KR101102848B1 - Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity - Google Patents
Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity Download PDFInfo
- Publication number
- KR101102848B1 KR101102848B1 KR1020090073931A KR20090073931A KR101102848B1 KR 101102848 B1 KR101102848 B1 KR 101102848B1 KR 1020090073931 A KR1020090073931 A KR 1020090073931A KR 20090073931 A KR20090073931 A KR 20090073931A KR 101102848 B1 KR101102848 B1 KR 101102848B1
- Authority
- KR
- South Korea
- Prior art keywords
- mwcnt
- polypropylene
- maleic anhydride
- graft
- cooh
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 우수한 내열성 및 전기전도도를 갖는 폴리프로필렌-그라프트-말레산무수물/탄소나노튜브 나노복합체의 제조에 관한 것이다. 본 발명에서는 다중벽탄소나노튜브를 산처리하여 카르복실기(-COOH)가 도입된 다중벽탄소나노튜브( MWCNT-COOH)를 제조한 후, 이를 폴리프로필렌-그라프트-말레산무수물(PP-g-MA)과 함께 용융혼합하여 폴리프로필렌-그라프트-말레산무수물/탄소나노튜브 나노복합체를 제조하는 방법에 관한 것이다. 본 발명의 폴리프로필렌-그라프트-말레산무수물/탄소나노튜브 나노복합체로부터 내열성 및 대전방지기능을 갖는 필름, 섬유, 플라스틱 등의 다양한 제품으로 제조될 수 있다.The present invention relates to the preparation of polypropylene-graft-maleic anhydride / carbon nanotube nanocomposites having excellent heat resistance and electrical conductivity. In the present invention, after the acid-treated multi-walled carbon nanotubes to prepare a multi-walled carbon nanotubes (MWCNT-COOH) introduced with a carboxyl group (-COOH), it is polypropylene-graft-maleic anhydride (PP-g- It relates to a method for producing polypropylene-graft-maleic anhydride / carbon nanotube nanocomposites by melt mixing with MA). From the polypropylene-graft-maleic anhydride / carbon nanotube nanocomposite of the present invention, it can be prepared into various products such as films, fibers, plastics, etc. having heat resistance and antistatic function.
폴리프로필렌-그라프트-말레산무수물, 탄소나노튜브, 산처리된 탄소나노튜브, 용융혼합, 필름, 섬유, 플라스틱 Polypropylene-Graft-Maleic Anhydride, Carbon Nanotubes, Acid Treated Carbon Nanotubes, Melt Blends, Films, Fibers, Plastics
Description
본 발명은 탄소나노튜브를 산처리하여 카르복실기(-COOH)가 도입된 탄소나노튜브를 만든 후, 이를 폴리프로필렌-그라프트-말레산무수물 고분자와 용융혼합하여 우수한 내열성 및 전기전도성을 갖는 폴리프로필렌-그라프트-말레산무수물/탄소나노튜브 나노복합체를 제조하는 방법에 관한 것이다.According to the present invention, carbon nanotubes are acid-treated with carbon nanotubes to form carbon nanotubes having a carboxyl group (-COOH) introduced therein, and then melt-mixed with polypropylene-graft-maleic anhydride polymer to have a polypropylene- having excellent heat resistance and electrical conductivity. A graft-maleic anhydride / carbon nanotube nanocomposite is provided.
산업사회가 고도로 발달하고 석유로부터 많은 제품이 생산되면서 고분자는 우리 생활과 밀접한 관계를 가지면서 우리에게 꼭 필요한 존재 중에 하나가 되었다. 고분자는 가볍고 다양한 용도와 물성, 성질을 가진 플라스틱, 필름 및 섬유로 개발되어 인간의 삶 속에서 많이 사용되어지고 있다. 그 중 우리가 주변에서 흔히 볼 수 있고 쉽게 찾을 수 있는 고분자인 폴리프로필렌(Polypropylene, PP)은 플라스틱, 필름 및 섬유로 넓리 사용되고 있다. 폴리프로필렌은 비중이 낮고 플라스틱 제품으로 다양한 용도로 사용되어 지고 있으며 보통의 성질은 폴리에틸렌(Polyethylene)과 유사하지만, 스트레스 분쇄 특성, 투명성, 항장력 등이 폴리에 틸렌보다 우수하고 경량 특성을 가지고 있으며, 특유의 경첩 특성을 가지고 있다. 식품위생상으로 매우 좋은 물질이며 외적 스트레스에 강한 내구성을 지니고 양호한 표면 외관을 가지고 있다. As the industrial society is highly developed and many products are produced from petroleum, polymers have become closely related to our lives and become one of our necessities. Polymers have been developed into plastics, films, and fibers that are light and have various uses, properties, and properties, and are widely used in human life. Among them, polypropylene (PP), a polymer that is commonly found in our surroundings and easily found, is widely used in plastics, films and fibers. Polypropylene has a low specific gravity and is used for various purposes as a plastic product, and its general properties are similar to polyethylene, but its stress crushing properties, transparency, and tensile strength are superior to that of polyethylene, and it is lightweight. Has a hinge characteristic. It is a very good material for food hygiene and it has good durability against external stress and has a good surface appearance.
프로필렌-그라프트-말레산무수물(polypropyelen-graft-maleic anhydride, PP-g-MA)는 폴리프로필렌에 무수물인 말레산무수물(maleic anhydride, MA)을 그라프트하여 첨가한 것으로 폴리프로필렌보다 우수한 내충격성과 접착성이 높은 특징을 가지고 있다. Polypropyelen-graft-maleic anhydride (PP-g-MA) is a polypropylene made by adding maleic anhydride (MA) as an anhydride to polypropylene. It has high adhesiveness.
탄소나노튜브(Carbon nanotube, CNT)는 지금 현존하는 물질 중 결함이 없는 거의 완벽한 신소재로 각광받고 있는 소재이며, 전기 전도도가 구리와 비슷하고, 열전도율은 자연계에서 가장 뛰어난 다이아몬드와 같으며, 강도는 철강보다 100배나 뛰어나다. 탄소섬유는 1%만 변형시켜도 끊어지는 반면 CNT는 15%가 변형되어도 견딜 수 있으며 매우 안정적이다. CNT는 흑연면(graphite sheet)이 나노 크기의 직경으로 둥글게 말린 상태이며, 이 흑연면이 말리는 각도 및 구조에 따라서 금속 또는 반도체의 특성을 보인다. 또한 벽을 이루고 있는 결합수에 따라서 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT), 이중벽 탄소나노튜브(Double-walled Carbon Nanotube, DWCNT), 다중벽 탄소나노튜브(Multi-walled Carbon Nanotube, MWCNT), 다발형 탄소나노튜브(Rope Carbon Nanotube, RCNT)로 구분한다. 탄소나노튜브는 나노크기의 충진제와 마찬가지로 반 데르 발스 힘에 의해 자기들끼리 뭉치려는 성질이 매우 강하다. 따라서 탄소나노튜브를 산처리하여 다른 화합물과 작용할 수 있는 작용기와 분산력을 향상 시킬 수 있는 방법과 약점을 보완하는 연구가 많이 진행되고 있다.Carbon nanotube (CNT) is a material that is spotlighted as an almost perfect new material without defects among existing materials, and its electrical conductivity is similar to that of copper, the thermal conductivity is the most excellent diamond in nature, and the strength is steel. 100 times better. Carbon fiber breaks with only 1% strain while CNTs withstand 15% strain and are very stable. CNTs have a graphite sheet rounded off to a nano-sized diameter, and exhibit the characteristics of a metal or a semiconductor depending on the angle and structure of the graphite sheet being dried. In addition, single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (SWCNTs), depending on the number of bonds forming a wall. MWCNT), and bundle carbon nanotubes (Rope Carbon Nanotube, RCNT). Carbon nanotubes, like nano-scale fillers, have a very strong tendency to bundle together by van der Waals forces. Therefore, a lot of researches are being made to supplement the methods and weaknesses to improve the dispersibility and the functional groups that can interact with other compounds by acid treatment of carbon nanotubes.
본 발명에서는 PP-g-MA와 탄소나노튜브 매트릭스와 상호작용을 높이기 위하여 보강재로 사용되는 MWCNT를 산처리하여 카르복실기(-COOH)가 달린 다중벽 탄소나노튜브(MWCNT-COOH)를 제조한 후, 이를 PP-g-MA와 용융혼합하여 열적안정성 및 전기전도성이 뛰어난 PP-g-MA/MWCNT와 PP-g-MA/MWCNT-COOH 나노복합체를 제조하는 방법과 특성을 제공하는 것을 목적으로 한다.In the present invention, after the acid treatment of MWCNT used as a reinforcing material to increase the interaction with the PP-g-MA and carbon nanotube matrix to prepare a multi-walled carbon nanotube (MWCNT-COOH) with a carboxyl group (-COOH), The purpose of the present invention is to provide a method and properties for producing PP-g-MA / MWCNT and PP-g-MA / MWCNT-COOH nanocomposites with excellent thermal stability and electrical conductivity by melt mixing with PP-g-MA.
상기의 목적을 달성하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 탄소나노튜브를 산처리하여 카르복실기가 부착된 탄소나노튜브와, 폴리프로필렌-그라프트-말레산무수물를 용융혼합하여 폴리프로필렌-그라프트-말레산무수물/탄소나노튜브 나노복합체를 제조하는 방법을 제공한다.In order to achieve the above object, according to a preferred embodiment of the present invention, the carbon nanotubes are acid-treated with a carboxyl group-attached carbon nanotubes and polypropylene-graft-maleic anhydride to melt-mix the polypropylene-graft It provides a method for preparing maleic anhydride / carbon nanotube nanocomposites.
본 발명의 다른 적절한 실시 형태에 따르면, 상기 나노복합체는 전체 복합체 중량대비 0.01 내지 50 wt%의 카르복실기가 부착된 탄소나노튜브와 전체 복합체 중량대비 50 내지 99.99 wt%의 폴리프로필렌-그라프트-말레산무수물을 용융혼합하여 제조하는 것을 특징으로 한다.According to another suitable embodiment of the present invention, the nanocomposite comprises 0.01 to 50 wt% of carboxyl group attached carbon nanotubes and 50 to 99.99 wt% of polypropylene-graft-maleic acid based on the total weight of the composite. It is characterized by producing an anhydride by melt mixing.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 산처리된 탄소나노튜브는 탄소나노튜브 1 g 당 1개 내지 5×1022개의 카르복실기를 가지는 것을 특징으로 한다.According to another suitable embodiment of the present invention, the acid treated carbon nanotubes are characterized by having 1 to 5 × 10 22 carboxyl groups per gram of carbon nanotubes.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 폴리프로필렌-그라프트-말레산무수물은 말레산무수물 0.01 내지 10 wt%를 포함하는 것을 특징으로 한다.According to another suitable embodiment of the invention, the polypropylene-graft-maleic anhydride is characterized in that it comprises 0.01 to 10 wt% maleic anhydride.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 방법으로 제조된 폴리프로필렌-그라프트-말레산무수물/탄소나노튜브 나노복합체를 제공한다.According to another suitable embodiment of the present invention, there is provided a polypropylene-graft-maleic anhydride / carbon nanotube nanocomposite prepared by the above method.
본 발명에서는 MWCNT를 산처리함으로써, 탄소나노튜브 표면에 카르복실기를 부여한 MWCNT-COOH는 고분자 PP-g-MA의 MA와 화학반응 및/또는 물리적 상호작용(수소결합을 포함한 극성결합)을 함으로서 고분자 매트릭스 내에 향상된 분산성을 갖는 효과가 있다. 또한 본 발명에서 제조된 PP-g-MA/MWCNT-COOH 나노복합체는 PP-g-MA보다 열적 안정성이 향상되는 효과가 있다. In the present invention, the acid treatment of MWCNT, MWCNT-COOH to give a carboxyl group on the surface of the carbon nanotube is a polymer matrix by chemical reaction and / or physical interaction (polar bond including hydrogen bond) with MA of the polymer PP-g-MA There is an effect with improved dispersibility within. In addition, the PP-g-MA / MWCNT-COOH nanocomposite prepared in the present invention has the effect of improving the thermal stability than PP-g-MA.
본 발명의 PP-g-MA/MWCNT-COOH 나노복합체의 제조방법은 PP-g-MA 단독고분자의 전기전도도를 향상시킨다. 또한 본 발명의 우수한 내열성 및 전기전도도를 갖는 PP-g-MA/MWCNT 나노복합체와 PP-g-MA/MWCNT-COOH 나노복합체는 우수한 열적 특성 및 대전방지 기능이 요구되는 섬유, 필름, 플라스틱 등에 응용될 수 있다.The preparation method of the PP-g-MA / MWCNT-COOH nanocomposite of the present invention improves the electrical conductivity of the PP-g-MA single polymer. In addition, the PP-g-MA / MWCNT nanocomposite and PP-g-MA / MWCNT-COOH nanocomposite having excellent heat resistance and electrical conductivity of the present invention are applied to fibers, films, plastics, etc. requiring excellent thermal properties and antistatic function. Can be.
본 발명은 다중벽탄소나노튜브(Multi-walled carbon nanotube, 이하 "MWCNT"라 한다.)를 황산과 질산을 이용한 산처리로 카르복실기(-COOH)가 도입된 다중벽탄소나노튜브(이하 "MWCNT-COOH"라 한다.)를 만든 후, 이를 폴리프로필렌-그라프트-말레산무수물(Polypropylene-graft-maleicanhydride, 이하 "PP-g-MA"라 한다.) 고분자와 용융혼합하여 우수한 내열성 및 전기전도성을 갖는 폴리프로필렌-그라프트- 말레산무수물/탄소나노튜브 나노복합체를 제조한다. In the present invention, a multi-walled carbon nanotube (hereinafter referred to as "MWCNT") is a multi-walled carbon nanotube (hereinafter referred to as "MWCNT-) in which a carboxyl group (-COOH) is introduced by acid treatment using sulfuric acid and nitric acid. COOH "), which is then melt mixed with a polypropylene-graft-maleicanhydride (hereinafter referred to as" PP-g-MA ") polymer to provide excellent heat and electrical conductivity. A polypropylene-graft-maleic anhydride / carbon nanotube nanocomposite having the same is prepared.
본 명세서에서 사용되는 용어의 정의는 아래와 같다. "PP-g-MA"는 폴리프로필렌-그라프트-말레산무수물(Polypropylene-graft-maleic anhydride)을 나타내며, 폴리프로필렌에 말레산 무수물이 그라프트되어 첨가된 중합체를 의미한다. 본 발명에서 PP-g-MA는 말레산무수물의 함량이 0.01~10 wt%인 것이 바람직하고 보다 바람직하게는 0.1~1wt% 이다.Definitions of terms used in the present specification are as follows. "PP-g-MA" refers to polypropylene-graft-maleic anhydride, and refers to a polymer to which polypropylene is grafted with maleic anhydride. PP-g-MA in the present invention is preferably a content of 0.01 to 10 wt% maleic anhydride, more preferably 0.1 to 1wt%.
"MWCNT"는 다중벽탄소나노튜브(Multi-walled Carbon Nanotube)를 나타낸다. 본발명에서 사용한 MWCNT는 일진나노텍사의 CM-95 제품이다. 본원에서 사용된 용어 "MWCNT-COOH"는 상기의 MWCNT를 질산과 황산을 이용한 산처리로 개질시킨 물질로서 표면에 카르복실기(-COOH)가 달려있는 있으며, 전기전도성, 내열성 매우 우수하다. 본원의 MWCNT-COOH는 MWCNT 1 g 당 1 내지 5×1022개의 카르복실기(-COOH)를 갖는다."MWCNT" stands for Multi-walled Carbon Nanotube. MWCNT used in the present invention is a CM-95 product of Iljin Nanotech. As used herein, the term "MWCNT-COOH" is a material modified by MWCNT by acid treatment using nitric acid and sulfuric acid, and has a carboxyl group (-COOH) on its surface, and has excellent electrical conductivity and heat resistance. MWCNT-COOH herein has from 1 to 5 × 10 22 carboxyl groups (—COOH) per gram of MWCNT.
본 발명에서 사용된 "PP-g-MA/MWCNT-COOH"는 MWCNT-COOH와 고분자 PP-g-MA 를 용융혼합하여 제조된 물질을 말한다."PP-g-MA / MWCNT-COOH" used in the present invention refers to a material prepared by melt-mixing MWCNT-COOH and polymer PP-g-MA.
본 발명에서 사용된 "PP-g-MA/MWCNT"는 MWCNT와 고분자 PP-g-MA를 용융혼합하여 제조된 물질을 말한다. "PP-g-MA / MWCNT" used in the present invention refers to a material prepared by melt-mixing MWCNT and polymer PP-g-MA.
본 발명은 탄소나노튜브를 강산을 이용하여 산처리하는데, 탄소나노튜브는 특별히 제한되지 않고 단일벽탄소나노튜브, 다중벽탄소나노튜브, 다발형 탄소나노튜브를 사용할 수 있다. 이하에서는 다중벽탄소나노튜브(MWCNT)를 사용한 경우를 본 발명의 일례로서 설명한다.In the present invention, the acid treatment of carbon nanotubes using a strong acid, the carbon nanotubes are not particularly limited, single-walled carbon nanotubes, multi-walled carbon nanotubes, multiple carbon nanotubes can be used. Hereinafter, the case of using the multi-walled carbon nanotubes (MWCNT) will be described as an example of the present invention.
먼저 다중벽탄소나노튜브(MWCNT)를 산처리하여 표면에 카르복실기(-COOH)가 부착된 탄소나노튜브(MWCNT-COOH)를 제조한다. 상기 산처리는 다양한 강산들의 조합으로 이루어진 산 혼합용액을 사용하여 할 수 있는데, 본 발명에서는 질산과 황산이 몰비로 3:1로 혼합된 강산용액을 사용하였다. 질산/황산 혼합용액에 다중벽탄소나노튜브를 넣은 후 초음파로 처리하고, 다시 2~3시간 동안 환류한다. 환류가 완료되면 현탁용액을 상온으로 냉각시킨 후 과량의 증류수로 침전시키고 pH가 7이 되도록 수세한다. 그 후 필터과정을 거처 70~90℃에서 진공 건조하여 카르복실기가 부착된 다중벽탄소나노튜브(MWCNT-COOH)를 제조할 수 있다. First, the carbon nanotube (MWCNT-COOH) having a carboxyl group (-COOH) attached to the surface is prepared by acid treatment of the multi-walled carbon nanotube (MWCNT). The acid treatment may be performed using an acid mixed solution composed of various strong acid combinations. In the present invention, a strong acid solution in which nitric acid and sulfuric acid are mixed at a molar ratio of 3: 1 is used. The multi-walled carbon nanotubes were added to the nitric acid / sulfuric acid solution, and then treated with ultrasonic waves and refluxed again for 2 to 3 hours. After the reflux is completed, the suspension solution is cooled to room temperature, precipitated with excess distilled water, and washed with water to
상기 방법으로 제조된 카르복실기(-COOH)가 부착된 다중벽탄소나노튜브는 MWCNT 1 g 당 1개 내지 5×1022개의 카르복실기(-COOH)를 가질 수 있다.The carboxyl group (-COOH) attached multi-walled carbon nanotubes prepared by the above method is one per 1 g of MWCNT To 5 × 10 22 carboxyl groups (—COOH).
상기에서 제조된 MWCNT-COOH와 PP-g-MA를 용융혼합하여 PP-g-MA/MWCNT-COOH 나노복합체를 제조한다. 구체적으로는 MWCNT-COOH와 PP-g-MA 단독고분자를 용융혼련기(mixer 또는 extruder)를 이용하여 160~240 ℃ 에서 용융혼합하여 PP-g-MA/MWCNT-COOH 나노복합체를 제조한다. PP-g-MA / MWCNT-COOH nanocomposites are prepared by melt-mixing the MWCNT-COOH and PP-g-MA prepared above. Specifically, MWCNT-COOH and PP-g-MA homopolymers are melt-mixed at 160 to 240 ° C. using a melt kneader (mixer or extruder) to prepare PP-g-MA / MWCNT-COOH nanocomposites.
본 발명에서 제조된 PP-g-MA/MWCNT-COOH 나노복합체는 PP-g-MA 단독고분자 또는 PP-g-MA/MWCNT 나노복합체보다 우수한 내열성을 갖는다. 또한 본 발명의 PP-g-MA/MWCNT-COOH 나노복합체는 PP-g-MA 단독고분자보다 우수한 전기전도도를 갖는다. The PP-g-MA / MWCNT-COOH nanocomposites prepared in the present invention have better heat resistance than PP-g-MA homopolymers or PP-g-MA / MWCNT nanocomposites. In addition, the PP-g-MA / MWCNT-COOH nanocomposite of the present invention has better electrical conductivity than the PP-g-MA single polymer.
제조예 1 (산처리에 의한 MWCNT-COOH의 제조) Preparation Example 1 ( Preparation of MWCNT-COOH by Acid Treatment)
먼저 산처리에 의해 카르복실기가 도입된 다중벽탄소나노튜브(MWCNT-COOH) 제조방법에 대하여 설명한다. 순수한 MWCNT를 질산/황산 (3/1, 몰비) 혼합용액에 넣고 1시간 동안 초음파 처리하여 현탁용액을 만든다. 상기의 현탁용액은 환류장치에서 120 ℃를 유지한 채, 2시간 동안 환류시킨다. 환류가 끝나면 상기의 현탁용액을 상온으로 냉각시킨 후 과량의 증류수에 침전을 시키고 pH가 7이 되도록 수세과정을 거친다. 그 후, 필터과정을 거쳐 80 ℃ 에서 진공건조하면 MWCNT-COOH를 얻을 수 있다. 상기의 MWCNT-COOH에서 카르복실기(-COOH)는 MWCNT 1 g 당 1 내지 5×1022개를 가진다.First, a method for preparing a multiwall carbon nanotube (MWCNT-COOH) in which a carboxyl group is introduced by acid treatment will be described. Pure MWCNTs are added to a mixed solution of nitric acid / sulfuric acid (3/1, molar ratio) and sonicated for 1 hour to form a suspension solution. The suspension solution is refluxed for 2 hours while maintaining 120 ℃ in the reflux device. After reflux, the suspension solution is cooled to room temperature, precipitated in excess distilled water, and washed with water until pH reaches 7. Subsequently, MWCNT-COOH can be obtained by vacuum drying at 80 ° C. through a filter process. In the MWCNT-COOH, the carboxyl group (-COOH) has 1 to 5 × 10 22 per g of MWCNT.
제조예 2 (용융혼합에 의한 PP-g-MA/MWCNT-COOH 제조) Preparation Example 2 ( Preparation of PP-g-MA / MWCNT-COOH by Melt Mixing)
상기의 제조예 1에서 제조된 MWCNT-COOH(COOH 5×1022개/MWCNT 1g)와 PP-g-MA(MA 함량 0.8wt%) 단독고분자를 용융혼련기(mixer 또는 extruder)를 이용하여 160~240 ℃ 에서 용융혼합하여 PP-g-MA/MWCNT-COOH 나노복합체를 얻을 수 있다. 비교를 위해 PP-g-MA와 아무 처리를 하지 않은 MWCNT를 이용하여 동일한 용융혼합법으로 PP-g-MA/MWCNT 나노복합체를 제조한다.MWCNT-COOH (
제조예 3 (PP-g-MA/MWCNT-COOH 나노복합체 필름 제조) Preparation Example 3 ( Preparation of PP-g-MA / MWCNT-COOH nanocomposite film)
PP-g-MA 단독고분자, 제조예 2에서 제조된 PP-g-MA/MWCNT-COOH 나노복합체와 PP-g-MA/MWCNT 나노복합체를 80 ℃에서 충분히 진공건조한 후, 180 ℃의 가열프레스를 이용하여 0.2 mm 두께로 압축하면 필름형태로 얻을 수 있다.PP-g-MA homopolymer, PP-g-MA / MWCNT-COOH nanocomposite prepared in Preparation Example 2 and PP-g-MA / MWCNT nanocomposite were sufficiently dried in a vacuum at 80 ℃, heating press at 180 ℃ It can be obtained in the form of a film by compressing to a thickness of 0.2 mm.
아래의 실시예를 들어 본 발명을 상세하게 설명하지만, 실시예에 의하여 본 발명의 권리범위가 한정되는 것은 아니다.The present invention will be described in detail with reference to the following examples, but the scope of the present invention is not limited by the examples.
실시예 1 (MWCNT-COOH 제조) Example 1 (manufactured by MWCNT-COOH)
실리콘오일 안에서 먼저 황산 630 mL와 질산 186 mL을 넣고 천천히 교반시키면서 MWCNT를 7 g 넣어준 후 온도를 120 ℃로 일정하게 맞춰주고 2시간동안 교반시켜 산처리를 하여준다. 산처리된 MWCNT는 과량을 물로 희석하여 준 후 여과를 통하여 걸러주고 수세를 통하여 pH를 7이상으로 조절해준다. 상기 방법으로 획득한 MWCNT-COOH는 용융혼합 전에 24시간 동안의 진공건조를 통하여 건조시켜 준다. In silicon oil, 630 mL of sulfuric acid and 186 mL of nitric acid are added first, and 7g of MWCNTs are added while stirring slowly. Acid treated MWCNTs are diluted with water and filtered through filtration and washed with water to adjust the pH to 7 or higher. MWCNT-COOH obtained by the above method is dried by vacuum drying for 24 hours before melt mixing.
실시예 2 (용융혼합에 의한 PP-g-MA/MWCNT-COOH 제조) Example 2 ( Preparation of PP-g-MA / MWCNT-COOH by Melt Mixing)
PP-g-MA/CNT-COOH 나노복합체는 표 1에 기재된 바와 같이 다양한 중량의 MWCNT-COOH를 고분자 PP-g-MA와 용융혼합하여 제조하였다. 먼저 표 1에 기재된 비율로 준비한 MWCNT-COOH와 PP-g-MA 고분자를 기계적 혼합기로 고체 상태에서 충분히 섞어준 후 용융혼련기를 통하여 170 ~ 200 ℃의 온도범위에서 용융혼합한 후 압출한 후 0.1 mmHg의 고진공 상태에서 24시간 동안 상온건조하였다. 건조하여 얻은 PP-g-MA/CNT-COOH 나노복합체 분말시료들을 가열프레스를 이용하여 190 ℃ 에서 3분간 녹인 후, 0 ℃로 급냉시켜 0.2 mm의 균일한 두께를 가진 PP-g-MA/MWCNT-COOH 나노복합체 필름으로 제조하였다.PP-g-MA / CNT-COOH nanocomposites were prepared by melt mixing various weights of MWCNT-COOH with polymer PP-g-MA as shown in Table 1. First, MWCNT-COOH and PP-g-MA polymer prepared in the ratios shown in Table 1 were sufficiently mixed in a solid state with a mechanical mixer, melt mixed at a temperature range of 170 to 200 ° C. through a melt kneader, and extruded after 0.1 mmHg. It was dried at room temperature for 24 hours under high vacuum. PP-g-MA / CNT-COOH nanocomposite powder samples obtained by drying were melted at 190 ° C. for 3 minutes using a heating press, and then quenched to 0 ° C. and then PP-g-MA / MWCNT having a uniform thickness of 0.2 mm. Prepared with -COOH nanocomposite film.
비교예 1Comparative Example 1
표 1에 기재된 MWCNT-COOH를 대신에 동일한 중량의 MWCNT를 고분자 PP-g-MA와 함께 실시예 2에서 설명한 방법으로 PP-g-MA/MWCNT 나노복합체 필름을 제조하였다.PP-g-MA / MWCNT nanocomposite films were prepared in the same manner as described in Example 2 with MWCNTs of the same weight in place of MWCNT-COOH described in Table 1.
시험예 1 (PP-g-MA/MWCNT와 PP-g-MA/MWCNT-COOH의 열적 안정성 측정) Test Example 1 (Measurement of Thermal Stability of PP-g-MA / MWCNT and PP-g-MA / MWCNT-COOH)
PP-g-MA/MWCNT-COOH와 PP-g-MA/MWCNT 나노복합체의 열적 안정성을 측정하기 위하여 열중량분석기(thermogravimetric analyzer, TGA)를 이용하였다. 도 1에 나타난 바와 같이, PP-g-MA 단독고분자는 355 ℃에서 5 wt%의 열 중량 감소를 나타내고 PP-g-MA/MWCNT 나노복합체는 PP-g-MA 단독고분자보다 훨씬 더 높은 온도에서 열분해거동을 나타낸다. 심지어 MWCNT의 함량이 10 wt% 일 때는 PP-g-MA 단독고분자보다 80 ℃ 이상 높은 온도에서 열분해거동을 나타내는 것을 볼 수 있다. PP-g-MA 단독고분자에 MWCNT를 첨가해 줌으로써 높은 내열성을 나타내는 것을 볼 수 있다. Thermogravimetric analyzer (TGA) was used to measure the thermal stability of PP-g-MA / MWCNT-COOH and PP-g-MA / MWCNT nanocomposites. As shown in FIG. 1, the PP-g-MA homopolymer showed a 5 wt% thermal weight loss at 355 ° C. and the PP-g-MA / MWCNT nanocomposite was at a much higher temperature than the PP-g-MA homopolymer. Pyrolysis behavior is shown. Even when the content of MWCNT is 10 wt% it can be seen that the pyrolysis behavior at a temperature higher than 80 ℃ higher than the PP-g-MA single polymer. By adding MWCNT to the PP-g-MA homopolymer, it can be seen that it exhibits high heat resistance.
반면에 도 2에 나타낸 바와 같이 PP-g-MA/MWCNT-COOH 나노복합체는 MWCNT-COOH 함량이 0.1 %에도 불구하고 5 wt% 중량감소에 해당하는 열분해온도(T5%)는 PP-g-MA 단독고분자보다 20 ℃이상 높은 온도를 나타낸다.On the other hand, as shown in FIG. 2, the PP-g-MA / MWCNT-COOH nanocomposite has a thermal decomposition temperature (T 5% ) corresponding to a 5 wt% weight loss despite the MWCNT-COOH content of 0.1%. The temperature is higher than 20 ℃ higher than the MA single polymer.
또한 도 2를 보면, PP-g-MA 단독고분자보다 MWCNT-COOH를 10 wt% 첨가하였을 때, MWCNT보다 훨씬 높은 온도인 약 100 ℃ 이상의 온도에서 열중량 감소를 나타낸다. 이는 PP-g-MA의 MA와 MWCNT-COOH의 COOH 간의 화학결합 또는 수소결합과 같은 강한 물리적 상호작용에 의해 열적 안정성, 즉 내열성이 향상된 것임을 알 수 있다. Also, in FIG. 2, when 10 wt% of MWCNT-COOH is added to the PP-g-MA homopolymer, the thermogravimetry is reduced at a temperature of about 100 ° C. or more, which is much higher than that of MWCNT. It can be seen that thermal stability, ie, heat resistance, is improved by strong physical interactions such as chemical bonding or hydrogen bonding between the MA of PP-g-MA and the COOH of MWCNT-COOH.
표 2는 도 1 및 도 2에 나타낸 열분해곡선으로부터 구한 PP-g-MA 단독고분자, PP-g-MA/MWCNT 나노복합체, PP-g-MA/MWCNT-COOH 나노복합체의 열분해특성온도를 요약한 것이다.Table 2 summarizes the thermal decomposition temperature of PP-g-MA homopolymer, PP-g-MA / MWCNT nanocomposite and PP-g-MA / MWCNT-COOH nanocomposite obtained from the pyrolysis curves shown in FIGS. will be.
1) T5 %: 시료 초기중량의 5wt% 중량감소가 일어나는 온도1) T 5 % : Temperature at which 5 wt% weight loss of the initial weight of the sample occurs
2) T50 %: 시료 초기중량의 50wt% 중량감소가 일어나는 온도2) T 50 % : Temperature at which 50 wt% weight loss of the initial weight of the sample occurs
시험예 2 (PP-g-MA/MWCNT와 PP-g-MA/MWCNT-COOH의 전기전도성) Test Example 2 (Electric Conductivity of PP-g-MA / MWCNT and PP-g-MA / MWCNT-COOH)
PP-g-MA/MWCNT와 PP-g-MA/MWCNT-COOH 나노복합체 필름의 전기저항(전기전도도의 역수)을 측정하기 위하여 고저항 측정기를 이용하였다. 도 3에 나타낸 바와 같이, PP-g-MA 고분자 필름은 ~1017 (Ω·cm) 정도의 높은 전기저항 값을 나타낸다. PP-g-MA/MWCNT-COOH 나노복합체(b)에서는 MWCNT-COOH의 함량이 약 5 wt% 정도에서 ~107 (Ω·cm) 정도의 전기저항값을 가지는 것을 확인할 수 있다. 한편 PP-g-MA/MWCNT 나노복합체 필름(a)에서는 그보다 훨씬 적은 CNT의 함량 3 wt%에서 ~108 (Ω·cm)까지 전기저항값이 낮아지고 5 wt%에서는 ~106 (Ω·cm)의 전기저항값을 나타낸다. 이는 MWCNT 산처리 과정 중 MWCNT의 탄소 공액 2중 결합이 파괴되면서 전기전도성이 다소 감소하였기 때문에 나타난 결과라 할 수 있다. 하지만 PP-g-MA/MWCNT와 PP-g-MA/MWCNT-COOH 나노복합체 모두 MWCNT의 함량이 5 wt% 이상에서는 ~106~7 Ω·cm의 낮은 전기저항 값을 가지는 것을 볼 수 있다. 본 발명에 의한 PP-g-MA/MWCNT-COOH 및 PP-g-MA/MWCNT 나노복합체의 낮은 전기저항 값(~106~7 Ω·cm)은 섬유, 필름, 플라스틱으로 제조되었을 때 거의 대전(정전기 발생)하지 않을 정도의 우수한 전기전도성을 갖는 것을 의미한다. A high resistance meter was used to measure the electrical resistance (inverse of the electrical conductivity) of the PP-g-MA / MWCNT and PP-g-MA / MWCNT-COOH nanocomposite films. As shown in FIG. 3, the PP-g-MA polymer film exhibits a high electrical resistance value of ˜10 17 (μm · cm). In the PP-g-MA / MWCNT-COOH nanocomposite (b), it can be seen that the MWCNT-COOH content has an electrical resistance of about 10 7 (μm · cm) at about 5 wt%. The other hand, in the PP-g-MA / MWCNT nanocomposite film (a), is the electric resistance value to the lot to 10 8 in the content of 3 wt% of small CNT (Ω · cm) less than 5 wt% to 10 6 (Ω · The electrical resistance value of cm) is shown. This can be said to be the result of the electrical conductivity decreased slightly as the carbon conjugated double bond of MWCNT was destroyed during MWCNT acid treatment. However, both PP-g-MA / MWCNT and PP-g-MA / MWCNT-COOH nanocomposites have low electrical resistance values of ˜10 6-7 ~ · cm when the MWCNT content is above 5 wt%. The low electrical resistance values (~ 10 6-7 Ωcm) of PP-g-MA / MWCNT-COOH and PP-g-MA / MWCNT nanocomposites according to the present invention were almost charged when made of fiber, film or plastic. It means having excellent electrical conductivity that does not occur (electrostatic generation).
본 발명에서 제시하는 방법에 따라 제조된 PP-g-MA/MWCNT-COOH 나노복합체는 상기 시험예의 결과로부터 입증되듯이 기존의 PP-g-MA 단독고분자와 PP-g-MA/MWCNT 나노복합체보다 우수한 열적 안정성을 가진다. 그리고 PP-g-MA/MWCNT-COOH와 PP-g-MA/MWCNT 나노복합체의 낮은 전기저항 값은 우수한 대전방지효과가 있음을 보여 준다. 따라서 본 발명에 의한 PP-g-MA/MWCNT 및 PP-g-MA/MWCNT 나노복합체는 필름, 섬유, 플라스틱 등 다양한 분야에서 유용하게 적용될 수 있으며, 본 발명은 이들 구체적인 예에 한정되는 것은 아니다. PP-g-MA / MWCNT-COOH nanocomposite prepared according to the method of the present invention, as evidenced from the results of the test example, compared with the conventional PP-g-MA homopolymer and PP-g-MA / MWCNT nanocomposite Has excellent thermal stability. The low electrical resistance values of PP-g-MA / MWCNT-COOH and PP-g-MA / MWCNT nanocomposites show excellent antistatic effects. Therefore, the PP-g-MA / MWCNT and PP-g-MA / MWCNT nanocomposites according to the present invention can be usefully applied in various fields such as films, fibers, plastics, and the present invention is not limited to these specific examples.
도 1은 PP-g-MA/MWCNT 나노복합체의 온도에 따른 중량변화를 나타낸 것이다. Figure 1 shows the weight change with temperature of the PP-g-MA / MWCNT nanocomposite.
도 2는 PP-g-MA/MWCNT-COOH 나노복합체의 온도에 따른 중량변화를 나타낸 것이다.Figure 2 shows the weight change with temperature of the PP-g-MA / MWCNT-COOH nanocomposite.
도 3은 PP-g-MA/MWCNT 나노복합체(a)와 PP-g-MA/MWCNT-COOH 나노복합체(b)의 MWCNT 또는 MWCNT-COOH 함량에 따른 전기저항(Electrical resistivity)값을 나타낸 것이다.Figure 3 shows the electrical resistivity (Electrical resistivity) value according to the MWCNT or MWCNT-COOH content of the PP-g-MA / MWCNT nanocomposite (a) and PP-g-MA / MWCNT-COOH nanocomposite (b).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090073931A KR101102848B1 (en) | 2009-08-11 | 2009-08-11 | Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090073931A KR101102848B1 (en) | 2009-08-11 | 2009-08-11 | Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110016298A KR20110016298A (en) | 2011-02-17 |
KR101102848B1 true KR101102848B1 (en) | 2012-01-05 |
Family
ID=43774743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090073931A KR101102848B1 (en) | 2009-08-11 | 2009-08-11 | Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101102848B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160430A (en) | 2015-02-27 | 2016-09-05 | 現代自動車株式会社Hyundai Motor Company | Polypropylene-graphene composite body and method for producing the same |
KR101762900B1 (en) * | 2015-09-25 | 2017-07-28 | 롯데케미칼 주식회사 | Slurry composition for preparing of electrode of redox flow battery and electrode of redox flow battery comprising the same |
CN109608669B (en) * | 2018-12-19 | 2021-07-13 | 深圳烯湾科技有限公司 | Carbon nano tube reinforced polypropylene composite material and preparation method thereof |
CN114163768B (en) * | 2021-12-29 | 2023-11-17 | 广州市聚赛龙工程塑料股份有限公司 | Thermoplastic elastomer composition and preparation method and application thereof |
-
2009
- 2009-08-11 KR KR1020090073931A patent/KR101102848B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
CHEN, X. et al. Preparation and Crystallization of Carbon Nanotube/maleic Anhydride-grafted Polypropylene Composites, J. Mater. Sci. Technol., Vol. 24, No. 2, 279-284 (2008). |
Also Published As
Publication number | Publication date |
---|---|
KR20110016298A (en) | 2011-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes | |
Nadiv et al. | Graphene nanoribbon–polymer composites: the critical role of edge functionalization | |
Chou et al. | Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes | |
Zhu et al. | In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites | |
Sahoo et al. | Specific functionalization of carbon nanotubes for advanced polymer nanocomposites | |
Georgakilas et al. | Multipurpose organically modified carbon nanotubes: from functionalization to nanotube composites | |
Zou et al. | A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers | |
McIntosh et al. | Nanocomposite fiber systems processed from fluorinated single-walled carbon nanotubes and a polypropylene matrix | |
Saeed et al. | Preparation of multiwalled carbon nanotube/nylon‐6 nanocomposites by in situ polymerization | |
Raja et al. | Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly (vinylidene diflouride)(PVDF) composites | |
US20100308279A1 (en) | Conductive Silicone and Methods for Preparing Same | |
Gou et al. | Processing of polymer nanocomposites | |
Wang et al. | Unzipped multiwalled carbon nanotubes for mechanical reinforcement of polymer composites | |
JP2005520021A (en) | Composite materials containing polar polymers and single-walled carbon nanotubes | |
Mallakpour et al. | Ultrasonic-assisted biosurface modification of multi-walled carbon nanotubes with Thiamine and its influence on the properties of PVC/Tm-MWCNTs nanocomposite films | |
Ben Doudou et al. | Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation | |
Jagtap et al. | Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique. | |
Lebrón-Colón et al. | Reinforced thermoplastic polyimide with dispersed functionalized single wall carbon nanotubes | |
KR101102848B1 (en) | Polypropylene-graft-maleic anhydride/Carbon Nanotube Nanocomposites with Excellent Thermal Stability and Electrical Conductivity | |
Chen et al. | Recent advances in carbon nanotube-polymer composites | |
Auad et al. | Single-wall carbon nanotubes/epoxy elastomers exhibiting high damping capacity in an extended temperature range | |
Zaragoza-Contreras et al. | Evidence of multi-walled carbon nanotube fragmentation induced by sonication during nanotube encapsulation via bulk-suspension polymerization | |
Ding et al. | Enhancing the electrical conductivity and strength of PET by single-wall carbon nanotube film coating | |
Cui et al. | High strength composites using interlocking carbon nanotubes in a polyimide matrix | |
Gantayat et al. | Design of carbon nanofiber embedded conducting epoxy resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20141010 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161012 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20171024 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20181227 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20191212 Year of fee payment: 9 |