TW201123485A - Thin-film silicon solar cell and its manufacturing method. - Google Patents

Thin-film silicon solar cell and its manufacturing method. Download PDF

Info

Publication number
TW201123485A
TW201123485A TW098146175A TW98146175A TW201123485A TW 201123485 A TW201123485 A TW 201123485A TW 098146175 A TW098146175 A TW 098146175A TW 98146175 A TW98146175 A TW 98146175A TW 201123485 A TW201123485 A TW 201123485A
Authority
TW
Taiwan
Prior art keywords
layer
type
solar cell
thin
substrate
Prior art date
Application number
TW098146175A
Other languages
Chinese (zh)
Other versions
TWI408822B (en
Inventor
Lu-Sheng Hong
Chie-Sheng Liu
Wen-Ching Hsu
Szu-Hua Ho
Original Assignee
Lu-Sheng Hong
Sino American Silicon Prod Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lu-Sheng Hong, Sino American Silicon Prod Inc filed Critical Lu-Sheng Hong
Priority to TW098146175A priority Critical patent/TWI408822B/en
Publication of TW201123485A publication Critical patent/TW201123485A/en
Application granted granted Critical
Publication of TWI408822B publication Critical patent/TWI408822B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The thin-film silicon solar cell of the present invention is provided with a silicon substrate. The substrate has a front surface and a back surface formed thereon an n-type doped layer and a p-type doped layer, respectively, wherein the n-type doped layer is of an amorphous silicon structure and an intrinsic amorphous silicon layer is arranged between the n-type doped layer and the substrate. The intrinsic amorphous silicon layer is formed by low-temperature plasma chemical vapor deposition or hot filament chemical vapor deposition method. The p-type doped layer is formed by using an intrinsic amorphous silicon layer combined with a metal layer and performing a low-temperature thermal diffusion thereon. Further, the n-type doped layer and p-type doped layer are formed over the surfaces of a first electrode layer and a second electrode layer.

Description

201123485 六、發明說明·· 【發明所屬之技術領域】 、 β本發明係有關薄型矽晶太陽能電池及其製造方法,旨 在提供由低溫長财式及低溫熱擴散方式成型之薄 型矽晶太陽能電池及其製造方法。 【先前技術】 近年基於工業高度發展,使得地球上化石能源快速枯 竭,、且導致環境污染曰趨嚴重。因此,世界各國基於能源 需求與f保理由,皆致力於發展替代能源。太陽能對現今 人類而言為可利用之最豐富資源,且不需運輸成本、乾淨 以及對地球不增加熱負載等優點。基於上述優點,太陽能 為現今最具開發潛力之清淨再生能源之一。 太陽能電池(solar cell)係利用光伏效應 (photovoltaiceffect),將太陽光能轉換為電能之半導體 元件’基本上任何半導體的二極體皆可將光能轉換成電 能。太陽能電池產生電能係基於光導效應 (photoconductive effect)與内部電場兩因素。因此,選 擇太陽能電池發電的材料時,必須考量材料的光導效應及 如何產生内部電場。 如吾人所知悉,光照射於物質上時,一部光將為物質 吸收’他部則經由反射或穿透而離開物質。基於此原理, 選取作為太陽能電池材質的重要考量之一即為吸光材質的 光吸收特性,較高的光吸收特性能使輸出功率增加。太陽 電池性能的高低主要以光電之間的轉換效率來評斷。而影 響轉換效率的因子包含太陽光強度、溫度;材料的阻值與 201123485 基質的品質、缺陷密度;pn接面的濃度、深度;表面對光 反射率大小;金屬電極線寬、線高、接觸電阻等。故對各 種影響因子須嚴密控制才得以製造出具高轉換效率的太陽 電池。 轉換效率與成本為現今製造太陽能電池所選用半導體 材料之主要考量。目前市場上的太陽能電池,以矽為原料 的太陽能電池市佔率為大宗。依晶體結構分類,分別為單 晶太陽能電池、複晶太陽能電池以及非晶塑太陽能電池等 三種。以理論轉換效率而言,仍以單晶矽太陽能電池為較 局’約為25%,複晶矽則近似次之約為2〇%,非晶型矽則大 約為15%左右。使用其他化合物半導體來做為光電轉換基 板’例如III —V族之砷化鎵(GaAs),理論轉換效率則可高 達26%以上。 太陽能電池的轉換效率與製作成本依照其結構及製 程步驟的不同而有顯著差異,高效率的太陽能電池通常結 構複雜’製程步驟繁複,如使用多道光罩及多道高溫製程, 而且使用載子生命期長但是價格昂貴的FZ(floating zone) 級發晶片’製作成本也就相對提升,在量產上較不利。目 前珍晶圓大多由拉伸法(Czochralski method)所製造,而 後將所製成之矽晶棒切片(slice)成晶圓,成為矽太陽能電 池之基板。 而習有製作矽晶太陽能電池技術一般係採用如Sanyo 公司所研發雙面低溫成膜方式製成,如第五圖所示’其主 要係於一矽晶板31正面以低溫成膜方式(例如濺鍍法或電 漿化學氣相沉積)依序形成一本質非晶矽層32以及一η型非 晶矽摻質層33 ’並於背面依序形成一本質非晶矽層32以及 201123485 35 、 37 〇 一15型非晶石夕摻質層36 ’再分別於η型非晶石夕摻質層33及p 型非晶石夕摻質層36表面依序形成透明導電膜34以及電極層 由於成本仍為矽太陽能電池工業最主要之考量因素, 現今砍太陽㈣池典商度為至謂微米,若能減低其 矽基板厚度,則於量產上可降低其成本。 雖減少矽基板厚度得以降低製造成本,然,厚度太薄 則容易產生t曲形變,變形程度隨尺寸及製程溫度上升, 而擴大趣曲之程度。惟目前一般使用的高溫熱擴散製作石夕 晶太陽電池技術尚未有對應薄形發基 微^之核解決方m克服純㈣時於電池製 作中所導致的形變,為當務之急。 為解決上述問題,本發明提出—製作薄形化太陽能電 池的方法〇 【發明内容】 本發明狀主要目的即在提供—種藉由低溫長膜方式 及低溫熱擴散方式成型之薄财晶太陽能電池及其製造方 法。 ,達^發明之薄太陽能電池係設有 一基^,而該基板正反兩面分別設有—n型_層以及一 P型^層,該η型捧質層以及_摻質層表面並設有第 第一電極層,其中,該η型摻質層 f由低溫長膜技術如電衆化學氣相沉積法SSL: 法所形成。Γ邊的p型摻f層係藉由低溫長膜技 術如減鍍法祕-層非晶㈣,之錢合金屬層經低溫熱 201123485 擴散所形成。 【實施方式】 本發明之特點,可參閱本案圖式及實施例之詳細說明 而獲得清楚地瞭解。 本發明「薄型矽晶太陽能電池及其製造方法」,本發 明薄型石夕晶太陽能電池10之基本結構如第一圖所示,其至 少包含有: • 一基板11,該基板11可以為η型或p型矽晶基板; 一本質非晶矽層12,係設於該基板11 一表面,如圖 所示之實施例中,該本質非晶矽層12係設於該基板11之 正面111 ; 一 η型摻質層13,係設於該本質非晶矽層12表面; 一透明導電膜14,係設於該η型摻質層13與第一電 極層15之間,該透明導電膜14可以為金屬氧化物透明導 電膜; φ 第一電極層15,係設於該透明導電膜14表面,如圖 所示該第一電極層15可以為複數條狀結構; 一 Ρ型掺質層16 ’係設於該基板11相對於本質非晶 石夕層12之另側表面,如圖所示之實施例中,該ρ型換質層 16係設於該基板11之背面112,該ρ型摻質層μ係由一 本質非晶矽層結合金屬層在低溫條件下熱擴散結晶化所形 成; 一透明導電膜14,係另設於該ρ型摻質層16與第二 電極層17之間,該透明導電膜14可以為金屬氧化物透明 導電膜; 201123485 第二電極層17,係設於該透明導電膜14表面,如圖 所示該第二電極層17可以為整面覆蓋的面狀結構,亦可以 為如第二圖所示之複數條狀結構;如此則構成一薄型石夕晶 太陽能電池10。 而本發明中薄型矽晶太陽能電池之製造方法則如第三 圖所示,其至少包含有下列步驟: 步驟A、提供一基板11,如第四圖(A)所示,並於該基 板11表面進行清洗; 步驟B、於該基板11之正面ui設有一保護層21,該 保護層21可以為氧化矽,如第四圖(B)所示,該氧化矽層 可藉由低溫長膜(可為電漿化學氣相沉積)之方式形成,該 氧化矽層21之厚度係小於5〇nm ; 步驟C、於該基板11之另一相對表面(背面112)以低 溫長膜(可為濺鍍或電漿化學氣相沉積)之方式形成一本質 非晶矽層22,如第四圖(〇所示,該本質非晶矽層22之厚 度係小於30nm ; 步驟D、於該本質非晶矽層22上以濺鍍或熱蒸鍍方式 形成一金屬層23(可以為鋁金屬),如第四圖(D)所示,該 金屬層23之厚度係小於100nm ; 步驟E、進行低溫擴散,使該本質非晶矽層22與該金 屬層23結晶化而形成p型摻質層16,如第四圖所示, 當進行低溫擴散時’可藉由擴散溫度、擴散時間以及擴散 氣零氣體中氫氣分壓的調控,達到不同厚度、不同結晶性 及導電性之p型帅質層,如表—所示中實驗—至實驗四 係為不同低溫擴散的條件,對於形成p㈣摻質層的結晶 性與電性影響。而本發明低溫擴散之溫度可以低至175t>c, 201123485 並於10〜38 Torr氫氣分壓之氫氣/氬氣混合氣體環境了退 火處理30〜90分鐘,而其中以實驗二中溫度為2〇(rc,於 38T〇rr氫氣分麗退火處理30分鐘低溫熱擴散後,所形成 導電率4. ΙχΙΟΥΩxcm)-1為佳; 低溫熱擴散的條件 P型矽摻質層形 成後的結晶性斑雷,Μ: 氬 溫 時 結 導電率 氣分壓 度(。C) 間 晶性 (Ω xcm) 1 (Torr) (min) 實 38 175 90 非 1. 2x1ο1 驗一 晶發 實 38 200 30 ------- 結 -------- 4. ΙχΙΟ1 驗二 晶發 實 10 300 30 結 1.7x10 丨 驗三 晶秒 實 10 350 30 結 ----_ 2.1x1ο1 驗四 晶發 ^-----_ ' ^ ^ ^ *14. 1 步驟F、於該步驟E中進行低溫擴散後,係藉由 劑來去除低溫擴散後所殘留之金屬層、矽 賴層,其中該基板背面则形成二金層'= 反應物層24,此時可藉由強酸劑如鹽酸來去 , 所殘留之反應物層24,如第四圖(F)所示吏嗲:::後 僅剩餘P型摻質層16,之後,原基板正面的氧== 21可藉由氫氟酸去除之; ,、5 a 201123485 由低該基板相對該_摻質層16之另侧表面藉 積)方切#古為電漿化學氣相沉積或熱燈絲化學氣相沉 卡驟Η本質非晶料1 2,如第四圖⑹所示; 為電3-,該本質非晶秒層12表面藉由低溫長膜(可 學氣相沉積)方式形“ 面分 步驟】、分別於該η型摻質層13以及ρ型摻質層16 面之透明導電膜14上形成第—、第二電極層15、, =形气如第四圖⑴以及第—圖所示薄型石夕晶太陽能電池 10之結構。 值得-提的是’本發明係以低溫長膜(雜、電聚化學 氣相沉積或熱燈絲化學氣相沉積)方式結合低溫熱擴散方 式來製作石夕晶太陽能電池所需的ρ型摻質層,並搭配另一 邊以η型摻質層/梦晶基板之異質接面形成主電池結構,不 僅成型方式較為簡便’可避免薄型基板於高溫製程中造成 應力1形變,其中,低溫擴散後的ρ型掺質層之導電率可達 〜1〇 (ΩχαηΓ以上,以提高整體薄型矽晶太陽能電池之 特性。 表τ、上所述,本發明提供一較佳可行之薄型矽晶太陽能 電池及其製造方法,爰依法提呈發明專利之申請;本發明 之技術内容及技術特點已揭示如上,然而熟悉本項技術之 人士仍可能基於本發明之揭示而作各種不背離本案發明精 神之替換及修飾。因此,本發明之保護範圍應不限於實施 例所揭不者,而應包括各種不背離本發明之替換及修飾, 201123485 並為以下之申請專利範圍所涵蓋 【圖式簡單說明】 第一圖係為本發明中薄型矽晶太陽能電池第一實施例之結 構側視圖。 第二圖係為本發明中薄型矽晶太陽能電池第二實施例之結 構侧視圖。 第三圖係為本發明中薄型矽晶太陽能電池製造方法之流程 方塊示意圖。 第四圖(AMJ)係為中本發明薄型矽晶太陽能電池製造方 法之結構示意圖。 第五圖係為習有太陽能電池之結構侧視圖。 【主要元件符號說明】 薄型矽晶太陽能電池10 本質非晶矽層22 基板11 金屬層23 正面111 反應物層24 背面112 矽晶板31 本質非晶矽層12 本質非晶矽層32 η型摻質層13 η型摻質層33 第一電極層15 透明導電膜34 透明導電膜14 電極層35 Ρ型摻質層16 Ρ型摻質層36 第二電極層17 保護層21 電極層37 11201123485 VI. INSTRUCTIONS······················································································ Battery and its manufacturing method. [Prior Art] In recent years, based on the high industrial development, the fossil energy on the earth has rapidly dried up, and the environmental pollution has become increasingly serious. Therefore, all countries in the world are committed to the development of alternative energy sources based on their energy needs and reasons. Solar energy is the most abundant resource available to humans today, without the cost of transportation, cleanliness, and no increase in heat load on the Earth. Based on the above advantages, solar energy is one of the most renewable energy sources with the most potential for development today. A solar cell is a semiconductor component that converts solar energy into electrical energy using a photovoltaic effect. Basically, any semiconductor diode can convert light energy into electrical energy. The solar cell generates electrical energy based on two factors: photoconductive effect and internal electric field. Therefore, when selecting materials for solar cell power generation, it is necessary to consider the photoconductivity of the material and how to generate an internal electric field. As we know, when light strikes a substance, a piece of light will absorb the substance. Other parts will leave the substance by reflection or penetration. Based on this principle, one of the important considerations for selecting the material of a solar cell is the light absorption property of the light absorbing material, and the higher light absorbing property can increase the output power. The performance of solar cells is mainly judged by the conversion efficiency between photovoltaics. The factors affecting the conversion efficiency include sunlight intensity and temperature; the resistance of the material and the quality of the 201123485 matrix, the defect density; the concentration and depth of the pn junction; the surface reflectance of the light; the metal electrode line width, line height, contact Resistance, etc. Therefore, it is necessary to closely control various influence factors to produce a solar cell with high conversion efficiency. Conversion efficiency and cost are the main considerations for the semiconductor materials currently used in the manufacture of solar cells. At present, solar cells on the market have a large market share of solar cells using bismuth as raw materials. According to the crystal structure, there are three types: single crystal solar cells, polycrystalline solar cells, and amorphous plastic solar cells. In terms of theoretical conversion efficiency, the single crystal germanium solar cell is still about 25%, the polycrystalline germanium is about 2%, and the amorphous germanium is about 15%. Using other compound semiconductors as photoelectric conversion substrates, such as III-V gallium arsenide (GaAs), the theoretical conversion efficiency can be as high as 26% or more. The conversion efficiency and manufacturing cost of solar cells are significantly different according to their structure and process steps. High-efficiency solar cells are usually complicated in structure. The process steps are complicated, such as using multiple masks and multiple high-temperature processes, and using carrier life. The long-term but expensive FZ (floating zone)-level wafers' manufacturing costs are relatively high, which is disadvantageous in mass production. Most of the current wafers are manufactured by the Czochralski method, and the resulting crystals are sliced into wafers to form a substrate for the solar cell. Xi's production of silicon solar cell technology is generally made by double-sided low-temperature film formation method developed by Sanyo Company, as shown in the fifth figure, which is mainly based on the front side of a crystal plate 31 at low temperature film formation (for example Sputtering or plasma chemical vapor deposition) sequentially forming an intrinsic amorphous germanium layer 32 and an n-type amorphous germanium dopant layer 33' and sequentially forming an intrinsic amorphous germanium layer 32 and 201123485 35 on the back side, 37 〇-type 15 amorphous austenitic layer 36' and a transparent conductive film 34 and an electrode layer are sequentially formed on the surface of the n-type amorphous slab-doped layer 33 and the p-type amorphous slab-doped layer 36, respectively. Cost is still the most important factor in the solar cell industry. Today, the solar (4) pool is rated as micron. If the thickness of the crucible substrate can be reduced, the cost can be reduced in mass production. Although reducing the thickness of the ruthenium substrate can reduce the manufacturing cost, if the thickness is too thin, the t-curve is easily generated, and the degree of deformation increases with the size and the process temperature, and the degree of the melody is expanded. However, the high-temperature thermal diffusion currently used in the production of Shi Xijing solar cell technology has not yet corresponded to the thin-shaped hair base micro-nuclear solution m to overcome the deformation caused by the battery during the pure (four), is a top priority. In order to solve the above problems, the present invention provides a method for fabricating a thinned solar cell. SUMMARY OF THE INVENTION The main object of the present invention is to provide a thin crystal solar cell which is formed by a low temperature long film method and a low temperature thermal diffusion method. Its manufacturing method. The thin solar cell of the invention is provided with a base, and the front and back sides of the substrate are respectively provided with an -n type layer and a p type layer, and the n type holding layer and the surface of the _ dopant layer are provided The first electrode layer, wherein the n-type dopant layer f is formed by a low temperature long film technique such as a plasma chemical vapor deposition method. The p-type doped f layer of the edge is formed by low temperature long film technology such as deplating method-layer amorphous (four), and the metal layer of the money is formed by diffusion of low temperature heat 201123485. [Embodiment] The features of the present invention can be clearly understood by referring to the detailed description of the drawings and the embodiments. The invention relates to a "thin-type twin solar cell and a method for manufacturing the same". The basic structure of the thin-type solar cell solar cell 10 of the present invention is as shown in the first figure, and comprises at least: a substrate 11, which can be n-type Or a p-type twin crystal substrate; an intrinsic amorphous germanium layer 12 is disposed on a surface of the substrate 11, as shown in the embodiment, the intrinsic amorphous germanium layer 12 is disposed on the front surface 111 of the substrate 11; An n-type dopant layer 13 is disposed on the surface of the intrinsic amorphous germanium layer 12; a transparent conductive film 14 is disposed between the n-type dopant layer 13 and the first electrode layer 15, and the transparent conductive film 14 It may be a metal oxide transparent conductive film; φ the first electrode layer 15 is disposed on the surface of the transparent conductive film 14, as shown, the first electrode layer 15 may have a plurality of strip structures; ' is disposed on the other side surface of the substrate 11 with respect to the intrinsic amorphous layer 12, as shown in the embodiment, the p-type metamorphic layer 16 is disposed on the back surface 112 of the substrate 11, the p-type The doped layer μ is formed by an intrinsic amorphous germanium layer combined with a metal layer that is thermally diffused and crystallized at low temperatures. A transparent conductive film 14 is disposed between the p-type dopant layer 16 and the second electrode layer 17, and the transparent conductive film 14 may be a metal oxide transparent conductive film; 201123485 second electrode layer 17, is provided On the surface of the transparent conductive film 14, as shown, the second electrode layer 17 may be a planar structure covered by a whole surface, or may be a plurality of strip structures as shown in the second figure; thus forming a thin type of stone eve Crystal solar cell 10. The method for manufacturing the thin-type twinned solar cell of the present invention is as shown in the third figure, and includes at least the following steps: Step A: providing a substrate 11, as shown in the fourth figure (A), and on the substrate 11 The surface is cleaned; step B, a protective layer 21 is disposed on the front surface ui of the substrate 11, and the protective layer 21 may be ruthenium oxide. As shown in the fourth diagram (B), the ruthenium oxide layer may be formed by a low temperature long film ( It can be formed by means of plasma chemical vapor deposition. The thickness of the yttrium oxide layer 21 is less than 5 〇 nm; Step C, on the other opposite surface of the substrate 11 (back surface 112) is a long film at a low temperature (can be splashed) Forming an intrinsic amorphous germanium layer 22 by plating or plasma chemical vapor deposition), as shown in the fourth figure (〇, the thickness of the intrinsic amorphous germanium layer 22 is less than 30 nm; step D, the amorphous A metal layer 23 (which may be aluminum metal) is formed on the germanium layer 22 by sputtering or thermal evaporation. As shown in the fourth diagram (D), the thickness of the metal layer 23 is less than 100 nm; Step E, low temperature diffusion The intrinsic amorphous germanium layer 22 and the metal layer 23 are crystallized to form a p-type dopant layer 16, such as As shown in the four figures, when performing low-temperature diffusion, the p-type handsome layer with different thickness, different crystallinity and conductivity can be achieved by the diffusion temperature, diffusion time and the partial pressure of hydrogen in the zero gas of the diffusion gas. - The experiment shown - to the fourth experiment is the conditions of different low temperature diffusion, the crystallinity and electrical influence on the formation of the p (tetra) dopant layer. The temperature of the low temperature diffusion of the present invention can be as low as 175t > c, 201123485 and 10~ The 38 Torr hydrogen partial pressure hydrogen/argon mixed gas atmosphere was annealed for 30 to 90 minutes, and the temperature in the second experiment was 2 〇 (rc, after annealing at 38 T〇rr hydrogen for 30 minutes, after low temperature thermal diffusion. The formed conductivity is 4. ΙχΙΟΥ Ω x cm) -1 is preferred; the condition of low temperature thermal diffusion is crystalline phenotype after formation of P type bismuth dopant layer, Μ: junction conductivity at argon temperature (C) Interstitial (Ω xcm) 1 (Torr) (min) Real 38 175 90 Non 1. 2x1ο1 验一晶实实38 200 30 ------- 结-------- 4. ΙχΙΟ1 test Two crystals and solid 10 300 30 knots 1.7x10 三 three crystal seconds 10 350 30 结----_ 2.1x1ο1 验四晶发^-----_ ' ^ ^ ^ *14. 1 Step F, after low temperature diffusion in this step E, is used to remove low temperature diffusion The remaining metal layer and the layer of the substrate, wherein the back surface of the substrate forms a gold layer '=reactant layer 24, which can be removed by a strong acid agent such as hydrochloric acid, and the remaining reactant layer 24, as shown in the fourth figure ( F) 吏嗲::: only the P-type dopant layer 16 remains, after which the oxygen on the front side of the original substrate == 21 can be removed by hydrofluoric acid; , 5 a 201123485 from the lower substrate relative to the _ The other side surface of the dopant layer 16 is borrowed. The square cut is ancient plasma chemical vapor deposition or hot filament chemical vapor deposition card. The amorphous material is 1 2, as shown in the fourth figure (6); - the surface of the intrinsic amorphous second layer 12 is transparently conductive by a low-temperature long film (vapor-depositable) method, a surface separation step, and a surface of the n-type dopant layer 13 and the p-type dopant layer 16, respectively. The first and second electrode layers 15 are formed on the film 14, and the structure of the thin-type solar cell solar cell 10 as shown in the fourth figure (1) and the first figure is formed. It is worth mentioning that 'the invention is a low temperature long film (hetero, electropolymerization chemical vapor deposition or hot filament chemical vapor deposition) combined with low temperature thermal diffusion to produce the p-type doping required for the Si Xijing solar cell. The quality layer and the other side form the main battery structure with the heterojunction of the n-type dopant layer/dream crystal substrate, which not only has a simple molding method, but can avoid the deformation of the thin substrate caused by the high temperature process, wherein after the low temperature diffusion The conductivity of the p-type dopant layer can reach ~1 〇 (Ω χ αηΓ or more to improve the characteristics of the overall thin-type twin solar cell. Table τ, above, the present invention provides a preferred and feasible thin-type silicon solar cell and The manufacturing method, the application for the invention patent according to the law; the technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still make various substitutions without departing from the spirit of the invention based on the disclosure of the present invention. Therefore, the scope of the present invention should not be limited by the embodiments, but should include various alternatives and modifications without departing from the invention. The following is a schematic side view of the first embodiment of the thin-type twin solar cell of the present invention. The second figure is the thin-type twin solar cell of the present invention. The third embodiment is a schematic block diagram of a method for manufacturing a thin-type twinned solar cell according to the present invention. The fourth figure (AMJ) is a schematic structural view of a method for manufacturing a thin-type twinned solar cell of the present invention. The fifth figure is a side view of the structure of a solar cell. [Description of main components] Thin-type twin solar cell 10 Intrinsic amorphous germanium layer 22 Substrate 11 Metal layer 23 Front side 111 Reactive layer 24 Back side 112 Crystal plate 31 Essential Amorphous germanium layer 12 intrinsic amorphous germanium layer 32 n-type dopant layer 13 n-type dopant layer 33 first electrode layer 15 transparent conductive film 34 transparent conductive film 14 electrode layer 35 germanium type dopant layer 16 germanium type dopant layer 36 second electrode layer 17 protective layer 21 electrode layer 37 11

Claims (1)

201123485 七、申請專利範圍: 1、 一種薄型矽晶太陽能電池,其至少包含有: 一基板; 一本質非晶矽層,係設於該基板一表面; 一 η型摻質層,係設於該本質非晶矽層表面,該^型 摻質層可由摻雜磷之蚱晶矽所形成; 第一電極層,係設於該η型摻質層表面; 一 Ρ型摻質層,係設於該基板相對於本質非晶矽層之 另側表面,該ρ型摻質層係由一本質非晶矽層結合一金屬 層於低溫下熱擴散所形成; 第二電極層,係設於該ρ型摻質層表面。 2、 如請求項1所述之薄型矽晶太陽能電池,其中該金 屬層可以為銘金屬。 3、 如請求項丨所述之薄型矽晶太陽能電池,其中該低 溫熱擴散之溫度可以低於350°C。 4、 如請求項丨所述之薄型發晶太陽能電池,其中該低 溫熱擴散之溫度可以低於350¾,並於1〇〜38 Torr氫氣分 壓之氫氣/氬氣混合氣體環境下退火處理30〜90分鐘。 5、 如請求項2、3或4所述之薄型矽晶太陽能電池, 其中該低溫熱擴散之溫度可以為175〜350°C。 6、 如请求項2、3或4所述之薄型矽晶太陽能電池, 其中該基板可以為n型或ρ型晶矽基板。 7、 如請求項2、3或4所述之薄型矽晶太陽能電池, 其中該η型摻質層表面與第一電極層間設有一透明導電 膜’該Ρ型摻質層表面與第二電極層間設有一透明導電膜。 8、 如請求項2、3或4所述之薄型矽晶太陽能電池, 12 201123485 其中該η型摻質層係設於該基板之正面,而該p型摻質層 則設於該基板之背面。 9、 一種薄型矽晶太陽能電池之製造方法,其至少包含 有下列步驟: A、提供一基板; C、 於該基板一側表面設有一本質非晶矽層; D、 於該本質非晶矽層上形成金屬層; E、 進行低溫擴散,使該本質非晶矽層與該金屬層形成 • P型摻質層; G、於該基板相對該p型摻質層之另側表面形成有一本 質非晶矽層; Η、於該本質非晶矽層表面形成一 η型摻質層,該η型 摻質層可由摻雜磷之非晶矽所形成; J、分別於該η型摻質層以及ρ型摻質層表面形成第 一.、第二電極層。 10、 如請求項9所述之薄型矽晶太陽能電池之製造方 φ 法,其中該步驟Α與步驟C之間進一步包含有一步驟Β, 該步驟B係於該基板另一相對表面設有一保護層。 11、 如請求項10所述之薄型矽晶太陽能電池之製造方 法,其中該保護層可以為氧化矽。 12、 如請求項9所述之薄型矽晶太陽能電池之製造方 法,其中該金屬層可以為鋁金屬。 13、 如請求項9所述之薄型矽晶太陽能電池之製造方 法,其中該步驟E後進一步包含有一步驟F,該步驟F係 藉由強酸劑來去除低溫擴散後所殘留之金屬層、矽鋁合金 以及氧化矽保護層。 13 201123485 ,土1甘4由求項13所述之薄型發晶太陽能電池之製造方 法,其中該,劑可以為鹽酸或氫氟酸。 求項12所述之薄型梦晶太陽能電池之製造方 法’其中_金屬之厚度係小於l_m。 、 凊求項9所述之薄型矽晶太陽能電池之製造方 、' 、、s步驟£進行低溫擴散時,可控制擴散溫度、擴 散’間以及環境氣體中氫氣分壓,達到不同厚度、不同結 晶性及導電性之p型石夕摻質層。 、17如請求項9所述之薄型矽晶太陽能電池之製造方 法,其中該步驟c係藉由濺鑛方式或電漿化學氣相沉積方 式形成本質非晶⑪層;步驟G中係藉由電漿化學氣相沉積 或熱燈絲化學氣相沉積方式形成本質非晶⑦層;該步驟Η 中係藉由電漿化學氣相沉積或熱燈絲化學氣相沉積方式形 成η型摻質層。 18、 如請求項9所述之薄型矽晶太陽能電池之製造方 法’其中該低溫熱擴散之溫度可以低於350Ϊ。 19、 如請求項9所述之薄型矽晶太陽能電池之製造方 法’其中該低溫熱擴散之溫度可以低至175°C,並於10〜38 Torr氫氣分壓之氫氣/氬氣混合氣體環境下退火處理 30〜90分鐘。 20、 如請求項18或19所述之薄型矽晶太陽能電池之 製造方法’其中該低溫熱擴散之溫度可以為175〜350°C。 21、 如請求項9所述之薄型矽晶太陽能電池之製造方 法,其中該步驟Η與步驟J之間進一步包含有一步驟I , 該步驟1係於該η型摻質層以及ρ型掺質層表面設置透明 導電膜。201123485 VII. Patent application scope: 1. A thin twin crystal solar cell comprising at least: a substrate; an intrinsic amorphous germanium layer disposed on a surface of the substrate; an n-type dopant layer disposed on the substrate The surface of the amorphous layer is formed by a doped phosphorus-doped germanium; the first electrode layer is disposed on the surface of the n-type dopant layer; the germanium-type dopant layer is provided on The p-type dopant layer is formed by an intrinsic amorphous germanium layer combined with a metal layer thermally diffused at a low temperature with respect to the other side surface of the intrinsic amorphous germanium layer; the second electrode layer is disposed on the p Type of dopant layer surface. 2. The thin-type twinned solar cell of claim 1, wherein the metal layer is a metal. 3. The thin-type twinned solar cell of claim 3, wherein the low temperature thermal diffusion temperature can be lower than 350 °C. 4. The thin-type crystal-emitting solar cell according to claim ,, wherein the low-temperature heat diffusion temperature can be lower than 3503⁄4, and is annealed in a hydrogen/argon mixed gas atmosphere of 1〇~38 Torr hydrogen partial pressure. ~90 minutes. 5. The thin-type twinned solar cell of claim 2, 3 or 4, wherein the low temperature thermal diffusion temperature may be 175 to 350 °C. 6. The thin-type twinned solar cell of claim 2, 3 or 4, wherein the substrate can be an n-type or p-type crystalline germanium substrate. 7. The thin-type twinned solar cell of claim 2, 3 or 4, wherein a transparent conductive film is disposed between the surface of the n-type dopant layer and the first electrode layer, and between the surface of the germanium-type dopant layer and the second electrode layer A transparent conductive film is provided. 8. The thin-type twinned solar cell of claim 2, 3 or 4, wherein the n-type dopant layer is disposed on a front side of the substrate, and the p-type dopant layer is disposed on a back side of the substrate . 9. A method of manufacturing a thin-type twinned solar cell, comprising at least the following steps: A. providing a substrate; C, providing an intrinsic amorphous germanium layer on a side surface of the substrate; D, forming an amorphous germanium layer on the substrate Forming a metal layer thereon; E, performing low temperature diffusion, forming the intrinsic amorphous germanium layer and the metal layer to form a P-type dopant layer; G, forming an essential non-essential layer on the opposite side surface of the substrate relative to the p-type dopant layer a germanium layer, an n-type dopant layer formed on the surface of the intrinsic amorphous germanium layer, the n-type dopant layer being formed of a phosphorus-doped amorphous germanium; J, respectively, the n-type dopant layer and The surface of the p-type dopant layer forms a first. second electrode layer. 10. The method of manufacturing a thin-type twinned solar cell according to claim 9, wherein the step Α and the step C further comprise a step Β, the step B is provided with a protective layer on the other opposite surface of the substrate. . 11. The method of manufacturing a thin-type twinned solar cell according to claim 10, wherein the protective layer may be ruthenium oxide. 12. The method of fabricating a thin crystalline solar cell according to claim 9, wherein the metal layer is aluminum metal. 13. The method of manufacturing a thin-type twinned solar cell according to claim 9, wherein the step E further comprises a step F of removing a metal layer remaining after low-temperature diffusion by using a strong acid agent. Alloy and yttrium oxide protective layer. 13 201123485, the method for producing a thin-type crystal-emitting solar cell according to claim 13, wherein the agent may be hydrochloric acid or hydrofluoric acid. The method for producing a thin type of dream crystal solar cell according to item 12, wherein the thickness of the metal is less than l_m. The manufacturing method of the thin-type twin solar cell described in Item 9 can be controlled at a low temperature diffusion, and can control the diffusion temperature, the diffusion, and the partial pressure of hydrogen in the ambient gas to achieve different thicknesses and different crystallizations. Sexual and conductive p-type shi ding dopant layer. The method for manufacturing a thin-type twinned solar cell according to claim 9, wherein the step c is to form an essential amorphous 11 layer by sputtering or plasma chemical vapor deposition; and the step G is by electricity. Slurry chemical vapor deposition or hot filament chemical vapor deposition forms an essentially amorphous 7 layer; in this step, an n-type dopant layer is formed by plasma chemical vapor deposition or hot filament chemical vapor deposition. 18. The method of manufacturing a thin-type twinned solar cell according to claim 9, wherein the temperature of the low-temperature heat diffusion may be lower than 350 Å. 19. The method of manufacturing a thin-type twinned solar cell according to claim 9, wherein the low-temperature heat diffusion temperature can be as low as 175 ° C, and the hydrogen/argon mixed gas atmosphere is at a hydrogen partial pressure of 10 to 38 Torr. Annealing treatment for 30 to 90 minutes. The method of manufacturing a thin-type twinned solar cell according to claim 18 or 19 wherein the temperature of the low-temperature heat diffusion is 175 to 350 °C. The method of manufacturing a thin-type twinned solar cell according to claim 9, wherein the step Η and the step J further comprise a step I, the step 1 is performed on the n-type dopant layer and the p-type dopant layer A transparent conductive film is provided on the surface.
TW098146175A 2009-12-31 2009-12-31 Thin silicon solar cell and its manufacturing method TWI408822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098146175A TWI408822B (en) 2009-12-31 2009-12-31 Thin silicon solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098146175A TWI408822B (en) 2009-12-31 2009-12-31 Thin silicon solar cell and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201123485A true TW201123485A (en) 2011-07-01
TWI408822B TWI408822B (en) 2013-09-11

Family

ID=45046696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098146175A TWI408822B (en) 2009-12-31 2009-12-31 Thin silicon solar cell and its manufacturing method

Country Status (1)

Country Link
TW (1) TWI408822B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470812B (en) * 2011-12-28 2015-01-21 Ind Tech Res Inst Heterojunction solar cell and electrode thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813123B1 (en) * 2016-08-24 2017-12-29 주성엔지니어링(주) Solar cell and Method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW417242B (en) * 1999-07-02 2001-01-01 Vanguard Int Semiconduct Corp Method for manufacturing self-aligned contacts
JP3902534B2 (en) * 2001-11-29 2007-04-11 三洋電機株式会社 Photovoltaic device and manufacturing method thereof
TWM330563U (en) * 2007-01-02 2008-04-11 Advance Design Technology Inc Solar cell structure with low temperature polysilicon thin films
EP2058844A1 (en) * 2007-10-30 2009-05-13 Interuniversitair Microelektronica Centrum (IMEC) Method of forming a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470812B (en) * 2011-12-28 2015-01-21 Ind Tech Res Inst Heterojunction solar cell and electrode thereof

Also Published As

Publication number Publication date
TWI408822B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Wang et al. Development of a 16.8% efficient 18-μm silicon solar cell on steel
Varlamov et al. Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon
Becker et al. Polycrystalline silicon thin-film solar cells: Status and perspectives
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
Tao Inorganic photovoltaic solar cells: silicon and beyond
Gordon et al. 8% Efficient thin‐film polycrystalline‐silicon solar cells based on aluminum‐induced crystallization and thermal CVD
CN102064216A (en) Novel crystalline silicon solar cell and manufacturing method thereof
TW201238061A (en) Heterojunction solar cell having intrinsic amorphous silicon film
CN102064210A (en) Silicon-based double-junction solar cell with homojunction and heterojunction and preparation method thereof
Mihailetchi et al. Screen printed n-type silicon solar cells for industrial application
Gabriel et al. Crystalline silicon on glass—interface passivation and absorber material quality
KR101651485B1 (en) Sollar Cell And Fabrication Method Thereof
JP2010533384A (en) Solar cell and manufacturing method thereof
TWI408822B (en) Thin silicon solar cell and its manufacturing method
KR101484620B1 (en) Silicon solar cell
KR100960626B1 (en) Solar Cell And Method For Manufacturing The Same
US20120258561A1 (en) Low-Temperature Method for Forming Amorphous Semiconductor Layers
Kim et al. Progress in thin film free-standing monocrystalline silicon solar cells
US20110036397A1 (en) Intermetal stack fro use in photovoltaic device
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
TW201117403A (en) Solar cell and method for fabricating the same
KR101212486B1 (en) Hetero-junction solar cell and method for fabricating the same
TWI686958B (en) Solar cell and method of fabricating the same
CN103107227B (en) Amorphous silicon thin-film solar cell and preparation method thereof
Schultz et al. Dielectric rear surface passivation for industrial multicrystalline silicon solar cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees