TW201122040A - Polymer composite material and manufacturing method thereof. - Google Patents

Polymer composite material and manufacturing method thereof. Download PDF

Info

Publication number
TW201122040A
TW201122040A TW98146040A TW98146040A TW201122040A TW 201122040 A TW201122040 A TW 201122040A TW 98146040 A TW98146040 A TW 98146040A TW 98146040 A TW98146040 A TW 98146040A TW 201122040 A TW201122040 A TW 201122040A
Authority
TW
Taiwan
Prior art keywords
polymer composite
carbon
composite material
polymer
carbon nanotube
Prior art date
Application number
TW98146040A
Other languages
Chinese (zh)
Other versions
TWI398472B (en
Inventor
Chia-Hsun Chen
Hsu-Chiang Kuan
Chen-Feng Kuan
Hsin-Chin Peng
Kun-Chang Lin
Min-Chi Chung
Jhen-Cheng Wang
Shen-He Huang
Lung-Chieh Wu
Chin-Lung Chiang
Original Assignee
Univ Far East
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Far East filed Critical Univ Far East
Priority to TW98146040A priority Critical patent/TWI398472B/en
Publication of TW201122040A publication Critical patent/TW201122040A/en
Application granted granted Critical
Publication of TWI398472B publication Critical patent/TWI398472B/en

Links

Abstract

The invention provides a polymer composite material and its manufacturing method. The manufacturing method comprises steps of dispersing carbon nano-tube, which is not modified yet, into an organic solvent, and then adding an unsaturated monomer having at least three carbon-carbon double bond functional groups and a free radical initiator, grafting the foregoing unsaturated monomer onto the carbon nano-tube through stirring and mixing, so as to obtain a modified carbon nano-tube. The modified carbon nano-tube is then blended with polyolefin polymer to obtain the polymer composite material of the invention. The modified carbon nano-tube has better material dispersibility. Therefore, the mechanical property and electric performance of molten materials can be obviously improved at lower usage.

Description

201122040 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種高分子複合材料及其製造 法,特別是有關含有改質碳奈米管之高分子複合材料及 其製造方法。 σ 【先前技術】 碳奈米管(carbon nanotube,CNT)係約十年前由日本 S. Ij ima所發現’由於碳奈未管具有特殊的性質,包括低 密度、高強度、高韌性、可撓曲、高表面積、表面曲产 大,以及具有獨特的電學性質與極佳的導電性和傳熱 性,所以吸引許多研究工作者專注於開發其可能的應用 方式,例如複合材料、微電子材料、平面顯示II、無、線 通訊、燃料電池、鋰離子電池等。石墨被認為是半導體 金屬材料,而與石墨一樣由碳原子所構成之碳奈米管貝,J 依其對稱性可分成半導體及導體的性質,若碳奈米管能 分散於高分子基材中,應能補強高分子缺乏機械強度與 财熱性質的缺點。 導電性高分子材料之用途,依照不同之電阻需求, 主要包括四部份:第一為抗靜電材料;第二為靜電放電 (electro-static discharge, ESD)防護;第三為電磁波/無線 電 波(electromagnetic interference/radio frequency interference, EMI/RFI)遮蔽;第四為導電接著部份。因 此,直接在高分子中做導電改質,如聚苯胺(polyaniline) 201122040 等、或添加導電性填充劑,如導電碳黑或金屬粉末,以 增加高分子材料避免電荷聚集或轉移電荷的能力期限。 如下表一所示之導電性高分子材料之用途分類。 表一 用途 電阻範圍 導電材料或技術 抗靜電 109 〜1012Ω/αη2 四級銨鹽、胺類化合物、磷酸酯類、 脂肪酯類、聚乙烯醇類 靜電消散 ESD傳導 105 〜]09n/cm2 <105n/cm2 導電碳黑、導電纖維、導電塗料、 表面金屬化 EMI/RFI 遮蔽 <105n/cm2 導電纖維(如不鏽鋼絲、碳纖維、石 墨纖維)、銅、鎳、銀、導電塗料、 表面金屬化(如電鍍、真空蒸著) 導電接著 劑、塗料 < 105 Ω/cm2 導電銀膠、摻入銅,鎳,銀 等導電塗料 然而,先前技術將純碳奈米管添加入一般高分子複 合材料(如聚烯烴高分子材料)内時,僅靠些微的凡得瓦 爾力使其混合於其中,而導致所產生之界面物性問題, 如材料彎曲強度不足及電路導通不佳等問題無法克服。 此外,碳奈米管為十分昂貴的材料,其販售時以公克為 單位,在高分子複合材料中添加碳奈米管亦會增加成 本。因此,如何克服上述的材料介面物性問題,以製造 出含碳奈米管之高分子複合材料,同時降低碳奈米管的 用量且可達到想要的功效,是一個極待解決的問題。 【發明内容】 有鑑於此,本發明之目的就是在提供一種含改質碳 201122040 奈米管的冑分子複合材料及其冑 =Γ米管、,即可使碳奈米管很均勻 刀土 ,進而增加高分子的機械強度與耐熱性質r 此含碳奈米管的高分子複合 氫鍵的效益,得以香服#m度王,、彳貝鍵結及 奈米管作用時,所複合材料會與純碳 不足及電路導二::面物性問題如材料變曲強度 =發明之目的,提出一種高分子 造方法,其步驟包括先將碳夺米營 Υ之氣 自由萁扣it夕二反-碳雙鍵官能基之不飽和單體及 由基起始劑加入上述有機溶劑中,使1萨 始劑之活化反應,而使具有至少-碳 r:單體共價鍵結於碳奈米管上,以取 =。將所祕賴狀改f碳㈣f,與 合用、掺合用或混合用之機器中進行混練,即 ι件本發明之高分子複合材料。 其 以 根據本發明之目的,提出—種高分子複合㈣ 係由上述製造方法所製備得,其包括聚烯烴高分子 及均勻分散於此聚烯烴高分子中的改質碳奈米管。 ,上所述’依本發明之高分子複合材料及其製造方 /去’其可具有一或多個下述優點: 械=)本發1之冋分子複合材料,其在電氣性質、機 … 『生買方面,係展現出低比重、高強 又、向勤性、極大的表面能及f曲延展性,且具有高的 201122040 化學安定性。 料八性本:明:'ί得之ί質碳奈米管係具有較佳之材 之:八子二的用量即達到顯著改善融合後所得 之同刀子稷合材料的機械性質及電氣性質。 【實施方式】 以下將參照相關圖式,筇 高分子複合㈣及其製錄佳實施例之 米管斤ϊί「碳奈米管」-詞,除了表示碳奈 ^ 、匕3石反奈米線(Carbon nan〇wires)、碳夺米 f維或碳奈米球。碳奈米管的製造技術一般多用 其已經為業界所習知,並丄場:: 商品化之碳奈米管直接使用本發明之貫施例中係購買 閱第1圖’其係為本發明之高分子複合材料之 之步驟流程圆。其步驟可包括:步驟川,將 未經改質之碳奈米管分散於有機溶劑中。步驟S12, / ^有至少三個礙_碳雙鍵官能基之不飽和單體及σ 土始蜊於上述含有碳奈米管之有機溶 反:’而使上述不飽和單趙接枝於碳奈米管,=仃 2碳t米管,以及步驟阳,將此改質碳奈3:; 混練’以取得高分子複合材料u之機輯行 其中,妷奈米管可包括單壁碳奈米管及多壁碳奈米 201122040 管(multi-wall cabon nanotubes, MWNTs),而聚稀烴高分 子可包括聚乙烯(PE)、聚丙烯(PP)或聚乙烯烴彈性體 (POE),且改質碳奈米管對聚烯烴高分子之重量比較佳係 為 0.1%至 5.0%。 所選用具有至少三個碳-碳雙鍵官能基之不飽和單 體可包括三聚氰酸三烯丙醋(triallyl isocyanurate, TAIC)、三經曱基丙烧三丙浠酸酯(trimethylolpropane triacrylate, TMPTA)、 季戊四醇三丙烯酸醋 ❿(pentaerythritol triacrylate,PETRA)、乙氧化三經甲基丙 疼三丙烯酸醋(ethoxylated trimethylolpropane triacrylate, 3EOTMPTA)、丙氧化甘油三丙稀酸酯(propoxylated glycerol triacrylate,POGTA)、三丙烯醯氧乙基填酸醋 (tris-Acryloyloxyethyl phosphate,TAOEP)、或季戊四醇 四丙稀酸酉旨(pentaerythritol tetraacrylate,PETEA)。 所使用的有機溶劑可包括丙酮、四氫吱喃 (tetrahydrofuran, THF) 、N_ 曱基-2- 〇比口各烧酮 (N_methyl-2-pyrrolidone, NMP)、N,N-二甲基乙醢胺 (,Ν,Ν-dimethylacetamide; DMAc)、二曱基曱酼胺 (dimethylformamide, DMF)、二甲亞石風(dimethylsulfoxide, DMSO)、m-曱酚(m-cresol)、氯化甲烧、氣化乙烧、苯、 二曱苯或氣苯。自由基起始劑則可包括偶氮化合物或過 氧化物,其中過氧化物可包括過氧化苯曱醯(benzoyl peroxisde,BPO)或過氧化二異丙苯(dicumyl peroxide, DCP)。 201122040 此外,本發明之高分子複合材料之製 更可提供纖維補強材料、無機填料或有 ^=要 :質二奈米管及聚烯烴高分子混合。此纖維補強以 維(例如玻璃纖維或碳纖維)。 '' 或…板纖 其中上述機器係為布斯混合器 C、加壓混合器、熱壓機、反應槽】;:儀 驟,製粒步驟係跟據目的㈣選用押出成型、射出Y型步 熱壓成型、中空成型或發泡成型之加工程序 f成且 有實用形式的高濃度母粒或成型品。 成八 =參閱第2圖,其係為本發明之高分子複合材料之 :實施?之化學結構圖。在此實施例中,其未 管f以多壁碳奈米管來實施’所選用之有機溶劑 為丙酮,自由基起始劑則使用過氧化苯甲酿(BP0),具 至少三個碳-碳雙鍵官能基之不飽和單體係以三聚i酸 旨(—TAIC)來實施’而所選用之聚烯烴高分子則以 ’ Λ貫施。冏中,此改質碳奈米管的製造方式係為: 先將I.5克未經改質之碳奈米管分散於3〇〇毫升的丙 酮中’再經由超音波震盈约9〇分鐘使碳奈米管能均句分 政於丙酮中。震盪完後,加入包括過氧化苯甲醯與聚乙 烯之改質劑,並使其於加熱攪拌器_溫度下槐摔* J夺使自由基起始劑能完整的反應。之後過濾時s反 覆的過/慮3至4次以去除殘餘之自由基起始劑。清洗完 畢後再使用真空烘箱以65〇c供烤24小時,以去除殘留 201122040 的水分,即得到改質碳奈米管(以下係以TAIC-g-CNT表 示)。接著’將改質碳奈米管依各種比例(分別為0, 0.5, 1, 2, 4 wt%)秤量所需的含量,並利用塑譜儀使其與聚乙烯 作混練,即製得碳奈米管/聚乙烯複合材料(以下係以 TAIC-g-CNT/PE複合材料表示)。其係將不同比例改質碳 奈米管與聚乙烯之分別置入螺桿溫度1650°C之塑譜儀 (Brabender)中均勻攪拌5分鐘,之後再到熱壓機成壓成 長125mm、寬110mm且厚3mm的試片,其熱壓機溫度 # 為1650°C,熱壓時間200秒。且試片利用線切機裁成寬 13mm的試片,以便做機械性質測試。 本發明所提供之具有至少三個碳-碳雙鍵官能基之 不飽和單體與未改質碳奈米管之反應,因立體障礙關 係,不飽和單體僅有部分的碳-碳雙鍵官能基會與碳奈米 管表面的碳-碳雙鍵官能基起共價鍵結(covalent bond)反 應。所以經改質的碳奈米管仍含有未反應之碳-碳雙鍵官 能基’可與聚烯烴高分子的碳-碳雙鍵官能基產生共價鍵 • 結(covalent bond),其中,共價鍵之作用力約為50〜200 Kcal/mole,係大於凡得瓦爾力(0.5〜2Kcal/mole)。因此, 此經改質之碳奈米管在聚烯烴高分子中有較好的分散 性,可提升高分子複合材料之電氣性質及機械性質。 機械性質檢測為撿定材料各種機械強度的依據,在 探讨中’可分為抗拉性質(tensiie pr0perty)、耐衝擊強度 (impact strength)及熱變形溫度(heat deflecti〇n temperature,HDT)。為了探討本發明之改質碳奈米管在 混合聚乙烯過程中,在不同成分的組成下,比較各組的 201122040 機械性質,探討出是否添加改質碳奈米管含量越多,就 會越提升高分子複合材料的機械性質。此外,亦探討改 質碳奈米管的添加含量對其所製得之高分子複合材料的 熱性質與電氣性質亦為何。本發明之一實施例係以第2 圖所製得之TAIC-g-CNT/PE作為實驗組;且係以添加未 改質的碳奈米管於聚乙烯扣進行混練所製得之高分子複 合材料(以下係以CNT/PE複合材料表示)作為控制組;而 添加以馬來酸酐(maleic anhydride, MA)進行表面改質之 另一改質碳奈米管於聚乙烯中,進行混練所製得之高分 · 子複合材料(以下係以MA-g-CNT/PE複合材料表示)作為 對照組。其實驗結果如下所示: 請參閱第3圖,其係為上述各高分子複合材料(實驗 組、控制組及對照組)之熱變形溫度對碳奈米管含量之曲 線圖。由圖中可觀察到,隨著碳奈米管含量的增加5耐 熱性也相對的增加。其中,CNT/PE複合材料於碳奈米 管含量為Owt%時的熱變形溫度為67.9°C,與其含量為 4wt%時的熱變形溫度72.5°C相差了 4.6°C,可知碳奈米 · 管只需加少許的含量,其熱變形溫度即可有很明顯的增 加。而以改質劑改質過的MA-g-CNT/PE複合材料與 TAIC-g-CNT/PE複合材料和未改質的CNT/PE複合材料 做比較,可發現經過MA改質過之MA-g-CNT/PE複合 材料的熱變形溫度係由69.2°C增加72.9°C (增加3.7°C), 相同的經過TAIC改質過的之TAIC_.g-CNT/PE複合材料 的熱變形溫度則由70,9°C增加75.1°C (增加4.2°C)。此結 果可以知道經過TAIC改質的碳奈米管,因其網狀交聯 10 201122040 •的結構,在熱變形溫度上具有較佳的提升效果。 凊參閱第4圖,其係為上述各高分子複合材料(實驗 組、控制組及對照組)之拉伸強度對碳奈米管含量之曲線 圖。本發明之抗拉性質測試,係使用Instr〇n萬能試驗 機’依ASTM規範進行拉伸(ASTM D638, 5〇匪/論)。 圖中,可得知添加經過改質的碳奈米管所製得之高分子 複合材料在拉伸強度上有明顯的改變,且隨碳奈米管含 篁的增加抗拉性質也跟著增加。其中,未改質的CNT/pE 鲁複合材料可從碳奈米管含量〇〜%的78.8 1^升至4\^%的 85.8 kg (增加108%)。而經改質的碳奈米管與未改質的 碳奈米管相比較上,含有改質過的碳奈米管之 MA_g-CNT/PE複合材料與TAIC-g-CNT/PE複合材料, 在碳奈米管含量0.5wt%〜2wt%的拉伸強度相對的比未改 質的抗拉強度來的南。而以碳奈米管含量2 wt%來看,未 改質的CNT/PE複合材料為83.6 kg,與改質過的 TAIC-g-CNT複合材料之86.9 kg相差了 3.3 kg。此結果 • 是由於碳奈米管在高密度的聚乙烯(HDPE)中有較佳的 分散之故,也就是碳奈米管均勻分散的結果使得與聚乙 烯基材之間有良好的界面。當基材與纖維之間若沒有良 好的界面時,通常複合材料的拉伸強度會隨著纖維含量 的增加而顯著的下降。為了使碳奈米管與基材間具有化 學鍵結或物理鍵結,本發明係利用自由基反應的方式將 TAIC接枝到碳奈米管上(TAIC-g-CNT),使與基材(PE-g-TAIC)間產生相容的效益,而能改善基材與碳奈米管之間 的界面,得以大幅提昇TAIC-g-CNT/PE複合材料之物 11 201122040 性。因此,本發明經改質的碳奈米管(TAIC_g_CNT)可增 加了與高分子複合材料的相容性’且此經改質的碳奈米 管與高分子複合材料之間有較強的共價鍵結或引力的存 在’可有效提升此高分子複合材料物性之拉伸強度。 请參閱第5圖,其係為上述各高分子複合材料(實驗 組、控制組及對照組)之缺口耐衝擊強度對碳奈米管含量 之曲線圖。本發明之耐衝擊試驗,係以艾式缺口耐衝擊 強度(Notched Izod Impactstrength)來實施。由此圖可得 知’碳奈米管的增加在衝擊強度上會有減弱的趨勢,然 經過改質的碳奈米管在衝擊上都比未改質的好,而相對 的碳奈米管含量的增加,衝擊強度也是有下降的趨勢。 碳奈米管含量0.5 wt%的未經改質的CNT/PE複合材料和 改質過的MA-g-CNT/PE複合材料相比較,衝擊值可由 0.19 J/M上升到0.31 J/M,可知改質過的碳奈米管在0.5 wt%的衝擊值最大。而網狀交聯之TAIC-g-CNT/PE複合 材料對衝擊強度仍較未經改質的CNT/PE複合材料來的 好。 請參閱第6及7圖,其係分別為上述各昂分子複合 材料(實驗組、控制組及對照組)之熱重分析儀(TGA)微分 曲線圖與TGA最大熱裂解圖。圖中顯示碳奈米管比例的 增加可以提高聚乙烯在熱重'損失方面的溫度。但是經過 改質的碳奈米管在熱裂解溫度的表現並沒有與未改質的 好,相對的未改質的碳奈米管含量在〇wt%之469.12°C到 含量4wt%之499.36°C之中增加了 30°C,由此可知碳奈 米管只需加入少許的含量,在基材中可以提升基材的耐 201122040 熱溫度,而改質過的碳奈米管表面在高溫時表面的改質 劑會先被裂解掉而導致耐熱溫度下降,且結果顯示改質 過的碳奈米管在熱裂解溫度中以TAIC的系統在低碳奈 米管含量時表現最好,顯示網狀結構有助於複合材料耐 熱性質的提昇。 請參閱第8圖,其係為上述各高分子複合材料(實驗 組、控制組及對照組)之示差熱分析儀(DSC)曲線圖。DSC 分析主要是在測定高密度聚乙烯和改質過的多壁碳奈米 • 管之間的相容性,並瞭解多壁碳奈米管對高密度聚乙烯 結晶性質的影響。圖中為2wt%的碳奈米管,由圖中可以 得知碳奈米管增加對於軟化溫度與融點溫度並沒有提升 的效果。經過改質與未改質的碳奈米管的融點溫度在 127°C〜130°C之間,所以顯示未改質碳奈米管與改質碳奈 米管在 DSC (Differential Scanning Calorimeter)中並沒有 多大的改變,只能略微提昇聚乙烯的結晶溫度。 請參閱第9圖,其係為上述各高分子複合材料(實驗 ® 組、控制組及對照組)之表面電阻值對碳奈米管含量之曲 線圖。一般根據物質之電性可將之分為三類:導體 (conductor)、半導體(semiconductor)及絕緣體(insulator) 或介電質(dielectric)。想像一個簡單的原子模型,原子 是由帶正電的原子核及圍繞其外的電子所組成的。則導 體原子最外層的電子所受的束缚力很弱,可以很容易地 從一原子遷移到另一原子。大多數的金屬都屬這種類 型。絕緣體或介電質原子中的電子,則被侷限只能在軌 道上運動;在正常情況下,它們不能自由移動,甚至施 13 201122040 加外電m半導體的電性則在導體和絕緣體之間, 它們只有少量的自由移動電荷。若以能帶理論來推測整 體複合材料導電機制即可得知,假如所加人的導電填充 物,能以極小的距離彼此間隔著,或甚至互相碰觸,電 子就會以躍遷或傳導的方式,將電荷傳遞並消散至表 面’而不會累積在薄膜内部。由第9圖中可看出未經改 質的CNT/PE複合材料的表面阻抗值在含量以下呈 現相當不好之分散性,在3 w t %時之表面阻抗值已達一平 衡,此可能因過多的碳奈求管已超過其門檀渗透 (threshold percolation),因此無法再降低其導電性。鈇而 有機無機之間的仙力若有提升,在無機物之分散性上 :會有很大的不同’在加人不同改質後可利用表面阻抗 +不同就可觀察碳奈米管在此兩個系統中的分散情形。 統中’因為碳奈米管靠些微的氫鍵、極性偶極 一凡付瓦力與PE-g-MA主鍵相互吸引,而在TAIC的 2裡,因共價鍵形成,進而幫助礙奈米管在複合材料 内=散。如圖所示,MA_g_CNT/pE複合材料的阻抗在 w 〇時已下降至1000fi/cm2,有明顯之降幅,由其比 ===τ/ΡΕ #合材料’而taic系統,是由 聚乙烯之間經共價鍵結的系統,雖然 分散性方面效果稍為較弱。 目身聚集表現在 因^由^實_之實驗結果,可得知本發明經 成官在聚乙烯中有較好的分散性,可兼顧達 成用較低的用量且提升高分子複合材料之電氣性 201122040 效0 離 更 以所述僅為舉例性,而非為限制性 本發明之精神與範疇,而者 何未脫 ^ A 對其進行之等效修改或變 ,均應包含於後附之巾請專利範圍中。 【圖式簡單說明】 第1圖係、為本發明之高分子複合材料之製造方法之步 驟流程圖; 第2圖係為本發明之高分子複合材料之一實施例之化 學結構圖; 第3圖係為各高分子複合材料(實驗組、控制組及對照 組)之熱變形溫度對碳奈米管含量之曲線圖; 第4圖係為各高分子複合材料(實驗組、控制組及對照 組)之拉伸強度對碳奈米管含量之曲線圖; 第5圖係為各高分子複合材料(實驗組、控制組及對照 組)之缺口耐衝擊強度對碳奈米管含量之曲線 圖; 第6圖係為各高分子複合材料(實驗組、控制組及對照 組)之TGA微分曲線圖; 第7圖係為各高分子複合材料(實驗組、控制組及對照 組)之TGA最大熱裂解圖; 第8圖係為各高分子複合材料(實驗組、控制組及對照 組)之DSC曲線圖;以及 15 201122040 第9圖係為各高分子複合材料(實驗組、控制組及對照 組)之表面電阻值對碳奈米管含量之曲線圆。 【主要元件符號說明】 S11-S13 :流程步驟。201122040 VI. Description of the Invention: [Technical Field] The present invention relates to a polymer composite material and a method for producing the same, and more particularly to a polymer composite material containing a modified carbon nanotube and a method for producing the same. σ [Prior Art] Carbon nanotubes (CNTs) were discovered by S. Ijima of Japan about a decade ago. 'Because of the special properties of carbon nanotubes, including low density, high strength, high toughness, and flexibility Flex, high surface area, large surface curvature, and unique electrical properties with excellent conductivity and heat transfer, attracting many researchers to focus on developing possible applications, such as composites, microelectronic materials, Plane display II, no, line communication, fuel cell, lithium ion battery, etc. Graphite is considered to be a semiconducting metal material, and carbon nanotubes composed of carbon atoms like graphite, J can be divided into semiconductor and conductor properties according to its symmetry, if the carbon nanotubes can be dispersed in the polymer substrate. It should be able to reinforce the shortcomings of the polymer lacking mechanical strength and financial properties. The use of conductive polymer materials, according to different resistance requirements, mainly includes four parts: the first is antistatic material; the second is electrostatic-static discharge (ESD) protection; the third is electromagnetic wave/radio wave ( Electromagnetic interference/radio frequency interference, EMI/RFI); fourth is the conductive follower. Therefore, conductive modification directly in the polymer, such as polyaniline (polyaniline) 201122040, or the addition of conductive fillers, such as conductive carbon black or metal powder, to increase the ability of polymer materials to avoid charge accumulation or transfer charge . The use classification of the conductive polymer materials shown in Table 1 below. Table 1 Application Resistance Range Conductive Material or Technology Antistatic 109 ~1012Ω/αη2 Quaternary Ammonium Salt, Amine Compound, Phosphate, Fatty Ester, Polyvinyl Alcohol Static Dissipation ESD Conduction 105 ~]09n/cm2 <105n /cm2 Conductive carbon black, conductive fiber, conductive coating, surface metallized EMI/RFI shielding <105n/cm2 conductive fiber (such as stainless steel wire, carbon fiber, graphite fiber), copper, nickel, silver, conductive coating, surface metallization ( Such as electroplating, vacuum evaporation) Conductive adhesive, coating < 105 Ω / cm2 conductive silver paste, doped copper, nickel, silver and other conductive coatings However, the prior art adds pure carbon nanotubes into the general polymer composite ( For example, when the polyolefin polymer material is used, only a slight van der Waals force is mixed therein, and the problem of interface physical properties, such as insufficient bending strength of the material and poor circuit conduction, cannot be overcome. In addition, carbon nanotubes are very expensive materials, which are sold in grams, and the addition of carbon nanotubes to polymer composites also increases costs. Therefore, how to overcome the above-mentioned material interface physical property problem to manufacture a polymer composite material containing carbon nanotubes while reducing the amount of carbon nanotubes and achieving desired effects is an extremely problem to be solved. SUMMARY OF THE INVENTION In view of the above, the object of the present invention is to provide a ruthenium molecular composite material containing a modified carbon 201122040 nano tube and a 胄=glutinous rice tube, so that the carbon nanotube tube can be evenly ground. Further increasing the mechanical strength and heat resistance of the polymer. The benefit of the polymer composite hydrogen bond containing the carbon nanotubes is that the composite material will be used when the scent is used, the mussel bond and the nanotubes act. Insufficient pure carbon and circuit guide 2:: surface property problems such as material bending strength = the purpose of the invention, a method for polymer production is proposed, the steps of which include firstly, the carbon-deficient gas is freely buckled. An unsaturated monomer having a carbon double bond functional group and a base initiator added to the above organic solvent to cause activation of the first initiator, and having at least a carbon r: monomer covalently bonded to the carbon nanotube On, to take =. The secreted material is changed to f carbon (four) f, and mixed with a machine for mixing, blending or mixing, i.e., the polymer composite material of the present invention. According to the object of the present invention, a polymer composite (IV) is prepared by the above-described production method, which comprises a polyolefin polymer and a modified carbon nanotube uniformly dispersed in the polyolefin polymer. The above-mentioned polymer composite material according to the present invention and its manufacturer/description can have one or more of the following advantages: Mechanical =) The molecular composite material of the present invention, which is in electrical properties, machine... "In terms of raw materials, the company exhibits low specific gravity, high strength, flexibility, great surface energy and f-ductility, and has a high chemical stability of 201122040. The material is bisexual: Ming: 'The quality of the carbon nanotubes has a better material: the amount of the eight-two is to achieve a significant improvement in the mechanical properties and electrical properties of the same knife-kneaded material obtained after fusion. [Embodiment] Hereinafter, reference will be made to the related drawings, 筇 polymer composite (4) and its preparation of the preferred embodiment of the rice tube ϊ 「 "carbon nanotube" - word, in addition to the carbon naphthalene, 匕 3 stone anti-nanoline (Carbon nan〇wires), carbon capture rice or carbon nanosphere. The manufacturing technology of carbon nanotubes is generally known in the industry, and the market is as follows: Commercialized carbon nanotubes are directly used in the embodiment of the present invention. The step of the polymer composite material is round. The steps may include the step of dispersing the unmodified carbon nanotubes in an organic solvent. Step S12, / ^ having at least three unsaturated monomers having a carbon double bond functional group and σ soil starting from the above organic reverse reaction containing the carbon nanotubes: 'the above unsaturated mono Zhao is grafted to the carbon Nano tube, = 仃 2 carbon t meter tube, and step yang, this modified carbon nai 3:; kneading 'to obtain the polymer composite material u machine series, the 妷 nanotube tube can include single-wall carbon Rice tubes and multi-wall cabon nanotubes (MWNTs), and the polyolefin polymer may include polyethylene (PE), polypropylene (PP) or polyvinyl hydrocarbon elastomer (POE), and The modified carbon nanotubes preferably have a weight of the polyolefin polymer of 0.1% to 5.0%. Unsaturated monomers selected to have at least three carbon-carbon double bond functional groups may include triallyl isocyanurate (TAIC), trimethylolpropane triacrylate (trimethylolpropane triacrylate). TMPTA), pentaerythritol triacrylate (PETRA), ethoxylated trimethylolpropane triacrylate (3EOTMPTA), propoxylated glycerol triacrylate (POGTA), Tris-Acryloyloxyethyl phosphate (TAOEP), or pentaerythritol tetraacrylate (PETEA). The organic solvent used may include acetone, tetrahydrofuran (THF), N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamidine. Amine (, Ν-dimethylacetamide; DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), m-cresol (m-cresol), methane chloride, Gasification of E-burn, benzene, diphenyl or benzene. The free radical initiator may then comprise an azo compound or a peroxide, wherein the peroxide may comprise benzoyl peroxisde (BPO) or dicumyl peroxide (DCP). In addition, the polymer composite material of the present invention can further provide a fiber reinforcing material, an inorganic filler or a mixture of a polyester nanotube and a polyolefin polymer. This fiber is reinforced (for example, glass fiber or carbon fiber). '' or ... board fiber, the above-mentioned machine is Buss mixer C, pressurized mixer, hot press, reaction tank];: instrument step, granulation step is based on the purpose (4) extrusion molding, injection Y-step The hot press forming, hollow forming or foam forming process is a high concentration masterbatch or molded article in a practical form. Cheng Ba = see Figure 2, which is the polymer composite material of the present invention: implementation? Chemical structure diagram. In this embodiment, the untreated tube f is implemented as a multi-walled carbon nanotube. The selected organic solvent is acetone, and the radical initiator is benzoic peroxide (BP0) with at least three carbons. The unsaturated single system of the carbon double bond functional group is carried out by the trimeric i acid (-TAIC), and the selected polyolefin polymer is used in a continuous manner. In the middle, the modified carbon nanotubes are manufactured by first dispersing 1.5 grams of unmodified carbon nanotubes in 3 milliliters of acetone' and then transmitting ultrasonic waves by about 9 inches. Minutes allow the carbon nanotubes to be evenly divided into acetone. After the shaking, a modifier including benzoyl peroxide and polyethylene is added, and the mixture is heated at a temperature of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ After the filtration, s is over/under 3 to 4 times to remove residual free radical initiator. After the cleaning, the vacuum oven was used to bake for 24 hours at 65 ° C to remove the residual water of 201122040, and a modified carbon nanotube (hereinafter referred to as TAIC-g-CNT) was obtained. Then, 'the modified carbon nanotubes are weighed according to various ratios (0, 0.5, 1, 2, 4 wt%, respectively), and the mixture is mixed with polyethylene by a spectrometer to obtain carbon. Nanotube/polyethylene composite (hereinafter referred to as TAIC-g-CNT/PE composite). The different proportions of the modified carbon nanotubes and the polyethylene were respectively placed in a fiber spectrometer (Brabender) with a screw temperature of 1,650 ° C for 5 minutes, and then the hot press was grown to a thickness of 125 mm and a width of 110 mm. A test piece having a thickness of 3 mm has a hot press temperature of 1650 ° C and a hot press time of 200 seconds. The test piece was cut into a test piece having a width of 13 mm by a wire cutter to perform a mechanical property test. The reaction of the unsaturated monomer having at least three carbon-carbon double bond functional groups provided by the invention and the unmodified carbon nanotubes has only a part of carbon-carbon double bonds in the unsaturated monomer due to steric hindrance The functional group will react with the carbon-carbon double bond functional group on the surface of the carbon nanotube to covalent bond. Therefore, the modified carbon nanotube still contains an unreacted carbon-carbon double bond functional group, which can generate a covalent bond with a carbon-carbon double bond functional group of the polyolefin polymer, wherein The force of the valence bond is about 50~200 Kcal/mole, which is greater than the van der Waals force (0.5~2Kcal/mole). Therefore, the modified carbon nanotube has good dispersibility in the polyolefin polymer, and can improve the electrical properties and mechanical properties of the polymer composite. The mechanical property test is the basis for determining the various mechanical strengths of the material. In the discussion, it can be divided into tensile properties (tensiie pr0perty), impact strength and heat deflection temperature (HDT). In order to investigate the mechanical properties of the modified carbon nanotubes of the present invention in the process of mixing polyethylene, the composition of the different components is compared, and the more the modified carbon nanotubes are added, the more Improve the mechanical properties of polymer composites. In addition, the thermal and electrical properties of the polymer composites produced by the modified carbon nanotubes are also discussed. One embodiment of the present invention is a TAIC-g-CNT/PE prepared in FIG. 2 as an experimental group; and a polymer obtained by mixing an unmodified carbon nanotube with a polyethylene buckle. The composite material (hereinafter referred to as CNT/PE composite material) was used as a control group; and another modified carbon nanotube tube modified with maleic anhydride (MA) was added to the polyethylene to carry out the mixing operation. The obtained high-grade sub-composite (hereinafter referred to as MA-g-CNT/PE composite) was used as a control group. The experimental results are as follows: Refer to Fig. 3, which is a graph of the heat distortion temperature versus carbon nanotube content of each of the above polymer composite materials (experimental group, control group, and control group). It can be observed from the figure that as the carbon nanotube content increases, the heat resistance also increases relatively. Among them, the heat distortion temperature of the CNT/PE composite material when the carbon nanotube content is Owt% is 67.9 ° C, and the heat distortion temperature of 72.5 ° C when the content is 4 wt% is 4.6 ° C, which is known as carbon nano The tube only needs to add a small amount, and its heat distortion temperature can be obviously increased. Compared with TAIC-g-CNT/PE composites and unmodified CNT/PE composites, MA-g-CNT/PE composites modified with modifiers can be found in MA modified by MA. The heat distortion temperature of the -g-CNT/PE composite increased by 72.9 °C from 69.2 °C (by 3.7 °C), and the same TAIC_.g-CNT/PE composite heat distortion temperature was modified by TAIC. Then increase by 75.1 ° C (increased 4.2 ° C) from 70, 9 ° C. As a result, it can be known that the TAIC modified by the TAIC has a better lifting effect at the heat distortion temperature due to the structure of the mesh cross-linking 10 201122040.第 Refer to Fig. 4, which is a graph of tensile strength versus carbon nanotube content for each of the above polymer composite materials (experimental group, control group, and control group). The tensile property test of the present invention was carried out in accordance with ASTM specifications using an Instr〇n universal testing machine (ASTM D638, 5〇匪/论). In the figure, it can be seen that the polymer composite obtained by adding the modified carbon nanotube has a significant change in tensile strength, and the tensile properties increase with the inclusion of niobium in the carbon nanotube. Among them, the unmodified CNT/pE Lu composite can be increased from 78.8 1^ of the carbon nanotube content to 88.8 kg (up 108%). Compared with the unmodified carbon nanotubes, the modified carbon nanotubes contain MA_g-CNT/PE composites with modified carbon nanotubes and TAIC-g-CNT/PE composites. The tensile strength at a carbon nanotube content of 0.5 wt% to 2 wt% is relatively greater than that of the unmodified tensile strength. In the case of a carbon nanotube content of 2 wt%, the unmodified CNT/PE composite was 83.6 kg, which was 3.3 kg different from the modified 85% of the TAIC-g-CNT composite. This result is due to the fact that the carbon nanotubes are preferably dispersed in high-density polyethylene (HDPE), that is, the uniform dispersion of the carbon nanotubes results in a good interface with the polyethylene substrate. When there is no good interface between the substrate and the fiber, the tensile strength of the composite generally decreases significantly as the fiber content increases. In order to chemically bond or physically bond the carbon nanotubes to the substrate, the present invention utilizes a free radical reaction to graft TAIC onto a carbon nanotube (TAIC-g-CNT) to make a substrate ( The compatibility between PE-g-TAIC) and the interface between the substrate and the carbon nanotubes can greatly improve the properties of the TAIC-g-CNT/PE composite material 11 201122040. Therefore, the modified carbon nanotube (TAIC_g_CNT) of the present invention can increase the compatibility with the polymer composite material, and there is a strong total between the modified carbon nanotube tube and the polymer composite material. The existence of valence bond or gravitation can effectively improve the tensile strength of the physical properties of the polymer composite. Please refer to Fig. 5, which is a graph showing the notched impact strength versus carbon nanotube content of each of the above polymer composite materials (experimental group, control group, and control group). The impact resistance test of the present invention was carried out in a Notched Izod Impact strength. It can be seen from the figure that the increase of carbon nanotubes tends to decrease in impact strength, but the modified carbon nanotubes are better in impact than unmodified, while the opposite carbon nanotubes As the content increases, the impact strength also tends to decrease. The impact value of the unmodified CNT/PE composite with a carbon nanotube content of 0.5 wt% can be increased from 0.19 J/M to 0.31 J/M compared to the modified MA-g-CNT/PE composite. It can be seen that the modified carbon nanotube has the largest impact value at 0.5 wt%. The mesh crosslinked TAIC-g-CNT/PE composites are better for impact strength than the unmodified CNT/PE composites. Please refer to Figures 6 and 7 for the thermogravimetric analyzer (TGA) differential curve and the TGA maximum pyrolysis chart for each of the above-mentioned composites (experimental group, control group and control group). The figure shows that an increase in the proportion of carbon nanotubes can increase the temperature of the polyethylene in terms of thermal weight loss. However, the performance of the modified carbon nanotubes at the pyrolysis temperature is not as good as that of the unmodified ones. The relative unmodified carbon nanotubes content is 469.12 ° C to 499.36 ° of 4 wt%. An increase of 30 ° C in C, it can be seen that the carbon nanotubes only need to add a small amount, in the substrate can improve the substrate resistance to 201122040 heat temperature, and the modified carbon nanotube surface at high temperature The surface modifier will be cleaved first, resulting in a decrease in heat-resistant temperature, and the results show that the modified carbon nanotubes perform best at the thermal cracking temperature with the TAIC system at low carbon nanotubes. The structure contributes to the improvement of the heat resistance of the composite. Please refer to Fig. 8, which is a differential thermal analyzer (DSC) graph of each of the above polymer composite materials (experimental group, control group, and control group). The DSC analysis is mainly to determine the compatibility between high-density polyethylene and modified multi-walled carbon nanotubes, and to understand the effect of multi-walled carbon nanotubes on the crystalline properties of high-density polyethylene. In the figure, it is a 2wt% carbon nanotube. It can be seen from the figure that the carbon nanotube tube has no effect on the softening temperature and the melting point temperature. The melting point temperature of the modified and unmodified carbon nanotubes is between 127 ° C and 130 ° C, so the unmodified carbon nanotubes and the modified carbon nanotubes are shown in the DSC (Differential Scanning Calorimeter). There has not been much change in the medium, and the crystallization temperature of polyethylene can only be slightly increased. Please refer to Fig. 9, which is a graph of the surface resistance value versus the carbon nanotube content of each of the above polymer composite materials (experiment ® group, control group, and control group). Generally, they can be classified into three types according to their electrical properties: a conductor, a semiconductor, an insulator, or a dielectric. Imagine a simple atomic model consisting of a positively charged nucleus and electrons surrounding it. The electrons at the outermost layer of the conductor atoms are weakly bound and can easily migrate from one atom to another. Most metals are of this type. Electrons in insulators or dielectric atoms are limited to moving only in orbit; under normal conditions, they are not free to move, even 13 1322022040 plus external electricity m semiconductor electrical properties between the conductor and the insulator, they There is only a small amount of free moving charge. If the band theory is used to predict the overall composite conductive mechanism, it can be known that if the conductive fillers are added to each other at a very small distance, or even touch each other, the electrons will be transitioned or conducted. The charge is transferred and dissipated to the surface' without accumulating inside the film. It can be seen from Fig. 9 that the surface resistance value of the unmodified CNT/PE composite exhibits a rather poor dispersibility below the content, and the surface resistance value at 3 wt% has reached a balance, which may be due to Excessive carbon nanotubes have exceeded their threshold percolation, so they can no longer reduce their conductivity. However, if the immortality between organic and inorganic is improved, in the dispersibility of inorganic substances: there will be great differences. Decentralized situations in a system. In the system, the carbon nanotubes are attracted to the micro-hydrogen bonds, the polar dipoles, and the PE-g-MA primary bonds. In TAIC 2, they are formed by covalent bonds, which in turn helps the nanometer. The tube is inside the composite = scattered. As shown, the impedance of the MA_g_CNT/pE composite has dropped to 1000fi/cm2 at w ,, with a significant decrease, by its ratio ===τ/ΡΕ #合材料' and the taic system is made of polyethylene A covalently bonded system, although the effect of dispersibility is slightly weaker. The visual agglomeration is manifested in the experimental results of ^^^^, which can be seen that the invention has better dispersibility in polyethylene, and can achieve the electrical use of a lower amount and improve the polymer composite material. And the equivalents of the spirit and scope of the present invention are intended to be included in the following description. The towel is in the scope of patents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the steps of a method for producing a polymer composite material of the present invention; and FIG. 2 is a chemical structure diagram of an embodiment of the polymer composite material of the present invention; The figure is a graph of the heat distortion temperature of the polymer composite materials (experimental group, control group and control group) on the carbon nanotube content; the fourth figure is the polymer composite material (experiment group, control group and control) The graph of the tensile strength of the group) on the carbon nanotube content; Figure 5 is the graph of the notched impact strength of the polymer composites (experimental group, control group and control group) on the carbon nanotube content Figure 6 is a TGA differential curve of each polymer composite material (experimental group, control group and control group); Figure 7 is the maximum TGA of each polymer composite material (experimental group, control group and control group) The thermal cracking diagram; Figure 8 is the DSC curve of each polymer composite material (experimental group, control group and control group); and 15 201122040 Figure 9 is the polymer composite material (experiment group, control group and control) Group) Circular sheet resistance versus the content of carbon nano tubes. [Main component symbol description] S11-S13: Process step.

1616

Claims (1)

201122040 七、申請專利範圍: 一種咼分子複合材料之製造方法,其步驟包括: 將一碳奈米管分散於一有機溶劑中;201122040 VII. Patent application scope: A method for manufacturing a bismuth molecular composite material, the steps comprising: dispersing a carbon nanotube in an organic solvent; 2.2. 仰加人具有至少三個碳-碳雙鍵官能基之不飽和 單體及一自由基起始劑於含有該碳奈米管之該有 機山溶劑中,使其進行反應,而使該具有至少三個碳 -奴雙鍵官能I之不飽和單體共彳請結於該碳奈米 管,以取得一改質碳奈米管;以及 ’、 將該改質碳奈米管與_聚烯烴高分子置於一捏 =用厂掺合用或—混合用之機器進行混練,以取 得一高分子複合材料。 =請專利範圍第丨項所述之高分子複合材料之 ,&方法,其中該具有至少三個碳-碳雙鍵官能基 之=飽和單體包括三聚氰酸三稀丙醋、三經甲基丙 烷二丙烯酸酯、季戊四醇三丙烯酸酯、乙氧化三羥 甲基丙烷三丙烯酸酯、丙氧化甘油三丙烯酸酯、三 丙烯醯氧乙基磷酸酯或季戊四醇四丙烯酸酯。 :專利乾圍第!項所述之高分子複合材料之 ^法,其中該有機溶劑包括丙酮、四氫呋喃、 甲基〜比口各細H甲基乙醯H基甲_ 二:甲亞:風、m_甲酚、氣化甲烷、氯化乙烷、苯、 一 T本或氯苯。 17 201122040 5. 6. 7. 8. 9. 壁碳奈米管。 如申請專利範圍第1項所述之高分子複合材料之 製造方法,其中該聚烯烴高分子包括聚乙烯、聚丙 稀或聚乙烯煙彈性體。 如申請專利範圍第1項所述之高分子複合材料之 製造方法,其中該自由基起始劑包括一偶氮化合物 或—過氧化物。 =申請專利範圍第6項所述之高分子複合材料之 · 製造方法’其中該過氧化物包括過氧化苯曱醯或過 氧化二異丙苯。 ^ ^請專利範圍第1項所述之高分子複合材料之 製造方法,其中該改質碳奈米管對該聚烯烴高分子 之重量比係為0.1%至5.0〇/〇。 ^請專㈣圍第i項所述之高分子複合材料之 製造方法,其更包括根據一目的物而使用一押出 ,1出成型、熱壓成^{、中空成型或發泡成型之讀 知序,以製成該尚分子複合材料之一母粒或一 10. 利範圍第!項所述之高分子複合材料之 人:、德’其中該機器包括布斯混合器、萬馬力混 二L :螺桿押出機、加壓混合器、熱壓機、反應 槽或塑譜儀之混練器具。 *、、 圍第1項所述之高分子複合材料之 ’-更包括提供一纖維補強材料、一無機 18 11. 201122040 f料或一有機填料,與該改質碳奈米管及該聚烯煙 鬲分子混合。 12·^申請專利範圍第u項所述之高分子複合材料之 =方法’其中該纖維補強材料係為-天然的植物 纖維或一無機纖維。An analytic monomer having at least three carbon-carbon double bond functional groups and a radical initiator in the organic mountain solvent containing the carbon nanotubes, allowing the reaction to be carried out Three carbon-nano double bond functional I unsaturated monomers are conjugated to the carbon nanotube to obtain a modified carbon nanotube; and ', the modified carbon nanotube and _polyolefin The polymer is placed in a kneading machine for mixing or mixing with a machine to obtain a polymer composite material. The method of claim 1, wherein the saturated monomer having at least three carbon-carbon double bond functional groups comprises tris-propyl acetoacetate, three menses Methyl propane diacrylate, pentaerythritol triacrylate, ethoxylated trimethylolpropane triacrylate, propoxyglycerol triacrylate, tripropylene oxyethyl phosphate or pentaerythritol tetraacrylate. : Patent dry circumference! The method of the polymer composite according to the item, wherein the organic solvent comprises acetone, tetrahydrofuran, methyl to specific, H, methyl ethyl hydrazine, H-methyl ketone, ketone, gas, m-cresol, gas Methane, ethane chloride, benzene, a T or chlorobenzene. 17 201122040 5. 6. 7. 8. 9. Wall carbon nanotubes. The method for producing a polymer composite according to claim 1, wherein the polyolefin polymer comprises polyethylene, polypropylene or polyethylene smoke elastomer. The method for producing a polymer composite according to claim 1, wherein the radical initiator comprises an azo compound or a peroxide. The manufacturing method of the polymer composite material according to claim 6 wherein the peroxide comprises benzoquinone peroxide or dicumyl peroxide. The method for producing a polymer composite according to the above aspect, wherein the weight ratio of the modified carbon nanotube to the polyolefin polymer is from 0.1% to 5.0 Å/〇. ^Please refer to (4) the manufacturing method of the polymer composite material described in item i, which further includes using one extrusion according to one object, one molding, hot pressing to form, hollow molding or foam molding. Order to make the masterbatch of one of the molecular composites or a 10. The person of the polymer composite material mentioned in the article: , De's which machine includes a Buss mixer, a 10,000 horsepower mixed two L: a screw extruder, a pressure mixer, a hot press, a reaction tank or a plastic spectrometer appliance. *,, the polymer composite material of the above-mentioned item 1 - further comprising providing a fiber reinforcing material, an inorganic 18 11. 201122040 f material or an organic filler, and the modified carbon nanotube and the polyene The soot molecules are mixed. 12. The method of claim 1 wherein the fiber-reinforced material is a natural plant fiber or an inorganic fiber. in圍第12項所述之高分子複合材料之 匕:纖其维t該天然的植物纖維係為-亞麻纖維 u.如申請專利範圍第12項 If’其中該無機織維係為In the polymer composite material according to Item 12, the fiber of the natural plant fiber is - flax fiber u. If the patent application is the 12th item, If the inorganic fiber woven system is 1919
TW98146040A 2009-12-30 2009-12-30 Polymer composite material and its manufacturing method TWI398472B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98146040A TWI398472B (en) 2009-12-30 2009-12-30 Polymer composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98146040A TWI398472B (en) 2009-12-30 2009-12-30 Polymer composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201122040A true TW201122040A (en) 2011-07-01
TWI398472B TWI398472B (en) 2013-06-11

Family

ID=45045897

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98146040A TWI398472B (en) 2009-12-30 2009-12-30 Polymer composite material and its manufacturing method

Country Status (1)

Country Link
TW (1) TWI398472B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477575B (en) * 2013-01-29 2015-03-21 Esd tippy tape

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200846401A (en) * 2007-05-28 2008-12-01 Univ Far East Carbon nanotube/plastic reinforced composite having water-crosslinking reactivity and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477575B (en) * 2013-01-29 2015-03-21 Esd tippy tape

Also Published As

Publication number Publication date
TWI398472B (en) 2013-06-11

Similar Documents

Publication Publication Date Title
Zhang et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films
US6783702B2 (en) Polyvinylidene fluoride composites and methods for preparing same
Lin et al. Polymer composites made of multi-walled carbon nanotubes and graphene nano-sheets: effects of sandwich structures on their electromagnetic interference shielding effectiveness
KR102022399B1 (en) Carbon nanotube dispersed solution and method for preparing the same
CN101121791B (en) Method for preparing carbon nano-tube/polymer composite material
AU2002320378A1 (en) Polyvinylidene fluoride composites and methods for preparing same
Liao et al. Preparation and properties of functionalized multiwalled carbon nanotubes/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells
Lee et al. Comparative study of EMI shielding effectiveness for carbon fiber pultruded polypropylene/poly (lactic acid)/multiwall CNT composites prepared by injection molding versus screw extrusion
KR20180020901A (en) Conductive resin composition, molded article and manufacturing method thereof
George et al. Influence of matrix polarity on the properties of ethylene vinyl acetate–carbon nanofiller nanocomposites
Zhang et al. Electromagnetic interference shielding property of polybenzoxazine/graphene/nickel composites
CA2453424C (en) Polyvinylidene fluoride composites and methods for preparing same
TWI384026B (en) Composite substrate for counter electrode of dye-sensitized solar cell
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
JP6709041B2 (en) Thermosetting material
CN112409657B (en) Improved conductive rubber composition and method for making same
WO2011158907A1 (en) Polyolefin resin composition and process for producing same
TW201122040A (en) Polymer composite material and manufacturing method thereof.
KR101102848B1 (en) Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity
CN109111733A (en) Flame-retardant conductive wear resistant nylon material and preparation method thereof
Wang et al. Large flakes of Al–Ti3C2Tx MXene constructing highly ordered layered MXene/ANF films with integrated multifunctionalities
Gill et al. Carbon black/nickel hybrid filler reinforced conductive polypropylene composites
JP2020105514A (en) Laminate and composite including carbon material
CN111471240A (en) Polypropylene and graphene composite conductive functional material and preparation method thereof
KR101414735B1 (en) Thermoplastic polymer composite having improved electrical conductivity, method of preparing the same, and the product made therefrom

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees