes of various sizes having different symmetries. Preferably, when the micro-imprinter includes an etchant hole, the micro-imprinter includes a hydrophilic surface to minimize surface stress problems at the etchant holes. It should be understood that the etchant holes can be of any size as long as the integrity of the micro-imprinter is not compromised. If necessary, use the backside pressure to force the bath through the smaller rhyme holes. While not wishing to be bound by theory, there are several possible mechanisms of action when using a micro-imprinter, including, but not limited to, the highest etch rate of the substrate at the highest pressure; the micro-imprinter can pass any Residual surface oxide breaks 'and thus increases the etch rate; pressure can induce amorphous in the substrate, which can then act as an etch stop; and/or the micro-imprinter can be removed as the etch chemistry may erode the substrate "Mask" limit. The agency will depend on the choice of particular chemistry (eg, acidity, basicity, additives/interfacial agents, etc.), time, temperature, and/or pressure, and the like. After application of the microimprinter to the substrate and etching process, the substrate surface is preferably rinsed with 099138097 17 201126744 to remove the etchant and any reaction products. The stamp can be reused multiple times. In one embodiment, a plurality of stamps can be advantageously used to impart a rougher texture to the surface of the substrate. The etching chemistry can be varied during each of these process steps to optimize the performance of the photovoltaic cell. Additional process steps, chemical additives, and/or process chemistry to minimize surface recombination speed. Advantageously, the first aspect of the method results in a reproducible surface structure having an optimal texture. The texture can range from micron to nanometer to various sizes ranging between micron and nanoscale. In a specific embodiment of the method of the second aspect, the semiconductor material is micron-scaled using a composition and method of the first aspect as described herein, and thereafter using the second aspect (ie, micro-pressure) Printing n) to achieve nano-scale surface roughening. In another embodiment of the method of the second aspect, the semiconductor material is a micron-scale roughened using a second aspect method (i.e., using a micro-scale micro-imprinter), followed by a second aspect method ( That is, using a nano-scale micro-imprinter) to achieve a nano-scale surface roughening. Regarding the surface of the single crystal crucible, an anisotropic etching or an isotropic etching can be used in conjunction with the microimprinter. Regarding polycrystalline germanium, it is expected that isotropic etching will be most advantageous since a plurality of crystal faces are exposed. Examples of the anisotropic etching include (1) a mixture of a base (for example, 'NaOH and KOH) and, if necessary, an alcohol (for example, isopropyl alcohol); (ii) ethylenediamine and o-diphenol with or without water; (iv) an amine gallate (eg, an alkanolamine with gallic acid, water, pyridin, an optional oxidizing agent, and optionally a surfactant); (v) a first aspect of etchant 099138097 18 201126744 Composition. The most commonly used wet isotropic agents are solutions of nitric acid, hydrogen acid, and, if desired, acetic acid. Other (four) agents are known to those skilled in the art. This button is used to preferentially generate pure money. Therefore, the presence of the cut-and-cut (the texture) will occur irrespective of the crystal orientation. As previously mentioned, micro-imprinters can increase or suppress the rate of rhythm, thus assigning a specific surface texture. It is best to minimize the damage to the cutting step 1 which simplifies the overall battery manufacturing process. The enzymatic isotropic shoe engraved on p_Si or mc_Si results in a lower reflection than conventional isotropic, thus resulting in better cell conversion efficiency. After acid texturing, the wafer must be immersed in a dilute NaHH or KOH solution to remove a thin layer of porous tantalum formed during the texturing step. This is followed by a neutralization step to remove all Na+ or K+ ions from the surface before the emitter diffuses. Although this wet texturing process can effectively produce higher conversion efficiencies, it is a step-by-step process, chemically collected, and prone to large amounts of waste. This process can be simplified by using an oxidizing agent along with the acid fluoride instead of soaking in a dilute NaHH or κ 〇Η solution to oxidize the freshly etched ruthenium surface and avoid the formation of a porous ruthenium layer. Avoiding caustic etchants (ie NaOH and hydrazine) eliminates the need for neutralization steps. Alternatively, a viscous alkaline etch paste can be extruded between the micro-imprinter and the surface of the crucible, for example, as in the name of Kukelbeck et al., and entitled "Used for the surface and layer of Shishi" (Etching Paste for Silicon Surfaces and Layers), U.S. Patent Application Publication No. 2005/0247674, the entire disclosure of which is incorporated herein by reference. Sulfonic acid (MSA), ozone, 4 gun air, ethinoic acid, phenylphosphinic acid, 2-hydroxyephedrine, cyclohexylamine acid, n-propanesulfonic acid, n-butanesulfonic acid, or n-octyl Sulfonic acid, hydrogen peroxide (H2〇2), FeCl3 (hydrated and unhydrated), oxygenated (2KHS〇5 · KHS〇4 · k2S〇4), ammonium polyatomic salt (eg, ammonium peroxymonosulfate, Ammonium oxalate (NH4C1〇2), ammonium chlorate (NH4C103), ammonium iodate (νη4Ι03), ammonium perborate (NH4B03), ammonium perchlorate (NH4Cl〇4), ammonium periodate (νη4Ι03), Ammonium sulfate ((NH4)2S208), ammonium hypochlorite (NH4C10), sodium polyatomic salt (for example, sodium persulfate (Na2S208), sodium hypocarbonate (NaCIO), clock Atomic salts (eg, potassium citrate (KI〇3), potassium permanganate (ΚΜη〇4), potassium persulfate, nitric acid (hn〇3), persulfate unloading (I<2S2〇8), potassium hypopotassate (KC10), tetrahydrocarbyl polyatomic salt (for example, tetradecyl ammonium chlorite ((n(ch3)4) cio2), tetradecyl ammonium chlorate ((N(CH3)4)Cl〇3) , tetradecylammonium iodate ((N(Ch3)4)i〇3), tetradecyl perborate ((N(CH3)4)B〇3), tetramethyl perchlorate ((n( CH3)4)C104), tetramethylammonium periodate ((n(ch3)4) io4), tetramethylammonium persulfate ((n(ch3)4)s2o8)), tetrabutyl polyatomic salt (eg, tetrabutylammonium peroxymonosulfate, peroxymonosulfuric acid, ferric nitrate (Fe(N〇3)3), niobium nitrate (CAN), urea hydrogen peroxide ((co(nh2)2) h2o2) Peracetic acid (CH3(CO)OOH), and combinations thereof. Acid fluorides encompassed herein include, but are not limited to, hydrogen fluoride (HF); ammonium fluoride (NHJ); tetraalkylammonium fluoride (NILjF); Hydrogen fluoride (NRH3F); fluorine 099138097 20 201126744 ammonium hydrogen hydride (NH#2); dialkylammonium hydrogen fluoride (NR2H2F); trialkyl hydrogen fluoride (NRsHF); trialkyl fluoride triammonium (NR3: 3HF) Anhydrous hydrogen fluoride pyridinium complex; anhydrous hydrogen fluoride triethyl a complex; an amine hydrogen fluoride complex; and combinations thereof, wherein R may be the same or different from each other, and are selected from a linear or branched chain CrC6 alkyl group (eg, fluorenyl, ethyl, propyl, butyl, pentyl, a group of hexyl groups, wherein the amine comprises a C6_Ciq arylamine, a diol amine, an alkanolamine, and an amine_N_oxide, substituted or unsubstituted, of a straight or branched chain Ci_c2 alkylamine, including However, it is not limited to H 2 —ethyl. Specific bite; 2_ methoxy oxime derivative such as 3-methoxy (tetra); 2 octet bite; hydrazine derivative; dimethyl D 唆 口; mouth ° °; mouth melon; triethylamine; Ethanolamine; ethylamine, methylamine, isobutylamine, tert-butylamine, tributylamine, dipropylamine, dimethylamine 'diethylene glycolamine; monoethanolamine; turn; different sitting; ^ three. Sit; * than bite; Co-speaking, quinoline; isoquinoline; σ sputum; taste saliva; methyl phenanthine I oxide __; trimethionate oxide; triethylamine; β ratio bite-N-fU Bo 7 7. μ, "I,-ethylmorpholine-Ν-oxide; Ν-mercaptopyrrole occluded oxide,: ^ ethyl 吼 slightly biting the oxide; Sitting; diamine; diisobutylamine H stupid amine charm; and combinations thereof. , C can also use _ sub, _ sub, non-ion and two doses, by controlling the surface tension early, the surface of the surface of the surface can be represented by hemispherical openings, which are respectively dry = 099138097 (four) width (four) degrees, And, the radius (see, for example, Figure 2). The reading of the surface effect is mainly determined by the surface tension of (4), and the degree of the 2011 21744 is determined by the etching chemistry/rate/time. £&gt;, the relationship between a and r is · I&gt;2 = Srh -4h2 In other words, the reflectivity depends on /^ and is, and needs to be large; the value is obtained to obtain low reflectance (see, for example, Nishimoto, Y. et al., *5*S^c., 146, 457-461 (1999)). The measurement results are quite consistent with this simulation. The surfactant used in the hood has been described above. In a preferred embodiment, the nonionic surfactant can be an ethoxylated fluorosurfactant such as Z〇NYL® FSO-100 fluorosurfactant (DuPont Canada Inc., Mississauga,

Ontario, Canada) ° 在文中所述之方法中,可將界面活性劑/消泡劑添加至 槽,其中該界面活性劑/消泡劑具有不同的「氣泡產生」(即 「起泡」)特性,以調節紋理化表面的反射率。氣泡由於其 控制發生蝕刻的位置,而扮演與微型壓印器類似的角色。舉 例來說,Phmmic 25R2(非離子、非氟化_PEG/ppG/pEG聚合 物)可用於產生極小的氣泡,而DDBSA(陰離子十二烷基苯 %酸’㈣)應導致形成較大氣泡。中間尺寸的氣泡應由 D〇wfax 3B2(陰離子-烷基二苯基氧化物二磺酸酯,鈉鹽)形 成。此等材料可個別地或彼此組合地與微壓印技術一起使 用’以產生多重尺度或碎形表面。 如前文所介紹,微型壓印器可由傳導性材料(例如,金屬) 製成,或經塗布傳導性材料且於㈣輯基板之間引發電化 099138097 22 201126744 學製程。在一具體例中,壓印器不需觸碰到基板。槽液可為 鹼性或酸性;亦可使用諸如界面活性劑及消泡劑之添加劑。 或者,可使用壓印器作為接觸飯刻遮罩,因此限制可發生钮 刻的區域。蝕刻速率可使用光子通過壓印器(使用光學透明 但傳導性的材料或具有此等性質之塗層(例如,氧化銦錫 及/或通過矽基板增強。經由控制電位及溶液化學,矽的所 有結晶面可以相當的速率及類似的形狀經蝕刻,因此即使當 晶體結構改變時仍獲得可再現的表面紋理化(參見,例如, Gregory Zhang,矽及其氧化物之電化學(Electr〇chernistry 〇f Silicon and its Oxide), Kluwer Academic/Plenum Publishers, New York,2001)。與文中之教示一致地,可同時蝕刻用於金 屬接觸線之溝渠及/或可利用雷射劃線。可使用去離子水沖 洗來移除任何殘留的酸或鹼。電化學蝕刻最好係快速,因此 提高通過太陽能製造薇的電池生產量。 除了矽之濕式化學及電化學蝕刻外,可於氣相蝕刻中使用 類似的微型壓印器。舉例來說,可使用XeI?2作為無電漿、 各向同性、氣相紋理化蝕刻劑。XeF2以相對於Si〇2、SiN、 A1及光阻劑之高選擇性(&gt;1〇〇〇:1)快速地蝕刻矽(〜2微米/ 分鐘),因此可使用任何此等材料作為遮罩,以在紋理化製 程期間(若需要)保護晶圓之背側。XeF2尚未被列作溫室氣 體’因此可潛在地免除使用來自電漿/氣相紋理化製程之熟 知溫室氣體’以及由RIE電漿製程所導致的表面損傷。此 099138097 23 201126744 潛在地免除任何隨後的濕式化學蝕刻步驟。用於氣相蝕刻的 其他可選氣體包括,但不限於,Fa、HF及CIF3。在另一具 體例中,可使用光燒蝕製程,其中將基板表面覆蓋遮蓋材料 之離散陣列,諸如金屬及/或顆粒,其後使用準分子雷射於 燒蝕經暴露的矽。 注意第二態樣之方法不限於矽光伏打電池之紋理化,且不 僅可應用於其他光伏打材料(例如,GaAs、CdTe、ciGs等广 並且可應用於包括光學元件、受控表面親水性/疏水性等之 許多領域中的多種基板。 在第三態樣巾,描述-獅微米級及奈米絲面粗糖度引 入至光伏打電池基板之表面之方法。更明確言之,第三態樣 之方法係關於沈積奈求粒子或將金屬料孔則人至微米 級粗糙化基板表面。 此外,此處提出之所有濕基調配物可應用於太陽能電池製 造中之其他濕式製程,諸如切割損傷移除(sdr)、硬酸鱗玻 璃(PSG)移除、邊緣隔離及別為移除。 將紋理狀至基板之方法㈣於圖3,其巾㈣切基板 (例:¾單aah aa/^晶體)以形成微米級粗糙化基板表 面。㈣方法取決於含石夕基板之性質,其中習知使用 KOH/NaOH及視需要之異丙酶 '内%於各向異性地蝕刻單晶Si基 板’同時習知使用硝酸及HF另拍+ 久及視需要之醋酸之混合物於各 向異性地姓刻多晶體Si基板。 其他蝕刻劑包括碳酸鹽、碳 099138097 24 201126744 酸氫鹽、或肼及視需要之至少一種醇或至少一種界面活性 劑。或者,使用如文中所述之第一態樣之組成物及方法來引 入微米級粗糙度。隨後使具有微米級紋理之基板經歷奈米級 紋理化,其中⑴將奈米粒子沈積於其上;或(ii)引發金屬誘 導孔蝕(MIP)。可視需要移除金屬或奈米粒子。隨後可使用 紋理化基板於構造太陽能電池。在另一具體例中,使第二態 樣之微米級紋理化基板經受奈米級紋理化,其中(i)將奈米粒 子沈積於其上;或(ii)引發金屬誘導孔蝕(MIP)。可視需要移 除金屬或奈米粒子。隨後可使用替代具體例之紋理化基板於 構造太陽能電池。 奈来粒子,明確言之矽石、CdTe奈米粒子、CdSe奈米粒 子或其他硫族化合物,可使用如熟悉技藝人士所可容易明瞭 之基於溶液或氣相沈積方法原位或離地沈積。在另一具體例 中,可對光輔助製程沈積陶瓷或摻雜金屬之陶瓷奈米粒子諸 如Τι〇2,其中Uv光可於粒子附近活化蝕刻。 引入此等可帶有可變化調節之電荷及形態之奈米粒子的 潛在優勢係貫5見—有效的場誘導表面純化,其最終將導致 • SRV降低。 金屬誘導孔敍包括將微米級、纹理化基板浸泡於包括金屬 鹽及氧化秒基_ _如酸氟化物或 KOH的溶液中。金屬 -可^括銅(π)、金(1) '銀⑴、⑼、⑼、及其組合。 導致在微米級紋理化表面之表面上形成坑口, 因此引入 099138097 25 201126744 第二結構。雖然不希望受限於理論,但本發明人推測P型摻 雜矽較η型摻雜矽更易進行M p。金屬誘導孔蝕之一實例示 於圖4,其中在矽表面之晶核生成導致形成金屬粒子(基於 所使用之金屬鹽)及於金屬粒子附近之矽中形成氧化矽。其 後可引入氟鹽,其中該氧化矽溶解及該金屬粒子釋放/氧 化,而留下一孔。 有利地,第三態樣之方法係一種僅需要廉價、大宗化學品 的簡單二步驟方法。 在第四態樣中’使用遠端電漿源(RPS)或反應性離子蝕刻 (RIE),即乾式蝕刻製程,於將微米級及奈米級特徵蝕刻至 含矽基板中’較佳係不需將含矽基板引入至各向異性蝕刻槽 (即KOH/異丙醇)或各向同性烟槽(即丽〇3/Hf/cH3C〇〇h) 中。換言之,RPS或RIE蝕刻可為單步驟紋理化方法,且 所得之紋理化基板可隨後用於構造太陽能電池。在另一具體 例中,RPS或RIE㈣可為二步驟方法,其中該第一儀刻 引入主要粗链度’同時第二#刻引人次要粗糖度。第一韻刻 可為濕式或乾式钱刻,同時第二触刻為乾式钱刻。舉例來 說,主要粗糙度可為❹第—態樣之組成物及方法引入的微 米級紋理,同時次要粗糙度可對應於奈餘㈣度。應明瞭 第-步驟中所使用之技術可與第二步驟中所使用之技術相 同或不同。在另—具體例中,使第二態樣之紋理化基板經受 RPS或·触刻,以根據第四態樣引入奈米級特徵,且所 099138097 26 201126744 得之紋理化基板可隨後用於構造太陽能電池 且不需存在瑕 有利地,第四態樣之方法係一種單側方法, 疲供各向同性Ί虫刻用。 在第五態樣巾’描述將微米級及奈米級表面粗糙度引入至 光伏打電池基板之表面的另—方法。更财言之,第五態樣 之方法係關於將奈綠子沈積於微米級粗糙化基板表面上。 根據第五態樣將紋則人至基板之方法包純刻含石夕基 板(例如’早晶或多晶/多晶體),以形成微米級粗趟化基板 表面。_方法取決於切基板之性質,其中習知使用丽 及視需要之異丙醇於各向異性地勤]單晶Si基板,同時習 知使㈣酸及HF及視需要之醋酸之混合物於各向同性祕 刻夕曰日體Si基板。或者,根據文中所述之第二態樣使用文 中所述之第-態樣之組成物及方法,或使敎中所述之第四 態樣之RPS或RIE _,來獲得微米級紋理。隨後將金屬 奈米粒子沈積在具有微米級紋理之基板上,其中⑴使用旋轉 塗布替代氣相沈積將貴金屬奈米粒子沈積於其上;或(ii)使 用基於洛液之沈積方法或氣相沈積來沈積非貴金屬奈米粒 子。使用金屬誘導之催化作用使用hf/h2o2或替代的組成 物在經沈積之金屬或存在於HF/H202或替代組成物中之一 些其他金屬觸媒之存在下達成奈米級粗糙度。在另一具體例 中’如熟悉技藝人士所可輕易明瞭,催化作用可係光誘導。 於在基板表面中產生奈米級粗糙度後,可移除金屬奈米粒子 099138097 27 201126744 以產生紋理化基板,其隨後可用於構造太陽能電池。關於本 揭示案之目的,「替代組成物」可為2006年11月9曰提出 申請之國際專利申請案第PCT/US06/60696號,標題「用於 回收其上具有低k介電材料之半導體晶圓的組成物及方法 (Composition and Method for Recycling Semiconductor Wafers Having Low-k Dielectric Materials Thereon)」;2008 年3月31日提出申請之國際專利申請案第PCT/US08/58878 號,標題「用於剝除材料以回收晶圓之方法(Methods for Stripping Material for Wafer Reclamation)」;2008 年 6 月 13 曰提出申請之國際專利申請案第PCT/US08/66906號,標題 「晶圓回收之組成物及方法(Wafer ReclamationOntario, Canada) ° In the method described herein, a surfactant/antifoaming agent can be added to the tank, wherein the surfactant/antifoaming agent has different "bubble generation" (ie "bubbling") characteristics. To adjust the reflectivity of the textured surface. The bubble plays a similar role as the micro-imprinter because it controls where the etch occurs. For example, Phmmic 25R2 (nonionic, non-fluorinated PEG/ppG/pEG polymer) can be used to generate very small bubbles, while DDBSA (anionic dodecylbenzene % acid '(iv)) should result in the formation of larger bubbles. The intermediate size bubbles should be formed from D〇wfax 3B2 (anionic-alkyl diphenyl oxide disulfonate, sodium salt). These materials can be used with micro-embossing techniques individually or in combination with each other to create multiple scale or fractal surfaces. As described above, the micro-imprinter can be made of a conductive material (for example, metal), or coated with a conductive material and electrically induced between the (4) substrates. 099138097 22 201126744. In one embodiment, the stamp does not need to touch the substrate. The bath may be alkaline or acidic; additives such as surfactants and defoamers may also be used. Alternatively, an embossing device can be used as a contact rice mask, thus limiting the area where the button can occur. The etch rate can be photon through the stamp (using an optically transparent but conductive material or a coating with such properties (eg, indium tin oxide and/or enhanced by a germanium substrate. via control potential and solution chemistry, all of the germanium) The crystal face can be etched at a comparable rate and similar shape, thus achieving reproducible surface texturing even when the crystal structure changes (see, for example, Gregory Zhang, Electrochemistry of ruthenium and its oxides (Electr〇chernistry 〇f Silicon and its Oxide), Kluwer Academic/Plenum Publishers, New York, 2001). Consistent with the teachings herein, trenches for metal contact lines can be etched simultaneously and/or laser scribing can be utilized. Deionized water can be used. Rinsing to remove any residual acid or alkali. Electrochemical etching is preferably fast, thus increasing the amount of battery produced by solar energy. In addition to wet chemical and electrochemical etching, it can be used in vapor phase etching. Micro-imprinters. For example, XeI?2 can be used as a plasma-free, isotropic, gas-phase textured etchant. XeF2 is relative to Si. 2. The high selectivity (&gt;1〇〇〇:1) of SiN, A1 and photoresist is rapidly etched (~2 μm/min), so any such material can be used as a mask to be textured. The back side of the wafer is protected during processing (if needed). XeF2 has not been classified as a greenhouse gas 'and therefore potentially eliminates the use of well-known greenhouse gases from plasma/gas phase texturing processes' and caused by RIE plasma processes Surface damage. This 099138097 23 201126744 potentially eliminates any subsequent wet chemical etching steps. Other optional gases for vapor phase etching include, but are not limited to, Fa, HF, and CIF3. In another embodiment, A photoablation process in which the substrate surface is covered with a discrete array of masking materials, such as metals and/or particles, followed by excimer lasers to ablate the exposed germanium. Note that the second aspect of the method is not limited to germanium photovoltaics. The battery is textured and can be applied not only to other photovoltaic materials (for example, GaAs, CdTe, ciGs, etc.) but also to many fields including optical elements, controlled surface hydrophilicity/hydrophobicity, and the like. Substrate. In the third aspect of the sample, describe the method in which the lion micron and the nano-grain coarse sugar are introduced onto the surface of the photovoltaic cell substrate. More specifically, the third aspect method is about depositing nanoparticles or The metal holes are roughened to the surface of the substrate by micron order. In addition, all of the wet-based formulations proposed herein can be applied to other wet processes in the manufacture of solar cells, such as cutting damage removal (sdr), hard acid scales. Glass (PSG) removal, edge isolation, and other removal. The method of texture-to-substrate (4) is shown in Figure 3, and the substrate (4) is cut into a substrate (eg, 3⁄4 single aah aa/^ crystal) to form a micron-scale roughened substrate. surface. (4) The method depends on the nature of the substrate containing shisha, in which it is conventional to use KOH/NaOH and, if necessary, the isolase '% to anisotropically etch a single crystal Si substrate' while conventionally using nitric acid and HF for another shot + long And a mixture of acetic acid as needed is anisotropically engraved with a polycrystalline Si substrate. Other etchants include carbonates, carbon 099138097 24 201126744 hydrogen hydride, or hydrazine and optionally at least one alcohol or at least one surfactant. Alternatively, the micron-scale roughness is introduced using the composition and method of the first aspect as described herein. Substrates having a micron-scale texture are then subjected to nanoscale texturing, wherein (1) nanoparticles are deposited thereon; or (ii) metal induced pitting corrosion (MIP) is initiated. Metal or nano particles can be removed as needed. The textured substrate can then be used to construct the solar cell. In another embodiment, the second aspect of the micron-sized textured substrate is subjected to nanoscale texturing, wherein (i) depositing nanoparticle thereon; or (ii) initiating metal induced pitting (MIP) . Metal or nano particles can be removed as needed. The solar cell can then be constructed using a textured substrate instead of a specific example. Nailai particles, specifically meteorites, CdTe nanoparticles, CdSe nanoparticles or other chalcogenides, can be deposited in situ or off-site using solution or vapor deposition methods as readily apparent to those skilled in the art. In another embodiment, a ceramic or metal doped ceramic nanoparticle such as Τι〇2 can be deposited for the photo-assisted process, wherein Uv light can be etched in the vicinity of the particle. The potential advantages of introducing such nanoparticles with measurable charge and morphology are seen in the context of effective field-induced surface purification, which ultimately leads to a reduction in SRV. Metal-induced pores include soaking micron-sized, textured substrates in a solution comprising a metal salt and an oxidized quaternary group such as acid fluoride or KOH. Metal - can include copper (π), gold (1) 'silver (1), (9), (9), and combinations thereof. This results in the formation of a pit on the surface of the micron-scale textured surface, thus introducing the second structure of 099138097 25 201126744. While not wishing to be bound by theory, the inventors speculate that P-type doped germanium is more susceptible to Mp than n-type doped germanium. An example of metal induced pitting corrosion is shown in Figure 4, in which nucleation at the surface of the crucible results in the formation of metal particles (based on the metal salt used) and the formation of antimony oxide in the crucible near the metal particles. Thereafter, a fluorine salt can be introduced in which the cerium oxide dissolves and the metal particles are released/oxidized leaving a hole. Advantageously, the third aspect of the method is a simple two-step process that requires only inexpensive, bulk chemicals. In the fourth aspect, 'using a remote plasma source (RPS) or reactive ion etching (RIE), a dry etching process, to etch micron- and nano-scale features into a germanium-containing substrate. The ruthenium-containing substrate needs to be introduced into an anisotropic etch bath (ie, KOH/isopropyl alcohol) or an isotropic smog (ie, Lishen 3/Hf/cH3C〇〇h). In other words, the RPS or RIE etch can be a one-step texturing process, and the resulting textured substrate can then be used to construct a solar cell. In another embodiment, the RPS or RIE (4) can be a two-step process in which the first instrument introduces a major coarse degree ' while the second one introduces a minor coarseness. The first rhyme can be a wet or dry money engraving, while the second engraving is a dry money engraving. For example, the primary roughness can be the micro-scale texture introduced by the composition and method of the first aspect, while the secondary roughness can correspond to the nano-degree. It should be understood that the techniques used in the first step may be the same or different than those used in the second step. In another embodiment, the textured substrate of the second aspect is subjected to RPS or etch to introduce nanoscale features according to the fourth aspect, and the textured substrate of 099138097 26 201126744 can be subsequently used for construction The solar cell does not need to be present, advantageously, the fourth aspect of the method is a one-sided method, and the fatigue is supplied to the isotropic aphid. In the fifth aspect, a method of introducing micron-scale and nano-scale surface roughness to the surface of a photovoltaic cell substrate is described. More generally, the fifth aspect of the method relates to depositing nano greens on the surface of a micron roughened substrate. According to the fifth aspect, the method of patterning the human to the substrate is carried out by engraving a stone substrate (e.g., 'early crystal or polycrystalline/polycrystalline) to form a micron-scale roughened substrate surface. The method depends on the nature of the substrate to be cut, and it is customary to use isopropyl alcohol as needed to anisotropically serve a single crystal Si substrate, and it is conventional to make a mixture of (4) acid and HF and optionally acetic acid in various directions. The same-sex secret engraved on the matte Si substrate. Alternatively, a micron-scale texture can be obtained according to the second aspect described herein using the composition and method of the first aspect described herein, or the RPS or RIE_ of the fourth aspect described in the crucible. Metal nanoparticle is then deposited on a substrate having a micron-scale texture, wherein (1) spin-coating is used instead of vapor deposition to deposit precious metal nanoparticles thereon; or (ii) using a Loose-based deposition method or vapor deposition To deposit non-precious metal nanoparticles. Nanoscale roughness is achieved using metal induced catalysis using hf/h2o2 or an alternative composition in the presence of the deposited metal or one of the other metal catalysts present in the HF/H202 or alternative composition. In another embodiment, as will be readily apparent to those skilled in the art, the catalysis can be photoinduced. After nano-roughness is created in the surface of the substrate, the metal nanoparticles 099138097 27 201126744 can be removed to create a textured substrate that can then be used to construct a solar cell. For the purposes of this disclosure, the "alternative composition" can be applied to International Patent Application No. PCT/US06/60696, filed November 9, 2006, entitled "Recycling of Semiconductors with Low-k Dielectric Materials" "Composition and Method for Recycling Semiconductor Wafers Having Low-k Dielectric Materials Thereon"; International Patent Application No. PCT/US08/58878, filed on March 31, 2008, the title of "Methods for Stripping Material for Wafer Reclamation"; International Patent Application No. PCT/US08/66906, filed on Jun. 13, 2008, entitled "wafer recovery composition and Method (Wafer Reclamation

Compositions and Methods)」;及 2009 年 10 月 1 日提出申請 之國際專利申請案第PCT/US09/59199號,標題「使用界面 活性劑/消泡劑混合物於增進矽基板之金屬負載及表面鈍 化(Use of Surfactant/Defoamer Mixtures for Enhances Metals Loading and Surface Passivation of Silicon Substrates)」(將其 全體内容併入本文為參考資料)中所揭示之任何溶液。在所 有情況中,表面結構及表面/界面化學必需使得表面復合速 度實質上不會增加。 太陽能電池效率之損耗主要係來自四個範圍—可藉由紋 理化過程解決的反射率損耗,由半導體帶隙產生的熱力學效 率,由材料及界面性質所導致的電阻性損耗,及復合損耗。 099138097 *〇 201126744 當光產生之電子-電洞對在其可遷移並被收集於電池之p-n 接面處之前與其他載體組合時,發生復合損耗。一部分的少 數載體傾向於朝表面遷移,因此藉由操控表面電位,少數載 體可經再脈衝或吸引,其直接影響半導體表面處的復合速 率。修改表面電位的方法包括將表面化學改質,吸附薄膜, 或塗布可與電池設計相容的薄膜材料。因此,可藉由單一的 化學過程潛在解決兩種損耗來源-反射及復合。雖然不希 望受限於理論,但如頂層係p型半導體,則多數載體將係電 洞。若在表面處獲得偶極,則來自表面的載體可被排斥或吸 引。舉例來說,將表面處的Si-OH改為Si-H產生電洞不被 吸引且表面復合速率減小的表面。關於η型半導體,鹵素終 止或胺基矽烷可減緩表面復合。 雖然本發明已參照說明性具體例及特徵以不同方式揭示 於文中,但當明瞭上文所述之具體例及特徵不欲限制本發 明,且熟悉技藝人士基於文中之揭示内容當可明白其他的變 化、修改及其他具體例。因此,應將本發明廣泛地解釋為涵 蓋在後文所述之申請專利範圍之精神及範疇内的所有此等 變化、修改及替代具體例。 【圖式簡單說明】 圖1說明本文所述之微壓印方法的示意圖。 圖2說明半球形的開孔。 圖3說明一種將次要紋理化引入至光伏打電池基板之表 099138097 29 201126744 面的新顆方法。 圖4係金屬誘導孔蝕之過程的示意說明。 099138097 30And the application of the surfactant/antifoam mixture to enhance the metal loading and surface passivation of the tantalum substrate (Patents and Methods); and International Patent Application No. PCT/US09/59199, filed on October 1, 2009. Any of the solutions disclosed in Use of Surfactant/Defoamer Mixtures for Enhances Metals Loading and Surface Passivation of Silicon Substrates), which is incorporated herein by reference in its entirety. In all cases, the surface structure and surface/interface chemistry must be such that the surface recombination velocity does not substantially increase. The loss of solar cell efficiency comes mainly from four ranges—reflectance loss that can be solved by the graining process, thermodynamic efficiency caused by the semiconductor bandgap, resistive loss caused by material and interface properties, and composite loss. 099138097 *〇 201126744 A composite loss occurs when an electron-hole pair of light is combined with other carriers before it can be migrated and collected at the p-n junction of the battery. A portion of the minority carriers tend to migrate toward the surface, so by manipulating the surface potential, a minority carrier can be re-pulsed or attracted, which directly affects the recombination rate at the semiconductor surface. Methods of modifying the surface potential include chemically modifying the surface, adsorbing the film, or coating a film material that is compatible with the design of the battery. Therefore, two sources of loss - reflection and recombination - can be potentially solved by a single chemical process. Although it is not desirable to be bound by theory, if the top layer is a p-type semiconductor, most of the carriers will be holes. If a dipole is obtained at the surface, the carrier from the surface can be repelled or attracted. For example, changing the Si-OH at the surface to Si-H produces a surface where the holes are not attracted and the surface recombination rate is reduced. With respect to n-type semiconductors, halogen termination or amino decane can slow surface recombination. The present invention has been described with reference to the specific embodiments and features of the present invention, and is not intended to limit the invention. Changes, modifications and other specific examples. Therefore, the present invention is to be construed as broadly construed, and all such modifications, modifications, and alternatives are intended to be included within the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a schematic diagram of the microembossing process described herein. Figure 2 illustrates a hemispherical opening. Figure 3 illustrates a new method for introducing secondary texturing to the surface of a photovoltaic cell substrate 099138097 29 201126744. Figure 4 is a schematic illustration of the process by which metal induced pitting corrosion. 099138097 30

Claims (1)

201126744 七、申請專利範圍: 1.一種將微米級表面粗糙度引入至基板表面之方法,該方 法包括⑴使用蝕刻劑組成物;或(ii)將微型壓印器及待蝕刻 之基板一起浸泡於槽中,並將微型壓印器壓向基板,以將微 米級特徵名虫刻至基板表面中。 • 2.如申請專利範圍第1項之方法,其中,該微型壓印器係 基板之最佳表面結構之反鏡像。 3. 如申請專利範圍第1或2項之方法,其中,該微型壓印 器包括至少一個孔洞,以確保蝕刻化學作用到達基板表面, 且可容易地移除蝕刻產物。 4. 如先前申請專利範圍中任一項之方法,其中,使用震動 及/或脈衝。 5. 如先前申請專利範圍中任一項之方法,其中,將一電位 施加於微型壓印器及基板上,以增進蝕刻速率。 6. 如先前申請專利範圍中任一項之方法,其中,該微型壓 印器包括規則或不規則的形狀陣列。 7. 如申請專利範圍第6項之方法,其中,該形狀包括選自 • 由下列所組成之群之至少一形狀:立方體、四面體、八面體、 十二面體、二十面體、三角柱、長方體、矩形稜柱、五角柱、 六角柱、八角柱、三角錐、正方錐、五角錐、半球形、其他 基於球形的形狀、及基於橢圓體的形狀。 8. 如先前申請專利範圍中任一項之方法,其中,沖洗該基 099138097 31 201126744 板’以移除該槽液及任何反應產物。 9.如先前申請專利範圍中任一項之方法,其中’該槽液包 含至少一種驗金屬氫氧化物鹽及視需要之至少一·種醇。 10·如申請專利範圍帛9工頁之方法,其中,該槽液各向異 性地独刻該基板。 11.士申吻專利範圍第9或⑺項之方法,其中,該基板係 單晶矽。 12·如中3胃專利^圍第丨至8項中任—項之方法,其中, 該槽液包含硝酸、氫氟酸、及視需要之醋酸。 13·如申請專利範圍第12項之方法,其中,該槽液各向同 性地钱刻該基板。 14. 如申請專利範圊笛】 圍第U或13項之方法,其中,該基相 係多晶矽。 15. 如申請專利範圍第1 2至14項中任一項之方法,其中 將該基板引入至包含童各十, 3虱化劑及酸氟化物之混合物中。 16. 如先前申請專利範囹 靶圍中任一項之方法,其中,將至少 一種界面活性劑添加至該槽。 17 ·如申清專利範圍證1 項之方法’其中,該蝕刻劑組成 物包含至少-種驗性成份、至少—種界面活性劑、至少一種 金:鹽、及水,其中該蝕刻劑組成物實質上不含任點 醇成份。 18.如申請專利範圍第1項之方法 其中 該蝕刻劑組成 099138097 32 201126744 物包含至少一種胺羧酸鹽、至少一種界面活性劑、至少一種 金屬鹽、及水,其中該蝕刻劑組成物實質上不含任何低沸點 醇成份。 19.如申請專利範圍第17項之方法,其中,該醇成份包含 任何直鏈或分支鏈Ci_C6醇。 ' 20.如申請專利範圍第17或19項之方法,其中,該至少 一種驗性成份包含鹼金屬氫氧化物、碳酸鹽、碳酸氫鹽、四 級銨氫氧化物、或其任何組合。 21. 如申請專利範圍第17或μ項之方法,其中,該至少 一種驗性成份包含 NaOH、KOH、RbOH、CsOH、Na2C〇3、 NaHC03、K2C〇3、KHC03、NR4OH、或其任何組合,其中 R可彼此相同或不同,且係選自由Cl-C6烷基、C6-C10芳基、 及其組合組成之群。 22. 如申請專利範圍第I?或19項之方法,其中,該至少 一種鹼性成份包含NaOH、KOH、RbOH、CsOH、或其組合。 23. 如申請專利範圍第17或19項之方法,其中,該至少 一種驗性成份包含NaOH、KOH、或NaOH/KOH之組合。 24. 如申請專利範圍第18項之方法,其中,該至少一種胺 . 羧酸鹽包括胺五倍子酸鹽或胺水揚酸鹽。 25. 如申請專利範圍第17至24項中任一項之方法,其中, 該至少一種金屬鹽包括Π族金屬、IV族金屬、銅、鑭、或 其組合。 099138097 33 201126744 26. 如申請專利範圍第π至24項中任一項之方法,其中, 該至少一種金屬鹽包括 Ca(OH)2、Sr(OH)2、Ba(OH)2、CaO、 SrO、BaO、Ca(N03)2、Sr(N03)2、Ba(N03)2、CuS04 . 5H20、 CaS04、SrS04、BaS04、Cu(0H)2、Na2(Ge03)、Na2(Sn03)、 Na4(Si04)、K2(Ge03)、K4(Si04)、K2(Sn03)、LaCl3 · 7H20、 La2(S04)3、及其水合物、SnCl4 · 5H20、及其組合。 27. 如申請專利範圍第17至24項中任一項之方法,其中, 該至少一種金屬鹽包括CaOH、La2(S04)3、及其水合物、或 BaOH。 28. 如申請專利範圍第17至27項中任一項之方法,其_, 該至少-種界面活性劑包括非離子、陰離子、陽離子、及/ 或兩性離子界面活性劑。 29. 如申請專利範圍第17至28項中任一項之方法,其中, 該pH係大於12。 3〇.如申請專利範圍第以29項中任一項之方法,以 一步包括半導體材料。 3i.-種將奈米級表面崎度“至基板表面之方法,言 :㈣獅米粒子沈積於基板表面上;⑼將卿 子蝕刻(RIE),或(iv)將微型壓印 於槽中,並將微雙印觀向基板,2刻之基板一起浸穴 基板表面+。 d⑽特徵钱刻j 099138097 34 201126744 32. 如申請專利範圍第31項之方法,其中,該等奈米粒子 係選自(但不限於)由矽石、CdTe、cdSe、其他硫族化合物、 及其組合組成之群。 33. 如申請專利範圍第31或32項之方法,其中,該等奈 米粒子係使用基於溶液或氣相沈積方法原位或離地沈積。 , 34.如申請專利範圍第31項之方法,其中,使用旋轉塗布 替代氣相沈積,將貴金屬奈米粒子沈積於基板表面上。 35·如申請專利範圍第31項之方法,其中,使用基於溶液 之沈積彳法或氣相沈積,將非貴金屬I米粒子沈積於基板表 面上。 36_如申請專利範圍第34或35項之方法,其中,在催化 組成物之存在下在基板表面處藉由金屬誘導之催化作用獲 得奈米級粗糙度。 37. 如申請專利範圍第36項之方法,其中,該催化組成物 包含酸氟化物及氧化劑。 38. 如申請專利範圍第31項之方法,其中,藉由將基板表 面引入至包含金屬鹽及基於氟化物之蝕刻劑或鹼金屬氫氧 化物之金屬誘導孔蝕(MIP)混合物中而達成MIP。 39·如申請專利範圍第38項之方法,其中,該基於氟化物 之蝕刻劑包含酸氟化物。 4〇.如申請專利範圍第38或39項之方法,其中,該金屬 鹽包括至少一種選自由銅(π)、金⑴、銀⑴、pt(n)、及卩叫工). 099138097 35 201126744 組成之群之金屬離子。 41. 如申請專利範圍第31至40項中任一項之方法,其包 括在將奈米級表面粗糙度引入至基板表面之前,先將微=級 粗链度引入至基板表面β 42. -種基板之受控紋理化方法,其t,該方法包括用微 型麗印H魅待_之絲及使賴相_來糾基板,以 於其上引入紋理。 4 3.如申請專利範圍第4 2項之方法,其中,該氣相姓刻έ 括將XeFs引入至基板。 ;44.種將微求級表面粗糙度引入至半導體材料之方法, 5亥方法包括使半導妒4 艰材枓與蝕刻劑組成物在足以使半導谱 材料之表面粗糙化之体 棟件下接觸,其中,該蝕刻劑組成物包 含至少一種鹼性成份、 趟及&amp; 至夕一種界面活性劑、至少一種金眉 ”中°亥钱刻劑紱成物實質上不含任何低沸點醇成 份0 45·如申請專利範圍 蝕刻劑組成物接觸後 第44項之方法,其進一步包括在與該 ’沖洗該半導體材料。 099138097 36201126744 VII. Patent Application Range: 1. A method for introducing micron-scale surface roughness to a substrate surface, the method comprising: (1) using an etchant composition; or (ii) immersing the micro-imprinter and the substrate to be etched together In the slot, the microimprinter is pressed against the substrate to inscribe the micron-scale feature name into the surface of the substrate. 2. The method of claim 1, wherein the microimprinter is an anti-mirror of an optimum surface structure of the substrate. 3. The method of claim 1 or 2, wherein the micro-embossing comprises at least one hole to ensure that etching chemistry reaches the surface of the substrate, and the etching product can be easily removed. 4. The method of any of the preceding claims, wherein vibrations and/or pulses are used. 5. The method of any of the preceding claims, wherein a potential is applied to the microimprinter and the substrate to increase the etch rate. 6. The method of any of the preceding claims, wherein the micro-imprinter comprises an array of regular or irregular shapes. 7. The method of claim 6, wherein the shape comprises at least one shape selected from the group consisting of: a cube, a tetrahedron, an octahedron, a dodecahedron, an icosahedron, Triangular prisms, cuboids, rectangular prisms, pentagonal columns, hexagonal columns, octagonal columns, triangular pyramids, square pyramids, pentagonal pyramids, hemispheres, other spherical-based shapes, and ellipsoid-based shapes. 8. The method of any of the preceding claims, wherein the base 099138097 31 201126744 plate is rinsed to remove the bath and any reaction products. 9. The method of any of the preceding claims, wherein the bath comprises at least one metal hydroxide salt and, if desired, at least one alcohol. 10. The method of claim 1, wherein the bath is anisotropically engraved on the substrate. 11. The method of clause 9 or (7), wherein the substrate is a single crystal germanium. 12. The method of any of the preceding claims, wherein the bath comprises nitric acid, hydrofluoric acid, and, if desired, acetic acid. 13. The method of claim 12, wherein the bath is isotropically engraved on the substrate. 14. The method of claim U or the method of claim 9, wherein the base phase is polycrystalline germanium. The method of any one of claims 1 to 14, wherein the substrate is introduced into a mixture comprising a mixture of a phthalate, an acidifier and an acid fluoride. 16. The method of any of the preceding claims, wherein at least one surfactant is added to the tank. 17. The method of claim 1, wherein the etchant composition comprises at least one type of inspecting component, at least one surfactant, at least one gold: salt, and water, wherein the etchant composition It is substantially free of any alcohol component. 18. The method of claim 1, wherein the etchant composition 099138097 32 201126744 comprises at least one amine carboxylate, at least one surfactant, at least one metal salt, and water, wherein the etchant composition is substantially Does not contain any low boiling alcohol components. 19. The method of claim 17, wherein the alcohol component comprises any linear or branched Ci_C6 alcohol. 20. The method of claim 17 or 19, wherein the at least one test composition comprises an alkali metal hydroxide, a carbonate, a hydrogencarbonate, a quaternary ammonium hydroxide, or any combination thereof. 21. The method of claim 17, wherein the at least one test composition comprises NaOH, KOH, RbOH, CsOH, Na2C〇3, NaHC03, K2C〇3, KHC03, NR4OH, or any combination thereof, Wherein R may be the same or different from each other and is selected from the group consisting of Cl-C6 alkyl, C6-C10 aryl, and combinations thereof. 22. The method of claim 1, wherein the at least one alkaline component comprises NaOH, KOH, RbOH, CsOH, or a combination thereof. 23. The method of claim 17 or 19, wherein the at least one test composition comprises a combination of NaOH, KOH, or NaOH/KOH. 24. The method of claim 18, wherein the at least one amine. the carboxylate comprises an amine gallate or an amine salicylate. The method of any one of claims 17 to 24, wherein the at least one metal salt comprises a lanthanum metal, a Group IV metal, copper, ruthenium, or a combination thereof. The method of any one of claims π to 24, wherein the at least one metal salt comprises Ca(OH)2, Sr(OH)2, Ba(OH)2, CaO, SrO , BaO, Ca(N03)2, Sr(N03)2, Ba(N03)2, CuS04. 5H20, CaS04, SrS04, BaS04, Cu(0H)2, Na2(Ge03), Na2(Sn03), Na4(Si04 ), K2 (Ge03), K4 (Si04), K2 (Sn03), LaCl3 · 7H20, La2 (S04) 3, and hydrates thereof, SnCl4 · 5H20, and combinations thereof. The method of any one of claims 17 to 24, wherein the at least one metal salt comprises CaOH, La2(S04)3, and a hydrate thereof, or BaOH. 28. The method of any one of claims 17 to 27, wherein the at least one surfactant comprises a nonionic, anionic, cationic, and/or zwitterionic surfactant. The method of any one of claims 17 to 28, wherein the pH system is greater than 12. 3. The method of claim 29, wherein the semiconductor material is included in one step. 3i.- A method of "reducing the surface roughness of the nanometer to the surface of the substrate, saying: (4) depositing lion rice particles on the surface of the substrate; (9) etching the lithography (RIE), or (iv) imprinting the micro in the groove And micro-double-printed to the substrate, the substrate of 2 moments is immersed in the surface of the substrate +. d(10)Characteristics engraving j 099138097 34 201126744 32. The method of claim 31, wherein the nanoparticles are selected By, but not limited to, a group consisting of vermiculite, CdTe, cdSe, other chalcogenides, and combinations thereof. 33. The method of claim 31, wherein the nanoparticle system is based on A solution or a vapor deposition method is deposited in situ or off-ground. The method of claim 31, wherein the noble metal nanoparticles are deposited on the surface of the substrate using spin coating instead of vapor deposition. The method of claim 31, wherein the non-precious metal I-meter particles are deposited on the surface of the substrate using a solution-based deposition method or vapor deposition. 36. The method of claim 34 or 35, wherein In catalysis In the presence of a product, a nanoscale roughness is obtained by metal-induced catalysis at the surface of the substrate. 37. The method of claim 36, wherein the catalytic composition comprises an acid fluoride and an oxidizing agent. The method of claim 31, wherein the MIP is achieved by introducing the surface of the substrate into a metal induced pitting (MIP) mixture comprising a metal salt and a fluoride-based etchant or an alkali metal hydroxide. The method of claim 38, wherein the fluoride-based etchant comprises an acid fluoride. The method of claim 38 or 39, wherein the metal salt comprises at least one selected from the group consisting of Copper (π), gold (1), silver (1), pt (n), and 卩 工). 099138097 35 201126744 The metal ions of the group. 41. The method of any one of claims 31 to 40, The method comprises: introducing a micro-level thick chain degree to the substrate surface β 42 before introducing the nano-scale surface roughness to the surface of the substrate. The controlled texturing method of the substrate, wherein the method comprises using a miniature India H The method of claim 4, wherein the gas phase name includes introducing XeFs to the substrate. 44. A method of introducing micro-scale surface roughness into a semiconductor material, the method comprising: immersing the semiconductor material and the etchant composition under a body member sufficient to roughen the surface of the semiconductor material Contact, wherein the etchant composition comprises at least one basic component, strontium and &amp; a surfactant, at least one gold eyebrow", substantially free of any low boiling alcohol component 0 45. The method of claim 44 after contacting the etchant composition of the patent application, further comprising rinsing the semiconductor material with the '. 099138097 36
TW099138097A 2009-11-05 2010-11-05 Methods of texturing surfaces for controlled reflection TW201126744A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25844909P 2009-11-05 2009-11-05
US31347310P 2010-03-12 2010-03-12

Publications (1)

Publication Number Publication Date
TW201126744A true TW201126744A (en) 2011-08-01

Family

ID=43970744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099138097A TW201126744A (en) 2009-11-05 2010-11-05 Methods of texturing surfaces for controlled reflection

Country Status (2)

Country Link
TW (1) TW201126744A (en)
WO (1) WO2011056948A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996742A (en) * 2014-05-21 2014-08-20 奥特斯维能源(太仓)有限公司 Edge etching method for improving electrical property of crystalline silicon solar cells
CN113136144A (en) * 2021-03-18 2021-07-20 武汉风帆电化科技股份有限公司 Polishing agent for rapid alkali polishing of crystal silicon wafer and application method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479301B2 (en) * 2010-05-18 2014-04-23 株式会社新菱 Etching solution and silicon substrate surface processing method
CN103249849B (en) 2010-08-20 2015-11-25 安格斯公司 The sustainable method of precious metal and base metal is reclaimed from electronic waste
TWI447925B (en) * 2010-09-14 2014-08-01 Wakom Semiconductor Corp Method for manufacturing monocrystalline silicon solar cells and etching step of the method for manufacturing the same
KR20120135870A (en) * 2011-06-07 2012-12-17 동우 화인켐 주식회사 Single crystalline silicon wafers and method of preparing the same
DE102011084346A1 (en) * 2011-10-12 2013-04-18 Schott Solar Ag Process for treating silicon wafers, treatment liquid and silicon wafers
KR101933527B1 (en) * 2011-10-19 2018-12-31 동우 화인켐 주식회사 Texture etching solution composition and texture etching method of crystalline silicon wafers
CN103890139A (en) * 2011-10-19 2014-06-25 东友精细化工有限公司 Texture etching solution composition and texture etching method of crystalline silicon wafers
WO2013058477A2 (en) * 2011-10-19 2013-04-25 동우화인켐 주식회사 Texture etching fluid composition and texture etching method for crystalline silicon wafers
EP2828895B1 (en) * 2012-03-19 2020-10-07 Alliance for Sustainable Energy, LLC Copper-assisted, anti-reflection etching of silicon surfaces
CN102677060B (en) * 2012-05-15 2013-10-30 韩华新能源(启东)有限公司 Polysilicon etchback solution and use thereof
KR101804266B1 (en) * 2012-07-25 2017-12-04 동우 화인켐 주식회사 Texture etching solution composition and texture etching method of crystalline silicon wafers
CN103806107A (en) * 2012-11-02 2014-05-21 无锡尚德太阳能电力有限公司 Polysilicon slice texturization method and texturizing liquid
CN104576826B (en) * 2014-12-17 2017-04-26 山东力诺太阳能电力股份有限公司 Post-processing method of solar cell
CN108624962A (en) * 2018-05-03 2018-10-09 上海汉遥新材料科技有限公司 A kind of diamond wire polycrystalline slice flocking additive and preparation method thereof, application method
TW202106647A (en) * 2019-05-15 2021-02-16 美商康寧公司 Methods of reducing the thickness of textured glass, glass-ceramic, and ceramic articles with high concentration alkali hydroxide at elevated temperature
WO2020243211A1 (en) * 2019-05-31 2020-12-03 Corning Incorporated Etching glass and glass ceramic materials in hydroxide containing molten salt
CN114316804A (en) * 2021-12-15 2022-04-12 嘉兴市小辰光伏科技有限公司 Additive for improving monocrystalline silicon alkali polishing appearance problem and polishing process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186515A1 (en) * 2004-01-23 2005-08-25 Watkins James J. Structured materials and methods
KR100930925B1 (en) * 2006-12-30 2009-12-10 고려대학교 산학협력단 Composite Imprint Stamp and Manufacturing Method
KR100941021B1 (en) * 2008-01-21 2010-02-05 고려대학교 산학협력단 Method for preparing solar cell using triblock copolymer nanoporous

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996742A (en) * 2014-05-21 2014-08-20 奥特斯维能源(太仓)有限公司 Edge etching method for improving electrical property of crystalline silicon solar cells
CN103996742B (en) * 2014-05-21 2016-08-24 奥特斯维能源(太仓)有限公司 A kind of etching edge method improving crystal-silicon solar cell electrical property
CN113136144A (en) * 2021-03-18 2021-07-20 武汉风帆电化科技股份有限公司 Polishing agent for rapid alkali polishing of crystal silicon wafer and application method thereof

Also Published As

Publication number Publication date
WO2011056948A2 (en) 2011-05-12
WO2011056948A3 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
TW201126744A (en) Methods of texturing surfaces for controlled reflection
US20130295712A1 (en) Methods of texturing surfaces for controlled reflection
CN104195645B (en) Acidic texturing solution for etching solar cell silicon wafer, texturing method, solar cell and manufacturing method thereof
Park et al. Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution
TWI494416B (en) Acidic etching solution and method for texturing the surface of single crystal and polycrystal silicon substrates
TWI505348B (en) And a method of forming a microporous structure or a groove structure on the surface of the silicon substrate
TWI454557B (en) Improved polycrystalline texturing composition and method
TW201121085A (en) Method of fabricating solar cell
TW201038779A (en) Silicon substrate with periodical structure
CA2395265A1 (en) Process for the rough-etching of silicon solar cells
TW201801338A (en) Method for producing a textured structure of a crystalline silicon solar cell
TW201123518A (en) Solar cell and method for manufacturing such a solar cell
CN103219428A (en) Textured structure of crystalline silicon solar cell and preparation method thereof
CN102906863B (en) The method of surface finish of etching liquid and silicon substrate
US20200220033A1 (en) Metal-assisted etch combined with regularizing etch
EP3139416B1 (en) Texturing monocrystalline silicon substrates
TW201248905A (en) Method for fabricating wafer for photovoltaic cell, method for fabricating photovoltaic cell unit, and method for fabricating photovoltaic cell module
CN113410319A (en) Normal-temperature texturing method, silicon wafer textured by same, solar cell and preparation method of solar cell
CN103400901B (en) A kind of anticaustic process for etching of solar cell surface
TW201135827A (en) Method for single side texturing
Sreejith et al. An additive-free non-metallic energy efficient industrial texturization process for diamond wire sawn multicrystalline silicon wafers
CN106784063B (en) Include monocrystalline silicon piece and its application of the suede structure of falling rectangular pyramid
TW201448244A (en) Photovoltaic element and manufacturing method thereof
Füchsel et al. Black silicon photovoltaics
Imamura et al. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture