TW201125817A - Carbon materials - Google Patents

Carbon materials Download PDF

Info

Publication number
TW201125817A
TW201125817A TW099125096A TW99125096A TW201125817A TW 201125817 A TW201125817 A TW 201125817A TW 099125096 A TW099125096 A TW 099125096A TW 99125096 A TW99125096 A TW 99125096A TW 201125817 A TW201125817 A TW 201125817A
Authority
TW
Taiwan
Prior art keywords
electrode
carbon material
solvent
discharge
carbon
Prior art date
Application number
TW099125096A
Other languages
Chinese (zh)
Inventor
Junji Suzuki
Kosuke Kurakane
Ichiro Arise
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201125817A publication Critical patent/TW201125817A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This invention provides carbon materials obtained by heating α -naphtholphthalein, metacresol purple, or phenylfluorone at 600 DEG C to 3000 DEG C.

Description

201125817 六、發明說明: 【發明所屬之技術領域】 本發明係關於碳材料。 【先前技術】 舰等碳漏’使用於_子電容11或雜子二次電池的 電極用材料。於日本·平1(M88978號巾,記載—種碳材料及含 ίΐίΐ”負極的轉子二次電池,該碳材料係使鄰甲紛 與m反應而仔到的聚合物以六曱四胺硬化得到的硬化物,於非 活性氣體的氛圍下’於kkktc:加熱而獲得,該鐘離子二次電池的 起始充放電電容為341mAh/g。 【發明内容】 本發明提供以下: &lt;1&gt;一^碳材料’係藉由將α_萘酚酞(a_naphth〇lphthalein)、間 甲酚紫或苯芴酮(phenylfluorone)於600〜3000°C加熱而獲得。 &lt;2&gt;—種電極材料,包含〇之碳材料與黏結劑與溶劑。 &lt;3&gt;如&lt;2&gt;之電極材料’其中黏結劑為i化合物的聚合物。 &lt;4&gt;如&lt;2〉或&lt;3&gt;之電極材料,其中溶劑係選擇由醇溶劑 '醯 胺溶劑、酮溶劑、酯溶劑、胺溶劑、醚溶劑及水構成之群組中至 少1種。 &lt;5&gt;—種電極,包含&lt;1&gt;之碳材料。 &lt;6&gt;—種鋰離子二次電池,包含&lt;5&gt;之電極。 &lt;7&gt;—種鋰離子電容器,包含&lt;5&gt;之電極。 &lt;8&gt;—種碳材料之製造方法,具有以下步驟:將α-萘酚酞、間 曱酚紫或苯芴酮於600〜3000°C加熱。 &lt;9〉如&lt;8&gt;之礙材料之製造方法,係於非活性氣體環境下進行 加熱。 201125817 【實施方式】 (實施發明之最佳形態) 本發明之碳材料,係藉由將α_萘酚酞、間甲酚紫或苯芴酮於 600〜3000°C加熱而獲得。較佳於8〇〇〜12〇〇。〇,更佳於9〇〇~11〇〇〇c ', 將α-萘盼酞、間曱齡紫或苯芴酮加熱。 α-萘紛酜[3,3·雙(4-經基萘基)異苯并呋喃部办酮],係具有 以下構造的化合物,可使用市售品,也可使用依照任意公知^方 法製造者。 “201125817 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to carbon materials. [Prior Art] A carbon leakage such as a ship is used for the electrode material of the _ sub-capacitor 11 or the hybrid secondary battery. In Japan, a flat rotor (M88978, which describes a carbon material and a negative electrode containing a negative electrode), the carbon material is obtained by reacting a polymer which is reacted with m and hexamethylenetetramine. The cured product was obtained by heating in an atmosphere of an inert gas at kkktc: the initial charge and discharge capacity of the ion secondary battery was 341 mAh/g. [Invention] The present invention provides the following: &lt;1&gt; The "carbon material" is obtained by heating α_naphth〇lphthalein, m-cresol purple or phenylfluorone at 600 to 3000 ° C. &lt;2&gt; - an electrode material comprising ruthenium The carbon material and the binder and the solvent. <3> The electrode material of <2> wherein the binder is a polymer of the compound i. &lt;4&gt; The electrode material of &lt;2&gt; or &lt;3&gt; The solvent is selected from at least one of the group consisting of an alcohol solvent, a guanamine solvent, a ketone solvent, an ester solvent, an amine solvent, an ether solvent, and water. <5> An electrode comprising a carbon material of &lt;1&gt;&lt;6&gt; A lithium ion secondary battery comprising an electrode of &lt;5&gt;&lt;7&gt; A lithium ion capacitor comprising the electrode of &lt;5&gt;. &lt;8&gt; - A method for producing a carbon material, comprising the steps of: heating α-naphtholphthalein, m-nonylphenol violet or benzophenone at 600 to 3000 °C &lt;9&gt; The method for producing a barrier material according to &lt;8&gt; is heated in an inert gas atmosphere. 201125817 [Embodiment] (Best Mode for Carrying Out the Invention) The carbon material of the present invention is Α-naphthol quinone, m-cresol purple or benzophenone is obtained by heating at 600 to 3000 ° C. It is preferably 8 〇〇 to 12 〇〇. 〇, more preferably 9 〇〇 to 11 〇〇〇 c ', Heating α-naphthoquinone, methylene violet or benzophenone. α-naphthalene [3,3·bis(4-pyridyl)isobenzofuran), having the following structure As the compound, a commercially available product may be used, or a manufacturer according to any known method may be used.

間甲驗紫[3,3'雙(4·經基-2-曱基苯基)-3Η-2,1-笨并氧雜㈣ 1,1-二氧化物],係具有以下構造的化合物,可使用市售品,:讦 使用依照任意公知的方法製造者。间 验 [ [ [3,3' bis (4 · mercapto-2-mercaptophenyl)-3 Η -2, 1- benzoxanthene (tetra) 1,1-dioxide], a compound having the following structure A commercially available product can be used, and the product can be manufactured by any known method.

ΟΗ 下構造 L造者。 苯场酮[2,6,7-三經基冬苯基_班_〇占4員-3__],係具有以ΟΗ Construction L producer. Benzene ketone [2,6,7-trisyl phenyl phenyl _ _ _ _ 4 _ 3__], has

201125817 可將選自由α-萘酚酞、間曱酚紫及苯芴_構成之群組中的2 種混合使用。也可將α-萘酚酞、間曱酚紫及苯芴酮混合使用。 α-萘酚酞、間曱酚紫或苯芴酮的加熱,於氮氣、氬氣等非活 性氣體的氛圍下進行較佳。加熱時間於1分鐘至24小時的範圍較 佳。加熱時的加熱溫度可固定’也可在600〜3000ΐ的範圍内變化。 可將裝有心萘_、間帽魏容氣體 為非活性氣體後’將谷盗密閉並加熱,也可一面對於裝笑齡 酜、間曱紛紫或苯苟酮的容器通入非活性氣體一面加^。不- 底窒加熱’通常使用旋轉寞、親 底窯(rollerhearthkhn)、推板窯(pUsherklin)、多段 古 使用锻燒爐時,例如在&amp;堯爐^入: ΪΪ進Π ,將錢爐内的氣體取代為非活性氣 就α-萘酚酞而言,可使用預先在氧化性氣體的環境下,於 400 C以下加熱α-萘而得到的心萘紛酜 紫 萘贿、間m紫或苯二子I化者,及/或《-的加熱,亦以使用旋轉空、化夕者。於400°c以下 高溫煅燒爐等煅燒爐進行較佳。…推板'、、、、夕段爐、流動爐、 層電容器的電:ί用=:池:壓電元件用感應器、電雙 燃料電池的電極用材料&amp;於’ ^一次電池、鈉離子二次電池及 劑等,尤期,雜用的觀;層__體;吸附 納放出鋰離子的電極材料。子—_人笔池或鋰離子電容器等的可吸 碳材料,蝴峡__恤_ 4〜¥的 201125817 並。適#的粉碎方法,例如使財射研磨等衝 f擦圓盤研磨機及喷射研磨機等微粉碎用的粉碎 ^機置 二佳。使用球磨時,由避免金屬粉混义 种之無,使用氧他、瑪料非麵製的球或 接著,說明包含碳材料的電極。 容器用電極’適於作為雜子二次電池的負極或姆子電 為了使谷易成形為電極,通常使用黏結劑。 物成的=將包含碳材料、黏結劑等的混合 祕i發明,電極’也可_將包含碳㈣、祕航溶劑的電 製」材料、黏結劑及溶劑的電極材料揉捏,再乾燥以 i = 將得。到的片材隔導電性黏接劑貼合在集電體上 為社im、並乾燦的方法製造。又,也可利用將包含礙材料、 的電極材料成形在集電體上後,將溶劑除去得到片 材科滅乡财向料的方法製造電極。 劑的電電極之製造’適於使用包含碳材料及黏結劑及溶 極為片狀時,其厚度以5〜刪师的範圍較佳。 令料’例如:鎳、銘、鈦、銅、金、銀、翻、銘合 m專t利用電漿熱喷塗或電弧熱噴塗而以鎳、鋁、鋅、 乙说71 或此等的合金被覆的碳材或活性碳纖維;及由橡膠或苯 劑分散====物(議)等樹脂與導電劑構成,導電 集電體的形狀,例:箔狀、平板狀、網格狀(mesh)、網狀、板 6 201125817 條(lath)狀、衝頭(punching)狀、壓花狀,及此等組合成者(例如 格狀平板狀)。 ’ 也可利用钱刻處理,在集電體表面形成波形面。 黏結劑,例如氟化合物的聚合物。氟化合物,例:丙烯酸氟 = C1-C18烷酯;甲基丙烯酸氟化C1_C18烷酯;丙烯酸全氟十二 酯、丙烯酸全氟辛酯、丙烯酸全氟丁酯等丙烯酸全氟烷酯;甲基丙 烯酸全氟十二酯、甲基丙烯酸全氟辛酯、曱基丙烯酸全氟丁酯等 ^基丙烯酸,氟烷酯;丙烯酸全氟己基乙酯、丙烯酸全氟辛基乙酯 等丙,酸全氟烷基取代烷酯;甲基丙烯酸全氟己基乙酯、曱基丙烯 ,全,辛基乙酯等甲基丙烯酸全氟烷基取代烷酯;丙烯酸全氟十 一烷氧基乙酯、丙烯酸全氟十二烷氧基乙酯等丙烯酸全氟烷氧基 院醋;甲基丙烯酸全氟十二錄基乙s旨、甲基丙烯酸全氟十二烧&amp; 基乙酯,甲基丙烯酸全氟烷氧基烷酯;巴豆酸氟化C1_C18烷酯. 馬來酸氟化C1_C18絲;富馬酸氟化a_C18細旨;衣康酸說化 醋;全氣!^基乙稀等具有具1〜17個氣原子的氟化烧基的 及四氣乙烯、三氟乙烯、偏氟乙稀、六氟丙烯等具有 〜〇個氟原子且該氟原子鍵結於雙鍵碳的C2_C10烯烴。 ㈣例如湘包含乙稀性雙鍵且不含氟原子的單體的加 t &amp; *衣^3的聚合物。該單體,例如:丙稀酸甲酯、丙烯酸乙 ,、丙烯酸丁 1旨、丙烯酸異丁酯、丙烯酸2_乙基己自旨、丙稀酸显 、丙烯酸月桂醋、丙婦酸十八酯等C1-C22丙烯酸烷酉旨.曱^ ΐί酸::旨、T基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸ί 月二、C2_乙基己sl、f基丙烯酸異癸,、甲基丙婦酸 己@^C3d丙十八醋等C1_C22甲基丙烯酸垸醋;丙烯酸環 寺C3-C22丙烯酸環烷酯;甲基丙烯酸環己酯等C3 、丙稀酸苯乙酉旨等具有芳香環之丙稀酉ίΐ 二烯酸I基丙稀酸苯乙酿等具有琴香環之曱基丙稀酸 酸之C2^4-二,、丙稀酸2_經基丙醋、二乙二醇單醋等丙稀 W美乙r甲其函二f或二(C2_C4伸絲)二醇單暫甲基丙稀酸 酉曰甲基丙烯酸2-羥基丙酯、二乙二醇單酯等曱基丙烯 201125817 酸之C2-C4伸烷基二醇或二(C2-C4伸烷基)二醇單酯;丙烯酸之(聚) 甘油單酯((聚)甘油)之聚合度為^4);曱基丙烯酸之(聚)甘油單醋 ((聚)甘油)之聚合度為1〜4);丙烯酸之(聚)乙二醇二酯((聚)乙二醇之 聚合度為1〜100);甲基丙烯酸之(聚)乙二醇二酯((聚)乙二醇之聚合 度為1〜100);丙烯酸之(聚)丙二醇二酯((聚)丙二醇之聚合度為 1〜1〇〇);曱基丙烯酸之(聚)丙二醇二酯((聚)丙二醇之聚合^為 1〜100);二丙烯酸2,2-雙(4-羥乙基苯基)丙酯;二曱基丙烯酸2,^雙 (4-羥乙基苯基)丙酯;三羥曱基丙烷三丙烯酸酯;三羥甲基丙烧’三$ 基丙稀酸酯;丙烯醯胺、N-經曱基丙烯酸胺、二丙酮丙烯醯胺等丙 烯醯胺系單體;曱基丙烯醯胺、N-羥甲基丙烯醯胺、二丙酮曱基丙 烯醯胺等甲基丙烯醯胺系單體;丙烯腈、丙烯酸2_氰基乙酯、2_氰 基乙基丙烯醯胺、甲基丙稀腈、甲基丙烯酸2_氰基乙醋等具有氰 基之單體;苯乙烯、α-甲基苯乙烯、乙婦基曱苯、對經基苯乙烯、 -乙烯基苯等苯乙烯系單體;丁二烯、異戊二烯、氯丁二稀等碳數 4〜12之烧一烯等二稀系單體;乙酸乙烯醋、丙酸乙烯酯、丁酸乙稀 酯、辛酸乙烯酯等C2-C12羧酸之乙烯酯、乙酸烯丙酯、丙酸烯丙 酯、辛酸烯丙酯等C2-C12羧酸之烯丙酯;乙酸曱基烯丙酯、丙酸 ^基,,酯、辛酸甲基烯丙酯等C2_C12羧酸之曱基烯丙酯等羧酸 烯基系單體;丙烯酸環氧丙酯、烯丙基環氧丙醚、甲基丙烯酸環氧 丙酯、甲基烯丙基環氧丙醚等具有環氧基的單體;乙烯、丙烯 丁,、1-辛烯、1-十二烯等以⑴單烯煙;氯乙烯、偏氯乙烯等具 有氯原子、溴原子或碘原子的單體;丙烯酸;甲基丙烯酸;及,丁^ 烯、異戊二烯等具有共軛雙鍵的單體。 ’ — 又:利用加成聚合製造的聚合物,也可為乙浠_乙酸乙烯酯共 聚物、苯乙烯-丁二烯共聚物、乙烯_丙烯共聚物等由多數單體構^ 之共聚物。又,羧酸乙烯酯之聚合物,如聚乙烯醇等,也可經 分或完全驗化。 結合體也可為由氟化合物及包含乙烯性雙鍵、不含氟原子 單體構成之共聚物。 μ 其他黏結劑,例如:澱粉、曱基纖維素、羧基曱基纖維素、 201125817 羥基甲基纖維素、羥基乙基纖維素、羥基丙基纖維素、羧基曱基 ,基乙基纖維素、硝基纖維素等多糖類或其衍生物;苯酚樹脂;三聚 氰胺樹脂;聚胺基甲酸酯樹脂;脲樹脂;聚醯亞胺樹脂;聚醯胺_醯亞 胺樹脂;石油瀝青;及煤瀝青。 合物氣化合物之聚合物較佳’為偏氣乙稀之聚 也可使用多數黏結劑。 ,合於電極中之黏結劑的量,相對於碳材料_重量份,通 韦為0.5〜30重量份,較佳為2〜3〇重量份。 〜使用可溶解黏結_有機溶劑或水。具體而言,例 曱醇等醇溶劑、队甲基_2_财細、二 酮ί、容外乙㉒甲#—甲基乙醯胺等醯胺溶劑、曱乙酮、環己嗣等 甲烯酸曱峰旨溶劑、二乙基三胺、__二 , Ϊ 氧乙烧(她知_、四1^等 時,也可狀触上混合使用。使用水作為溶劑 化。溶劑之^用Ϊ,相黏劑等而以SBR等乳膠將碳材料漿狀 對辦侧1重量份,較佳為⑽〜2重量份。 電池極的=池。〜 的兩極進行鋰的氧化還;,,解液及負極’係在正極與負極 本發放出電能的電池。 使用。 人電池中,通常將本發明的電極作為負極 正極,通常包含隹 材及黏結劑,可吸可吸納、放出轉子的材料、導電 合物,係載持在集電體y轉子的材料、導電材及_劑的混 。。及可:成包含選自V、Mn、Fe、 及链fl。於平蝴“ 201125817 ,m以外的過渡金屬雜、與鐘的複合氧化物等以α-·〇2 31構以為基礎的層狀賴合氧化物、麵尖晶石等以尖晶石構造 為基礎的鐘複合氧化物。 用於正極的黏結劑,例如與前述電極中的黏結劑同樣者。 導電材,例如:本發明之碳材料、天然石墨、人造石墨、煤 焦及碳黑。此等可單獨使用’也可如人造石墨及碳黑的混合物, 使用2種以上的混合物。 f解液,例如:藉由將_轉於有機溶麟到的非水電解 質^^賴’例如:Licl〇4、LiPF6、心心、娜仏、廳4、 L1CF3SO3 ^ LiN(S02CF3)2 &gt; LiC(S02CF3)3 &gt; Li2B10Cl10 ^ LiAlCl4 &gt; ^ 級月曰肪私羧酸鐘鹽,及此等的混合物。其中,選 LiSbF6^BF4、LiCF3S〇3、LiN(CF3 s〇2)2 及 UC(CF3 “ 之群組中的至少含有1個氟的鋰鹽較佳。 有機溶劑,例如··碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、 5酸,:基碳酸酯、^三㈣],3-二氧雜戊環冬酮、 ,二:氧基羰基氧)乙院等碳酸醋溶劑、以-二甲氧基乙烧、U- 、五敦丙基㈣、2,2,3,3,氟丙基二氟帽、四氫 夫南、2-甲基四虱呋喃等醚溶劑、甲酸甲酯、乙酸甲酯、 等醋溶劑;乙腈、丁腈等腈溶劑、聯二甲基甲醯胺、nn_二甲基 乙=等酿胺溶劑、3·甲基_2_聘。坐酮等胺曱酸醋溶劑、環丁砜 亞砜、u_丙烧續内酯等含硫溶劑,及含有氟 浴劑。此等可單獨使用’也可混合2種以上使用, 但以〉《;*合2種以上使用較佳。 分離件聽作雜及對極分離,並簡電解液者,通常使用 八有離子通透度、既定的機械強度及絕緣性的膜。 把例如:由螺f (visc〇se ray〇n)、天然纖維素等製作的 ί尸^素,或聚醋等纖維製作的混紙;電解紙;牛皮紙㈣Ρ_; i匕ίϋ乙ΐ不織布、聚丙婦不織布、聚醋不織布、玻璃纖 二ί ii 12、.芳酉_纖維、聚對苯二甲酸丁二醇醋不織布、 ,、王方香^義等不織布;偏氣乙烯、四氟乙稀、偏氣乙稀 201125817 與六氟丙烯的共聚物;氟橡膠等含氟樹脂、多孔質聚乙烯、 聚丙烯、多孔質聚酯等多孔質膜。 貝 分離件,也可為由石夕土等陶莞粉末粒子與前述黏結劑構成的 成形物。該成形物,通常與作用極及對極兩者—體成形。 烯或聚丙烯構成的分離件,為了提高其親水性,也可含 = f生劑或石灶粒子。分離件,也可更包含_時有機 甲酸二丁酯(DBP)等可塑劑。 州本一 分離件也可使用質子傳導型聚合物。 ^中,較佳為:電解紙、由㈣、天_維素賴作的紙、 、馬尼拉紙、峨維素絲g旨等纖維製作的 不織^、聚丙烯不織布、聚自旨不織布、馬尼拉麻片及玻顧=沐 ,離件的孔徑,通常為。分離件的纖通 1〜300μιη,較佳為5〜30μηι。 逋吊為 也可為將分離件中微細孔的比例不同的多數 者。尤佳為由聚婦烴多孔質膜與聚g旨樹脂多 ,層 本發明之轉子二:域池,可將以m之分離件。 及負極依照常法組裝製造。本發明之電極 ,解液 的循環特性優異。 、宣禝充電、放電時 ιΐΐ明之電極,也可作為_子電容器的電極。舰 解質離子的吸附脫附進行充放電: 常密度的電容器。本發明之轉子ΐ容i s 韦將本發明的電極作為負極使用。 丁电谷态,通 的混合物係載持在集電體上。 材枓、V電材及黏結材 可將鐘離子、四氟觸酸鹽等陰離子 如.碳的同素異性體,可廣泛使用在電雙二的材料’例 2生物質。碳同素異性體的具體例 5用的電極 中,活性碳較佳。 吏用此專的粉末或纖維。其 201125817 樣者 正極包含_結劑,例如與前述本發日狀電極巾的黏結劑同 、正極包含的導電材,例如:本發明之碳材料、天然石墨 k石墨煤焦及碳黑。此等可單獨使用,也可如人 的混合物,使用2種以上的混合物。 幻、反裏 瓣子電容器的電解液,例如較佳為使用使與上述鐘 一 次電池的電解朗樣_鹽溶解於有機溶劑而成的非水電解質&amp; 同樣容射,也可包含與上频軒二找池的分離件 本發明之鋰離子二次電池,可將上述正極、分離件、 法組裝製造。本發明之即使重複使用也顯示 優,、的丨生此。又,包含本發明之碳材料的電極的鋰離子 由於,極的電阻小,因此可麟其輸出密度的提^ ° 實施例 實r例更詳細說明本發明,但是本發明不限於此等 只她巧貫鈿例中,份及%,如無特別指明,意指重量基 貫施例1 卞 W 有α_萘酚酞(由和光純藥工業(股)購入的試藥特級)的炮於 lg ^火/、將ΐ虱流通到煅燒爐内,並同時於900。〇保持1小時。之 ϋϊ顿料。將制的储料以球純(刺製球, 28rpm ’ 5为鐘)粉碎,得到粉末狀的碳材料。 實施例2 樣進為_ ’除此•與實施例1同 實施例3 將實施例1中的α_萘酿改為間曱紛紫(由和光純藥工業(股) 12 201125817 購入的試藥特級),除此以外與實施例1同樣進行,得到粉末狀的 碳材料。 實施例4 將實施例3中的加熱溫度改為1000°C,除此以外與實施例3 同樣進行,得到粉末狀的碳材料。 ' ' 實施例5 將實施例3中的加熱溫度改為1100°C,除此以外與實施例3 同樣進行,得到粉末狀的碳材料。 實施例6 將實施例1中的α-萘酚酞改為苯芴酮(由東京化成工業(股)購 入的試藥,等級GR),除此以外與實施例1同樣進行,得到粉末 狀的碳材料。 實施例7 將實施例6中的加熱溫度改為1000°c,除此以外與實施例6 同樣進行,得到粉末狀的碳材料。 、 實施例8 將實施例6中的加熱溫度改為11〇(rc,除此以外與實施例6 同樣進行,得到粉末狀的碳材料。 實施例9 將實施例6中的加熱溫度改為12〇(rc,除此以 同樣進行,得到粉末狀的碳材料。 實施例10 在實施例1得到的碳材料91份與聚偏氟乙烯(PVDF)9 體 ii fi物r加入適量的n-曱基-2_咖各細,將得到的混合 =進仃捏將得到的混合_關刀塗佈法,塗佈在厚度為 焊電體’於5G°c乾燥2小時。將乾 in = .45咖的_,於赋真空乾燥8小時, 于^的電極中含有碳材料及pvdf的混合物4.7吨。 紙工1==到的電極,正極使用鋰箔,分離件使用曰本高度 、、業么司1 F40-50’電解液使用濃度lm〇1/]l的LipFV碳酸丙烯 201125817 酯’並使用CR2032型(IEC/JIS規格)的鈕扣型電池,製作2極式 電池。 測疋所製作的鈕扣型電池的初次放電電容,為376mAh/g,初 次充放電效率(初次放電電容對初次充電電容的比例),為69%。 在此,製作的電池的充放電電容,係使用充放電評價裝置(東 洋系統(股)製「TOSCAT (註冊商標&gt;3100」),依照下列測定方法 測定。 &lt;測定方法&gt; 以電流密度60mA/g,進行電池之定電流充電至電壓到達〇v 為止’之後,於0V進行定電位充電。於電流密度60mA/g之定電 ΛΙΙ·充電與在0V的定電位充電的合計時間為12小時。累加於〇γ· 之疋電位充電中的電量,得到的值作為初次充電電容。於的定 電=充電結束後,以電流密度60mA/g的定電流,進行電池放電至 電壓達1.5V為止。累加該放電中的電量,得到的值作為初次放電 電容。 實施例11 ^於實施例10,使用實施例2得到的碳材料取代使用實施例1 得到的碳材料,除此以外與實施例10同樣實施,製作2極式電池。 依照貫施例10 §己載的測定方法,測定製作的電池的初次放電電容 與初次充電電容,並求取初次充放電效率。結果如表χ所示。 實施例12 於貫施例10 ’使用實施例3得到的碳材料取代使用實施例1 得到的碳材料’除此以外與實施例1〇同樣實施,製作2極式電池。 依照實施例10記載的測定方法,測定製作的電池的初次放電電容 與初次充電電容,並求取初次充放電效率。結果如表丨所示。 實施例13 於實施例10 ’使用實施例4得到的碳材料取代使用實施例! 得到的碳材料,除此以外與實施例1〇同樣實施,製作2極式電池。 依照實施例10記載的測定方法,測定製作的電池的初次放電電容 與初次充電電容,並求取初次充放電效率。結果如表1所示。 14 201125817 實施例14 於實施例10,使用實施例5得到的碳材料取代使用實施例1 得到的碳材料,除此以外與實施例10同樣實施,製作2極式電池。 依照實施例10記載的測定方法,測定製作的電池的初次放電電容 與初次充電電容’並求取初次充放電效率。結果如表1所示。 實施例15 於實施例10 ’使用實施例6得到的碳材料取代使用實施例1 得到的碳材料,除此以外與實施例10同樣實施,製作2極式電池。 依照實施例10記載的測定方法’測定製作的電池的初次放電電容 與初次充電電容,並求取初次充放電效率。結果如表1所示。 實施例16 於實施例10 ’使用實施例7得到的碳材料取代使用實施例1 得到的碳材料,除此以外與實施例10同樣實施,製作2極式電池。 依照實施例10記載的測定方法’測定製作的電池的初次放電電容 與初次充電電容,並求取初次充放電效率。結果如表丨所示。 實施例17 於實施例10,使用實施例8得到的碳材料取代使用實施例1 得到的碳材料,除此以外與實施例1〇同樣實施,製作2極式電池。 依照實施例10記載的測定方法,測定製作的電池的初次放電電容 與初次充電電容’並求取初次充放電效率。結果如表1所示。 實施例18 於實施例10 ’使用實施例9得到的碳材料取代使用實施例1 得到的碳材料,除此以外與實施例1〇同樣實施,製作2極式電池。 依照實施例10記載的測定方法,測定製作的電池的初次放電電容 與初次充電電容’並求取初次充放電效率。結果如表1所示。 [表1] 便用的碳材料 初次放電電容 (mAh/g) 初次充放電效率 (%) 貫施例K) 施例11 貫施例1 376 69 晉施例2 364 72 ..I施例▼ 12 實施例3 420 71 貫施例13 實施例4 74 15 201125817 ^施例14 1包例15 實施例201125817 Two kinds selected from the group consisting of α-naphthol quinone, m-quinone phenol violet and benzoquinone _ can be used in combination. It is also possible to use a mixture of α-naphthol quinone, m-quinone phenol purple and benzophenone. The heating of α-naphtholquinone, m-quinone violet or benzophenone is preferably carried out in an atmosphere of a non-active gas such as nitrogen or argon. The heating time is preferably in the range of 1 minute to 24 hours. The heating temperature at the time of heating can be fixed' or can be changed within the range of 600 to 3000 Torr. After the heart naphthalene _, the cap weirong gas is an inert gas, the thief can be sealed and heated, or the non-reactive gas can be introduced into the container containing the scorpion scorpion, the purple sulphur or the benzophenone. Add ^. No - Bottom heating 'usually using rotary boring, roller hearthkhn, pusher kiln (pUsherklin), multi-stage ancient use forging furnace, for example in &amp; 尧 furnace ^: ΪΪ Π, will be in the furnace The gas is replaced by an inert gas. In the case of α-naphthol quinone, a naphthalene quinone, a m-purple or a benzene obtained by heating α-naphthalene at a temperature of 400 C or less in an oxidizing gas atmosphere may be used. The two-child I, and / or "- heating, also use the rotating air, the eve. It is preferred to use a calciner such as a high temperature calciner at 400 ° C or lower. ...Pushing plate ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ion secondary battery and agent, etc., special purpose, misuse of the view; layer __ body; adsorbed nano-electrode material. Sub-_People pool or lithium ion capacitors such as carbon absorbing materials, gorge __ shirt _ 4 ~ ¥ 201125817 and. For the pulverization method, for example, it is preferable to use a pulverizing machine such as a grind polishing machine or a pulverizing machine such as a jet mill. When ball milling is used, the electrode containing the carbon material is explained by avoiding the absence of metal powder, using a ball made of oxygen or a non-face material. The electrode for a container is suitable as a negative electrode or a sub-electrode of a hybrid secondary battery. In order to form the electrode into an electrode, a binder is usually used. The composition of the product will contain a carbon material, a binder, etc., and the electrode can also knead the electrode material containing the carbon (four), the solvent of the secret solvent, the binder and the solvent, and then dry. i = will be. The obtained sheet-separated conductive adhesive is bonded to the current collector to be manufactured by a method of drying and drying. Further, an electrode may be produced by a method in which an electrode material containing a barrier material is formed on a current collector, and then the solvent is removed to obtain a sheet material. The manufacture of the electrode of the agent is preferably in the range of 5 to 5 when the carbonaceous material and the binder are used and the sheet is melted. Order materials 'for example: nickel, Ming, titanium, copper, gold, silver, turn, Ming M, use plasma thermal spray or arc thermal spray to nickel, aluminum, zinc, B, 71 or other alloys a coated carbon material or activated carbon fiber; and a resin such as rubber or benzene agent dispersion ==== object (representative) and a conductive agent, the shape of the conductive collector, for example: foil, flat, mesh (mesh) ), mesh, plate 6 201125817 (lath) shape, punch (punching) shape, embossed shape, and these combinations (such as lattice flat shape). ' You can also use the money to process, forming a wave surface on the surface of the current collector. A binder, such as a polymer of a fluorine compound. Fluorine compound, for example: acrylic acid fluoride = C1-C18 alkyl ester; methacrylic acid fluorinated C1_C18 alkyl ester; acrylic acid perfluorododecyl acrylate, perfluorooctyl acrylate, perfluorobutyl acrylate and other perfluoroalkyl acrylate; methyl Acetyl perfluorododecyl acrylate, perfluorooctyl methacrylate, perfluorobutyl methacrylate, fluoroalkyl ester; perfluorohexyl acrylate, perfluorooctyl acrylate, etc. Fluoroalkyl-substituted alkyl ester; perfluorohexylethyl methacrylate, mercapto propylene, all, octyl ethyl ester, etc., perfluoroalkyl substituted alkyl methacrylate; perfluoroundecyloxyethyl acrylate, acrylic acid Acetyl perfluoroalkoxy vinegar such as perfluorododecyloxyethyl acrylate; perfluoro-t-butyl methacrylate methacrylate, perfluoro dimethyl methacrylate & ethyl ester, methacrylic acid Fluoroalkoxyalkyl ester; crotonic acid fluorinated C1_C18 alkyl ester. Maleic acid fluorinated C1_C18 silk; fumaric acid fluorinated a_C18 fine; itaconic acid said vinegar; whole gas! ^ base ethylene, etc. ~17 gas atoms of fluorinated base and four gas ethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropylene, etc. ~〇 the fluorine atoms and fluorine atoms bonded to carbon olefinic double bond C2_C10. (4) A polymer obtained by adding a monomer having a vinyl double bond and having no fluorine atom, for example, t &amp; The monomer, for example, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, acrylic acid, acrylic vinegar, octadecyl acrylate Such as C1-C22 alkyl acrylate 曱 ΐ ΐ ΐ acid:: T, ethyl methacrylate, butyl methacrylate, methacrylic acid ί 二, C 2 _ ethyl hex s, Methyl propyl benzoic acid @^C3d, 188 vinegar, etc. C1_C22 methacrylic acid vinegar; Acrylic ring C3-C22 cycloalkyl acrylate; C3 methacrylate, acetophenone, etc.丙 丙 丙 酉 ΐ 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 二烯 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有Alcohol, single vinegar, etc., propylene, W, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y Propylene 201125817 acid C2-C4 alkylene glycol or di(C2-C4 alkylene) glycol monoester; acrylic acid (poly) monoglyceride ((poly)glycerol) polymerization degree is ^4); Mercaptoacrylic acid (poly) glycerol mono vinegar (( Glycerol) has a degree of polymerization of 1 to 4); acrylic acid (poly)ethylene glycol diester (polymerization degree of (poly)ethylene glycol is 1 to 100); (poly)ethylene glycol diester of methacrylic acid ((Polyethylene glycol) degree of polymerization is 1~100); acrylic acid (poly) propylene glycol diester (polymerization degree of (poly) propylene glycol is 1~1 〇〇); methacrylic acid (poly) propylene glycol diester (Polymerization of (poly)propylene glycol ^1~100); 2,2-bis(4-hydroxyethylphenyl)propyl acrylate; dimercaptoacrylic acid 2,^bis(4-hydroxyethylphenyl) Propyl ester; trihydroxymethyl propane triacrylate; trimethylolpropane triacetate; acrylamide, N-propyl methacrylate, diacetone acrylamide, etc. Methyl acrylamide monomer such as mercapto acrylamide, N-methylol acrylamide, diacetone decyl acrylamide; acrylonitrile, 2-cyanoethyl acrylate, 2-cyanoethyl a monomer having a cyano group such as acrylamide, methyl acrylonitrile, 2-cyanoethyl methacrylate; styrene, α-methyl styrene, ethoxylated benzene, p-vinyl styrene, - Styrene monomer such as vinyl benzene; butadiene, isoprene, chloroprene a divalent monomer such as a monoethylene having 4 to 12 carbon atoms; a vinyl ester of a C2-C12 carboxylic acid such as vinyl acetate vinegar, vinyl propionate, ethylene butyrate or vinyl octanoate; Allyl C2-C12 carboxylic acid such as allyl propionate or allyl octanoate; decyl olefin of C2_C12 carboxylic acid such as decyl allyl acetate, propionate, ester, methyl allyl octanoate a carboxylic acid alkenyl monomer such as propyl ester; a monomer having an epoxy group such as glycidyl acrylate, allyl epoxidized ether, glycidyl methacrylate or methallyl epoxidized ether ; ethylene, propylene, 1-octene, 1-dodecene, etc. (1) monoolefinic smoke; vinyl chloride, vinylidene chloride and other monomers having a chlorine atom, a bromine atom or an iodine atom; acrylic acid; methacrylic acid; And a monomer having a conjugated double bond such as butylene or isoprene. Further, a polymer produced by addition polymerization may be a copolymer composed of a plurality of monomers such as an ethylene-vinyl acetate copolymer, a styrene-butadiene copolymer, or an ethylene-propylene copolymer. Further, a polymer of a vinyl carboxylate such as polyvinyl alcohol may also be subjected to partial or complete verification. The conjugate may also be a copolymer composed of a fluorine compound and a monomer containing an ethylenic double bond and a fluorine-free atom. μ Other binders, for example: starch, mercaptocellulose, carboxy-mercaptocellulose, 201125817 hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethyl, ethyl ethylcellulose, nitrate Polysaccharides such as cellulose or derivatives thereof; phenol resin; melamine resin; polyurethane resin; urea resin; polyimine resin; polyamine amine quinone imine resin; petroleum pitch; The polymer of the gas compound is preferably 'polyethylene glycol'. It is also possible to use a plurality of binders. The amount of the binder incorporated in the electrode is from 0.5 to 30 parts by weight, preferably from 2 to 3 parts by weight, based on the weight of the carbon material. ~ Use soluble binder _ organic solvent or water. Specifically, an alcohol solvent such as sterol, a methyl group of a quinone, a diketone, a diketone, a benzoic acid, a phthalic acid, a ketamine, a cyclohexanone, etc. Solvents of enoate, diethyltriamine, __2, oxime oxyethylene (when she knows _, 1,4-1^, etc., can also be used in combination. Water is used as solvation. Ϊ, a binder, etc., and a slurry of the carbon material in a slurry such as SBR, 1 part by weight, preferably (10) to 2 parts by weight. The battery pole = pool. The two poles are subjected to oxidation of lithium; The liquid and the negative electrode are batteries that emit electric energy in the positive electrode and the negative electrode. In the human battery, the electrode of the present invention is generally used as a negative electrode positive electrode, and generally includes a coffin and a binder, and can absorb and release the material of the rotor. The conductive compound is a mixture of a material of the current collector y rotor, a conductive material, and a dopant, and may be selected from the group consisting of V, Mn, Fe, and chain fl. In addition to the flat butterfly "201125817, m" a transitional metal impurity, a composite oxide of a bell, and the like, a layered oxide oxide based on the α-·〇2 31 structure, a surface spinel, etc. The bell composite oxide is used as a base. The binder for the positive electrode is, for example, the same as the binder in the foregoing electrode. The conductive material, for example, the carbon material of the present invention, natural graphite, artificial graphite, coal char and carbon black. These may be used alone or as a mixture of artificial graphite and carbon black, and a mixture of two or more kinds may be used. The f-solution, for example, a non-aqueous electrolyte by converting _ to organic smelting, for example: Licl〇4, LiPF6, Xinxin, Nayong, Hall 4, L1CF3SO3 ^ LiN(S02CF3)2 &gt; LiC(S02CF3)3 &gt; Li2B10Cl10 ^ LiAlCl4 &gt; ^ Grade Moonic Fatty Carbohydrate Clock Salt, and these In the mixture, a lithium salt containing at least one fluorine in the group of LiSbF6^BF4, LiCF3S〇3, LiN(CF3ss2)2, and UC(CF3" is preferred. Organic solvent such as propylene carbonate Ethyl carbonate, ethylene carbonate, dimethyl carbonate, 5 acid, : carbonate, tris(tetra)], 3-dioxapentanone, dioxyloxycarbonyl, ethyl carbonate, etc. -Dimethoxyethane, U-, pentrapropyl (tetra), 2,2,3,3, fluoropropyl difluorocap, tetrahydrofuran, 2-methyltetrafurfuryl Ether solvent, methyl formate, methyl acetate, etc.; acetonitrile solvent such as acetonitrile or butyronitrile, dimethylformamide, nn_dimethyl b = arylamine solvent, 3·methyl-2 _ hiring. A sulphur-containing solvent such as ketone and other amine phthalic acid acetal solvent, sulfolane sulfoxide, u-propyl sultone, and a fluorine-containing bath. These may be used alone or in combination of two or more. 〉 "; * More than two kinds of use is preferred. Separation parts are used as the separation of the impurities and the separation of the electrodes, and the electrolyte is usually used, usually with a membrane with ion permeability, a predetermined mechanical strength and insulation. For example, a mixture made of snail f (visc〇se ray〇n), natural cellulose, or a mixture of fibers such as polyester; electrolyzed paper; kraft paper (four) Ρ _; i匕ίϋ ΐ non-woven fabric, polypropylene Women's non-woven fabric, polyester vinegar non-woven fabric, glass fiber ί ii 12, fang _ fiber, polybutylene terephthalate vinegar non-woven fabric, , Wang Fangxiang ^ Yi and other non-woven fabric; partial gas ethylene, tetrafluoroethylene, partial gas A copolymer of ethylene 201125817 and hexafluoropropylene; a fluorine-containing resin such as fluorine rubber; a porous film such as porous polyethylene, polypropylene, or porous polyester. The shell separator may also be a molded product composed of the pottery powder particles such as Shixia and the above-mentioned binder. The molded article is usually formed integrally with both the working electrode and the counter electrode. A separator composed of olefin or polypropylene may also contain a f-producing agent or a stone-shell particle in order to improve its hydrophilicity. The separating member may further contain a plasticizer such as dibutyl phthalate (DBP). A proton-conducting polymer can also be used in the state of the separator. ^, preferably: electrolytic paper, paper made of (4), tianweisulai, paper, manila paper, weiweisusi g, non-woven fabric, polypropylene non-woven fabric, poly non-woven fabric, manila Mam tablets and glass Gu = Mu, the aperture of the piece, usually. The fiber of the separator is 1 to 300 μm, preferably 5 to 30 μm. The sling is also a majority of the ratio of the fine holes in the separator. More preferably, it is composed of a polysulfide porous membrane and a polyg resin. The rotor of the present invention is a domain pool, and a separator of m can be used. And the negative electrode is assembled and manufactured according to the conventional method. The electrode of the present invention is excellent in cycle characteristics of the solution. It can also be used as the electrode of the _ sub-capacitor when it is charged and discharged. Ship adsorption and desorption of deionized ions for charge and discharge: capacitors of constant density. The rotor of the present invention uses the electrode of the present invention as a negative electrode. In the Dingdian Valley state, the mixture is carried on the current collector. Materials, V-electrolytes and bonded materials Anions such as a bell ion or a tetrafluoroantimonate can be used as an allotrope of carbon, and can be widely used in the material of the electric double. Among the electrodes used in Specific Example 5 of the carbon allotrope, activated carbon is preferred. Use this special powder or fiber. The positive electrode of the present invention includes a binder, for example, a conductive material included in the positive electrode of the present invention, and a conductive material contained in the positive electrode, for example, the carbon material of the present invention, natural graphite k graphite coal char, and carbon black. These may be used singly or as a mixture of humans, and a mixture of two or more kinds may be used. The electrolyte of the phantom and inverse lobes capacitor is preferably, for example, a non-aqueous electrolyte &amp; which is obtained by dissolving the electrolytic sample of the above-mentioned clock primary battery in an organic solvent, and may also include an upper frequency. Separation member of Xuan Erchi pool The lithium ion secondary battery of the present invention can be assembled by manufacturing the above-mentioned positive electrode, separator and method. The present invention is excellent even if it is repeatedly used. Further, since the lithium ion of the electrode comprising the carbon material of the present invention has a small electric resistance, the present invention can be described in more detail by way of an example of the output density of the carbon material, but the present invention is not limited to this. In the case of the case, the percentage and %, unless otherwise specified, means that the weight basis is 1 卞W has α_naphthol quinone (special grade purchased by Wako Pure Chemical Industries Co., Ltd.) in lg ^ Fire/, the enthalpy is circulated into the calciner and simultaneously at 900. 〇 Keep it for 1 hour. The material is smashed. The prepared stock was pulverized by ball pure (bisting ball, 28 rpm '5 for a clock) to obtain a powdery carbon material. Example 2 The sample was _ 'except this example and Example 1 as in Example 1. The α-naphthalene brewing in Example 1 was changed to a sputum-purple (tested by Wako Pure Chemical Industries Co., Ltd. 12 201125817) A powdery carbon material was obtained in the same manner as in Example 1 except for the above. Example 4 A powdery carbon material was obtained in the same manner as in Example 3 except that the heating temperature in Example 3 was changed to 1000 °C. Example 5 A powdery carbon material was obtained in the same manner as in Example 3 except that the heating temperature in Example 3 was changed to 1100 °C. Example 6 A powdery carbon was obtained in the same manner as in Example 1 except that the α-naphtholquinone in Example 1 was changed to benzophenone (a reagent purchased from Tokyo Chemical Industry Co., Ltd., grade GR). material. Example 7 A powdery carbon material was obtained in the same manner as in Example 6 except that the heating temperature in Example 6 was changed to 1000 ° C. (Example 8) A powdery carbon material was obtained in the same manner as in Example 6 except that the heating temperature in Example 6 was changed to 11 Torr (rc). Example 9 The heating temperature in Example 6 was changed to 12 〇 (rc, otherwise performed in the same manner, to obtain a powdery carbon material. Example 10 91 parts of the carbon material obtained in Example 1 and polyvinylidene fluoride (PVDF) 9 ii fi material r were added with an appropriate amount of n-曱The base - 2 coffee is fine, the resulting mixture = the kneading will be obtained by mixing - knife coating method, coating the thickness of the soldering body 'dry at 2G °c for 2 hours. Will dry in = .45 _, the vacuum drying for 8 hours, the electrode containing ^ 4.7 tons of carbon material and pvdf. The paper 1 == to the electrode, the positive electrode using lithium foil, the separation piece using the height of the 、,, 1 F40-50' electrolyte uses a density of lm〇1/]l of LipFV propylene carbonate 201125817 ester' and uses a CR2032 type (IEC/JIS specification) button type battery to make a 2-pole battery. The initial discharge capacitance of the battery is 376mAh/g, the initial charge and discharge efficiency (the ratio of the initial discharge capacitance to the initial charge capacitance) Here, the charge and discharge capacity of the battery to be produced is measured by the following measurement method using a charge/discharge evaluation device (TOSCAT (registered trademark > 3100) manufactured by Toyo Systems Co., Ltd.) <Measurement method> At a current density of 60 mA/g, the battery is charged at a constant current until the voltage reaches 〇v, and then constant-potential charging is performed at 0 V. The current density is 60 mA/g, and the charging is performed at a constant potential of 0 V. The total time is 12 hours. The amount of electricity accumulated in the 疋 potential of 〇γ· is obtained as the initial charging capacitor. After the charging is completed, the battery is discharged to a constant current of 60 mA/g at the current density. The voltage was increased to 1.5 V. The amount of electricity in the discharge was added, and the obtained value was used as the initial discharge capacitance. Example 11 ^ In Example 10, the carbon material obtained in Example 2 was used instead of the carbon material obtained in Example 1, except A two-electrode cell was produced in the same manner as in Example 10. According to the measurement method of Example 10, the initial discharge capacitance and the initial charge capacity of the produced battery were measured, and the initial charge was determined. The results are shown in Table 1. Example 12 The same procedure as in Example 1 was carried out except that the carbon material obtained in Example 3 was used instead of the carbon material obtained in Example 1 except that the carbon material obtained in Example 3 was used. In the measurement method described in Example 10, the initial discharge capacitance and the initial charge capacitance of the produced battery were measured, and the initial charge and discharge efficiency was determined. The results are shown in Table 1. Example 13 was used in Example 10 The carbon material obtained in Example 4 was used in the same manner as in Example 1 except that the obtained carbon material was used in the same manner as in Example 1 to prepare a two-electrode cell. According to the measurement method described in Example 10, the initial discharge capacitance and the initial charge capacity of the produced battery were measured, and the initial charge and discharge efficiency was determined. The results are shown in Table 1. 14 201125817 Example 14 A two-electrode cell was produced in the same manner as in Example 10 except that the carbon material obtained in Example 5 was used instead of the carbon material obtained in Example 1 except that the carbon material obtained in Example 5 was used. According to the measurement method described in Example 10, the initial discharge capacitance and the initial charge capacity of the produced battery were measured, and the initial charge and discharge efficiency was determined. The results are shown in Table 1. (Example 15) A two-electrode cell was produced in the same manner as in Example 10 except that the carbon material obtained in Example 6 was used instead of the carbon material obtained in Example 1. The initial discharge capacity and the initial charge capacity of the produced battery were measured in accordance with the measurement method described in Example 10, and the initial charge and discharge efficiency was determined. The results are shown in Table 1. (Example 16) A two-electrode cell was produced in the same manner as in Example 10 except that the carbon material obtained in Example 7 was used instead of the carbon material obtained in Example 1. The initial discharge capacity and the initial charge capacity of the produced battery were measured in accordance with the measurement method described in Example 10, and the initial charge and discharge efficiency was determined. The results are shown in the table. (Example 17) A two-electrode cell was produced in the same manner as in Example 1 except that the carbon material obtained in Example 8 was used instead of the carbon material obtained in Example 1 except that the carbon material obtained in Example 8 was used. According to the measurement method described in Example 10, the initial discharge capacitance and the initial charge capacity of the produced battery were measured, and the initial charge and discharge efficiency was determined. The results are shown in Table 1. (Example 18) A two-electrode cell was produced in the same manner as in Example 1 except that the carbon material obtained in Example 9 was used instead of the carbon material obtained in Example 1. According to the measurement method described in Example 10, the initial discharge capacitance and the initial charge capacity of the produced battery were measured, and the initial charge and discharge efficiency was determined. The results are shown in Table 1. [Table 1] Carbon material primary discharge capacity (mAh/g) Initial charge and discharge efficiency (%) Example K) Example 11 Example 1 376 69 Example 2 364 72 ..I Example ▼ 12 Example 3 420 71 Example 13 Example 4 74 15 201125817 ^ Example 14 1 Package Example 15 Example

74 Μ 7Τ 70 7Γ 實施例18 實施例19 在實施例2得到的碳材料91份與聚偏氟乙稀斤…吵份(固體 =)的混合物中’加人適量的Ν_ψ基心轉細,將得到的混合 物進行捏揉。將得到的混合物利用刮刀塗佈法,塗佈在厚度為 =μιη的銅集電體上。將塗佈的集電體,於筑乾燥2小時。將乾 ^的集電體切斷為直徑l.45cm的圓形,於12(rc真空乾燥8小時, 传到電極。得到的電極中含有碳材料&amp;pvDF的混合物4 25哗。 負極使用得到的電極,正極使用㈣,分離件使用日本高度 、工業公㈣tf4。·5。’轉賊肖濃度lmd㈣LipF6/碳酸丙稀 酉』,並使用CR2〇32鄉EC/JIS規格)的紐扣型電池,製 電池。 ^ 純於日本專利第2519454號公報第6頁中,記載,,敗攙雜法、 =雜法,可於蚊電流下、蚊電壓下、及電流與電壓變化之 /其中之一進行”,因此,將製作的2極式電池於定電流_定電壓 充電,製作預攙雜的電極。 「又,電極之製作,使用充放電評價裝置(東洋系統(股)製 SCA^主冊商標)_31〇〇」),依照下列測定方法測定。74 Μ 7Τ 70 7Γ Example 18 Example 19 In the mixture of 91 parts of the carbon material obtained in Example 2 and the mixture of polyvinylidene fluoride (noise = solid), the amount of Ν ψ ψ 心 转 , The resulting mixture was kneaded. The obtained mixture was applied onto a copper current collector having a thickness of = μιη by a doctor blade method. The coated current collector was dried for 2 hours. The current collector of the dry material was cut into a circular shape having a diameter of 1.45 cm, and dried at 12 rc for 8 hours, and transferred to the electrode. The obtained electrode contained a mixture of carbon material &amp; pvDF 4 25 哗. The electrode is used for the positive electrode (4), and the separator is made of Japan's height, industrial public (four) tf4.·5. 'Twisting density lmd (four) LipF6 / propylene carbonate ,, and use CR2 〇 32 township EC / JIS specifications) button-type battery, made battery. ^ Purely on page 6 of Japanese Patent No. 2519454, it is stated that the miscellaneous method, the = hybrid method, can be performed under the mosquito current, the mosquito voltage, and one of the current and voltage changes", therefore, The produced 2-pole battery is charged at a constant current _ constant voltage to produce a pre-doped electrode. "In addition, the electrode is fabricated using a charge and discharge evaluation device (SCA^ main book trademark manufactured by Toyo Systems Co., Ltd.) _31〇〇" ), measured according to the following measurement methods.

以電流密度40mA/g,進行電池之定電流充電至電壓到達〇V ^止,之後,於ον進行定電壓充電,直到充電量到達5〇8mAh/g ^士。於0V的定電壓充電結束後,以電流密度40mA/g的定電流, 、行電池放電至充電量成為為止,製作預攙雜的電極。 ^ ’麵雜的方法,參考碳材解會S 3次10科題討論資料 “二138頁(2008年10月舉辦)記載的鋰離子電容器的評價方法中 s己載的方法。 負極使用得到的預攙雜的電極,正極使用市售的活性碳電極 貝泉(股)公司製,分離件使用日本高度紙工業公司製吓4〇_5〇,電 16 201125817 用im〇i/i的咖6/碳酸丙稀醋,並使用cr2〇32型 物質的重比(極活性物質/負極活性物質)為2.5/1。 放電評價裂置(東洋系統(股)製「TOSCAT (註冊商 不)」)’將組裝的鋰離子電容器以電流密度4〇111八4進行3 5 2^電、流充電直到電壓達到3 8v後,以電流密度2mA/cm2進行 02= 到電壓到達2.2V。放電中的累加電量(放電電容)為 之後’將鐘離子電容器,以電流密度4〇mA/g進行Μ小 f 直,壓達到3.8V ’之後’以電流密度15mA/Cm2放電 直到電壓到達2.2V。放電巾的累加電雖電電容)為Q.15mAh¥ 又’從此時的放電剛開始起算1秒的IR下降計算的電阻值為 、之後,將鐘離子電容器以電流密度40mA/g進行3.5小時定 流充電直到電壓到達3.8V後’以電流密度3〇mA/cm2放電直 壓到達2.2V。放電中的累加電量(放電電容)為。 屯 又,放電時電流密度係參考日本制Μ%·8&quot;號公 的值奴’錢電壓及放電電壓係參考日本糊2__3G31 報記載的值設定。 υΑ 實施例20 、在實施例4得到的碳材料91份與聚偏氟乙烯(pvDF)9份 成分)的混合物中,加入適量的N_曱基_2_吡咯烷酮,將得到的混人 物進行捏揉。將得到的混合物利用刮刀塗佈法,塗佈在厚产 20μιη的銅集電體上。將塗佈的集電體,於抓乾燥2小 燥的集電體切斷為紐1.45em的圓形,於12Q°C真空錢8小時^ 得到電極。得^的電極中含有碳材料及?雙的混合物4说’。 負極使用得到的電極,正極使用㈣,分離件使用日 紙工業公製TF4G孙f驗使麟度lmQ關LiPF6/碳= 酯,並使用CR2032 _EC/JIS規格)的紐扣型電池,製作 , 電池。 ^ 17 201125817 於日本專利第2519454號公報第 可於固定電流下、固定電壓下及^與電^之 ίϊίΓί行”,因此’將製作的2極式電池歧電流-定電壓 充電,製作預攙雜的電極。 之製作’使用充放電評價裝置(東洋系統(股)製 OSCATC^^^lOOj ) ’依照下侧定方法測定。 以電,度4GmA/g ’進行魏之定電流錢至賴到達〇v ^ ’於ον進行定電壓充電,直到充電量到達535mM/ \賴充電結束後爾流密度4GmA/g蚊電流 订電’放電至充電里成為268mAh/g為止,製侧攙雜的電極。 ’預攙雜的方法,參考碳材料學會第3二欠1〇月專顯論資 ^138頁(2008年10月舉辦)記載的_子電容器的評價方法 吕己載的方法。 負極使用得到的預攙雜的電極,正極使用市f的活性碳 (貝泉(股)公司製,分離件使用日本高度紙工業公司製TF4〇_5〇 液使用濃度lm〇l/l的LiPF6/碳酸丙烯酯,並使用CR2032 (Ef/JIS規格)的鈕扣型電池,組裝鐘離子電容器。正極活性物 二負極活性物質的重量比(正極活性物質/負極活性物質)為ΐ 5/ι。 =用充放電評價裝置(東洋系統(股)製「T〇SCAT (註冊 柚&gt;3^°〇」、)’將組裝的鋰離子電容器以電流密度40mA/g進行3°5 ^時定電流充電朗電壓翻3 8v後,以冑絲度2mA/em2 電直到電壓到達2.2V。放電中的累加電量(放電電容) 〇.22mAh。 ’巧 之後,將鋰離子電容器,以電流密度4〇mA/g進行3.5小 ,流充電朗電錢ίη.8ν,之後,以餘做15mA/em2放 ,到,壓到達2.2V。放電中的累加電量(放魏容)為Q17mAh。 ’從此時的放電剛開始起算1秒的IR下降計算的電阻值為9.4Ω。 之後,將鐘離子電容器以電流密度4〇mA/g進行3·5小時定 ^充電直到電壓到達3.8V後,以電流密度30mA/cm2放電直到^ 堅到達2.2V。放電中的累加電量(放電電容)為〇13mAh。 201125817 又’放電時電触度係參考日本特開屬以圓號公報記 L设疋’充電賴及放電賴係參考日本賴2__3。观號公 報3己載的值設定。 ° 實施例21 、在實施例7得到的碳材料91份與聚偏氟乙烯(pvDF)9份 成分)的混合物中,加入適量的N_甲基_2_吡咯烷酮,將得到的混合 物進行捏揉。將得到的混合物利用刮刀塗佈法,塗佈在厚度 2,im的銅集電體上。將塗佈的集電體,於5〇π乾燥2小時。將 燥的集電體靖為直彳f 1.45em關形,於丨跳真空賴8小時, 得到電極。得j的電極中含有碳材料及pvDF的混合物4J8mg。 負極使用得到的電極’正極使用鐘H,分離件使用日本高度 紙工業公q t酬)_50,f職錢· lmd/1❾LipF6/碳酸丙g 酉曰,並使用CR2032型(IEC/JIS規格)的紐扣型電池,製作2極 電池。 叭 於曰本專利第2519454號公報第6頁中,記載,,鋰之攙雜法、 非攙雜法,可於固定電流下、固定電壓下、及電流與電壓變化之 條件其中之一進行”’因此’將製作的2極式電池於定電流_定電壓 充電’製作預攙雜的電極。 又,電極之製作,使用充放電評價裝置(東洋系統(股)製 「TOSCAT(註冊商標)-3100」),依照下列測定方法測定。 、以電流密度40mA/g,進行電池之定電流充電至電壓到達〇v 為止,之後,於ον進行定電壓充電,直到充電量到達582mAh/g 為止。於ον的定電壓充電結束後,以電流密度4〇mA/g的定電流, 進行電池放電至充電量成為291mAJi/g為止,製作預攙雜的電極。 又,預攙雜的方法,參考碳材料學會第3次1〇月專題討論資料 133〜138頁(2008年10月舉辦)記載的鐘離子電容器的評價方法中 吕己載的方法。 負極使用得到的預攙雜的電極’正極使用市售的活性碳電極 (寶泉(股)公司製’分離件使用曰本高度紙工業公司製TF40-50,電 解液使用濃度lmol/1的LiPF0/碳酸丙烯酯,並使用CR2032型 19 201125817 扣型電池’組驗離子電容器。正極活性物質 j ί質的重量比(正極活性物質/負極活性物質)為咖 W3100 )電=賈ί置(東洋系、統(股)製「T〇SCAT (註冊商 將、、且裝_離子電容11以電流密度4GmA/g進行3 5 放電^電I達,以電流密度祕功2進行 〇.22mAh。]達2.2V。放電中的累加電量(放電電容)為 電流it直St =密度―_5小時定 直到電壓到達2.2V。放電中的累電 1 流充電直到電麗到達3;:電:=時定電 壓到ί 2放2: T電㈣累加電量‘電:)為〇.15:。直到電 Γί ί ίί 9 2006-286841 報記W_參考日本特開^ [產業利用性] 極為有用本:次電容器的電 高的鐘料二錢池,又,可娜_子電抑提 圖式簡單說明】 無 【主要元件符號說明】At a current density of 40 mA/g, the battery is charged at a constant current until the voltage reaches 〇V^, and then the constant voltage is charged at ον until the charge reaches 5〇8 mAh/g^. After the constant voltage charging of 0 V was completed, a predetermined current of a current density of 40 mA/g was used, and the battery was discharged until the amount of charge was completed, and a pre-doped electrode was produced. ^ 'The method of the miscellaneous method, refer to the carbon material solution S 3 times 10 subjects discussion material "Two 138 pages (held in October 2008) Lithium ion capacitor evaluation method in the method of s self loading. For the pre-noisy electrode, the positive electrode is made of a commercially available activated carbon electrode, BEIJING (share) Co., Ltd., and the separator is used by Japan Kotami Paper Co., Ltd. to scare 4〇_5〇, electricity 16 201125817 with im〇i/i coffee 6/ The weight ratio of the propylene carbonate and the cr2〇32 type material (polar active material/negative active material) is 2.5/1. Discharge evaluation cracking ("TOSCAT (registered business)" by Toyo System Co., Ltd.) The assembled lithium ion capacitor was subjected to a current density of 4 〇 111 八 4 for 3 5 2 ^, current charging until the voltage reached 3 8 volts, and 02 = current to a voltage of 2.2 volts at a current density of 2 mA/cm 2 . The accumulated charge (discharge capacitance) in the discharge is then 'the clock ion capacitor is reduced by a current density of 4 〇 mA / g, and the voltage reaches 3.8 V ' and then discharged at a current density of 15 mA / Cm 2 until the voltage reaches 2.2 V . The electric charge of the electric discharge of the electric discharge wiper is Q.15 mAh ¥ and the electric resistance value calculated from the IR drop of 1 second from the beginning of the discharge at this time, and then the clock ion capacitor is set at a current density of 40 mA/g for 3.5 hours. The flow is charged until the voltage reaches 3.8V, and the discharge voltage reaches 2.2V at a current density of 3 〇 mA/cm 2 . The accumulated charge (discharge capacitance) during discharge is .屯 In addition, the current density at the time of discharge is set with reference to the value of the Japanese Μ%·8&quot; _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _实施 Example 20 In a mixture of 91 parts of the carbon material obtained in Example 4 and 9 parts of polyvinylidene fluoride (pvDF), an appropriate amount of N_mercapto-2-pyrrolidone was added to knead the obtained mixed person. rub. The obtained mixture was applied onto a copper current collector having a thickness of 20 μm by a doctor blade coating method. The coated current collector was cut into a circular shape of 1.45 mil in a dry and dry collector, and the electrode was obtained by vacuuming at 12Q ° C for 8 hours. Do you have a carbon material in the electrode? The double mixture 4 says '. The electrode used for the negative electrode was used, and the positive electrode was used (4). The separator was fabricated using a coin-type battery made of Nippon Paper Co., Ltd., TF4G Sun, LMQ, LiPF6/carbon = ester, and CR2032 _EC/JIS specification. ^ 17 201125817 In Japanese Patent No. 2519454, it can be used under fixed current, fixed voltage, and ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The production of the electrode 'Using the charge and discharge evaluation device (OSCAC^^^100j made by Toyo Systems Co., Ltd.) 'measured according to the next method. The electric current, the degree of 4GmA/g', the constant current of the gas to the arrival 〇v ^ ' Constant voltage charging is performed at ον until the amount of charge reaches 535 mM / \ 充电 after the end of charging, the current density is 4 GmA / g, the mosquito current is set to 'charge until the charge becomes 268 mAh / g, and the side is noisy electrode. 'Pre-doping method Refer to the method of evaluating the _ sub-capacitor described in the 138-page (held in October 2008) of the Carbon Materials Society. The method of evaluating the _ sub-capacitor described in Lv. The activated carbon of the city f (Beiquan Co., Ltd.) was used, and the separator was made of TF4〇_5 制 日本 〇 〇 〇 使用 使用 使用 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 JIS specification) button type battery, assembly The weight ratio of the positive electrode active material to the negative electrode active material (positive electrode active material/negative electrode active material) is ΐ 5 / ι. = Charge and discharge evaluation device (Tung Sang System Co., Ltd. "T〇SCAT (registered pomelo &gt ;3^°〇",) 'The assembled lithium-ion capacitor is subjected to a current density of 40 mA/g for 3 ° 5 ^. The current is charged at a constant voltage of 3 8 volts, and then the wire is 2 mA/em 2 until the voltage reaches 2.2 V. The accumulated charge (discharge capacitance) in the discharge 〇.22mAh. 'After the skill, the lithium ion capacitor is 3.5 mA at a current density of 4 〇 mA/g, and the current charge is ί 钱 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 /em2 put, the pressure reaches 2.2V. The accumulated charge in the discharge (putting Wei capacity) is Q17mAh. 'The resistance value calculated from the IR drop of 1 second from the beginning of the discharge at this time is 9.4 Ω. The capacitor was charged at a current density of 4 〇 mA/g for 3·5 hours until the voltage reached 3.8 V, and discharged at a current density of 30 mA/cm 2 until the voltage reached 2.2 V. The accumulated charge (discharge capacitance) during discharge was 〇13 mAh. 201125817 And 'electrical contact at the time of discharge is based on the Japanese special open genus The bulletin L is set to 'charge and discharge' reference. Japanese Lai 2__3. The value set by the observation No. 3 is set. ° Example 21, 91 parts of the carbon material obtained in Example 7 and polyvinylidene fluoride (pvDF) An appropriate amount of N-methyl-2-pyrrolidone was added to the mixture of 9 parts by weight, and the obtained mixture was kneaded. The obtained mixture was applied by a knife coating method to a copper current collector having a thickness of 2 μm. on. The coated current collector was dried at 5 〇 π for 2 hours. The dry current collector is closed to the shape of the 1.45em, and the electrode is obtained after the vacuum is applied for 8 hours. The electrode of j was contained in a mixture of carbon material and pvDF 4J8 mg. The electrode used for the negative electrode is used as the positive electrode, the separator is used in the Japanese high-altitude paper industry, and the button is used in the CR2032 (IEC/JIS specification). Type battery, making 2-pole battery. In Japanese Patent No. 2519454, page 6, it is stated that the lithium doping method and the non-doping method can be performed under one of a fixed current, a fixed voltage, and a current and voltage change condition. 'The two-pole battery to be fabricated is used to make a pre-doped electrode at constant current _ constant voltage charging. Also, the electrode is fabricated using a charge and discharge evaluation device ("TOSCAT (registered trademark)-3100" manufactured by Toyo Systems Co., Ltd.) According to the following measurement methods. At a current density of 40 mA/g, the battery is charged at a constant current until the voltage reaches 〇v, and then constant voltage charging is performed at ον until the amount of charge reaches 582 mAh/g. After the constant voltage charging of ον was completed, the battery was discharged at a constant current of a current density of 4 mA/g until the charge amount became 291 mAJi/g, and a pre-doped electrode was produced. In addition, the pre-noisy method is based on the method of evaluating the bell-ion capacitors described in the third monthly discussion of the Carbon Materials Society, pp. 133-138 (held in October 2008). For the negative electrode, the pre-doped electrode was used as a positive electrode. A commercially available activated carbon electrode (a product manufactured by Baoquan Co., Ltd.) was used, and TF40-50 manufactured by Sakamoto Kogyo Paper Co., Ltd. was used, and the electrolyte was used at a concentration of 1 mol/l of LiPF0/ Propylene carbonate, and use CR2032 type 19 201125817 button type battery 'group ion capacitor. The positive electrode active material j ί mass ratio (positive electrode active material / negative active material) is coffee W3100) electricity = Jia Li set (Dongyang, System (share) system "T〇SCAT (Registrar will, and installed _ ion capacitor 11 at current density 4GmA / g for 3 5 discharge ^ electric I, with current density secret 2 to 〇.22mAh.] up to 2.2 V. The accumulated charge (discharge capacitance) in the discharge is the current it is straight St = density _ 5 hours until the voltage reaches 2.2V. The accumulated electric current in the discharge is charged until the battery reaches 3;: electricity: = when the voltage is fixed ί 2 put 2: T electricity (four) accumulated power 'electricity:' is 〇.15: until power Γ ί ίί 9 2006-286841 report W_ reference Japan special open ^ [industrial use] extremely useful this: secondary capacitor Electric high bell material two money pool, and, Kona _ child electric suppression drawing simple description] no [main REFERENCE SIGNS element

Claims (1)

201125817 七、申請專利範圍: 甲酚紫或苯芴酮於 1.一種碳材料,係藉由將α_萘酚酞、間 600〜3000。〇加熱而獲得。 =電極材料,包含如申請專利範圍第】項之碳材科、黏結劑及 3聚專概㈣2項之電極材料,其中,黏結劑魏化合物的 1·丨如利範圍®2項之電極材料’其中’溶劑係選自於由醇溶 ^、醯胺溶劑、酮溶劑、酯溶劑、胺溶劑、醚溶劑及水構成之群 、中的至1種。 5. 一種電極’包含如申請專利範圍第1項之碳材料。 6. —種鋰離子二次電池,包含如申請專利範圍第5項之電極。 7. 一種鋰離子電容器,包含如申請專利範圍第5項之電極。 8Γ、=]碳材料之製造方法’具有以下步驟:將α_萘酚酞、間甲酌· 紫或苯芴i同於600〜300(TC加熱。 9.如申請專利範圍第8項之破材料之製造方法,係於非活性氣體環 境下進行加熱。 义 八、圖式: 無0 21201125817 VII, the scope of application for patent: cresyl violet or benzophenone in 1. A carbon material, by the use of α-naphthol quinone, between 600~3000. It is obtained by heating. = electrode material, including the carbon material section, the bonding agent and the 3 poly-collective (4) electrode materials of the patent application scope, in which the electrode material of the binder Wei compound is in the range of the electrode material of the product. The solvent is selected from the group consisting of an alcohol solution, a guanamine solvent, a ketone solvent, an ester solvent, an amine solvent, an ether solvent, and water. An electrode 'includes a carbon material as in the first aspect of the patent application. 6. A lithium ion secondary battery comprising the electrode of item 5 of the patent application. A lithium ion capacitor comprising the electrode of item 5 of the patent application. 8 Γ, =] manufacturing method of carbon material 'has the following steps: α α-naphthol quinone, m-method, purple or benzoquinone i is the same as 600~300 (TC heating. 9. Breaking material according to item 8 of the patent application scope The manufacturing method is based on heating in an inert gas atmosphere. Yi Ba, Schema: No 0 21
TW099125096A 2009-08-04 2010-07-29 Carbon materials TW201125817A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009181345 2009-08-04
JP2009181343 2009-08-04
JP2009181344 2009-08-04

Publications (1)

Publication Number Publication Date
TW201125817A true TW201125817A (en) 2011-08-01

Family

ID=43544302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099125096A TW201125817A (en) 2009-08-04 2010-07-29 Carbon materials

Country Status (2)

Country Link
TW (1) TW201125817A (en)
WO (1) WO2011016406A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560270B (en) * 2013-10-30 2015-11-18 河南师范大学 A kind of electrolyte for lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624578B2 (en) * 1995-11-25 2005-03-02 ソニー株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4949971B2 (en) * 2007-08-21 2012-06-13 エア・ウォーター・ベルパール株式会社 Carbon electrode material, carbon electrode material mixture, carbon electrode material manufacturing method, electric double layer capacitor, lithium ion battery, and lithium ion capacitor
JP5347314B2 (en) * 2007-10-30 2013-11-20 住友化学株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2011016406A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
Luo et al. Hierarchical TiO 2 nanobelts@ MnO 2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors
Maiti et al. Electrochemical energy storage in Mn 2 O 3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal–organic framework
Lin et al. Three-dimensional hierarchical mesoporous flower-like TiO 2@ graphdiyne with superior electrochemical performances for lithium-ion batteries
Chu et al. Reduced graphene oxide coated porous carbon–sulfur nanofiber as a flexible paper electrode for lithium–sulfur batteries
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP7148396B2 (en) Carbon materials, electrode materials for power storage devices, and power storage devices
Kim et al. 1D Building Blocks-Intermingled Heteronanomats as a Platform Architecture For High-Performance Ultrahigh-Capacity Lithium-Ion Battery Cathodes.
WO2017090553A1 (en) Capacitor electrode material and capacitor
WO2017167195A1 (en) Non-porous separator and use thereof
Pal et al. Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode
Sekhar et al. Birnessite-type MnO 2 nanosheet arrays with interwoven arrangements on vapor grown carbon fibers as hybrid nanocomposites for pseudocapacitors
Ryu et al. Dual Buffering Inverse Design of Three‐Dimensional Graphene‐Supported Sn‐TiO2 Anodes for Durable Lithium‐Ion Batteries
Zeng et al. Nano-Sn doped carbon-coated rutile TiO 2 spheres as a high capacity anode for Li-ion battery
JP6769878B2 (en) Conductive composition for electrodes, electrodes for non-aqueous batteries and non-aqueous batteries
KR20140083070A (en) Hybrid nano-complex, method for producing the same, and electrode for supercapacitor comprising the same
TW201125817A (en) Carbon materials
JP5273655B2 (en) Particles for three-component electrode material for lithium battery or hybrid capacitor and method for producing the same
US9972448B2 (en) Supercapacitor electrode material having combined porous titanium oxide and carbon-based material, and method for manufacturing same
TW201222949A (en) Electrode composite material of lithium ion battery, method for making the same, and battery
JPWO2019078073A1 (en) Composites, electrode materials for power storage devices, and power storage devices
EP3943214A1 (en) Composite material, electrode material for electricity storage devices, and electricity storage device
TW484246B (en) Composite carbon electrode for rechargeable lithium-based batteries
KR101516975B1 (en) Manufacturing method of anode comprising lithium titanium oxide using the composition for anode comprising lithium titanium oxide
JP7044471B2 (en) Capacitor electrode material, capacitor electrode sheet and capacitor
KR101604791B1 (en) Nano composite, method for preparing the same, and supercapacitor