TW201122702A - Optical zoom system - Google Patents

Optical zoom system Download PDF

Info

Publication number
TW201122702A
TW201122702A TW98145387A TW98145387A TW201122702A TW 201122702 A TW201122702 A TW 201122702A TW 98145387 A TW98145387 A TW 98145387A TW 98145387 A TW98145387 A TW 98145387A TW 201122702 A TW201122702 A TW 201122702A
Authority
TW
Taiwan
Prior art keywords
wafer level
lens module
optical lens
zoom system
level optical
Prior art date
Application number
TW98145387A
Other languages
Chinese (zh)
Other versions
TWI421612B (en
Inventor
Cheng-Heng Chen
Original Assignee
Wisepal Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisepal Technologies Inc filed Critical Wisepal Technologies Inc
Priority to TW98145387A priority Critical patent/TWI421612B/en
Publication of TW201122702A publication Critical patent/TW201122702A/en
Application granted granted Critical
Publication of TWI421612B publication Critical patent/TWI421612B/en

Links

Abstract

An optical zoom system including a photo sensor, a wafer level optical (WLO) lens and a focusing motor is provided. The WLO lens is located at the photo sensor. The WLO lens includes at least one transparent substrate and at least one lens, wherein the lens is disposed on the transparent. The focusing motor is located between the WLO lens and the photo sensor. The focusing motor drives the WLO lens to move toward or backward the photo sensor.

Description

201122702 w^-2Uu9-0007-TW 32344twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光學系統,且特別是有關於一穆 光挙變焦系統。 【先前技術】 隨著電子產品的模組微型化與低價化之趨勢,晶圓級 模組(Wafer Level Module ’ WLM )技術之出現備受關注。 晶圓級模組的技術主要是可將電子產品利用晶圓級的製造 技術’而將電子產品的體積微型化並降低成本。其中,晶 圓級模組的技術也可以是應用於製作光學變焦系統上,而 使得光學變焦系統在體積上遠較傳統的光學變焦系統得以 獲得縮減,進而可應用在如手機上的相機模組上。 圖1為習知一種光學變焦系統的示意圖。請參考圖p 光學變焦系統100包括一光感測器110、一光學透鏡120 以及一對焦馬達130。對焦馬達no位於光感測器ho上, 而光學鏡頭120位於對焦馬達130之中,且對焦馬達130 適於控制光學鏡頭120的相對位移,以靠近或遠離光感測 器 110。 在光學變焦系統100,光學透鏡120包括二透光基板 122及多個位於這些透鏡基板122上的透鏡124,而對焦馬 達130包括一伸縮結構132,其中此伸縮結構132與光學 透鏡120欣合’且伸細結構132在被變焦馬達130驅動後 適於控制光學透鏡120靠近或遠離光感測器n〇。 201122702 WP-2U〇y-〇007-TW 32344twf.doc/n 由於光學鏡頭120是位於對焦馬達130之中,且對焦 馬達130係透過伸縮結構丨32與光學鏡頭120欲合,以控 制光學鏡頭120靠近或遠離光感測器11〇的作動’然而採 用如此結構’將使得光學變焦系統10Q整體的體積無法有 效地獲得降低,而較難達到體積微型化的目的。 【發明内容】 有鑑於此,本發明提供一種光學變焦系統,其可有效 降低整體體積。 本發明提出一種光學變焦系統,包括一光感測器、— 晶圓級光學鏡頭模組以及一對焦馬達。晶圓級光學鏡頭模 組位於光感測器上,且晶圓級光學鏡頭模組包括至少一透 光基板及至少一透鏡,其中至少一透鏡配置於該至少一透 光基板上。對焦馬達位於晶圓級光學鏡頭模組與光感测器 之間,並移動晶圓級光學鏡頭模組,使晶圓級光學鏡頭模 組遠離或靠近光感測器。 在本發明之一實施例中,至少一透光基板為多個透光 基板時,晶圓級光學鏡頭模組更包括至少一間隙層,每一 間隙層配置於多個透光基板之間。 在本發明之一實施例中,間隙層的材質為一遮光材 質。 在本發明之一實施例中’至少一透鏡為凸透鏡或凹透 鏡。 在本發明之一實施例中’對焦馬達包括一伸縮結構, 其中伸縮結構與晶圓級光學鏡頭模組連接,並移動晶圓、级 201122702 wr-^uuy-0007-TW 32344twf.doc/n 光學鏡頭模組,使晶圓級光學鏡頭模組遠離或靠近光感測 器。在本發明之一實施例中,伸縮結構包括一螺紋結構。 本發明另提出一種光學變焦系統,包括一光感測器、 一第一晶圓級光學鏡頭模組、一第二晶圓級光學鏡頭模組 以及一對焦馬達。第一晶圓級光學鏡頭模組配置於光感測 器上,且第一晶圓級光學鏡頭模組包括一第一透光基板及 一第一透鏡,其中第一透鏡配置於第一透光基板上。第二 晶圓級光學鏡頭模組位於第一晶圓級光學鏡頭模組上,並 與第一晶圓級光學鏡頭模組保持一間距。第二晶圓級光學 鏡頭模組包括一第二透光基板及一第二透鏡,其中第二透 鏡配置於第二透光基板上。對焦馬達位於第一晶圓級光學 鏡頭模組與第二晶圓級光學鏡頭模組之間,並移動第一晶 圓級光學鏡頭模組或第二晶圓級光學鏡頭模組,以控制間 距。 在本發明之一實施例中,光學變焦系統更包括至少一 間隙層’配置於第一透光基板與光感測器之間、第一透光 基板與對焦馬達之間或第二透光基板與對焦馬達之間。在 本發明之一實施例中’至少一間隙層的材質為一遮光材質。 在本發明之一實施例中,至少一第一透鏡與至少一第 二透鏡包括一凸透鏡或一凹透鏡。 在本發明之一實施例中,對焦馬達包括一伸縮結構, =中伸縮結構與第—晶圓級光學鏡賴組或第二晶圓級光 頭模_接’以移動第_晶圓級光學鏡麵組或第二 曰曰圓級光學鏡頭模組而控制間距。在本發明之一實施例 201122702 WP-2009-0007-TW 32344twf.doc/n 中,伸縮結構包括一螺紋結構。 在本發明之一實施例中,上述的對焦馬達可為一步進 馬達。 在本發明之一實施例中,光感測器為一互補金屬氧化二 物半導體(complementary metal oxide semiconductor, CMOS)感測器或一電荷 _ 合元件(charge coupled devices, CCDs)。 , 基於上述’本發明之光學變焦系統可透過將對焦馬達 配置於晶圓級光學鏡頭模組與光感測器之間或是晶圓級光 學鏡頭模組與晶圓級光學鏡頭模組之間,使對焦馬達的尺 寸為了配合晶圓級光學鏡頭模組的尺寸而相對縮小,從而 可細小光學變焦糸統的整體體積。另外,由於對焦馬達是 配置於晶圓級光學鏡頭模組與光感測器之間或晶圓級光學 鏡頭模組與晶圓級光學鏡頭模組之間,因此,在進行成像 時,可使光學變焦系統具有變焦與對焦的功能,並使影像 光線可較佳地成像於光感測器上。換言之,本發明之光學 變焦系統除了具有較小的整體體積外,其同樣^有較佳的 光學成像品質。. 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉貫施例,並配合所附圖式作詳細說明如下。 【實施方式】 夫者發日^實施例之光學變焦系統的示意圖。請 參考圖2,本貫施例之光學變焦系統_ -晶圓級光學鏡頭模組22。以及二 201122702 WP-2009-0007-TW 32344twf.doc/n 本實施例中,光感測器210可以是一互補金屬氧化物半導 體(complementary metal oxide semiconductor, CMOS)感測 器或一電荷柄合元件(charge coupled devices, CCDs),其中 光感測器210可包括有一覆蓋玻璃(cover glass)212、一光 感測元件基板214與多個錫球216。覆蓋玻璃212覆蓋光 感測元件基板214,而錫球216與光感測元件基板214電 性連接。 晶圓級光學鏡頭模组220位於光感測器210上,且晶 圓級光學鏡頭模組220包括至少一透光基板222及至少一 透鏡224’其中至少一透鏡224配置於至少一透光基板222 上,如圖2所示。在本實施例中,晶圓級光學鏡頭模組220 是以圖2所繪示的多個透光基板222作為舉例說明,但並 不限於此,在另一實施例中,透光基板222的數量也可以 是單數個。 另外,這些透光基板222之間可配置有如圖2所繪示 的間隙層226,其中間隙層226可使這些透光基板222之 間保持空隙’且配置於這些透光基板222上的部分透鏡224 可位於空隙中。此外’間隙層226的厚度可搭配透鏡224 的焦距或晶圓級光學鏡頭模組220本身所需的焦距而定。 在本實施例中’間隙層226的材質可以是採用遮光材質, 其中遮光材料係指不易透光的材質,如黑色膠質。而當間 隙層226是採用不易透光的材質時,則可避免雜散光進入 透鏡224的機會,而可降低透過透鏡224的影像光的雜訊, 從而提高晶圓級光學鏡頭模組220本身成像的訊雜比 7 201122702 WP-2009-0007-TW 32344twf.doc/n (signal-to-noise ratio, SNR)與成像品質。 在本實施财,上述的透鏡22何採用如圖2所 凸透鏡,且配置於透光基板222上的凸透鏡其凸面為遠離 ^所配置的透光基板:222的方向:。然而,在其他未緣示的 貫施例中,透鏡222也可採用凹透鏡的設計,此部分端視 使用者的需求與設計而定。另外,透光基板222與位於其 上的透鏡224可以是一體成型,即可利用如鑄模或其他特 殊模具來完成其一體成型的製作。又或者,透光基板222 與透鏡224可以是各自成型,即可於透光基板222上形成 上述的透鏡224。本實施例是以各自成型的方式將透鏡224 製作於透光基板222,但不限於此。 在製作實務上,各自形成透鏡224於透光基板222後 即可形成一種透鏡基板(lens substrate),而後於各透鏡基板 之間配置有前述的間隙層226,並將多個透鏡基板組立 後’則可形成如圖2所繪示的晶圓級光學鏡頭模組220。 需要說明的是’所謂『晶圓級』代表的意思是將電子產品 利用晶圓級的製造技術,而將電子產品的體積微型化以降 低成本。 另外’對焦馬達230位於晶圓級光學鏡頭模組220與 光感測器210之間,且對焦馬達230會驅動晶圓級光學鏡 頭模組220產生位移,使晶圓級光學鏡頭模組220遠離或 靠近光感測器210,如圖2所示。在本實施例中,對焦馬 達230例如是一步進馬達,且對焦馬達230包括一伸縮結 構232,其中此伸縮結構232與晶圓級光學鏡頭模組220 201122702 wr-zuu9-0007-TW 32344twf.doc/n 連接,並用以移動晶圓級光學鏡頭模組220,而使晶圓級 光學鏡頭模組220遠離或靠近光感測器21〇。詳細而言, 伸縮結構232可以是一螺紋結構,其中此螺紋結構會與晶 圓級光學鏡頭模組22Q嵌合’而當對焦馬達230驅動此螺 紋結構時’便可帶動晶圓級光學鏡頭模組220進行移動, 而使晶圓級光學鏡頭模組220遠離或靠近光感測器21〇, 進而使來自外部的影像光束在通過晶圓級光學鏡頭模組 220後可對焦於光感測器210。因此’透過適當地控制伸縮 結構232來控制晶圓級光學鏡頭模組220的伸縮距離,可 使通過晶圓級光學鏡頭模組220後的影像光束可較佳地成 像於光感測器210上。 在本實施例中’對焦馬達230是位於晶圓級光學鏡頭 模組220與光感測器210之間,並與晶圓級光學鏡頭模組 220連接,因此,對焦馬達23〇本身的尺寸便需配合晶圓 級光學鏡頭模組220的大小而縮小。換言之,對比配置於 光學鏡頭外部並嵌合光學鏡頭以控制其作動的馬達,本實 施例之對焦馬達230本身的尺寸因相對地獲得縮小,因此 採用此對焦馬達230的光學變焦系統200其整體的體積亦 可獲得縮減。 基於上述結構’本實施例之光學變焦系統2〇〇其採用 不易透光的材質作為間隙層226,而可提升光學變焦系統 200的成像品質。另外,透過將對焦馬達23〇配置於晶圓 級光學鏡頭模組220與光感測器210之間’以使對焦馬達 230的尺寸為了配合晶圓級光學鏡頭模組220的尺寸而相 201122702 WP-2009-0007-TW 32344twf.doc/n 對縮小,從而可縮小光學變焦系統200的整體體積。換言 之,相較於習知之光學變焦系統是將變焦馬達配置於晶圓 級光學鏡頭模組的外部並控制晶圓級光學鏡頭模組的移動 方向,,以使晶圓級光學鏡頭模組對焦於光感測器,本實施 例之光學變焦系統200具有較小的整體體積。 圖3為本發明另一實施例之光學變焦系統的示意圖。 請參考圖3,本實施例之光學變焦系統300包括一光感測 器310、一第一晶圓級光學鏡頭模組320、一第二晶圆級光 學鏡頭模組330以及一對焦馬達340。在本實施例中,光 感測器310可以是一互補金屬氧化物半導體 (complementary metal oxide semiconductor, CMOS)感測器 或一電荷耦合元件(charge coupled devices, CCDs),其中光 感測器310可包括有一覆蓋玻璃(cover glass)312、一光感 測元件基板314與多個錫球316。覆蓋玻璃312覆蓋光感 測元件基板314,而錫球316與光感測元件基板314電性 連接。 第一晶圓級光學鏡頭模組320配置於光感測器310 上,且第一晶圓級光學鏡頭模組320包括一第一透光基板 322及一第一透鏡324,其中第一透鏡324配置於第一透光 基板322上’如圖3所示。在本實施例中’第一晶圓級光 學鏡頭模組320是以圖3所繪示的一個第一透光基板322 作為舉例說明,但並不限於此。在另一實施例中,第一透 光基板322的數量也可以是採用多數個,即第一晶圓級光 學鏡頭模組320也可以是採用如圖2所繪示的晶圓級光學 201122702 wi^uu9-0007-TW 32344twf.doc/n 鏡頭模組220。 另外’第一透光基板322上可配置有如圖3所繪示的 第一間隙層326 ’其中第一間隙層326可使第一透光基板 ,322與光感測器310之間以及第一透光基板:322與對焦馬 達340之間保持空隙,且配置於第一透光基板322上的第 一透鏡324可位於空隙中。此外,第一間隙層326的厚度 可搭配第一透鏡324所需的焦距而定。在本實施例中,第 一間隙層326的材質可採用遮光材質,其中遮光材料係指 不易透光的材質,如黑色膠質。而當第一間隙層326是採 用不易透光的材質時,則可避免雜散光進入第一透鏡324 的機會,而可降低透過第一透鏡324的影像光的雜訊,從 而提高第一晶圓級光學鏡頭模組32〇本身成像的訊雜比 (signal-to-noise ratio, SNR)與成像品質。 在本實施例中,第一透鏡324可採用如圖3所示的凸 透2,且配置於第一透光基板322上的凸透鏡其凸面為朝 向遠離第一透光基板322的方向。然而,在其他未繪示的 貫施例中’第一透鏡324也可採用凹透鏡的設計,此部分 端視使用者的需求與設計而定。另外,第一透光基板322 與位於其上的第一透鏡324可以是一體成型,即可利用如 鑄模或其他特殊模具來完成其一體成型的製作。又或者, 第一透光基板322與第一透鏡324可以是各自成型,即可 於第一透光基板322上形成上述的第一透鏡324。本實施 例是以各自成型的方式將第—透鏡324製作於第一透光基 板322,但不限於此。 201122702 WP-2009-0007-TW 32344twf.d〇c/n 第二晶圓級光學鏡頭模組330位於第一晶圓級光學鏡 頭模組320上’並與第一晶圓級光學鏡頭模組320保持一 間距H1,如圖3所示。第二晶圓級光學鏡頭模組330包括 一第二透光基板332及一第二透鏡334,其中第二透鏡334 配置於第二透光基板332上。同樣地,第二晶圓級光學鏡 頭模組330是以圖3所綠示的一個第二透光基板332作為 舉例說明’但並不限於此。在另一實施例中,第二透光基 板332的數量也可以是採用多數個,即第二晶圓級光學鏡 頭模組330也可以是採用如圖2所繪示的晶圓級光學鏡頭 模組220。 另外’第二透光基板332上可配置有如圖3所綠示的 第一間隙層336 ’其中第二間隙層336的厚度可搭配第一 透鏡334所需的焦距而定。在本實施例中,第二間隙層 的材質可採用遮光材質,其中遮光材料係指不易透^的材 質,如黑色膠質。而當第二間隙層336是採用不易透光的 材質時’同樣地可避免雜散光進人第二透鏡334的機會, 而可降低透過第二透鏡334的影像光的雜訊,從而提^ 二晶圓級光學鏡頭模組330本身成像的訊^比 (signal-to-noise ratio, SNR)與成像品質。 同樣地,本實施例之第二透鏡334細如目 凸透鏡為舉例,且配置於第二透光基板332上的凸 凸面為朝向退離第一透光基板332的方向。妙 、 未緣示的實施例中,第二透鏡334也可採用 的讯 計,此部分端視使用者的需求與設計而定。 =的5又 乃外,第二透 12 201122702 WP-2009-0007-TW 32344twf.doc/n 光基板332與位於其上的第二透鏡334可以是一體成型, 即可利用如鑄模或其他特殊模具來完成其一體成型的製 作。又或者,第二透光基板332與第一透鏡334可以是各 自成型,即可於集二透光基板332上形成上述的第二透鏡 334。本實施例是以各自成型的方式將第二透鏡334製作於 第二透光基板332,但不限於此。 對焦馬達340位於第一晶圓級光學鏡頭模組32〇與第 二晶圓級光學鏡頭模組330之間,並移動第一晶圓級光學 鏡頭模組320或第二晶圓級光學鏡頭模組330,以控制間 距H1。在本實施例中’對焦馬達340例如是一步進馬達, 且對焦馬達340包括一伸縮結構342,其中此伸縮結構342 在對焦馬達340的驅動下,其可伸長或縮短,如此一來, 第一晶圓級光學鏡頭模组320與第二晶圓級光學鏡頭模組 330之間所保持的間距H1便可被伸縮結構342所控制。意 即,伸縮結構342被對焦馬達340所驅動而拉長時,第一 晶圓級光學鏡頭模組320與弟二晶圓級光學鏡頭模組330 之間的間距H1便會增加,而當伸縮結構342被對焦馬達 340所驅動而縮短時,第一晶圓級光學鏡頭模組320與第 二晶圓級光學鏡頭模組330之間的間距H1便會減少。因 此,透過適當地控制伸縮結構342的伸長與縮短來控制第 一晶圓級光學鏡頭模組320與第二晶圓級光學鏡頭模組 332的的間距H1 ’便可使通過第一晶圓級光學鏡頭模組 320與第二晶圓級光學鏡頭模組332後的影像光束可較佳 地成像於光感測器310上。 13 201122702 WP-2009-0007-TW 32344twf.d〇c/n 承上述,本實施例之光學變焦系統300與前述的光學 變焦系統200結構相似,惟二者不同處在於,光學變焦系 統300係將對焦馬達340設置於第一晶圓級光學鏡頭模組 320:與第二晶圓級光學鏡頭模組330之間,並透過移動第^; 一晶圓級光學鏡頭模組320與第二晶圓級光學鏡頭模組 330的相對位移,以控制第一晶圓級光學鏡頭模組32〇與 第二晶圓級光學鏡頭模組330的間距H1,而可達到光學變 焦的目的》 由於光學變焦系統300與前述的光學變焦系統2〇〇結 構相似,因此,本實施例之光學變焦系統3〇〇同樣地具有 光學變焦系統200所提及的優點。 綜上所述’本發明之光學變焦系統可透過採用不易透 ^的材質作為間隙層,而可提升光學變焦系統的成像品 質。另外,透過將對焦馬達配置於晶圓級光學鏡頭模組與 ^感測β之間或是晶圓級光學鏡頭模組與晶圓級光學鏡頭 极組之間’使對焦馬達的尺寸為了配合晶圓級光學鏡頭模 組的尺寸而相對縮小,從而可縮小光學變焦系統的整體體 積。、此^卜’由於對焦馬達是配置於晶圓級光學鏡賴組與 光感測益之間或晶圓級光學鏡頭模組與晶圓級光學鏡頭模 組之間’因此,在進行成像時,可使光學變焦系統具有變 焦與對焦的功能,並使影像光線可較佳地成像於光感測器 上。 換言之,本發明之光學變焦系統除了具有較小的整體 體積外,其同樣具有較佳的光學成像品質。 14 201122702 WP-2009-0007-TW 32344twf.d〇c/n 本發明施觸露如上,財並非用以限定 本發明之領域中具有通常知識者,在 ^圍内,當可作些許之更動與潤飾,故本 只日之保H通當視後社巾請:專利範騎界定者為準。 【圖式簡單說明】 圖1為習知一種光學變焦系統的示意圖。 圖2為本發明一實施例之光學變焦系統的示意圖。 圖3為本發明另—實施例之光學變焦系統的示意圖。 【主要元件符號說明】 100、200、300 :光學變焦系統 110、210 :光感測器 120 :光學透鏡 130、230、340 :對焦馬達 122、222 :透光基板 124、224 :透鏡 132 :伸縮結構 220 :晶圓級光學鏡頭模組 212、312 :覆蓋玻璃 214、314 :光感測元件基板 216、316 :錫球 226 :間隙層 232 :伸縮結構 15 201122702 wr-zuuy-u007-TW 32344twf.doc/n 320:第一晶圓級光學鏡頭模組 322 :第一透光基板 324 :第一透鏡 326:第一間隙層 330 :第二晶圓級光學鏡頭模組 332 :第二透光基板 334 :第二透鏡 336 :第二間隙層 H1 :間距201122702 w^-2Uu9-0007-TW 32344twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to an optical system, and more particularly to an optical zoom system. [Prior Art] With the trend of miniaturization and low price of electronic products, the emergence of Wafer Level Module (WLM) technology has attracted much attention. The technology of wafer-level modules is mainly to make electronic products use wafer-level manufacturing technology to miniaturize and reduce the cost of electronic products. Among them, the technology of the wafer level module can also be applied to the production of the optical zoom system, so that the optical zoom system can be reduced in size compared with the conventional optical zoom system, and can be applied to a camera module such as a mobile phone. on. FIG. 1 is a schematic diagram of a conventional optical zoom system. Please refer to FIG. p. The optical zoom system 100 includes a light sensor 110, an optical lens 120, and a focus motor 130. The focus motor no is located on the photo sensor ho, and the optical lens 120 is located in the focus motor 130, and the focus motor 130 is adapted to control the relative displacement of the optical lens 120 to approach or move away from the photo sensor 110. In the optical zoom system 100, the optical lens 120 includes two transparent substrates 122 and a plurality of lenses 124 on the lens substrates 122, and the focus motor 130 includes a telescopic structure 132, wherein the telescopic structure 132 and the optical lens 120 are combined And the protruding structure 132 is adapted to control the optical lens 120 to be close to or away from the photo sensor after being driven by the zoom motor 130. 201122702 WP-2U〇y-〇007-TW 32344twf.doc/n Since the optical lens 120 is located in the focus motor 130, and the focus motor 130 is coupled to the optical lens 120 through the telescopic structure 丨32 to control the optical lens 120. Actuation close to or away from the photosensor 11', however, adopting such a structure will make the overall volume of the optical zoom system 10Q incapable of being effectively reduced, and it is difficult to achieve volume miniaturization. SUMMARY OF THE INVENTION In view of the above, the present invention provides an optical zoom system that can effectively reduce the overall volume. The invention provides an optical zoom system comprising a light sensor, a wafer level optical lens module and a focus motor. The wafer level optical lens module is disposed on the photo sensor, and the wafer level optical lens module includes at least one light transmissive substrate and at least one lens, wherein at least one lens is disposed on the at least one light transmissive substrate. The focus motor is located between the wafer level optical lens module and the photo sensor and moves the wafer level optical lens module to move the wafer level optical lens module away from or near the photo sensor. In an embodiment of the invention, when the at least one transparent substrate is a plurality of transparent substrates, the wafer level optical lens module further includes at least one gap layer, and each gap layer is disposed between the plurality of transparent substrates. In an embodiment of the invention, the material of the gap layer is a light-shielding material. In one embodiment of the invention, at least one of the lenses is a convex lens or a concave lens. In an embodiment of the invention, the 'focusing motor includes a telescopic structure, wherein the telescopic structure is connected to the wafer level optical lens module, and the wafer is moved, the stage 201122702 wr-^uuy-0007-TW 32344twf.doc/n optical The lens module moves the wafer level optical lens module away from or near the light sensor. In an embodiment of the invention, the telescoping structure comprises a threaded structure. The invention further provides an optical zoom system comprising a light sensor, a first wafer level optical lens module, a second wafer level optical lens module and a focus motor. The first wafer level optical lens module is disposed on the photo sensor, and the first wafer level optical lens module includes a first transparent substrate and a first lens, wherein the first lens is disposed on the first light transmission On the substrate. The second wafer level optical lens module is located on the first wafer level optical lens module and is spaced apart from the first wafer level optical lens module. The second wafer level optical lens module includes a second transparent substrate and a second lens, wherein the second lens is disposed on the second transparent substrate. The focus motor is located between the first wafer level optical lens module and the second wafer level optical lens module, and moves the first wafer level optical lens module or the second wafer level optical lens module to control the spacing . In an embodiment of the invention, the optical zoom system further includes at least one gap layer disposed between the first transparent substrate and the photo sensor, between the first transparent substrate and the focus motor, or the second transparent substrate. Between the focus motor and the focus motor. In an embodiment of the invention, the material of the at least one gap layer is a light-shielding material. In an embodiment of the invention, the at least one first lens and the at least one second lens comprise a convex lens or a concave lens. In an embodiment of the invention, the focus motor includes a telescopic structure, and the medium telescopic structure is coupled to the first wafer level optical mirror or the second wafer level optical head to move the first wafer level optical mirror. The quilt or the second round optical lens module controls the spacing. In an embodiment of the invention 201122702 WP-2009-0007-TW 32344twf.doc/n, the telescopic structure comprises a threaded structure. In one embodiment of the invention, the focus motor described above can be a stepper motor. In one embodiment of the invention, the photosensor is a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled devices (CCDs). According to the above optical zoom system of the present invention, the focus motor can be disposed between the wafer level optical lens module and the photo sensor or between the wafer level optical lens module and the wafer level optical lens module. The size of the focus motor is relatively reduced to match the size of the wafer level optical lens module, thereby making the overall size of the optical zoom system small. In addition, since the focus motor is disposed between the wafer level optical lens module and the photo sensor or between the wafer level optical lens module and the wafer level optical lens module, when imaging is performed, The optical zoom system has the function of zooming and focusing, and allows image light to be better imaged on the light sensor. In other words, the optical zoom system of the present invention has a better optical imaging quality in addition to having a smaller overall volume. The above features and advantages of the present invention will be more apparent from the following description. [Embodiment] A schematic diagram of an optical zoom system of an embodiment. Referring to FIG. 2, the optical zoom system of the present embodiment is a wafer level optical lens module 22. And in the present embodiment, the photo sensor 210 can be a complementary metal oxide semiconductor (CMOS) sensor or a charge handle component. (charge coupled devices, CCDs), wherein the photo sensor 210 can include a cover glass 212, a light sensing element substrate 214, and a plurality of solder balls 216. The cover glass 212 covers the light sensing element substrate 214, and the solder balls 216 are electrically connected to the light sensing element substrate 214. The wafer level optical lens module 220 is disposed on the photo sensor 210, and the wafer level optical lens module 220 includes at least one transparent substrate 222 and at least one lens 224 ′, wherein at least one lens 224 is disposed on at least one transparent substrate. On 222, as shown in Figure 2. In this embodiment, the wafer-level optical lens module 220 is illustrated by using the plurality of transparent substrates 222 illustrated in FIG. 2 , but is not limited thereto. In another embodiment, the transparent substrate 222 is The quantity can also be an singular number. In addition, a gap layer 226 as shown in FIG. 2 may be disposed between the transparent substrates 222, wherein the gap layer 226 may maintain a gap between the transparent substrates 222 and a partial lens disposed on the transparent substrates 222. 224 can be located in the gap. In addition, the thickness of the gap layer 226 can be matched to the focal length of the lens 224 or the focal length required by the wafer level optical lens module 220 itself. In the present embodiment, the material of the gap layer 226 may be a light-shielding material, wherein the light-shielding material refers to a material that is not easy to transmit light, such as black gelatin. When the gap layer 226 is made of a material that is not easy to transmit light, the chance of stray light entering the lens 224 can be avoided, and the noise of the image light transmitted through the lens 224 can be reduced, thereby improving the imaging of the wafer level optical lens module 220 itself. The signal-to-noise ratio 7 201122702 WP-2009-0007-TW 32344twf.doc/n (signal-to-noise ratio, SNR) and imaging quality. In the present embodiment, the lens 22 is a convex lens as shown in FIG. 2, and the convex lens disposed on the transparent substrate 222 has a convex surface away from the direction of the transparent substrate 222 disposed: However, in other embodiments not shown, the lens 222 can also be designed with a concave lens depending on the needs and design of the user. In addition, the light-transmissive substrate 222 and the lens 224 located thereon may be integrally formed, that is, the integral molding may be performed by using, for example, a mold or other special mold. Alternatively, the light-transmitting substrate 222 and the lens 224 may be formed separately, that is, the lens 224 may be formed on the light-transmitting substrate 222. In this embodiment, the lens 224 is formed on the transparent substrate 222 in a manner of molding each, but is not limited thereto. In the manufacturing practice, a lens substrate is formed after the lens 224 is formed on the transparent substrate 222, and then the gap layer 226 is disposed between the lens substrates, and the plurality of lens substrates are assembled. A wafer level optical lens module 220 as shown in FIG. 2 can be formed. It should be noted that the term "wafer level" means to use the wafer-level manufacturing technology for electronic products, and to miniaturize the size of electronic products to reduce costs. In addition, the focus motor 230 is located between the wafer level optical lens module 220 and the photo sensor 210, and the focus motor 230 drives the wafer level optical lens module 220 to generate displacement, so that the wafer level optical lens module 220 is far away. Or close to the photo sensor 210, as shown in FIG. In this embodiment, the focus motor 230 is, for example, a stepping motor, and the focus motor 230 includes a telescopic structure 232, wherein the telescopic structure 232 and the wafer level optical lens module 220 201122702 wr-zuu9-0007-TW 32344twf.doc The /n connection is used to move the wafer level optical lens module 220, and the wafer level optical lens module 220 is moved away from or near the photo sensor 21A. In detail, the telescopic structure 232 can be a threaded structure, wherein the thread structure can be mated with the wafer level optical lens module 22Q, and when the focus motor 230 drives the thread structure, the wafer level optical lens module can be driven. The group 220 moves, and the wafer level optical lens module 220 is moved away from or close to the photo sensor 21〇, so that the image beam from the outside can focus on the photo sensor after passing through the wafer level optical lens module 220. 210. Therefore, by controlling the telescopic structure 232 to control the telescopic distance of the wafer level optical lens module 220, the image beam passing through the wafer level optical lens module 220 can be preferably imaged on the photo sensor 210. . In the present embodiment, the focus motor 230 is located between the wafer level optical lens module 220 and the photo sensor 210, and is connected to the wafer level optical lens module 220. Therefore, the size of the focus motor 23 itself is It needs to be reduced in accordance with the size of the wafer level optical lens module 220. In other words, in contrast to the motor disposed outside the optical lens and fitting the optical lens to control its actuation, the size of the focus motor 230 itself of the present embodiment is relatively reduced, so that the optical zoom system 200 of the focus motor 230 is used as a whole. The volume can also be reduced. Based on the above structure, the optical zoom system 2 of the present embodiment uses a material that is not easily light-transmitting as the gap layer 226, and the image quality of the optical zoom system 200 can be improved. In addition, the focus motor 23 is disposed between the wafer level optical lens module 220 and the photo sensor 210 to make the size of the focus motor 230 to match the size of the wafer level optical lens module 220. 201122702 WP -2009-0007-TW 32344twf.doc/n The reduction is made so that the overall volume of the optical zoom system 200 can be reduced. In other words, compared to the conventional optical zoom system, the zoom motor is disposed outside the wafer level optical lens module and controls the moving direction of the wafer level optical lens module, so that the wafer level optical lens module is focused on The optical sensor, the optical zoom system 200 of the present embodiment has a smaller overall volume. 3 is a schematic diagram of an optical zoom system according to another embodiment of the present invention. Referring to FIG. 3, the optical zoom system 300 of the present embodiment includes a photo sensor 310, a first wafer level optical lens module 320, a second wafer level optical lens module 330, and a focus motor 340. In this embodiment, the photo sensor 310 can be a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled device (CCDs), wherein the photo sensor 310 can be A cover glass 312, a light sensing element substrate 314 and a plurality of solder balls 316 are included. The cover glass 312 covers the light sensing element substrate 314, and the solder balls 316 are electrically connected to the light sensing element substrate 314. The first wafer level optical lens module 320 is disposed on the photo sensor 310, and the first wafer level optical lens module 320 includes a first transparent substrate 322 and a first lens 324, wherein the first lens 324 Disposed on the first transparent substrate 322' as shown in FIG. In the present embodiment, the first wafer-level optical lens module 320 is illustrated as a first transparent substrate 322 illustrated in FIG. 3, but is not limited thereto. In another embodiment, the number of the first transparent substrate 322 may also be a plurality of, that is, the first wafer level optical lens module 320 may also be wafer level optical 201122702 wi as shown in FIG. 2 . ^uu9-0007-TW 32344twf.doc/n Lens module 220. In addition, the first transparent layer 322 can be disposed with a first gap layer 326 as shown in FIG. 3 , wherein the first gap layer 326 can be between the first transparent substrate 322 and the photo sensor 310 and the first The transparent substrate: 322 and the focus motor 340 are kept in a gap, and the first lens 324 disposed on the first transparent substrate 322 can be located in the gap. Moreover, the thickness of the first gap layer 326 can be matched to the focal length required for the first lens 324. In this embodiment, the material of the first gap layer 326 may be a light-shielding material, wherein the light-shielding material refers to a material that is not easy to transmit light, such as black gelatin. When the first gap layer 326 is made of a material that is not easy to transmit light, the chance of stray light entering the first lens 324 can be avoided, and the noise of the image light transmitted through the first lens 324 can be reduced, thereby improving the first wafer. The level-to-noise ratio (SNR) and imaging quality of the optical lens module 32 itself. In the present embodiment, the first lens 324 can be embossed 2 as shown in FIG. 3, and the convex lens disposed on the first transparent substrate 322 has a convex surface facing away from the first transparent substrate 322. However, in other embodiments not shown, the first lens 324 may also employ a concave lens design depending on the needs and design of the user. In addition, the first light transmissive substrate 322 and the first lens 324 located thereon may be integrally formed, that is, the monolithic molding may be completed by using a mold or other special mold. Alternatively, the first transparent substrate 322 and the first lens 324 may be formed separately, that is, the first lens 324 may be formed on the first transparent substrate 322. In this embodiment, the first lens 324 is formed on the first light-transmitting substrate 322 in a manner of molding each, but is not limited thereto. 201122702 WP-2009-0007-TW 32344twf.d〇c/n The second wafer level optical lens module 330 is located on the first wafer level optical lens module 320 and is coupled to the first wafer level optical lens module 320. Keep a distance H1, as shown in Figure 3. The second wafer level optical lens module 330 includes a second transparent substrate 332 and a second lens 334. The second lens 334 is disposed on the second transparent substrate 332. Similarly, the second wafer level optical lens module 330 is illustrated by a second light transmissive substrate 332 shown in green in FIG. 3, but is not limited thereto. In another embodiment, the number of the second transparent substrate 332 may also be a plurality of, that is, the second wafer level optical lens module 330 may also be a wafer level optical lens module as shown in FIG. 2 . Group 220. Further, the second transparent substrate 332 may be provided with a first gap layer 336' as shown in FIG. 3, wherein the thickness of the second gap layer 336 may be matched with the focal length required for the first lens 334. In this embodiment, the material of the second gap layer may be a light-shielding material, wherein the light-shielding material refers to a material that is not easily transparent, such as black gelatin. When the second gap layer 336 is made of a material that is not easy to transmit light, the opportunity for stray light to enter the second lens 334 can be avoided, and the noise of the image light transmitted through the second lens 334 can be reduced, thereby improving The signal-to-noise ratio (SNR) and imaging quality of the wafer-level optical lens module 330 itself. Similarly, the second lens 334 of the present embodiment is exemplified by a convex lens, and the convex surface disposed on the second transparent substrate 332 is directed away from the first transparent substrate 332. In the embodiment which is not shown, the second lens 334 can also use a signal, which depends on the user's needs and design. 5, the second through 12 201122702 WP-2009-0007-TW 32344twf.doc / n The light substrate 332 and the second lens 334 located thereon may be integrally formed, that is, can be used such as a mold or other special mold To complete the production of its one-piece molding. Alternatively, the second transparent substrate 332 and the first lens 334 may be formed separately, that is, the second lens 334 may be formed on the two transparent substrate 332. In this embodiment, the second lens 334 is formed on the second light-transmissive substrate 332 in a manner of molding each, but is not limited thereto. The focus motor 340 is located between the first wafer level optical lens module 32 and the second wafer level optical lens module 330, and moves the first wafer level optical lens module 320 or the second wafer level optical lens module Group 330 to control the spacing H1. In the present embodiment, the focus motor 340 is, for example, a stepping motor, and the focus motor 340 includes a telescopic structure 342. The telescopic structure 342 can be extended or shortened by the focus motor 340, so that the first The spacing H1 maintained between the wafer level optical lens module 320 and the second wafer level optical lens module 330 can be controlled by the telescopic structure 342. That is, when the telescopic structure 342 is driven by the focus motor 340 and elongated, the distance H1 between the first wafer level optical lens module 320 and the second wafer level optical lens module 330 is increased, and when the expansion and contraction is performed. When the structure 342 is driven by the focus motor 340 to be shortened, the distance H1 between the first wafer level optical lens module 320 and the second wafer level optical lens module 330 is reduced. Therefore, controlling the distance H1 ′ between the first wafer level optical lens module 320 and the second wafer level optical lens module 332 by appropriately controlling the elongation and shortening of the stretching structure 342 can pass the first wafer level. The image beam behind the optical lens module 320 and the second wafer level optical lens module 332 can be preferably imaged on the photo sensor 310. 13 201122702 WP-2009-0007-TW 32344twf.d〇c/n In view of the above, the optical zoom system 300 of the present embodiment is similar in structure to the optical zoom system 200 described above, except that the optical zoom system 300 will be The focus motor 340 is disposed between the first wafer level optical lens module 320 and the second wafer level optical lens module 330, and transmits the first wafer level optical lens module 320 and the second wafer The relative displacement of the optical lens module 330 is controlled to control the distance H1 between the first wafer level optical lens module 32 and the second wafer level optical lens module 330, thereby achieving the purpose of optical zooming. The 300 is similar in structure to the optical zoom system 2 described above, and therefore, the optical zoom system 3 of the present embodiment similarly has the advantages mentioned by the optical zoom system 200. In summary, the optical zoom system of the present invention can improve the imaging quality of the optical zoom system by using a material that is not easily transparent as a gap layer. In addition, by arranging the focus motor between the wafer level optical lens module and the sense β, or between the wafer level optical lens module and the wafer level optical lens set, the size of the focus motor is matched with the crystal. The size of the circular optical lens module is relatively reduced, thereby reducing the overall size of the optical zoom system. This is because the focus motor is placed between the wafer level optical mirror and the light sensing benefit or between the wafer level optical lens module and the wafer level optical lens module. Therefore, when imaging The optical zoom system can be used for zooming and focusing, and the image light can be preferably imaged on the photo sensor. In other words, the optical zoom system of the present invention also has better optical imaging quality in addition to having a smaller overall volume. 14 201122702 WP-2009-0007-TW 32344twf.d〇c/n The present invention is as described above, and is not intended to limit the general knowledge in the field of the present invention, and may be modified in some cases. Retouching, so this is only the day of the protection of the H-pass as the back of the social towel please: the definition of the patent Fan riding is subject to. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional optical zoom system. 2 is a schematic diagram of an optical zoom system in accordance with an embodiment of the present invention. 3 is a schematic diagram of an optical zoom system in accordance with another embodiment of the present invention. [Main component symbol description] 100, 200, 300: optical zoom system 110, 210: photo sensor 120: optical lens 130, 230, 340: focus motor 122, 222: transparent substrate 124, 224: lens 132: expansion and contraction Structure 220: Wafer-level optical lens module 212, 312: cover glass 214, 314: light sensing element substrate 216, 316: solder ball 226: gap layer 232: telescopic structure 15 201122702 wr-zuuy-u007-TW 32344twf. Doc/n 320: first wafer level optical lens module 322: first transparent substrate 324: first lens 326: first gap layer 330: second wafer level optical lens module 332: second transparent substrate 334: second lens 336: second gap layer H1: pitch

Claims (1)

201122702 wr-zuu9-0007-TW 32344twf.doc/n 七、申請專利範園: 1. 一種光學變焦系統,包括: 一光感測器; 一晶圓級:光學鏡頭模組,位於該光感測器上,該晶圓 級光學鏡頭模、纟且包括至少一透光基板及至少一透鏡,其中 該至少一透鏡配置於該至少一透光基板上;以及 一對焦馬達’位於該晶圓級光學鏡頭模組與該光感測 器之間’並驅動該晶圓級光學鏡頭模組產生位移,使該晶 圓級光學鏡頭模組遠離或靠近該光感測器。 2. 如申請專利範圍第1項所述之光學變焦系統,其中 該至少一透光基板為多個透光基板時,該晶圓級光學鏡頭 模組更包括至少一間隙層,每一該至少一間隙層配置於該 些透光基板之間。 3. 如申請專利範圍第2項所述之光學變焦系統,其中 該間隙層的材質為一遮光材質。 4. 如申請專利範圍第1項所述之光學變焦系統,其中 該至少一透鏡為凸透鏡或凹透鏡。 5. 如申請專利範圍第1項所述之光學變焦系統,其中 該對焦馬達包括一伸縮結構’其中該伸縮結構與該晶圓級 光學鏡頭模組連接,並驅動該晶圓級光學鏡頭模組產生位 移’使該晶圓級光學鏡頭模組遠離或靠近該光感測器。 6. 如申請專利範圍第5項所述之光學變焦系統’其中 該伸縮結構包括一螺紋結構。 7. 如申請專利範圍第1項所述之光學變焦系統,其中 17 201122702 W^-2UUy-u007-TW 32344twf.doc/n 該對焦馬達為一步進馬達。 8. 如申請專利範圍第1項所述之光學變焦系統,其中 該光感測器為一互補金屬氧化物半導體(complementary metal oxide semiconductor,CMOS)感測器或一電荷耦合元 件(charge coupled devices, CCDs)。 9. 一種光學變焦系統,包括: 一光感測器; 一第一晶圓級光學鏡頭模組,配置於該光感測器上, 該苐一晶圓級光學鏡頭模組包括一第一透光基板及一第一 透鏡,其中該第一透鏡配置於該第一透光基板上; 一第·一晶圓級光學鏡頭模組,位於該第一晶圓級光學 鏡頭模纟且上,並與該第一晶圓級光學鏡頭模組保持一間 距,該第二晶圓級光學鏡頭模組包括一第二透先基板及一 第二透鏡,其中該第二透鏡配置於該第二透光基板上;以 及 一對焦馬達,位於該第一晶圓級光學鏡頭模組與該第 二晶圓級光學鏡頭模組之間,並驅動該第一晶圓級光學鏡 頭模組或該第二晶圓級光學鏡頭模組產生位移,以控制該 間距。 10. 如申請專利範圍第9項所述之光學變焦系統,更 包括至少一間隙層,配置於該第一透光基板與該光感測器 之間、該第一透光基板與該對焦馬達之間或該第二透光基 板與該對焦馬達之間。 & 11. 如申請專利範圍第1〇項所述之光學變焦系統,其 18 201122702 WP-2 ㈨9-0007-TW 32344twf.d〇c/n 中該至少一間隙層的材質為一遮光材質。 12.如申請專利範圍第9項所述之光學變焦系統,其 中該至少一第一透鏡與該至少一第二透鏡包括一凸透鏡或 • 一凹透鏡。 = , 13.如申請專利範圍第9項所述之光學變焦系統’其 中該對焦馬達包括一伸縮結構,其中該伸縮結構與該第一 晶圓級光學鏡頭模組或該第二晶圓級光學鏡頭模組連接, 並分別糁動該第一晶圓級光學鏡頭模組或該第二晶圓級光 • 學鏡頭模組而控制該間距。 14. 如申請專利範圍第13項所述之光學變焦系統’其 中該伸縮結構包括一螺紋結構。 15. 如申請專利範圍第9項所述之光學變焦系統,其 中該對焦馬達為一步進馬達。 16. 如申請專利範圍第9項所述之光學變焦系統,其 中該光感測器為一互補金屬氧化物半導體(complementary metal oxide semiconductor,CMOS)感測器或一電荷耦合元 • 件(charge coupled devices, CCDs)。201122702 wr-zuu9-0007-TW 32344twf.doc/n VII. Application for Patent Park: 1. An optical zoom system, comprising: a light sensor; a wafer level: an optical lens module, located in the light sensing The wafer level optical lens module includes at least one transparent substrate and at least one lens, wherein the at least one lens is disposed on the at least one transparent substrate; and a focus motor is located at the wafer level optical A displacement between the lens module and the photo sensor drives the wafer level optical lens module to move the wafer level optical lens module away from or close to the photo sensor. 2. The optical zoom system of claim 1, wherein the at least one transparent substrate is a plurality of transparent substrates, the wafer level optical lens module further comprising at least one gap layer, each of the at least one A gap layer is disposed between the light transmissive substrates. 3. The optical zoom system of claim 2, wherein the gap layer is made of a light-shielding material. 4. The optical zoom system of claim 1, wherein the at least one lens is a convex lens or a concave lens. 5. The optical zoom system of claim 1, wherein the focus motor comprises a telescopic structure, wherein the telescopic structure is coupled to the wafer level optical lens module, and the wafer level optical lens module is driven The displacement is generated 'to move the wafer level optical lens module away from or close to the photo sensor. 6. The optical zoom system of claim 5, wherein the telescopic structure comprises a threaded structure. 7. The optical zoom system of claim 1, wherein: 17 201122702 W^-2UUy-u007-TW 32344twf.doc/n the focus motor is a stepping motor. 8. The optical zoom system of claim 1, wherein the photo sensor is a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled device. CCDs). 9. An optical zoom system, comprising: a light sensor; a first wafer level optical lens module disposed on the light sensor, the first wafer level optical lens module comprising a first through a first substrate and a first lens, wherein the first lens is disposed on the first transparent substrate; a first wafer level optical lens module is disposed on the first wafer level optical lens, and The second wafer-level optical lens module includes a second transparent substrate and a second lens, wherein the second lens is disposed in the second light-transmitting And a focusing motor between the first wafer level optical lens module and the second wafer level optical lens module, and driving the first wafer level optical lens module or the second crystal The circular optical lens module produces displacement to control the spacing. 10. The optical zoom system of claim 9, further comprising at least one gap layer disposed between the first transparent substrate and the photo sensor, the first transparent substrate and the focus motor Between or between the second transparent substrate and the focus motor. & 11. The optical zoom system of claim 1, wherein the material of the at least one gap layer is a light-shielding material in 18 201122702 WP-2 (9) 9-0007-TW 32344twf.d〇c/n. 12. The optical zoom system of claim 9, wherein the at least one first lens and the at least one second lens comprise a convex lens or a concave lens. The optical zoom system of claim 9, wherein the focus motor comprises a telescopic structure, wherein the telescopic structure and the first wafer level optical lens module or the second wafer level optical The lens module is connected, and the first wafer level optical lens module or the second wafer level optical lens module is respectively controlled to control the spacing. 14. The optical zoom system of claim 13, wherein the telescopic structure comprises a threaded structure. 15. The optical zoom system of claim 9, wherein the focus motor is a stepper motor. 16. The optical zoom system of claim 9, wherein the photosensor is a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled device (charge coupled) Devices, CCDs).
TW98145387A 2009-12-28 2009-12-28 Optical zoom system TWI421612B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98145387A TWI421612B (en) 2009-12-28 2009-12-28 Optical zoom system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98145387A TWI421612B (en) 2009-12-28 2009-12-28 Optical zoom system

Publications (2)

Publication Number Publication Date
TW201122702A true TW201122702A (en) 2011-07-01
TWI421612B TWI421612B (en) 2014-01-01

Family

ID=45046307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98145387A TWI421612B (en) 2009-12-28 2009-12-28 Optical zoom system

Country Status (1)

Country Link
TW (1) TWI421612B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470296B (en) * 2012-05-25 2015-01-21 Himax Tech Ltd Wafer level lens and manufacturing method of the same
TWI486623B (en) * 2012-10-05 2015-06-01 Himax Tech Ltd Wafer level lens, lens sheet and manufacturing method thereof
TWI572418B (en) * 2012-10-04 2017-03-01 奇景光電股份有限公司 Assembling method of image capturing device and image capturing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022594A1 (en) * 2004-05-18 2006-01-19 Citizen Electronics Co., Ltd., Fujiyoshida Imaging device
TWI267208B (en) * 2006-01-18 2006-11-21 Visera Technologies Co Ltd Image sensor module
US7593630B2 (en) * 2006-07-24 2009-09-22 Foxconn Technology Co., Ltd. Built-in multidriver device for a camera zoom lens
TWM315846U (en) * 2006-11-16 2007-07-21 Ling-Yuan Tseng Automatic focusing action lens module
CN101206298A (en) * 2006-12-20 2008-06-25 鸿富锦精密工业(深圳)有限公司 Automatic focusing device
TWM329797U (en) * 2007-08-16 2008-04-01 Tseng Ling Yuan Focal length measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470296B (en) * 2012-05-25 2015-01-21 Himax Tech Ltd Wafer level lens and manufacturing method of the same
TWI572418B (en) * 2012-10-04 2017-03-01 奇景光電股份有限公司 Assembling method of image capturing device and image capturing device
TWI486623B (en) * 2012-10-05 2015-06-01 Himax Tech Ltd Wafer level lens, lens sheet and manufacturing method thereof
US9121973B2 (en) 2012-10-05 2015-09-01 Himax Technologies Limited Wafer level lens, lens sheet and manufacturing method thereof

Also Published As

Publication number Publication date
TWI421612B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
TWI495335B (en) Lens module and method of operating the same
US9813679B2 (en) Solid-state imaging apparatus with on-chip lens and micro-lens
US9647026B2 (en) Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
JP5503209B2 (en) Imaging device and imaging apparatus
KR102396886B1 (en) Semiconductor device and electronic equipment
US8837057B2 (en) Optical unit, method of producing the same, and image pickup apparatus
TW200818897A (en) Image sensor and digital camera
TW201225273A (en) Solid-state imaging device and electronic apparatus
TW201235706A (en) Image capture lens modules and packaged image capture devices
US10170516B2 (en) Image sensing device and method for fabricating the same
TWI393932B (en) Image capture lens
JP5333493B2 (en) Back-illuminated image sensor and imaging apparatus
US8190013B2 (en) Optical system
TW201122702A (en) Optical zoom system
JP5434121B2 (en) Back-illuminated image sensor and imaging apparatus
JP4743294B2 (en) Back-illuminated image sensor and imaging apparatus
TWI703350B (en) Thin film optical lens device
JP2010097015A (en) Lens drive device
JP2006229116A (en) Solid state image sensor
JP2001036776A (en) Image pickup device
JP2013157622A (en) Back side illumination imaging element and imaging apparatus
TWI739557B (en) Moiré imaging device
JP2018160912A (en) Imaging element and imaging device
JP2009098462A (en) Solid state imaging device and imaging apparatus mounting the same, and method of manufacturing solid state imaging device
JP2015057862A (en) Imaging device and imaging apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees