TW201123426A - Buried bit line process and scheme - Google Patents

Buried bit line process and scheme Download PDF

Info

Publication number
TW201123426A
TW201123426A TW98145466A TW98145466A TW201123426A TW 201123426 A TW201123426 A TW 201123426A TW 98145466 A TW98145466 A TW 98145466A TW 98145466 A TW98145466 A TW 98145466A TW 201123426 A TW201123426 A TW 201123426A
Authority
TW
Taiwan
Prior art keywords
insulating
layer
pair
trench
bit line
Prior art date
Application number
TW98145466A
Other languages
Chinese (zh)
Other versions
TWI452677B (en
Inventor
Tzu-Ming Ouyang
Chien-Hua Tsai
Chien-Hsun Pan
Chen-Nan Huang
Original Assignee
Taiwan Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Memory Corp filed Critical Taiwan Memory Corp
Priority to TW098145466A priority Critical patent/TWI452677B/en
Publication of TW201123426A publication Critical patent/TW201123426A/en
Application granted granted Critical
Publication of TWI452677B publication Critical patent/TWI452677B/en

Links

Abstract

The embodiment provides a buried bit line process and scheme. The buried bit line is disposed in a trench formed in a substrate. The buried bit line includes a pair of insulating layers isolated with each other disposed in a bottom of the trench, wherein the pair of insulating layers is adjacent to a first side and a second side of the trench, respectively. A pair of conductive layers isolated with each other is formed in the trench with laminating on the pair of insulating layers, respectively. The pair of conductive layers is adjacent to a first side and a second side of the trench, respectively. A pair of diffusion regions is formed in a portion of the substrate, wherein the pair of diffusion regions is adjacent to the pair of conductive layers, respectively.

Description

201123426 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種動態隨機存取記憶體晶胞及其 製作方法,特別是有關於一種動態隨機存取記憶體晶胞的 埋藏位元線及其製作方法。 【先前技術】 動態隨機存取記憶體(Dynamic Randpm Access201123426 VI. Description of the Invention: [Technical Field] The present invention relates to a dynamic random access memory cell and a method of fabricating the same, and more particularly to a buried bit line of a dynamic random access memory cell And its production method. [Prior Art] Dynamic Random Access Memory (Dynamic Randpm Access)

Memory,DRAM)屬於一種揮發性記憶體(v〇latile memory),主要的作用原理是利用電容内儲存電荷的多寡來 代表一個二進位位元(bit)是1還是〇,以儲存資料。為達到 高密度的要求,目前最有效的方法是透過縮小製造製程和 採用單元設計技術來減小晶片的尺寸。減小曰二王 曰曰/Ϊ \寸的另 一種方法是實現更為有效的陣列架構,在連續幾 後,儲存技術通常會變成某種單元佈局的限制,—私 早尺寸 的母一次改善都需要進行大量的工作來減少蝕刻的最】尺 因此,亟需一 及其製造方法。 種具有新穎結構的動態隨機存取 記憶體 【發明内容】 有鑑於此,本發明之一實施例係提供一 〒里埋"fi* 線,設置於-基板的-溝射,包括-對彼此隔開 層,形成於上述溝槽的底面上,其中上述對 、緣 了絕緣層分別鄰 接上述溝槽的一第一側壁和相對的一第二伽辟·刀乃 堃,一對彼此 9095-A34489TWF 4 201123426 隔開的導電層,形成於上述溝槽中,且分別堆疊於上述對 絕緣層上,其中上述對導電層分別鄰接上述溝槽的上述第 一側壁和上述第二側壁;一對擴散區,分別形成於鄰接上 述對導電層的部分上述基板中。 本發明之另一實施例係提供一種埋藏位元線的製造 方法,包括提供一基板;於上述基板中形成一第一溝槽, 其具有一第一側壁和相對的一第二側壁;於上述第一溝槽 中形成一第一絕緣層,其覆蓋上述溝槽的底面和部分上述 第一和第二側壁;分別於鄰接上述第一和第二側壁的部分 上述基板中形成一對擴散區;於上述第一溝槽中形成一導 電層,且覆蓋上述對擴散區的側壁;於上述導電層上形成 一對絕緣間隙壁,且分別覆蓋上述第一和第二側壁;移除 未被上述對絕緣間隙壁覆蓋的上述導電層和其下的上述第 一絕緣層,直到露出上述基板,以於上述導電層和其下的 上述第一絕緣層中形成一第二溝槽;移除上述對絕緣間隙 〇 【實施方式】 以下以各實施例詳細說明並伴隨著圖式說明之範 例,做為本發明之參考依據。在圖式或說明書描述中,相 似或相同之部分皆使用相同之圖號。且在圖式中,實施例 之形狀或是厚度可擴大,並以簡化或是方便標示。再者, 圖式中各元件之部分將以分別描述說明之,值得注意的 是,圖中未繪示或描述之元件,為所屬技術領域中具有通 常知識者所知的形式,另外,特定之實施例僅為揭示本發 9095-A34489TWF 5 201123426 明使用之特定方式,其並非用以限定本發明。 第la圖係顯示本發明一實施例之動態隨機存取記憶 體晶胞(以下簡稱DRAM晶胞)600的透視圖。第lb圖為第 la圖的等效電路圖。在本發明一實施例中,DRAM 600的 晶胞尺寸為4F2(其中F為最小微影製程尺寸,或稱單元尺 寸)的一 DRAM晶胞(DRAM cell)600。如第la圖所示5上 述DRAM 6〇0的一垂直電晶體300、埋藏位元緣(buried bit line,BL)500 和一字元線(word line,WL)308 皆設於一基板 200中。如第la和lb圖所示,DRAM 600包括一基板200。 一垂直電晶體300,形成於基板200中。垂直電晶體300 係分別具有垂直堆疊的一下層汲極區314、一中間層通道 區316和一上層之源極區318。另外,垂直電畢體300係 具有至少一垂直側壁302。一字元線308,沿一第一方向 322形成於基板200中,其中字元線3〇8係設於垂直電晶 體300的垂直侧壁302上,並做為垂直電晶體3〇〇的閘極。 字元線308與垂直電晶體300之間係設有一絕緣層306, 以做為垂直電晶體300的閘極絕緣層。如第1&和lb圖所 示’DRAM 600更包括一對彼此隔開的埋藏位元線5〇〇A和 500B,沿不同於第一方向322的一第二方向32〇形成於基 板200巾的一第一溝槽210 [且位於垂直電晶體的 下方’埋藏位7G線5G0A和50GB分別電性接觸該對垂直電 晶體300的汲極區3M。另外,DRAM _更包括一電容 3!2’電性接觸垂直電晶體3〇〇_㈣318。料,分別 位於相鄰第-溝槽21〇中且鄰近的埋藏位元線可藉由一位 元接觸330 (BL contact)電性連接在n例來說,⑽Memory, DRAM) is a kind of volatile memory (v〇latile memory). The main principle of operation is to use the amount of charge stored in the capacitor to represent whether a binary bit is 1 or 〇 to store data. To achieve high density requirements, the most effective method at present is to reduce the size of the wafer by reducing the manufacturing process and using cell design techniques. Another way to reduce the size of the second king is to achieve a more efficient array architecture. After a few consecutive years, the storage technology usually becomes a certain unit layout limitation. A lot of work is needed to reduce the most etched etch. Therefore, there is a need for a manufacturing method. BACKGROUND OF THE INVENTION In view of the above, an embodiment of the present invention provides a & & fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi a spacer layer is formed on the bottom surface of the trench, wherein the pair of edges and the insulating layer respectively adjoin a first sidewall of the trench and an opposite second galvanic knife, a pair of each other 9095-A34489TWF 4 201123426 a separate conductive layer formed in the trench and stacked on the pair of insulating layers, wherein the pair of conductive layers respectively abut the first sidewall and the second sidewall of the trench; a pair of diffusion regions And formed in a part of the substrate adjacent to the pair of conductive layers. Another embodiment of the present invention provides a method for fabricating a buried bit line, comprising: providing a substrate; forming a first trench in the substrate, having a first sidewall and an opposite second sidewall; Forming a first insulating layer in the first trench, covering a bottom surface of the trench and a portion of the first and second sidewalls; forming a pair of diffusion regions in a portion of the substrate adjacent to the first and second sidewalls; Forming a conductive layer in the first trench and covering the sidewall of the pair of diffusion regions; forming a pair of insulating spacers on the conductive layer, respectively covering the first and second sidewalls; The conductive layer covered by the insulating spacer and the first insulating layer therebelow until the substrate is exposed to form a second trench in the conductive layer and the first insulating layer therebelow; removing the pair of insulating layers 〇 〇 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施In the drawings or the description of the specification, the same drawing numbers are used for the similar or identical parts. Also, in the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and The examples are only intended to disclose the specific manner in which the present invention is used, and is not intended to limit the invention. Figure la is a perspective view showing a dynamic random access memory cell (hereinafter referred to as DRAM cell) 600 according to an embodiment of the present invention. Figure lb is an equivalent circuit diagram of the la diagram. In one embodiment of the invention, the DRAM 600 has a cell size of 4F2 (where F is the minimum lithography process size, or unit size) of a DRAM cell 600. A vertical transistor 300, a buried bit line (BL) 500, and a word line (WL) 308 of the above DRAM 6 〇 0 are disposed in a substrate 200 as shown in FIG. . As shown in FIGS. 1a and 1b, the DRAM 600 includes a substrate 200. A vertical transistor 300 is formed in the substrate 200. The vertical transistor 300 has a lower stacked drain region 314, an intermediate layer channel region 316, and an upper source region 318, respectively, stacked vertically. Additionally, the vertical electrical body 300 has at least one vertical sidewall 302. A word line 308 is formed in the substrate 200 along a first direction 322, wherein the word line 3〇8 is disposed on the vertical sidewall 302 of the vertical transistor 300 and serves as a gate of the vertical transistor 3〇〇. pole. An insulating layer 306 is disposed between the word line 308 and the vertical transistor 300 to serve as a gate insulating layer of the vertical transistor 300. As shown in the first & lb and lb diagrams, the DRAM 600 further includes a pair of buried bit lines 5A and 500B spaced apart from each other, and a second direction 32〇 different from the first direction 322 is formed on the substrate 200. A first trench 210 [and under the vertical transistor] buried bit 7G lines 5G0A and 50GB electrically contact the drain regions 3M of the pair of vertical transistors 300, respectively. In addition, the DRAM_ further includes a capacitor 3!2' electrically contacting the vertical transistor 3〇〇_(four) 318. The materials are respectively located in the adjacent first trenches 21〇 and the adjacent buried bit lines can be electrically connected by a single bit contact 330 (BL contact) in the case of n, (10)

9095-A34489TWF 6 201123426 左邊第一溝槽210的右侧的埋藏位元線5〇〇B和位於右邊第 一溝槽210中的左侧的埋藏位元線5〇〇A可藉由位元接觸 330 (BL contact)電性連接在一起。 第1 c圖為沿第1 a圖的A-A’切線的剖面圖,其顯示本 發明一實施例之DRAM 600的埋藏位元線500的剖面圖。 如第lc圖所示’其中埋藏位元線500包括包括一對彼此隔 開的絕緣層238a和238b,形成於第一溝槽210的底面208 上’其中上述對絕緣層238a和238b分別鄰接上述溝槽的 0 一第一侧壁和相對的一第二側壁207 ; —對彼此隔開 的導電層242a和242b,形成於上述第一溝槽210中,且 分別堆疊於上述對絕緣層238a和238b上,其中上述對導 電層242a和242b分別鄰接上述第一溝槽210的上述第一 側壁206和上述第二侧壁207 ;以及一對擴散區230a和 230b ’分別形成於鄰接上述對導電層242a和242b的部分 上述基板200中。如第lc圖所示,絕緣墊層236、第一絕 緣層238a、阻障層240a、導電層242a和擴散區230a係構 籲 成埋藏位元線500A。包括絕緣墊層236、第一絕緣層238b、 阻障層240b、導電層242b和擴散區230b係構成埋藏位元 線500B。如第lc圖所示,埋藏位元線500A和500B彼此 隔開且彼此對稱。 第2〜18圖係顯示本發明一實施例之DRAM 6 00的埋 藏位元線500的製造方法的剖面示意圖。本發明實施例之 埋藏位元線500係於一溝槽中形成兩個不同位元的兩條埋 藏位元線。為了方便說明起見,埋藏位元線5〇〇的製造方 法係同時顯示兩個。如第2圖所示,首先,提供一基板2〇〇。 9095-A34489TWF 7 201123426 在本發明一實施例中,基板200可為矽基板。在其他實施 例中,可利用鍺化矽(SiGe)、塊狀半導體(bulk semiconductor)、應變半導體(strained semiconductor)、化合9095-A34489TWF 6 201123426 The buried bit line 5〇〇B on the right side of the first trench 210 on the left side and the buried bit line 5〇〇A on the left side in the first trench 210 on the right side can be contacted by the bit 330 (BL contact) is electrically connected together. Fig. 1c is a cross-sectional view taken along the line A-A' of Fig. 1a, showing a cross-sectional view of the buried bit line 500 of the DRAM 600 according to an embodiment of the present invention. As shown in FIG. 1c, 'the buried bit line 500 includes a pair of insulating layers 238a and 238b spaced apart from each other, formed on the bottom surface 208 of the first trench 210, wherein the pair of insulating layers 238a and 238b respectively abut the above a first sidewall and a second sidewall 207 of the trench; and conductive layers 242a and 242b spaced apart from each other are formed in the first trench 210 and stacked on the pair of insulating layers 238a and 238b, wherein the pair of conductive layers 242a and 242b respectively abut the first sidewall 206 and the second sidewall 207 of the first trench 210; and a pair of diffusion regions 230a and 230b' are respectively formed adjacent to the pair of conductive layers Portions of 242a and 242b are in the above substrate 200. As shown in Fig. 1c, the insulating pad layer 236, the first insulating layer 238a, the barrier layer 240a, the conductive layer 242a, and the diffusion region 230a are structured to bury the bit line 500A. The insulating pad layer 236, the first insulating layer 238b, the barrier layer 240b, the conductive layer 242b, and the diffusion region 230b constitute a buried bit line 500B. As shown in Fig. 1c, the buried bit lines 500A and 500B are spaced apart from each other and are symmetrical to each other. 2 to 18 are schematic cross-sectional views showing a method of manufacturing the buried bit line 500 of the DRAM 600 according to an embodiment of the present invention. The buried bit line 500 of the embodiment of the present invention is formed by forming two buried bit lines of two different bits in one trench. For the sake of convenience of explanation, the manufacturing method of the buried bit line 5〇〇 displays two at the same time. As shown in Fig. 2, first, a substrate 2 is provided. 9095-A34489TWF 7 201123426 In an embodiment of the invention, the substrate 200 can be a germanium substrate. In other embodiments, germanium telluride (SiGe), bulk semiconductor, strained semiconductor, and combination may be utilized.

I 物半導體(compound semiconductor)、絶緣層上覆石夕(silicon on insulator, SOI)’或其他常用之半導體基板做為基板 200。基板200可植入p型或η型摻質,以針對設計需要改 變其導電類型。在本發明一實施例中,基板2〇ρ可植入ρ 型摻質。 然後,可利用例如化學氣相沉積(CVD)等沉積製程, 於基板200上依序形成一第一硬遮罩層2〇1、一第二硬遮 罩層202和-第三硬遮罩層2G3,以做為後續形成溝槽的 姓刻硬遮罩(etch hard mask)。在本發明一實施财,第一 硬遮罩層201的材質可為氮切(腿)’其厚度可介於 HKhnn〜2000腿之間。第二硬遮罩層搬的材質可為碳化 石夕购’其厚度可介於5Gnm〜麵nm m而第三硬遮 罩層203可為氧切和氮切形成的疊層 50nm〜500nm之間。 予反』;丨孓 之後 /A :硬遮罩層203依序形成一抗反射層 (ARC)204和一圖案化先阻居 ^ ^ 曰 成位置。 盾205,並定義出後續溝槽的形 移除=上可述=^":先&層挪做為糾遮罩, (AR_ 和第層 2〇3的開口 25。。然後’可利用上述具有 = 遮罩層撕做核刻第二硬遮罩層逝的硬遮罩A semiconductor semiconductor, a silicon on insulator (SOI) or other conventional semiconductor substrate is used as the substrate 200. The substrate 200 can be implanted with a p-type or n-type dopant to change its conductivity type for design needs. In an embodiment of the invention, the substrate 2〇ρ can be implanted with a p-type dopant. Then, a first hard mask layer 2, a second hard mask layer 202, and a third hard mask layer are sequentially formed on the substrate 200 by a deposition process such as chemical vapor deposition (CVD). 2G3, as an etch hard mask for the subsequent formation of the trench. In one implementation of the present invention, the first hard mask layer 201 may be made of nitrogen cut (legs) having a thickness between the legs of HKhnn~2000. The material of the second hard mask layer may be carbon carbide, which may be between 5Gnm and nmm, and the third hard mask layer 203 may be formed by oxygen cutting and nitrogen cutting, between 50nm and 500nm. . After /; 丨孓 /A: The hard mask layer 203 sequentially forms an anti-reflective layer (ARC) 204 and a patterned first blocking ^ ^ 位置 position. Shield 205, and define the shape removal of the subsequent groove = the above can be said = ^ ": first & layer shift as a mask, (AR_ and the opening of the second layer 2 〇 3. Then 'available The above-mentioned hard mask having the mask layer tearing and engraving the second hard mask layer

9095-A34489TWF 201123426 從開口 250中暴露出的第二硬遮罩層2〇2。在蚀刻製程期 間,圖案化光阻層205、底層抗反射層(ARC)2〇4和第三硬 遮罩層203會被钱刻而損耗。 請參考第4圖,經過上述非等向性蝕刻製程之後,開 口 250係穿過第二硬遮罩層202。然後,可再利用具有開 口 250的第二硬遮罩層202做為蝕刻第一硬遮罩層2〇1的 硬遮罩,進行非等向性蝕刻製程,以移除從開口 25〇中暴 露出的第一硬遮罩層201。經過上述蝕刻製程之後,開口 • 250係穿過第一硬遮罩層2〇1。 之後,請參考第5圖,再利用具有開口 25〇的第一硬 遮罩層201做為蝕刻基板2〇〇的硬遮罩,進行非等向性蝕 刻製程,以於基板200中形成一第一溝槽21〇,苴呈 一侧壁206和相對的第二側壁2〇7。在本發明一實施例中, 第一溝槽210的深度d可介於15〇nm〜5〇〇nm之間。然後, 可利用氧電漿灰化法(plasma ashing)去除第二硬遮 202。 曰 接著/請參考第6圖,可利用例如化學氣相沉積法 (CVD)等薄膜沉積製程.,順應性於第—溝槽21()的第一側 壁206、第二侧壁2〇7和底面2〇8上形成絕緣墊層21卜在 本發明一實施例中,絕緣墊層211的材質可為氧化矽 (Si〇2)’其厚度可介於5nm〜2〇nm之間。然後,可利用例如 低壓化學氣相沉積法(LPCVD)等薄膜沉積製程,全面性形 ^ 一第-絕緣材升斗212 ’並填入第一溝槽21〇。在本發明二 貫施例中,第—絕緣材料212可為氮化石夕。 之後’請參考第7圖’可利用氫練(腿)和氫氣碳化9095-A34489TWF 201123426 The second hard mask layer 2〇2 exposed from the opening 250. During the etching process, the patterned photoresist layer 205, the underlying anti-reflective layer (ARC) 2〇4, and the third hard mask layer 203 are lost. Referring to Figure 4, after the anisotropic etching process described above, the opening 250 is passed through the second hard mask layer 202. Then, the second hard mask layer 202 having the opening 250 can be reused as a hard mask for etching the first hard mask layer 2〇1, and an anisotropic etching process is performed to remove the exposed from the opening 25〇. The first hard mask layer 201 is formed. After the etching process described above, the opening 250 is passed through the first hard mask layer 2〇1. After that, referring to FIG. 5, the first hard mask layer 201 having the opening 25 turns is used as a hard mask for etching the substrate 2, and an anisotropic etching process is performed to form a first layer in the substrate 200. A trench 21 is formed by a sidewall 206 and an opposite second sidewall 2〇7. In an embodiment of the invention, the depth d of the first trench 210 may be between 15 〇 nm and 5 〇〇 nm. The second hard mask 202 can then be removed by plasma ashing.曰 Next/Please refer to FIG. 6, which may utilize a thin film deposition process such as chemical vapor deposition (CVD). Compliance with the first sidewall 206, the second sidewall 2〇7 of the first trench 21() An insulating pad layer 21 is formed on the bottom surface 2〇8. In an embodiment of the invention, the insulating pad layer 211 may be made of yttrium oxide (Si〇2) having a thickness of between 5 nm and 2 nm. Then, a thin film deposition process such as low pressure chemical vapor deposition (LPCVD) can be used to comprehensively form a first-insulating material lift 212' and fill the first trench 21'. In a second embodiment of the invention, the first insulating material 212 may be nitrided. After that, please refer to Figure 7 for hydrogen training (legs) and hydrogen carbonization.

9095-A34489TWF 201123426 物(CxHyFz,x=0〜6,y=0〜3,z=0〜8)做為钮刻劑,進行一回钱 刻製程,移除基板200上方和部分位於第一溝槽210中的 第一絕緣材料212,以形成第一絕緣層212a。在本發明一 實施例中,第一絕緣層212a的高度h小於第一溝槽210 深度d的二分之一,其值例如可介於20nm〜1 OOnm之間。 在本發明一實施例中,第一絕緣層212a的高度h!係決定 後續形成擴散區的位置。 接著,請參考第8圖,可利用濕蝕刻方式f多除未被第 一絕緣層212a覆蓋的絕緣墊層211,以形成絕緣墊層 211a。如第8圖所示,經過濕蝕刻之後形成的絕緣墊層 211a,其頂面低於第一絕緣層212a的頂面。 然後,請參考第9圖,可利用例如化學氣相沉積法 (CVD)等薄膜沉積製程,全面性形成含有摻質的一擴散源 材料214,並填入第一溝槽210。如第9圖所示,擴散源材 料214覆蓋第一絕緣層212a的頂面。 之後,請參考第10圖,可進行一回蝕刻製程,移除 基板200上方和部分位於第一溝槽210中的擴散源材料 214,以形成擴散源層214a,其覆蓋部分第一側壁206和 部分第二側壁207。在本發明一實施例中,擴散源層214a 可為摻雜多晶矽層之導電層,例如為摻雜砷的多晶矽層 (As_doped po】y),其厚度T係決定後續形成擴散區的高度。 在本發明一實施例中,擴散源層214a的厚度T!可介於 5nm〜100nm之間。 接著,請參考第11圖,進行一退火製程,將擴散源 層214a的摻f擴散進入鄰接擴散源層214a的坪分基板200 9095-A34489TWF 10 201123426 中’以形成對稱的擴散區230a和230b。如第11圖所示, 擴散區230a從第一側壁206延伸進入部分基板200中,而 擴散區230b從第二側壁207延伸進入部分基板200中。如 第11圖所示,擴散區230a和230b的頂面220可分別對齊 於或高於擴散源層214a的頂面216,而擴散區230a和230b 的底面222可分別對齊於或低於擴散源層214a的底面 218。然後,可進行一蝕刻製程,移除擴散源層214a。在 本發明一實施例中,擴散區230a和230b可做為位元線與 垂直電晶體之沒極的擴散接面(diffusion junction),而後續 形成的導電層和擴散區230a和230b電性連接至垂直電晶 體的汲極。在基板200的導電類型為p型之一實施例中, 擴散區230a和230b的導電類型可為η型。擴散區230a和 230b的導電類型係依據擴散源層214a的摻質的導電類型 而定’但非限定本實施例。 然後’請參考第12圖,可利用原子層沉積法(ald) 之沉積方式,順應性於第一溝槽210中形成一阻障層224, 並覆蓋第一絕緣層212a和擴散區230a和230b的側壁。在 本發明一實施例中,阻障層224可包括鈦、氮化鈦或其組 合。在本實施例中,阻障層224可為鈥和氮化鈦組成的疊 層結構’其總厚度可介於4nm〜20nm之間。之後,可利用 例如化學氣相沉積(CVD)法之沉積方式,全面性形成一導 電材料226,並填入第一溝槽210。在本實施例中,導電材 料226可包括例如鎢之金屬。 接著,請參考第13圖,可進行一回蝕刻製程,移除 基板200上方和部分位於第一溝槽21〇中的導電材料2269095-A34489TWF 201123426 The object (CxHyFz, x=0~6, y=0~3, z=0~8) is used as a button engraving agent to carry out a process of engraving, removing the upper part of the substrate 200 and partially located in the first ditch. The first insulating material 212 in the trench 210 forms a first insulating layer 212a. In an embodiment of the invention, the height h of the first insulating layer 212a is less than one-half of the depth d of the first trench 210, and the value may be, for example, between 20 nm and 100 nm. In an embodiment of the invention, the height h! of the first insulating layer 212a determines the location at which the diffusion region is subsequently formed. Next, referring to Fig. 8, the insulating underlayer 211 which is not covered by the first insulating layer 212a can be removed by the wet etching method f to form the insulating pad layer 211a. As shown in Fig. 8, the insulating underlayer 211a formed after the wet etching has a top surface lower than the top surface of the first insulating layer 212a. Then, referring to Fig. 9, a diffusion source material 214 containing a dopant can be formed in a comprehensive manner by a thin film deposition process such as chemical vapor deposition (CVD), and filled in the first trench 210. As shown in Fig. 9, the diffusion source material 214 covers the top surface of the first insulating layer 212a. Thereafter, referring to FIG. 10, an etching process may be performed to remove the diffusion source material 214 above the substrate 200 and partially located in the first trench 210 to form a diffusion source layer 214a covering a portion of the first sidewall 206 and Part of the second side wall 207. In an embodiment of the invention, the diffusion source layer 214a may be a conductive layer doped with a polysilicon layer, such as an arsenic doped polysilicon layer (As_doped po) y), and the thickness T determines the height of the subsequently formed diffusion region. In an embodiment of the invention, the thickness T! of the diffusion source layer 214a may be between 5 nm and 100 nm. Next, referring to Fig. 11, an annealing process is performed to diffuse the doping f of the diffusion source layer 214a into the pad substrate 200 9095-A34489TWF 10 201123426 adjacent to the diffusion source layer 214a to form symmetric diffusion regions 230a and 230b. As shown in Fig. 11, the diffusion region 230a extends from the first sidewall 206 into the portion of the substrate 200, and the diffusion region 230b extends from the second sidewall 207 into the portion of the substrate 200. As shown in FIG. 11, the top surfaces 220 of the diffusion regions 230a and 230b may be aligned with or above the top surface 216 of the diffusion source layer 214a, respectively, while the bottom surfaces 222 of the diffusion regions 230a and 230b may be aligned with or below the diffusion source, respectively. The bottom surface 218 of layer 214a. Then, an etching process can be performed to remove the diffusion source layer 214a. In an embodiment of the invention, the diffusion regions 230a and 230b can be used as a diffusion junction of the bit line and the vertical transistor, and the subsequently formed conductive layer and the diffusion regions 230a and 230b are electrically connected. To the drain of the vertical transistor. In an embodiment in which the conductivity type of the substrate 200 is p-type, the conductivity types of the diffusion regions 230a and 230b may be n-type. The conductivity types of the diffusion regions 230a and 230b depend on the conductivity type of the dopant of the diffusion source layer 214a, but are not limited to this embodiment. Then, please refer to FIG. 12, a deposition method of atomic layer deposition (ALD) can be used to form a barrier layer 224 in the first trench 210 and cover the first insulating layer 212a and the diffusion regions 230a and 230b. Side wall. In an embodiment of the invention, barrier layer 224 may comprise titanium, titanium nitride, or a combination thereof. In the present embodiment, the barrier layer 224 may be a stacked structure of tantalum and titanium nitride, and its total thickness may be between 4 nm and 20 nm. Thereafter, a conductive material 226 can be formed in a comprehensive manner by, for example, a chemical vapor deposition (CVD) deposition method, and filled in the first trench 210. In the present embodiment, the electrically conductive material 226 may comprise a metal such as tungsten. Next, referring to FIG. 13, an etching process can be performed to remove the conductive material 226 above the substrate 200 and partially located in the first trench 21?

9095-A34489TWF 201123426 和阻障層224,以於第一溝槽210中形成導電層226&和阻 障層224a。如第13圖所示’導電層2施覆蓋擴散區遍 和230b的側壁。在本發明一實施例中,可由如第$圖所示 之第一溝槽210的深度而決定導電層226a的厚度丁2,其值 例如可介於30nm〜200nm之間。 八 或者,在另-實施例中,可利用如第u圖所示的擴 散源層214a直接做為導電層,因而無須進行第12〜13的 製程步驟。 第I4〜I6圖係顯示於第-溝槽210中形成兩條位元線 的方式。然後,請參考第14圖,可利用例如化學氣相沉積 法(CVD)或原子層沉積法(ALD)等薄膜沉積製程,順應性於 第-溝槽210中形成-第二絕緣材料232,並覆蓋導電層 226a的頂面。在本發明一實施例中’第二絕緣材料232二 材質可為氧化矽,其厚度丁3可介於5nm〜3〇nm之間。 之後,請參考第15圖,可進行一回蝕刻製程,移除 基板200上方和部分位於第一溝槽21〇中的第二絕緣材料 232,直到露出導電層226a,以於導電層226&上形成一對 絕緣間隙壁232a和232b。如第15圖所示,絕緣間隙壁232a 和232b分別覆蓋第一側壁2〇6和第二側壁2〇7。在本發明 貫施例中,絕緣間隙壁232a和232b彼此的間距S可介 於第一溝槽210寬度冒的三分之一至四分之一之間。 接著’請參考第16圖,可利用具有絕緣間隙壁232a 和232b做為蝕刻硬遮罩,進行非等向性蝕刻製程,以移除 未被絕緣間隙壁232a和232b覆篕的導電層226a和其下的 第一絕緣層212a ’直到露出基板200(或從第一溝槽21〇底9095-A34489TWF 201123426 and barrier layer 224 to form a conductive layer 226 & and a barrier layer 224a in the first trench 210. As shown in Fig. 13, the conductive layer 2 covers the sidewalls of the diffusion regions 232 and 230b. In one embodiment of the invention, the thickness of the conductive layer 226a may be determined by the depth of the first trench 210 as shown in Fig. $, which may be, for example, between 30 nm and 200 nm. Alternatively, in another embodiment, the diffusion source layer 214a as shown in Fig. u can be directly used as the conductive layer, so that the process steps of the 12th to 13th steps are not required. The first to fourth embodiments show the manner in which two bit lines are formed in the first trench 210. Then, referring to FIG. 14, a thin film deposition process such as chemical vapor deposition (CVD) or atomic layer deposition (ALD) may be utilized to form a second insulating material 232 in the first trench 210, and The top surface of the conductive layer 226a is covered. In an embodiment of the present invention, the second insulating material 232 may be made of yttria, and the thickness of the dicing material 3 may be between 5 nm and 3 〇 nm. Thereafter, referring to FIG. 15, an etching process may be performed to remove the second insulating material 232 above the substrate 200 and partially located in the first trench 21A until the conductive layer 226a is exposed to the conductive layer 226 & A pair of insulating spacers 232a and 232b are formed. As shown in Fig. 15, the insulating spacers 232a and 232b cover the first side wall 2〇6 and the second side wall 2〇7, respectively. In the embodiment of the present invention, the spacing S of the insulating spacers 232a and 232b from each other may be between one third and one quarter of the width of the first trench 210. Next, referring to FIG. 16, an anisotropic etching process may be performed using the insulating spacers 232a and 232b as an etched hard mask to remove the conductive layer 226a not covered by the insulating spacers 232a and 232b. The first insulating layer 212a' under it until the substrate 200 is exposed (or from the first trench 21)

9095-A34489TWF 201123426 面208移除部分基板200)。如第16圖所示,經過上述非等 向性钮刻製程之後,係自對準地(self_aligned)形成一對彼此 隔開的絕緣墊層236a和236b、一對彼此隔開的第一絕緣 層238a和238b、一對彼此隔開的阻障層240a和240b和一 對彼此隔開的導電層242a和242b’並於導電層242a和242b 和其下的第一絕緣層238a和238b之間形成一第二溝槽 234。如第16圖所示,第一絕緣層238a和導電層242a鄰 接第一溝槽210的第一侧壁206,第一絕緣層238b和導電 # 層242b鄰接第一溝槽210的第二侧壁207。經過上述製程 之後,係於第16圖左邊和右邊的第一溝槽21〇中分別形成 彼此隔開且對稱的埋藏位元線5〇〇A和5〇〇B,其中埋藏位 兀線500A包括絕緣墊層236、第一絕緣層238a、阻障層 240a、導電層242a和擴散區230a,埋藏位元線5〇〇B包括 絕緣墊層236、第一絕緣層238b、阻障層24〇b、導電層24沘 和擴散區230b。如第16圖所示,位於左邊第一溝槽2i〇 巾且鄰接第二側壁207的埋藏位元線5晒和位於右邊第一 溝槽210中且鄰接第一側壁2〇6的埋藏位元線$⑻a可經 由如第la圖所示的位元接觸33〇 (BL c〇ntact)電性連接在 一起。 然後,晴參考第Π圖 一 J刑用薄膜沉積製程…王-囬 第三絕緣材料244,並填入第一第一溝样2 第二溝槽234。在本發明一 f & 9 &月貝施例中,第三絕緣材料244 可利關如高密度電衆化學氣相沉積(HDP-CVD)法和 塗玻邮0G)或利㈣子層沉積法 錢♦,第三絕緣材料244的厚度可介於9095-A34489TWF 201123426 Face 208 removes a portion of the substrate 200). As shown in FIG. 16, after the above-described anisotropic button etching process, a pair of spaced apart insulating pad layers 236a and 236b and a pair of spaced apart first insulating layers are formed self-aligned. 238a and 238b, a pair of spaced apart barrier layers 240a and 240b and a pair of spaced apart conductive layers 242a and 242b' and formed between conductive layers 242a and 242b and underlying first insulating layers 238a and 238b A second trench 234. As shown in FIG. 16, the first insulating layer 238a and the conductive layer 242a abut the first sidewall 206 of the first trench 210, and the first insulating layer 238b and the conductive # layer 242b abut the second sidewall of the first trench 210. 207. After the above process, the buried bit lines 5A and 5B are separated from each other in the first trench 21A on the left and right sides of FIG. 16, respectively, wherein the buried bit line 500A includes The insulating pad layer 236, the first insulating layer 238a, the barrier layer 240a, the conductive layer 242a and the diffusion region 230a, the buried bit line 5B includes an insulating pad layer 236, a first insulating layer 238b, and a barrier layer 24〇b , a conductive layer 24 沘 and a diffusion region 230b. As shown in FIG. 16, the buried bit line 5 located on the left first trench 2i and adjacent to the second sidewall 207 and the buried bit located in the first trench 210 on the right and adjacent to the first sidewall 2〇6 The line $(8)a can be electrically connected together via a bit contact 33〇 (BL c〇ntact) as shown in FIG. Then, the reference is made to the first sheet of the criminal film deposition process. The king-return third insulating material 244 is filled in the first first trench 2 second trench 234. In the f & 9 & month embodiment of the present invention, the third insulating material 244 can be used as a high-density electrical vapor deposition (HDP-CVD) method and a coated glass (0G) or a (four) sub-layer. The deposition method money ♦, the thickness of the third insulating material 244 can be

9095-A34489TWF 201123426 10nm〜lOOnm 之間。 之後’請參考第18圖,可進行一回蝕刻製程,移除 基板200上方和部分位於第一溝槽210中的第三絕緣材料 244,以形成一絕緣分隔層244a。絕緣分隔層244a係用以 電性絕緣埋藏位元線500A和500B。可再經過後續之例如 化學機械研磨(CMP)之平坦化製程移除第一硬遮罩層 201,係形成如第lb圖所示之本發明一實施例之埋藏位元 線500。經過上述製程之後,係完成本發明實施例之DRAM 600的埋藏位元線500的製造方法。 本發明一實施例係提供例如DRAM的埋藏位元線500 及其製造方法,其中藉由一對絕緣間隙壁做為蝕刻硬遮 罩’自對準地於一溝槽中同時完成兩條對稱的埋藏位元 線’製程相對簡易。並且,位於一溝槽的一側的埋藏位元 線係藉由位元接觸(BL contact)電性連接至相鄰溝槽的相鄰 侧的埋藏位元線。另外,埋藏位元線5〇〇的擴散區的位置 係經由位於第一溝槽210底部的第一絕緣層212a的高度 hi而定。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 圍内,當可作些許之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定為準。 【圖式簡單說明】9095-A34489TWF 201123426 Between 10nm~lOOnm. Thereafter, referring to Fig. 18, an etching process may be performed to remove the third insulating material 244 above the substrate 200 and partially in the first trench 210 to form an insulating spacer layer 244a. The insulating spacer layer 244a is used to electrically insulate the buried bit lines 500A and 500B. The first hard mask layer 201 can be removed by a subsequent planarization process such as chemical mechanical polishing (CMP) to form the buried bit line 500 of an embodiment of the present invention as shown in FIG. After the above process, the method of manufacturing the buried bit line 500 of the DRAM 600 of the embodiment of the present invention is completed. An embodiment of the present invention provides a buried bit line 500, such as a DRAM, and a method of fabricating the same, wherein a pair of insulating spacers are used as an etched hard mask to self-align two symmetrical layers in a trench simultaneously The buried bit line' process is relatively simple. Also, the buried bit line on one side of a trench is electrically connected to the buried bit line on the adjacent side of the adjacent trench by a bit contact (BL contact). Further, the position of the diffusion region of the buried bit line 5 is determined by the height hi of the first insulating layer 212a located at the bottom of the first trench 210. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope is defined as defined in the scope of the patent application. [Simple description of the map]

第la國係顯示本發明一實施例之動態隨機存 體晶胞的透視圖。 心11 9095-A34489TWF 14 201123426 第lb圖為第la圖的等效電路圖。 第lc圖為沿第la圖的A-A’切線的剖面圖,其顯示本 發明一實施例之動態隨機存取記憶體晶胞的埋藏位元線。 第2〜18圖係顯示本發明實施例之動態隨機存取記憶 體晶胞的埋藏位元線的製造方法的剖面示意圖。 【主要元件符號說明】 200〜基板; _ 201〜第一硬遮罩層; 202〜第二硬遮罩層; 203〜第三硬遮罩層; 204〜抗反射層; 205〜〜圖案化光阻層; 206〜第一側壁; 207〜第二側壁; 208、218、222、229〜底面; • 210〜第一溝槽; 211、211a、236a、236b〜絕緣墊層; 212〜第一絕緣材料; 212a、238a、238b 〜第一絕緣層; 214〜擴散源材料, 214a〜擴散源層; 230a、230b〜擴散區; 216、220、228〜頂面; 224、224a、240a、240b 〜阻障層;The third country shows a perspective view of a dynamic random cell unit in accordance with an embodiment of the present invention. Heart 11 9095-A34489TWF 14 201123426 The lb diagram is the equivalent circuit diagram of the first diagram. Figure lc is a cross-sectional view taken along line A-A' of the first drawing showing the buried bit line of the DRAM cell of an embodiment of the present invention. Figs. 2 to 18 are schematic cross-sectional views showing a method of manufacturing a buried bit line of a dynamic random access memory cell according to an embodiment of the present invention. [Main component symbol description] 200 to substrate; _ 201 to first hard mask layer; 202 to second hard mask layer; 203 to third hard mask layer; 204 to anti-reflection layer; 205 to ~ patterned light Resistor layer; 206~first sidewall; 207~second sidewall; 208, 218, 222, 229~ bottom surface; • 210~ first trench; 211, 211a, 236a, 236b~ insulating pad; 212~ first insulation Material; 212a, 238a, 238b~ first insulating layer; 214~ diffusion source material, 214a~ diffusion source layer; 230a, 230b~ diffusion region; 216, 220, 228~ top surface; 224, 224a, 240a, 240b~ resistance Barrier layer

9095-A34489TWF 201123426 226〜導電材料; 226a、242a、242b 〜導電層; 232〜第二絕緣材料; 232a、232b〜絕緣間隙壁; 234〜第二溝槽; 244〜第三絕緣材料; 244a〜絕緣分隔層; 250〜開口; d〜深度; h 1〜南度; T】、τ2、τ3〜厚度; W〜寬度; S〜間距; 3 00〜垂直電晶體, 302〜垂直側壁; 3 06〜絕緣層, 308〜字元線; 312〜電容; 314〜;《及極區, 316〜通道區; 318〜源極區, 320〜第-一方向; 322〜第二方向; 330〜位元接觸; 500Α、500Β〜埋藏位元線; 9095-A34489TWF 16 201123426 600〜動態隨機存取記憶體。9095-A34489TWF 201123426 226 ~ conductive material; 226a, 242a, 242b ~ conductive layer; 232 ~ second insulating material; 232a, 232b ~ insulating spacer; 234 ~ second trench; 244 ~ third insulating material; 244a ~ insulation Separation layer; 250~open; d~depth; h1~南度; T], τ2, τ3~thickness; W~width; S~pitch; 3 00~ vertical transistor, 302~vertical sidewall; 3 06~insulation Layer, 308 ~ word line; 312 ~ capacitor; 314 ~; "and pole area, 316 ~ channel area; 318 ~ source area, 320 ~ first - direction; 322 ~ second direction; 330 ~ bit contact; 500 Α, 500 Β ~ buried bit line; 9095-A34489TWF 16 201123426 600 ~ dynamic random access memory.

9095-A34489TWF 179095-A34489TWF 17

Claims (1)

201123426 七、申請專利範圍: 1·一種埋藏位元線,設置於一基板的一溝槽中,包括: 一對彼此隔開的絕緣層,形成於該溝槽的底面上,其 中該對絕緣層分別鄰接該溝槽的一第一側壁和相對的一第 二側壁; 一對彼此隔開的導電層,形成於該溝槽中,且分別堆 疊於該對絕緣層上’其中該對導電層分別鄰接該溝槽的該 第一側壁和該第二側壁;以及 一對擴散區’分別形成於鄰接該對導電層的部分該基 板中。 2. 如申請專利範圍第1項所述之埋藏位元線,更包括 一絕緣分隔層’位於該對導電層之間,並從該溝槽底部延 伸至部分該基板中。 3. 如申請專利範圍第2項所述之埋藏位元線,其中該 絕緣分隔層覆蓋該對導電層的頂面。 4. 如申請專利範圍第2項所述之埋藏位元綵,其中該 絕緣分隔層包括矽玻璃或二氧化矽。 5. 如申請專利範圍第1項所述之埋藏位元線,更包括 對阻障層,分別設置於該對絕緣層與該對導霄層之間。 6·如申請專利範圍第5項所述之埋藏位元線,其中該 阻障層覆蓋該擴散區的側壁。 7.如申晴專利範圍第5項所述之埋藏位元線,其中該 •阻障層包括鈦、氮化鈦或其組合。 8·如申請專利範®» 1項所述之埋藏位元線,其中該 對擴散區的項面對齊於或高於該對導電層的頂面。 9095-A34489TWF 201123426 9. 如申請專利範圍第1項所述之埋藏位元線,其中該 對擴散區的底面對齊於或低於該對導電層的底面。 10. 如申請專利範圍第1項所述之埋藏位元線,更包括 一對絕緣墊層,分別設置於該對絕緣層與該溝槽之間。 11. 如申請專利範圍第1項所述之埋藏位元線,其中該 導電層包括金屬或多晶石夕。 12. 如申請專利範圍第10項所述之埋藏位元線,其中 該絕緣層或該絕緣墊層或包括氧化物、氮化物或其組合。 • 13.如申請專利範圍第1項所述之埋藏位元線,其中該 絕緣層的高度小於該溝槽深度的二分之一。 14.一種埋藏位元線的製造方法,包括下列步驟: 提供一基板; 於該基板中形成一第一溝槽,其具有一第一侧壁和相 對的一第二侧壁; 於該第一溝槽中形成一第一絕緣層,其覆蓋該溝槽的 底面和部分該第一和第二側壁; • 分別於鄰接該第一和第二側壁的部分該基板中形成 一對擴散區; 於該第一溝槽中形成一導電層,且覆蓋該對擴散區的 側壁; 於該導電層上形成一對絕緣間隙壁,且分別覆蓋該第 一和第二侧壁; 移除未被該對絕緣間隙壁覆蓋的該導電層和其下的 該第一絕緣層,直到露出該基板,以於該導電層和其下的 該第一絕緣層中形成一第二溝槽;以及 9095-A34489TWF 19 201123426 移除該對絕緣間隙壁。 ,15.如申請專利範圍第14項所述之埋藏位元線的製造 方法’其中形成該擴散區的步驟更包括: 於該第一絕緣層上覆蓋含有摻質的一擴散源層,其覆 蓋部分該第一和第二側壁; = 進行退火製程’將該擴散源層的摻質擴散進入鄰接 該擴散源層的部分縣板中’以形成該擴散區;以及 私除該擴散源層。201123426 VII. Patent application scope: 1. A buried bit line disposed in a trench of a substrate, comprising: a pair of insulating layers spaced apart from each other, formed on a bottom surface of the trench, wherein the pair of insulating layers Adjacent to a first sidewall and an opposite second sidewall of the trench; a pair of spaced apart conductive layers are formed in the trench and stacked on the pair of insulating layers respectively, wherein the pair of conductive layers respectively The first sidewall and the second sidewall adjacent to the trench; and a pair of diffusion regions ' are respectively formed in a portion of the substrate adjacent to the pair of conductive layers. 2. The buried bit line of claim 1 further comprising an insulating spacer layer between the pair of conductive layers and extending from the bottom of the trench to a portion of the substrate. 3. The buried bit line of claim 2, wherein the insulating spacer layer covers a top surface of the pair of conductive layers. 4. The buried texel of claim 2, wherein the insulating spacer layer comprises bismuth glass or cerium oxide. 5. The buried bit line of claim 1, further comprising a barrier layer disposed between the pair of insulating layers and the pair of guiding layers. 6. The buried bit line of claim 5, wherein the barrier layer covers a sidewall of the diffusion region. 7. The buried bit line of claim 5, wherein the barrier layer comprises titanium, titanium nitride or a combination thereof. 8. The buried bit line of claim 1, wherein the pair of diffusion regions are aligned with or above a top surface of the pair of conductive layers. 9. The buried bit line of claim 1, wherein the bottom surface of the pair of diffusion regions is aligned with or below the bottom surface of the pair of conductive layers. 10. The buried bit line of claim 1, further comprising a pair of insulating pads disposed between the pair of insulating layers and the trenches. 11. The buried bit line of claim 1, wherein the conductive layer comprises a metal or polycrystalline stone. 12. The buried bit line of claim 10, wherein the insulating layer or the insulating layer comprises an oxide, a nitride or a combination thereof. 13. The buried bit line of claim 1, wherein the insulating layer has a height less than one-half the depth of the trench. A method for manufacturing a buried bit line, comprising the steps of: providing a substrate; forming a first trench in the substrate, having a first sidewall and an opposite second sidewall; Forming a first insulating layer in the trench covering the bottom surface of the trench and a portion of the first and second sidewalls; • forming a pair of diffusion regions in the substrate adjacent to the first and second sidewalls; Forming a conductive layer in the first trench and covering sidewalls of the pair of diffusion regions; forming a pair of insulating spacers on the conductive layer, and covering the first and second sidewalls respectively; The conductive layer covered by the insulating spacer and the first insulating layer therebelow until the substrate is exposed to form a second trench in the conductive layer and the first insulating layer therebelow; and 9095-A34489TWF 19 201123426 Remove the pair of insulating spacers. 15. The method of manufacturing a buried bit line according to claim 14, wherein the step of forming the diffusion region further comprises: covering the first insulating layer with a diffusion source layer containing a dopant, which covers Part of the first and second sidewalls; = performing an annealing process 'diffusing the dopant of the diffusion source layer into a portion of the county plate adjacent to the diffusion source layer' to form the diffusion region; and privately removing the diffusion source layer. 方、、16.如申請專利範圍第14項所述之埋藏位元線的製 法其中形成該第一絕緣層的步驟之前更包特順應性灰 。溝槽的該第一和第二侧壁和底面上形成一絕緣墊層。 如申請專利範圍第16項所述之埋藏位元線的製綠 法其中形成該第一絕緣層的步驟更包括: 全面性形成—第—絕緣材料,並填人該溝槽;以及 样^進^"回㈣製程’移除該基板上方和部分位於該淺 槽中W第—絕緣材料,以形成該第-絕緣層。The method of forming a buried bit line as described in claim 14 wherein the step of forming the first insulating layer is more compliant with the ash. An insulating pad layer is formed on the first and second side walls and the bottom surface of the trench. The method for forming the first insulating layer in the green method of the buried bit line according to claim 16 further includes: forming a comprehensive-first insulating material and filling the trench; The ^"back (four) process 'removs the W-insulating material above the substrate and partially in the shallow trench to form the first insulating layer. 方沐申明專絲圍第17項所述之埋藏位元線的製造 方Ί中形成該第—絕緣層的步驟之後更包括: 絕緣㈣刻製程,移除未被該第—絕緣層覆蓋的該 方法^7請專利範㈣14項所述之埋藏位元線的製 槽的侧壁和括順應性於該 方法第19項所述之域位元線的製i /、成該導電層的步驟更包括: ^〇95-A34489TW 20 201123426 全面性形成一導電材料,並填入該溝槽;以及 進行一回蝕刻製程,移除該基板上方和部分位於該溝 槽中的該導電材料和該阻障層,以形成該導電層。 21.如申請專利範圍第19項所述之埋藏位元線的製造 方法,其中該導電層的頂面對齊於或低於該對擴散區的頊 面。 22.如申請專利範圍 a π — π 王風位兀線的製造 方法’其中形成一對絕緣間隙壁的步驟更包括: 順應性形成一第二絕緣材料;以及 進行-回姓刻製程,移除該基板上方和部分位於該薄 槽中的該第二絕緣材料,直到露出該導電層 絕緣間隙壁。 〜取琢別 方法’其中該對絕』::壁藏位元線的製造 三分之-至四分之彼此的間距介於該溝槽寬度的 24. 如申請專利範圍第14 方法,其中移除該對絕緩^項所述之埋藏位元線的製造 全面性形成-第H隙壁的步驟之後更包括: 槽;以及 緣材料,並填入該第一和第二溝 進行一回蝕刻製程,移 一溝槽中的該第二絕緣材料*讀基板上方和部分位於該第 25. 如申請專利範圍第、,以形成—絕緣分隔層。 方法,其中該絕緣分隔岸^項所述之埋藏位元線的製造 w 9覆蓋該導電層的頂面。 9095-A34489TWFAfter the step of forming the first insulating layer in the manufacturing method of the buried bit line described in Item 17 of the special silk fence, the method further comprises: an insulating (four) engraving process to remove the layer not covered by the first insulating layer Method ^7 Please refer to the side wall of the buried bit line described in Item 14 (4) and the step of conforming to the field bit line of the method described in item 19 of the method, and forming the conductive layer. The method includes: ^〇95-A34489TW 20 201123426 comprehensively forming a conductive material and filling the trench; and performing an etching process to remove the conductive material and the barrier above and partially in the trench a layer to form the conductive layer. 21. The method of fabricating a buried bit line of claim 19, wherein a top surface of the conductive layer is aligned with or below a plane of the pair of diffusion regions. 22. The method of manufacturing a patent range a π — π king wind position ' line, wherein the step of forming a pair of insulating spacers further comprises: compliant forming a second insulating material; and performing a process of removing the last name, removing The second insulating material is over the substrate and partially located in the thin trench until the conductive interlayer insulating spacer is exposed. ~ Take the screening method 'Where the pair is absolutely』:: The manufacturing of the wall-level bit line is three-to-four-points apart from each other by the width of the groove 24. As in the patent application, the 14th method, In addition to the step of forming the embossed bit line described above, the step of forming the H-gap wall further includes: a trench; and a rim material, and filling the first and second trenches for etching back The process of moving the second insulating material in the trench * is read over the substrate and partially at the 25th. as in the scope of the patent application to form an insulating spacer. The method wherein the fabrication of the buried bit line of the insulating spacers covers the top surface of the conductive layer. 9095-A34489TWF
TW098145466A 2009-12-29 2009-12-29 Buried bit line process and scheme TWI452677B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098145466A TWI452677B (en) 2009-12-29 2009-12-29 Buried bit line process and scheme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098145466A TWI452677B (en) 2009-12-29 2009-12-29 Buried bit line process and scheme

Publications (2)

Publication Number Publication Date
TW201123426A true TW201123426A (en) 2011-07-01
TWI452677B TWI452677B (en) 2014-09-11

Family

ID=45046676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145466A TWI452677B (en) 2009-12-29 2009-12-29 Buried bit line process and scheme

Country Status (1)

Country Link
TW (1) TWI452677B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514511B (en) * 2012-05-15 2015-12-21 Nanya Technology Corp Semiconductor process and semiconductor structure for memory array with buried digit lines (bdl)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102817A (en) * 1985-03-21 1992-04-07 Texas Instruments Incorporated Vertical DRAM cell and method
TWI222180B (en) * 2003-04-29 2004-10-11 Nanya Technology Corp Method for forming vertical transistor and trench capacitor
US7898014B2 (en) * 2006-03-30 2011-03-01 International Business Machines Corporation Semiconductor device structures with self-aligned doped regions and methods for forming such semiconductor device structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514511B (en) * 2012-05-15 2015-12-21 Nanya Technology Corp Semiconductor process and semiconductor structure for memory array with buried digit lines (bdl)

Also Published As

Publication number Publication date
TWI452677B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
TWI323511B (en) Semiconductor device having a recess channel transistor
US8633529B2 (en) Vertical transistors
US7521322B2 (en) Vertical transistors
TW548801B (en) Single sided buried strap
US9153654B2 (en) Semiconductor device with buried bit line and method for fabricating the same
JP6133013B2 (en) Semiconductor device and method for forming the same
TW201113984A (en) DRAM cell with double-gate Fin-FET, DRAM cell array and fabrication method thereof
JP2011138883A (en) Semiconductor device, and method of manufacturing the same
KR20120078917A (en) Semiconductor device and method for forming the same
US20120302047A1 (en) Method for fabricating semiconductor device with partially open sidewall
TWI284391B (en) Dynamic random access memory and manufacturing method thereof
JP2011192800A (en) Semiconductor device and method for manufacturing the same
TWI402972B (en) Buried bit line process and scheme
JP2011165830A (en) Semiconductor device, and method of manufacturing the same
JPH1117151A (en) Random access memory cell
JP2010219325A (en) Semiconductor memory device and method for manufacturing the same
US20120146136A1 (en) Vertical semiconductor device and method of manufacturing the same
TW201123426A (en) Buried bit line process and scheme
TWI469299B (en) Buried bit line process and scheme
TWI418018B (en) Electronic device and fabrication method thereof and memory device
US20110068379A1 (en) Method of manufacturing semiconductor device
TWI405246B (en) Semiconductor trench process
TWI425521B (en) Method of forming bit line
TWI236139B (en) Dynamic random access memory cell and fabricating method thereof
TW201250934A (en) Dynamic random access memory and method for fabricating the same