TW201126230A - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
TW201126230A
TW201126230A TW99101716A TW99101716A TW201126230A TW 201126230 A TW201126230 A TW 201126230A TW 99101716 A TW99101716 A TW 99101716A TW 99101716 A TW99101716 A TW 99101716A TW 201126230 A TW201126230 A TW 201126230A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
conductive layer
layer
carbon
film
Prior art date
Application number
TW99101716A
Other languages
Chinese (zh)
Other versions
TWI494643B (en
Inventor
Liang Liu
Chen Feng
Original Assignee
Beijing Funate Innovation Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Funate Innovation Tech filed Critical Beijing Funate Innovation Tech
Priority to TW099101716A priority Critical patent/TWI494643B/en
Publication of TW201126230A publication Critical patent/TW201126230A/en
Application granted granted Critical
Publication of TWI494643B publication Critical patent/TWI494643B/en

Links

Abstract

The invention relates to a touch panel. The touch panel includes a first electrode plate and a second electrode plate. The first electrode plate includes a first substrate and a first conductive layer disposed on a surface of the first substrate. The second electrode plate is spaced from the first electrode plate, and includes a second substrate and a second conductive layer disposed on a surface of the second substrate. The first conductive layer faces to the second conductive layer. At least one of the first conductive layer and the second conductive layer includes a carbon nanotube structure layer. The carbon nanotube structure layer is consisted of an amount of carbon nanotubes. The carbon nanotubes are aligned along a same direction. A plurality of regions in the carbon nanotube structure has a decreased density. The regions are aligned along the aligned direction of the carbon nanotubes to form at least one line.

Description

201126230 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種觸摸屏及使用該觸摸屏,尤其涉及一種 基於奈米碳管的觸摸屏。 【先前技術】 [0002] 近年來,伴隨著移動電話與觸摸導航系統等各種電子設 備的高性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電 子設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的 顯示設備的顯示内容進行視覺確認,一邊利用手指或筆 等方式按壓觸摸屏來進行操作。由此,可以操作電子設 備的各種功能。按照觸摸屏的工作原理和傳輸介質的不 同,先前的觸摸屏通常分爲四種類型,分別爲電阻式、 電容式、紅外線式以及表面聲波式。其中電阻式和電容 式觸摸屏的應用最爲廣泛。先前的電阻式觸摸屏一般包 括一上基板,該上基板的下表面形成有一上透明導電層 ;一下基板,該下基板的上表面形成有一下透明導電層 ;以及複數點狀隔離物(Dot Spacer)設置在上透明導電 層與下透明導電層之間。其中,上基板爲柔性,可通過 按壓産生形變,使得按壓處的上透明導電層與下透明導 電層彼此接觸,通過外接電路對按壓處電阻的變化進行 測量,進而得到按壓處的坐標。先前的電容式觸摸屏一 般包括一絕緣基板,至少形成在該基板上表面的透明導 電層,以及形成在該透明導電層邊緣的複數金屬電極。 當手指等觸摸物觸摸在觸摸屏表面上時,由於人體電場 ,手指等觸摸物和觸摸屏中的透明導電層之間形成一個 099101716 表單編號A0101 第4頁/共56頁 0992003317-0 201126230 耦合電容,通過金屬電極與外接電路對該耦合電容進行 感測,從而得出觸摸點的位置。另外,2〇〇6年5月丨八 開的美國專利申請US2006/0097991A1還揭露了—種多么 點電容式觸摸屏,其在該基板的上下表面均形成平行的 條形透明導電層’且使該上下表面的條形透明導電層相 互交又設置,形成感測線及掃描線,從而實現多點測量 。上述修式及電容式觸摸屏中的透明導電層通常採^ 銦錫氧化物(ΙΤ0)層。ΙΤ0層機械和化學耐用性不好, Ο 不埘彎折,且主要採用濺射或蒸鍍等方法製備工藝複 雜,製備成本較高。 [00〇3]奈米碳管(Carbon Nanotube,CNT)係一錄 i τ ® 但田石墨婦片 卷成的中空管狀物,其具有優異的力學、熱學及電學性 質,因此具有廣闊的應用領域。由於單根奈米碳管的直 徑只有幾個奈米至幾十奈米,難於進行加工,爲便於實 際應用,人們嘗試將大量奈米碳管作爲原材料,製成具 有較大尺寸的宏觀結構。奈米碳管膜(Carbc)ri Nan_ 〇 〇tUbe Film,CNT Film)即爲此種宏觀結構的具體形 式之~。馮辰等人在2008年8月16日公開的中華民國專利 申請第200833862號中揭露了 一種從奈米碳管陣列中直 接拉取獲得的奈米碳管膜,這種奈米碳管膜具有宏觀尺 度且能够自支撑,其包括複數在凡德瓦爾力作用下首尾 相連的奈米碳管。由於在這種直接拉取獲得的奈米碳管 膜中奈米碳管基本平行於奈米碳管膜表面,且相互並排 的奈米碳管間存在一定間隙,因此該奈米碳管膜較爲透 明。另外’由於該奈米碳管膜中奈米碳管基本沿同一方 099101716 表單蝙號A〇l01 第5頁/共56頁 0992003317-0 201126230 向排列,因此該奈米碳管膜能够較好的發揮奈米碳_管轴 向具有的導電性。 [0004] [0005] [0006] 099101716 然而,該直接拉取獲得的奈米碳管膜中,相鄰且並排的 奈米碳管之間由於凡德瓦爾力的作用會聚集接觸從而形 成較大直徑的奈米碳_管束,該奈米碳管束具有較大密度 ,使奈米碳管膜的透光性受到影響。當用於觸摸屏時, 所述透明導電層應盡可能透明,而採用上述直接拉取獲 得的奈米碳管膜作爲透明導電層的觸摸屏的透光性仍不 够好。 【發明内容】 有鑒於此,提供一種具有較好透光性的觸摸屏實為必要 〇 一種觸摸屏,其包括;一第一電極板,該第一電極板包 括一第一基體及一第一導電層設置在該第一基體的表面 ;以及一第二電極板,該第二電極板與第一電極板間隔 設置,該第二電極板包括一第二基體及一第二導電層設 置在該第二基體的表面,該第二導電層與該第一導電層 相對設置;其中,該第一導電層和第二導電層中至少一 導電層包括一奈米碳管結構層,該奈米碳管結構層由若 干奈米碳管組成,所述若干奈米碳管爲沿同一方向擇優 取向排列,該奈米碳管結構層中具有複數减薄區域,該 複數减薄區域沿所述若干奈米碳管擇優取向的方向排列 成至少一行。 一種觸摸屏,其包括:一基體,該基體包括一第一表面 及與該第一表面相對的一第二表面;一第一導電層及複 表單編號A0101 第6頁/共56頁 0992003317-0 [0007] 201126230 Ο [0008]201126230 VI. Description of the Invention: [Technical Field] The present invention relates to a touch screen and the use thereof, and more particularly to a carbon nanotube-based touch screen. [Prior Art] [0002] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted in front of a display device such as a liquid crystal are gradually increasing. . The user of such an electronic device visually confirms the display content of the display device located on the back surface of the touch panel by the touch panel, and presses the touch panel to operate by a finger or a pen. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely, resistive, capacitive, infrared, and surface acoustic waves. Among them, resistive and capacitive touch screens are the most widely used. The prior resistive touch screen generally comprises an upper substrate, the upper surface of which is formed with an upper transparent conductive layer; the lower substrate, the upper surface of which is formed with a transparent conductive layer; and a plurality of dot spacers (Dot Spacer) It is disposed between the upper transparent conductive layer and the lower transparent conductive layer. The upper substrate is flexible and can be deformed by pressing, so that the upper transparent conductive layer and the lower transparent conductive layer at the pressing place are in contact with each other, and the change of the resistance of the pressing portion is measured by an external circuit, thereby obtaining the coordinates of the pressing portion. Previous capacitive touch screens generally included an insulative substrate, at least a transparent conductive layer formed on the upper surface of the substrate, and a plurality of metal electrodes formed on the edge of the transparent conductive layer. When a touch object such as a finger touches the surface of the touch screen, a coupling capacitor is formed between the touch object and the transparent conductive layer in the touch screen due to the electric field of the human body, 099101716, Form No. A0101, Page 4 / 56 pages 0992003317-0 201126230 The metal electrode and the external circuit sense the coupling capacitance to derive the position of the touch point. In addition, U.S. Patent Application No. US2006/0097991 A1, which is incorporated by reference in its entirety, discloses a point-capacitive touch screen in which a parallel strip-shaped transparent conductive layer is formed on the upper and lower surfaces of the substrate. The strip-shaped transparent conductive layers on the surface are disposed to each other to form a sensing line and a scanning line, thereby realizing multi-point measurement. The transparent conductive layer in the above-mentioned repair and capacitive touch screen is usually made of a layer of indium tin oxide (ΙΤ0). The mechanical and chemical durability of the ΙΤ0 layer is not good, and the 制备 is not bent, and the preparation process is mainly performed by sputtering or evaporation, and the preparation cost is high. [00〇3] Carbon Nanotube (CNT) is a hollow tube made of i τ ® butada graphite film, which has excellent mechanical, thermal and electrical properties, so it has a wide application field. . Since the diameter of a single carbon nanotube is only a few nanometers to several tens of nanometers, it is difficult to process. For practical application, a large number of carbon nanotubes are used as raw materials to form a macrostructure having a large size. The carbon nanotube film (Carbc) ri Nan_ 〇 UtUbe Film, CNT Film) is the specific form of this macro structure. A carbon nanotube film obtained by directly pulling from a carbon nanotube array is disclosed in the Chinese Patent Application No. 200833862, published on Aug. 16, 2008, which has a carbon nanotube film having It is self-supporting on a macro scale and includes a plurality of carbon nanotubes connected end to end under the action of Van der Valli. Since the carbon nanotube film obtained in the direct drawing is substantially parallel to the surface of the carbon nanotube film and there is a gap between the mutually adjacent carbon nanotubes, the carbon nanotube film is more It is transparent. In addition, because the carbon nanotubes in the carbon nanotube film are arranged along the same side of the 099101716 form bat number A〇l01 page 5 / 56 pages 0992003317-0 201126230, the carbon nanotube film can be better. It exerts the conductivity of the nanocarbon_tube axial direction. [0004] [0006] [0006] 099101716 However, in the direct drawing of the obtained carbon nanotube film, adjacent and side by side carbon nanotubes will aggregate contact due to the effect of van der Waals force to form a larger The diameter of the nano carbon_tube bundle, which has a large density, affects the light transmittance of the carbon nanotube film. When used in a touch screen, the transparent conductive layer should be as transparent as possible, and the light transmittance of the touch panel using the above-mentioned carbon nanotube film obtained directly as a transparent conductive layer is still not good enough. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a touch screen having better light transmittance. A touch screen includes: a first electrode plate, the first electrode plate includes a first substrate and a first conductive a layer disposed on a surface of the first substrate; and a second electrode plate spaced apart from the first electrode plate, the second electrode plate including a second substrate and a second conductive layer disposed on the first electrode a surface of the second substrate, the second conductive layer is disposed opposite to the first conductive layer; wherein at least one of the first conductive layer and the second conductive layer comprises a carbon nanotube structure layer, the carbon nanotube The structural layer is composed of a plurality of carbon nanotubes arranged in a preferred orientation along the same direction, the carbon nanotube structure layer having a plurality of thinned regions along the plurality of thinned regions The directions in which the carbon tubes are preferentially oriented are arranged in at least one row. A touch screen comprising: a substrate comprising a first surface and a second surface opposite the first surface; a first conductive layer and a complex form number A0101 page 6 / total 56 pages 0992003317-0 [ 0007] 201126230 Ο [0008]

[0009] 數第一電極設置在該基體的第一表面,該複數第一電極 設置於所述第一導電層沿第一方向的一端,且相互間隔 地與該第一導電層電連接;以及一第二導電層及複數第 二電極設置在該基體的第二表面,該複數第二電極設置 於所述第二導電層沿第二方向的一端,且相互間隔地與 該第二導電層電連接;其中,該第一方向垂直於第二方 向,該第一導電層和第二導電層中至少一導電層包括一 奈米碳管結構層,該奈米碳管結構層由若干奈米碳管組 成,所述若干奈米碳管爲沿同一方向擇優取向排列,該 奈米碳管結構層中定義有複數减薄區域,該複數减薄區 域沿所述若干奈米碳管擇優取向的方向排列成至少一行 〇 一種觸摸屏,該觸摸屏包括至少一基體,形成於該基體 表面的至少一透明導電層,以及與該透明導電層電連接 的電極,該透明導電層爲將至少一奈米碳管膜鋪設於所 述基體表面形成,該奈米碳管膜由若干奈米碳管組成, 所述若干奈米碳管爲沿同一方向擇優取向排列,該奈米 碳管膜中定義有複數减薄區域,該複數减薄區域沿該擇 優取向的方向排列成至少一行。 相較於先前技術,由於奈米碳管初級膜經雷射掃描後部 分奈米碳管被氧化形成减薄區域,其中减薄區域的奈米 碳管分佈密度降低,使該奈米碳管膜透光性增強,從而 使應用該奈米碳管膜的觸摸屏具有較好的透光性。 【實施方式】 以下將結合附圖詳細說明本發明實施例觸摸屏。 099101716 表單編號Α0101 第7頁/共56頁 0992003317-0 [0010] 201126230 [0011] 本發明實施例提供一種具有較好透光性的觸摸屏,該觸 摸屏包括至少一基體,形成於該基體表面的至少一透明 導電層,以及與該透明導電層電連接的電極。該透明導 電層爲將一具有較好透光性的奈米碳管膜10 0鋪設於所述 基體表面形成。 [0012] 該具有較好透光性的奈米碳管膜1 00的製備方法包括以下 步驟: [0013] 步驟一:提供一奈米碳管初級膜1 20。 [0014] 請參閱圖1,該奈米碳管初級膜120可以從一奈米碳管陣 列150中直接拉取獲得,其具體包括以下步驟·· [0015] (一)提供一奈米碳管陣列1 50。 [0016] 該奈米碳管陣列1 50通過化學氣相沈積法形成於一生長基 底表面,優選爲超順排的奈米碳管陣列1 50。該奈米碳管 陣列150包括複數奈米碳管,該複數奈米碳管基本彼此平 行且垂直於生長基底表面。通過控制生長條件,該奈米 碳管陣列150中基本不含有雜質,如無定型碳或殘留的催 化劑金屬顆粒等。所述奈米碳管陣列150的製備方法可參 閱馮辰等人在20 08年8月16曰公開的中華民國專利申請第 200833862號。 [0017] 該奈米碳管陣列150中的奈米碳管可以至少包括單壁奈米 碳管、雙壁奈米碳管及多壁奈米碳管中的一種。所述奈 米碳管的直徑爲1奈米〜50奈米,長度爲50奈米~5毫米。 本實施例中,奈米碳管的長度優選爲100微米〜900微米。 099101716 表單編號A0101 第8頁/共56頁 0992003317-0 201126230 [0018] [0019] Ο [0020][0009] a plurality of first electrodes are disposed on the first surface of the substrate, the plurality of first electrodes are disposed at one end of the first conductive layer in the first direction, and are electrically connected to the first conductive layer at intervals; and a second conductive layer and a plurality of second electrodes are disposed on the second surface of the substrate, the plurality of second electrodes are disposed at one end of the second conductive layer in the second direction, and are electrically spaced apart from the second conductive layer Connecting, wherein the first direction is perpendicular to the second direction, and at least one of the first conductive layer and the second conductive layer comprises a carbon nanotube structure layer, and the carbon nanotube structure layer comprises a plurality of nano carbon a tube composition, wherein the plurality of carbon nanotubes are arranged in a preferred orientation along the same direction, wherein the carbon nanotube structure layer defines a plurality of thinned regions, and the plurality of thinned regions are oriented along the preferred orientation of the plurality of carbon nanotubes Arranging at least one row of at least one substrate, the touch screen comprising at least one substrate, at least one transparent conductive layer formed on the surface of the substrate, and an electrode electrically connected to the transparent conductive layer, the transparent conductive layer is a carbon nanotube film is formed on the surface of the substrate, the carbon nanotube film is composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation along the same direction, and the carbon nanotube film is arranged A plurality of thinned regions are defined, the plurality of thinned regions being arranged in at least one row in the direction of the preferred orientation. Compared with the prior art, since the carbon nanotubes are partially scanned by the laser, a portion of the carbon nanotubes are oxidized to form a thinned region, wherein the carbon nanotube distribution density in the thinned region is lowered to make the carbon nanotube film The light transmittance is enhanced, so that the touch panel to which the carbon nanotube film is applied has better light transmittance. [Embodiment] Hereinafter, a touch panel of an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 099101716 Form No. 1010101 Page 7 / Total 56 Pages 0992003317-0 [0010] The present invention provides a touch screen having better light transmittance, the touch screen including at least one substrate formed on the surface of the substrate a transparent conductive layer and an electrode electrically connected to the transparent conductive layer. The transparent conductive layer is formed by laying a carbon nanotube film 100 having a good light transmittance on the surface of the substrate. [0012] The preparation method of the carbon nanotube film 100 having better light transmittance comprises the following steps: [0013] Step 1: providing a carbon nanotube primary film 120. [0014] Referring to FIG. 1, the carbon nanotube primary film 120 can be directly drawn from a carbon nanotube array 150, which specifically includes the following steps: [0015] (1) providing a carbon nanotube Array 1 50. [0016] The carbon nanotube array 150 is formed by chemical vapor deposition on a growth substrate surface, preferably a super-sequential carbon nanotube array 150. The carbon nanotube array 150 includes a plurality of carbon nanotubes that are substantially parallel to each other and perpendicular to the surface of the growth substrate. By controlling the growth conditions, the carbon nanotube array 150 contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The preparation method of the carbon nanotube array 150 can be referred to the Republic of China Patent Application No. 200833862, which was published by Feng Chen et al. on August 16, 2008. [0017] The carbon nanotubes in the carbon nanotube array 150 may include at least one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotubes have a diameter of from 1 nm to 50 nm and a length of from 50 nm to 5 mm. In this embodiment, the length of the carbon nanotubes is preferably from 100 micrometers to 900 micrometers. 099101716 Form No. A0101 Page 8 of 56 0992003317-0 201126230 [0018] [0020] [0020]

[0021] 可以理解,本發明實施例提供的奈米碳管陣列150不限於 通過上述方法製備,也可爲石墨電極恒流電弧放電沈積 法、雷射蒸發沈積法等。 (二)採用一拉伸工具110從該奈米碳管陣列150中拉取 獲得該奈米碳管初級膜120。其具體包括以下步驟:(a )從所述奈米碳管陣列150中選定一奈米碳管片段,本實 施例優選爲採用具有一定寬度的膠帶或黏性基條接觸該 奈米碳管陣列1 50以選定具有一定寬度的一奈米碳管片段 ;(b)通過移動該拉伸工具110,以一定速度拉取該選 定的奈米碳管片段,從而首尾相連的拉出複數奈米碳管 片段,進而形成一連續的奈米碳管初級膜120。該拉伸工 具110基本沿平行於生長基底表面的方向移動。 在上述步驟(二)中,該通過拉伸工具110選定的奈米碳 管片段可僅爲一奈米碳管,也可由複數基本相互平行的 奈米碳管組成。該複數奈米碳管相互並排使該奈米碳管 片段具有一定寬度。當該被選定的一個或複數奈米碳管 在拉力作用下沿拉取方向逐漸脫離基底的同時,由於凡 德瓦爾力作用,與該選定的奈米碳管相鄰的其它奈米碳 管首尾相連地相繼地被拉出,從而形成一連續、均勻且 具有一定寬度的奈米碳管初級膜120。 請參閱圖2,所述奈米碳管初級膜120係由若干奈米碳管 組成的自支撑結構。所述若干奈米碳管爲沿同一方向擇 優取向排列。所述擇優取向係指在奈米碳管初級膜120中 大多數奈米碳管的整體延伸方向基本朝同一方向。而且 ,所述大多數奈米碳管的整體延伸方向基本平行於奈米 099101716 表單編號A0101 第9頁/共56頁 0992003317-0 201126230 碳管初級膜120的表面。進一步地,所述奈米碳管初級膜 120中多數奈米碳管係通過凡德瓦爾力首尾相連。具體地 ,所述奈米碳管初級膜120中基本朝同一方向延伸的大多 數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米 碳管通過凡德瓦爾力首尾相連。當然,所述奈米碳管膜 中存在少數偏離該延伸方向的奈米碳管,這些奈米碳管 不會對奈米碳管初級膜1 20中大多數奈米碳管的整體取向 排列構成明顯影響。進一步地,該奈米碳管初級膜120中 並排且相鄰的奈米碳管之間具有一定間隙。所述自支撑 爲奈米碳管初級膜120不需要大面積的載體支撑,而只要 相對兩邊提供支撑力即能整體上懸空而保持自身膜狀狀 態,即將該奈米碳管初級膜120置於(或固定於)間隔一 定距離設置的兩個支撑體上時,位於兩個支撑體之間的 奈米碳管初級膜120能够懸空保持自身膜狀狀態。所述自 支撑主要通過奈米碳管初級膜120中存在連續的通過凡德 瓦爾力首尾相連延伸排列的奈米碳管而賁現。具體地, 所述奈米碳管初級膜120中基本朝同一方向延伸的多數奈 米碳管,並非絕對的直線狀,可以適當的彎曲;或者並 非完全按照延伸方向上排列,可以適當的偏離延伸方向 。因此,不能排除奈米碳管初級膜120的基本朝同一方向 延伸的多數奈米碳管中並列的奈米碳管之間可能存在部 分接觸。 [0022] 具體地,請參閱圖3,每一奈米碳管初級膜1 20包括複數 連續且定向排列的奈米碳管片段143。該複數奈米碳管片 段143通過凡德瓦爾力首尾相連。每一奈米碳管片段143 099101716 表單編號A0101 第10頁/共56頁 0992003317-0 201126230 由複數相互平行的奈米碳管14 5組成,該複數相互平行的 奈米碳管145通過凡德瓦爾力緊密結合。該奈米碳管片段 143具有任意的長度、厚度、均勻性及形狀。 - [0023] 所述奈米碳管初級膜120的厚度爲0.5奈米~100微米,長 度及寬度與奈米碳管陣列150的面積有關。當該奈米碳管 陣列150的直徑爲4英寸時,該奈米碳管初級膜120的寬度 約爲0. 5奈米~10厘米。該奈米碳管初級膜120的比表面 積大於100平方米每克。 0 [0024] 在上述選定奈米碳管並拉取的步驟中,由於難以通過拉 伸工具110控制選定的奈米碳管片段的厚度,且並排的奈 米碳管之間易通過凡德瓦爾力的吸引而相互聚集接觸, 形成直徑較大的奈米碳管束,使拉取獲得的奈米碳管初 級膜120厚度均勻性不够好。該奈米碳管束包含的奈米碳 管數量較多,使奈米碳管束密度較大,因此透光性差, 從而使得該奈米碳管初級膜120的透光性不够好。經測試 ,該奈米碳管初級膜120的可見光透過率最大爲75%。 Ο [0025] 請參閱圖4,該從奈米碳管陣列150中拉取獲得的奈米碳 管初級膜120可通過其自身的自支撑性懸空設置,也可進 一步設置於一基底140表面,其具體包括以下可選擇步驟 :提供一基底140 ;將該奈米碳管初級膜120鋪設於該基 底140—表面。由於本實施例中奈米碳管陣列150非常純 淨,且由於奈米碳管本身的比表面積非常大,所以該奈 米碳管初級膜120本身具有較強的黏性。因此,該奈米碳 管初級膜120可直接通過自身的黏性固定在所述基底140 表面。 099101716 表單編號A0101 第11頁/共56頁 0992003317-0 201126230 [0026] [0027] [0028] [0029] 099101716 . 该基底140可以爲一透明的硬性或柔性基底,該基底14〇 的材料不限,能够爲保護該奈米碳管初級膜120並爲該奈 米碳官初級膜120提供一定支撑即可。該基底14〇的材料 可以爲玻璃、石英、塑膠或樹脂。本實施例中,該基底 140爲一聚對苯二甲酸乙二醇酯(PET)透明平板基底。 進一步地,將該奈米碳管初級膜120鋪設於該基底140表 面前可進一步包括在該基底140表面塗覆一黏結劑層13〇 的步驟。該黏結劑層130均勻的塗覆在該基底14〇表面。 該黏結劑層130的材料不限,可以將該奈米碳管初級膜 120與該基底140更爲牢固地結合即可,如一壓敏膠、熱 敏膠或光敏膠等。本實施例中,該黏結劑層13〇的材料可 以爲丙烯酸丁酯、丙烯酸_2_乙基已酯、醋酸乙烯、甲基 丙烯酸縮水甘油酯、丙烯酸、過氧化苯甲醯及甲苯及醋 酸乙酯的混合物。 步驟一.採用一雷射束170沿新逃大多數奈米碳管的整體 延伸方向逐仃掃描該奈米碳管初賴12()從而在該奈来碳 管初級膜120中的局部位置_複數减薄區域126,該複 數减薄區域126沿平行於大多數奈米碳管擇優取向的方向 排列成至少一行。 定義所述大多數奈米碳管的整體延伸方向爲又。該複數减 薄區域126可以沿方向_列形成一個掃描行124或複數掃 描行124。該複數减薄區域126係以一定順序在該奈米碳 官初級膜120中依次形成。請參閱圖5,當該複數减薄區 域沿方向X排列成多行時’可先採用雷射束沿方向X在該 奈米碳管初級膜12〇中形成—掃描行124,該掃描行m 表單編號A0101 第12頁/共56 w &quot; 0992003317-0 201126230 Ο [0030] 包括複數减薄區域126 ;再在與該掃描行124相間隔的位 置以同樣的方式形成另一掃描行124,最後以上述方式基 本均勻的在整個奈米碳管初級膜120中形成複數間隔的掃 描行124。該複數掃描行124可等間隔排列或不等間隔排 列,但應防止某一區域的掃描行124分佈過於密集。優選 地,該複數掃描行124等間隔且基本平行的分佈於該奈米 碳管初級膜120中。相鄰的兩個掃描行124的間距d爲1微 米〜5毫米,優選爲10〜100微米,本實施例爲20微米。在 一個實施例中,d遠大於位於同一掃描行124中减薄區域 126的間距。 ❹ 該每一掃描行124的形成方法具體可以為沿方向X依次形 成複數减薄區域126。請參閲圖5及圖6,該複數减薄區域 126可相互間隔設置或連續設置形成一長條形區域128。 當該複數减薄區域126間隔設置時,該複數减薄區域126 可相互等間隔。當該複數减薄區域126連續設置時,該一 個掃描行124中的複數减薄區域126可相互連續地沿方向X 從奈米碳管初級膜120—端延伸至另一端。該掃描行124 的寬度D,即該减薄區域126的直徑,亦即由該複數减薄 區域126組成的長條形區域128的寬度爲1微米〜5毫米, 優選爲10微米〜100微米,本實施例爲20微米。優選地, 每個减薄區域126的面積基本相同,複數掃描行124中, 每掃描行124的减薄區域126的數量基本相同。 通過上述依次的在整個奈米碳管初級膜120表面間隔的局 部减薄的方法,可降低該减薄區域126中奈米碳管的分佈 密度或基本去除該减薄區域126中的奈米碳管,從而减小 099101716 表單編號A0101 第13頁/共56頁 0992003317-0 [0031] 201126230 該奈米碳管初級膜120的奈米碳管的I佈密度,得到的争 米礙管膜1〇〇具有較好的透光性。可定義單位面積的奈米 碳管膜中奈米碳管的質量爲分佈密度。優選地,該减薄 區域126内奈米碳管的分佈密纽未减㈣下降5〇%至 100%,從而使該减薄區域126内的透光度從原來的75%提 高到85%以上,比减薄區域126外的透光度提高1〇%至2〇% 。該形成的奈米碳管膜1〇〇宏觀仍爲一膜狀結構。由於該 减薄區域126為沿方向X逐行形成,且相鄰的掃描行124之 間具有一定間距,因此可以保證該奈米碳管膜1〇〇在相鄰 的兩個掃描行124之間具有完整的首尾相連的奈米碳管, 不致因减薄降低該奈米碳管膜1〇〇沿方向χ的導電性相 反地,因减薄使該奈米碳管膜100在垂直於兀方向且位於 奈米碳管膜100内的y方向上的導電性顯著降低,從而提 高該奈米碳管膜丨〇〇在X方向上和y方向上導電性的差異。 [0032] [0033] [0034] [0035] 可以理解,上述將奈米碳管初級膜120鋪設於基底14〇的 步驟可以在步驟二之前或之後進行。該秦米碳管初級膜 120可預先鋪設於所述基底140奉面後被雷射束17〇掃描 ..: ... . 减薄,也可懸空設置的被雷射束170掃描减薄,减薄後具 有複數减薄區域126的奈米碳管膜1〇〇可進—步被鋪設於 所述基底140表面。 請一並參閱圖5至圖8,步驟二具體包括以下步驟。 (一)提供一雷射裝置160,從該雷射裝置16〇發射雷射 束170至s玄奈米碳管初級膜12〇表面形成一光斑18〇。 該雷射裝置160可發射一脉衝雷射束170,該雷射束17〇 099101716 表單編號A0101 第14頁/共56頁 0992003317-0 201126230 的功率不限,可爲1瓦至100瓦。該雷射束170具有較好的 定向性,因此在奈米碳管初級膜120表面可形成一光斑 180。該雷射束170在奈米碳管初級膜120表面具有的功 , 率密度可大於0. 0 53x1 012瓦特/平方米。本實施例中,該 . 雷射裝置160爲一個二氧化碳雷射器,該雷射器的功率爲 ^ 12瓦特。可以理解,該雷射裝置160也可以選擇爲能够發 射連續雷射的雷射器。 [0036] 該光斑180基本爲圓形,直徑爲1微米~5毫米,優選爲20 _ 微米。可以理解,該光斑180可爲將雷射束170聚焦後形 Ο 成或由雷射束170直接照射在奈米碳管初級膜120表面形 成。聚焦形成的光斑180可具有較小的直徑,如20微米。 將雷射束170不經過聚焦直接照射形成的光斑180具有較 大的直徑,如3毫米。 [0037] 所述雷射裝置160也可包括複數雷射器。當該雷射裝置 160包括複數雷射器時,該光斑可以爲條狀或其他形狀, 該條狀光斑的寬度爲1微米〜5毫米,優選爲20微米。 ^ [0038] (二)使該奈米碳管初級膜120與該雷射束170相對運動 ,從而使該光斑180沿該奈米碳管初級膜120的方向X移動 ,形成至少一掃描行124,該掃描行包括複數沿方向X排 列的减薄區域12 6。 ' [0039] 該光斑180沿該奈米碳管初級膜120中方向X移動,以沿方 向X减薄該奈米碳管初級膜12 0。爲使該光斑18 0與奈米碳 管初級膜120相對運動,可保持該雷射束170固定不動, 通過移動該奈米碳管初級膜120實現;或者固定該奈米碳 099101716 表單編號A0101 第15頁/共56頁 0992003317-0 201126230 s初級膜120不動,通過移動該雷射束17〇實現。該雷射 裝置160可整體相對於該奈米碳管初級膜120平移,或者 僅通過改變雷射裝置16G出光部的出光角度,實現發射的 雷射束170形成的光斑18〇在該奈米碳管初級臈^ 的位 置變化。 阔2同—掃描行124中的複數咸薄區域126可以間隔或連續 设置三由於該脉衝雷射束17〇由複數不連續的雷射脉衝組 ®雷射束170與奈米碳管初級膜12〇相對運動的速度 車乂大,該複數不連續的雷射脉衝能够照射在該奈米碳管 初級膜120表面的不同位置,從而實現對奈米碳管初級膜 120不連續的局部减薄’形成複數不連續的圓形减薄區域 126。當該雷射束170與奈米碳管初級膜120相對運動速 度小於光斑180的直徑與雷射脉衝頻率的乘積(相對運動 速度〈光斑直徑x雷射豚衝頻率)時,該複數不連續的雷 射脉衝照射在奈米碳管初級膜120表面的位置相互連接或 #分重合,使該複數减薄區域126呈_續分佈。由於該光 斑沿該奈米碳管初級膜120中方向X移動,該連續分佈的 减薄區域12 6的長度方向方向X平行。本實施例中,同一 掃描行中相鄰的兩個减薄區域i 26間的距離小於j 〇〇微米 〇 [0041] 可以理解’當採用一連續雷射作爲雷射束17〇時,可通過 程序設定雷射器的開關,與奈米碳管初級膜120的運動相 配合,從而形成間隔或連續的减薄區域12 6。 [0042] 可以理解,由於奈米碳管吸收能量後溫度升高並與氧氣 反應,只需確保使足够能量的雷射在較短的時間内照射 第16頁/共56頁 099101716 表單編號A0101 201126230 至奈米碳管表面’即可達到减薄該奈米碳管初級膜12〇的 目的。因此,可通過採用不同功率、波長或脉衝頻率的 雷射裝置160,並相應調整雷射束170與奈来碳管初級膜 , 120的相對運動速度以及光斑18〇的大小達到局部减薄奈 - 米碳管初級膜120的目的。可以理解,該雷射裝置16〇也 不限於脉衝雷射器,只要能够發射雷射使奈米碳管局部 减薄即可。如圖9所示,該减薄區域126的奈米碳管的分 佈密度减小或該减薄區域12 6的奈米碳管全部被刻姓。 0 [0043] 進一步地’可以在所述奈米碳管初級膜120中間隔的形成 複數掃描行124。 [0044] 爲形成複數掃描行124,可將奈米碳管初級臈120沿垂直 於大多數奈米碳管整體延伸的方向y相對於雷射束17〇平 移一定距離,再將奈米碳管初級膜120沿平行方向x相對 於雷射束170運動;也可將雷射束170沿垂直於方向y相對 於奈米碳管初級膜120移動一定距離’果使雷射束17〇沿 方向X相對於奈米碳管初級媒120運動r本實施例中,該 〇 光斑180在該奈米碳管初級膜I2j)表面移動的路線如圖8所 示。 [〇〇45] 可以理解’爲通過畲射减薄該奈米碳管初級膜1 20,所述 步驟(二)中,該奈米碳管初級膜12〇放置於一具氧氣的 環境中,如一空氣中,從而使被雷射束170照射的奈米碳 管中的碳與氧氣反應生成二氧化碳。 [0046] 爲盡可能除去該奈米碳管初級膜120中存在的較大直徑的 奈米碳管束,該雷射束170應盡可能均勻的掃描該奈米碳 099101716 表單編號A0101 第17頁/共56頁 0992003317-0 201126230 官初級膜12G的整個表面,從而在該奈米碳管初級膜i2〇 表面形成複數均勻且間隔分佈的掃描行〗24。 [0047] [0048] [0049] [0050] 由於奈米碳管對雷射具有較好吸收特性,該奈米碳管初 級膜120中具有較大直徑的奈米碳管束將會吸收較多的熱 量’從而被祕去除’使形成的奈米碳透光性 大幅度上升。本實施例中的奈米碳管膜1〇〇整體的光透過 率可以大於75% °優選地’該奈米後管膜1〇〇光透過率爲 95%。 請參閱圖10,由於在步驟(二)中,該光斑18〇沿該奈米 碳管初級膜120中方向X移動,使該雷射束17〇沿奈米碳管 初級膜120中大多數奈米碳管整體延伸方向减薄奈米碳管 束,因此,當奈米碳管初級膜120的一個掃描行124减薄 完畢,需要减薄下一個掃描行124時,無須使兩個掃描行 124中的减薄區域126在y方向上對準。 如圖10所示,當光斑18〇沿該奈米碳管初級膜12〇中方向 X移動時,即使兩掃描行I24中的减薄區域126交錯排列, 也不會影響該兩掃描行124間的奈来碳管145。因此,形 成的奈米碳管膜1〇〇在兩個相鄰的掃描行124之間的奈米 碳管145可以保持完整地首尾相連狀態而不受破壞,使該 奈米碳管膜100在方向X上的導電性不受影響。 可以理解,當該减薄區域126連續時,沿方向X進行减薄 的優點尤爲明顯。請參閱圖Π,當沿方向X形成連續的减 薄區域126時’相鄰的兩個掃描行124之間的奈米碳管 145不會被减薄’從而使奈米碳管膜1〇〇在方向X的電導率 099101716 表單編號A0101 第18頁/共56頁 0992003317-0 201126230 及強度基本不受影響;相鄰兩掃描行之間沿方向X首尾相 連的奈米碳管145不會被切斷,避免使奈米碳管膜100在 方向X的電導率及強度大幅下降。 [0051] 爲盡可能除去該奈米碳管初級膜120中的奈米碳管束,該 相鄰的兩個掃描行124之間的間距不宜太大,爲不影響奈 米碳管膜100的導電性,該相鄰的兩個掃描行124之間的 間距不宜太小。優選地,該兩個相鄰的掃描行124之間的 間距爲1微米〜5毫米,優選爲20微米。 Ο Ο [0052] 可以理解,該通過雷射减薄後得到的奈米碳管膜100宏觀 仍爲一自支撑的膜狀結構,透光性在减薄後得到提升, 而由於沿方向X進行减薄,奈米碳管膜1 0 0在方向X上的導 電性得到一定程度的保持,在方向y上的導電性降低,從 而使該奈米碳管膜100具有較好的各向異性。 [0053] 請參閱表1,表1爲通過雷射减薄的方法形成具有複數减 薄區域126的奈米碳管膜100的具體參數,使用的雷射功 ίΛ ίΛ Λ 一、 „ 蟾 Λ 八, ΎΧ % % L·. ( . ... » 一·· 4 八八 -» *·· 平舄&lt;5. 0凡,脒W頻平JMUUKHZ,孩佘示银官膜JLUU的长 度及寬度均爲約30毫米。 [0054] 表 1 編號 加工速 間距d X方向方 Y方向方 可見光 度 塊電阻 塊電阻 透過率 1 2000mm 0.04mm 3千歐 270千歐 85% /s 2 500mm/ 0.08mm 1. 9千歐 5 6 0千歐 95% s 表單編號A0101 第19頁/共56頁 0992003317-0 [0055] 099101716 201126230 如果在步驟二中’該奈米碳管初級膜120爲自支撑的懸空 設置並减薄,則可進一步進行一步驟三,將减薄後得到 的奈米碳管膜100鋪設於一基底140表面。該奈米碳管膜 100可通過自身的黏性與該基底14〇結合,或通過—黏結 劑層130與該基底140結合。 [0056] [0057] [0058] [0059] 另外,可在該基底140表面先塗附一層絕緣的高分子材料 /谷液’將該奈米碳管膜1〇〇覆蓋該高分子溶液,使該奈米 碳管膜100嵌入該高分子溶液後,使該高分子溶液固化, 從而形成一複合膜。固化後的高分子材料能起到黏結劑 層130的作用。另外,由於高分子材料阻隔γ方向奈米碳 管之間的接觸,該複合膜比單一的奈米碳管膜1〇〇的各向 異性進一步提高》 請參閱圖5 , 6,10及11,所述具有較好透光性的奈米碳 管膜100由若干奈米碳管組成,所述若干奈米碳管爲沿同 一方向擇優取向排列,該奈求嗥管膜1〇〇中定義有複數减 薄區域126及减薄區域126外的非减薄區域。該複數减薄 區域126沿該若干奈米碳管擇優取向的方向χ排列成至少 一行,形成至少一掃描行124,該掃描行124中的减薄區 域126沿方向X排列。該奈米碳管膜1〇〇可包括複數相互間 隔的掃描行124,該複數掃描行124爲依次分別形成。 所述奈米碳管膜100由所述奈米碳管初級膜12〇形成具 有與奈米碳管初級膜12〇基本相同的微觀結構,然而該奈 米碳管膜100進一步定義複數减薄區域126。 該複數减«域1 26可_财式分佈於該非减薄區域中 099101716 表單編號Α0101 第20頁/共56頁 0992003317-0 201126230 Ο [0060][0021] It can be understood that the carbon nanotube array 150 provided by the embodiment of the present invention is not limited to being prepared by the above method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. (b) The carbon nanotube primary film 120 is obtained by drawing from the carbon nanotube array 150 using a stretching tool 110. Specifically, the method comprises the following steps: (a) selecting a carbon nanotube segment from the carbon nanotube array 150, and in this embodiment, preferably contacting the carbon nanotube array with a tape or a viscous strip having a certain width. 1 50 to select a carbon nanotube segment having a certain width; (b) pulling the selected carbon nanotube segment at a certain speed by moving the stretching tool 110, thereby pulling out the plurality of nano carbons end to end The tube segments, in turn, form a continuous carbon nanotube primary membrane 120. The stretching tool 110 moves substantially in a direction parallel to the surface of the growth substrate. In the above step (2), the carbon nanotube segments selected by the stretching tool 110 may be only one carbon nanotube or may be composed of a plurality of substantially parallel carbon nanotubes. The plurality of carbon nanotubes are arranged side by side such that the carbon nanotube segments have a certain width. When the selected one or more carbon nanotubes are gradually separated from the substrate in the pulling direction under the pulling force, the other carbon nanotubes adjacent to the selected carbon nanotubes are end to end due to the van der Waals force. The cells are successively pulled out in succession to form a continuous, uniform, and wide carbon nanotube primary film 120. Referring to Figure 2, the carbon nanotube primary membrane 120 is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the primary membrane 120 of the carbon nanotubes extend substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube primary membrane 120. Form number A0101 Page 9 of 56 0992003317-0 201126230. Further, most of the carbon nanotubes in the carbon nanotube primary membrane 120 are connected end to end by van der Waals force. Specifically, each of the majority of the carbon nanotubes extending substantially in the same direction in the carbon nanotube primary membrane 120 and the carbon nanotubes adjacent in the extending direction pass through the van der Waals force. Connected. Of course, there are a few carbon nanotubes in the carbon nanotube film that deviate from the extending direction. These carbon nanotubes do not constitute an overall orientation of most of the carbon nanotubes in the primary membrane of the carbon nanotubes. Significant impact. Further, the carbon nanotube primary film 120 has a certain gap between the adjacent and adjacent carbon nanotubes. The self-supporting carbon nanotube primary film 120 does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube primary film 120 is placed. When (or fixed to) two support bodies disposed at a distance apart, the carbon nanotube primary film 120 located between the two supports can be suspended to maintain its own film state. The self-supporting is mainly manifested by the presence of a continuous carbon nanotube in the primary carbon nanotube 120 of the carbon nanotubes extending end to end through the van der Waals force. Specifically, the majority of the carbon nanotubes in the primary film 120 of the carbon nanotubes are substantially in a straight line shape and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately extended. direction. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes of the carbon nanotube primary membrane 120 extending substantially in the same direction. [0022] Specifically, referring to FIG. 3, each of the carbon nanotube primary membranes 1 20 includes a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by Van der Waals force. Each carbon nanotube segment 143 099101716 Form number A0101 Page 10 / Total 56 page 0992003317-0 201126230 Comprised of a plurality of carbon nanotubes 14 5 parallel to each other, the plurality of carbon nanotubes 145 parallel to each other through Van der Waals The force is closely combined. The carbon nanotube segment 143 has any length, thickness, uniformity, and shape. [0023] The carbon nanotube primary film 120 has a thickness of 0.5 nm to 100 μm, and the length and width are related to the area of the carbon nanotube array 150. 5纳米至10厘米。 The carbon nanotubes of the primary film 120 having a width of about 0. 5 nm ~ 10 cm. The specific surface area of the carbon nanotube primary membrane 120 is greater than 100 square meters per gram. [0024] In the step of selecting and drawing the carbon nanotubes described above, it is difficult to control the thickness of the selected carbon nanotube segments by the stretching tool 110, and the side-by-side carbon nanotubes are easily passed between the van der Waals. The attraction of the force is brought into contact with each other to form a bundle of carbon nanotubes having a large diameter, so that the thickness uniformity of the primary film 120 of the carbon nanotube obtained by the drawing is not good enough. The carbon nanotube bundle contains a large number of carbon nanotubes, so that the density of the carbon nanotube bundle is large, so that the light transmittance is poor, so that the light transmittance of the carbon nanotube primary membrane 120 is not good enough. The carbon nanotube primary film 120 has been tested to have a visible light transmission of at most 75%. [0025] Referring to FIG. 4, the carbon nanotube primary film 120 taken from the carbon nanotube array 150 may be disposed by itself or in a self-supporting suspension, or may be further disposed on a surface of the substrate 140. Specifically, the method includes the following steps: providing a substrate 140; and laying the carbon nanotube primary film 120 on the surface of the substrate 140. Since the carbon nanotube array 150 is very pure in this embodiment, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube primary film 120 itself has a strong viscosity. Therefore, the carbon nanotube primary film 120 can be directly fixed to the surface of the substrate 140 by its own adhesiveness. 099101716 Form No. A0101 Page 11/56 Page 0992003317-0 201126230 [0026] [0029] [0029] 099101716. The substrate 140 may be a transparent rigid or flexible substrate, and the material of the substrate 14〇 is not limited. The carbon nanotube primary film 120 can be protected and a certain support can be provided for the nano carbon official primary film 120. The material of the substrate 14 can be glass, quartz, plastic or resin. In this embodiment, the substrate 140 is a polyethylene terephthalate (PET) transparent flat substrate. Further, laying the carbon nanotube primary film 120 on the surface of the substrate 140 may further include the step of coating a surface of the substrate 140 with a layer of adhesive 13 〇. The adhesive layer 130 is uniformly applied to the surface of the substrate 14. The material of the adhesive layer 130 is not limited, and the carbon nanotube primary film 120 may be more firmly bonded to the substrate 140, such as a pressure sensitive adhesive, a heat sensitive adhesive or a photosensitive adhesive. In this embodiment, the material of the adhesive layer 13〇 may be butyl acrylate, 2-ethylhexyl acrylate, vinyl acetate, glycidyl methacrylate, acrylic acid, benzamidine peroxide and toluene, and ethyl acetate. a mixture of esters. Step 1. Using a laser beam 170 to scan the carbon nanotubes in the overall extension direction of the newly escaped most carbon nanotubes, and then scan the local position of the carbon nanotubes in the primary film 120. The plurality of thinned regions 126 are arranged in at least one row in a direction parallel to the preferred orientation of the majority of the carbon nanotubes. It is defined that the overall extension direction of most of the carbon nanotubes is again. The complex thinned region 126 can form a scan line 124 or a plurality of scan lines 124 along the direction_column. The plurality of thinned regions 126 are sequentially formed in the nanocarbon primary film 120 in a certain order. Referring to FIG. 5, when the plurality of thinned regions are arranged in a plurality of rows along the direction X, a laser beam may be first formed in the carbon nanotube primary film 12A along the direction X. The scanning line 124, the scanning line m Form No. A0101 Page 12 of 56 w &quot; 0992003317-0 201126230 Ο [0030] A plurality of thinned regions 126 are included; another scan line 124 is formed in the same manner at a position spaced apart from the scan line 124, and finally A plurality of spaced scan lines 124 are formed in the entire carbon nanotube primary film 120 substantially uniformly in the manner described above. The plurality of scan lines 124 may be arranged at equal intervals or at different intervals, but the scan lines 124 of a certain area should be prevented from being too densely distributed. Preferably, the plurality of scan lines 124 are equally spaced and substantially parallel distributed in the carbon nanotube primary film 120. The pitch d of the adjacent two scanning lines 124 is from 1 micrometer to 5 millimeters, preferably from 10 to 100 micrometers, and is 20 micrometers in this embodiment. In one embodiment, d is much larger than the pitch of the thinned regions 126 in the same scan line 124. Specifically, each of the scanning lines 124 may be formed by sequentially forming a plurality of thinned regions 126 in the direction X. Referring to Figures 5 and 6, the plurality of thinned regions 126 may be spaced apart from each other or arranged in a continuous manner to form an elongated strip region 128. When the plurality of thinned regions 126 are spaced apart, the plurality of thinned regions 126 may be equally spaced from each other. When the plurality of thinned regions 126 are continuously disposed, the plurality of thinned regions 126 in the one scan line 124 may continuously extend from the end of the carbon nanotube primary film 120 to the other end in the direction X. The width D of the scanning line 124, that is, the diameter of the thinned region 126, that is, the strip-shaped region 128 composed of the plurality of thinned regions 126 has a width of 1 micrometer to 5 millimeters, preferably 10 micrometers to 100 micrometers. This embodiment is 20 microns. Preferably, the area of each of the thinned regions 126 is substantially the same, and in the plurality of scan lines 124, the number of thinned regions 126 per scan line 124 is substantially the same. The distribution density of the carbon nanotubes in the thinned region 126 can be reduced or the nanocarbon in the thinned region 126 can be substantially removed by the above-described sequential local thinning of the surface of the entire carbon nanotube primary film 120. Tube, thus reducing 099101716 Form No. A0101 Page 13 / Total 56 Page 0992003317-0 [0031] 201126230 The carbon density of the carbon nanotubes of the carbon nanotube primary membrane 120 is obtained. Tantalum has good light transmission. The mass of the carbon nanotubes in the carbon nanotube film per unit area can be defined as the distribution density. Preferably, the distribution of the carbon nanotubes in the thinned region 126 is not reduced (4) by 5% to 100%, so that the transmittance in the thinned region 126 is increased from 75% to over 85%. The transmittance outside the thinned region 126 is increased by 1% to 2%. The formed carbon nanotube film 1 〇〇 macroscopically remains a film-like structure. Since the thinned region 126 is formed row by row in the direction X and has a certain interval between the adjacent scan lines 124, the carbon nanotube film 1 can be ensured between the adjacent two scan lines 124. The carbon nanotubes having a complete end-to-end connection do not reduce the conductivity of the carbon nanotube film 1 〇〇 in the opposite direction due to the thinning, and the carbon nanotube film 100 is perpendicular to the 兀 direction due to the thinning. Further, the conductivity in the y direction in the carbon nanotube film 100 is remarkably lowered, thereby improving the difference in conductivity between the carbon nanotube film and the y direction. [0035] It can be understood that the step of laying the carbon nanotube primary film 120 on the substrate 14〇 can be performed before or after the second step. The Qinmi carbon tube primary film 120 can be pre-laid on the substrate 140 to be scanned by the laser beam 17〇...... thinning, or can be suspended and scanned by the laser beam 170. The carbon nanotube film 1 having the plurality of thinned regions 126 after thinning can be applied to the surface of the substrate 140 in a stepwise manner. Please refer to FIG. 5 to FIG. 8 together. Step 2 specifically includes the following steps. (1) A laser device 160 is provided, from which the laser beam 170 is emitted to the surface of the primary film 12 of the smectite carbon nanotube to form a spot 18 〇. The laser device 160 can emit a pulsed laser beam 170. The laser beam 17 〇 099101716 Form No. A0101 Page 14 of 56 0992003317-0 201126230 The power is not limited and can range from 1 watt to 100 watts. The laser beam 170 has a good orientation, so that a spot 180 can be formed on the surface of the carbon nanotube primary film 120. The laser beam 170 has a work density density on the surface of the carbon nanotube primary film 120 of greater than 0. 0 53x1 012 watts / square meter. In this embodiment, the laser device 160 is a carbon dioxide laser having a power of ^ 12 watts. It will be appreciated that the laser device 160 can also be selected to be a laser capable of emitting a continuous laser. [0036] The spot 180 is substantially circular and has a diameter of from 1 micrometer to 5 millimeters, preferably 20 micrometers. It will be understood that the spot 180 may be formed by focusing the laser beam 170 or directly irradiating the surface of the carbon nanotube primary film 120 with the laser beam 170. The spot 180 formed by focusing may have a smaller diameter, such as 20 microns. The spot 180 formed by direct irradiation of the laser beam 170 without focusing is of a relatively large diameter, such as 3 mm. [0037] The laser device 160 can also include a plurality of lasers. When the laser device 160 includes a plurality of lasers, the spot may be in the form of a strip or other shape having a width of from 1 micron to 5 mm, preferably 20 microns. [0038] (2) moving the carbon nanotube primary film 120 relative to the laser beam 170, thereby moving the spot 180 along the direction X of the carbon nanotube primary film 120 to form at least one scan line 124. The scan line includes a plurality of thinned regions 12 6 arranged in the direction X. [0039] The spot 180 moves in the direction X in the carbon nanotube primary film 120 to thin the carbon nanotube primary film 120 in the direction X. In order to move the spot 18 0 relative to the carbon nanotube primary film 120, the laser beam 170 can be kept stationary by moving the carbon nanotube primary film 120; or the nano carbon 099101716 can be fixed. Form No. A0101 15 pages / total 56 pages 0992003317-0 201126230 s primary film 120 does not move, by moving the laser beam 17 〇. The laser device 160 can be translated integrally with respect to the carbon nanotube primary film 120, or by changing the light exit angle of the light exit portion of the laser device 16G, the spot 18 formed by the emitted laser beam 170 can be realized in the nanocarbon. The position of the tube primary 臈^ changes. Width 2 with - the plurality of salty thin regions 126 in the scan line 124 can be spaced or continuously set three due to the pulsed laser beam 17 〇 by the complex discontinuous laser pulse group ® laser beam 170 and the carbon nanotube primary The velocity of the film 12 〇 relative movement is large, and the plurality of discrete laser pulses can be irradiated at different positions on the surface of the carbon nanotube primary film 120, thereby realizing a discontinuous portion of the carbon nanotube primary film 120. Thinning 'forms a plurality of discrete circularly thinned regions 126. When the relative movement speed of the laser beam 170 and the carbon nanotube primary film 120 is smaller than the product of the diameter of the spot 180 and the laser pulse frequency (relative motion speed < spot diameter x laser spurt frequency), the complex number is discontinuous The laser pulse irradiation is connected to each other at the position of the surface of the carbon nanotube primary film 120 or overlapped, so that the plurality of thinned regions 126 are distributed continuously. Since the spot moves in the direction X in the carbon nanotube primary film 120, the longitudinal direction direction X of the continuously distributed thinned region 12 6 is parallel. In this embodiment, the distance between two adjacent thinned regions i 26 in the same scanning line is less than j 〇〇 micron 〇 [0041] It can be understood that when a continuous laser is used as the laser beam 17 ,, The switch of the laser is programmed to cooperate with the movement of the carbon nanotube primary membrane 120 to form a spaced or continuous thinned region 12 6 . [0042] It can be understood that since the temperature of the carbon nanotubes is increased and reacted with oxygen after the energy is absorbed, it is only necessary to ensure that the laser of sufficient energy is irradiated in a short time. Page 16/56 pages 099101716 Form No. A0101 201126230 To the surface of the carbon nanotubes, the purpose of thinning the primary membrane of the carbon nanotubes can be achieved. Therefore, it is possible to achieve localized thinning by using laser devices 160 of different power, wavelength or pulse frequency, and correspondingly adjusting the relative motion speed of the laser beam 170 and the carbon nanotube primary film, 120 and the size of the spot 18〇. - The purpose of the carbon nanotube primary membrane 120. It will be understood that the laser device 16 is not limited to a pulsed laser as long as it is capable of emitting a laser to locally thin the carbon nanotube. As shown in Fig. 9, the distribution density of the carbon nanotubes of the thinned region 126 is reduced or the carbon nanotubes of the thinned region 12 6 are all engraved. [0043] Further, a plurality of scanning lines 124 may be formed spaced apart in the carbon nanotube primary film 120. [0044] To form the complex scan line 124, the carbon nanotube primary crucible 120 can be translated a certain distance relative to the laser beam 17〇 in a direction y extending perpendicular to the entirety of the majority of the carbon nanotubes, and then the carbon nanotubes are The primary film 120 is moved relative to the laser beam 170 in a parallel direction x; the laser beam 170 may also be moved a certain distance relative to the carbon nanotube primary film 120 in a direction perpendicular to the direction y 'to make the laser beam 17 〇 in the direction X Relative to the carbon nanotube primary medium 120 movement r In this embodiment, the path of the pupil spot 180 moving on the surface of the carbon nanotube primary membrane I2j) is as shown in FIG. [〇〇45] It can be understood that 'the thin film of the carbon nanotube primary film 110 is thinned by sputtering, in the step (2), the primary film 12 of the carbon nanotube is placed in an oxygen environment, As in the air, carbon in the carbon nanotubes irradiated by the laser beam 170 reacts with oxygen to form carbon dioxide. [0046] In order to remove as much as possible the larger diameter carbon nanotube bundle present in the carbon nanotube primary membrane 120, the laser beam 170 should scan the nanocarbon as uniformly as possible 099101716 Form No. A0101 Page 17 / A total of 56 pages 0992003317-0 201126230 The entire surface of the primary film 12G, thereby forming a plurality of uniform and spaced scan lines 24 on the surface of the carbon nanotube primary film i2. [0050] [0050] Since the carbon nanotube has good absorption characteristics for the laser, the carbon nanotube bundle having a larger diameter in the carbon nanotube primary membrane 120 will absorb more The heat 'and thus the secret removal' greatly increases the transparency of the formed nanocarbon. The light transmittance of the entire carbon nanotube film 1 in the present embodiment may be more than 75%. Preferably, the light transmittance of the nanotube film 1 is 95%. Referring to FIG. 10, since in step (2), the spot 18 is moved along the direction X in the primary film 120 of the carbon nanotube, so that the laser beam 17 is along the majority of the carbon nanotube primary film 120. The carbon nanotubes are integrally extended to reduce the carbon nanotube bundle. Therefore, when one scan line 124 of the carbon nanotube primary film 120 is thinned, it is necessary to thin the next scan line 124 without having to make two scan lines 124. The thinned regions 126 are aligned in the y-direction. As shown in FIG. 10, when the spot 18 is moved in the direction X of the carbon nanotube primary film 12, even if the thinned regions 126 in the two scanning lines I24 are staggered, the two scanning lines 124 are not affected. Nailai carbon tube 145. Therefore, the formed carbon nanotube film 1 奈 between the two adjacent scanning lines 124 of the carbon nanotube 145 can remain intact and end-to-end without damage, so that the carbon nanotube film 100 is The conductivity in the direction X is not affected. It will be appreciated that the advantage of thinning in the direction X is particularly pronounced when the thinned regions 126 are continuous. Referring to the figure, when the continuous thinned region 126 is formed along the direction X, the carbon nanotubes 145 between the adjacent two scanning lines 124 are not thinned, thereby making the carbon nanotube film 1〇〇 The conductivity in the direction X 099101716 Form No. A0101 Page 18 / Total 56 pages 0992003317-0 201126230 and the strength is basically unaffected; the carbon nanotubes 145 connected in the direction X between the adjacent two scanning lines will not be cut. The electrical conductivity and strength of the carbon nanotube film 100 in the direction X are prevented from being greatly reduced. [0051] In order to remove the carbon nanotube bundle in the carbon nanotube primary film 120 as much as possible, the spacing between the adjacent two scanning lines 124 is not too large, so as not to affect the conductivity of the carbon nanotube film 100. Sex, the spacing between the adjacent two scanning lines 124 should not be too small. Preferably, the spacing between the two adjacent scanning lines 124 is from 1 micron to 5 mm, preferably 20 microns. 005 Ο [0052] It can be understood that the carbon nanotube film 100 obtained by laser thinning is still a self-supporting film-like structure, and the light transmittance is improved after thinning, and is performed in the direction X. When the thickness is reduced, the conductivity of the carbon nanotube film 100 in the direction X is maintained to some extent, and the conductivity in the direction y is lowered, so that the carbon nanotube film 100 has good anisotropy. Referring to Table 1, Table 1 is a specific parameter for forming a carbon nanotube film 100 having a plurality of thinned regions 126 by laser thinning, using a laser power Λ Λ Λ Λ 、 、 „ 八, ΎΧ % % L·. ( . ... » 1·· 4 八八-» *·· 平舄&lt;5. 0凡,脒Wfrequency JMUUKHZ, child shows the length and width of the silver film JLUU Both are about 30 mm. [0054] Table 1 No. Processing speed spacing d X direction Y direction visible light block resistance block resistance transmittance 1 2000mm 0.04mm 3 kohm 270 kohm 85% / s 2 500mm / 0.08mm 1 9 kohms 5 6 0 kohms 95% s Form No. A0101 Page 19 / Total 56 pages 0992003317-0 [0055] 099101716 201126230 If in step 2 the 'carbon nanotube primary film 120 is self-supporting dangling settings And thinning, further performing a step three, laying the carbon nanotube film 100 obtained after thinning on the surface of a substrate 140. The carbon nanotube film 100 can be bonded to the substrate 14 by its own viscosity. Or by bonding the substrate 140 to the substrate 140. [0056] [0059] In addition, the substrate 140 can be The surface is first coated with an insulating polymer material/grain solution. The carbon nanotube film is covered with the polymer solution, and the carbon nanotube film 100 is embedded in the polymer solution to make the polymer solution. Curing, thereby forming a composite film. The cured polymer material can function as the binder layer 130. In addition, since the polymer material blocks the contact between the gamma-direction carbon nanotubes, the composite film is more than a single nanometer. The anisotropy of the carbon nanotube film is further improved. Referring to Figures 5, 6, 10 and 11, the carbon nanotube film 100 having better light transmittance is composed of a plurality of carbon nanotubes, The carbon nanotubes are arranged in a preferred orientation along the same direction, and the plurality of thinned regions 126 and the non-thinned regions outside the thinned regions 126 are defined in the manifold film. The plurality of thinned regions 126 are along the plurality The directions in which the carbon nanotubes are preferentially oriented are arranged in at least one row to form at least one scan line 124, and the thinned regions 126 in the scan line 124 are arranged in the direction X. The carbon nanotube film 1〇〇 may include a plurality of mutually spaced intervals Scan line 124, the complex scan line 124 is The carbon nanotube film 100 is formed by the carbon nanotube primary film 12〇 having substantially the same microstructure as the carbon nanotube primary film 12〇, however, the carbon nanotube film 100 further defines a plurality Thinning area 126. The plural number minus the domain 1 26 can be distributed in the non-thinning area 099101716 Form number Α 0101 Page 20 / Total 56 page 0992003317-0 201126230 Ο [0060]

,或以交錯排列的方式分佈於該非减薄區域中。具體地 ,該掃描行124均與方向X平行,該同一掃描行124中的複 數减薄區域12.6在方向X基本對準,複數掃描行124的减薄 區域126在方向y上可對準或不對準的交錯設置。該兩個 相鄰的掃描行12 4間具有沿方向X從奈米碳管膜1 0 0的一端 延伸至另一端的完整的部分奈米碳管初級膜120。該相鄰 的兩個掃描行124之間的距離爲1微米〜5毫米,優選爲20 微米。所述排列成多行的複數减薄區域126相互平行且等 間距設置。該同一掃描行124的複數减薄區域126可間隔 設置或連續設置。所述同一掃描行124的複數减薄區域 126可進一步相互等間隔設置,間隔優選小於100微米。 該連績設置的减薄區域126的長度方向與該方向X平行。 所述複數减薄區域126優選具有基本相同的面積。所述每 一掃描行124優選具有基本相同數量的减薄區域126。 該减薄區域126通過雷射照射的方式使奈米碳管發熱並氧 化形成。該减薄區域126具有較爲稀少的奈米碳管,該减 薄區域126中奈米碳管的分佈密度可以爲非减薄區域奈米 碳管的分佈密度的50%以下,從而使該减薄區域126的可 見光透過率從原先的約75%提高到85%以上,比非减薄區 域的可見光透過率高10%以上。該雷射掃描沿奈米碳管整 體延伸方向,使兩個相鄰的掃描行124間的部分奈米碳管 初級膜120不致被破壞,從而使該奈米碳管膜10 0在奈米 碳管整體延伸方向上的具有較好的導電性,提高該奈米 碳管膜100的各向異性。另外,可以理解,在上述採用雷 射掃描奈米碳管初級膜120前,可先將複數奈米碳管初級 099101716 表單編號A0101 第21頁/共56頁 0992003317-0 201126230 膜120相互層叠,形成一奈米碳管結構層,再將該奈米碳 s、°構層通過雷射以相同的方式掃描形成所述複數减薄 區域126。 ' [0061] [0062] [0063] [0064] έ /、有較好透光性的奈米複管膜100可作爲一透明導電声 於电各式及電阻式觸摸屏中。 明參閱圖12及圖13,本發明第一實施例提供—種採用所 述奈米嗖管膜100作爲透明導電層的具有較好透光性的電 阻式觸猶屏200,該觸摸屏20D包括一第一電極板212, —第二電極板214以及設置在第一電極板212與第二電極 板214之間的複數透明的點狀隔離物216。該第二電極板 214與第一電極板212相對設置。 該第·'電極板212包括一第一基體220,一第一導電層 222以及兩個第一電極224。該第一基體22〇爲平面結構 °亥第~導電層222與兩個第一電極224均設置在第一基 體22〇的下表面。兩個第一電極224分別設置在第—導電 層2 22沿第一方向的兩端並與第一導電層222電連接。該 第二電極板214包括一第二基體240,一第二導電層242 以及兩個第二電極244。該第二基體240爲平面結構,該 第二導電層242與兩個第二電極244均設置在第二基體 240的上表面。該第一導電層222與該第二導電層242相 對設置。兩個第二電極244分別設置在第二導電層242沿 第二方向的兩端並與第二導電層242電連接。其中第一方 向垂直於第二方向。 該第一基體220和第二基體240均爲透明的薄膜或薄板。 099101716 表單編號Α0101 第22頁/共56頁 0992003317-0 201126230 ❹ [0065] 該第一基體220具有一定的柔軟度,可由塑膠或樹脂等柔 性材料形成。該第二基體240的材料可以爲玻璃、石英、 金剛石等硬性材料,也可爲塑膠或樹脂等柔性材料。該 第一基體220和第二基體240的厚度優選爲1毫米~1厘米 。本實施例中,該第一基體220及第二基體240的材料均 爲聚對苯二甲酸乙二醇酯(PET),厚度均爲2毫米。可以 理解,形成所述第一基體220及第二基體240的材料並不 限於上述列舉的材料,只要能使第一基體220及第二基體 240起到支撑的作用,並具有較好的透明度及絕緣性,且 至少形成第一基體220的材料具有一定柔性,都在本發明 保護的範圍内。 Ο [0066] 該第一導電層222與第二導電層242中至少一導電層包括 一奈米碳管結構層,該奈米碳管結構層由若干奈米碳管 組成,所述若干奈米碳管爲沿同一方向擇優取向排列, 該奈米碳管結構層中具有複數减薄區域126,該複數减薄 區域12 6沿所述若干奈米碳管擇優取向的方向排列成至少 一行。 具體地,該奈米碳管結構層包括一奈米碳管膜100或沿相 同方向層叠鋪設或平行無間隙鋪設的複數奈米碳管膜100 。當鋪設於第一基體220時,該奈米碳管膜100優選沿第 一方向鋪設,使奈米碳管膜100中大多數奈米碳管沿第一 方向延伸(即上述方向X沿第一方向),並與兩端的第一 電極224電連接。當鋪設於第二基體240時,該奈米碳管 膜100優選沿第二方向鋪設,使奈米碳管膜100中大多數 奈米碳管沿第二方向延伸(即上述方向X沿第二方向), 099101716 表單編號A0101 第23頁/共56頁 0992003317-0 201126230 並與兩端的第二電極244電連接。本實施例中,該第一導 電層222與該第二導電層242均爲一奈米碳管膜100。可 以理解,當該第一導電層222及第二導電層242中只有一 層包括奈米碳管膜100時’另一層可以爲ITO層。 [0067] 進一步地,該奈米碳管結構層還可爲至少一奈米碳管膜 100與一高分子材料組成的複合膜。所述高分子材料均勻 分佈於所述奈米碳管膜100中奈米碳管之間的間隙中。所 述高分子材料爲一透明高分子絕緣材料,其具體材料不 限,包括聚苯乙烯、聚乙烯、聚碳酸酯、聚曱基丙烯酸 曱酯(PMMA)、聚碳酸酯(PC)、對苯二曱酸乙二醇酯 (PET)、苯丙環丁烯(BCB)或聚環烯烴等。優選地,該 複合膜由一奈米碳管膜100與PMMA複合形成。該複合膜的 形成方式可以爲:將一高分子材料溶液塗附於基體表面 ;將該奈米碳管膜100覆蓋該高分子材料溶液;採用一吹 風機將該奈米碳管膜100吹入該高分子材料溶液中;以及 將該高分子溶液固化。 [0068] 該第一電極224與該第二電極244爲金屬層、導電聚合物 塗層或含奈米碳管的導電層。本實施例中,該第一電極 224與第二電極244爲導電銀漿層。可以理解,用於柔性 觸摸屏200上的上述電極224,244應具有一定的韌性和 易彎折度。所述第一電極224及第二電極244優選爲長條 形。所述兩個第一電極224相互平行且垂直於第一方向, 所述兩個第二電極244相互平行且垂直於第二方向。該長 條形的第一電極224的長度可以與該第一導電層222在第 二方向的寬度基本相等。該長條形的第二電極244的長度 099101716 表單編號A0101 第24頁/共56頁 0992003317-0 201126230 可以與該第二導電層242在第一方向的寬度基本相等。 [0069] 進一步地,該第二電極板214上表面外圍設置有一絕緣層 218。上述的第一電極板212設置在該絕緣層218上,且 - 該第一電極板21 2的第一導電層222正對第二電極板214 •的第二導電層242設置。上述複數點狀隔離物216設置在 -第二電極板214的第二導電層242上,且該複數點狀隔離 物216彼此間隔設置。第一電極板212與第二電極板214 之間的距離優選爲2〜10微米。該絕緣層218與點狀隔離物 ^ 216均可採用絕緣樹脂或其他絕緣材料製成,並且,該點 〇 狀隔離物216應爲一透明材料製成。設置絕緣層218與點 狀隔離物216可使得第一電極板212與第二電極板214電 絕緣。可以理解,當觸摸屏200尺寸較小時,點狀隔離物 21 6爲可選擇的結構,只需確保未受按壓時第一電極板 212與第二電極板214電絕緣即可。 [0070] 另外,該第一電極板212上表面可設置一透明保護膜226 。所述透明保護膜226可以通過黏結劑直接黏結在第一基 C) 體220上,也可採用熱壓法,與第一電極板212壓合在一 起。該透明保護膜226可採用一層表面硬化處理、光滑防 刮的塑膠層或樹脂層,該樹脂層可由苯丙環丁烯(BCB)、 . 聚酯以及丙烯酸樹脂等材料形成。本實施例中,形成該 透明保護膜2 2 6的材料爲聚對苯二甲酸乙二醇酯(PET ) ,用於保護第一電極板212,提高耐用性。該透明保護膜 226經特殊工藝處理後,可用以提供一些附加功能,如可 以减少眩光或降低反射。 [0071] 由於奈米碳管初級膜120經雷射掃描後部分奈米碳管被氧 099101716 表單編號A0101 第25頁/共56頁 0992003317-0 201126230 [0072] [0073] 099101716 化形成减薄區域126,其中减薄區域126的奈米碳管分佈 密度降低,使該奈米碳管膜1〇〇透光性增強,從而使應用 該奈米碳管膜100的觸摸屏200具有較好的透光性。 可以理解,在所述觸摸屏200中,該第一電極224及第二 電極244也可以分別包括複數子電極。如圖14所示以第 —電極板212爲例,所述每個第一電極224進—步包括複 數第一子電極2240,該兩個第一電極224的複數第一子電 極2240分別設置在第一導電層222沿第一方向的兩端,並 與第一導電層222電連接。具體地,該第一導電層222沿 第一方向的一端間隔的設置有複數第.一子電極2240,同 時另一端也間隔的一一對應的設置有複數第一子電極 2240。該複數第一子電極2240彼此間隔與該第一導電層 222電連接《由於該第一導電層222由所述奈米碳管膜 100形成,且該奈米碳管膜1〇〇具有很好的各向異性,當 該奈米碳管膜100沿第一方向鋪設,町實現設置在第一導 電層222兩端且向對應的兩個第一子電楝224〇導通’從而 使該第一導電層2 2 2相當於複數相互爭行真間隔的導電帶 。以多數奈米碳管整體延伸的方向X爲第〆方向’將所述 奈米碳管膜100鋪設於第一基體220表面’即可一次實現 形成複數導電帶的步驟,簡單易行。 該第二電極板214具有與第一電極板2丨2相似的結構,並 與該第一電極板212正交設置。該具有旅麩第一子電極 2240及複數第二子電極的觸摸屏200町實規多點觸摸。 請參閱圖15至圖17,本發明第二實施例提供一種採用所 述奈米碳管膜100作爲透明導電層的具有較好透光性的電 0992003317-0 表單編號A0101 第26頁/共56頁 [0074] 201126230 容式觸摸屏300,該觸摸屏300包括一基體310、一第一 導電層322、一第二導電層324、〆选明保護膜(圖未示 )、複數第一電極342及複數第二電極344。該基體31〇 具有一第一表面312以及與第一表面312相對的第二表面 314。該第一導電層322及複數第〆電極342設置在該基 體310的第一表面312,該第二導電層324及複數第二電 極344設置在該基體的第二表面314。該第一導電層 Ο 322及第二導電層324中至少一導電層包括一奈米碳管結 構層。該奈米碳管結構層由若干奈米碳管組成,所述若 干奈米碳管爲沿同一方向擇優取甸排列,該奈米碳管結 構層中定義有複數减薄區域,該複數减薄區域沿所述若 干奈米破管擇優取向的方向排列成I少一行。該奈米碳 管結構層包括~~奈米碳管膜1〇〇成複數相互層叠的奈米碳 管膜ίο◦。所述透明保護膜覆蓋於所述第—導電層322表 面保第—導電層322不致因觸摸而遭到破壞。 [0075]Or distributed in the non-thinned area in a staggered manner. Specifically, the scan lines 124 are all parallel to the direction X, the plurality of thinned regions 12.6 in the same scan line 124 are substantially aligned in the direction X, and the thinned regions 126 of the plurality of scan lines 124 are aligned or misaligned in the direction y Quasi-interlaced settings. The two adjacent scanning lines 12 4 have a complete partial carbon nanotube primary film 120 extending from one end of the carbon nanotube film 100 to the other end in the direction X. The distance between the adjacent two scanning lines 124 is from 1 micrometer to 5 millimeters, preferably 20 micrometers. The plurality of thinned regions 126 arranged in a plurality of rows are arranged parallel to each other and at equal intervals. The plurality of thinned regions 126 of the same scan line 124 may be spaced or continuously set. The plurality of thinned regions 126 of the same scan line 124 may be further spaced from one another, preferably less than 100 microns apart. The length direction of the thinned region 126 of the succession setting is parallel to the direction X. The plurality of thinned regions 126 preferably have substantially the same area. Each of the scan lines 124 preferably has substantially the same number of thinned regions 126. The thinned region 126 is formed by heating and oxidizing the carbon nanotube by means of laser irradiation. The thinned region 126 has a relatively rare carbon nanotube, and the distribution density of the carbon nanotube in the thinned region 126 may be less than 50% of the distribution density of the non-thinned region carbon nanotube, thereby making the reduction The visible light transmittance of the thin region 126 is increased from about 75% to 85% or more, and is higher than the visible light transmittance of the non-thinned region by 10% or more. The laser scanning is along the overall extension direction of the carbon nanotubes, so that the partial carbon nanotube primary film 120 between the two adjacent scanning lines 124 is not destroyed, so that the carbon nanotube film 100 is in the nanocarbon. The conductivity in the direction in which the tube extends is good, and the anisotropy of the carbon nanotube film 100 is improved. In addition, it can be understood that before using the laser scanning carbon nanotube primary film 120, the plurality of carbon nanotubes primary 099101716 form number A0101 page 21 / 56 pages 0992003317-0 201126230 film 120 can be stacked on each other to form a film 120. A carbon nanotube structure layer is then scanned in the same manner by the laser to form the plurality of thinned regions 126. [0064] [0064] The nano tube film 100 having a good light transmittance can be used as a transparent conductive sound in various electric and resistive touch screens. Referring to FIG. 12 and FIG. 13 , a first embodiment of the present invention provides a resistive touch panel 200 having a light transmissive property using the nanotube film 100 as a transparent conductive layer, and the touch screen 20D includes a The first electrode plate 212, the second electrode plate 214, and a plurality of transparent dot spacers 216 disposed between the first electrode plate 212 and the second electrode plate 214. The second electrode plate 214 is disposed opposite to the first electrode plate 212. The 'electrode plate 212' includes a first substrate 220, a first conductive layer 222 and two first electrodes 224. The first substrate 22 is a planar structure. The first conductive layer 222 and the two first electrodes 224 are disposed on the lower surface of the first substrate 22A. The two first electrodes 224 are respectively disposed at both ends of the first conductive layer 22 in the first direction and are electrically connected to the first conductive layer 222. The second electrode plate 214 includes a second substrate 240, a second conductive layer 242 and two second electrodes 244. The second substrate 240 is a planar structure, and the second conductive layer 242 and the two second electrodes 244 are both disposed on the upper surface of the second substrate 240. The first conductive layer 222 is disposed opposite to the second conductive layer 242. Two second electrodes 244 are respectively disposed at both ends of the second conductive layer 242 in the second direction and are electrically connected to the second conductive layer 242. The first direction is perpendicular to the second direction. The first substrate 220 and the second substrate 240 are both transparent films or sheets. 099101716 Form No. Α0101 Page 22 of 56 0992003317-0 201126230 ❹ [0065] The first base 220 has a certain degree of softness and can be formed of a flexible material such as plastic or resin. The material of the second substrate 240 may be a hard material such as glass, quartz or diamond, or a flexible material such as plastic or resin. The thickness of the first substrate 220 and the second substrate 240 is preferably from 1 mm to 1 cm. In this embodiment, the first substrate 220 and the second substrate 240 are made of polyethylene terephthalate (PET) and have a thickness of 2 mm. It can be understood that the materials for forming the first substrate 220 and the second substrate 240 are not limited to the materials listed above, as long as the first substrate 220 and the second substrate 240 can support and have good transparency. Insulation, and at least the material forming the first substrate 220 has a certain flexibility, is within the scope of the present invention. [0066] at least one of the first conductive layer 222 and the second conductive layer 242 includes a carbon nanotube structure layer, the nano carbon tube structure layer is composed of a plurality of carbon nanotubes, the plurality of nano tubes The carbon tubes are arranged in a preferred orientation along the same direction, and the carbon nanotube structure layer has a plurality of thinned regions 126 arranged in at least one row along a direction in which the plurality of carbon nanotubes are preferentially oriented. Specifically, the carbon nanotube structure layer comprises a carbon nanotube film 100 or a plurality of carbon nanotube films 100 which are laid in the same direction or are laid in parallel without gaps. When laying on the first substrate 220, the carbon nanotube film 100 is preferably laid in the first direction, so that most of the carbon nanotubes in the carbon nanotube film 100 extend in the first direction (ie, the above direction X is along the first direction) Direction) and electrically connected to the first electrode 224 at both ends. When laying on the second substrate 240, the carbon nanotube film 100 is preferably laid in the second direction, so that most of the carbon nanotubes in the carbon nanotube film 100 extend in the second direction (ie, the above direction X is along the second direction) Direction), 099101716 Form No. A0101 Page 23/56 pages 0992003317-0 201126230 and is electrically connected to the second electrode 244 at both ends. In this embodiment, the first conductive layer 222 and the second conductive layer 242 are both a carbon nanotube film 100. It can be understood that when only one of the first conductive layer 222 and the second conductive layer 242 includes the carbon nanotube film 100, the other layer may be an ITO layer. [0067] Further, the carbon nanotube structural layer may further be a composite film composed of at least one carbon nanotube film 100 and a polymer material. The polymer material is uniformly distributed in the gap between the carbon nanotubes in the carbon nanotube film 100. The polymer material is a transparent polymer insulating material, and the specific materials thereof are not limited, and include polystyrene, polyethylene, polycarbonate, phthalic acid acrylate (PMMA), polycarbonate (PC), and benzene. Ethylene glycol dicarboxylate (PET), phenylcyclobutene (BCB) or polycycloolefin. Preferably, the composite membrane is formed by combining a carbon nanotube membrane 100 with PMMA. The composite film may be formed by: coating a polymer material solution on the surface of the substrate; covering the carbon nanotube film 100 with the polymer material solution; blowing the carbon nanotube film 100 into the hair dryer by using a hair dryer In the polymer material solution; and curing the polymer solution. [0068] The first electrode 224 and the second electrode 244 are a metal layer, a conductive polymer coating or a conductive layer containing a carbon nanotube. In this embodiment, the first electrode 224 and the second electrode 244 are conductive silver paste layers. It will be appreciated that the electrodes 224, 244 used on the flexible touch screen 200 should have some degree of toughness and flexibility. The first electrode 224 and the second electrode 244 are preferably elongated. The two first electrodes 224 are parallel to each other and perpendicular to the first direction, and the two second electrodes 244 are parallel to each other and perpendicular to the second direction. The length of the elongated first electrode 224 may be substantially equal to the width of the first conductive layer 222 in the second direction. The length of the elongated second electrode 244 is 099101716. Form number A0101 page 24 / page 56 0992003317-0 201126230 may be substantially equal to the width of the second conductive layer 242 in the first direction. Further, an insulating layer 218 is disposed on the periphery of the upper surface of the second electrode plate 214. The first electrode plate 212 is disposed on the insulating layer 218, and the first conductive layer 222 of the first electrode plate 21 2 is disposed opposite to the second conductive layer 242 of the second electrode plate 214. The plurality of dot spacers 216 are disposed on the second conductive layer 242 of the second electrode plate 214, and the plurality of dot spacers 216 are spaced apart from each other. The distance between the first electrode plate 212 and the second electrode plate 214 is preferably 2 to 10 μm. The insulating layer 218 and the dot spacers ^ 216 may be made of an insulating resin or other insulating material, and the dot-shaped spacers 216 should be made of a transparent material. Providing the insulating layer 218 and the dot spacers 216 may electrically insulate the first electrode plate 212 from the second electrode plate 214. It can be understood that when the size of the touch screen 200 is small, the dot spacers 216 are optional structures, and it is only necessary to ensure that the first electrode plate 212 is electrically insulated from the second electrode plate 214 when not pressed. [0070] In addition, a transparent protective film 226 may be disposed on the upper surface of the first electrode plate 212. The transparent protective film 226 may be directly bonded to the first base C) body 220 by a bonding agent, or may be pressed together with the first electrode plate 212 by a hot pressing method. The transparent protective film 226 may be a surface-hardened, smooth scratch-resistant plastic layer or a resin layer formed of a material such as phenylcyclobutene (BCB), polyester, or acrylic resin. In the present embodiment, the material for forming the transparent protective film 2 26 is polyethylene terephthalate (PET) for protecting the first electrode plate 212 to improve durability. The transparent protective film 226 can be used in a special process to provide additional functions such as reducing glare or reducing reflection. [0071] Since the carbon nanotube primary film 120 is subjected to laser scanning, a portion of the carbon nanotubes are oxygen 099101716 Form No. A0101 Page 25/56 pages 0992003317-0 201126230 [0072] [0073] 099101716 Forming a thinned region 126, wherein the carbon nanotube distribution density of the thinned region 126 is decreased, so that the carbon nanotube film has a light transmission property, so that the touch screen 200 using the carbon nanotube film 100 has better light transmission. Sex. It can be understood that in the touch screen 200, the first electrode 224 and the second electrode 244 may also include a plurality of sub-electrodes. As shown in FIG. 14 , the first electrode 224 further includes a plurality of first sub-electrodes 2240, and the plurality of first sub-electrodes 2240 of the two first electrodes 224 are respectively disposed at The first conductive layer 222 is at both ends in the first direction and is electrically connected to the first conductive layer 222. Specifically, the first conductive layer 222 is provided with a plurality of first sub-electrodes 2240 spaced apart at one end in the first direction, and a plurality of first sub-electrodes 2240 are disposed in one-to-one correspondence with the other ends. The plurality of first sub-electrodes 2240 are electrically connected to the first conductive layer 222 at intervals. "Because the first conductive layer 222 is formed by the carbon nanotube film 100, and the carbon nanotube film has a good Anisotropy, when the carbon nanotube film 100 is laid in the first direction, the town is disposed at both ends of the first conductive layer 222 and is turned on to the corresponding two first sub-electrodes 224 从而 to make the first The conductive layer 2 2 2 is equivalent to a plurality of conductive strips that compete with each other for true spacing. The step of forming the plurality of conductive strips at a time by the direction X in which the majority of the carbon nanotubes are extended as the second direction 'the carbon nanotube film 100 is laid on the surface of the first substrate 220' is simple and easy. The second electrode plate 214 has a structure similar to that of the first electrode plate 2丨2 and is disposed orthogonal to the first electrode plate 212. The touch screen 200 with the first sub-electrode 2240 and the second sub-electrode of the bran is multi-touch. Referring to FIG. 15 to FIG. 17, a second embodiment of the present invention provides an electric light having a good light transmittance using the carbon nanotube film 100 as a transparent conductive layer. 0992003317-0 Form No. A0101 Page 26 of 56 [0074] 201126230 The capacitive touch screen 300 includes a substrate 310, a first conductive layer 322, a second conductive layer 324, a selective protective film (not shown), a plurality of first electrodes 342, and a plurality The second electrode 344. The base 31 has a first surface 312 and a second surface 314 opposite the first surface 312. The first conductive layer 322 and the plurality of second electrodes 342 are disposed on the first surface 312 of the substrate 310. The second conductive layer 324 and the plurality of second electrodes 344 are disposed on the second surface 314 of the substrate. At least one of the first conductive layer 322 and the second conductive layer 324 includes a carbon nanotube structural layer. The carbon nanotube structure layer is composed of a plurality of carbon nanotubes, wherein the plurality of carbon nanotubes are arranged in the same direction, and the plurality of thinned regions are defined in the carbon nanotube structure layer, and the plurality of thinned regions are thinned The regions are arranged in a row along the direction in which the plurality of nanotubes are preferentially oriented. The carbon nanotube structure layer comprises a nanotube film ί 相互 相互 相互 相互 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦. The transparent protective film covers the surface of the first conductive layer 322 to prevent the conductive layer 322 from being damaged by touch. [0075]

本實施例中’該第-導電層322及第一導電層324分別包 括至少一奈米唉營結構層,且該奈米破管結構層均包括 不米碳s媒1 〇〇。形成該第—導電層的奈米碳管膜 100優“第—方向鋪設於所述第-表面312,使奈米碳 目膜⑽中大夕數奈米碳營沿第一方向延伸(即上述方向 X沿第一方向)。好、e^ ^ 該複數第〜電極342設置於所述第一導 電層322沿第一大‘Μ 向的一端,且彼此相互間隔的與該第一 導電層322的不同位置電連接。設置在形成該第二導電層 324的奈米碳管則⑽優選沿第二方向铺設於所述第二表 面314 ’使奈米碳管膜1叫大多數奈米碳管沿第二方向 099101716 表單煸號A0101 第27頁/共56頁 0992003317-0 201126230 延伸(即上述方向X沿第二方向)。該複數第二電極344 設置於所述第二導電層324沿第二方向的一端,且彼此相 互間隔的與該第二導電層324不同位置電連接。其中第一 方向垂直於第二方向。當該第一導電層322或第二導電層 324包括複數奈米碳管膜100時,該複數奈米碳管膜100 可沿相同方向層叠鋪設或平行無間隙鋪設於所述第一表 面312或第二表面314。本實施例中,該第一導電層322 與該第二導電層324均爲一奈米碳管膜100。可以理解, 與第一實施例相似地,該第一導電層3 2 2與該第二導電層 324的奈米碳管結構層還可以為所述奈米碳管膜100與所 述透明高分子材料組成的複合膜,透明高分子材料均勻 分佈於所述奈米碳管膜中若干奈米碳管之間的間隙中。 [0076] 與第一實施例中的第一基體220及第二基體240相似的, 所述基體310爲一曲面型或平面型的結構。該基體310由 玻璃、石英、金剛石或塑膠等硬性材料或柔性材料形成 。所述基體310主要起支撑和間隔所述第一導電層32及第 二導電層324的作用。 [0077] 與第一實施例的第一電極224與該第二電極244相似的, 所述第一電極342及第二電極344可以爲金屬層、導電聚 合物塗層或含奈米碳管的導電層。本實施例中,該第一 電極224與第二電極244爲塗附的導電銀漿層。 [0078] 所述透明保護膜可與第一實施例的透明保護膜226相同。 另外,所述透明保護膜還可由硬性材料形成,如氮化矽 或氧化矽等。本實施例中,該透明保護膜爲一PET膜。 099101716 表單編號A0101 第28頁/共56頁 0992003317-0 201126230 [0079] 由於該奈米碳管膜1GG具有很好的導電性的各向異性,當 及奈米碳官膜1GG沿第-方向鋪設時’在第—方向的導電 性遠大於在第二方向的導電性,反之亦然。因此,該第 導電層322及第二導電層324可看作後數正交鋪設的導 電帶。由於該第-帽322與第二導電層324之間通過 所述基體3_隔,因此在所述複數導電帶相互交又的複 數交又位置處形成複數電容。該複數電容可通過與該第 Ο -電極342及第二電極344電連接的外部電路測得。當手 指等觸摸物靠近-個或複數交又位置時,該交又位置的 電容發生變化’所述外部電路檢測到該變化的電容從 而得到該觸摸位置的坐標m奈米碳管的延伸方向χ 爲第-方向或第二方向’分別將所述奈米碳管膜1〇〇鋪設 於第-表面312或第二表面314,即可―次實現形成複數 導電帶的步驟,簡單易行。 [0080] Ο 當所述第一導電層322及第二導電層324中只有一導電層 包括所述至少一奈米碳管膜丨00時,另—導電層可爲其它 透明導電材料形成,如ΙΤΟ層。煞而,由於ho層無導電 性的各向異性的性質,因此,該另一導電層應由多條平 行且間隔設置的條形ΙΤΟ層326形成。當該條形ΙΤΟ層326 設置於所述第一表面312時,該條形ΙΤΟ層326的長度方 向與第一方向平行,每個條形ΙΤΟ層326的沿第一方向的 一端與一第一電極342電連接。當該條形ΙΤΟ層326設置 於所述第二表面314時’該條形ΙΤΟ層326的長度方向與 第二方向平行’每個條形ΙΤΟ層326的沿第二方向的一端 苛進一步與一第二電極344電連接。請參閱圖18,本實施 099101716 表單編號Α0101 第29頁/共56頁 0992003317-0 201126230 例中,該複數條形ΙΤ0層326設置於所述第一表面312, 共同形成所述第一導電層322,所述奈米碳管膜100形成 於第二表面314,形成所述第二導電層3 24。 [0081] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0082] 圖1係本發明實施例奈米碳管初級膜製備過程示意圖。 [0083] 圖2係本發明實施例奈米碳管初級膜掃描電鏡照片。 [0084] 圖3係圖2的奈米碳管初級膜中奈米碳管片段的結構示意 圖。 [0085] 圖4係將圖2的奈米碳管初級膜鋪設於一基體的過程示意 圖。 [0086] 圖5係本發明實施例一種具有間隔的减薄區域的奈米碳管 膜的俯視示意圖。 [0087] 圖6係本發明實施例一種具有連續的减薄區域的奈米碳管 膜的俯視示意圖。 [0088] 圖7係雷射减薄法製備本發明實施例奈米碳管膜的正視示 意圖。 [0089] 圖8係雷射光斑在奈米碳管初級膜表面的一種移動路線示 意圖。 099101716 表單編號Α0101 第30頁/共56頁 0992003317-0 201126230 [0090] 圖9係本發明實施例雷射减薄後形成的减薄區域的掃描電 鏡照片。 [0091] 圖1 0係本發明實施例另一種具有間隔的减薄區域的奈米 , 碳管膜的俯視示意圖。 [0092] 圖11係本發明實施例另一種具有連續的减薄區域的奈米 碳管膜的俯視示意圖。 [0093] 圖1 2係本技術方案第一實施例電阻式觸摸屏的立體結構 示意圖。 〇 [0094] 圖1 3係本技術方案第一實施例電阻式觸摸屏的剖視結構 示意圖。 [0095] 圖14係本技術方案第一實施例電阻式觸摸屏具有複數第 一電極的第一電極板的俯視結構示意圖。 [0096] 圖1 5係本技術方案第二實施例電容式觸摸屏第一表面的 結構示意圖。 [0097] 圖1 6係本技術方案第二實施例電容式觸摸屏第二表面的 結構不意圖。 [0098] 圖1 7係本技術方案第二實施例電容式觸摸屏的側視結構 示意圖。 . [0099] 圖1 8係本技術方案第二實施例電容式觸摸屏具有複數條 狀ITO層的第一表面的結構示意圖。 【主要元件符號說明】 [0100] 奈米碳管膜:100 099101716 表單編號A0101 第31頁/共56頁 0992003317-0 201126230 [0101] 奈米碳管初級膜:120 [0102] 奈米碳管陣列:150 [0103] 拉伸工具:110 [0104] 奈米碳管片段:143 [0105] 奈米碳管:145 [0106] 基底:140 [0107] 黏結劑層:130 [0108] 雷射束:170 [0109] 减薄區域:126 [0110] 掃描行:124 [0111] 長條形區域:128 [0112] 光斑:180 [0113] 雷射裝置:160 [0114] 觸摸屏:200 [0115] 第一電極板:212 [0116] 第二電極板:214 [0117] 點狀隔離物:216 [0118] 絕緣層:218 [0119] 第一基體:220 099101716 表單編號A0101 第32頁/共56頁 0992003317-0 201126230 [0120] 第一導電層:222 [0121] 第一電極‘· 224 [0122] 第二基體:240 _ [0123] 第二導電層:242 - [0124] 第二電極:244 [0125] 透明保護膜:226 [0126] 第一子電極:2240 〇 [0127] 觸摸屏:300 [0128] 基體:310 [0129] 第一導電層:322 [0130] 第二導電層:324 [0131] 第一電極:342 ΓλιοηΊ LU10Z1J 第二電極:344 [0133] 第一表面:312 [0134] 第二表面:314 ' [0135] IT0層:326 099101716 表單編號A0101 第33頁/共56頁 0992003317-0In this embodiment, the first conductive layer 322 and the first conductive layer 324 respectively comprise at least one nano-layer structure layer, and the nano-tube structure layer comprises a carbon-free medium. The carbon nanotube film 100 forming the first conductive layer is preferably disposed in the first direction on the first surface 312, so that the nano carbon nanocaps in the nano carbon film (10) extends in the first direction (ie, the above The direction X is along the first direction. Preferably, the plurality of electrodes 342 are disposed at one end of the first conductive layer 322 along the first large 'direction, and are spaced apart from each other and the first conductive layer 322 The different positions are electrically connected. The carbon nanotubes (10) disposed on the second conductive layer 324 are preferably laid on the second surface 314 in the second direction, so that the carbon nanotube film 1 is called most nano carbon. The tube extends along the second direction 099101716, form number A0101, page 27, page 56, 0992003317-0, 201126230 (ie, the direction X is in the second direction). The plurality of second electrodes 344 are disposed on the second conductive layer 324. One ends of the two directions, and spaced apart from each other, are electrically connected to different positions of the second conductive layer 324. The first direction is perpendicular to the second direction. When the first conductive layer 322 or the second conductive layer 324 includes a plurality of nano carbons When the membrane 100 is used, the plurality of carbon nanotube membranes 100 can be in the same direction The first conductive layer 322 and the second conductive layer 324 are both a carbon nanotube film 100. In this embodiment, the first conductive layer 322 and the second conductive layer 324 are both a carbon nanotube film 100. The carbon nanotube structure layer of the first conductive layer 32 2 and the second conductive layer 324 may also be composed of the carbon nanotube film 100 and the transparent polymer material, similarly to the first embodiment. The composite film, the transparent polymer material is uniformly distributed in the gap between the plurality of carbon nanotubes in the carbon nanotube film. [0076] Similar to the first substrate 220 and the second substrate 240 in the first embodiment The base body 310 is a curved surface or a flat type structure. The base body 310 is formed of a hard material or a flexible material such as glass, quartz, diamond or plastic. The base body 310 mainly supports and spaces the first conductive layer. 32 and the function of the second conductive layer 324. [0077] Similar to the first electrode 224 of the first embodiment and the second electrode 244, the first electrode 342 and the second electrode 344 may be a metal layer, conductive polymerization Coating or conductive layer containing carbon nanotubes. In the example, the first electrode 224 and the second electrode 244 are coated conductive silver paste layers. [0078] The transparent protective film may be the same as the transparent protective film 226 of the first embodiment. In addition, the transparent protective film It may also be formed of a hard material such as tantalum nitride or tantalum oxide, etc. In the present embodiment, the transparent protective film is a PET film. 099101716 Form No. A0101 Page 28/56 pages 0992003317-0 201126230 [0079] The carbon nanotube film 1GG has good electrical conductivity anisotropy. When the nano carbon film 1GG is laid in the first direction, the conductivity in the first direction is much greater than the conductivity in the second direction, and vice versa. Of course. Therefore, the first conductive layer 322 and the second conductive layer 324 can be regarded as conductive tapes which are laid orthogonally in the rear. Since the first cap 322 and the second conductive layer 324 are separated by the substrate 3, a plurality of capacitors are formed at the complex intersections of the plurality of conductive strips. The complex capacitor can be measured by an external circuit electrically connected to the first 电极-electrode 342 and the second electrode 344. When a touch object such as a finger approaches a position or a plurality of positions, the capacitance of the intersection position changes. The external circuit detects the capacitance of the change to obtain the coordinate of the touch position, and the extension direction of the carbon nanotube. The step of forming the plurality of conductive strips in the first direction or the second direction by respectively laying the carbon nanotube film 1 on the first surface 312 or the second surface 314 is simple and easy. [0080] Ο When only one of the first conductive layer 322 and the second conductive layer 324 includes the at least one carbon nanotube film 丨00, the other conductive layer may be formed of other transparent conductive materials, such as ΙΤΟ layer. Furthermore, since the ho layer has no anisotropic properties of conductivity, the other conductive layer should be formed by a plurality of parallel and spaced strip layers 326. When the strip-shaped layer 326 is disposed on the first surface 312, the length direction of the strip-shaped layer 326 is parallel to the first direction, and one end of each strip-shaped layer 326 along the first direction is first The electrodes 342 are electrically connected. When the strip-shaped layer 326 is disposed on the second surface 314, the length direction of the strip-shaped layer 326 is parallel to the second direction. One end of each strip-shaped layer 326 in the second direction is further The second electrode 344 is electrically connected. Referring to FIG. 18, the present embodiment 099101716, the form number Α 0101, the 29th page, and the 56th page, 0992003317-0, 201126230. In the example, the plurality of ΙΤ0 layer 326 is disposed on the first surface 312 to form the first conductive layer 322. The carbon nanotube film 100 is formed on the second surface 314 to form the second conductive layer 324. [0081] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0082] FIG. 1 is a schematic view showing a preparation process of a primary film of a carbon nanotube according to an embodiment of the present invention. 2 is a scanning electron micrograph of a primary film of a carbon nanotube according to an embodiment of the present invention. 3 is a schematic view showing the structure of a carbon nanotube segment in the primary film of the carbon nanotube of FIG. 2. 4 is a schematic view showing a process of laying the primary film of the carbon nanotube of FIG. 2 on a substrate. 5 is a top plan view of a carbon nanotube film having spaced apart thinned regions in accordance with an embodiment of the present invention. 6 is a top plan view of a carbon nanotube film having a continuous thinned region in accordance with an embodiment of the present invention. Figure 7 is a front elevational view showing the preparation of a carbon nanotube film of an embodiment of the present invention by a laser thinning method. [0089] FIG. 8 is a schematic illustration of a movement path of a laser spot on the surface of a primary film of a carbon nanotube. 099101716 Form No. Α 0101 Page 30 / Total 56 Pages 0992003317-0 201126230 [0090] FIG. 9 is a scanning electron micrograph of a thinned region formed after laser thinning in accordance with an embodiment of the present invention. 10 is a top plan view of another nanotube and carbon nanotube film having spaced apart thinned regions according to an embodiment of the present invention. 11 is a top plan view of another carbon nanotube film having a continuous thinned region in accordance with an embodiment of the present invention. 1 is a schematic perspective view showing the structure of a resistive touch panel of a first embodiment of the present technical solution. [0094] FIG. 1 is a schematic cross-sectional view showing a resistive touch panel of a first embodiment of the present technical solution. 14 is a schematic top plan view of a first electrode plate having a plurality of first electrodes of a resistive touch panel according to a first embodiment of the present technology. [0096] FIG. 15 is a schematic structural view of a first surface of a capacitive touch screen according to a second embodiment of the present technical solution. [0097] FIG. 16 is a schematic diagram of the structure of the second surface of the capacitive touch screen of the second embodiment of the present technical solution. 1 is a schematic side view showing a capacitive touch screen of a second embodiment of the present technical solution. [0099] FIG. 18 is a schematic structural view of a first touch panel of a capacitive touch panel having a plurality of strips of ITO layers according to a second embodiment of the present invention. [Main component symbol description] [0100] Nano carbon nanotube film: 100 099101716 Form No. A0101 Page 31 / Total 56 page 0992003317-0 201126230 [0101] Nano carbon tube primary film: 120 [0102] Nano carbon tube array : 150 [0103] Tensile tool: 110 [0104] Nano carbon tube fragment: 143 [0105] Nano carbon tube: 145 [0106] Substrate: 140 [0107] Adhesive layer: 130 [0108] Laser beam: 170 [0109] Thinned area: 126 [0110] Scanning line: 124 [0111] Long strip area: 128 [0112] Spot: 180 [0113] Laser device: 160 [0114] Touch screen: 200 [0115] First Electrode plate: 212 [0116] Second electrode plate: 214 [0117] Dot-shaped spacer: 216 [0118] Insulation: 218 [0119] First substrate: 220 099101716 Form number A0101 Page 32 / Total 56 page 0992003317- 0 201126230 [0120] First conductive layer: 222 [0121] First electrode '· 224 [0122] Second substrate: 240 _ [0123] Second conductive layer: 242 - [0124] Second electrode: 244 [0125] Transparent protective film: 226 [0126] First sub-electrode: 2240 〇 [0127] Touch screen: 300 [0128] Substrate: 310 [0129] First conductive layer: 322 [0130] Conductive layer: 324 [0131] First electrode: 342 ΓλιοηΊ LU10Z1J Second electrode: 344 [0133] First surface: 312 [0134] Second surface: 314 '[0135] IT0 layer: 326 099101716 Form number A0101 Page 33 / Total 56 pages 0992003317-0

Claims (1)

201126230 七、申請專利範圍: 1 _ 一種觸摸屏’其包括: 一第—電極板,兮筮 ,, μ第一电極板包括一第一基體及一第一導 電層設置在該第—基體的表面;以及 &quot;'電極;^ 第二電極板與第—電極板間隔設置,該 第電極板包括—第二基體及一第二導電層設置在該第二 基體的表面’該第二導電層與該第—導電層相對設置; :中:该第—導電層和第二導電層中至少-導電層包括- ' °構層’ 5彡奈米碳管結構層由若干奈米碳管組成 ’所述若干奈米碳管爲沿同—方向擇優取向排列,其改良 在於’該奈米碳管結構層中具有複數减薄區域該複數减 相域沿所述若干奈米碳管擇優取向的方向排列成至少一 行。 2 請專利範圍第丨項所述的觸摸屏,其中,所述奈米礙 :,。構層中减4區域的可見光透過率比减薄區域外的可見 光透過率高10%以上。 3 ·=申請專利範圍第1項所述的觸摸屏,其中,所述减薄區 域爲通過雷射束掃描形成。 4. =請專利範圍第㈣所述的觸摸屏,其中,所述奈米碳 二構層包括至少_奈求碳管膜,該奈㈣管膜中大多數 的整體延伸方向基本朝同—方向,所述奈米破管 技:本朝同—方向延伸的大多數奈米唉管中每一奈米碳 ;與在延伸方向上相鄰的奈米碳管通過凡德瓦爾力首尾相 5. 如申請專利範圍第4項所述的觸摸屏,其中,所述奈米碳 099101716 表單蝙號Α0101 第34頁/共56頁 09920 201126230 官結構層包括複數奈米碳管膜層叠設置。 6.如申請專利範圍第丨項所述的觸摸屏,其中,所述複數减 薄區域排列成多行,各行的複數减薄區域相互對準設置或 交錯設置。 7 .如申請專利範圍第6項所述的觸摸屏,其中,所述排列成 多订的複數减薄區域爲通過雷射束逐行依次掃描形成。 8 .如申請專利範圍第6項所述的觸摸屏其中,所述排列成 夕行的複數减薄區域中,相鄰兩行的間距爲1微米至5毫米 〇 9 .如申睛專利範圍第6項所述的觸摸屏,其中,所述排列成 多行的複贼薄區域巾,每行相互平行且等間距設置。 10 .如申凊專利範圍第1項所述的觸摸屏,其中,所述排列在 同一行的複數减薄區域相互間隔設置或連續設置。 11 .如申請專利範圍第1項所述的觸摸屏,其+,所述排列在 同一行的複數减薄區域相互等間隔設置。 12 .如申請專利範圍第u項所述丨的觸摸屏_中,所述排列在 同-行的複數减薄區域中任意兩個相鄰的减薄區域間的距 離小於100微米〇 13 . 14 . 15 . 099101716 如申請專利範圍第!項所述的觸摸屏,其中,每個减薄區 域的面積基本相同。 如申請專利範圍第6項所述的觸摸屏,其中,所述複數减 薄區域排列成多行時,每行的减薄區域的數量基本相同。 如申請專利範圍第1項所述的觸摸屏,其中,所述第一電 極板進-步包括兩個第-電極設置在所述第一導電層沿第 -方向的兩端,並與第一導電層電連接,所述第一導電層 爲-奈米碳管結構層,該奈米碳管結構層中的若干奈米碳 表單編號Α0Η11 第35頁/共56頁 0992003317-0 201126230 16 17 18 19 20 21 099101716 官沿第一方向擇優取向排列。 •如申請專利範圍第15項所述的觸摸屏,其中 極板進一步包括兩個第二電極設置在所述第二導電層第㈣電 二的兩端’並與第二導電層電連接,所述第二導. 管;=結構層,該奈米碳管結構層中的若干奈米破 第一方向擇優取向排列,該第—方向基本垂直於第二 方向。 ^請專鄉圍第15項所述的觸摸屏,其中,所述第_· 極與第二電極爲長條形,所述兩個第—電極相互平行且垂兒 直於第-方向,所述兩個第二電極相互平行且 方向。 、乐— 如申請專利範圍第15項所述的觸摸屏,其中,所述每 —電極進一步包括複數第-子電極,該複數第一子電極間 隔設置並與第一導電層電連接,兩個第-電極的第一子電 極--對應設置在所述第—導電層沿第_方向的兩端。 如申請專利範圍第16項所述的_屏,其中,所述每個第 二電極進-步包括複數㈣子電極,該複數第二子電 隔設置並與第二導電層電連接,兩猶第二電極的第二子電 極一一對應設置在所述第二導電層沿第二方向的兩端。 如申請專利範圍第!項所述的觸摸屏,其中,所述奈米碳 管結構層進-步包括—透明高分子材料均勻分佈於 T 所述若 干奈米碳管之間的間隙中。 一種觸摸屏,其改良在於,包括: -基體,該基體包括-第—表面及與該第—表面相對的一 第二表面; -第-導電層及複數第-電極設置在該基體的第—表面 表單編就A0101 第36頁/共56頁 0992 201126230 〇 該複數第一電極設置於所述第一導電層沿第一方向的一端 ,且相互間隔地與該第一導電層電連接;以及 一第二導電層及複數第二電極設置在該基體的第二表面, 該複數第二電極設置於所述第二導電層沿第二方向的一端 ,且相互間隔地與該第二導電層電連接; 其中,該第一方向垂直於第二方向,該第一導電層和第二 導電層中至少一導電層包括一奈米碳管結構層,該奈米碳 管結構層由若干奈米碳管組成,所述若干奈米碳管爲沿同 一方向擇優取向排列,該奈米碳管結構層中定義有複數减 薄區域,該複數减薄區域沿所述若干奈米碳管擇優取向的 方向排列成至少一行。 22 . 如申請專利範圍第21項所述的觸摸屏,其中,所述奈米碳 管結構層包括至少一奈米碳管膜,該奈米碳管膜中大多數 奈米碳管的整體延伸方向基本朝同一方向,所述奈米碳管 膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳 管與在延伸方向上相鄰的奈米碳管通過凡德瓦爾力首尾相 〇 ^ 23 · 連。 如申請專利範圍第21項所述的觸摸屏,其中,該第一導電 層爲一奈米碳管結構層,該奈米碳管結構層中的若干奈米 碳管沿第一方向擇優取向排列。 24 . 如申請專利範圍第23項所述的觸摸屏,其中,該第二導電 層爲一奈米碳管結構層,該奈米碳管結構層中的若干奈米 碳管沿第二方向擇優取向排列。 25 . 如申請專利範圍第21項所述的觸摸屏,其中,所述第二導 電層爲一奈米碳管結構層,該碳奈米結構層中的若干奈米 碳管沿第二方向擇優取向排列,所述第一導電層爲複數間 099101716 表單編號A0101 第37頁/共56頁 0992003317-0 201126230 隔設置的條形銦錫氧化物層,該複數條形銦錫氧化物層相 互平行且平行於第一方向,並且每一條形銦錫氧化物層的 一端與一第一電極電連接。 26 . —種觸摸屏,該觸摸屏包括至少一基體,形成於該基體表 面的至少一透明導電層,以及與該透明導電層電連接的電 極,該透明導電層爲將至少一奈米碳管膜鋪設於所述基體 表面形成,該奈米碳管膜由若干奈米碳管組成,所述若干 奈米碳管爲沿同一方向擇優取向排列*其改良在於,該奈 米碳管膜中定義有複數减薄區域,該複數减薄區域沿該擇 優取向的方向排列成至少一行。 099101716 表單編號A0101 第38頁/共56頁 0992003317-0201126230 VII. Patent application scope: 1 _ A touch screen includes: a first electrode plate, 兮筮, μ, the first electrode plate includes a first substrate and a first conductive layer is disposed on the surface of the first substrate And the second electrode plate is spaced apart from the first electrode plate, the first electrode plate includes a second substrate and a second conductive layer disposed on a surface of the second substrate The first conductive layer is oppositely disposed; : middle: at least the conductive layer of the first conductive layer and the second conductive layer comprises - ' ° layering layer 5 彡 nano carbon tube structural layer composed of several carbon nanotubes The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction, and the improvement is that the carbon nanotube structure layer has a plurality of thinned regions, and the plurality of subtracted domains are arranged along the preferred orientation of the plurality of carbon nanotubes. In at least one line. 2 The touch screen of the third aspect of the patent, wherein the nanometer is:,. The visible light transmittance in the region minus 4 in the layer is 10% higher than the visible light transmittance outside the thinned region. The touch panel of claim 1, wherein the thinned region is formed by laser beam scanning. 4. The touch screen of the fourth aspect of the invention, wherein the nano carbon two-layer layer comprises at least a carbon nanotube film, and a majority of the nano-film film extends substantially in the same direction. The nano tube breaking technique: each nanometer carbon in most of the nanotubes extending in the same direction - the carbon nanotubes adjacent to the extending direction pass through the van der Waals force. The touch screen of claim 4, wherein the nano carbon 099101716 form bat number 101 0101 page 34 / total 56 page 09920 201126230 official structure layer comprises a plurality of carbon nanotube film stacking settings. 6. The touch screen of claim 2, wherein the plurality of thinned regions are arranged in a plurality of rows, and the plurality of thinned regions of each row are aligned or staggered. The touch panel of claim 6, wherein the plurality of thinned regions arranged in a plurality of frames are formed by scanning the laser beams one by one. 8. The touch screen of claim 6, wherein in the plurality of thinned regions arranged in a row, the distance between adjacent rows is 1 micrometer to 5 millimeters 〇9. The touch screen of the item, wherein the plurality of rows of thief thin area towels are arranged in parallel with each other and equally spaced. The touch panel of claim 1, wherein the plurality of thinned regions arranged in the same row are spaced apart from each other or continuously. 11. The touch panel of claim 1, wherein the plurality of thinned regions arranged in the same row are equally spaced from each other. 12. The touch screen according to the scope of claim 5, wherein the distance between any two adjacent thinned regions in the plurality of thinned regions of the same row is less than 100 micrometers 〇13. 15 . 099101716 If you apply for the patent scope! The touch screen of the item, wherein the area of each of the thinned regions is substantially the same. The touch panel of claim 6, wherein when the plurality of thinned regions are arranged in a plurality of rows, the number of thinned regions per row is substantially the same. The touch screen of claim 1, wherein the first electrode plate further comprises two first electrodes disposed at two ends of the first conductive layer along the first direction, and the first conductive The layer is electrically connected, the first conductive layer is a carbon nanotube structure layer, and several nanocarbon forms in the carbon nanotube structure layer are numbered Α0Η11 page 35/56 pages 0992003317-0 201126230 16 17 18 19 20 21 099101716 The officer is ranked in the first direction. The touch screen of claim 15, wherein the electrode further comprises two second electrodes disposed at both ends of the fourth conductive layer and electrically connected to the second conductive layer, The second guide tube is a structural layer, and a plurality of nanometers in the carbon nanotube structure layer are arranged in a preferred orientation in a first direction, the first direction being substantially perpendicular to the second direction. The touch screen according to Item 15, wherein the first and second electrodes are elongated, and the two first electrodes are parallel to each other and perpendicular to the first direction. The two second electrodes are parallel to each other and in the direction. The touch screen of claim 15, wherein each of the electrodes further comprises a plurality of first-sub-electrodes, the plurality of first sub-electrodes being spaced apart and electrically connected to the first conductive layer, two - a first sub-electrode of the electrode - correspondingly disposed at both ends of the first conductive layer in the _ direction. The screen of claim 16, wherein each of the second electrodes further comprises a plurality of (four) sub-electrodes, and the plurality of second sub-electrodes are disposed and electrically connected to the second conductive layer, The second sub-electrodes of the second electrode are disposed in one-to-one correspondence with the second conductive layer at both ends in the second direction. Such as the scope of patent application! The touch panel of the present invention, wherein the step of forming the carbon nanotube structure further comprises: a transparent polymer material uniformly distributed in a gap between the plurality of carbon nanotubes. A touch screen, the improvement comprising: - a substrate comprising a - surface and a second surface opposite to the first surface; - a first conductive layer and a plurality of first electrodes disposed on a first surface of the substrate Forms A0101 Page 36 / Total 56 pages 0992 201126230 〇 The plurality of first electrodes are disposed at one end of the first conductive layer in the first direction, and are electrically connected to the first conductive layer at intervals; and The second conductive layer and the plurality of second electrodes are disposed on the second surface of the substrate, the plurality of second electrodes are disposed at one end of the second conductive layer in the second direction, and are electrically connected to the second conductive layer at intervals; Wherein the first direction is perpendicular to the second direction, and at least one of the first conductive layer and the second conductive layer comprises a carbon nanotube structure layer, the nano carbon tube structure layer is composed of a plurality of carbon nanotube tubes The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction, wherein the carbon nanotube structure layer defines a plurality of thinned regions, and the plurality of thinned regions are arranged along a direction in which the plurality of carbon nanotubes are preferentially oriented. Less line. The touch screen of claim 21, wherein the carbon nanotube structural layer comprises at least one carbon nanotube film, and an overall extension direction of most of the carbon nanotubes in the carbon nanotube film Basically in the same direction, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction pass through the van der Waals force.相〇^ 23 · Even. The touch screen of claim 21, wherein the first conductive layer is a carbon nanotube structure layer, and the plurality of carbon nanotube tubes in the carbon nanotube structure layer are arranged in a preferred orientation along the first direction. The touch screen of claim 23, wherein the second conductive layer is a carbon nanotube structure layer, and the plurality of carbon nanotubes in the carbon nanotube structure layer are preferentially oriented in the second direction arrangement. The touch screen of claim 21, wherein the second conductive layer is a carbon nanotube structure layer, and the plurality of carbon nanotubes in the carbon nanostructure layer are preferentially oriented in the second direction Arranging, the first conductive layer is a plurality of 099101716 form number A0101 page 37 / a total of 56 pages 0992003317-0 201126230 strips of indium tin oxide layer, the plurality of strips of indium tin oxide layers are parallel and parallel In a first direction, one end of each strip of indium tin oxide layer is electrically connected to a first electrode. a touch screen comprising at least one substrate, at least one transparent conductive layer formed on the surface of the substrate, and an electrode electrically connected to the transparent conductive layer, the transparent conductive layer is for laying at least one carbon nanotube film Formed on the surface of the substrate, the carbon nanotube film is composed of a plurality of carbon nanotubes arranged in a preferred orientation in the same direction. The improvement is that a plurality of carbon nanotube films are defined in the film. The thinned regions are arranged in at least one row along the direction of the preferred orientation. 099101716 Form No. A0101 Page 38 of 56 0992003317-0
TW099101716A 2010-01-22 2010-01-22 Touch panel TWI494643B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099101716A TWI494643B (en) 2010-01-22 2010-01-22 Touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099101716A TWI494643B (en) 2010-01-22 2010-01-22 Touch panel

Publications (2)

Publication Number Publication Date
TW201126230A true TW201126230A (en) 2011-08-01
TWI494643B TWI494643B (en) 2015-08-01

Family

ID=45024442

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099101716A TWI494643B (en) 2010-01-22 2010-01-22 Touch panel

Country Status (1)

Country Link
TW (1) TWI494643B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593004B2 (en) * 2005-06-02 2009-09-22 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
TWI313431B (en) * 2006-04-14 2009-08-11 Ritdisplay Corporatio Transparent touch panel
TWM345294U (en) * 2008-05-28 2008-11-21 Young Fast Optoelectronics Co Structure improvement of capacitive touch panel
TWI403928B (en) * 2008-07-11 2013-08-01 Hon Hai Prec Ind Co Ltd Method for making touch panel

Also Published As

Publication number Publication date
TWI494643B (en) 2015-08-01

Similar Documents

Publication Publication Date Title
CN102087555B (en) Touch screen
TWI357167B (en) Touch panel, method for making the same, and displ
TWI354921B (en) Touch panel and displaying device using the same
CN102109917B (en) Touch screen and preparation method thereof
TW201250558A (en) Touch screen
TWI512555B (en) Touch panel and method for making the same
CN102819341B (en) The preparation method of touch panel
JP4944167B2 (en) Manufacturing method of touch panel
TW201421337A (en) Resistance type touch panel
TWI355105B (en) Touchable control device
TW201250336A (en) Method for making touch panel
CN101620491B (en) Touch screen
CN102645989A (en) Control method of touch screen panel
CN102819366A (en) Touch screen panel and touch screen
CN102819337A (en) Production method of touch panels
TWI483271B (en) Touch panel
TWI380079B (en) Method for making liquid crystal display with touch panel
TWI403928B (en) Method for making touch panel
TWI494643B (en) Touch panel
TWI377396B (en) Liquid crystal display with touch panel
TW201250800A (en) Touch panel
TWI447481B (en) Method for making touch panel
CN102819340B (en) The preparation method of touch panel
TW201003500A (en) Liquid crystal display with touch panel
TWI516991B (en) Display device using touch panel