TW201123327A - Semiconductor device and method of forming an inductor on polymer matrix composite substrate - Google Patents

Semiconductor device and method of forming an inductor on polymer matrix composite substrate Download PDF

Info

Publication number
TW201123327A
TW201123327A TW99135418A TW99135418A TW201123327A TW 201123327 A TW201123327 A TW 201123327A TW 99135418 A TW99135418 A TW 99135418A TW 99135418 A TW99135418 A TW 99135418A TW 201123327 A TW201123327 A TW 201123327A
Authority
TW
Taiwan
Prior art keywords
layer
insulating layer
forming
conductor
polymer matrix
Prior art date
Application number
TW99135418A
Other languages
Chinese (zh)
Other versions
TWI498983B (en
Inventor
Yao-Jian Lin
Original Assignee
Stats Chippac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/621,738 external-priority patent/US8158510B2/en
Priority claimed from US12/726,880 external-priority patent/US8791006B2/en
Application filed by Stats Chippac Ltd filed Critical Stats Chippac Ltd
Publication of TW201123327A publication Critical patent/TW201123327A/en
Application granted granted Critical
Publication of TWI498983B publication Critical patent/TWI498983B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A semiconductor device has a first insulating layer formed over a first surface of a polymer matrix composite substrate. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. The second conductive layer is wound to exhibit inductive properties. A third conductive layer is formed between the first conductive layer and second conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. A bump is formed over the second conductive layer. A fourth insulating layer can be formed over a second surface of the polymer matrix composite substrate. Alternatively, the fourth insulating layer can be formed over the first insulating layer prior to forming the first conductive layer.

Description

201123327 六、發明說明: 【發明所屬之技術領域】 本發明大體上和半導體裝置有關,且更明確地說,和 半導體裝置及形成電感器於高分子基質合成基板上之方法 有關。 【先前技術】 在現代的電子產品中經常會發現半導體裝置。半導體 裝置會有不同數量與密度的電組件離散式半導體裝置通 常含有一種類型的電組件,舉例來說,發光二極體(Light Emitting Diode,LED)、小訊號電晶體、電阻器、電容器、 電感器以及功率金屬氧化物半導體場效電晶體(MeUl 〇xide201123327 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to semiconductor devices and, more particularly, to semiconductor devices and methods of forming inductors on polymer matrix composite substrates. [Prior Art] A semiconductor device is often found in modern electronic products. Semiconductor devices have different numbers and densities of electrical components. Discrete semiconductor devices typically contain one type of electrical component, for example, a light emitting diode (LED), a small signal transistor, a resistor, a capacitor, an inductor. And power metal oxide semiconductor field effect transistor (MeUl 〇xide

Semiconductor Field Effect Transistor,MOSFET)。積體式 半導體裝置通常含有數百個至數百萬個電組件。積體式半 導體裝置的範例包含微控制器、微處理器、電荷耦合裝置 (Charged-Coupled Device,CCD)、太陽能電池以及數位微 鏡裝置(Digital Micro-mirror Device,DMD)。 半導體裝置會貫施各式各樣的功能,例如,高速計算、 傳送與接收電磁訊號、控制電子裝置、將太陽光轉換成電 能、以及產生電視顯示器的視覺投影。在娛樂領域、通訊 領域、電力轉換領域、網路領域、電腦領域以及消費性產 品領域中皆會發現半導體裝置。在軍事應用、航空、自動 車、工業控制器以及辦公室設備中同樣會發現半導體裝置。 半導體裝置會利用半導體材料的電氣特性。半導體材 201123327 料的原子結構會使得可藉由施加電場或基礎電流或是經由 摻雜處理來操縱其導電性。摻雜會將雜質引入至該半導體 材料之中,以便操縱及控制該半導體裝置的傳導性。 一半導體裝置會含有主動式電氣結構與被動式電氣結 構。主動式結構(其包含雙極電晶體與場效電晶體)會控制電 流的流動。藉由改變摻雜程度以及施加電場或基礎電流, 該電晶體便會提高或限制電流的流動。被動式結構(其包含 電:且器、電容器以及電感器)會創造用以實施各式各樣電氣 功能所需要的電壓和電流之間的關係。該等被動式結構與 =動式結#會被電連接以形成讓該半導體裝置實施高速計 算及其它實用功能的電路。 半導體裝置通常會使用 是’前端製造以及後端製造 驟。前端製造涉及在一半導 粒。每—個晶粒通常相同並 和被動式组件而形成的電路 圓中切割個別的晶粒並且封 撐及環境隔離。 兩種複雜的製程來製造,也就 ’每一者皆可能涉及數百道步 體晶圓的表面上形成複數個晶 且含有藉由電連接主動式組件 。後端製造涉及從已完成的晶 裝該晶粒,用以提供結構性支 半導體製造的其中一個目標便係生產較小的半導體裝 置。較小的裝置通常會消耗較少電力,具有較高效能並 且能_效地生產。此外,較小的半導體裝置還具有較 乂、覆蓋面積這係較小的末端產品所需要的。藉由改善 』端製矛主可以達成較小的晶粒尺寸’ &而導致具有較小以 及較高密度之主動式組件和被動式組件的晶粒。後端製程 201123327 可以藉由改善電互連材料及封裝材料而導致具有較小覆蓋 面積的半導體裝置封裝。 半導體製造的另一個目標係生產較高效能的半導體裝 置。在咼頻應用中,例如,射頻(Radi〇 FrequenCy , Rp>)無線 通訊:整合被動元件(IPD)經常會被納入半導體裝置裡面。 整合被動元件的範例包含電阻器、電容器以及電感器。一 典型的射頻系統需要在一或多個半導體封裝中用到多個整 合被動元件,以便實施必要的電氣功能。電感器通常會被 形成在一犧牲基板的上方,以便達到結構性支撐的目的。 該犧牲基板會在形成該電感器之後藉由研磨或蝕刻製程被 移除。使用犧牲基板會增加處理步驟,例如,研磨與姓刻, 並且會增加製程的成本。 【發明内容】 在升> 成電感器中’需要簡化製程並且降低成本。據此, 於其中一實施例中,本發明係一種製造半導體裝置的方 法’其包括下面步驟:形成一高分子基質合成基板;在該 高分子基質合成基板的第一表面上方形成—第一絕緣層; 在該第一絕緣層的上方形成一第一導體層;在該第一絕緣 層與第一導體層的上方形成一第二絕緣層;在該第二絕緣 層與第-導體層的上方形成一第二導體層;在該第二絕緣 層與第二導體層的上方形成一第三絕緣層;移除該第三絕 緣層的一部分,用以露出該第二導體層;以及在該第二導 體層的上方形成一凸塊。 6 201123327 於另一實施例中,本發明係一種製造半導體裝置的方 法’其包括下面步驟:形成一模造基板;在該模造基板的 上方形成—第一導體層;在該模造基板與第一導體層的上 方形成一第一絕緣層;在該第一絕緣層與第一導體層的上 方形成~第二導體層;在該第一絕緣層與第二導體層的上 方形成一第二絕緣層;以及在該第二導體層的上方形成一 互連結構。 於另一實施例中,本發明係一種製造半導體裝置的方 法’其包括下面步驟:形成—高分子基質合成基板;在該 问分子基質合成基板的上方形成一電感器;以及在該電感 器的上方形成一互連結構。 於另一實施例中,本發明係一種半導體裝置,其包括 一高分子基質合成基板以及被形成在該高分子基質合成基 板上方的第一導體層。一第一絕緣層會被形成在該高分子 基質合成基板與第一導體層的上方。一第二導體層會被形 成在該第一絕緣層與第一導體層的上方。一第二絕緣層會 被形成在該第一絕緣層與第二導體層的上方'一互連結構 會被形成在該第二導體層的上方。 【實施方式】 下面的說明書中會參考圖式於一或多個實施例中來說 明本發明,於該等圖式中,相同的符號代表相同或雷同的 元件。雖然本文會以達成本發明目的的最佳模式來說明本 發明;不過,熟習本技術的人士便會明白,本發明希望涵 201123327 蓋受到下面揭示内容及圖式支持的隨附申請專利範圍及它 們的等效圍所定義的本發明的精神與範嘴内可能併入的 替代例 '修正例、以及等效例。 半導體裝置通常會使用兩種複雜的製程來製造:前端 製造和後端製造。前端製造涉及在一半導體晶圓的表面上 形成複數個晶粒。該晶圓上的每一個晶粒皆含有主動式電 組件和被動式電組件’它們會被電連接而形成功能性電 路。主動式電組件(例如電晶體與二極體)能夠控制電流的流 動。被動式電組件(例如電容器、電感器、電阻器以及變壓 :)會創造用以實施電路功能所需要的電壓和電流之間的關 1尔 0 :動式組件和主動式組件會藉由一連事的製程步驟被 雜、沉積、光二Γ:,該等製程步驟包含:播 ]以及平坦化。摻雜會藉由下面 #質引入至半導體材料之中’例如:離子植入或 疋熱擴散。摻雜製程會修正主動式裝 ' 電性,將該半導體材料轉換成絕緣體、導體,…= :場或基礎電流來動態改變半導體材料傳導性。電;體含 有二類型和不同換雜程度的多個區域,它們會在二 被排列成用以在施加一電 f 高或限制電流的流動。電流時讓該電晶體會提 層二Γ件和被動式组件係由具有不同電氣特性的多 二層能夠藉由各式各樣的沉積技術來形 77決於要破沉積的材料的類型。舉例來說’薄 201123327 膜沉積可能包含:化學氣相沉積(Chemical Vapor Deposition ’ CVD)製程、物理氣相沉積(physic %㈣Semiconductor Field Effect Transistor, MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, Charged-Coupled Devices (CCDs), solar cells, and Digital Micro-mirror devices (DMDs). Semiconductor devices perform a wide variety of functions, such as high-speed computing, transmitting and receiving electromagnetic signals, controlling electronics, converting sunlight into electricity, and producing visual projections of television displays. Semiconductor devices are found in the entertainment, communications, power conversion, networking, computer, and consumer products sectors. Semiconductor devices are also found in military applications, aerospace, automated vehicles, industrial controllers, and office equipment. Semiconductor devices utilize the electrical properties of semiconductor materials. The atomic structure of the semiconductor material 201123327 allows the conductivity to be manipulated by applying an electric field or a base current or via a doping process. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device. A semiconductor device will contain an active electrical structure and a passive electrical structure. The active structure, which contains bipolar transistors and field effect transistors, controls the flow of current. The transistor increases or limits the flow of current by varying the degree of doping and applying an electric or base current. Passive structures, which include electricity: capacitors, capacitors, and inductors, create the relationship between the voltage and current required to implement a wide variety of electrical functions. The passive structures and the =-state junctions are electrically connected to form a circuit that allows the semiconductor device to perform high-speed calculations and other useful functions. Semiconductor devices typically use 'front-end manufacturing and back-end manufacturing steps. Front end manufacturing involves half of the granules. Each die is usually the same and cuts into individual circuits in a circuit circle formed by passive components and is sealed and environmentally isolated. Two complex processes are used to make, that is, each of them may involve a plurality of crystals on the surface of hundreds of step wafers and contain active components by electrical connection. Back-end fabrication involves the fabrication of the die from the finished wafer to provide a structural support. One of the goals of semiconductor fabrication is to produce smaller semiconductor devices. Smaller devices typically consume less power, are more efficient, and can be produced efficiently. In addition, smaller semiconductor devices are also required for smaller end products that are smaller in area. A smaller grain size can be achieved by improving the end of the spearhead, resulting in a die with a smaller and higher density of active and passive components. Backend Process 201123327 A semiconductor device package with a small footprint can be produced by improving electrical interconnect materials and packaging materials. Another goal of semiconductor manufacturing is to produce higher performance semiconductor devices. In frequency-frequency applications, for example, radio frequency (Radi〇 FrequenCy, Rp>) wireless communication: integrated passive components (IPD) are often incorporated into semiconductor devices. Examples of integrated passive components include resistors, capacitors, and inductors. A typical RF system requires the use of multiple integrated passive components in one or more semiconductor packages to perform the necessary electrical functions. The inductor is typically formed over a sacrificial substrate for structural support purposes. The sacrificial substrate is removed by a grinding or etching process after the inductor is formed. The use of a sacrificial substrate increases processing steps, such as grinding and surnames, and increases the cost of the process. SUMMARY OF THE INVENTION In the case of liters into inductors, it is necessary to simplify the process and reduce the cost. Accordingly, in one embodiment, the present invention is a method of fabricating a semiconductor device comprising the steps of: forming a polymer matrix composite substrate; forming a first insulation over the first surface of the polymer matrix composite substrate a first conductive layer is formed over the first insulating layer; a second insulating layer is formed over the first insulating layer and the first conductive layer; above the second insulating layer and the first conductive layer Forming a second conductor layer; forming a third insulating layer over the second insulating layer and the second conductor layer; removing a portion of the third insulating layer for exposing the second conductor layer; and A bump is formed above the two conductor layers. 6201123327 In another embodiment, the present invention is a method of fabricating a semiconductor device comprising the steps of: forming a molded substrate; forming a first conductor layer over the molded substrate; and forming the substrate and the first conductor Forming a first insulating layer over the layer; forming a second conductive layer over the first insulating layer and the first conductive layer; forming a second insulating layer over the first insulating layer and the second conductive layer; And forming an interconnect structure over the second conductor layer. In another embodiment, the present invention is a method of fabricating a semiconductor device comprising the steps of: forming a polymer matrix synthetic substrate; forming an inductor over the molecular matrix composite substrate; and forming an inductor at the inductor An interconnect structure is formed above. In another embodiment, the invention is a semiconductor device comprising a polymer matrix composite substrate and a first conductor layer formed over the polymer matrix synthesis substrate. A first insulating layer is formed over the polymer matrix composite substrate and the first conductor layer. A second conductor layer is formed over the first insulating layer and the first conductor layer. A second insulating layer is formed over the first insulating layer and the second conductor layer. An interconnect structure is formed over the second conductor layer. The present invention is described in the following description with reference to the drawings, in which the same symbols represent the same or identical elements. The present invention will be described in the best mode for achieving the object of the present invention; however, those skilled in the art will appreciate that the present invention is intended to cover the scope of the accompanying claims and their accompanying claims and the drawings. The equivalents of the invention are defined by the equivalents of the invention, and the alternatives, modifications, and equivalents that may be incorporated in the scope of the invention. Semiconductor devices are typically manufactured using two complex processes: front-end manufacturing and back-end manufacturing. Front end fabrication involves forming a plurality of grains on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components' that are electrically connected to form a functional circuit. Active electrical components (such as transistors and diodes) are capable of controlling the flow of current. Passive electrical components (such as capacitors, inductors, resistors, and transformers) create the relationship between the voltage and current required to implement the circuit's functions. The dynamic and active components are connected together. The process steps are mixed, deposited, and lighted: the process steps include: broadcast and flattening. Doping can be introduced into the semiconductor material by the following #', for example: ion implantation or thermal diffusion. The doping process modifies the active device 'electricity, converting the semiconductor material into an insulator, a conductor, ... = : field or base current to dynamically change the conductivity of the semiconductor material. The body contains a plurality of regions of two types and different degrees of substitution, which are arranged in two to be used to apply a current or a current that limits the current. The current causes the transistor to lift the two-piece and passive components. The multiple layers with different electrical characteristics can be shaped by a variety of deposition techniques depending on the type of material to be deposited. For example, 'thin 201123327 film deposition may include: chemical vapor deposition (Chemical Vapor Deposition CVD) process, physical vapor deposition (physic% (four)

Deposition PVD)製程、電解質電鑛製程以及無電極電鍛製 程。每-層通常都會被圖樣化,以便形成主動式組件的一 -P刀被動式組件的—部分、或是組件之間的電連接線的 一部分。 該等層月b夠利用光微影術來圖樣化,其涉及在要被圖 樣化的層的上方沉積光敏材料,舉例來說,光阻。一圖樣 會利用光從-光罩處被轉印至該光阻。該光阻圖樣中受到 光作用的部分會利用溶劑 圖樣化的部分。該光阻中方層之中要被 中的剩餘部分會被移除,從而留下 一已圖樣化層。戋者,f 2 · 卜 次者某些類型的材料會利用無電極 以及電解質電鍍之類的枯 斤電銀 η 的技術,藉由將該材料直接沉積至先 ,月1J,儿積及/或敍刻製程所# M d 圖樣化。 …形成的區域或空隙㈣d)之中而被 在一既有圖樣的上方沉積—薄 圖樣並且產生一不均勾qI曰擴大下方 & 一去 十—的表面。生產較小且更密隼封 裝的主動式組件和被動式 更在集封 平挺化作用可用h 用到均句平坦的表面。 十-化作用可用來從晶圓 句平坦的表面。平移除材m產生均 的表面。有磨蝕作用的 來研磨日日圓 A Mg 8B , : 4 X及腐蝕性的化學藥劑會扁 磨期間被加到晶圓的表面 會在研 性作用所組成的組合式機 u的磨韻性作用及腐蝕 形狀,從而產生均勻會移除任何不規律的拓撲 201123327 後知》製造係指將已完成的晶圓裁切或切割成個別晶 粒’並且接著封裝該晶粒,以達結構性支撐及環境隔離的 效果。為切割晶粒,晶圓會沿著該晶圓中被稱為切割道(saw street)或切割線(scribe)的非功能性區域形成刻痕並且折 斷。該晶圓會利用雷射裁切工具或鋸片來進行切割。經過 切割之後’個別晶粒便會被鑲嵌至包含接針或接觸觸墊的 封裝基板’以便和其它系統組件進存互連。被形成在該半 導體晶粒上方的接觸觸墊接著會被連接至該封裝裡面的接 觸觸墊。該等電連接線可利用焊料凸塊、短柱凸塊、導電 膏或是焊線來製成。一囊封劑或是其它模造材料會被沉積 在該封裝的上方,用以提供物理性支撐和電隔離。接著, 該已完成的封裝便會被插入一電氣系統之中並且讓其它系 統組件可取用該半導體裝置的功能。 圖1圖解一電子裝置50,其 印刷電路板(Printed Circuit Board 肷者複數個半導體封裝。電子梦r ’其具有一晶片載體基板或是Deposition PVD) Process, electrolyte ore process and electrodeless electric forging process. Each layer is typically patterned to form a portion of a passive component of the active component, or a portion of the electrical connection between the components. The layers b are sufficient to be patterned using photolithography, which involves depositing a photosensitive material, for example, a photoresist, over the layer to be patterned. A pattern is transferred from the reticle to the photoresist using light. The portion of the photoresist pattern that is exposed to light utilizes the solvent patterned portion. The remaining portion of the photoresist in the middle layer is removed, leaving a patterned layer. The latter, some types of materials will use the technology of electrodeless and electrolyte plating, such as electroless plating, by depositing the material directly first, month 1J, and/or The engraving process is # M d patterning. ... formed in the area or void (d) d) is deposited on top of an existing pattern - a thin pattern and produces a non-uniform hook qI 曰 expands the surface below & a go to ten. The production of smaller and more densely packed active components and passives can be used in the flattening of the flattening surface. Decimalization can be used to flatten the surface from the wafer. The flat removal material m produces a uniform surface. Abrasive action to grind the Japanese yen A Mg 8B , : 4 X and corrosive chemicals will be applied to the surface of the wafer during the flat grinding process, and the rhythmic effect of the combined machine u composed of the research function and Corrosion of the shape, resulting in uniformity, removes any irregular topology. 201123327 "Made" refers to cutting or cutting a completed wafer into individual dies' and then encapsulating the dies for structural support and environment The effect of isolation. To cut the die, the wafer is scored and broken along non-functional areas in the wafer known as saw streets or scribes. The wafer is cut using a laser cutting tool or saw blade. After dicing, the individual dies are embedded into a package substrate containing pins or contact pads for interconnection with other system components. A contact pad formed over the semiconductor die is then connected to the contact pads in the package. The electrical connection wires can be made using solder bumps, short stud bumps, conductive pastes or solder wires. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The completed package is then inserted into an electrical system and the functionality of the semiconductor device is made available to other system components. 1 illustrates an electronic device 50 having a printed circuit board (Printed Circuit Board) having a plurality of semiconductor packages. The electronic dream device has a wafer carrier substrate or

器、記憶體、特定應 ,一 _,-平例I詋’罨千裝置5〇 略介面卡或是能夠被插入在一電腦 。該半導體封裝可能包含··微處理 用積體電路(Application Specific 201123327Device, memory, specific should, a _, - ping case I 詋 '罨 thousand device 5 〇 a little interface card or can be inserted into a computer. The semiconductor package may include an integrated circuit for micro processing (Application Specific 201123327)

Integrated Circuits , ASIC)、邏輯電路、類比電路、射頻電 路、離散式裝置或是其它半導體晶粒或電組件。 在圖1中,印刷電路板52提供一通用基板,用以結構 性支撐及電互連被鑲嵌在該印刷電路板之上的半導體封 裝。多條導體訊號線路54會利用下面製程被形成在印刷電 路板52的一表面上方或是多層裡面:蒸發製程、電解質電 鍍製程、無電極電鍍製程、網印製程或是其它合宜的金屬 沉積製程。訊號線路54會在該等半導體封裝、被鑲嵌的組 件以及其它外部系統組件中的每一者之間提供電通訊。線 路54還會提供連接至每一個該等半導體封裝的電力連接線 及接地連接線。 於某些實施例中’一半導體裝置會有兩個封裝層。第 一層封裝係一種用於以機械方式及電氣方式將該半導體晶 粒附接至一中間載板的技術。第二層封裝則涉及以機械方 式及電氣方式將該中間載板附接至該印刷電路板。於其它 實施例中’一半導體裝置可能僅有該第一層封裝,其中, 該晶粒會以機械方式及電氣方式直接被鑲嵌至該印刷電路 板。 為達解釋目的’圖中在印刷電路板52之上顯示數種類 型的第一層封裝’其包含焊線封裝56以及覆晶58。除此之 外,圖中還顯示被鑲敌在印刷電路板5 2之上的數種類型第 二層封裝,其包含:球柵陣列(Ball Grid Array , BGA)60 ; 凸塊晶片載板(Bump Chip Carrier,BCC)62 ;雙直列封裝 (Dual In-line Package,DIP)64;平台格柵陣列(Land Grid 201123327 y )66,夕晶片模組(Muiti-Chip Module,MCM)68 ; 方形扁平無導線封裝(Quad Flat Non-leaded package,QFN ) 7〇,以及方形扁平封裝72。端視系統需求而定,被配置成 具有第-層封裝樣式和第二層封裝樣式之任何組合以及其 它電子組件的各種半導體封裝的㈣組合皆能夠被連接至 P刷電路板52。於某些實施例中,電子裝置包含單一附 接半導體封裝,而其它實施例則要#多個互連封裝。藉由 在單-基板上方組合—或多個半導體封裝,製造商便^夠 將事先製成的組件併入電子裝置和系統之中。因為該等半 導體封裝包含精密的功能,戶斤以’電子裝置能夠使用較便 宜的組件及有效率的製程來製造。所產生的裝置比較不可 能失效而且製造價格較低廉,從而會降低消費者的成本。 圖23至2C所示的係示範性半導體封裝。@ 2a所示的 係,鑲敌在印刷電路板52之上的雙直列封裝Μ的進一步 細即。半導體晶粒74包含一含有類比電路或數位電路的主 動區’該等類比電路或數位電路會被施行為被形成在該晶 粒裡面的主動式裝置、被動式裝置、導體層以及介電層, 並且會根據該晶粒的電氣設計來進行電互連。舉例來說, 該電路可能包含被形成在半導體晶粒74之主動區裡面的一 或多個電晶體、二極體、電感器、電容器、電阻器以及其 它電路元件。接觸觸墊76係由-或多層的導體材料(例如鋁 (A1)、銅(Cu)、錫(Sn)、_〇、金(Au)或是銀(a_ 成, 並且會被電連接至形成在半導體晶粒74裡面的電路元件。 在雙直列封裝64的組裝期間,半導體晶粒74會利用一金- 12 201123327 广金層或是膠黏材料(例如熱環氧樹赌)被黏著至- & 78 H ^體包含-絕緣封裝材料,例如 或是陶瓷。遙辨道物 印㈣々 以及焊線82會在半導體晶粒74與 )板52之間提供電互連。囊封劑84會 封奘沾μ 士 β I饭"匕積在該 、 藉由防止濕氣和粒子進入該封襞並污毕曰粒 Μ或焊線82而達到環境保護的目的。 ^的粒 :2b所示的係被鎮飯在印刷電路板52之上的凸塊晶 板62的進—步細節。半導體晶粒88會利用底層填充 材料或環氧樹脂膠點材料92被鑲敌在載板9〇的上方。、焊 :94會在接觸觸塾%與%之間提供第一層封裝互連。模 圮化合物或囊封劑100會被沉積在半導體晶粒Μ和焊線料 的上方’ 以為該裝置提供物理性支撐以及電隔離效果。 夕個接觸觸墊102會利用合宜的金屬沉積製程⑽如電解質 電鍍或無電極電鍍)被^成在印刷電路板52的—表面上方Integrated Circuits (ASICs), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components. In Fig. 1, printed circuit board 52 provides a general purpose substrate for structurally supporting and electrically interconnecting a semiconductor package that is mounted over the printed circuit board. A plurality of conductor signal lines 54 are formed over or over a surface of the printed circuit board 52 using an evaporation process, an electrolyte plating process, an electroless plating process, a screen printing process, or other suitable metal deposition process. Signal line 54 provides electrical communication between each of the semiconductor packages, the mounted components, and other external system components. Line 54 also provides power and ground connections to each of the semiconductor packages. In some embodiments, a semiconductor device will have two encapsulation layers. The first layer of packaging is a technique for mechanically and electrically attaching the semiconductor grain to an intermediate carrier. The second layer of packaging involves mechanically and electrically attaching the intermediate carrier to the printed circuit board. In other embodiments, a semiconductor device may only have the first layer package, wherein the die is mechanically and electrically mounted directly to the printed circuit board. For the purpose of explanation, a plurality of types of first layer packages are shown on the printed circuit board 52 in the figure, which include a wire bond package 56 and a flip chip 58. In addition, the figure also shows several types of second layer packages that are embedded on the printed circuit board 52, including: Ball Grid Array (BGA) 60; bump wafer carrier ( Bump Chip Carrier, BCC) 62; Dual In-line Package (DIP) 64; Platform Grid Array (Land Grid 201123327 y) 66, Muti-Chip Module (MCM) 68; Square Flat Quad Flat Non-leaded package (QFN) 7〇, and a quad flat package 72. Depending on the needs of the system, the (four) combination of various semiconductor packages configured to have any combination of the first layer package pattern and the second layer package pattern and other electronic components can be connected to the P brush circuit board 52. In some embodiments, the electronic device includes a single attached semiconductor package, while other embodiments require #multiple interconnect packages. By combining over a single-substrate—or multiple semiconductor packages—the manufacturer can incorporate previously fabricated components into electronic devices and systems. Because these semiconductor packages contain sophisticated functions, the electronic devices can be manufactured using cheaper components and efficient processes. The resulting device is less likely to fail and is less expensive to manufacture, thereby reducing the cost to the consumer. An exemplary semiconductor package shown in Figures 23 through 2C. The system shown by @2a is further detailed in the double in-line package 镶 above the printed circuit board 52. The semiconductor die 74 includes an active region containing an analog circuit or a digital circuit. The analog circuits or digital circuits are acted upon by active devices, passive devices, conductor layers, and dielectric layers formed within the die, and Electrical interconnections are made based on the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit components formed within the active region of the semiconductor die 74. The contact pad 76 is made of - or a plurality of layers of conductor material (for example, aluminum (A1), copper (Cu), tin (Sn), _ 〇, gold (Au) or silver (a _, and will be electrically connected to form Circuit elements within the semiconductor die 74. During assembly of the dual in-line package 64, the semiconductor die 74 is adhered to a gold-plated or adhesive material (e.g., thermal epoxy gambling). & 78 H ^ body comprises - an insulating encapsulating material, such as or ceramic. The remote imprint (4) and the bonding wire 82 provide electrical interconnection between the semiconductor die 74 and the board 52. The encapsulant 84 will Sealing and smearing the ββ I rice " hoarding in this, by preventing moisture and particles from entering the seal and contaminating the granules or wire 82 to achieve environmental protection purposes. ^ Grain: 2b The details of the bumps of the crystal plate 62 on the printed circuit board 52. The semiconductor die 88 is encased in the carrier 9 by using an underfill material or epoxy dot material 92. Top., Solder: 94 will provide a first layer of package interconnect between contact % and %. The mold compound or encapsulant 100 will be deposited on The conductor dies and the soldering material above the 'to provide physical support and electrical isolation for the device. The contact pad 102 will be printed in a suitable metal deposition process (10) such as electrolyte plating or electrodeless plating). Above the surface of the circuit board 52

用以防止氧化。接觸觸& 1〇2會被電連接至印刷電路板W 中的-或多條導體訊號線路54。多個凸塊1〇4會被形成在 凸塊晶片載板62的接觸觸$ 98和印刷電路板52的接觸觸 墊102之間。 在圖2c中,半導體晶粒58會利用一覆晶樣式的第一層 封裝以面朝下的方式被鑲嵌至令間載板1〇6。半導體晶粒 58的主動g⑽含有類比電路或數位電路,該等類比電路 或數位電路會被施行為根據該晶粒的電氣設計所形成的主 動式裝置、被動式裝置、導體層以及介電層。舉例來說, 该電路可能包含被形成在主動㊣i 〇8净里面的—或多個電晶 13 201123327 體、二極體、電感器、電容器、電阻器以及其它電路元件。 半導體晶粒58會經由多個凸塊11 〇以電氣方式及機械方式 被連接至載板106。 球柵陣列60會利用多個凸塊112,以球栅陣列樣式的 第二層封裝被電氣性及機械性連接至印刷電路板5 2。半導 體晶粒5 8會經由凸塊11 〇、訊號線丨14以及凸塊112被電 連接至印刷電路板52中的導體訊號線路54。一模造化合物 或囊封劑116會被沉積在半導體晶粒58和載板1〇6的上 方’用以為該裝置提供物理性支撐以及電隔離效果。該覆 晶半導體裝置會提供一條從半導體晶粒5 8上的主動式裝置 至印刷電路板5 2上的傳導軌的短電傳導路徑,以便縮短訊 號傳播距離、降低電容、並且改善整體電路效能。於另一 實施例中,該半導體晶粒5 8會利用覆晶樣式的第一層封裝 以機械方式及電氣方式直接被連接至印刷電路板52,而沒 有中間載板106。 圖3a至3!所示的係,配合圖i及2a至2c,用以在一 高分子基質合成基板(舉例來說,環氧樹脂模造化合物 (Epoxy Molding Ccmpound,ΕΜ〇基板)的上方形成一整合Used to prevent oxidation. The contact & 1 2 will be electrically connected to - or a plurality of conductor signal lines 54 in the printed circuit board W. A plurality of bumps 1〇4 are formed between the contact pads 98 of the bump wafer carrier 62 and the contact pads 102 of the printed circuit board 52. In Fig. 2c, the semiconductor die 58 is inlaid into the interposer carrier 1〇6 in a face down manner using a flip chip pattern of the first layer package. The active g(10) of the semiconductor die 58 contains an analog circuit or a digital circuit that is acted upon by an active device, a passive device, a conductor layer, and a dielectric layer formed according to the electrical design of the die. For example, the circuit may include - or a plurality of electro-crystals 13 201123327 bodies, diodes, inductors, capacitors, resistors, and other circuit components that are formed in the active positive 〇8 net. The semiconductor die 58 is electrically and mechanically coupled to the carrier 106 via a plurality of bumps 11 。. Ball grid array 60 utilizes a plurality of bumps 112 to be electrically and mechanically coupled to printed circuit board 52 in a second layer package of ball grid array style. The semiconductor die 58 is electrically connected to the conductor signal line 54 in the printed circuit board 52 via the bumps 11 讯, the signal wires 14 and the bumps 112. A molding compound or encapsulant 116 is deposited over the semiconductor die 58 and the carrier 1' to provide physical support and electrical isolation for the device. The flip-chip semiconductor device provides a short electrical conduction path from the active device on the semiconductor die 58 to the via on the printed circuit board 52 to reduce signal propagation distance, reduce capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 is mechanically and electrically connected directly to the printed circuit board 52 using a flip chip pattern of the first layer package without the intermediate carrier 106. 3a to 3!, together with Figures i and 2a to 2c, for forming a polymer matrix synthetic substrate (for example, an epoxy resin molding compound (Epoxy Molding Ccmpound)) Integration

被動元件結構的製程。在圖3中,捃目/ u W Μ Μ 〒’ 一模具(chase mold)120 具有上板120a與下板i20h。 -roa a 〇b 可脫除的膠帶122會被鋪敷The process of passive component structure. In Fig. 3, a mesh/u W Μ Μ 〒 'chase mold 120 has an upper plate 120a and a lower plate i20h. -roa a 〇b removable tape 122 will be applied

至模具120的上板i2〇a。一 研L 非必要的金屬載板124會被鑲 嵌至下板120b。載板124亦可妒成访 _ 刀J月b為矽、聚合物、高分子合 成物、陶瓷、玻璃、玻璃瑷备 衣氧树月曰、氧化鈹、膠帶或是其 它合宜的低成本剛性材料, 用以達到結構性支撐的目的。 14 201123327 在製造過程中會重複使用載板124。或者,載板124亦可能 僅可使用一次,例如,支撐性膠帶或塑膠襯墊。一可脫除 的膠帶126會被鋪敷至載板124。膠帶122與126皆可藉由 機械性壓力或熱壓力來脫除。一層疊膜128會被形成在可 脫除的膠帶126的上方。該膜128可能係金屬(例如,Cu與 A1),或是,具有非必要底漆(priming)以達到和囊封劑【Μ 有較佳黏著效果的其它導電材料。一開放區域13〇會被設 置在上板1 20a與下板120b之間,用以滴塗囊封劑材料。 在圖3b中,一囊封劑材料或模造化合物132會利用壓 縮模造(compressive molding)塗敷機、轉印模造(transfer molding)塗敷機、液體囊封劑模造塗敷機或是其它合宜的塗 敷機在上板120a與下板120b之間被滴塗至區域13〇之中。 囊封劑13 2可能係液體、粒狀、或是粉末形式或是薄片形 式的尚分子合成材料,例如,具有填充劑的環氧樹脂、具 有填充劑的環氧丙烯酸醋或是具有含量從4 〇 %上至9 5 %之 適當填充劑的聚合物。當已固化並且從模具12〇處被移除 之後,囊封劑132便會構成具有層疊膜128的高分子基質 合成基板晶圓或面板,如圖3c中所示。或者,層疊膜 128可此會覆蓋基板134的全部表面。該高分子基質合成基 板134具有高電阻係數、低損失正切(1〇ss tangent)、較 低的介電常數、匹配上面的整合被動元件結構的熱膨脹係 數(Coefficient of Thermal Expansion,CTE)以及良好的導熱 係數。 在圖3d中,膜層128會被圖樣化與蝕刻,用以提供第 15 201123327 一導體層128a至128c,並且用以在高分子基質合成基板134 之中形成具有表面138的凹口或淺凹.洞136。凹洞136視情 況會有一完全覆蓋面板134表面的舨層128。導體層128a 至128c中的個別部分可能為共電或者會被電隔離,端視該 個別半導體晶粒的連接方式而定。 在圖3e中,一非必要的平坦化嗜緣層142會被形成在 高分子基質合成基板134與導體層128的上方,成為由下 面所製成的一或多層:二氧化矽(Si02);氮化矽(Si3N4); 氮氧化矽(SiON);五氧化二鈕(Ta2〇5);三氧化二紹 (A1203);聚亞醯胺;環苯丁烯(BCB);聚苯并噁唑纖維 (PBO) ; WPR ;或是其它合宜的介電材料,尤其是高分子光 敏介電材料。該絕緣層142係在部分移除層疊膜丨28之後 用以平坦化面分子基質合成基板134的表面,以便改善後 續沉積與微影術處理步驟的階梯覆蓋^ (step c〇verage)。或 者,絕緣層142可作為整合被動元件的電容器組件的介電 質,如下面所述。在圖3f至3i中所述的其餘整合被動元件 結構並沒有非必要的平坦化層1 4 2。.. 在圖3f中,一非必要的電阻層146會利用物理氣相沉 積製程、化學氣相沉積製程、或是其它合宜的沉積製程被 形成在導體層128a及基板134的表面138的上方。於其中 一實施例中’電阻層146可能為矽化鈕(TaxSiy)或是其它金 屬石夕化物;TaN;鉻化鎳(NiCr);鈦(Ti);氮化鈦(TiN);鎢 化鈦(TiW) ;·或是電阻係數介於5與1〇〇 〇hm/sq之間有摻雜 的多晶石夕。 16 201123327 一絕緣層或介電層14 8會利用下面方式進行圖樣化而 被形成在電阻層146的上方:物理氣相沉積、化學氣相沉 積、印刷、燒結或是熱氧化。該絕緣層148可能係由下面 所製成的一或多層:Si02 ; Si3N4 ; SiON ; Ta2〇5 ; A1203 ; 聚亞醯胺;環苯丁烯;聚苯并噁唑纖維;或是其它合宜的 介電材料。導體層128a、電阻層146、以及絕緣層148之間 的重疊可能會有其它實施例。舉例來說,電阻層146可能 完全在導體層128a的裡面。 在圖3 g中,一絕緣層或鈍化層15 0會利用下面方式被 形成在導體層128、電阻層146、以及絕緣層148的上方: 旋塗;物理氣相沉積、化學氣相沉積、印刷、燒結、或是 熱氧化。該絕緣層150可能係由下面所製成的一或多層: Si02 ; Si3N4 ; SiON ; Ta205 ; A1203 ;聚亞醯胺;環笨丁 卸’,聚苯并σ惡咬纖維;WPR ;或是具有合宜的絕緣特性及 結構性特性的其它材料,尤其是高分子光敏介電材料。一 部分的絕緣層15 0會被移除,以便露出導體層1 2 8、電阻層 146、以及絕緣層148。 在圖3h中’一導電層1 52會使用物理氣相沉積製程、 化學氣相沉積製程、濺鍍製程、電解質電鍍製程、無電極 電鍍製程、或是其它合宜的金屬沉積製程來進行圖樣化而 被形成在導體層128、絕緣層148與150、以及電阻層146 的上方,用以形成個別的部分或區段152a至152j。導體層 152可能係由下面所製成的一或多層:Al、Cu、Sn、Ni、 Au、Ag、Ti、TiW、或是其它合宜的導電材料。該等個別 17 201123327 的導體層部分152a至152j可 視該個別半導體晶粒的連接方 能為共電或者會被電隔離 式而定。 ,端 一絕緣層或純化層154會利用下面方式被形成在絕緣 層150以及導制152的上方:旋塗;物理氣相沉積、化 學氣相沉積、印刷、燒結 '或是熱氧化。該絕緣層154可 能係由下面所製成的一或多I : s;〇2 ;以撕;“ΟΝ ; Ta205 ; A1203 ;聚亞酿胺;環苯丁稀;聚苯并十坐纖維; 或是具有合宜的絕緣特性及結構性特性的其它材料尤其 是高分子光敏介電材料。一部分的絕緣層154會被移除' 以便露出導體層152。 : 在圖3i中,一非必要的導電層156會使用物理氣相沉 積製程、化學氣相沉積製程、賤鑛製程、電解質電鍛製程、 無電極電鍍製程、或是其它合宜的金屬沉積製程被形成在 導體層152c的上方。導體層156可能係由下面所製成的一 或多層:Ti、TiW、NiV、Cr、CrCu、A1、Cu、Sn、犯、Au、To the upper plate i2〇a of the mold 120. A non-essential metal carrier 124 will be embedded in the lower plate 120b. The carrier plate 124 can also be used as a visitor, a polymer, a polymer composition, a ceramic, a glass, a glass, a enamel, a cerium oxide, a tape, or other suitable low-cost rigid materials. , for the purpose of achieving structural support. 14 201123327 The carrier board 124 is reused during the manufacturing process. Alternatively, carrier plate 124 may be used only once, such as a support tape or a plastic liner. A removable tape 126 is applied to the carrier 124. Both tapes 122 and 126 can be removed by mechanical or thermal stress. A laminate film 128 is formed over the removable tape 126. The film 128 may be metal (e.g., Cu and A1) or may have an optional priming to achieve other conductive materials with a preferred adhesion to the encapsulant. An open area 13〇 is disposed between the upper plate 1 20a and the lower plate 120b for dispensing the encapsulant material. In Figure 3b, an encapsulant material or molding compound 132 may utilize a compressive molding applicator, a transfer molding applicator, a liquid encapsulant molding applicator, or other suitable The coater is dispensed into the region 13A between the upper plate 120a and the lower plate 120b. The encapsulating agent 13 2 may be in the form of a liquid, a granule, or a powder or a thin layer of a synthetic material, for example, an epoxy resin having a filler, an epoxy acrylate vinegar having a filler, or having a content of 4 〇% up to 9.5 % of the polymer of the appropriate filler. When cured and removed from the mold 12, the encapsulant 132 will form a polymeric matrix composite substrate wafer or panel having a laminate film 128, as shown in Figure 3c. Alternatively, the laminated film 128 may cover the entire surface of the substrate 134. The polymer matrix composite substrate 134 has a high resistivity, a low loss tangent, a low dielectric constant, a Coefficient of Thermal Expansion (CTE) matching the above integrated passive component structure, and a good Thermal Conductivity. In FIG. 3d, the film layer 128 is patterned and etched to provide a conductor layer 128a to 128c of 15201123327 and to form a recess or dimple having a surface 138 in the polymer matrix composite substrate 134. Hole 136. The recess 136 will have a layer 128 of the surface that completely covers the surface of the panel 134, as appropriate. Individual portions of conductor layers 128a through 128c may be either co-electrical or electrically isolated depending on how the individual semiconductor dies are connected. In FIG. 3e, an unnecessary planarization germany layer 142 is formed over the polymer matrix composite substrate 134 and the conductor layer 128 to form one or more layers made of cerium oxide (SiO 2 ); Cerium nitride (Si3N4); bismuth oxynitride (SiON); bismuth pentoxide (Ta2〇5); bismuth trioxide (A1203); polymethyleneamine; cyclobutene (BCB); polybenzoxazole Fiber (PBO); WPR; or other suitable dielectric materials, especially polymeric photosensitive dielectric materials. The insulating layer 142 is used to planarize the surface of the surface molecular matrix composite substrate 134 after partial removal of the laminated film stack 28 to improve the step coverage of the subsequent deposition and lithography processing steps. Alternatively, the insulating layer 142 can serve as a dielectric for the capacitor component incorporating the passive component, as described below. The remaining integrated passive component structures described in Figures 3f to 3i do not have an optional planarization layer 142. In Figure 3f, an optional resistive layer 146 is formed over conductor surface 128a and surface 138 of substrate 134 using a physical vapor deposition process, a chemical vapor deposition process, or other suitable deposition process. In one embodiment, the resistive layer 146 may be a bismuth button (TaxSiy) or other metal cerium compound; TaN; nickel chrome (NiCr); titanium (Ti); titanium nitride (TiN); TiW) ; or a polycrystalline spine with a resistivity between 5 and 1 〇〇〇/sq. 16 201123327 An insulating or dielectric layer 148 is patterned over the resistive layer 146 by physical vapor deposition, chemical vapor deposition, printing, sintering or thermal oxidation. The insulating layer 148 may be one or more layers made of: SiO 2 ; Si 3 N 4 ; SiON ; Ta 2 〇 5 ; A1203 ; polytheneamine; cyclobutene; polybenzoxazole fiber; or other suitable Dielectric material. Other embodiments may be present for overlap between conductor layer 128a, resistive layer 146, and insulating layer 148. For example, the resistive layer 146 may be entirely inside the conductor layer 128a. In FIG. 3g, an insulating layer or passivation layer 150 is formed over conductor layer 128, resistive layer 146, and insulating layer 148 in the following manner: spin coating; physical vapor deposition, chemical vapor deposition, printing , sintering, or thermal oxidation. The insulating layer 150 may be one or more layers made of the following: SiO 2 ; Si 3 N 4 ; SiON ; Ta 205 ; A 1203 ; polytheneamine; cyclopentane unloading, polybenzo σ bite fiber; WPR; Other materials suitable for insulating properties and structural properties, especially polymeric photosensitive dielectric materials. A portion of the insulating layer 150 is removed to expose the conductor layer 128, the resistive layer 146, and the insulating layer 148. In Figure 3h, a conductive layer 152 is patterned using a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electrolyte plating process, an electrodeless plating process, or other suitable metal deposition process. Formed over conductor layer 128, insulating layers 148 and 150, and resistive layer 146 to form individual portions or sections 152a through 152j. Conductor layer 152 may be one or more layers made of: Al, Cu, Sn, Ni, Au, Ag, Ti, TiW, or other suitable electrically conductive material. The conductor layer portions 152a to 152j of the individual 17 201123327 can be considered to be either electrically connected or electrically isolated depending on the connection of the individual semiconductor dies. An insulating or purification layer 154 is formed over the insulating layer 150 and the conductive layer 152 by spin coating, physical vapor deposition, chemical vapor deposition, printing, sintering, or thermal oxidation. The insulating layer 154 may be one or more of I: s; 〇2; torn; "ΟΝ; Ta205; A1203; poly-styrene; benzophenone; polybenzo-x-sand fiber; Other materials having suitable insulating properties and structural properties, especially polymeric photosensitive dielectric materials, a portion of the insulating layer 154 will be removed 'to expose the conductor layer 152.: In Figure 3i, an optional conductive layer 156 may be formed over the conductor layer 152c using a physical vapor deposition process, a chemical vapor deposition process, a tantalum process, an electrolyte electrical forging process, an electroless plating process, or other suitable metal deposition process. The conductor layer 156 may One or more layers made of Ti, TiW, NiV, Cr, CrCu, A1, Cu, Sn, guilt, Au,

Ag或疋其匕合宜的導電材料。於其中一實施例中,導體層 15 6係一含有一多層金屬堆疊的凸塊¥層金屬(Under Bump Metallization,UBM),該多層金屬堆疊具有一膠黏層、屏 障層、以及晶種層或濕潤層。該膠黏層會被形成在導體層 152c的上方並且可能為Ti、TiN、Ti;w、八卜或是鉻。 該屏障層會被形成在該膠黏層的上方並且可能為Ni、鈒化 鎳(ΝιV)、鉑(Pt)、鈀(Pd)、TiW、或是銅化鉻(CrCu)。該屏 障層會阻止Cu擴散至該晶粒的主動區之中。該晶種層可能 係Cu、Ni、NiV、Au'或是a卜該晶種層會被形成在該屏 18 201123327 p早層的上方並且充當導體層152c及後續焊料凸塊或其它互 連、’Ό構之間的中間導體層。凸塊下層金屬1 5 6會提供一連 接至導體層152c的低電阻互連線,並且提供—防止焊料擴 散的屏障層以及用於連到焊料濕潤性目的的晶種層。 一導電凸塊材料會利用蒸發製程、電解質電鍍製程、 無電極電鍍製程、丸滴製程或是網印製程被沉積在凸塊下 層金屬156的上方。該凸塊材料可能係A1、Sn、Ni、Au、Ag or a suitable conductive material. In one embodiment, the conductor layer 16 6 is an under bump metallization (UBM) having a multilayer metal stack having an adhesive layer, a barrier layer, and a seed layer. Or wet the layer. The adhesive layer may be formed over the conductor layer 152c and may be Ti, TiN, Ti; w, octa or chromium. The barrier layer may be formed over the adhesive layer and may be Ni, deuterated nickel (ΝιV), platinum (Pt), palladium (Pd), TiW, or chromium chromide (CrCu). The barrier layer prevents Cu from diffusing into the active region of the die. The seed layer may be Cu, Ni, NiV, Au' or a. The seed layer may be formed over the early layer of the screen 18 201123327 p and act as a conductor layer 152c and subsequent solder bumps or other interconnects, 'The middle conductor layer between the structures. The under bump metal 165 provides a low resistance interconnect to the conductor layer 152c and provides a barrier layer that prevents solder from spreading and a seed layer for solder wettability purposes. A conductive bump material is deposited over the under bump metal 156 by an evaporation process, an electrolyte plating process, an electroless plating process, a pellet process, or a screen printing process. The bump material may be A1, Sn, Ni, Au,

Ag、Pb、Bi、CU、焊料以及它們的組合,其會有一非必要 的助熔溶液。舉例來說,該凸塊材料可能是Sn/pb共熔合 金、尚鉛焊料或是無鉛焊料。該凸塊材料會利用合宜的附 著或焊接製程被焊接至凸塊下層金屬丨5 6。於其十一實施例 中,該凸塊材料會藉由將該材料加熱至其熔點以上而被回 焊’用以形成球狀的丸體或凸塊1 5 8。於某些應用中,凸塊 158會被二次回焊,以便改善和凸塊下層金屬156的電接觸 效果。s玄4凸塊也能夠被壓縮焊接至凸塊下層金屬^ 5 6。凸 塊158代表能夠被形成;在凸塊下層金屬156上方的其中一 種類型的互連結構。該互連結構亦能夠使用焊線 '導電膏、 短柱凸塊、微凸塊或是其它電互連線。舉例來說,焊線16〇 會被形成在導體層1 52j·的上方。 圖3 c至3 i中所述的結構會構成複數個被動式電路元件 或整合被動元件162。於其中一實施例中,導體層128a、電 阻層146、絕緣層148以及導體層152a係一金屬絕緣體金 屬(Metal Insulator Metal,,MIM)電容器。導體層 152()與 152d 之間的電阻層14 6係該被動式電路中的一電阻器元件。該 19 201123327 等個別的導體層區段152d至1521會在平面視圖中被捲繞或 盤繞,用以產生或呈現-電感器料的特性。整 件⑹可能具有電容器、電阻器、及/或電感器的任何… 該整合被動元件結構162會提供高頻應用(例如,共振 器、高通渡波器、低通渡波器、帶通遽波器、對稱式高q 值譜振變壓器、匹配網路以及調諸電容器)所需要的=特 徵。該等整合被動元件能夠作為前端無線射頻組件,它們 可能會被設置在天線與收發器之間。該電感器可能係一操 作在高達100十億赫茲處的高Q值巴倫轉換器、變壓器或 是線圈》於某些應用中,會有多個巴倫轉換器被形成在一 相同的基板上,以便允許進行多頻帶操作。舉例來說在 行動電話或是其它全球行動通訊系統(Gl〇bal SystemAg, Pb, Bi, CU, solder, and combinations thereof have an optional fluxing solution. For example, the bump material may be a Sn/pb eutectic alloy, a lead-free solder, or a lead-free solder. The bump material is soldered to the under bump metal iridium 65 using a suitable attachment or soldering process. In its eleventh embodiment, the bump material is reflowed by heating the material above its melting point to form a spherical pellet or bump 158. In some applications, the bumps 158 will be re-welded to improve electrical contact with the under bump metal 156. The s- 4 bumps can also be compression-welded to the underlying metal of the bumps. Bumps 158 represent one of the types of interconnect structures that can be formed over the under bump metal 156. The interconnect structure can also use bond wires 'conductive paste, stud bumps, microbumps, or other electrical interconnects. For example, a bonding wire 16〇 is formed over the conductor layer 1 52j·. The structures described in Figures 3 through 3 i may constitute a plurality of passive circuit elements or integrated passive elements 162. In one embodiment, the conductor layer 128a, the resistive layer 146, the insulating layer 148, and the conductor layer 152a are Metal Insulator Metal (MIM) capacitors. A resistive layer 146 between conductor layers 152() and 152d is a resistor element in the passive circuit. The individual conductor layer segments 152d through 1521, such as 19 201123327, may be wound or coiled in plan view to create or present the characteristics of the inductor material. The entire piece (6) may have any of a capacitor, resistor, and/or inductor... The integrated passive element structure 162 provides high frequency applications (eg, resonators, high pass ferrites, low pass ferrites, band pass choppers, = required for symmetrical high q-spectrum spectral transformers, matching networks, and capacitors. These integrated passive components can be used as front-end radio components, which may be placed between the antenna and the transceiver. The inductor may be a high-Q balun converter, transformer or coil operating at up to 100 terahertz. In some applications, multiple balun converters are formed on the same substrate. To allow multi-band operation. For example, in a mobile phone or other global mobile communication system (Gl〇bal System

Mobile(G S M) communication)的四頻(qUad_band)中會用 到二或多個巴倫轉換器,每一個巴倫轉換器皆專用於該四 頻裝置的一操作頻帶中。一典型的射頻系統在一或多個半 導體封裝中需要用到多個整合被動元件及其它的高頻電 路,用以實施必要的電氣功能。導體層152〗可能係該整合 被動元件結構的一接地平面。 被形成在高分子基質合成基板134上方的整合被動元 件結構162會簡化製造過程並降低或本。一非必要的暫時 性且可重複使用的金屬載板會被用來建構該犧牲性模造化 合物晶圓或面板。該高分子基質合成基板134會提供高電 阻係數、低損失正切、低介電常數、匹配該整合被動元件 結構的熱膨脹係數以及良好的導熱係教。 201123327 圖4a至4e所示的係用以在一高分子基質合成基板或環 氧樹脂模造化合物基板的上方形成一整合被動元件結構的 另一製程。在圖4a中,一模具170具有上板170a與下板 170b。一可脫除的膠帶172會被鋪敷至模具17〇的上板 17〇a。一具有非必要黏著特性之可脫除的膠帶1 74會被鋪敷 至下板170b。膠帶172與174皆可藉由機械性壓力或熱壓 力來脫除。一囊封劑或模造化合物i 76會利用壓縮模造塗 敷板、轉印模造塗敷機、液體囊封劑模造塗敷機或是其它 合宜的塗敷機被滴塗至上板17〇a與下板17〇b之間的開放區 域之中。囊封劑176可能係液體、粒狀、或是粉末形式的 尚分子合成材料,例如,具有填充劑的環氧樹脂具有填 充劑的環氧丙、或是具有含量& 40%上至95%之適 當填充劑的聚合物。當已固化並且從模具m處被移除之 後,囊封劑176便會構成一高分子基質合成基板晶圓或面 板178,如圖4b中所示。該高分子基質合成基板178具有 南電阻係數、低損失正切、較低的介電常數、匹配上面的 整合被動元件結構的熱膨脹係數以及良好的導轨係數。一 非必要的絕㈣刚會被形成在高分子基質合成基板Μ 的上方,成為具有良好絕緣特性的平坦化層。 在圖4c中,一導電層182會使用物理氣相沉積製程、 化學氣相沉積製程、賤鑛製程、電解質 或是其它合宜的金屬沉積製程來進行圖㈣而被 = 之上的介面與絕緣層180的上方,用以形 別#或區段182a^82c。導體層182可能係由下面 21 201123327 所製成的一或多層Two or more balun converters are used in the quad (qUad_band) of Mobile (G S M) communication, and each balun converter is dedicated to an operating band of the quad-band device. A typical RF system requires the use of multiple integrated passive components and other high frequency circuits in one or more semiconductor packages to perform the necessary electrical functions. Conductor layer 152 may be a ground plane for the integrated passive component structure. The integrated passive component structure 162 formed over the polymeric matrix composite substrate 134 simplifies the manufacturing process and reduces or otherwise. A non-essential, temporary and reusable metal carrier will be used to construct the sacrificial molded compound wafer or panel. The polymer matrix composite substrate 134 provides a high resistivity coefficient, a low loss tangent, a low dielectric constant, a coefficient of thermal expansion that matches the structure of the integrated passive component, and a good thermal conductivity teaching. 201123327 Figures 4a through 4e illustrate another process for forming an integrated passive component structure over a polymer matrix composite substrate or epoxy resin molding compound substrate. In Fig. 4a, a mold 170 has an upper plate 170a and a lower plate 170b. A removable tape 172 is applied to the upper plate 17〇a of the mold 17〇. A removable tape 1 74 having non-essential adhesive properties is applied to the lower plate 170b. Both tapes 172 and 174 can be removed by mechanical or hot pressing. An encapsulant or molding compound i 76 is applied to the upper plate 17〇a and the lower plate by a compression molding coating plate, a transfer molding applicator, a liquid encapsulant molding applicator or other suitable applicator. Among the open areas between 17〇b. The encapsulant 176 may be a liquid, granular, or powdered synthetic material, for example, an epoxy resin having a filler having a filler of propylene, or having a content & 40% up to 95% A suitable filler polymer. After curing and removal from the mold m, the encapsulant 176 will form a polymeric matrix composite substrate wafer or panel 178, as shown in Figure 4b. The polymer matrix composite substrate 178 has a south resistivity, a low loss tangent, a low dielectric constant, a coefficient of thermal expansion matching the above integrated passive component structure, and a good rail coefficient. A non-essential (4) material is formed just above the polymer matrix composite substrate , to form a planarization layer with good insulating properties. In Figure 4c, a conductive layer 182 is formed using a physical vapor deposition process, a chemical vapor deposition process, a germanium process, an electrolyte, or other suitable metal deposition process to perform the interface (4) above and above the interface and the insulating layer. Above 180, to identify # or section 182a^82c. The conductor layer 182 may be one or more layers made by 21 201123327 below.

Al、Cu、Sn、Ni、Au、Ag、Ti、丁iw、Al, Cu, Sn, Ni, Au, Ag, Ti, di-iw,

TiN或是其它合宜的導電材料,Ti、T:iN或是乃w係作為膠 黏層或是屏障層。導體層182的該等個別部分可能為共電 或者會被電隔離,端視該個別半導體晶粒的連接方式而定。 一非必要的電阻層184會利用物理氣相沉積製程、化 學氣相沉積製程或是其它合宜的沉積製程被形成在導體層 182a及基板178的介面層_的上方。於其令一實施例甲, 電阻層184可旎為TaxSiy或是其它金屬矽化物;TaN ; ⑽’· Ti ; TiN ; TiW ;或是電阻係款介於5與1〇〇 a — 之間有摻雜的多晶石夕。 一絕緣層或介電層186會利用下面方式進行圖樣化而 被形成在電阻| 184的上方:物理氣相沉積、化學氣相沉 積、印刷、燒結或是熱氧化。該絕緣^ 186可能係由下面 所製成的一或多層:Si02 ; Si3N4 ; Si〇N ; Ta2〇5 ; Ai2〇3 ; 聚亞醯胺;環苯丁烯;$苯并㈣纖維;或是其它合宜的 介電材料。 一絕緣層或鈍化層188會利用^面方式被形成在導體 層182、電阻層184、以及絕緣層186的上方:方走塗;物理 氣相沉積、化學氣相沉帛、印刷、燒結或是熱氧化。該絕 緣層188可能係由下面所製成的一或多層:_2 ; S!〇N ; Ta2Q5 ; A1203 ;聚亞醯胺;環苯了婦;聚苯并嗔嗤 纖維;WPR;或是具有合宜的絕緣特性及結構性特性的其 它材料,尤其是高分子光敏介電材料。一部分的絕緣層188 會被移除,以便露出導體層182、電阻層18 22 201123327 1 8 6 〇 在圖4d中,一導電層 υ霄使用物理軋相沉積製程' 化干軋相沉積製程、濺錄製裎 , "鲅叙程冑解質電鍍製程、無電極 電鍍製程或是其它合宜的全屬 ^ :幻生屬,儿積製程來進行圖樣化而被 形成在導體層18 2、絕緣声1%盘1 〇 〇 緣層186與188、以及電阻層184的 上方’用以形成個別的部分或區段咖至i9〇j。導體層⑽ 可能係由下面所製成的-或多層:A卜Cu、Sn、Nl、Au、TiN or other suitable conductive material, Ti, T:iN or w is used as an adhesive layer or a barrier layer. The individual portions of conductor layer 182 may be either electrically or electrically isolated, depending on how the individual semiconductor die are connected. An optional resistive layer 184 is formed over the conductor layer 182a and the interface layer _ of the substrate 178 using a physical vapor deposition process, a chemical vapor deposition process, or other suitable deposition process. In an embodiment A, the resistive layer 184 can be made of TaxSiy or other metal telluride; TaN; (10) '· Ti; TiN; TiW; or the resistance type is between 5 and 1〇〇a. Doped polycrystalline stone. An insulating or dielectric layer 186 is patterned over the resistors 184 by physical vapor deposition, chemical vapor deposition, printing, sintering, or thermal oxidation. The insulating material 186 may be one or more layers made of SiO 2 , Si 3 N 4 , Si 〇 N , Ta 2 〇 5 , Ai 2 〇 3 , polyimide; cyclobutene; benzo (tetra) fiber; Other suitable dielectric materials. An insulating layer or passivation layer 188 is formed over the conductor layer 182, the resistive layer 184, and the insulating layer 186 by: a planar coating; physical vapor deposition, chemical vapor deposition, printing, sintering, or Thermal oxidation. The insulating layer 188 may be one or more layers made of the following: _2; S!〇N; Ta2Q5; A1203; polyamidamine; benzophenone; polybenzopyrene fiber; WPR; Other materials for insulating properties and structural properties, especially polymeric photosensitive dielectric materials. A portion of the insulating layer 188 is removed to expose the conductor layer 182, the resistive layer 18 22 201123327 1 8 6 〇 In Figure 4d, a conductive layer υ霄 uses a physical roll deposition process to dry the phase deposition process, splash Recording 裎, "鲅 胄 胄 胄 电镀 电镀 电镀 、 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 : : : : : : : : : : : : : : : : : : : : : : : : : : : The % disk 1 rim edges 186 and 188, and the upper portion of the resistive layer 184 are used to form individual portions or sections to i9〇j. The conductor layer (10) may be made of - or a plurality of layers: A, Cu, Sn, Nl, Au,

Ag、Ti、TiW、TiN、4 杲 JL 亡人—甘 疋-、匕5且的導電材料,Ti、TiN、 或是TiW係作為膠黏層或是屏障層。該等個別的導體層部 分im9Gj可能為共電或者會被電隔離,端視該個別半 導體晶粒的連接方式而定。 一絕緣層或鈍化層192會利用下而古.士 π丄丄 宫〜用下面方式破形成在絕緣 層188與導體層190的上方:旋塗;物理氣相沉積化學 氣相沉積、印刷、燒結、或是熱氧化。該絕、㈣192可能 係由下面所製成的一或多層:Si〇2; Si3N4; Si〇N; Μ。/ AU03 ;聚亞醯胺;環苯丁稀;聚苯并。惡哇纖維;wr丨或 疋具有合宜的絕緣特性及結構性特性的其它材料,尤其是 高分子光敏介電材料。-部分的絕緣4 192會被移除以 便露出導體層190。 在圖4e中,一導電層194會使用物理氣相沉㈣程、 化學氣相沉積製程、濺鍍製程、電解質電鍍製程、無電極 電鑛製程、或是其它合宜的金屬沉積製程被形成在導體層 190c的上方。導體層19今可能係由 Ti、TiW、NiV、Cr、CrCu、A1、 下面所製成的一或多層:Ag, Ti, TiW, TiN, 4 杲 JL The conductive material of the dead-Gan--匕5, Ti, TiN, or TiW acts as an adhesive layer or a barrier layer. The individual conductor layer portions im9Gj may be either co-electrically or electrically isolated, depending on how the individual semiconductor dies are connected. An insulating layer or passivation layer 192 may be formed on the insulating layer 188 and the conductor layer 190 by using the following method: spin coating; physical vapor deposition chemical vapor deposition, printing, sintering Or thermal oxidation. The singularity (4) 192 may be one or more layers made of Si2; Si3N4; Si〇N; / AU03; polyamidamine; benzoin; polybenzoic. Wow fiber; wr丨 or 其它 other materials with suitable insulating properties and structural properties, especially polymeric photosensitive dielectric materials. - Part of the insulation 4 192 is removed to expose the conductor layer 190. In FIG. 4e, a conductive layer 194 is formed on the conductor using a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electrolyte plating process, an electrodeless electrodeposition process, or other suitable metal deposition process. Above layer 190c. The conductor layer 19 may now be one or more layers made of Ti, TiW, NiV, Cr, CrCu, A1, and below:

Cu、Sn、Ni、Au、Ag、 23 201123327 或是其它合宜的導電材料。於其中一實施例中,導體層i 94 係一含有一多層金屬堆疊的凸塊下^金屬,該多層金屬堆 疊具有一膠黏層、屏障層、以及晶種層或濕潤層。該膠黏 層會被形成在導體層190c的上方並且可能為Ti、TiN、 TiW、A1、或是Cr。該屏障層會被形成在該膠黏層的上方 r 並且可能為Ni、NiV、Pt、Pd、TiW、或是CrCu。該屏障 層會阻止Cu擴散至該晶粒的主動區之中。該晶種層可能係 Cu、Ni、NiV、Αυ、或是Α1。該晶種層會被形成在該屏障 層的上方並且充當導體層190c及後續焊料凸塊或其它互連 結構之間的中間導體層。凸塊下層金屬194會提供一連接 至導體層190c的低電阻互連線,並且提供一防止焊料擴散 的屏障層以及用於達到焊料濕潤性目的的晶種層。 一導電凸塊材料會利用蒸發製程、電解質電鍍製程、 無電極電鍍製程、丸滴製程、或是網印製程被沉積在凸塊 下層金屬194的上方。該凸塊材料可能係A卜Sn、Ni、Au、 Ag、Pb、Bi、Cu、焊料、以及它們的組合,其會有一非必 要的助熔溶液。舉例來說,該凸塊材料可能是Sn/Pb共炼合 金、高紹焊料、或是無錯焊料。該凸塊材料會利用合宜的 附著或焊接製程被焊接至凸塊下層金屬194。於其中一實施 例中’該凸塊材料會藉由將該材料加熱至其炫點以上而被 回焊’用以形成球狀的丸體或凸塊196。於某些應用中,凸 塊196會被二次回焊,以便改善和凸塊下層金屬丨94的電 接觸效果。該等凸塊也能夠被壓縮焊接至凸塊下層金屬 194。凸塊196代表能夠被形成在凸塊下層金屬194上方的 24 201123327 其中種類型的互連結構。該互連結構亦能夠使用焊線、 導電膏、短柱凸塊、微凸塊、或是其它電互連線。舉例來 說,焊線198會被形成在導體層19〇j的上方。 3 4b至4e中所述的結構會構成複數個被動式電路元件 或整合被動元件200。於其中一實施例中’導體層ma、電 阻層184、絕緣層186、以及導體層19〇&係一金屬絕緣體金 屬電容器。導體層^⑽與190d之間的電阻層184係該被動 式電路中的一f阻器元件。該等個別的導體層區段⑽d至 190i會在平面視圖中被捲繞或盤繞,用以產生或呈現一電 感器所希的特性。整合被動元件2〇〇可能具有電容器、電 阻器、及/或電感器的任何組合。 該整合被動元件結構200會提供高頻應用(例如,共振 器、高通據波器、低通據波器、帶通滤波器、對稱式高、^ 值諧振變虔器、匹配網路以及調諧電容器)所需要的電氣特 徵▲該等整合被動兀件能夠作為前端無線射頻組件,它們 可能會被設置在天線與收發器之間。該電感器可能係一操 作在高達100十億赫兹處的“值巴倫轉換器、變壓号 二線圈。於某些應用中’會有多個巴倫轉換器被形成在 目同的基板上’以便允許進行多頻帶操作。舉例來說, 在行動電話或是其它全球行動通訊系統的四頻中合用到二 或多個巴倫轉換器,每一個巴倫轉換器皆專用於;四頻: 置的一操作頻帶中。一典型的射 、 町耵頻糸統在一或多個半導體 封裝中需要用到多個整合被動 卞汉弁匕的阿頻電路,用 义貫施必要的電氣功能。導體層19〇j可能係該整合被動元 25 201123327 件結構的一接地平面。被形成在高分子基質合成基板178 上方的整合被動元件結構200會簡!化製造過程並降低成 本。忒问分子基質合成基板i 7 8會提供高電阻係數、低損 失正切、低介電常數、匹配該整合被動元件結構的熱膨脹 係數以及良好的導熱係數。 圖5所示的係被形成在一高分子基質合成基板上方的 另一整合被動tl件結構。使用一模具,一高分子基質合成 基板晶圓或面板210會以和圖4&雷同的方式被形成。該高 分子基質合成基板210具有高電阻係數、低損失正切、較 低的介電常數 '匹配該整合被動元件結構的熱膨脹係數、 以及良好的導熱係數。 ,導電層21 2會使用物理氣相沉積製程、化學氣相沉 積製程、濺鍍製程、電解質電鍍製程、無電極電鍍製程、 或是其它合宜的金屬沉積製程來進行圖樣化而被形成在基 板2 1 〇的上方,用以形成個別的部分或區段2 12a至2 12c。 導體層212可能係由下面所製成的一或多層:八卜cu、sn、 …'八心八^丁”丁…〜^评或是其它合宜的導電材料^、 ΤιΝ、或是TiW係作為膠黏層或是屏障層。導體層212的該 等個別部分可能為共電或者會被電隔離,端視該個別半導 體晶粒的連接方式而定。 一絕緣層或鈍化層218會利用下面方式被形成在導體 層212的上方:旋塗;物理氣相沉積、化學氣相沉積、印 刷、燒結、或是熱氧化。該絕緣^ 218彳能係由下面所製 成的一或多層·· Si〇2 ; Si3N4 ; Si〇N ; Ta2〇5 ; Ai2〇3 ’ 聚 26 201123327 亞醯胺,環苯丁烯;聚苯并噁唑纖維;WPR ;或是具有合 宜的絕緣特性及結構性特性的其它材料,尤其是高分子光 敏介電材料。一部分的絕緣I 218會被移除以便露出導 體層212。 導電層220會使用物理氣相沉積製程、化學氣相沉 積製程、濺鍍製程、電解質電鍍製程、無電極電鍍製程或 是其它合宜的金屬沉積製程來進行圖樣化而被形成在絕緣 層21 8的上方。導體層22〇係一膠黏層或屏障層,例如, T!、TiW、TiN、TaxSiy以及TaN。導體層22〇的操作如同 該整合被動元件結構的電阻層。 一導電層222會使用物理氣相沉積製程、化學氣相沉 積製程、濺鍍製程、電丨解質電鍍製程、無電極電鍍製程或 是其它合宜的金屬沉積製程來進行圖樣化而被形成在導體 層220的上方,用以形成個別的部分或區段222a至222j。 導體層222可能係由下面所製成的一或多層:A卜&、&、 、Au、Ag或是其它合宜的導電材料。該等個別的導體層 部分222a至222j為共電或者會被電隔離,端視該個別半導 體晶粒的連接方式而定。 一絕緣層或鈍化層224會利用下面方式被形成在絕緣 層218以及導體層220;與222的上方:旋塗;物理氣相沉 積、.化學氣相沉積、印刷、燒結或是熱氧化。該絕緣層224 可能係由下面所製成的一或多層:si〇2 ; Si3N4 ; si〇N ;Cu, Sn, Ni, Au, Ag, 23 201123327 or other suitable conductive materials. In one embodiment, the conductor layer i 94 is a bump metal comprising a plurality of metal stacks having an adhesive layer, a barrier layer, and a seed layer or a wetting layer. The adhesive layer may be formed over the conductor layer 190c and may be Ti, TiN, TiW, Al, or Cr. The barrier layer will be formed over the adhesive layer and may be Ni, NiV, Pt, Pd, TiW, or CrCu. The barrier layer prevents Cu from diffusing into the active region of the die. The seed layer may be Cu, Ni, NiV, yttrium or yttrium 1. The seed layer will be formed over the barrier layer and serve as an intermediate conductor layer between the conductor layer 190c and subsequent solder bumps or other interconnect structures. The under bump metal 194 provides a low resistance interconnect to the conductor layer 190c and provides a barrier layer to prevent solder diffusion and a seed layer for solder wettability purposes. A conductive bump material is deposited over the under bump metal 194 by an evaporation process, an electrolyte plating process, an electroless plating process, a pellet process, or a screen printing process. The bump material may be A, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, which may have an optional fluxing solution. For example, the bump material may be a Sn/Pb co-alloy, a high-salt solder, or a fault-free solder. The bump material is soldered to the under bump metal 194 using a suitable adhesion or soldering process. In one of the embodiments, the bump material is reflowed by heating the material above its glare to form a spherical pellet or bump 196. In some applications, the bumps 196 are re-welded to improve the electrical contact with the underlying metal iridium 94. The bumps can also be compression welded to the under bump metal 194. Bumps 196 represent 24 201123327 of the type interconnect structure that can be formed over the under bump metal 194. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other electrical interconnects. For example, bond wire 198 will be formed over conductor layer 19〇j. The structure described in 3 4b to 4e may constitute a plurality of passive circuit elements or integrated passive elements 200. In one embodiment, the conductor layer ma, the resist layer 184, the insulating layer 186, and the conductor layer 19A are a metal insulator metal capacitor. The resistive layer 184 between the conductor layers (10) and 190d is a f-resistor element in the passive circuit. The individual conductor layer segments (10) d to 190i are wound or coiled in plan view to create or present the characteristics of an inductor. The integrated passive component 2 may have any combination of capacitors, resistors, and/or inductors. The integrated passive component structure 200 provides high frequency applications (eg, resonators, high pass data filters, low pass data filters, band pass filters, symmetric high, constant value resonant converters, matching networks, and tuning capacitors) Required electrical characteristics ▲ These integrated passive components can be used as front-end wireless RF components, which may be placed between the antenna and the transceiver. The inductor may be a "value balun converter, transformer two coils operating at up to 100 terahertz. In some applications, multiple balun converters are formed on the same substrate. 'To allow for multi-band operation. For example, two or more balun converters are used in the quad-band of a mobile phone or other global mobile communication system, and each balun converter is dedicated to; quad-band: In an operating frequency band, a typical RF, 耵 耵 糸 system requires the use of multiple integrated passive 卞 弁匕 阿 阿 在一 在一 在一 在一 , , , , , , 在一 在一 导体 在一 导体 在一 在一 在一 在一 在一 在一 在一 在一 在一 在一 在一 在一 在一19〇j may be a ground plane for integrating the passive element 25 201123327. The integrated passive component structure 200 formed above the polymer matrix composite substrate 178 will simplify the manufacturing process and reduce the cost. i 7 8 will provide high resistivity, low loss tangent, low dielectric constant, thermal expansion coefficient matching the structure of the integrated passive component, and good thermal conductivity. The system shown in Figure 5 is formed. Another integrated passive tl structure above a polymer matrix composite substrate. Using a mold, a polymer matrix composite substrate wafer or panel 210 is formed in the same manner as in Figure 4 & 210 has a high resistivity, a low loss tangent, a low dielectric constant 'matching the thermal expansion coefficient of the integrated passive component structure, and a good thermal conductivity. The conductive layer 21 2 uses a physical vapor deposition process, chemical vapor deposition. A process, a sputtering process, an electrolyte plating process, an electrodeless plating process, or other suitable metal deposition process for patterning is formed over the substrate 2 1 , to form individual portions or sections 2 12a to 2 12c. The conductor layer 212 may be one or more layers made of the following: 八卜cu, sn, ... '八心八^丁丁丁丁丁~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TiW acts as an adhesive layer or a barrier layer. The individual portions of conductor layer 212 may be either electrically or electrically isolated, depending on how the individual semiconductor dies are connected. An insulating or passivation layer 218 is formed over the conductor layer 212 by spin coating; physical vapor deposition, chemical vapor deposition, printing, sintering, or thermal oxidation. The insulating layer 218 can be one or more layers made of Si2N2; Si3N4; Si〇N; Ta2〇5; Ai2〇3' poly 26 201123327 melamine, cyclobutene; polyphenylene And oxazole fiber; WPR; or other materials having suitable insulating properties and structural properties, especially polymeric photosensitive dielectric materials. A portion of the insulation I 218 will be removed to expose the conductor layer 212. The conductive layer 220 is patterned on the insulating layer 218 by using a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electrolyte plating process, an electrodeless plating process, or other suitable metal deposition process. Above. The conductor layer 22 is an adhesive layer or a barrier layer such as T!, TiW, TiN, TaxSiy, and TaN. The conductor layer 22 is operated as the resistive layer of the integrated passive component structure. A conductive layer 222 is formed on the conductor by using a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electroplating process, an electroless plating process, or other suitable metal deposition process for patterning. Above layer 220 is used to form individual portions or sections 222a through 222j. The conductor layer 222 may be one or more layers made of: A &&, , Au, Ag or other suitable electrically conductive material. The individual conductor layer portions 222a through 222j are either electrically or electrically isolated, depending on how the individual semiconductor die are connected. An insulating or passivation layer 224 is formed over insulating layer 218 and conductor layer 220; above 222: spin coating; physical vapor deposition, chemical vapor deposition, printing, sintering, or thermal oxidation. The insulating layer 224 may be one or more layers made of: si〇2; Si3N4; si〇N;

Ta205 ; A1203 ;聚亞醯胺;環苯丁烯;聚苯并嗔嗤纖維; WPR ;或是具有合宜的絕緣特性及結構性特性的其它材 27 201123327 料尤其疋同分子光敏介電材料。一部分的絕緣層224會 被移除,以便露出導體層222。 一導電層226會使用物理氣相沉積製程、化學氣相沉 積製程、濺鍍製程、電解質電鍍製程、無電極電鍍製程或 是其它合宜的金屬沉積製程被形成在導體層222c的上方。 導體層226可能係由下面所製成的一或多層:a卜&、^、 Ni、Αιι、Ag或是其它合宜的導電材料。於其中一實施例中, 導體層226係一含有一多層金屬堆鸯的凸塊下層金屬,該 多層金屬堆疊具有一膠黏層、屏障層以及晶種層或濕潤 層。該膠黏層會被形成在導體層222c的上方並且可能為 Ti、TiN、TiW、A1或是Cr。該屏障層會被形成在該膠黏層 的上方並且可能為Ni、NiV、Pt、Pd、TiW或是CrCu。該 屏障層會阻止Cu擴散至該晶粒的主動區之中。該晶種層可 能係Cu、Ni、Ni V、Au或是A1。該晶種層會被形成在該屏 障層的上方並且充當導體層222c及後續焊料凸塊或其它互 連結構之間的中間導體層。凸塊下層金屬226會提供一連 接至導體層222c的低電阻互連線,並且提供一防止焊料擴 散的屏障層以及用於達到焊料濕潤性目的的晶種層。 一導電凸塊材料會利用蒸發製程、電解質電鍍製程、 無電極電鍍製程、丸滴製程或是網印製程被沉積在凸塊下 層金屬226的上方。該凸塊材料可能係a卜Sn、Ni、Au、 Ag ' Pb、Bi、Cu、焊料以及它們的組合,其會有一非必要 的助熔溶液。舉例來說,該凸塊材料,可能是Sn/pb共熔合 金、高鉛焊料或是無鉛焊料。該凸塊材料會利用合宜的附 28 201123327 著或焊接製程被焊接至丨Λ塊下層金屬2 2 6。於其中一實施例 中,該凸塊材料會藉由將該材料加熱至其熔點以上而被回 焊’用以形成球狀的九體或凸塊228。於某些應用中,凸塊 228會被二次回焊,以便改善和凸塊下層金屬226的電接觸 效果。該等凸塊也能夠棘壓縮焊接至導體層226。凸塊228 代表能夠被形成在凸塊下層金屬226上方的其中一種類型 的互連結構。該互連結構亦能夠使用焊線、導電膏、短柱 凸塊、微凸塊或是其它;電互連線。舉例來說,焊線2 3 〇會 被形成在導體層222j的上方。 圖5中所述的結構會構成複數個被動式電路元件或整 合被動元件232。於其中一實施例中,導體層212a、絕緣層 218、導體層220、以及導體層222a係一金屬絕緣體金屬電 容器。該等個別的導體簷區段222d至222i會在平面視圖中 被捲繞或盤繞,用以產生或呈現一電感器所希的特性。整 合被動元件232可能具有電容器、電阻器及/或電感器的任 何組合。 該整合被動元件結構232會提供高頻應用(例如,共振 器、高通濾波器、低通濾波器、帶通濾波器、對稱式高q 值諧振變壓器、匹配網路、以及調諧電容器)所需要的電氣 特徵。該等整合被動元件能夠作為前端無線射頻组件,它 們可能會被設置在天線與收發器之間。該電感器可能係一 刼作在高達100十億赫茲處的高Q值巴倫轉換器、變壓器、 或是線圈。於某些應用沖,會有多個巴倫轉換器被形成在 一相同的基板上,以便允許進行多頻帶操作。舉例來說, 29 201123327 在行動電話或是其它全球行動通訊系統的四頻令會用到二 或多個巴倫轉換器,每一個巴倫轉換器皆專用於該四頻裝 置的一操作頻帶中。一典型的射頻系統在一或多個半導體 封裝中需要用到多個整合被動元件及其它的高頻電路用 以實施必要的電氣功能。導體層222j可能係該整合被動元 件結構的一接地平面。 被形成在高分子基質合成基板210上方的整合被動元 件結構232會簡化製造過程並降低成本。該高分子基質合 成基板210會提供高電阻係數、低損夹正切、低介電常數、 匹配該整合被動元件結構的熱膨脹係數、以及良好的導熱 係數。 … 圖6所示的係由導體層222所構成的一示範性電感器 242 〇 ° 圖7a至7ri所示的係,配合圖i及2a至2c,用以在一 南分子基質合成基板的上方形成一電感器的製程。在圖& 中,一模具250具有上板25〇a與下板25〇b。一非必要的可 脫除的㈣252會被鋪敷至模纟25〇的上板2池。—非必 要的金屬載板254會被鑲嵌至下板繼。載板亦可能 為石夕聚合物、尚分子合成物、陶竟、玻璃 '玻璃環氧樹 月曰氧化鈹 '膠帶或是其它合宜的低成本剛性材料,用以 達到結構性支樓的目的。在製造過程中會重複使用載板 254。一可脫除的黏著性膠帶256會被鋪敷至載板254。膠 帶252與256皆可藉由機械性壓力或熱壓力來脫除。 在圖7b中 囊封劑材料或模造化合物260會利用壓 30 201123327 縮模造塗敷機、轉印模造塗敷機、液體囊封劑模造塗敷機 或疋其它合宜的塗敷機被滴塗至上板250a與下板25〇b之間 的開放區域之中❶囊封劑260可能係液體、粒狀或是粉末 形式的尚分子合成材料,例如,具有填充劑的環氧樹脂、 具有填充劑的環氧丙烯(酸酯或是具有含量從40%上至95% 之適當填充劑的聚合物。當已固化並且從模具25〇處被移 除之後,囊封劑260便會構成一高分子基質合成基板晶圓 或面板264,例如,環氧樹脂模造化合物基板,如圖乃中 所示。 圖7d所不的係用以形成該高分子基質合成基板的另一 種方法模具266具有上板266a與下板266b。一具有膠黏 層之非必要的可脫除的膠帶268會被鋪敷至模具的上 板266a具有膠黏層之非必要的可脫除的膠帶27〇會被 鋪敷至下板266b。膠帶268與27G皆可藉由機械性壓力或 熱壓力來脫除。-囊封劑材料或模造化合⑯272會利用壓 縮if & 土敷拽、轉印模造塗敷機、液體囊封劑模造塗敷機 或是其它合宜的塗敷機被滴塗至上板266a與下板266b之間 的開放區域之令。壸科流丨 、 囊封劑272可能係液體、粒狀或是粉末Ta205 ; A1203 ; Polyimine; Cyclobutene; Polybenzopyrene fibers; WPR; or other materials with suitable insulating properties and structural properties. 27 201123327 It is especially suitable for molecular photosensitive dielectric materials. A portion of the insulating layer 224 is removed to expose the conductor layer 222. A conductive layer 226 is formed over the conductor layer 222c using a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electrolyte plating process, an electrodeless plating process, or other suitable metal deposition process. Conductor layer 226 may be one or more layers made of: a &, ^, Ni, Αιι, Ag or other suitable electrically conductive material. In one embodiment, the conductor layer 226 is a bump underlayer metal comprising a plurality of metal stacks having an adhesive layer, a barrier layer, and a seed layer or a wetting layer. The adhesive layer may be formed over the conductor layer 222c and may be Ti, TiN, TiW, Al or Cr. The barrier layer will be formed over the adhesive layer and may be Ni, NiV, Pt, Pd, TiW or CrCu. The barrier layer prevents Cu from diffusing into the active region of the die. The seed layer may be Cu, Ni, Ni V, Au or A1. The seed layer will be formed over the barrier layer and serve as an intermediate conductor layer between conductor layer 222c and subsequent solder bumps or other interconnect structures. The under bump metal 226 provides a low resistance interconnect connected to the conductor layer 222c and provides a barrier layer that prevents solder from spreading and a seed layer for solder wettability purposes. A conductive bump material is deposited over the under bump metal 226 by an evaporation process, an electrolyte plating process, an electroless plating process, a pellet process, or a screen printing process. The bump material may be a Sn, Ni, Au, Ag 'Pb, Bi, Cu, solder, and combinations thereof, which may have an optional fluxing solution. For example, the bump material may be a Sn/pb eutectic alloy, a high lead solder or a lead-free solder. The bump material is soldered to the underlying metal of the crucible 2 2 6 using a suitable 28 201123327 or soldering process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form a spherical nine-body or bump 228. In some applications, the bumps 228 will be re-welded to improve electrical contact with the under bump metal 226. The bumps can also be compression welded to the conductor layer 226. Bumps 228 represent one type of interconnect structure that can be formed over bump underlying metal 226. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other; electrical interconnects. For example, a bonding wire 2 3 〇 will be formed over the conductor layer 222j. The structure illustrated in Figure 5 may constitute a plurality of passive circuit elements or integrated passive elements 232. In one embodiment, the conductor layer 212a, the insulating layer 218, the conductor layer 220, and the conductor layer 222a are metal insulator metal capacitors. The individual conductor turns 222d through 222i are wound or coiled in plan view to create or exhibit the characteristics of an inductor. The integrated passive component 232 may have any combination of capacitors, resistors, and/or inductors. The integrated passive component structure 232 provides the high frequency applications (eg, resonators, high pass filters, low pass filters, band pass filters, symmetric high q resonant transformers, matching networks, and tuning capacitors) Electrical characteristics. These integrated passive components can be used as front-end radio frequency components, which may be placed between the antenna and the transceiver. The inductor may be a high-Q balun converter, transformer, or coil at up to 100 terahertz. For some applications, multiple balun converters are formed on the same substrate to allow for multi-band operation. For example, 29 201123327 A quad-frequency command in a mobile phone or other global mobile communication system would use two or more balun converters, each of which is dedicated to an operating band of the quad-band device. A typical RF system requires the use of multiple integrated passive components and other high frequency circuitry in one or more semiconductor packages to perform the necessary electrical functions. Conductor layer 222j may be a ground plane that integrates the passive element structure. The integrated passive component structure 232 formed over the polymeric matrix composite substrate 210 simplifies the manufacturing process and reduces cost. The polymer matrix composite substrate 210 provides high resistivity, low loss tangent, low dielectric constant, thermal expansion coefficient matching the integrated passive component structure, and good thermal conductivity. An exemplary inductor 242 formed by the conductor layer 222 shown in FIG. 6 is shown in FIGS. 7a to 7ri, together with FIGS. i and 2a to 2c, for use on a south molecular matrix composite substrate. A process for forming an inductor. In the figure & a mold 250 has an upper plate 25A and a lower plate 25A. An optional (4) 252 that can be removed is applied to the upper plate 2 of the mold 25 。. - An optional metal carrier 254 will be inlaid into the lower plate. The carrier board may also be a stone building polymer, a molecular composite, a ceramic, a glass 'glass epoxy tree yttrium oxide yttrium' tape or other suitable low-cost rigid materials for the purpose of a structural branch. The carrier plate 254 is reused during the manufacturing process. A removable adhesive tape 256 is applied to the carrier 254. Both tapes 252 and 256 can be removed by mechanical or thermal stress. In Figure 7b, the encapsulant material or molding compound 260 is applied dropwise onto the top by a press 30 201123327 shrink coater, transfer molding applicator, liquid encapsulant applicator or other suitable applicator. The enamel encapsulant 260 in the open region between the plate 250a and the lower plate 25〇b may be a liquid, granular or powder form of a molecular synthetic material, for example, an epoxy resin having a filler, and a filler. Epoxy propylene (an acid ester or a polymer having a suitable filler content of from 40% up to 95%. After curing and being removed from the mold 25, the encapsulant 260 constitutes a polymeric matrix A composite substrate wafer or panel 264, for example, an epoxy resin molded compound substrate, as shown in the drawings. Figure 7d shows another method for forming the polymer matrix composite substrate. The mold 266 has an upper plate 266a and Lower plate 266b. A non-essential removable tape 268 having an adhesive layer is applied to the upper plate 266a of the mold. The optional removable tape 27 having an adhesive layer is applied to the lower portion. Plate 266b. Both tapes 268 and 27G can be mechanically Pressure or hot pressure to remove. - Encapsulant material or molded compound 16272 will utilize compressed if & soil coating, transfer molding applicator, liquid encapsulant molding machine or other suitable coating machine The method of being applied to the open area between the upper plate 266a and the lower plate 266b. The sputum sputum and the encapsulant 272 may be liquid, granular or powder.

形式的面分子合成好粗 I 成材抖’例如,具有填充劑的環氧樹脂、 具有填充劑的環氧兩、p 氧丙烯酸酯、或是具有含量從40%上至95% 之適當填充劑的聚合物。杂 田已固化並且從模具266處被移 除之後,囊封劑2 7 9 a .9?4 , 2便會構成一高分子基質合成基板晶圓 或面板274,例士口 知The form of the surface molecule is synthesized as a crude material. For example, an epoxy resin with a filler, an epoxy resin with a filler, a p oxy acrylate, or a suitable filler having a content of from 40% up to 95%. polymer. After the field has solidified and is removed from the mold 266, the encapsulant 2 7 9 a.9?4, 2 will form a polymer matrix composite substrate wafer or panel 274.

衣乳树脂模造化合物基板,如圖化中 所示。高分子基質入& I β T 。成基板264與274各具有高電阻係數、 31 201123327 低損失正切、較低的介電常數、匹‘上面的整合被動元件 結構的熱膨脹係數以及良好的導熱係數。 在圖7f中,一毯覆絕緣層或鈍化層276會利用下面方 式被形成在高分子基質合成基板274(或高分子基質合成基 板264)頂表面的上方:旋塗;物理氣相沉積、化學氣相沉 積、印刷、燒結、或是熱氧化。該絕緣層276可能係由下 面所製成的一或多層:Si02 ; Si3N4 ; SiON ; Ta2〇5 ; Ai2〇3 ; 來亞醯胺,環苯丁烯;聚苯并噁唑纖維;wpR ;或是具有 合宜的絕緣特性及結構性特性的其它材料。或者,該絕緣 層276會利用該囊封劑與脫除膠帶之間的相互作用在模造 過程期間被形成在模具250或266中。 圖7g所示的係在高分子基質合成基板274頂表面的上 方形成該毯覆絕緣層276的一替代實施例。此外,一毯覆 絕緣層㈣化| 278會利用下面方式被形成在和該頂表面 反向的问分子基質合成基板274的底表面上方··旋塗;層 疊;物理氣相沉積、化學氣相沉積、印刷、燒結或是熱‘ 化。該絕緣層278可能係由下面所製成的一或多層:⑽;The latex resin molding compound substrate is shown in the figure. The polymer matrix is incorporated into & I β T . The substrates 264 and 274 each have a high resistivity, 31 201123327 low loss tangent, a lower dielectric constant, a thermal expansion coefficient of the integrated passive component structure above, and a good thermal conductivity. In FIG. 7f, a blanket insulating layer or passivation layer 276 is formed over the top surface of the polymer matrix composite substrate 274 (or polymer matrix composite substrate 264) in the following manner: spin coating; physical vapor deposition, chemistry Vapor deposition, printing, sintering, or thermal oxidation. The insulating layer 276 may be one or more layers made of: SiO 2 ; Si 3 N 4 ; SiON ; Ta 2 〇 5 ; Ai 2 〇 3 ; linoleamide, cyclobutene; polybenzoxazole fibers; wpR; It is another material that has suitable insulating properties and structural properties. Alternatively, the insulating layer 276 can be formed in the mold 250 or 266 during the molding process using the interaction between the encapsulant and the release tape. An alternative embodiment of the blanket insulating layer 276 is formed over the top surface of the polymeric matrix composite substrate 274 as shown in Figure 7g. In addition, a blanket insulating layer (Si) 278 is formed on the bottom surface of the molecular matrix composite substrate 274 opposite to the top surface by the following method: spin coating; lamination; physical vapor deposition, chemical vapor phase Deposition, printing, sintering or heat. The insulating layer 278 may be one or more layers made of: (10);

Si3N4,SiON,Ta2〇5 ; A1203 ;聚亞醯胺;環苯丁婦;聚 苯并㈣纖維;WPR;或是具有合宜的絕緣特性及結構性 特性的其它材料。或者,絕緣層276肖278會利用該囊封 劑與脫除膠帶之間的相互作用在模造過程期間被形成在模 具250或266巾。該等絕緣層與μ可能係具有相同 或不同厚度的相同材料。 , 圖几所示的係利用下面方式在高分子基質合成基板 32 201123327 274頂表面的上方形成該毯覆絕緣層276並且在絕緣層a% 的上方形成一毯覆絕緣層或鈍化層28〇的實施例:旋塗; 層疊,物理氣相沉積、化學氣相沉積、印刷、燒結或是熱 氧化。該絕緣層280可能係由下面所製成的一或多層:Si3N4, SiON, Ta2〇5; A1203; polyamidamine; cycline; polybenzo (tetra) fiber; WPR; or other material having suitable insulating properties and structural properties. Alternatively, the insulating layer 276 can be formed into the mold 250 or 266 during the molding process using the interaction between the encapsulant and the release tape. The insulating layers and μ may be the same material having the same or different thicknesses. The pattern shown in the figure is formed by forming the blanket insulating layer 276 over the top surface of the polymer matrix composite substrate 32 201123327 274 and forming a blanket insulating layer or passivation layer 28 over the insulating layer a%. Examples: spin coating; lamination, physical vapor deposition, chemical vapor deposition, printing, sintering or thermal oxidation. The insulating layer 280 may be one or more layers made of:

Si02 ; Si3N4 ; SiON ; Ta205 ; A1203 ;聚亞醯胺;環苯丁 烯’聚笨并噁唑纖維;或是具有合宜的絕緣特性及結構性 特性的其它材料。絕緣層276與278會在模造過程期間被 形成在模具250或266中。 圖7ι所示的係在高分子基質合成基板274的頂表面與 底表面任一者上方都沒有絕緣層的實施例。 接續圖7f的實施例,一導電層282會使用物理氣相沉 積製程、化學氣相沉積犁程、濺鍍製程、電解質電鍍製程、 無電極電鍍製程或是其它合宜的金屬沉積製程來進行圖樣 化雨被形成在絕緣層276的上方,用以形成個別的部分或 區段282a至282c,如圖7j中所示。導體層282可能係由 下面所製成的一或多層;:Al、Cu、Sn、Ni、Au、Ag、Ti、 TiN、TiW或是其它合宜的導電材料,Ti、TiN或是Tiw係 作為膠黏層或是屏障層。該等個別的導體層部分282a至 282c為共電或者會被電隔離’端視該個別半導體晶粒的連 接方式而定。圖7j中所示的導體層282雖然係在絕緣層276 的上方;不過,該導體層同樣會被形成在圖7§至71之實施 例中的絕緣層及/或高分子基質合成基板274的上方。 在圖7k中,一絕緣層或鈍化層284會利用下面方式被 形成在絕緣層276與導體層282的上方··旋塗;物理氣相 33 201123327 沉積、化學氣相沉積、印刷、燒結咸是熱氧化。該絕緣層 284可能係由下面所製成的一或多層:si〇2 ; Si3N4 ; Si〇N ; Ta205 ; A1203 ;聚亞醯胺;環苯丁烯;聚苯并噁唑纖維; WPR ’或疋具有合宜的絕緣特性及結構性特性的其它材 料,尤其是高分子光敏介電材料。該絕緣層284部分用於 平坦化高分子基質合成基板274的表面,以便部分改善後 續沉積與微影術處理步驟的階梯覆蓋率。 在圖71中,一導電層286會使用物理氣相沉積製程、 化學氣相沉積製程、濺鍍製程、電解質電鍍製程、無電極 電鍍製程或是其它合宜的金屬沉積製程來進行圖樣化而被 形成在導體層282a至282c及絕緣層284的上方。導體層 286可能係由下面所製成的一或多層:a卜Cu、sn ' Ni、 Au ' Ag、Ti、TiW或是其它合宜的導電材料。導體層286 係一膠黏層或屏障層。該膠黏層可能為Ti、TiN、Tiw、A1 或是Cr。該屏障層可能為Ni、NiV、Pt、Pd、TiW或是CrCu。 該屏障層會阻止Cu擴散至該晶粒的k動區之中β 導電層288會使用物理氣相沉積製程、化學氣相沉 積製程、濺鑛製程、電解質電艘製程、無電極電鍍製程或 是其它合宜的金屬沉積製程被形成在導體層286的上方, 用以形成個別的部分或區段288a至288j。導體層288可能 係由下面所製成的一或多層:A1、CU、Sn、犯、Au、Ag或 是其它合宜的導電材料。該等個別的導體層部分288a至 288j為共電或者會被電隔離,端視該個別半導體晶粒的連 接方式而定。 34 201123327 在圖7m中,一絕緣層或純化層292會利用下面方式被 形成在絕緣層284以及v導體層288的上方:旋塗、物理氣 相沉積、化學氣相沉積、印刷'燒結或是熱氧化。該絕緣 層292可能係由下面所製成的一或多層:Si〇2; Si3N4 ; SiON ; Ta205 ; A1203 ;聚亞醯胺;環苯丁烯;聚苯并鳴。坐 纖維,WPR ;或是具有合宜的絕緣特性及結構性特性的其 匕材料,尤其是高分子光敏介電材料。一部分的絕緣層292 會被移除,以便露出導體層288c與288j。 在圖7n中’一導電層294會被形成在導體層288c與 28 8j的上方成為一含有一多層金屬堆疊的凸塊下層金屬, °亥^層金屬堆疊具有一膠黏層、屏障層、以及晶種層或濕 潤層。該膠黏層可能為Ti、TiN、Tiw、A1或是Cr。該屏 障層可能為Ni、NiV、Pt、Pd、TiW或是CrCu。該屏障層 會阻止Cu擴散至該晶粒的主動區之中。該晶種層可能係 Cu Ni NiV、AU或是a卜該晶種層會被形成在該屏障層 的上方並且充當導體層288c與288』及後續焊料凸塊或其它 互連結構之間的中間導鉴層。凸塊下層金>1 294會提供一Si02; Si3N4; SiON; Ta205; A1203; polymethyleneamine; cyclobutene-polyphenylene oxazole fiber; or other material having suitable insulating properties and structural properties. Insulation layers 276 and 278 are formed in mold 250 or 266 during the molding process. Fig. 7I shows an embodiment in which there is no insulating layer on either of the top surface and the bottom surface of the polymer matrix composite substrate 274. Following the embodiment of Figure 7f, a conductive layer 282 is patterned using a physical vapor deposition process, a chemical vapor deposition ploughing process, a sputtering process, an electrolyte plating process, an electroless plating process, or other suitable metal deposition process. Rain is formed over the insulating layer 276 to form individual portions or sections 282a through 282c, as shown in Figure 7j. The conductor layer 282 may be one or more layers made of the following: Al, Cu, Sn, Ni, Au, Ag, Ti, TiN, TiW or other suitable conductive materials, Ti, TiN or Tiw as a glue Sticky layer or barrier layer. The individual conductor layer portions 282a through 282c are either electrically or electrically isolated depending on how the individual semiconductor dies are connected. The conductor layer 282 shown in FIG. 7j is above the insulating layer 276; however, the conductor layer is also formed in the insulating layer and/or the polymer matrix composite substrate 274 in the embodiment of FIGS. 7 to 71. Above. In FIG. 7k, an insulating layer or passivation layer 284 is formed over the insulating layer 276 and the conductor layer 282 by the following method: spin coating; physical gas phase 33 201123327 deposition, chemical vapor deposition, printing, sintering Thermal oxidation. The insulating layer 284 may be one or more layers made of: si〇2; Si3N4; Si〇N; Ta205; A1203; polyamidamine; cyclobutene; polybenzoxazole fiber; WPR 'or其它 Other materials with suitable insulating properties and structural properties, especially polymeric photosensitive dielectric materials. The insulating layer 284 portion is used to planarize the surface of the polymer matrix composite substrate 274 to partially improve the step coverage of the subsequent deposition and lithography processing steps. In FIG. 71, a conductive layer 286 is formed by patterning using a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electrolyte plating process, an electrodeless plating process, or other suitable metal deposition process. Above the conductor layers 282a to 282c and the insulating layer 284. Conductor layer 286 may be one or more layers made of: a, Cu, sn'Ni, Au'Ag, Ti, TiW or other suitable electrically conductive material. Conductor layer 286 is an adhesive or barrier layer. The adhesive layer may be Ti, TiN, Tiw, A1 or Cr. The barrier layer may be Ni, NiV, Pt, Pd, TiW or CrCu. The barrier layer prevents Cu from diffusing into the k-movement region of the die. The beta conductive layer 288 may use a physical vapor deposition process, a chemical vapor deposition process, a sputtering process, an electrolyte battery process, an electrodeless plating process, or Other suitable metal deposition processes are formed over conductor layer 286 to form individual portions or sections 288a through 288j. Conductor layer 288 may be one or more layers made of: A1, CU, Sn, sin, Au, Ag or other suitable electrically conductive material. The individual conductor layer portions 288a through 288j are either electrically or electrically isolated, depending on how the individual semiconductor die are connected. 34 201123327 In Figure 7m, an insulating or purification layer 292 is formed over insulating layer 284 and v conductor layer 288 by spin coating, physical vapor deposition, chemical vapor deposition, printing 'sintering, or Thermal oxidation. The insulating layer 292 may be one or more layers made of: Si〇2; Si3N4; SiON; Ta205; A1203; polymethyleneamine; cyclobutene; polybenzofluorene. Spherical fiber, WPR; or bismuth material with suitable insulating properties and structural properties, especially polymeric photosensitive dielectric materials. A portion of the insulating layer 292 will be removed to expose the conductor layers 288c and 288j. In FIG. 7n, a conductive layer 294 is formed over the conductor layers 288c and 28 8j to form a bump underlayer metal having a multilayer metal stack, and the metal stack has an adhesive layer, a barrier layer, And a seed layer or a wetting layer. The adhesive layer may be Ti, TiN, Tiw, A1 or Cr. The barrier layer may be Ni, NiV, Pt, Pd, TiW or CrCu. The barrier layer prevents Cu from diffusing into the active region of the die. The seed layer may be Cu Ni NiV, AU or a. The seed layer will be formed over the barrier layer and act as intermediate between the conductor layers 288c and 288 and subsequent solder bumps or other interconnect structures. Guide layer. Bump under layer gold > 1 294 will provide a

電凸塊材料會利用蒸發製程 288c與28 8j的低電阻互連線,並且提供一防 屏障層以及用於達到焊料濕潤性目的的晶種 •層294會重疊絕緣層292中的穿孔的邊緣。The electrical bump material utilizes low resistance interconnects of evaporation processes 288c and 28 8j and provides a barrier layer and seed for solder wettability. Layer 294 overlaps the edges of the vias in insulating layer 292.

、電解質電鍍製程、 丸滴製程或是網印製程被沉積在凸塊下 。該凸塊材料可能係A卜Sn、Ni、Au、 焊料:以及它們的組合,其會有一非必要 35 201123327 的助熔溶液。舉例來說,該凸塊材料可能是Sn/Pb共熔合 金、高鉛焊料或是無鉛焊料。該凸塊材料會利用合宜的附 著或焊接製程被焊接至凸塊下層金屬2 9 4。於其中一實施例 令’該凸塊材料會藉由將該材料加熱至其熔點以上而被回 焊’用以形成球狀的丸體或凸塊296。於某些應用中,凸塊 296會被二次回焊,以便改善和凸塊下層金屬294的電接觸 效果。該專凸塊也能夠被壓縮焊接至凸塊下層金屬294»凸 塊296代表能夠被形成在凸塊下層金屬294上方的其中一 種類型的互連結構。該互連結構亦能夠使用焊線 '導電膏、 短柱凸塊、微凸塊或是其它電互連線。 圖7a至7η中所述的結構,更明確地說,導體層288e 至288i,會構成一被形成在高分子基..質合成基板274上方 的電感器。該等個別的導體層區段288e至288i會在平面視 圖"皮捲、身或盤繞’用以產生或呈現一電感器所希的 性。。該,感器結構2886至288丨會提供高頻應用(例如, 振器、高通濾波器、低通濾波器、帶通濾波器、對稱式古 值譜振變壓器、匹配網路以及調譜電容器)所需要的電: 徵。該電感器能夠作為前端無線射頻組件,它們可 設置在天線與收發器之間。該電感$可能係一操作:言 100十億赫兹處的高Q值巴倫轉換器、變壓器或是-某些應用中,會有多個巴倫轉換器被形成在-相同的A 上,以便允許進行多頻帶操作。舉例來說,在行動電ζ 是其它,球行動通訊系統的四頻中會^:用到二或多個巴二 換器’每-個巴倫轉換器皆專用於該四頻裝置的一操: 36 201123327 帶中。一典型的射頻系統在一或多個半導體封裝中需要用 到多個電感器及其它的南頻電路,用以實施必要的電氣功 能。 被形成在尚分子基質合成基板274上方的電感器結構 288e至288i會簡化製造過程並降低成本。一非必要的暫時 性且可重複使用的金屬載板會被用來建構該犧牲性模造化 合物晶圓或面板。該高分子基質合成基板274會提供高電 阻係數、低損失正切、低介電常數、匹配該整合被動元件 結構的熱膨脹係數以及良好的導熱係數。 雖然本文已經詳細解釋過本發明的一或多個實施例; 不過’熟練的技術人士便會日月自,^該些實施例進行 修正與改變,其並不會脫離後面中請專利範圍中所提出的 本發明的範疇。 【圖式簡單說明】 圖1所示的係—印刷電路板,在其表面上鑲嵌著不同 類型的封裝; 圖2a至2c所示的係被鑲嵌至該印刷電路板的代表性半 導體封裝的進一步細節; ,圖3a至3i所示的係用以在一高分子基質合成基板的上 方形成一整合被動元件的製程; 圖至4e所不的係用以在一高分子基質合成基板的— 平坦表面上方形成一整合被動元件的另一製程; 圖5所不的係在—平坦表面的上方已形成—整合被動 37 201123327 元件 及 方形 的另一高分子基質合成基板; 圖6所示的係一被捲繞用以形成一電感器的導體;以 圖7a至7n所示的係用以在一高分子基質合成基板的上 成一電感器的製程。 【主要元件符號說明】 50 電子裝置 52 印刷電路板(PCB) 54 線路 56 焊線封裝 58 半導體晶粒 60 球柵陣列(BGA) 62 凸塊晶片載板(BCC) 64 雙直列封裝(DIP) 66 平台格柵陣列(LGA) 68 多晶片模組(MCM) 70 方形扁平無導線封裝(QFN) 72 方形扁平封裝 74 半導體晶粒 76 接觸觸墊 78 中間載板 80 導體導線 ' 82 焊線 38 201123327 84 囊封劑 88 半導體晶粒 90 載板 92 膠黏材料 94 焊線 96 接觸觸墊 98 接觸觸墊 100 模造化合物或囊封劑 102 接觸觸墊 104 凸塊 106 中間載板 ^ 108 主動區 110 凸塊 112 凸塊 114 訊號線 116 模造化合物或囊封劑 120 模具 120a 上板 120b 下板 122 膠帶 124 金屬載板 126 膠帶 128 層疊膜 128a-c 第一導體層 39 201123327 130 開放區域 132 囊封劑 134 高分子基質合成基板晶圓或面板 136 凹洞 13 8 表面 142 絕緣層 146 電阻層 148 絕緣層或介電層 15 0 絕緣層或純化層 152 導電層 152a-j 導體層 15 4 絕緣層或純化層 156 導體層 158 球狀的丸體或凸塊 160 焊線 162 整合被動元件結構 170 模具 170a 上板 170b 下板 ! 172 可脫除的膠帶 174 可脫除的膠帶 176 囊封劑或模造化合物. 178 高分子基質合成基板晶圓或面板 180 絕緣層 40 201123327 182 導電層 182a-c 個別的部分或區段 184 電阻層 186 絕緣層或介電層 188 絕緣層或純化層 190 導電層 190a-j 個別的部分或區段 192 絕緣層或純化層 194 導電層 196 凸塊 198 焊線 200 被動式電路元件或整合被動元件 210 高分子基質合成基板晶圓或面板 212 導電層 212a-c 個別的部分或區段 218 絕緣層或鈍化層 220 導體層 222 導電層 222a-j 個別的部分或區段 224 絕緣層或純化層 226 導電層 228 凸塊 230 焊線 232 被動式電路元件或整合被動元件 41 201123327 242 示範性電感器 250 模具 250a 上板 250b 下板 252 可脫除的膠帶 254 載板 256 可脫除的膠帶 260 囊封劑材料或模造化合物 264 高分子基質合成基板晶圓或面板 266 模具 266a 上板 266b 下板 268 可脫除的膠帶 270 可脫除的膠帶 272 囊封劑 274 高分子基質合成基板晶圓或面板 276 毯覆絕緣層或鈍化層 278 絕緣層 280 毯覆絕緣層或鈍化層 282 導電層 282a-c 個別的部分或區段 284 絕緣層或鈍化層 286 導電層 288 導電層 42 201123327 288a-j 個別的部分或區段 292 絕緣層或鈍化層 294 凸塊下層金屬或導體層 296 球狀的丸體或凸塊 43The electrolyte plating process, the pill drop process, or the screen printing process is deposited under the bumps. The bump material may be A, Sn, Ni, Au, solder: and combinations thereof, which may have a non-essential 35 201123327 flux solution. For example, the bump material may be a Sn/Pb eutectic alloy, a high lead solder, or a lead-free solder. The bump material is soldered to the under bump metal 2 94 using a suitable attachment or soldering process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form a spherical pellet or bump 296. In some applications, the bumps 296 are re-welded to improve electrical contact with the under bump metal 294. The special bumps can also be compression welded to the under bump metal 294» bumps 296 representing one of the types of interconnect structures that can be formed over the under bump metal 294. The interconnect structure can also use bond wires 'conductive paste, stud bumps, microbumps, or other electrical interconnects. The structures described in Figs. 7a to 7n, more specifically, the conductor layers 288e to 288i constitute an inductor formed over the polymer substrate. The individual conductor layer segments 288e through 288i will be used to create or present an inductor in a plan view. . The sensor structure 2886 to 288 will provide high frequency applications (eg, vibrators, high pass filters, low pass filters, bandpass filters, symmetric ground-valued spectral transformers, matching networks, and tonalization capacitors). The electricity required: levy. The inductor can be used as a front-end radio frequency component that can be placed between the antenna and the transceiver. The inductor $ may be an operation: a high-Q balun converter at 100 billion Hz, a transformer or - in some applications, multiple balun converters are formed on the same A, so that Multi-band operation is allowed. For example, in the mobile power system is the other, the four-frequency of the ball mobile communication system will be: two or more two-bar converters are used. Each of the balun converters is dedicated to the operation of the four-frequency device: 36 201123327 in the band. A typical RF system requires the use of multiple inductors and other south frequency circuits in one or more semiconductor packages to implement the necessary electrical functions. The inductor structures 288e to 288i formed over the molecular matrix composite substrate 274 simplifies the manufacturing process and reduces cost. A non-essential, temporary and reusable metal carrier will be used to construct the sacrificial molded compound wafer or panel. The polymeric matrix composite substrate 274 provides a high resistivity, low loss tangent, low dielectric constant, thermal expansion coefficient matching the integrated passive component structure, and good thermal conductivity. Although one or more embodiments of the present invention have been explained in detail herein, the skilled artisan will be able to make modifications and changes to the embodiments, which will not be removed from the scope of the patent application. The proposed scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a printed circuit board having different types of packages embedded in its surface; Figures 2a to 2c are further embedded in a representative semiconductor package of the printed circuit board. Details; Figures 3a to 3i are used to form a process for integrating a passive component over a polymer matrix composite substrate; Figures 4e are for a flat surface of a polymer matrix composite substrate. Another process for forming a passive component is formed above; Figure 5 is formed above the flat surface - integrated passive 37 201123327 component and square polymer matrix synthetic substrate; Figure 6 is The conductors for forming an inductor are wound; the processes shown in Figures 7a to 7n are used to form an inductor on a polymer matrix composite substrate. [Main component symbol description] 50 Electronic device 52 Printed circuit board (PCB) 54 Line 56 Wire bond package 58 Semiconductor die 60 Ball grid array (BGA) 62 Bump wafer carrier (BCC) 64 Dual in-line package (DIP) 66 Platform Grid Array (LGA) 68 Multi-Chip Module (MCM) 70 Square Flat Conductorless Package (QFN) 72 Square Flat Package 74 Semiconductor Die 76 Contact Pad 78 Intermediate Carrier 80 Conductor Conductor ' 82 Bond Wire 38 201123327 84 Encapsulant 88 Semiconductor die 90 Carrier 92 Adhesive material 94 Bond wire 96 Contact pad 98 Contact pad 100 Molding compound or encapsulant 102 Contact pad 104 Bump 106 Intermediate carrier ^ 108 Active area 110 Bump 112 bump 114 signal line 116 molding compound or encapsulant 120 mold 120a upper plate 120b lower plate 122 tape 124 metal carrier plate 126 tape 128 laminated film 128a-c first conductor layer 39 201123327 130 open region 132 encapsulant 134 high Molecular matrix synthesis substrate wafer or panel 136 cavity 13 8 surface 142 insulation layer 146 resistance layer 148 insulation layer or dielectric layer 15 0 insulation layer or purification layer 152 Electrical layer 152a-j Conductor layer 15 4 Insulating layer or purification layer 156 Conductor layer 158 Spherical pellet or bump 160 Bond wire 162 Integrated passive component structure 170 Mold 170a Upper plate 170b Lower plate! 172 Removable tape 174 Removable Tape 176 Encapsulant or Molding Compound. 178 Polymer Matrix Composite Substrate Wafer or Panel 180 Insulation Layer 201123327 182 Conductive Layer 182a-c Individual Portions or Sections 184 Resistive Layer 186 Insulation or Dielectric Layer 188 Insulation or Purification Layer 190 Conductive Layer 190a-j Individual Portions or Sections 192 Insulation or Purification Layer 194 Conductive Layer 196 Bumps 198 Bonding Wire 200 Passive Circuit Components or Integrated Passive Components 210 Polymer Matrix Composite Substrate Wafers or Panel 212 Conductive Layers 212a-c Individual Portions or Sections 218 Insulation or Passivation Layer 220 Conductor Layer 222 Conductive Layers 222a-j Individual Portions or Sections 224 Insulation or Purification Layers 226 Conductive Layers 228 Bumps 230 Bond Wires 232 Passive circuit component or integrated passive component 41 201123327 242 Exemplary Inductor 250 Mold 250a Upper Plate 250b Lower Plate 252 Removable Tape 254 carrier 256 removable tape 260 encapsulant material or molding compound 264 polymer matrix synthetic substrate wafer or panel 266 mold 266a upper plate 266b lower plate 268 removable tape 270 removable tape 272 encapsulation Agent 274 polymer matrix composite substrate wafer or panel 276 blanket insulation or passivation layer 278 insulation layer 280 blanket insulation or passivation layer 282 conductive layer 282a-c individual portion or section 284 insulation layer or passivation layer 286 conductive Layer 288 Conductive Layer 42 201123327 288a-j Individual Portions or Sections 292 Insulation or Passivation Layer 294 Bump Lower Metal or Conductor Layer 296 Spherical Pellets or Bumps 43

Claims (1)

201123327 七、申請專利範圍: '其包括: ·* 一表面上方形成一第一 ι_ 一種製造半導體裝置的方法 形成一高分子基質合成基板; 在該高分子基質合成基板的胃 絕緣層; , 一导體層 ; 在該第一絕緣層與第一道_ Ρ 層; 層 層 層 導體層的上方形成一第二絕緣 在該第二絕緣層與第一導妒 等體層的上方形成一第二導體 在該第二絕緣層與第-莫辦 乐一導體層的上方形成一第三絕緣 移除S玄第二絕緣層的一 八 ·« aA ^ J $分,用以露出該第二導體 以及 在該第二導體層的上方形成_凸塊。 2.如申請專利範圍第i項的方法,其中,形成該高分子 基質合成基板包含: 提供一模具,其具有第一平板與第二平板; 在該第一平板的上方鋪敷一第一可脫除層; 在該第二平板的上方形成一金屬載板; 在该金屬載板的上方鋪敷一第二可脫除層;以及 在該模具的該等第一平板與第二平板之間沉積一囊封 劑材料。 3·如申請專利範圍第1項的方法,其進一步包含在該第 201123327 一導體層與第二導體層之間形成一第三導體層。 4. 如申請專利範圍第1項的方法,其進一步包含在該高 分子基質合成基板的一第二表面的上方形成一第四絕緣 層,該第二表面和該高分子基質合成基板的該第一表面反 向。 5. 如申請專利範圍第1項的方法,其進一步包含在形成 該第一導體層之前先在該第一絕緣層的上方形成一第四絕 緣層。 6. 如申請專利範圍第1項的方法,其中,該第二導體層 會被捲繞,用以呈現電感性特性。 7. —種製造半導體裝置的方法,其包括: 形成一模造基板; ’ 在該模造基板的上方形成一第一導體層; 在該模造基板與第一導體層的上方形成一第一絕緣 層; 在該第一絕緣層與第一導體層的上方形成一第二導體 層; 在該第一絕緣層與第二導體層的上方形成一第二絕緣 層;以及 在該第二導體層的上方形成一互連結構。 8. 如申請專利範圍第7項的方法,其中,形成該模造基 板包含: 提供一模具,其具有第一平板與第二平板; 在該第一平板的上方鋪敷一第一可脫除層; 45 i 201123327 右言夕笛—丁 / —平板的上方鋪敷一第二可脫除層;以及 劑材模具的該等第一平板與第二平板之間沉積-囊封 9. 如申請專利範圍第7項的方法,其進一步包含在該第 體層與第二導體層之間形成一第三導體層。 10. 如申請專利範圍第7項的方法,其進一步包含: 在形成該第一導體層之前先在該模造基板的一第一表 面的上方形成一第三絕緣層;以及\ 在。亥模基板的一第二表面的上方形成一第四絕緣 層’該第二表面和該模造基板的該第一表面反向。 1 1 ·如申印專利範圍第7項的方法其進一步包含: 在形成該第一導體層之前先在該模造基板的一第一表 面的上方形成一第三絕緣層;以及 在該第三絕緣層的上方形成—第四絕緣層。 12. 如申請專利範圍第7項的方绛其中,該第二導體 層會被捲繞’用以呈現電感性特性。 13. 如申請專利範圍第7項的方法,其中,該互連結構 包含一凸塊或焊線。 14. 一種製造半導體裝置的方法,其包括: 形成一高分子基質合成基板; 在該高分子基質合成基板的上方形成一電感器;以及 在該電感器的上方形成一互連結構。 15. 如申請專利範圍第14項的方^,其中,形成該高分 子基質合成基板包含: 46 201123327 提供-模具,其具有第一平板與第二平板; 在該第-平板的上方鋪敷一第—可脫除層; 在及第一平板的上方鋪敷一第二可脫除層;以及 在該模具的該等第一平板與第二平板之間沉積一囊封 劑材料。 16.如申請專利範圍第14項的方法,其進一步包含: 在該高分子基質合成基板的上方形成一第一導體層; 在該高分子基質合成基板與第一導體層的上方形成一 第一絕緣層; 在該第一絕緣層與第一導體層的上方形成一第二導體 層; 在該第一絕緣層與第二導體層的上方形成一第二絕緣 層;以及 i i 在該第二導體層的上方形成該互連結構。 1 7·如申請專利範圍第16項的方法,其進一步包含在該 第一導體層與第二導體層之間形成一第三導體層。 18.如申請專利範圍第1 6項的方法,其進一步包含: 在形成該第一導體層之前先在該高分子基質合成基板 的—第一表面的上方形成一第三絕緣層;以及 在該高分子基質合成基板的一第二表面的上方形成一 第四絕緣層,該第二表丨面和該高分子基質合成基板的該第 —表面反向。 19 ·如申請專利範圍第1 6項的方法,其進一步包含: 在形成該第一導體層之前先在該高分子基質合成基板 47 201123327 的一第一表面的上方形成一第三絕緣層;以及 在該第三絕緣層的上方形成一第四絕緣層。 20. —種半導體裝置,其包括·· 一高分子基質合成基板; :: -第-導體層’其會被形成在該高分子基質合成基板 的上方; 一第一絕緣層,其會被形成在該高分子基質合成基板 與第一導體層的上方; 一第二導體層,其會被形成在該第一絕緣層與第一導 體層的上方; 一第二絕緣層,其會被形成在該第一絕緣層與第二導 體層的上方;以及 一互連結構’其會被形成在該第二導體層的上方。 21. 如申請專利範圍第2〇項的半導體裝置,其進一步包 含一被形成在該第一導體層與第二導體層之間的第三導體 層。 22. 如申請專利範圍第20項的半導體裝置,其進一步包 含: 一第三絕緣層’其會被形成在該高分子基質合成基板 的一第一表面的上方;以及 一第四絕緣層,其會被形成在該高分子基質合成基板 的一第一表面的上方,該第二表面和該高分子基質合成基 板的該第一表面反向。 23·如申請專利範圍第2〇項的半導體裝置,其進一步包 48 201123327 ' 含: 一第三絕緣層,其會被形成在該高分子基質合成基板 的一第一表面的上方;以及 一第四絕緣層,其會被形成在該第三絕緣層的上方。 24. 如申請專利範圍第20項的半導體裝置,其中,該第 二導體層會被捲繞,用以呈現電感性特性。 25. 如申請專利範圍第20項的半導體裝置,其中,該互 連結構包含一凸塊或焊線。 八、圖式: (如次頁) 49201123327 VII. Patent application scope: 'It includes: ·* forming a first ι_ on the surface of a surface to form a polymer matrix composite substrate; forming a gastric insulating layer on the polymer matrix composite substrate; a second insulating layer is formed on the first insulating layer and the first conductive layer and the first conductive layer; and a second conductive layer is formed on the second insulating layer and the first conductive layer or the like Forming a third insulation on the second insulating layer and the first layer of the first layer of the second insulating layer to remove the second insulating layer of the second insulating layer to expose the second conductor and A bump is formed above the two conductor layers. 2. The method of claim i, wherein the forming the polymer matrix synthetic substrate comprises: providing a mold having a first plate and a second plate; and depositing a first layer over the first plate a removal layer; a metal carrier plate formed over the second plate; a second releasable layer disposed over the metal carrier; and between the first plate and the second plate of the mold An encapsulant material is deposited. 3. The method of claim 1, further comprising forming a third conductor layer between the conductor layer and the second conductor layer of the 201123327. 4. The method of claim 1, further comprising forming a fourth insulating layer over the second surface of the polymer matrix composite substrate, the second surface and the polymer substrate A surface is reversed. 5. The method of claim 1, further comprising forming a fourth insulating layer over the first insulating layer prior to forming the first conductor layer. 6. The method of claim 1, wherein the second conductor layer is wound to exhibit inductive characteristics. 7. A method of fabricating a semiconductor device, comprising: forming a molded substrate; 'forming a first conductive layer over the molded substrate; forming a first insulating layer over the molded substrate and the first conductive layer; Forming a second conductor layer over the first insulating layer and the first conductor layer; forming a second insulating layer over the first insulating layer and the second conductor layer; and forming a second conductive layer An interconnect structure. 8. The method of claim 7, wherein the forming the molded substrate comprises: providing a mold having a first flat plate and a second flat plate; and depositing a first removable layer above the first flat plate 45 i 201123327 右 夕 笛 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — The method of clause 7, further comprising forming a third conductor layer between the first body layer and the second conductor layer. 10. The method of claim 7, further comprising: forming a third insulating layer over a first surface of the molded substrate prior to forming the first conductive layer; A fourth insulating layer is formed over a second surface of the embossed substrate. The second surface is opposite to the first surface of the molded substrate. The method of claim 7, further comprising: forming a third insulating layer over a first surface of the molded substrate before forming the first conductive layer; and the third insulating layer A fourth insulating layer is formed over the layer. 12. The method of claim 7, wherein the second conductor layer is wound 'for presenting inductive characteristics. 13. The method of claim 7, wherein the interconnect structure comprises a bump or wire bond. 14. A method of fabricating a semiconductor device, comprising: forming a polymer matrix composite substrate; forming an inductor over the polymer matrix composite substrate; and forming an interconnect structure over the inductor. 15. The method of claim 14, wherein the forming of the polymer matrix synthetic substrate comprises: 46 201123327 providing a mold having a first plate and a second plate; and laying a layer above the first plate a first releasable layer; a second releasable layer disposed over the first plate; and an encapsulant material deposited between the first and second plates of the mold. 16. The method of claim 14, further comprising: forming a first conductor layer over the polymer matrix composite substrate; forming a first layer over the polymer matrix composite substrate and the first conductor layer An insulating layer; a second conductor layer is formed over the first insulating layer and the first conductor layer; a second insulating layer is formed over the first insulating layer and the second conductor layer; and ii is in the second conductor The interconnect structure is formed over the layer. The method of claim 16, further comprising forming a third conductor layer between the first conductor layer and the second conductor layer. 18. The method of claim 16, further comprising: forming a third insulating layer over the first surface of the polymer matrix composite substrate prior to forming the first conductor layer; A fourth insulating layer is formed over a second surface of the polymer matrix composite substrate, and the second surface is opposite to the first surface of the polymer matrix composite substrate. 19. The method of claim 16, further comprising: forming a third insulating layer over a first surface of the polymer matrix composite substrate 47 201123327 prior to forming the first conductor layer; A fourth insulating layer is formed over the third insulating layer. 20. A semiconductor device comprising: a polymer matrix synthetic substrate; :: a first conductor layer 'which will be formed over the polymer matrix composite substrate; a first insulating layer that will be formed Above the polymer matrix composite substrate and the first conductor layer; a second conductor layer formed over the first insulating layer and the first conductor layer; a second insulating layer, which is formed in Above the first insulating layer and the second conductor layer; and an interconnect structure 'which will be formed over the second conductor layer. 21. The semiconductor device of claim 2, further comprising a third conductor layer formed between the first conductor layer and the second conductor layer. 22. The semiconductor device of claim 20, further comprising: a third insulating layer 'which is formed over a first surface of the polymer matrix composite substrate; and a fourth insulating layer It is formed above a first surface of the polymer matrix composite substrate, and the second surface is opposite to the first surface of the polymer matrix composite substrate. 23. The semiconductor device of claim 2, further comprising: 48 201123327' comprising: a third insulating layer formed over a first surface of the polymer matrix composite substrate; and a first A fourth insulating layer that is formed over the third insulating layer. 24. The semiconductor device of claim 20, wherein the second conductor layer is wound to exhibit inductive characteristics. 25. The semiconductor device of claim 20, wherein the interconnect structure comprises a bump or a bonding wire. Eight, the pattern: (such as the next page) 49
TW099135418A 2009-11-19 2010-10-18 Semiconductor device and method of forming an inductor on polymer matrix composite substrate TWI498983B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/621,738 US8158510B2 (en) 2009-11-19 2009-11-19 Semiconductor device and method of forming IPD on molded substrate
US12/726,880 US8791006B2 (en) 2005-10-29 2010-03-18 Semiconductor device and method of forming an inductor on polymer matrix composite substrate

Publications (2)

Publication Number Publication Date
TW201123327A true TW201123327A (en) 2011-07-01
TWI498983B TWI498983B (en) 2015-09-01

Family

ID=44130330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099135418A TWI498983B (en) 2009-11-19 2010-10-18 Semiconductor device and method of forming an inductor on polymer matrix composite substrate

Country Status (3)

Country Link
CN (1) CN102097301B (en)
SG (3) SG171520A1 (en)
TW (1) TWI498983B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492346B (en) * 2012-06-29 2015-07-11 台灣積體電路製造股份有限公司 Package with passive devices and method of forming the same
TWI804652B (en) * 2018-07-12 2023-06-11 日商上村工業股份有限公司 Conductive bumps and electroless platinum plating bath

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103876432B (en) * 2012-12-12 2016-09-14 深圳市神达实业有限公司 Solar mobile phone charging sheath
US10971446B2 (en) * 2018-11-30 2021-04-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749489B2 (en) * 1992-10-29 1998-05-13 京セラ株式会社 Circuit board
US6362012B1 (en) * 2001-03-05 2002-03-26 Taiwan Semiconductor Manufacturing Company Structure of merged vertical capacitor inside spiral conductor for RF and mixed-signal applications
JP2003101222A (en) * 2001-09-21 2003-04-04 Sony Corp Thin film circuit substrate unit and its manufacturing method
US8409970B2 (en) * 2005-10-29 2013-04-02 Stats Chippac, Ltd. Semiconductor device and method of making integrated passive devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492346B (en) * 2012-06-29 2015-07-11 台灣積體電路製造股份有限公司 Package with passive devices and method of forming the same
US9831200B2 (en) 2012-06-29 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Package with passive devices and method of forming the same
US10373923B2 (en) 2012-06-29 2019-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Package with passive devices and method of forming the same
US10700032B2 (en) 2012-06-29 2020-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. Package with passive devices and method of forming the same
US11004818B2 (en) 2012-06-29 2021-05-11 Taiwan Semiconductor Manufacturing Company, Ltd. Package with passive devices and method of forming the same
TWI804652B (en) * 2018-07-12 2023-06-11 日商上村工業股份有限公司 Conductive bumps and electroless platinum plating bath

Also Published As

Publication number Publication date
CN102097301B (en) 2016-06-15
SG10201503210QA (en) 2015-06-29
SG171520A1 (en) 2011-06-29
SG189780A1 (en) 2013-05-31
CN102097301A (en) 2011-06-15
TWI498983B (en) 2015-09-01

Similar Documents

Publication Publication Date Title
TWI567866B (en) Semiconductor device and method of forming an interconnect structure with tsv using encapsulant for structural support
US8072059B2 (en) Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die
US10083916B2 (en) Semiconductor device and method of forming stress relief layer between die and interconnect structure
TWI571186B (en) Semiconductor device and method of forming integrated passive device
CN102163561B (en) Semiconducter device and use same vehicle form the method for TMV and TSV in WLCSP
TWI520267B (en) Semiconductor device and method of forming ipd in fan-out wafer level chip scale package
US7935570B2 (en) Semiconductor device and method of embedding integrated passive devices into the package electrically interconnected using conductive pillars
TWI515810B (en) Semiconductor device and method of forming no-flow underfill material around vertical interconnect structure
US9685495B2 (en) Semiconductor device and method of forming IPD on molded substrate
TWI570820B (en) Semiconductor device and method of forming stress relief layer between die and interconnect structure
US9548347B2 (en) Semiconductor device and method of forming an inductor on polymer matrix composite substrate
TWI495038B (en) Semiconductor device and method of forming ipd structure using smooth conductive layer and bottom-side conductive layer
TW201145456A (en) Semiconductor device and method of forming conductive vias through interconnect structures and encapsulant of WLCSP
TW201101420A (en) Semiconductor device and method of forming 3D inductor from prefabricated pillar frame
TW201110253A (en) Semiconductor device and method of dual-molding die formed on opposite sides of build-up interconnect structure
TW201417197A (en) Semiconductor device and method of forming supporting layer over semiconductor die in thin fan-out wafer level chip scale package
TW201125051A (en) Semiconductor device and method of forming compliant stress relief buffer around large array WLCSP
TW201230246A (en) Semiconductor device and method of forming conductive TSV with insulating annular ring
TW201246476A (en) Semiconductor device and method of forming an inductor within interconnect layer vertically separated from semiconductor die
TWI610375B (en) Semiconductor device and method of forming openings through insulating layer over encapsulant for enhanced adhesion of interconnect structure
TW201123327A (en) Semiconductor device and method of forming an inductor on polymer matrix composite substrate
TWI524439B (en) Semiconductor device and method of forming vertical interconnect structure using stud bumps
TWI518810B (en) Semiconductor device and method of forming ubm fixed relative to interconnect structure for alignment of semiconductor die
CN108604571B (en) All-molded periphery stack packaging equipment