TW201123931A - Diaphragm, method for making the same and loudspeaker having the same - Google Patents

Diaphragm, method for making the same and loudspeaker having the same Download PDF

Info

Publication number
TW201123931A
TW201123931A TW98143547A TW98143547A TW201123931A TW 201123931 A TW201123931 A TW 201123931A TW 98143547 A TW98143547 A TW 98143547A TW 98143547 A TW98143547 A TW 98143547A TW 201123931 A TW201123931 A TW 201123931A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
membrane
amorphous
vibrating membrane
Prior art date
Application number
TW98143547A
Other languages
Chinese (zh)
Other versions
TWI455611B (en
Inventor
Jia-Ping Wang
Liang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098143547A priority Critical patent/TWI455611B/en
Publication of TW201123931A publication Critical patent/TW201123931A/en
Application granted granted Critical
Publication of TWI455611B publication Critical patent/TWI455611B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a diaphragm. The diaphragm is a stratified composite structure composite. The stratified composite structure composite includes a carbon nanotube film structure and an amorphous carbon structure. The carbon nanotube film structure have a plurality of micropores. The amorphous carbon structure includes a plurality of amorphous carbon particles embedded in the micropores. The invention also relates to a method for making the diaphragm and a loudspeaker having the diaphragm.

Description

201123931 六、發明說明: 【發明所屬之技術領域】 振動膜之製備方法及具有該振 [〇〇〇1] 本發明涉及一種振動膜 動膜之揚聲器。 [先前技術3 [0002] 電動式揚聲器通過音圈於磁場下之運動,從而推動振動 膜振動’進而使該振動膜周圍之空氣變化產生膨脹波, 並轉換為人耳可感知之聲波。從該振動膜之作用可看出 ’理想之振動膜應能於高頻振動時不容易產 =比_具有較小之·。gp,趣動朗具 二1強度大之㈣’以便終高頻、大轉之音軌 ^…、、而,傳統之振動膜大多 ,由於材料之限制,該振動膜1=、紙或金屬製成 質置之同時維持甚至提高振動膜之比_ 又及 振動膜已無法滿足揚聲器之發展需求/ ’先前之 【發明内容】 Ο _],此,提供-種具有能進一步·質量 度之振動骐、振動膜之劁供士h比強 器實為必要。 備方法及具有該振動膜之揚聲 種振動膜,該縣㈣ 層狀奈米碳管複合結構包括太半^吕複。結構。該 形碳結構。料t j括―料碳·結構及—無定 碳㈣結構具錢數微孔。該無定形 之微孔=讀無定形碳顆粒填充於該奈米碳管膜結構 _:5]:=:,該振動膜為-奈米碳管膜結構與複_ 第3頁/共33頁 201123931 形碳顆粒複合構成之一層狀奈米碳管複合結構。 [0006] 一種振動膜,該振動膜為一層狀奈米碳管複合結構。該 層狀奈米碳管複合結構包括一無定形碳結構及複數奈米 碳管。該複數奈米碳管以自支撐之奈米碳管膜結構之形 式設置於該無定形碳結構中。該無定形碳結構與該複數 奈米破管通過凡德瓦爾力及共價鍵相結合。 [0007] —種振動膜之製備方法,其包括如下步驟:提供一自支 撐之奈米碳管膜結構及一聚合物,該奈米碳管膜結構具 有複數微孔;將該聚合物溶解於一溶劑中,形成聚合物 溶液;使該聚合物溶液浸潤該奈米碳管膜結構;碳化浸 潤有聚合物溶液之奈米碳管膜結構以使該聚合物碳化為 無定形碳。 [0008] 一種振動膜之製備方法,其包括如下步驟:提供一自支 撐之奈米碳管膜結構及一聚合物單體,該奈米碳管膜結 構具有複數微孔;溶解該聚合物單體於一溶劑中,形成 聚合物單體溶液;使該聚合物單體溶液浸潤該奈米碳管 膜結構並使該聚合物單體產生聚合反應,該聚合物單體 聚合反應後成為聚合物;碳化浸潤有聚合物之奈米碳管 膜結構以使該聚合物碳化為無定形碳。 [0009] —種揚聲器,其包括一支架、一磁場系統、一音圈、一 音圈骨架、一振動膜及一定心支片。該磁場系統、音圈 、音圈骨架、振動膜及定心支片通過該支架固定。該音 圈收容於該磁場系統,並設置於該音圈骨架外表面。該 振動膜及定心支月之一端固定於該支架,另一端固定於 098143547 表單編號A0101 第4頁/共33頁 0982074604-0 201123931 音圈骨架。該振動膜為一層狀奈米碳管複合結構,該層 狀奈米碳管複合結構包括一奈米碳管膜結構及一無定形 碳結構。該奈米碳管膜結構具有複數微孔。該無定形碳 結構包括複數無定形碳顆粒填充於該奈米碳管膜結構之 微孔中。 [0010] ο 相較於先前技術,該振動膜採用之奈米碳管膜結構及無 定形碳顆粒均為碳素材料,碳素材料具有較小之密度, 故該奈米碳管及無定形碳顆粒製成之振動膜具有良好之 耐高溫性及較小之質量。同時,由於奈米碳管本身具有 優異之機械性能,故由複數奈米碳管形成之奈米碳管膜 結構亦具有優異之機械性能;而該無定形碳顆粒分散於 該奈米碳管膜結構t,可增加該層狀奈米碳管複合結構 之緻密性及奈米碳管之間之結合力,進一步增加該層狀 奈岽碳管複合結構之比強度。故,當該振動膜振動時, 〇 [0011] [0012] 其由振動所形成之形變、應力以及張力可全部傳遞或者 分擔給每一奈米碳管及無定、形礙顆粒.,使該振動膜具有 較好之比強度。 【實施方式】 以下將結合附圖對本發明作進一步詳細之說明。 請參閱圖1及圖2,本發明第一實施例提供一種揚聲器100 ,其包括一支架110、一磁路系統120、一音圈130、一 音圈骨架140、一振動膜150及一定心支片160。該磁場 系統120、音圈130、音圈骨架140、振動膜150及定心支 片160通過該支架110固定。該音圈130設置於該音圈骨 架140 —端之外表面且與該音圈骨架140 —起收容於該磁 098143547 表單編號A0101 第5頁/共33頁 0982074604-0 201123931 路系統120。該振動膜150及定心支片160之一端固定於 該支架110,另一端固定於音圈骨架140上。 [0013] 該支架110為一端開口之圓臺形結構,其具有一空腔111 及一底部112。該空腔111容設該振膜150以及定心支片 160。該底部11 2還具有一中心孔113,該中心孔113用於 套設該磁場系統120。該支架110通過底部11 2與磁場系 統12 0相對固定。 [〇〇14] 該磁場系統120包括一導磁下板121、一導磁上板122、 一磁體123及一導磁芯柱124,該磁.體123相對之兩端分 別由同心設置之導磁下板121及導磁上板122所夾持。該 導磁上板122及磁體123均為環狀結構,該導磁上板122 : . 及磁體123於該磁場系統中成一柱形空間^該導磁芯柱 124容置於該柱形空間並穿過該中心孔113。該導磁芯柱 124自該導磁下板121往導磁上板122沿伸而出且與該磁 體12 3形成一環形磁場間隙1.2 5用於容置該音圈13 〇。該 磁場間隙1 2 5中具有一定磁感應密度之恒磁場。該磁場系 統120通過該導磁上板122與底部112固接,其連接方法 可為螺接、配合固定、黏結等等。在本實施例中,該導 磁上板122與底部112通過螺接固定。 [0015]該音圈130容置於該磁場間隙125,其為揚聲器1〇〇之驅 動單元,該音圈130為較細之導線於該音圈骨架繞制 而形成,優選地,該導線為漆包線。當該音圈13〇接收到 9頻電訊號時,該音圈1 3 0產生隨音頻電流而變化之磁場 ,此變化之磁場與磁場空隙1 2 5中之恒磁場之間發生相互 作用’迫使該音圈130產生振動。 098143547 表單編號Α0101 第6頁/共33頁 0982074604-0 201123931 [0016] 該音圈骨架140為中空管狀結構,其與該導磁芯柱124同 心設置且間隔套設於該導磁芯柱1 24且部分收容於該磁場 間隙125。該音圈骨架140之外表面與該音圈固接, 且其遠離該磁場系統120之一端固接於該振動膜15〇之中 心位置。當該音圈骨架140隨音圈13〇振動時,帶動該振 動膜150振動,從而使該振動臈15〇周圍之空氣發生膨脹 ,產生聲波。 [0017] Ο 該定心支片160為一波浪形環狀結構,其由複數同心圓環 組成。該定心支片160之内緣套設於該音圈骨架14〇上, 用於支持該音圈骨架140 ’該定心支片之外緣固定於 έ亥支架110靠近該中心孔113之一端 '該定心支片具 有大之徑向剛性和小之軸向剛性,從而使該音圈13〇於該 磁場空隙125中自由地上下移動而不做橫向移動,避免該 音圈130與磁路系統120碰觸。 [0018] 請參閱圖3,該振動膜150务轉揚聲器1〇〇力發聲單元 該 Ο 振動膜150之形狀及結構不限,與其昇體應用有關,如當 該振動膜150應用於大型揚聲器1〇〇時,該振動膜15〇可 為一空心且倒立之圓錐體結構;當該振動膜15〇應用於微 型振動膜150時’該振動膜150可為一圓形或橢圓形之片 狀結構。另外,該振動膜150之表面可進一步設置有圖形 化結構或具有圖形化設計,如條形、扇形等,可用於根 據應用需求改善音質。在本實施例中,該振動膜15〇為一 空心且倒立之圓錐體結構,其頂端或中心與該音圈骨架 140通過黏結之方式固接,該振動膜15〇之外緣與該支架 110活動連接。 098143547 表單編號Α0101 第7頁/共33頁 0982074604-0 201123931 [画9] 請參見圖4及圖5,該層狀奈米碳管複合結構包括一奈米 碳管膜結構151及一無定形碳結構152。該奈米碳管膜結 構151包括複數奈米碳管1511,進一步地,該奈米碳管膜 結構151包括由該複數奈米碳管1511形成之複數微孔 1512。具體地,相鄰之奈米碳管1511通過凡德瓦爾力結 合,使該複數奈米碳管1511形成一自支撐之奈米碳管膜 結構。該複數無定形碳顆粒1521 (Amorphous carbon) 通過共價鍵相結合,形成一無定形碳結構152。 [0020] 所謂“自支撐結構”即該奈米碳管膜結構151無需通過一 支撐體支撐,亦能保持自身特定之形狀。由於該自支撐 之奈米碳管膜結構151中大量之奈米碳管〗511通過凡德瓦 爾力相互吸引,從而使該奈米碳管膜結構151具有特定之 形狀,形成一自支撐結構。該奈米碳管膜結構151可為由 至少一奈米碳管膜形成之膜狀結構,當該奈米碳管膜結 構151包括複數奈米碳管膜時,該複數奈米碳管膜層疊設 置,相鄰之奈米碳管膜通過凡德瓦爾力相結合。該奈米 碳管膜可為奈米碳管拉膜、奈米碳管絮化膜或奈米碳管 碾壓膜。 [0021] 該奈米碳管膜結構1 51可包括至少一奈米碳管拉膜,該奈 米碳管拉膜為從奈米碳管陣列中直接拉取獲得之一種具 有自支撐性之奈米碳管膜。每一奈米碳管拉膜包括複數 基本平行且平行於奈米碳管拉膜表面排列之奈米碳管 1511。具體地,該複數奈米碳管通過凡德瓦爾力首尾相 連且基本沿同一方向擇優取向排列。所謂擇優取向是指 碳納米管膜中大部分碳納米管在某一方向上具有較大的 098143547 表單編號A0101 第8頁/共33頁 0982074604-0 201123931 取向幾率,擇優取向還可以理解為該大部分碳納米管的 軸向基本沿同一方向延伸。可以理解,由於該自支撐之· 奈米碳管拉膜中大量之奈米碳管1511通過凡德瓦爾力相 互吸引並通過凡德瓦爾力首尾相連,從而使該奈米碳管 拉膜具有特定之形狀,形成一自支撐結構。該奈米碳管 片段具有任意之寬度、厚度、均勻性及形狀。該奈米碳 管拉膜之厚度為0.5奈米〜100微米,寬度與拉取該奈米碳 管拉膜之奈米碳管陣列之尺寸有關,長度不限。 [0022] Ο 當該奈米碳管膜結構151包括層疊設置之多層奈米碳管拉 膜時,相鄰兩層奈米碳管拉膜中之擇優取向排列之奈米 碳管1511之間形成一交叉角度α,〇:大於等於0度小於等 於90度。該複數奈米碳管拉膜之間或一個奈米碳管拉膜 之中之相鄰之奈米碳管1511之間具有一定間隙,從而於 奈米碳管膜結構151中形成複數微孔1512,該微孔1512 之孔徑約小於10微米。 [0023] Ο 該奈米碳管膜結構151可為一奈米碳管絮化膜,該奈米碳 管絮化膜為將一奈米碳管原料絮化處理獲得之一自支撐 之奈米碳管膜。該奈米碳管絮化膜包括相互纏繞且均勻 分佈之奈米碳管。奈米碳管之長度大於10微米,優選為 200〜900微米,從而使奈米碳管相互纏繞於一起。該奈米 碳管之間通過凡德瓦爾力相互吸引、分佈,形成網路狀 結構。由於該自支撐之奈米碳管絮化膜中大量之奈米碳 管1511通過凡德瓦爾力相互吸引並相互纏繞,從而使該 奈米碳管絮化膜具有特定之形狀,形成一自支撐結構。 該奈米碳管絮化膜各向同性。該奈米碳管絮化膜中之奈 098143547 表單編號Α0101 第9頁/共33頁 0982074604-0 201123931 米碳管為均勻分佈,無規則排列,形成大量之微孔1512 、-、α構’微孔1 51 2孔徑約小於1 0微米。該奈米碳管絮化膜 之長度和寬度不限。由在於奈米碳管絮化膜中,奈米碳 管相互纏繞,故該奈米碳管絮化膜具有彳艮好之柔韌性, 且為一自支撐結構,可彎曲折疊成任意形狀而不破裂。 該奈米碳管絮化膜之面積及厚度均不限,厚度為丨微米〜】 毫米,優選為100微米。所述奈米礙管絮化膜之具體结構 及其製備方法請參見於2008年11月6日公開之第 200844041號台灣專利申請。為節省篇幅,僅引用於此 ,然所述申請所有技術揭露亦應視為本發明申請技術揭 露之一部分。 . ... ...201123931 VI. Description of the Invention: [Technical Field of the Invention] A method for preparing a diaphragm and having the vibration [1] The present invention relates to a speaker for a diaphragm of a diaphragm. [Prior Art 3 [0002] The electric speaker moves the vibration of the vibrating membrane by the movement of the voice coil under the magnetic field, and the air around the diaphragm is changed to generate an expansion wave, and is converted into a sound wave which can be perceived by the human ear. It can be seen from the action of the diaphragm that the ideal diaphragm should be less prone to production at high frequency vibrations = ratio _ has a smaller value. Gp, fun moving lang 2 1 intensity (four) 'to make the final high frequency, turn the sound track ^..., and, the traditional diaphragm is mostly, due to material limitations, the diaphragm 1 =, paper or metal While maintaining the quality while maintaining or even increasing the ratio of the diaphragm _ and the diaphragm has been unable to meet the development needs of the speaker / 'Previous [invention] Ο _], this provides a kind of vibration with further quality. It is necessary to use the diaphragm of the vibrating membrane to be more powerful than the strong one. The preparation method and the sound diaphragm of the sound film of the vibrating membrane, the county (4) layered carbon nanotube composite structure comprises too half Lu Fu. structure. The carbon structure. Material t j includes material carbon · structure and - no carbon (4) structure with a number of micropores. The amorphous microporous = read amorphous carbon particles filled in the carbon nanotube membrane structure _: 5]: =:, the vibrating membrane is - carbon nanotube membrane structure and complex _ Page 3 of 33 201123931 Shaped carbon particles composite constitutes a layered carbon nanotube composite structure. [0006] A vibrating membrane which is a layered carbon nanotube composite structure. The layered carbon nanotube composite structure comprises an amorphous carbon structure and a plurality of carbon nanotubes. The plurality of carbon nanotubes are disposed in the amorphous carbon structure in the form of a self-supporting carbon nanotube film structure. The amorphous carbon structure is combined with the complex nanotube through a van der Waals force and a covalent bond. [0007] A method for preparing a vibrating membrane, comprising the steps of: providing a self-supporting carbon nanotube membrane structure and a polymer, the carbon nanotube membrane structure having a plurality of micropores; dissolving the polymer in In a solvent, a polymer solution is formed; the polymer solution is impregnated into the carbon nanotube film structure; and the carbon nanotube film structure infiltrated with the polymer solution is carbonized to carbonize the polymer into amorphous carbon. [0008] A method for preparing a vibrating membrane, comprising the steps of: providing a self-supporting carbon nanotube membrane structure and a polymer monomer, the carbon nanotube membrane structure having a plurality of micropores; dissolving the polymer sheet Forming a polymer monomer solution in a solvent; infiltrating the carbon nanotube film structure by the polymer monomer solution and polymerizing the polymer monomer, the polymer monomer is polymerized to become a polymer The carbonization is infiltrated with a polymer nanocarbon film structure to carbonize the polymer into amorphous carbon. A speaker includes a bracket, a magnetic field system, a voice coil, a voice coil bobbin, a diaphragm, and a centering piece. The magnetic field system, the voice coil, the voice coil bobbin, the diaphragm, and the centering piece are fixed by the bracket. The voice coil is housed in the magnetic field system and disposed on an outer surface of the voice coil bobbin. One end of the diaphragm and the centering moon is fixed to the bracket, and the other end is fixed at 098143547 Form No. A0101 Page 4 of 33 0982074604-0 201123931 Voice coil skeleton. The vibrating membrane is a layered carbon nanotube composite structure comprising a carbon nanotube membrane structure and an amorphous carbon structure. The carbon nanotube membrane structure has a plurality of micropores. The amorphous carbon structure includes a plurality of amorphous carbon particles filled in the pores of the carbon nanotube membrane structure. [0010] ο Compared with the prior art, the carbon nanotube film structure and the amorphous carbon particles of the vibrating membrane are carbon materials, and the carbon material has a small density, so the carbon nanotube and amorphous The diaphragm made of carbon particles has good high temperature resistance and low quality. At the same time, since the carbon nanotube itself has excellent mechanical properties, the carbon nanotube film structure formed by the plurality of carbon nanotubes also has excellent mechanical properties; and the amorphous carbon particles are dispersed in the carbon nanotube film. The structure t can increase the compactness of the layered carbon nanotube composite structure and the bonding force between the carbon nanotubes, and further increase the specific strength of the layered carbon nanotube composite structure. Therefore, when the diaphragm vibrates, 形[0011] [0012] the deformation, stress and tension formed by the vibration can be completely transmitted or shared to each of the carbon nanotubes and the amorphous, obstructing particles. The diaphragm has a good specific strength. [Embodiment] Hereinafter, the present invention will be described in further detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , a first embodiment of the present invention provides a speaker 100 including a bracket 110 , a magnetic circuit system 120 , a voice coil 130 , a voice coil bobbin 140 , a diaphragm 150 , and a certain core branch . Slice 160. The magnetic field system 120, the voice coil 130, the voice coil bobbin 140, the vibrating membrane 150, and the centering support 160 are fixed by the bracket 110. The voice coil 130 is disposed on the outer surface of the voice coil skeleton 140 and is received by the voice coil bobbin 140 in the magnetic 098143547 Form No. A0101 Page 5 / Total 33 page 0982074604-0 201123931 Road system 120. One end of the diaphragm 150 and the centering piece 160 is fixed to the bracket 110, and the other end is fixed to the voice coil bobbin 140. [0013] The bracket 110 is a truncated cone structure with one end open, and has a cavity 111 and a bottom portion 112. The cavity 111 accommodates the diaphragm 150 and the centering piece 160. The bottom portion 11 2 also has a central aperture 113 for nesting the magnetic field system 120. The bracket 110 is relatively fixed to the magnetic field system 120 by the bottom portion 11 2 . [〇〇14] The magnetic field system 120 includes a magnetically permeable lower plate 121, a magnetically permeable upper plate 122, a magnet 123, and a magnetic core post 124. The opposite ends of the magnetic body 123 are respectively arranged by concentricity. The magnetic lower plate 121 and the magnetic conductive upper plate 122 are sandwiched. The magnetic conductive upper plate 122 and the magnet 123 are both annular structures, and the magnetic conductive upper plate 122: and the magnet 123 form a cylindrical space in the magnetic field system. The magnetic conductive core 124 is accommodated in the cylindrical space. Pass through the center hole 113. The magnetic core stud 124 extends from the magnetically permeable lower plate 121 to the magnetic conductive upper plate 122 and forms an annular magnetic field gap 1.2 5 with the magnetic body 12 3 for accommodating the voice coil 13 〇. The magnetic field gap 1 2 5 has a constant magnetic field of a certain magnetic induction density. The magnetic field system 120 is fixed to the bottom portion 112 by the magnetic conductive upper plate 122, and the connection method thereof may be screwing, mating fixing, bonding, or the like. In the present embodiment, the magnetic upper plate 122 and the bottom portion 112 are fixed by screwing. The voice coil 130 is received in the magnetic field gap 125, which is a driving unit of the speaker 1 , and the voice coil 130 is formed by winding a thin wire on the voice coil bobbin. Preferably, the wire is Enameled wire. When the voice coil 13〇 receives the 9-frequency signal, the voice coil 130 generates a magnetic field that changes with the audio current, and the interaction between the changed magnetic field and the constant magnetic field in the magnetic field gap 1 2 5 The voice coil 130 generates vibration. 098143547 Form No. 101 0101 Page 6 / Total 33 Page 0982074604-0 201123931 [0016] The voice coil bobbin 140 is a hollow tubular structure that is concentrically disposed with the magnetic core stud 124 and spaced apart from the magnetic core post 1 24 . And partially received in the magnetic field gap 125. The outer surface of the voice coil bobbin 140 is fixed to the voice coil, and is fixed away from the center of the vibrating membrane 15 at one end of the magnetic field system 120. When the voice coil bobbin 140 vibrates with the voice coil 13 ,, the vibrating membrane 150 is caused to vibrate, so that the air around the vibrating cymbal 15 膨胀 expands to generate sound waves. [0017] The centering piece 160 is a wavy annular structure composed of a plurality of concentric rings. The inner edge of the centering piece 160 is sleeved on the voice coil bobbin 14 , for supporting the voice coil bobbin 140 ′. The outer edge of the centering piece is fixed to the 支架 支架 bracket 110 near one end of the center hole 113 The centering piece has a large radial rigidity and a small axial rigidity, so that the voice coil 13 is freely moved up and down in the magnetic field gap 125 without lateral movement, avoiding the voice coil 130 and the magnetic circuit. System 120 touches. [0018] Please refer to FIG. 3, the diaphragm 150 has a speaker unit 1 and the shape and structure of the diaphragm 150 is not limited, and is related to its lift application, such as when the diaphragm 150 is applied to a large speaker 1 The diaphragm 15 can be a hollow and inverted cone structure; when the diaphragm 15 is applied to the micro diaphragm 150, the diaphragm 150 can be a circular or elliptical sheet structure. . In addition, the surface of the diaphragm 150 may be further provided with a patterned structure or with a graphic design such as a strip shape, a fan shape, etc., which can be used to improve the sound quality according to the application requirements. In this embodiment, the diaphragm 15 is a hollow and inverted cone structure, and the top end or the center thereof is fixed to the voice coil bobbin 140 by bonding, and the outer edge of the diaphragm 15 and the bracket 110 are Active connection. 098143547 Form No. 1010101 Page 7 of 33 0982074604-0 201123931 [Drawing 9] Referring to Figures 4 and 5, the layered carbon nanotube composite structure includes a carbon nanotube film structure 151 and an amorphous carbon. Structure 152. The carbon nanotube film structure 151 includes a plurality of carbon nanotubes 1511. Further, the carbon nanotube film structure 151 includes a plurality of micropores 1512 formed by the plurality of carbon nanotubes 1511. Specifically, the adjacent carbon nanotubes 1511 are combined by van der Waals force to form the self-supporting carbon nanotube film structure. The plurality of amorphous carbon particles 1521 (Amorphous carbon) are combined by a covalent bond to form an amorphous carbon structure 152. [0020] The so-called "self-supporting structure", that is, the carbon nanotube film structure 151 can maintain its own specific shape without being supported by a support. Since the large number of carbon nanotubes 511 in the self-supporting carbon nanotube film structure 151 are attracted to each other by the van der Waals force, the carbon nanotube film structure 151 has a specific shape to form a self-supporting structure. The carbon nanotube film structure 151 may be a film-like structure formed of at least one carbon nanotube film. When the carbon nanotube film structure 151 includes a plurality of carbon nanotube films, the plurality of carbon nanotube films are laminated. Set, the adjacent carbon nanotube membrane is combined by van der Waals force. The carbon nanotube film can be a carbon nanotube film, a carbon nanotube film or a carbon nanotube film. [0021] The carbon nanotube film structure 1 51 may include at least one carbon nanotube film, which is a self-supporting Nana obtained by directly pulling from a carbon nanotube array. Carbon tube film. Each nano carbon tube film comprises a plurality of carbon nanotubes 1511 which are substantially parallel and parallel to the surface of the carbon nanotube film. Specifically, the plurality of carbon nanotubes are arranged end to end by van der Waals force and are arranged in a preferred orientation in substantially the same direction. The preferred orientation means that most of the carbon nanotubes in the carbon nanotube film have a larger 098143547 in a certain direction. Form No. A0101 Page 8 / Total 33 Page 0982074604-0 201123931 Orientation probability, preferred orientation can also be understood as the majority The axial directions of the carbon nanotubes extend substantially in the same direction. It can be understood that since the large number of carbon nanotubes 1511 in the self-supporting carbon nanotube film are attracted to each other by Van der Waals forces and are connected end to end by Van der Waals force, the carbon nanotube film is made specific. The shape forms a self-supporting structure. The carbon nanotube segments have any width, thickness, uniformity, and shape. The thickness of the carbon nanotube film is from 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited. [0022] When the carbon nanotube film structure 151 comprises a laminated multilayer carbon nanotube film, a preferred orientation alignment of the carbon nanotubes 1511 in the adjacent two layers of carbon nanotube film is formed. A crossing angle α, 〇: greater than or equal to 0 degrees and less than or equal to 90 degrees. There is a gap between the adjacent carbon nanotube film or between adjacent carbon nanotubes 1511 in a carbon nanotube film, thereby forming a plurality of micropores 1512 in the carbon nanotube film structure 151. The pores 1512 have a pore size of less than about 10 microns. [0023] The carbon nanotube membrane structure 151 can be a carbon nanotube flocculation membrane, which is obtained by flocculation of a carbon nanotube raw material to obtain a self-supporting nanometer. Carbon tube membrane. The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes have a length of more than 10 μm, preferably 200 to 900 μm, so that the carbon nanotubes are entangled with each other. The carbon nanotubes are attracted to each other by Van der Waals forces to form a network structure. Since the large number of carbon nanotubes 1511 in the self-supporting carbon nanotube flocculation membrane are attracted to each other and entangled by van der Waals force, the carbon nanotube flocculation membrane has a specific shape and forms a self-supporting shape. structure. The carbon nanotube film is isotropic. Nai 098143547 in the carbon nanotube flocculation film Form No. 1010101 Page 9 / Total 33 page 0982074604-0 201123931 The carbon nanotubes are evenly distributed, randomly arranged, forming a large number of micropores 1512, -, α-structured 'micro The pores 1 51 2 have a pore size of less than about 10 microns. The length and width of the carbon nanotube film are not limited. In the carbon nanotube flocculation membrane, the carbon nanotubes are intertwined with each other, so the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without rupture. The area and thickness of the carbon nanotube flocculation membrane are not limited, and the thickness is 丨 micrometers to 毫米 millimeters, preferably 100 micrometers. The specific structure of the nano-tube fouling membrane and its preparation method are described in Taiwan Patent Application No. 200844041, published on Nov. 6, 2008. To save space, reference is made only to this, and all technical disclosures of the application should be considered as part of the technical disclosure of the present application. . ...

[0024] 該奈米碳管膜結構151可為一奈乘教鲁碾壓韻,該奈米碳 管碾壓膜為通過碾壓一奈米碳管陣列獲得之一種具有自 支撐性之奈米碳管膜。該奈米碳管碾壓膜包括均勻分佈 之奈求碳管1511,奈米碳管1511沿同—方向或不同方向 擇優取向排列。該奈米碳管碾壓膜中之奈米碳管相互部 分父疊,並通過凡德瓦爾力相互吸引,緊密結合,使得 該奈米碳管膜結構151具有很好之_性,可f曲折疊成 任意形狀而不破裂。且由於奈米碳管碾壓膜中之奈米碳 管1511之間通過凡德瓦爾力相互吸引緊密結合,使奈 米碳管㈣膜為-自支撑之結構。該奈米碳管礙屋膜中 之不米碳官與形成奈米碳管陣狀生長基底之表面形成 夾角/3 ’其十’万大於等於〇度且小於等於^度該夾 角万與施加於奈米碳管陣列上之Μ力有關,動越大, 該夹角越小,優選地,該奈米碳管㈣膜中之奈求碳管 098143547 表單編號Α0101 第頁/共33頁 0982074604-0 201123931 1511平行於該生長基底排列。該奈米碳管碾壓膜為通過 碾壓一奈米碳管陣列獲得,依據碾壓之方式不同,該奈 米碳管碾壓膜中之奈米碳管具有不同之排列形式。具體 地,奈米碳管1 511可無序排列;當沿不同方向礙壓時, 奈米碳管1511沿不同方向擇優取向排列;當沿同一方向 礙壓,奈米故管1511沿一固定方向擇優取向排列。該 奈米碳管碾壓膜令奈米碳管1511之長度大於5〇微米。 [0025] Ο [0026] 該奈米碳管碾壓膜之面積和厚度不限,可根據實際需要 選擇。該奈米碳管碾壓膜之面積與奈米碳管陣列之尺寸 基本相同。該奈米碳管碾壓膜厚度與奈米碳管陣列之高 度以及碾壓之壓力有關,可為丨微米〜丨毫米。可以理解, 奈米碳管陣列之高度越大而施加之愿.力越小則製備之 奈米碳管碾壓膜之厚度越大;反之,奈米碳管陣列之高 度越小而施加之壓力越大,則製備之奈米碳管碾壓膜之 厚度越小。該奈米碳管礙壓膜之中之相鄰之奈米碳管 1511之間具有一定間隙,從而於奈来竣管碾壓膜中形成 複數微孔1δ12,微孔丨5丨2之義徑約小於1〇微米。 當奈米碳管1511以一定規則有序排列,於該奈米碳管排 列方向上,該奈米碳管膜能夠充分利用奈米碳管軸向具 有之較大強度及楊氏模量,從而使該奈米碳管膜沿其中 奈米碳管1511之軸向方向具有較大強度及楊氏模量。故 ,可根據振動膜150需要增加強度及楊氏模量之位置及方 向通過改變該奈米碳管膜之設置方向,改變該振動膜15〇 不同方向上之強度及楊氏模量,從而適應不同揚聲器之 應用需要。 098143547 表單編號A0101 第11頁/共33頁 0982074604-0 201123931 [0027] 該無定形碳結構152包括複數無定形碳顆粒1521填充於該 奈米碳管膜結構151之微孔中,並於該微孔中均勻分佈, 該無定形碳顆粒1 521分佈於該複數奈米碳管1 511之間之 間隙中。進一步地,該複數無定形碳顆粒1521附著於奈 米碳管1511之管壁上或包覆於奈米碳管之部分表面。在 本實施例中,該無定形碳結構152進一步包括複數無定形 碳顆粒1521設置於該奈米碳管膜結構151兩側,形成兩個 無定形碳層。即,該奈米碳管膜結構151被該無定形碳結 構152完全包覆,複合於該無定形碳結構152之内部。 [0028] 該無定形碳顆粒1 521與該奈米碳管1 511通過凡德瓦爾力 及共價鍵相互結合。具體地,該共價鍵包括於碳-碳原子 間形成之sp2或sp3鍵。該無定形碳結構152中之複數無定 形碳顆粒1521之間通過共價鍵相互結合,並形成一個整 體結構。具體地,該共價鍵包括於碳-碳原子間形成之 sp2或sp3鍵。故,從宏觀上看,該無定形碳結構152為海 綿狀結構,且將該奈米碳管膜結構151埋設其中。或者說 ,該複數奈米碳管1511以自支撐之奈米碳管膜結構151之 形式設置於該無定形碳結構152中,且該無定形碳結構 152與該複數奈米碳管通過凡德瓦爾力及共價鍵相結合。 [0029] 該無定形碳顆粒1521為碳素材料中之一種,其外部結構 不限,然其内部結構具有和石墨一樣之晶體結構,僅由 碳原子六角形環狀平面形成之層狀結構零亂而不規則。 該無定形碳顆粒1521包括骨炭、炭黑等。該無定形碳顆 粒1521可分別用聚丙烯腈纖維、瀝青纖維、黏膠絲或酚 醛纖維等高分子材料中低溫碳化而制得。在本實施例中 098143547 表單編號A0101 第12頁/共33頁 0982074604-0 201123931 Ο ,該無定形碳顆粒1 5 21通過將該聚丙烯腈纖維於1 0 0 0左 右碳化而制之。進一步之,該層狀奈米碳管複合結構之 製備方法包括以下步驟:首先,將一高分子材料配製成 溶液之形式並浸潤該奈米碳管膜結構151,該高分子材料 與奈米碳管膜結構151中之奈米碳管1511可通過共價鍵及 凡德瓦爾力結合。其次,碳化處理浸潤有高分子材料溶 液之奈米碳管膜結構151,使該高分子材料失去部分氮、 氫、氧形成一個無定形碳結構1 52,並將該奈米碳管膜結 構151包埋其中。該無定形碳結構152為一個整體結構, 無定形碳結構152中部分無定形碳顆粒1521填充於該奈米 碳管膜結構151中;部分無定形碳顆粒1521設置於該奈米 碳管膜結構151兩側。 [0030] Ο 該振動膜包括由複數奈米碳管形成之奈米碳管膜結構及 分散於該奈米碳管膜結構中之複數無定形碳顆粒。該奈 米碳管以及無定形碳顆粒之密度都較小,故由該奈米碳 管及無定形碳顆粒製成之振動膜具有更小之質量。同時 ,由於奈米碳管本身具有優異之機械性能,故由複數奈 米碳管形成之奈米碳管膜結構亦具有優異之機械性能; 而該無定形碳顆粒分散於該奈米碳管膜結構中,可增加 該層狀奈米碳管複合結構之緻密性及奈米碳管之間之結 合力,進一步增加該層狀奈米碳管複合結構之比強度。 故,當該振動膜振動時,其由振動所形成之形變、應力 以及張力可全部傳遞或者分擔給每一奈米碳管及無定形 碳顆粒,使該振動膜具有較好之比強度。進一步地,該 奈米碳管以及無定形碳顆粒均為碳素材料,故,該振動 098143547 表單編號Α0101 第13頁/共33頁 0982074604-0 201123931 膜具有耐腐姓’耐潮等優點。 [0031] [0032] [0033] 請參閱圖6,本發明第二實施例提供一種揚聲器2〇〇,其 包括一支架210、一磁場系統220、一音圈230、一音圈 骨架240、一振動膜25〇及一定心支片260。該磁場系统 220、音圈230、音圈骨架240、振動膜250及定心支片 260通過該支架21〇固定。該音圈230設置於該音圈骨架 240 —端之外表面且與該音圈骨架24〇—起收容於該磁場 系統220。該振動膜250及定心支片260之一端固定於該 支架210 ’另一端固定於音圈骨架24〇上。 該振動膜250由碳素材料製成,該碳素材料包括複數奈米 碳管及複數無定形碳顆粒。該複數奈米碳管形成一奈米 碳管膜結構’該複數無定形碳顆粒形成一無定形碳結構 。該奈来碳管膜結構包括複數奈米碳管線狀結構,該複 數奈米碳管線狀結構通過編織等方法形成一面狀之奈米 碳管膜結構。該無定形碳結構中之部分無定形碳顆粒分 散於該奈米碳管膜結構中。[0024] The carbon nanotube film structure 151 can be a nano-rubber roller compaction film, and the carbon nanotube film is a self-supporting nano-particle obtained by rolling a carbon nanotube array. Carbon tube membrane. The carbon nanotube rolled film comprises a uniformly distributed carbon nanotube 1511, and the carbon nanotubes 1511 are arranged in the same direction or in different directions. The carbon nanotubes in the carbon nanotube rolled film are partially overlapped with each other and are attracted to each other by the van der Waals force, so that the carbon nanotube film structure 151 has a good slick property. Fold into any shape without breaking. Moreover, since the carbon nanotubes 1511 in the carbon nanotube rolled film are closely attracted to each other by the van der Waals force, the carbon nanotube (four) film is a self-supporting structure. The carbon nanotubes in the film block form an angle with the surface of the carbon nanotube-shaped growth substrate to form an angle of /3 'the tenth of which is greater than or equal to the degree of twist and less than or equal to ^ degrees. The force on the carbon nanotube array is related to the force. The larger the movement, the smaller the angle. Preferably, the carbon nanotube (098) in the carbon nanotube (four) film is 098143547. Form No. 1010101 Page / Total 33 Page 0982074604-0 201123931 1511 is arranged parallel to the growth substrate. The carbon nanotube rolled film is obtained by rolling a carbon nanotube array, and the carbon nanotubes in the carbon nanotube rolled film have different arrangement depending on the manner of rolling. Specifically, the carbon nanotubes 1 511 can be arranged in disorder; when the pressure is blocked in different directions, the carbon nanotubes 1511 are preferentially oriented in different directions; when the pressure is blocked in the same direction, the nanotubes 1511 are in a fixed direction. Preferred orientation. The carbon nanotube rolled film allows the length of the carbon nanotube 1511 to be greater than 5 μm. [0025] The area and thickness of the carbon nanotube rolled film are not limited, and may be selected according to actual needs. The area of the carbon nanotube rolled film is substantially the same as the size of the carbon nanotube array. The thickness of the carbon nanotube film is related to the height of the carbon nanotube array and the pressure of the rolling, and may be from 丨 micrometer to 丨 millimeter. It can be understood that the height of the carbon nanotube array is larger and the wish is applied. The smaller the force, the larger the thickness of the prepared carbon nanotube rolled film; on the contrary, the smaller the height of the carbon nanotube array is, the applied pressure The larger the diameter, the smaller the thickness of the prepared carbon nanotube rolled film. There is a certain gap between the adjacent carbon nanotubes 1511 in the nano-carbon nanotubes, so that a plurality of micropores 1δ12 and micropores 丨5丨2 are formed in the Nailong tube rolling film. It is less than about 1 micron. When the carbon nanotubes 1511 are arranged in a regular order, in the direction in which the carbon nanotubes are arranged, the carbon nanotube film can fully utilize the large strength and Young's modulus of the carbon nanotubes in the axial direction, thereby The carbon nanotube film has a large strength and a Young's modulus along the axial direction of the carbon nanotube 1511 therein. Therefore, the intensity and Young's modulus of the vibrating membrane 15 can be changed according to the position and direction of the vibrating membrane 150 to increase the strength and the Young's modulus by changing the direction in which the carbon nanotube film is disposed. Application for different speakers. 098143547 Form No. A0101 Page 11 of 33 0982074604-0 201123931 [0027] The amorphous carbon structure 152 includes a plurality of amorphous carbon particles 1521 filled in the micropores of the carbon nanotube film structure 151, and The pores are evenly distributed, and the amorphous carbon particles 1 521 are distributed in the gap between the plurality of carbon nanotubes 1 511. Further, the plurality of amorphous carbon particles 1521 are attached to the wall of the carbon nanotube 1511 or coated on a part of the surface of the carbon nanotube. In the present embodiment, the amorphous carbon structure 152 further includes a plurality of amorphous carbon particles 1521 disposed on both sides of the carbon nanotube film structure 151 to form two amorphous carbon layers. That is, the carbon nanotube film structure 151 is completely coated by the amorphous carbon structure 152 and is composited inside the amorphous carbon structure 152. [0028] The amorphous carbon particles 1 521 and the carbon nanotubes 1 511 are bonded to each other by a van der Waals force and a covalent bond. Specifically, the covalent bond includes an sp2 or sp3 bond formed between carbon-carbon atoms. The plurality of amorphous carbon particles 1521 in the amorphous carbon structure 152 are bonded to each other by a covalent bond and form an integral structure. Specifically, the covalent bond includes a sp2 or sp3 bond formed between carbon-carbon atoms. Therefore, from the macroscopic view, the amorphous carbon structure 152 has a sponge-like structure, and the carbon nanotube film structure 151 is buried therein. In other words, the plurality of carbon nanotubes 1511 are disposed in the amorphous carbon structure 152 in the form of a self-supporting carbon nanotube film structure 151, and the amorphous carbon structure 152 and the plurality of carbon nanotubes pass through the van der Waals Valli and covalent bonds are combined. [0029] The amorphous carbon particles 1521 are one of carbon materials, and the external structure thereof is not limited, but the internal structure has the same crystal structure as graphite, and the layered structure formed only by the hexagonal annular plane of carbon atoms is disorderly. Irregular. The amorphous carbon particles 1521 include bone charcoal, carbon black, and the like. The amorphous carbon particles 1521 can be obtained by low-temperature carbonization of a polymer material such as polyacrylonitrile fiber, pitch fiber, viscose or phenolic fiber. In the present embodiment 098143547 Form No. A0101 Page 12 of 33 0982074604-0 201123931 Ο The amorphous carbon particles 1 5 21 are prepared by carbonizing the polyacrylonitrile fiber around 100 Å. Further, the method for preparing the layered carbon nanotube composite structure comprises the following steps: First, a polymer material is formulated into a solution and infiltrated into the carbon nanotube film structure 151, the polymer material and the nanometer The carbon nanotube 1511 in the carbon tube membrane structure 151 can be bonded by a covalent bond and a van der Waals force. Next, the carbon nanotube treatment impregnates the carbon nanotube membrane structure 151 of the polymer material solution, so that the polymer material loses part of nitrogen, hydrogen, and oxygen to form an amorphous carbon structure 1 52, and the carbon nanotube membrane structure 151 Embedded in it. The amorphous carbon structure 152 is a unitary structure, and a part of the amorphous carbon particles 1521 in the amorphous carbon structure 152 is filled in the carbon nanotube film structure 151; a part of the amorphous carbon particles 1521 is disposed on the carbon nanotube film structure. 151 sides. [0030] The vibrating membrane comprises a carbon nanotube membrane structure formed of a plurality of carbon nanotubes and a plurality of amorphous carbon particles dispersed in the carbon nanotube membrane structure. The carbon nanotubes and the amorphous carbon particles have a small density, so that the diaphragm made of the carbon nanotubes and the amorphous carbon particles has a smaller mass. At the same time, since the carbon nanotube itself has excellent mechanical properties, the carbon nanotube film structure formed by the plurality of carbon nanotubes also has excellent mechanical properties; and the amorphous carbon particles are dispersed in the carbon nanotube film. In the structure, the compactness of the layered carbon nanotube composite structure and the bonding force between the carbon nanotubes can be increased, and the specific strength of the layered carbon nanotube composite structure is further increased. Therefore, when the diaphragm vibrates, the deformation, stress and tension formed by the vibration can be completely transmitted or shared to each of the carbon nanotubes and the amorphous carbon particles, so that the diaphragm has a good specific strength. Further, the carbon nanotubes and the amorphous carbon particles are all carbon materials, so the vibration 098143547 Form No. 1010101 Page 13 of 33 0982074604-0 201123931 The film has the advantages of corrosion resistance and moisture resistance. [0033] Referring to FIG. 6, a second embodiment of the present invention provides a speaker 2, which includes a bracket 210, a magnetic field system 220, a voice coil 230, a voice coil bobbin 240, and a The diaphragm 25 and the center piece 260. The magnetic field system 220, the voice coil 230, the voice coil bobbin 240, the diaphragm 250, and the centering piece 260 are fixed by the bracket 21''. The voice coil 230 is disposed on the outer surface of the voice coil bobbin 240 and is housed in the magnetic field system 220 together with the voice coil bobbin 24 . One end of the diaphragm 250 and the centering piece 260 is fixed to the other end of the bracket 210' and is fixed to the voice coil bobbin 24A. The diaphragm 250 is made of a carbon material including a plurality of carbon nanotubes and a plurality of amorphous carbon particles. The plurality of carbon nanotubes form a carbon nanotube film structure. The plurality of amorphous carbon particles form an amorphous carbon structure. The carbon nanotube membrane structure comprises a plurality of nanocarbon line-like structures which are formed into a one-sided carbon nanotube membrane structure by weaving or the like. Part of the amorphous carbon particles in the amorphous carbon structure are dispersed in the carbon nanotube film structure.

本發明實施例提供之揚聲器2 0 0與第一實施例提供之揚聲 器100之結構與工作原理基本相同’其區別在於,該振動 膜250中之奈米碳管膜結構由至少一碳奈米線狀結構組成 ’每一碳奈米線狀結構包括複數奈米碳管通過凡德瓦爾 力首尾相連且沿該奈米碳管線狀結構轴向有序排列。該 奈米碳官膜結構可由一個奈米碳管線狀結構彎折、纏繞 、編織構成,或者,亦可由複數奈米碳管線狀結構相互 098143547 平行攻置、交又設置或編織成一網狀結構。該複數奈米 石反官線可相互平行排列組成一束狀結構,或相互扭轉組 表單編號A0101 第14頁/共33頁 0982074604-0 201123931 Ο [0034]The speaker 200 provided in the embodiment of the present invention has substantially the same structure and working principle as the speaker 100 provided in the first embodiment. The difference is that the carbon nanotube film structure in the diaphragm 250 is composed of at least one carbon nanowire. The structure of each of the carbon nanostructures includes a plurality of carbon nanotubes connected end to end by van der Waals force and arranged axially along the nanocarbon line structure. The carbon carbon film structure may be formed by bending, winding, or weaving a nano carbon line structure, or may be parallelized, intersected, or woven into a network structure by a plurality of nano carbon line-like structures mutually 098143547. The plurality of nano-stone anti-official lines can be arranged parallel to each other to form a bundle structure, or mutually twisted groups. Form No. A0101 Page 14 of 33 0982074604-0 201123931 Ο [0034]

GG

[0035] 098143547 0982074604-0 太—紋線結構。該編織之方法不限,如可通過將該複數 ^米唆管線狀賴分成彳目互垂直之行奈米料線狀結構 ’、列奈米碳管線狀結構’再將該行奈米碳管線狀結構與 ^奈米碳管線狀結構相互編織;請參關7,亦可將該複 奈米後管線狀結構分成與該定心支片之環形結構之圓 弧對應之環形奈米衫線狀結構與該圓弧直接對應之徑 向奈米碳管線狀結構’再將該環形奈米碳管線狀結構與 奈米碳管線狀結構相互編織。該奈米碳管線狀結 升單根奈米碳管線’亦可為多根奈米碳管線共同 形成之股線。該複數奈米 束狀結構,或相互扭轉組成平行排列組成一 可為非扭轉之奈米碳管線轅線結構。該奈米碳管線 X钮轉之奈米碳管線。 該非扭轉之奈米碳管線為 處理得到。該非扭轉之=米"管拉膜通過有機溶劑 線長度方向排列之奈米碳營=線包括複數沿奈米碳管 碳管線包括複數奈米碳管通過^體地,該f扭轉之奈米 奈米碳管線轴向擇優取向拆^德瓦爾力首尾相連且沿 音=具〆m由 邊奈米碳管片段具有任 意之長度、厚度、均勻性形壯 線長度不限,直徑為〇.5^1。該非扭轉之奈米碳管 $未400微米。 該扭轉之奈米碳管線為採用一 兩端沿相反方向扭㈣得。2械力㈣奈米碳管拉膜 數繞奈米碳管線轴向螺旋排3轉之奈米碳管線包括複 扭轉之奈米碳管線包括複數」:奈米碳管。具體地’該 尾相連且沿奈米碳管線軸向=管通過凡德瓦爾力首 片段具有任意之長度、厚度:狀价該奈米碳管 均勻性及形狀。該扭轉之 表單編號Α0101 第15頁/共33頁 201123931 [0036] [0037] [0038] [0039] 奈米碳管線長度不限,直徑為0. 5奈米-100微米。由於該 奈米碳管線為採用有機溶劑或機械力處理上述奈米碳管 拉膜獲得’該奈米碳管拉膜為自支撐結構,故該奈米碳 官線為自支撐結構。另外,該奈米碳管線申相鄰奈米碳 管間存在間隙,故該奈米碳管線具有大量微孔,微孔之 孔徑約小於10微米。 相對於第一實施例中之揚聲器10 0,本實施例中之揚聲器 200 ’其振動膜250中之奈米碳管膜結構由複數碳奈米線 狀結構形成。由於該碳奈米線狀結構中奈米碳管基本沿 該奈米碳管線之長度方向平行或螺旋排列,故,該碳奈 米線狀結構於長度方向具有較大強度及楊氏模量。可通 過設計該奈米碳管線狀結構之設置方向來增加該方向之 強度及揚氏模量。 請參閱圖8,本發明第一實施例提供之一種振動膜之製備 方法’其包括如下步驟。 步驟S1G1 :提供—自支狀奈米碳管膜結構及—聚合物 ,該奈米碳管膜結構具有複數微孔。該奈米碳管膜結構 包括複數奈米礙管,相鄰之奈米碳管通過凡德瓦爾力結 合並形成複數微孔。該聚合物包括聚丙烯腈、瀝青、黏 膠絲及祕纖維中之—㈣幾種之組合。在本實施例中 ,該聚合物為聚丙烯腈。 步驟S102 :將該聚合物溶解於一溶劑中,形成一聚合物 溶液。該溶龍w揮發且㈣聚合物具有較強溶解°能 力之溶劑’如四氫呋喃或四氣化碳等。 098143547 表單编號A0101 第16頁/共33頁 0982074604-0 201123931 [0040] [0041] Ο ❹ 步驟Sl〇3 ··使該聚合物溶液 於該奈米碳管膜結構為一自支待^構丨二S骐、结構。由 碳管膜結構浸泡於該聚合物溶液之可選擇將該奈米 該奈米碳管膜結構。該聚合物=:聚合物浸潤 構後:部分聚合物溶液將渗透到該奈結 孔中並與該奈米碳管膜結構中之奈米碳管 〜構之微 ,、’灭6緊岔接觸。 步驟SUM:碳化浸潤有聚合物溶液之奈 ㈣聚合物碳化為無定形碳。該魏溫度道结構以 度以下,於高真空下於義度以下。由於大常溫下於_ 良好之耐熱特性,該奈米碳管骐結構於碳二炭管具有 構與性能不發纽變。岭聚合物料下其結 分之氮、氫及氧形成無定形碳。其中’去掉大部=::=^_合物溶液形成部== ^充於錢孔巾,肢整財料管舰構 ^ 物溶液形成部分妓形碳分佈於該奈米碳管膜結構^ 之兩個表面。該紋形碳與奈米碳管之缝過凡德瓦爾 力及:、價^鍵結合,該共價鍵包括於碳-碳原'子間形戍之 SP2或sp鍵。且該複數無定性碳通過共價健結合形成一 個具整體結構之無定性韻構。從而形成—層狀奈米碳 管複合結構。 [0042] 該振動膜之製備過程不f要涉及複雜之化學反應工藝過 程’反應條件亦比較溫和。故,該振動膜之製備方法較 為簡單,且成本低廉。 明參閱圖9,本發明第二實施例提供之一種振動膜之製備 方法,其包括如下步驟。 098143547 表單編號A0101 第17頁/共33頁 0982074604-0 [0043] 201123931 [0044] 步驟S201 :提供一自支撐之奈米碳管膜結構及一聚合物 4 單體,該奈米碳管膜結構具有複數微孔。該聚合物單體 為包含雙鍵、羥基、羧基或環氧基等能夠發生聚合反應 之之化合物。在本實施例中,該聚合物單體為聚丙烯, 其具有一雙鍵。 [0045] 步驟S202 :溶解該聚合物單體於一溶劑中,形成一聚合 物單體溶液。該溶劑採用易揮發且對該聚合物單體具有 較強溶解能力之溶劑,如四氫呋喃或四氯化碳等。 [0046] 步驟S203 :使該聚合物單體溶液浸潤該奈米碳管膜結構 並使該聚合物單體產生聚合反應,該聚合物單體聚合反 應後成為聚合物。該聚合物單體溶液滲透到奈米碳管膜 結構之内部,發生聚合反應後,該聚合物單體於溶液中 原位聚合生成聚合物,其中,滲透到奈米碳管膜結構内 部之聚合物單體溶液原位聚合生成之聚合物亦複合於該 奈米碳管膜結構中形成複合結構。在本實施例中,該聚 合物單體為聚丙烯,其原位聚合後生成聚丙烯腈。 [0047] 步驟S204 :碳化該奈米碳管膜結構與聚合物之複合結構 ,以使該聚合物碳化為無定形碳。 [0048] 相對於第一實施例提供之振動膜之製備方法,本實施例 通過使聚合物單體浸潤於該奈米碳管膜結構且於該奈米 碳管膜結構原位聚合之方式,使該聚合物能複合於奈米 碳管膜結構中。能夠使該聚合物之選擇範圍更廣,即使 該奈米碳管膜結構能夠浸潤有難溶於溶劑之聚合物。 [0049] 綜上所述,本發明確已符合發明專利之要件,遂依法提 098143547 表單編號A0101 第18頁/共33頁 201123931 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0050] 圖1係本發明實施例揚聲器之結構示意圖。 [0051] 圖2係圖1中之揚聲器之剖視結構示意圖。 [0052] 圖3係圖1揚聲器中之振動膜之結構示意圖。[0035] 098143547 0982074604-0 Tai-line structure. The method of weaving is not limited, for example, the nanometer carbon line-like structure can be divided into two rows of nano-line-like structures, and a column of nano-carbon line-like structure. The structure is woven with the nano carbon line structure; please refer to step 7, or the trunk structure after the complex nanometer can be divided into a circular nano-shirt line corresponding to the arc of the annular structure of the centering piece. The radial nanocarbon line-like structure directly corresponding to the arc is further woven with the annular nanocarbon line structure and the nanocarbon line structure. The nanocarbon line-like rise single carbon carbon line may also be a strand formed by a plurality of nano carbon lines. The plurality of nano-bundles, or mutually twisted, are arranged in parallel to form a non-twisted nanocarbon pipeline twist line structure. The nano carbon line X button is turned into a nano carbon line. The non-twisted nanocarbon line is obtained for processing. The non-twisted = m " tube pulled through the organic solvent line length direction of the nano carbon camp = line includes a plurality of carbon nanotubes along the carbon nanotube line including a plurality of carbon nanotubes through the body, the f twisted nano Nano carbon pipeline axial preferred orientation demolition ^ Deval force is connected end to end and along the sound = with 〆 m by the side carbon nanotube segments have any length, thickness, uniformity, length and length of the line is not limited, the diameter is 〇.5 ^1. The non-twisted carbon nanotubes are not 400 microns. The twisted nanocarbon line is obtained by twisting (four) in opposite directions. 2 mechanical force (four) nano carbon tube film several round nano carbon line axial spiral row 3 turn nano carbon pipeline including complex twisted nano carbon pipeline including plural ": carbon nanotubes. Specifically, the tail is connected and along the axial direction of the nanocarbon pipeline = the tube passes through the van der Waals force fragment to have an arbitrary length and thickness: the carbon nanotube uniformity and shape. 5纳米至100微米。 The twisted form number is Α0101. Since the nano carbon line is obtained by treating the above carbon nanotube film with an organic solvent or mechanical force, the carbon nanotube film is a self-supporting structure, so the nano carbon official line is a self-supporting structure. In addition, the nanocarbon pipeline has a gap between adjacent carbon nanotubes, so the nanocarbon pipeline has a large number of micropores, and the pore diameter of the micropores is less than about 10 μm. With respect to the speaker 100 in the first embodiment, the speaker 200' of the present embodiment has a carbon nanotube film structure in the diaphragm 250 formed of a plurality of carbon nanowire structures. Since the carbon nanotubes in the carbon nanowire structure are arranged substantially parallel or spirally along the length direction of the nanocarbon line, the carbon nanotube linear structure has a large strength and a Young's modulus in the longitudinal direction. The strength and Young's modulus in this direction can be increased by designing the orientation of the nanocarbon line-like structure. Referring to Fig. 8, a method for preparing a vibrating membrane according to a first embodiment of the present invention includes the following steps. Step S1G1: providing a self-supporting carbon nanotube membrane structure and a polymer, the nanocarbon membrane membrane structure having a plurality of micropores. The carbon nanotube membrane structure comprises a plurality of nano-tubes, and adjacent carbon nanotubes are combined by van der Waals to form a plurality of micropores. The polymer comprises a combination of several of the polyacrylonitrile, asphalt, viscose and mysterious fibers. In this embodiment, the polymer is polyacrylonitrile. Step S102: dissolving the polymer in a solvent to form a polymer solution. The solvent is volatilized and (iv) the polymer has a solvent having a relatively high ability to dissolve, such as tetrahydrofuran or tetra-carbonized carbon. 098143547 Form No. A0101 Page 16 / Total 33 Page 0982074604-0 201123931 [0041] 004 ❹ Step S1〇3 · Make the polymer solution in the carbon nanotube membrane structure as a self-supporting structure丨二S骐, structure. The nanocarbon nanotube membrane structure can be selected by immersing the carbon nanotube membrane structure in the polymer solution. The polymer =: after the polymer is wetted: a part of the polymer solution will penetrate into the nanopore pores and be in contact with the carbon nanotubes in the structure of the carbon nanotube membrane. . Step SUM: carbonization infiltrated with a polymer solution. (4) The polymer is carbonized to amorphous carbon. The Wei temperature channel structure is below the degree and below the degree of high vacuum. Due to the good heat resistance at room temperature, the carbon nanotube structure has no structure or performance change in the carbon bicarbon tube. The nitrogen, hydrogen and oxygen of the fractions of the ridge polymer material form amorphous carbon. Which 'removed most of the ==:=^_ compound solution forming part == ^ filled in the money hole towel, the body of the whole material and the material of the ship's structure formed part of the 妓-shaped carbon distributed in the carbon nanotube film structure ^ The two surfaces. The striated carbon and the carbon nanotube are sewn through a van der Waals force and a valence bond, and the covalent bond is included in the carbon-carbon pro-sub-arc shape of the SP2 or sp bond. And the plurality of amorphous carbons form an indefinite rhyme structure with a monolithic structure through covalent bonding. Thereby, a layered carbon nanotube composite structure is formed. [0042] The preparation process of the vibrating membrane does not involve a complicated chemical reaction process, and the reaction conditions are relatively mild. Therefore, the preparation method of the vibrating membrane is simple and low in cost. Referring to Figure 9, a second embodiment of the present invention provides a method of preparing a vibrating membrane comprising the following steps. 098143547 Form No. A0101 Page 17 / Total 33 Page 0982074604-0 [0043] Step S201: providing a self-supporting carbon nanotube membrane structure and a polymer 4 monomer, the carbon nanotube membrane structure With a plurality of micropores. The polymer monomer is a compound capable of undergoing polymerization such as a double bond, a hydroxyl group, a carboxyl group or an epoxy group. In this embodiment, the polymer monomer is polypropylene having a double bond. [0045] Step S202: dissolving the polymer monomer in a solvent to form a polymer monomer solution. The solvent is a solvent which is volatile and has a strong dissolving power for the polymer monomer, such as tetrahydrofuran or carbon tetrachloride. [0046] Step S203: the polymer monomer solution is impregnated into the carbon nanotube film structure and the polymer monomer is polymerized, and the polymer monomer is polymerized and reacted to become a polymer. The polymer monomer solution penetrates into the interior of the carbon nanotube membrane structure, and after polymerization, the polymer monomer is polymerized in situ in the solution to form a polymer, wherein the polymer penetrates into the inner structure of the carbon nanotube membrane structure. The polymer formed by in-situ polymerization of the monomer solution is also combined with the carbon nanotube film structure to form a composite structure. In this embodiment, the polymer monomer is polypropylene which is polymerized in situ to form polyacrylonitrile. [0047] Step S204: carbonizing the composite structure of the carbon nanotube film structure and the polymer to carbonize the polymer into amorphous carbon. [0048] Compared with the method for preparing the vibrating membrane provided by the first embodiment, the present embodiment is obtained by infiltrating the polymer monomer into the carbon nanotube membrane structure and in-situ polymerization of the carbon nanotube membrane structure. The polymer is capable of complexing into the carbon nanotube membrane structure. The polymer can be selected to a wider range even if the carbon nanotube film structure is capable of infiltrating a polymer which is poorly soluble in a solvent. [0049] In summary, the present invention has indeed met the requirements of the invention patent, and 遂 098143547 Form No. A0101 Page 18 of 33 201123931 Patent application. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0050] FIG. 1 is a schematic structural view of a speaker according to an embodiment of the present invention. 2 is a cross-sectional structural view of the speaker of FIG. 1. 3 is a schematic structural view of a diaphragm in the speaker of FIG. 1.

[0053] 圖4係圖3振動膜中沿IV-IV方向之剖視圖。 [0054] 圖5係圖3振動膜中之奈米碳管膜結構内部複合有無定形 碳顆粒時之局部放大結構示意圖。 [0055] 圖6係本發明第二實施例揚聲器之結構示意圖。 [0056] 圖7係圖6中揚聲器中之振動膜之結構示意圖。 [0057] 圖8係本發明第一實施例振動膜製備方法之流程示意圖。 [0058] 圖9係本發明第二實施例振動膜另一製備方法之流程示意 圖。 【主要元件符號說明】 [0059] 揚聲器:100、200 [0060] 支架:110 、210 [0061] 磁場系統· 120 ' 220 [0062] 音圈:130 ' 230 098143547 表單編號A0101 第19頁/共33頁 0982074604-0 201123931 [0063] 音圈骨架:140、240 [0064] 振動膜:150、250 [0065] 定心支片:160、260 [0066] 空腔:111 [0067] 底部:112 [0068] 中心孔:11 3 [0069] 導磁下板:121 [0070] 導磁上板:122 [0071] 磁體:123 [0072] 導磁芯柱:124 [0073] 磁場間隙:1 2 5 [0074] 奈米碳管膜結構:151 [0075] 無定形碳結構:152 [0076] 奈米碳管:1511 [0077] 微孔:1512 [0078] 無定形碳顆粒:1521 098143547 表單編號A0101 第20頁/共33頁 0982074604-04 is a cross-sectional view of the diaphragm of FIG. 3 taken along the IV-IV direction. 5 is a partially enlarged schematic view showing the structure of the carbon nanotube film in the vibrating membrane of FIG. 3 when the amorphous carbon particles are composited. 6 is a schematic structural view of a speaker according to a second embodiment of the present invention. 7 is a schematic structural view of a diaphragm in the speaker of FIG. 6. 8 is a schematic flow chart of a method for preparing a vibrating membrane according to a first embodiment of the present invention. 9 is a schematic flow chart showing another method of preparing a vibrating membrane according to a second embodiment of the present invention. [Main component symbol description] [0059] Speaker: 100, 200 [0060] Bracket: 110, 210 [0061] Magnetic field system · 120 ' 220 [0062] Voice coil: 130 ' 230 098143547 Form No. A0101 Page 19 of 33 Page 0982074604-0 201123931 [0063] Voice coil skeleton: 140, 240 [0064] Vibrating membrane: 150, 250 [0065] Centering support: 160, 260 [0066] Cavity: 111 [0067] Bottom: 112 [0068] ] Center hole: 11 3 [0069] Magnetic lower plate: 121 [0070] Magnetic upper plate: 122 [0071] Magnet: 123 [0072] Magnetic core: 124 [0073] Magnetic field gap: 1 2 5 [0074 ] Carbon nanotube membrane structure: 151 [0075] Amorphous carbon structure: 152 [0076] Carbon nanotube: 1511 [0077] Microporous: 1512 [0078] Amorphous carbon particles: 1521 098143547 Form No. A0101 Page 20 / Total 33 pages 0982074604-0

Claims (1)

201123931 七、申請專利範圍: 1 . 一種振動膜,其改進在於,該振動膜為一層狀奈米碳管複 合結構,該層狀奈米碳管複合結構包括: 一奈米碳管膜結構,該奈米碳管膜結構具有複數微孔;以 及 一無定形碳結構,該無定形碳結構包括複數無定形碳顆粒 填充於該奈米碳管膜結構之微孔中。 2 .如申請專利範圍第1項所述之振動膜,其中,該無定形碳 顆粒均勻分佈於該奈米碳管膜結構之微孔中。 Ο 3 .如申請專利範圍第1項所述之振動膜,其中,該奈米碳管 膜結構包括複數奈米碳管,該複數無定形碳顆粒分佈於奈 米碳管之管壁上或包覆於奈米.碳管之部分表面。 . 4 .如申請專利範圍第3項所述之振動膜,其中,該無定形碳 結構中之複數無定形碳顆粒與該奈米碳管通過凡德瓦爾力 及共價鍵相結合。 5 .如申請專利範圍第1項所述之振動膜,其中,該無定形碳 結構進一步包括複數無定形碳顆粒附著於該奈米碳管膜結 Q 構兩側之表面,形成兩個無定形碳層。 6 .如申請專利範圍第1項所述之振動膜,其中,該無定形碳 結構中之複數無定形碳顆粒之間通過共價鍵相互結合。 7 .如申請專利範圍第6項所述之振動膜,其中,該無定形碳 結構為一海綿狀結構,該奈米碳管膜結構包埋於該無定形 碳結構中。 8 .如申請專利範圍第5或6之振動膜,其中,該共價鍵包括碳 -碳原子間之sp2或sp3鍵。 098143547 表單編號A0101 第21頁/共33頁 0982074604-0 201123931 9 .如申請專利範圍第1項所述之振動膜,其中,該奈米碳管 膜結構為一自支撐結構。 10 .如申請專利範圍第9項所述之振動膜,其中,該奈米碳管 膜結構包括複數奈米碳管通過凡德瓦爾力相互結合。 11 .如申請專利範圍第1項所述之振動膜,其中,該奈米碳管 膜結構由至少一奈米碳管線狀結構組成,該奈米碳管線狀 結構包括複數奈米碳管通過凡德瓦爾力首尾相連且沿該奈 米碳管線狀結構軸向有序排列。 12 .如申請專利範圍第1項所述之振動膜,其中,該奈米碳管 膜結構包括複數奈米碳管線狀結構。 13 .如申請專利範圍第12項所述之振動膜,其中,該奈米碳管 膜結構包括複數奈米碳管線狀結構,該複數奈米碳管線狀 結構相互平行設置、交叉設置或編織成網狀結構。 14 .如申請專利範圍第1項所述之振動膜,其中,該奈米碳管 膜結構包括至少一奈米碳管膜,該奈米碳管膜包括複數奈 米碳管。 15 .如申請專利範圍第14項所述之振動膜,其中,該奈米碳管 膜結構包括複數奈米碳管膜層疊設置,相鄰之奈米碳管膜 之間通過凡德瓦爾力結合。 16 .如申請專利範圍第14項所述之振動膜,其中,該奈米碳管 膜各向同性,該奈米碳管膜中之複數奈米碳管均勻分佈。 17 .如申請專利範圍第14項所述之振動膜,其中,該奈米碳管 膜中之複數奈米碳管基本相互平行且基本平行於該奈米碳 管膜表面。 18 .如申請專利範圍第17項所述之振動膜,其中,該複數奈米 碳管通過凡德瓦爾力首尾相連且基本沿同一方向擇優取向 098143547 表單編號A0101 第22頁/共33頁 201123931 19 . 20 . Ο 21 · 22 . Ο 排列。說明書中增加對擇優取向的解釋! 一種振動膜,其改進在於,該振動膜為一奈米碳管膜結構 與複數無定形碳顆粒複合構成之一層狀奈米碳管複合結構 〇 , 一種振動膜,其改進在於,該振動膜為一層狀奈米碳管複 合結構,該層狀奈米碳管複合結構包括一無定形碳結構及 複數奈米碳管,該複數奈米碳管以自支撐之奈米碳管膜結 構之形式設置於該無定形碳結構中,該無定形碳結構與該 複數奈米碳管通過凡德瓦爾力及共價鍵相結合。 一種振動膜之製備方法,其包括如下步驟: 提供一自支撐之奈米碳管膜結構及一聚合物,該奈米碳管 膜結構具有複數微孔; 將該聚合物溶解於一溶劑中,形成一聚合物溶液; 使該聚合物溶液浸潤該奈米碳管膜結構;以及 碳化浸潤有聚合物溶液之奈米碳管膜結構以使該聚合物碳 化為無定形碳。 一種振動膜之製備方法,其包括如下步驟: 提供一自支撐之奈米碳管膜結構及一聚合物單體,該奈米 碳管膜結構具有複數微孔; 溶解該聚合物單體於一溶劑中,形成一聚合物單體溶液; 使該聚合物單體溶液浸潤該奈米碳管膜結構並使該聚合物 單體產生聚合反應,該聚合物單體聚合反應後成為聚合物 ;以及 碳化該奈米碳管膜結構與聚合物之複合結構,以使該聚合 物碳化為無定形碳。 098143547 表單編號Α0101 第23頁/共33頁 0982074604-0 201123931 23 . 一種揚聲器,其包括一支架、一磁場系統、一音圈、一音 圈骨架、一振動膜及一定心支片,該磁場系統、音圈、音 圈骨架、振動膜及定心支片通過該支架固定,該音圈收容 於該磁場系統,並設置於該音圈骨架外表面,該振動膜及 定心支片之一端固定於該支架,另一端固定於音圈骨架, 其改進在於,該振動膜為一層狀奈米碳管複合結構,該層 狀奈米碳管複合結構包括一奈米碳管膜結構及一無定形碳 結構,該奈米碳管膜結構具有複數微孔,該無定形碳結構 包括複數無定形碳填充於該奈来碳管膜結構之微孔中。 098143547 表單編號A0101 第24頁/共33頁 〇 0982074604-0201123931 VII. Patent application scope: 1. A vibrating membrane, the improvement is that the vibrating membrane is a layered carbon nanotube composite structure, and the laminar carbon nanotube composite structure comprises: a carbon nanotube membrane structure, The carbon nanotube membrane structure has a plurality of micropores; and an amorphous carbon structure comprising a plurality of amorphous carbon particles filled in the micropores of the carbon nanotube membrane structure. 2. The vibrating membrane of claim 1, wherein the amorphous carbon particles are uniformly distributed in the micropores of the carbon nanotube membrane structure. The vibrating membrane of claim 1, wherein the carbon nanotube membrane structure comprises a plurality of carbon nanotubes, and the plurality of amorphous carbon particles are distributed on the wall of the carbon nanotube or Cover part of the surface of the carbon tube. 4. The vibrating membrane of claim 3, wherein the plurality of amorphous carbon particles in the amorphous carbon structure are combined with the carbon nanotube by van der Waals force and a covalent bond. 5. The vibrating membrane of claim 1, wherein the amorphous carbon structure further comprises a plurality of amorphous carbon particles attached to the surface of both sides of the carbon nanotube film junction to form two amorphous Carbon layer. 6. The vibrating membrane according to claim 1, wherein the plurality of amorphous carbon particles in the amorphous carbon structure are bonded to each other by a covalent bond. The vibrating membrane according to claim 6, wherein the amorphous carbon structure is a sponge-like structure, and the carbon nanotube membrane structure is embedded in the amorphous carbon structure. 8. The diaphragm of claim 5 or 6, wherein the covalent bond comprises a sp2 or sp3 bond between carbon-carbon atoms. 098143547 Form No. A0101 Page 21 of 33 0982074604-0 201123931. The diaphragm of claim 1, wherein the carbon nanotube membrane structure is a self-supporting structure. 10. The vibrating membrane of claim 9, wherein the carbon nanotube membrane structure comprises a plurality of carbon nanotubes bonded to each other by a van der Waals force. 11. The vibrating membrane of claim 1, wherein the carbon nanotube membrane structure is composed of at least one nanocarbon pipeline structure, and the nanocarbon pipeline structure comprises a plurality of carbon nanotubes passing through Devalli is connected end to end and arranged axially along the nanocarbon line-like structure. The vibrating membrane of claim 1, wherein the carbon nanotube membrane structure comprises a plurality of nanocarbon line-like structures. 13. The vibrating membrane of claim 12, wherein the carbon nanotube membrane structure comprises a plurality of nanocarbon pipeline-like structures, the plurality of carbon carbon pipeline structures are arranged in parallel, crosswise or woven into each other. grid. The vibrating membrane of claim 1, wherein the carbon nanotube membrane structure comprises at least one carbon nanotube membrane comprising a plurality of carbon nanotube membranes. The vibrating membrane of claim 14, wherein the carbon nanotube membrane structure comprises a plurality of carbon nanotube membrane laminates, and the adjacent carbon nanotube membranes are combined by van der Waals force . The vibrating membrane according to claim 14, wherein the carbon nanotube membrane is isotropic, and the plurality of carbon nanotubes in the carbon nanotube membrane are uniformly distributed. The vibrating membrane of claim 14, wherein the plurality of carbon nanotubes in the carbon nanotube membrane are substantially parallel to each other and substantially parallel to the surface of the carbon nanotube membrane. 18. The vibrating membrane of claim 17, wherein the plurality of carbon nanotubes are connected end to end by van der Waals force and are oriented substantially in the same direction 098143547 Form No. A0101 Page 22 of 33 201123931 19 20 . Ο 21 · 22 . 排列 Arrange. Add an explanation of the preferred orientation in the manual! A vibrating membrane is improved in that the vibrating membrane is a laminated carbon nanotube composite structure composed of a carbon nanotube membrane structure and a plurality of amorphous carbon particles, and a vibrating membrane is improved in that the vibrating membrane In the layered carbon nanotube composite structure, the layered carbon nanotube composite structure comprises an amorphous carbon structure and a plurality of carbon nanotubes, and the plurality of carbon nanotubes are self-supporting carbon nanotube membrane structures. Formed in the amorphous carbon structure, the amorphous carbon structure is combined with the complex carbon nanotubes by van der Waals force and covalent bonds. A method for preparing a vibrating membrane, comprising the steps of: providing a self-supporting carbon nanotube membrane structure and a polymer, the carbon nanotube membrane structure having a plurality of micropores; dissolving the polymer in a solvent, Forming a polymer solution; infiltrating the carbon nanotube film structure with the polymer solution; and carbonizing the carbon nanotube film structure infiltrated with the polymer solution to carbonize the polymer into amorphous carbon. A method for preparing a vibrating membrane, comprising the steps of: providing a self-supporting carbon nanotube membrane structure and a polymer monomer, the carbon nanotube membrane structure having a plurality of micropores; dissolving the polymer monomer in one Forming a polymer monomer solution in the solvent; infiltrating the carbon nanotube film structure by the polymer monomer solution and causing polymerization of the polymer monomer, the polymer monomer is polymerized to become a polymer; The composite structure of the carbon nanotube film structure and the polymer is carbonized to carbonize the polymer into amorphous carbon. 098143547 Form No. 1010101 Page 23 of 33 0982074604-0 201123931 23 . A speaker comprising a bracket, a magnetic field system, a voice coil, a voice coil bobbin, a diaphragm and a centring piece, the magnetic field system The voice coil, the voice coil bobbin, the vibrating membrane and the centering support piece are fixed by the bracket, the voice coil is received in the magnetic field system, and is disposed on the outer surface of the voice coil bobbin, and the vibrating membrane and the centering piece are fixed at one end The other end of the bracket is fixed to the voice coil bobbin, and the improvement is that the diaphragm is a layered carbon nanotube composite structure, and the layered carbon nanotube composite structure comprises a carbon nanotube membrane structure and a The carbonaceous membrane structure has a plurality of micropores, and the amorphous carbon structure comprises a plurality of amorphous carbons filled in the micropores of the carbon nanotube membrane structure. 098143547 Form No. A0101 Page 24 of 33 〇 0982074604-0
TW098143547A 2009-12-18 2009-12-18 Diaphragm, method for making the same and loudspeaker having the same TWI455611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098143547A TWI455611B (en) 2009-12-18 2009-12-18 Diaphragm, method for making the same and loudspeaker having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098143547A TWI455611B (en) 2009-12-18 2009-12-18 Diaphragm, method for making the same and loudspeaker having the same

Publications (2)

Publication Number Publication Date
TW201123931A true TW201123931A (en) 2011-07-01
TWI455611B TWI455611B (en) 2014-10-01

Family

ID=45046892

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098143547A TWI455611B (en) 2009-12-18 2009-12-18 Diaphragm, method for making the same and loudspeaker having the same

Country Status (1)

Country Link
TW (1) TWI455611B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068291A1 (en) * 2004-12-21 2006-06-29 Teijin Limited Electric double layer capacitor
FI120195B (en) * 2005-11-16 2009-07-31 Canatu Oy Carbon nanotubes functionalized with covalently bonded fullerenes, process and apparatus for producing them, and composites thereof
TW200726290A (en) * 2005-12-16 2007-07-01 Ind Tech Res Inst Electro-acoustic transducer and manufacturing method thereof
US9247368B2 (en) * 2007-09-13 2016-01-26 Harman International Industries, Incorporated Loudspeaker cone body
EP2056383A1 (en) * 2007-11-02 2009-05-06 Tsing Hua University Membrane electrode assembly and method for making the same
TWI351680B (en) * 2008-05-23 2011-11-01 Hon Hai Prec Ind Co Ltd Acoustic device

Also Published As

Publication number Publication date
TWI455611B (en) 2014-10-01

Similar Documents

Publication Publication Date Title
CN102045623B (en) Vibration diaphragm, preparation method thereof and speaker with same
CN101990147B (en) Vibrating diaphragm and loudspeaker adopting same
CN101990148B (en) Vibration membrane and loudspeaker applying same
JP5689654B2 (en) speaker
JP5113132B2 (en) Flexible thermoacoustic device and flag using a thermoacoustic element including the flexible thermoacoustic device
US8391539B2 (en) Damper and loudspeaker using the same
TW201241863A (en) Transmission electron microscope micro-grid
US8831269B2 (en) Bobbin and loudspeaker using the same
US8422725B2 (en) Bobbin and loudspeaker using the same
CN102026066A (en) Centering disk and loudspeaker using same
TW201137919A (en) Transmission electron microscope grid
CN102045624B (en) Centering disk and loudspeaker with same
TWI403182B (en) Diaphragm and loudspeaker using the same
TW201123931A (en) Diaphragm, method for making the same and loudspeaker having the same
US8824722B2 (en) Loudspeaker incorporating carbon nanotubes
CN102006539A (en) Speaker
TWI410146B (en) Bobbin and loudspeaker having the same
TWI412284B (en) Damper and loudspeaker having the same
TWI448168B (en) Damper and speaker using the same
TWI403183B (en) Diaphragm and loudspeaker using the same
TWI403185B (en) Loudspeaker
TW201125377A (en) Diaphragm and louder speaker using the same
TWI495358B (en) Bobbin and loudspeaker
TWI420916B (en) Diaphragm and loudspeaker using the same
TWI403184B (en) Damper and speaker using the damper