TW201122037A - A proton exchange composite membrane and preparation thereof - Google Patents

A proton exchange composite membrane and preparation thereof Download PDF

Info

Publication number
TW201122037A
TW201122037A TW098144683A TW98144683A TW201122037A TW 201122037 A TW201122037 A TW 201122037A TW 098144683 A TW098144683 A TW 098144683A TW 98144683 A TW98144683 A TW 98144683A TW 201122037 A TW201122037 A TW 201122037A
Authority
TW
Taiwan
Prior art keywords
proton exchange
membrane
nafion
composite membrane
pva
Prior art date
Application number
TW098144683A
Other languages
Chinese (zh)
Other versions
TWI452072B (en
Inventor
Cheng-Chiang Huang
Tai-Hong Cheng
Tzyy-Lung Yu
Hsiu-Li Lin
Shr-Hua Wang
Ming-Tsung Wang
Li-Chun Chen
Chui-Kai Chiu
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Priority to TW098144683A priority Critical patent/TWI452072B/en
Publication of TW201122037A publication Critical patent/TW201122037A/en
Application granted granted Critical
Publication of TWI452072B publication Critical patent/TWI452072B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a proton-exchange composite membrane with low thickness, low methanol crossover, and low proton transport resistance and its preparation method. The invention comprises of polymer fiber thin film with impregnated proton exchange resin. Wherein the polymer fiber thin film having fiber diameter less than 500 nm, pore sizes less than 30 μ m, and porosity larger than 70%. The thickness of the composite membrane is around 35 to 70 μ m. The invention can be used as a proton exchange membrane for direct methanol fuel cell (DMFC)application with high performance.

Description

201122037 六、發明說明: . 【發明所屬之技術領域】 本發明係關於一種低膜厚、低曱醇穿透及低質子傳 導阻抗之質子交換複合膜及其製備方法。尤其係指一種 應用於直接曱醇燃料電池,具有低膜厚、低質子傳導阻 抗、低甲醇穿透率及優異尺寸安定性的質子交換膜及其 製備方法。 【先前技術】 燃料電池是以燃料(如氳氣、曱醇、鋅..等)與氧或 空氣經電化學反應而直接產生電能。由於其減少了許多 機械與熱能等中間的轉換程序,相較於其他傳統電能的 產生程序’燃料電池具有極高的能源轉換效率。其中又 以聚電解質薄膜(polymer electrolyte membrane,PEM) 所製成之直接曱醇燃料電池(direct methanol fuel cell ; DMFC)具低溫操作(Temp< 100。〇、體積小與高電力密度 等優點,而適合一般攜帶型電力’如筆記型電腦、手機、 數位相機之需求,故日益受重視。 但直接曱醇燃料電池目前仍有:(1)電極觸媒活性不 夠高;(2)觸媒會被中間產物一氧化碳毒化;及(3)曱醇 滲透穿過質子交換膜等三個問題亟待解決。 文獻報告中,常見以Nafion_117 (全氟續酸樹脂, 膜厚175μιη;美國杜邦公司)質子交換膜製備膜電極組 (membrane electrode assembly ; ΜΕΑ)。Nafion 應用於直 201122037 接甲醇燃料電池之優缺點如下。優點:(1)優異的質子傳 導率;(2)優異的機械及化學性質;(3)長時間操作的穩 定特性。缺點:⑴價錢昂貴(約在8〇〇〜1〇〇〇 us$/m2;); (2)高曱醇穿透率,故應用於曱醇燃料電池,效能會降 低;(3)操作溫度高於1〇〇。〇以上時,水分子會流失,而 造成質子交換膜之質子傳導性能急遽下降。 為降低曱醇穿透率,提高DMFC燃料電池之發電 功率,習知技術係於Nafion質子交換膜中混合與曱醇 或水相溶性較低的聚合物如:聚乙烯醇(p〇ly(vinyl alcohol); PVA)、聚丙浠腈(poly(acrylonitrile); PAN)、聚 醯胺(polyimide;PIM)等,或混合奈米無機化合物如: 矽氧化合物(silicate)、結氧化物(zirconium oxide)等。 PVA、PAN、i>IM高分子或奈米無機化合物雖可與Nafion 溶液混合製膜來降低曱醇穿透率,但曱醇與水是互溶的 物質,故一般材料之甲醇穿透率與質子傳導率係成正比 關係。PVA、PAN、PIM等高分子或無機化合物雖具有 低曱醇穿透之性質,但其質子傳導率亦較Nafion低。 因此應用於DMFC之Nafion質子交換膜的改質材料, 應具備:高質子傳導率σ與低曱醇穿透率尸之雙重性 質,亦即提高[質子傳導率]/[甲醇穿透率]=σΑΡ的比值。 目前文獻[B.S. Pivovar,Y. Wang, E.L. Cussler,J. Membr. Sci., 154 (1999) 155-162; N.W. DeLuca, Y.A. Elabd, J. Membr. Sci., 282 (2006) 217-224; N.W. DeLuca, Y.A. Elabd,J. Power Sources, 163 (2006) 386-391.]中’顯 201122037 示較適合Nafion改質應用於DMFC之高分子材料為 PVA。文獻研究報告數據顯示,Nafion混合5 wt% PVA 的摻合膜(膜厚>175 μιη),其DMFC之性能優於 Nafion-117 (膜厚〜175 μιη),但PVA的混合量大於10 wt%,Nafon/PVA摻合膜的DMFC性能則甚低於 Nafion-117°PVA 混合量大於 1〇 wt%之 Nafcm/PVA 摻合 膜的DMFC性能甚低於Nafion-117的原因可能是:(1) PVA與Nafion因不具良好之互溶性,故當pVA含量g 1〇 wt°/〇時’ PVA不易均勻分散於Nafion膜中;(2)曱醇/水 混合溶液對低聚合度的PVA具有微量的溶解性,故pva 含量高會造成在DMFC操作時,微量PVA被曱醇/水溶 液溶出;(3)太高的PVA含量會造成質子傳導率大幅下 降。201122037 VI. Description of the Invention: [Technical Field] The present invention relates to a proton exchange composite membrane having low film thickness, low sterol penetration and low proton conduction resistance, and a preparation method thereof. In particular, it relates to a proton exchange membrane which is applied to a direct methanol fuel cell, has a low film thickness, a low proton conductivity, a low methanol permeability, and an excellent dimensional stability, and a preparation method thereof. [Prior Art] A fuel cell directly generates electric energy by electrochemically reacting with a fuel such as helium, decyl alcohol, zinc, or the like with oxygen or air. Since it reduces many intermediate conversion procedures such as mechanical and thermal energy, the fuel cell has a very high energy conversion efficiency compared to other conventional electric energy generation programs. The direct methanol fuel cell (DMFC) made of polymer electrolyte membrane (PEM) has low temperature operation (Temp < 100. 〇, small volume and high power density, etc.) It is suitable for general portable power, such as notebook computers, mobile phones, and digital cameras, so it is receiving more and more attention. However, direct sterol fuel cells still have: (1) the electrode catalyst activity is not high enough; (2) the catalyst will be The intermediate product carbon monoxide poisoning; and (3) sterol penetration through the proton exchange membrane and other three issues need to be resolved. In the literature report, Nafion_117 (perfluoro acid resin, film thickness 175μιη; DuPont, USA) proton exchange membrane preparation Membrane electrode assembly (ΜΕΑ). The advantages and disadvantages of Nafion applied to the direct 201122037 methanol fuel cell are as follows: Advantages: (1) excellent proton conductivity; (2) excellent mechanical and chemical properties; (3) long Stable characteristics of time operation. Disadvantages: (1) expensive (about 8〇〇~1〇〇〇us$/m2;); (2) high sterol penetration rate, so it is applied to sterol combustion Battery, the efficiency will be reduced; (3) The operating temperature is higher than 1 〇〇. When 〇 above, the water molecules will be lost, and the proton exchange performance of the proton exchange membrane will drop rapidly. To reduce the sterol penetration rate, improve the DMFC fuel cell. The power generation power is conventionally mixed in a Nafion proton exchange membrane with a polymer which is less soluble in sterol or water, such as polyvinyl alcohol (PVA), PVA, and poly(poly( Acrylonitrile); PAN), polyimide (PIM), etc., or mixed nano inorganic compounds such as: silicate, zirconium oxide, etc. PVA, PAN, i > IM polymer or Although the nano inorganic compound can be mixed with Nafion solution to reduce the sterol permeability, but the sterol and water are mutually soluble substances, the methanol permeability of the general material is proportional to the proton conductivity. PVA, PAN Polymers or inorganic compounds such as PIM have low sterol permeability, but their proton conductivity is lower than Nafion. Therefore, the modified material of Nafion proton exchange membrane applied to DMFC should have: high proton conductivity σ With low The dual nature of the penetration rate, that is, the ratio of [proton conductivity] / [methanol penetration] = σ 。. Current literature [BS Pivovar, Y. Wang, EL Cussler, J. Membr. Sci., 154 ( 1999) 155-162; NW DeLuca, YA Elabd, J. Membr. Sci., 282 (2006) 217-224; NW DeLuca, YA Elabd, J. Power Sources, 163 (2006) 386-391.] 201122037 The polymer material which is suitable for Nafion modification and applied to DMFC is PVA. According to the literature research report, Nafion mixed 5 wt% PVA blended membrane (film thickness > 175 μιη), its DMFC performance is better than Nafion-117 (film thickness ~ 175 μιη), but the PVA blending amount is greater than 10 wt %, Nafon/PVA blended membranes have a DMFC performance that is much lower than that of Nafion-117°PVA. The Nafcm/PVA blended membrane with a DMFC performance of less than 1% by weight is much lower than Nafion-117. PVA and Nafion are not well miscible, so when the pVA content g 1〇wt ° / ' 'PVA is not easy to be uniformly dispersed in the Nafion membrane; (2) sterol / water mixed solution has a small amount of low polymerization degree PVA Solubility, so high pva content will cause traces of PVA to be dissolved by sterol/aqueous solution during DMFC operation; (3) too high PVA content will cause a significant decrease in proton conductivity.

Gore 公司[B. Bahar,A.R. Hobson,J. Kolde,USGore [B. Bahar, A.R. Hobson, J. Kolde, US

Patent 5,547,551,1996.]以微孔聚四氟乙烯(pTFE; poly(tetrafluoro ethylene),孔隙率>75%)膜為基材含浸 Nafion溶液’將Nafion填充至具有孔洞性的ptfe膜 製作“Nafion/PTFE 複合膜,’(膜厚 20-25 μιη)。因 PTFE 膜具有極佳的機械性能,且PTFE與曱醇互不相溶,對 曱醇有阻隔性,可降低質子交換膜的厚度,進而降低質 子傳遞的阻抗(質子交換膜厚度愈大,則阻抗愈大),並 減少Nafion的使用量,而達到低成本及高性能之需求。 研究報告[H.L. Lin,T.L. Yu,L.N. Huang,L.C. Chen, K.S. Shen, G.B. Chung, J. Power Sources, 150 (2005) 201122037 11-19.]顯示,Nafion/PTFE 複合膜(膜厚 20-25 μιη)之 DMFC 性能優於 Nafion-117(膜厚 175 μιη)。但 PTFE 之 化學結構為-(CF2-CF2)-,不含有其他極性官能基,故 Nafion與多孔PTFE膜之間的作用力只是一種簡單的物 理吸附力。因此“Nafion/PTFE複合膜,,的缺點在於: PEMFC或DMFC在長時間操作下,Nafion與PTFE會 有脫層(delamination)現象。 【發明内容】 由前述可知,為了解決質子交換膜應用於直接甲醇 燃料電池,甲醇穿透質子交換膜,導致電池效能大幅降 低之問題,先前文獻技術報告提出兩種Nafion改質之 質子交換膜:(1)將Nafion混摻PVA製備“Nafion/PVA 摻合膜”(膜厚175-200μιη); (2)以微孔PTFE膜為基材含 浸Nafion溶液製作“Nafion/微孔洞PTFE複合膜”(膜厚 20_25 μιη)。 此兩種Nafion改質之質子交換膜均具低曱醇滲透 及低質子傳導阻抗之性能’因此二者的DMFC性能均 可超越Nafion-117。但此兩種質子父換膜仍有其缺點. ⑴因Nafion與PVA的相容差’ Nafi〇n/PVA摻合膜之 PVA摻合量最多至5 wt%,當混摻的PVA含量大於5 wt%,質子傳導率會大幅下降,DMFC性能亦大幅下降; (2) Nafion/PVA摻合膜的膜厚在175·20〇哗與 Nafion_117的膜厚相當。但因Nafi〇n價錢昂貴’故 201122037Patent 5,547,551,1996.] impregnating a Nafion solution with a microporous polytetrafluoroethylene (pTFE; poly(tetrafluoro ethylene), porosity > 75%) film to fill Nafion to a porous ptfe film to make "Nafion" /PTFE composite film, '(film thickness 20-25 μιη). Because PTFE film has excellent mechanical properties, and PTFE and sterol are incompatible with each other, it has barrier properties to sterol and can reduce the thickness of proton exchange membrane. In turn, the impedance of proton transfer is reduced (the greater the thickness of the proton exchange membrane, the greater the impedance), and the amount of Nafion used is reduced to meet the demand for low cost and high performance. Research Report [HL Lin, TL Yu, LN Huang, LC Chen, KS Shen, GB Chung, J. Power Sources, 150 (2005) 201122037 11-19.] shows that the MFFC performance of the Nafion/PTFE composite membrane (film thickness 20-25 μιη) is better than that of Nafion-117 (film thickness 175). Μηη). However, the chemical structure of PTFE is -(CF2-CF2)-, which does not contain other polar functional groups, so the force between Nafion and the porous PTFE membrane is only a simple physical adsorption force. Therefore, "Nafion/PTFE composite membrane , the disadvantages are: PEMFC or DMFC Under long operation, Nafion and PTFE will have delamination (delamination) phenomenon. SUMMARY OF THE INVENTION As can be seen from the foregoing, in order to solve the problem that the proton exchange membrane is applied to a direct methanol fuel cell and methanol penetrates the proton exchange membrane, resulting in a significant decrease in battery efficiency, the prior literature reports propose two Nafion-modified proton exchange membranes: (1) Preparation of "Nafion/PVA blended membrane" (film thickness 175-200μιη) by Nafion blended with PVA; (2) Preparation of "Nafion/microporous PTFE composite membrane" by impregnating Nafion solution with microporous PTFE membrane as substrate (film thickness 20_25 μιη). Both Nafion-modified proton exchange membranes have low sterol penetration and low proton conduction resistance performance, so both DMFC performance can surpass Nafion-117. However, the protons of the two protons still have their shortcomings. (1) The compatibility of Nafion and PVA is poor. The PVA blending amount of the Nafi〇n/PVA blended film is up to 5 wt%, and the PVA content of the blended blend is greater than 5 At wt%, the proton conductivity is greatly reduced, and the DMFC performance is also greatly reduced; (2) The film thickness of the Nafion/PVA blend film is equivalent to that of Nafion_117 at 175·20〇哗. But because Nafi〇n is expensive, so 201122037

Nafion/PVA摻合膜的厚度與Nafion-117相當,其成本 高於Nafion-117而在商場上無法與杜邦公司的 Nafion-117競爭;(3) Nafion/微孔洞PTFE複合膜雖具 有低膜厚(20_25 μιη)、低成本、低曱醇穿透與低質子傳 導阻抗之優點’但PTFE不含有極性官能基而與Nafion 之’丨面枯者力低’在燃料電池長期操作下,容易發生 PTFE與Nafion脫層之現象。 為解決上述Nafion/PVA摻合膜及Nafion/PTFE複 合膜之缺點’本發明提供一種能夠提高Nafl〇n/PVA膜 之PVA含量、降低膜厚、降低膜成本且具低曱醇穿透 與低質子傳導阻抗及具有優異尺寸安定性的質子交換 複合膜及其製備方法。此質子交換複合膜可應用於直接 曱醇燃料電池而具有優異的性能。 本發明之質子交換複合膜係:以直徑5〇〇 nm以下 的聚合物纖維所形成的孔徑在3 〇 pm以下,且孔隙率大 於70%的奈米纖維膜含浸填充質子交換樹脂所形成的 質子交換複合膜。該質子交換複合膜的整體膜厚在 35〜70 μιη。 其中該聚合物纖維係選自於至少一種下列群組: PVA、PAN或ΡΙΜ等具有低曱醇穿透與低質子傳導阻抗 之^^合物。该質子交換充填材料係選自於至少一種下列 群組:全氟碳酸樹脂、磺酸化聚醚醚_、磺酸化聚苯醚 醚酮、全氟續酸樹脂(Nafion)、續酸化聚醚颯等具有高 質子傳導性能之聚電解質。 201122037 维膜化學交聯處理之纖 _。聚合物纖維化學交聯處理纖維膜(如 至少2個贿官能基之有機脂肪族或芳香 戍二:等’或環氧樹脂,或二碳酸化合物、 錢複合歡製細序包括下述步驟: (1) 聚合物纖維膜製作The thickness of Nafion/PVA blended film is comparable to that of Nafion-117, which is higher than Nafion-117 and cannot compete with DuPont's Nafion-117 in the market; (3) Nafion/microporous PTFE composite film has low film Thick (20_25 μιη), low cost, low sterol penetration and low proton conduction resistance 'but PTFE does not contain polar functional groups and Nafion's 'low surface strength' is prone to occur under long-term operation of fuel cells The phenomenon of delamination of PTFE and Nafion. In order to solve the above disadvantages of the Nafion/PVA blend film and the Nafion/PTFE composite film, the present invention provides a method for improving the PVA content of the Nafl〇n/PVA film, reducing the film thickness, reducing the film cost, and having low sterol penetration and low quality. Sub-conductive impedance and proton exchange composite membrane with excellent dimensional stability and preparation method thereof. This proton exchange composite membrane can be applied to a direct sterol fuel cell with excellent performance. The proton exchange composite membrane of the present invention is a proton formed by impregnating a proton exchange resin with a pore diameter of 3 〇 pm or less and a porosity of more than 70%. Exchange the composite membrane. The overall film thickness of the proton exchange composite membrane is 35 to 70 μm. Wherein the polymeric fiber is selected from the group consisting of: PVA, PAN or hydrazine having low sterol penetration and low proton conduction resistance. The proton exchange filling material is selected from at least one of the group consisting of perfluorocarbonated resins, sulfonated polyether ethers, sulfonated poly(phenylene ether ether ketones), perfluoro acid-reducing resins (Nafion), and acidified polyether oximes, etc. A polyelectrolyte with high proton conductivity. 201122037 Victorian film chemical cross-linking treatment of fiber _. Polymer fiber chemical cross-linking treatment of fiber membranes (such as at least 2 brinic functional organic aliphatic or aromatic quinones: etc.) or epoxy resin, or dicarbonate compound, money compounding fine sequence including the following steps: 1) Polymer fiber membrane production

以電紡法製作直徑5〇〇 形成的纖維膜,纖維膜的孔的聚合物纖維所 率在70%以上。 ^在3〇μηι以下,孔隙 (2) 聚合物纖維膜化學交聯處理 化與H甲f或水之聚合物纖維膜(如PVA)須經 化學交聯處理所使用的交聯劑為含 合物、如戊二酸等,“或芳香族化 等。 軋树知,或二碳酸化合物 (3)纖維膜含浸質子交換樹脂 膜)^牛!®^步驟⑴未經化學交聯處理(如PAN纖維 =4= 經化學交聯處理(如pva纖維膜)製作 ,二2維膜浸潰或塗佈質子交換樹脂溶液,使 二!::交樹脂滲入聚合物纖維膜之孔隙中,再 子交換樹脂之纖維膜於120〜收進行 30为鐘的退火處理。 (3-b)重複(㈣浸潰或塗佈步驟以達到%阿至 201122037 70 μηι之膜厚’以及[質子交換樹脂]/[聚合物纖維膜] 的重量比為97/3至80/20。完成最後一次浸潰/塗佈 步驟後之退火步驟,係於120〜125°C進行1.〇〜15 小時退火。 藉由上述方法’可改善“Nafion/PVA摻合膜,,及 “Nafion/PTFE複合膜”之缺陷: ⑴提升改質聚合物(如PVA、PAN等)摻合含量百 分比:由聚合物構成奈米纖維膜(網)含浸質 子交換樹脂充填至聚合物之奈米纖維孔隙,不 0 會產生類似改質聚合物與質子交換樹脂混摻 時的不均勻問題,因此可提高膜中改質聚合物 含量,大幅提升甲醇阻隔性能。 (2) PVA纖維經化學父聯處理,可減少ργ^被水 或曱醇溶解之機率,增加質子交換膜的安定性 並降低曱醇穿透率。 (3) 降低質子交換膜的厚度:因膜中改質聚合物含 量大幅提高’同時交聯PVA及PAN聚合物奈籲 米纖維與醇及水溶劑相容性低,可大幅提高曱 醇阻隔性能’膜厚因而可降低,進而降低質子 交換膜的質子傳導阻抗’提高燃料電池之性 能。 (4) 聚合物纖維與質子交換樹脂Nafion具有良好 的介面作用力··因聚合物纖維,如PVA奈米纖 維表面的-OH官能基、pan奈米纖維表面的 10 201122037 •CN官能基可與質子交換樹脂’如Nafi〇n的 -S〇3H官能基結合,故聚合物纖維與質子交換 充填材料Naficrn具有良好的介面作用力,可增 強複合膜的機械性能。 經由上述說明,本發明質子交換膜至少具有下述功 效: ’、 (1) 可提升改質聚合物摻合含量百分比; (2) 可降低質子交換膜的曱醇穿透率; (3) 可提高[質子傳導]/[曱醇穿透]比值; (4) 可提升質子交換膜尺寸安定性:交聯聚合物纖維 膜可降低質子交換膜對水及曱醇的膨潤,增加尺寸安定 性。 【實施方式】 下述實施例僅作為本發明之質子交換膜及其製備 的說明參考’非意欲限制本發明之,在不^本發 明的精神錢圍T所進行之各種改變料本發明範圍 所涵蓋。 【實施例1】A fiber membrane formed by a diameter of 5 Å was produced by electrospinning, and the rate of the polymer fibers in the pores of the fiber membrane was 70% or more. ^ Under 3〇μηι, the pore (2) polymer fiber membrane chemical cross-linking treatment with H-f or water polymer fiber membrane (such as PVA) must be chemically cross-linked Substance, such as glutaric acid, etc., "or aromatization, etc. Rolling tree, or dicarbonate compound (3) fiber membrane impregnated proton exchange resin membrane) ^ Niu!® step (1) without chemical cross-linking treatment (such as PAN Fiber = 4 = Made by chemical cross-linking treatment (such as pva fiber membrane), two-dimensional membrane impregnation or coating of proton exchange resin solution, so that the two::: resin infiltrated into the pores of the polymer fiber membrane, and then sub-exchange The resin fiber film is annealed at 120 ° for 30 minutes. (3-b) Repeat ((4) impregnation or coating step to achieve %A to 201122037 70 μηι film thickness' and [proton exchange resin]/[ The weight ratio of the polymer fiber membrane] is from 97/3 to 80/20. The annealing step after the completion of the last impregnation/coating step is performed at 120 to 125 ° C for 1.5 to 15 hours of annealing. The method 'can improve the defects of Nafion/PVA blended membrane, and "Nafion/PTFE composite membrane": (1) Improve the modified polymer (such as P VA, PAN, etc.) Percent content of blending: nanofiber membrane (mesh) impregnated with a proton exchange resin filled with polymer to fill the pores of the nanofiber of the polymer, and 0 will produce a similar modified polymer and proton exchange resin mixed The unevenness of the time can improve the content of the modified polymer in the membrane and greatly improve the methanol barrier performance. (2) The PVA fiber can be reduced by the chemical parent to reduce the probability of ργ^ being dissolved by water or sterol, and increase the proton exchange. Membrane stability and reduced sterol penetration. (3) Decrease the thickness of proton exchange membrane: due to the greatly improved content of modified polymer in the membrane 'At the same time cross-linking PVA and PAN polymer Nymphite fiber with alcohol and water solvent Low compatibility, can greatly improve the sterol barrier performance 'thickness of the film can be reduced, thereby reducing the proton exchange resistance of the proton exchange membrane' to improve the performance of the fuel cell. (4) The polymer fiber and proton exchange resin Nafion have a good interface Force·· Due to polymer fibers, such as -OH functional groups on the surface of PVA nanofibers, surface of pan nanofibers 10 201122037 • CN functional groups can be combined with proton exchange resins such as Nafi The -S〇3H functional group of n is bonded, so that the polymer fiber and the proton exchange filling material Naficrn have a good interface force and can enhance the mechanical properties of the composite film. Through the above description, the proton exchange membrane of the present invention has at least the following effects: ', (1) can increase the percentage of modified polymer blending; (2) can reduce the sterol permeability of the proton exchange membrane; (3) can increase the [proton conduction] / [sterol penetration] ratio; 4) It can improve the size stability of proton exchange membrane: crosslinked polymer fiber membrane can reduce the swelling of water and sterol by proton exchange membrane and increase dimensional stability. [Embodiment] The following examples are merely illustrative of the proton exchange membrane of the present invention and the preparation thereof, and are not intended to limit the present invention, and various modifications made by the spirit of the present invention are not included in the scope of the present invention. Covered. [Example 1]

Nafion/PVA奈米纖維質子交換複合犋製備 1. PVA電紡纖維膜製作: 電紡設備裝置如圖1:包括⑴高壓電 (1〇)、(2)注射針筒與針頭⑽,溶液心 11 浦、(4)銅電極纖維收集滾筒(30)。 (1.1) PVA電紡纖維製作設定條件:(幻注射針頭 到銅電極收集板的工作距離為18 cm ; (b) 電壓為 18 kV ; (c) PVA (poly(vinyl alc〇h〇1) 曰本合成化學’ Z-410,去乙醯度97.5〜98 5 %)水溶液濃度為12 wt% ; (d) PVA水溶液 流速為1.2ml/min。利用上述條件製作纖維 直徑500 nm以下的PVA電紡纖維膜,其孔 徑小於30 μιη,孔隙率小於80〇/〇。 (1.2) PVA電紡纖維父聯反應:將pva電紡纖維 放入充滿戊二齡(glutaraldehyde,Fluka Chemical Co, Inc.)蒸氣的密閉容器内,在室 溫下進行交聯反應三天,再以異丙醇 (isopropyl alcohol,Merck Co)清洗殘餘未反 應之戊二酿,再以60¾加熱20 min,揮發 殘留異丙醇。 圖2是PVA交聯電紡纖維之掃描式電子顯微鏡 (SEM ; S-3000N,Shimazu)照片。Nafion/PVA nanofiber proton exchange composite crucible preparation 1. PVA electrospun fiber membrane production: Electrospinning equipment installation as shown in Figure 1: including (1) high voltage electricity (1〇), (2) injection syringe and needle (10), solution core 11 Pu, (4) copper electrode fiber collection roller (30). (1.1) PVA electrospun fiber production setting conditions: (The working distance of the magic injection needle to the copper electrode collection plate is 18 cm; (b) The voltage is 18 kV; (c) PVA (poly(vinyl alc〇h〇1) 曰The synthetic chemical 'Z-410, deacetylation degree 97.5~98 5 %) aqueous solution concentration is 12 wt%; (d) PVA aqueous solution flow rate is 1.2 ml / min. PVA electrospinning with fiber diameter below 500 nm is prepared by the above conditions. The fiber membrane has a pore diameter of less than 30 μm and a porosity of less than 80 〇/〇. (1.2) PVA electrospun fiber parent-stay reaction: pva electrospun fiber is filled with glutaraldehyde (Fluka Chemical Co, Inc.) vapor In a closed vessel, the crosslinking reaction was carried out at room temperature for three days, and then the residual unreacted pentane was washed with isopropyl alcohol (Merck Co), and then heated at 603⁄4 for 20 minutes to volatilize residual isopropyl alcohol. Figure 2 is a photograph of a scanning electron microscope (SEM; S-3000N, Shimazu) of PVA crosslinked electrospun fibers.

Nafton/PVA奈米纖維質子交換複合膜製作: (2.1) Nafion 溶液配製:5.0 wt% Nafion 溶液 (Nafion EW=1100,美國杜邦公司)以異丙 醇稀釋’配製3.0 wt%及4.0 wt% Nafion溶 液。 (2.2) 將步驟1製作之PVA電紡纖維膜浸潰於3 〇 201122037 wt%之Nafion溶液24小時後,取出膜材以 125°C加熱退火20分鐘。 (2.3) 將步驟(2.2)製作之複合膜浸潰於4.0 wt% 的Nafion溶液24小時後,以125°C加熱退 火20分鐘。 (2.4) 將步驟(2.3)製作之複合膜浸潰於5.0 wt〇/0 的Nafion溶液24小時後,取出膜材以 125°C加熱退火60分鐘。 (2.5) 上述步驟(2.2)〜(2.4)可調整Nafion溶液濃 度及浸潰溶液的次數,調整膜厚及 [Nafion]/[PVA]重量比。最後膜厚目標在35 μιη 〜70μπι’較佳膜厚為 50pm〇Nafion/PVA 重量比97/3至80/20,較佳Nafion/PVA重 量比為90/10。 圖3是Nafion/PVA奈米纖維質子交換複合膜之 SEM電子顯微鏡照片。Nafion/PVA奈米纖維質 子交換複合膜之膜厚約50 pm,PVA/Nafion重量 比為 1.0/9.0。 3. Nafion/PVA奈米纖維質子交換複合膜熱重分析 (TGA) TGA熱分析測試樣品貯存於純水中至少48 小時’測試前用拭鏡紙將膜材表面水分吸乾。 測試樣品重量5〜10 mg ’ TGA儀器TA-Q50,升 溫速率為10 C/min ’ I氣流量為50 ml/min。為 13 了與純Naflon膜作比較,亦以20 wt%的Nafion 溶液注形揮發溶劑成膜,並在125°C退火90分 鐘。圖4是Nafion/PVA奈米纖維複合膜與純 Nafion膜之TGA數據。 經由TGA的分析,可以測得膜材的熱解溫 度及含水率(溫度在200°C以下的重量損失)。由 圖4的TGA數據圖可知,一般的Nafion膜之 TGA曲線有四個重量損失溫度區間,樣品在低 於200°C時的TGA重量損失是屬於水分揮發的 重量損失,在溫度280〜400°C時則為Nafion的 -S03H官能基的支鏈裂解;而在溫度高於420°c 以上時,則是Nafion含碳氟主鏈的裂解。圆4 顯示在溫度280〜380°C之間,Nafion/PVA奈米纖 維質子交換膜的重量損失大於Nafion膜,可能 是PVA裂解所造成。 表1中列出Nafion及本發明Nafion/PVA纖 維質子交換膜由室溫升至200°C的TGA熱重量 損失’此重量損失可視為是膜的水含量。由表i 可知,Nafion/PVA奈米纖維質子交換膜的含水 率高出Nafion膜5.2 wt%,故可知本發明 Nafion/PVA奈米纖維質子交換膜的含水能力 (water uptake)高於一般的純 Nafion 膜。 201122037 表1. Nafion及Nafion/ PVA奈米纖維膜之TGA 200°C熱重損失 質子交換膜 200°C重量損失(wt%) Nafion 15.2 Nafion/PVA 纖維 20.4 4. Nafion/PVA奈米纖維質子交換膜質子傳導阻抗 (resistance)測定 以頻率應答分析儀(SolartronSA1255B)在 溫度70°C及RH 95%下量測膜材的阻抗R值, 並將其代入式(1),計算膜材的質子傳導率σ。 (l) σ =L/(RxA) 其中,σ=質子傳導率;L=膜厚;A=阻抗量測面 積(A= 3.14cm2)。 • 膜材阻抗量測前,先將Nafion/PVA纖維質 子交換複合膜與Nafion-117膜放入0.5 Μ的硫 酸水溶液中,以85°C加熱一小時,取出後以85°C 蒸餾水清洗10分鐘,洗淨後再進行交流電阻抗 (AC-impedance)量測。表 2 為 Nafion/PVA 纖維 複合膜的阻抗值與質子傳導率,可以得知雖然 Nafion-117質子傳導率高於Nafion/PVA纖維 質子交換複合膜,但本發明Nafion/PVA纖維膜 15 201122037 (膜厚50 μιη)的膜厚度較低,所以其阻抗率(L/σ) 低於 Nafion-117(膜厚 175 μιη)。 表2. Nafion/PVA纖維膜質子傳導阻抗數據(Temp= 70°C; RH= 95 %) 質子交換膜 厚度 Μμπι) 阻抗 K(Q) 傳導率 σ (S/cm) 阻抗率 Ι7σ(Ω cm2) Nafion 117 175 0.29 0.0192 0.911 Nafion/PVA纖維 50 0.14 0.0114 0.438 5· Nafion/PVA纖維質子交換複合膜曱醇滲透係數 量測 將質子交換膜夹置於兩玻璃槽中間,膜材 兩側分別是裝滿濃度2 Μ之曱醇(methanol,Preparation of Nafton/PVA nanofiber proton exchange composite membrane: (2.1) Nafion solution preparation: 5.0 wt% Nafion solution (Nafion EW=1100, DuPont, USA) diluted with isopropanol to prepare 3.0 wt% and 4.0 wt% Nafion solution . (2.2) The PVA electrospun fiber membrane produced in the step 1 was immersed in a 3 〇 201122037 wt% Nafion solution for 24 hours, and the film was taken out and annealed at 125 ° C for 20 minutes. (2.3) The composite membrane prepared in the step (2.2) was immersed in a 4.0 wt% Nafion solution for 24 hours, and then heated and quenched at 125 ° C for 20 minutes. (2.4) The composite film prepared in the step (2.3) was immersed in a 5.0 wt〇/0 Nafion solution for 24 hours, and the film was taken out and annealed at 125 ° C for 60 minutes. (2.5) The above steps (2.2) to (2.4) can adjust the concentration of the Nafion solution and the number of times the solution is immersed, and adjust the film thickness and the [Nafion]/[PVA] weight ratio. The final film thickness target is 35 μιη to 70 μπι', preferably 50 μm Nafion/PVA weight ratio 97/3 to 80/20, and preferably Nafion/PVA weight ratio is 90/10. Figure 3 is a SEM electron micrograph of a Nafion/PVA nanofiber proton exchange composite membrane. The Nafion/PVA nanofiber proton exchange composite membrane has a membrane thickness of about 50 pm and a PVA/Nafion weight ratio of 1.0/9.0. 3. Nafion/PVA nanofiber proton exchange composite membrane thermogravimetric analysis (TGA) TGA thermal analysis test sample stored in pure water for at least 48 hours. Before the test, the surface moisture of the membrane was blotted with a mirror paper. The test sample weighed 5 to 10 mg 'TAA instrument TA-Q50, and the temperature rise rate was 10 C/min ′ I gas flow rate was 50 ml/min. For comparison with the pure Naflon film, the film was formed by injecting a volatile solvent into a 20 wt% Nafion solution and annealing at 125 ° C for 90 minutes. Figure 4 is the TGA data of Nafion/PVA nanofiber composite membrane and pure Nafion membrane. Through the analysis of TGA, the pyrolysis temperature and water content of the film (weight loss below 200 ° C) can be measured. It can be seen from the TGA data chart of Fig. 4 that the TGA curve of the general Nafion film has four weight loss temperature intervals, and the TGA weight loss of the sample below 200 ° C is the weight loss of water volatilization at a temperature of 280 to 400 °. C is a branched cleavage of the -S03H functional group of Nafion; and above a temperature above 420 ° C, it is the cleavage of the fluorocarbon backbone of Nafion. Circle 4 is shown at temperatures between 280 and 380 ° C. The weight loss of the Nafion/PVA nanofiber proton exchange membrane is greater than that of the Nafion membrane, possibly due to PVA cracking. Table 1 lists the TGA thermogravimetric loss of Nafion and the Nafion/PVA fiber proton exchange membrane of the present invention from room temperature to 200 ° C. This weight loss can be regarded as the water content of the membrane. It can be seen from Table i that the water content of the Nafion/PVA nanofiber proton exchange membrane is 5.2 wt% higher than that of the Nafion membrane, so that the water uptake of the Nafion/PVA nanofiber proton exchange membrane of the present invention is higher than that of the general pure. Nafion membrane. 201122037 Table 1. TGA of Nafion and Nafion/PVA nanofiber membranes 200°C thermogravimetric loss proton exchange membrane 200°C weight loss (wt%) Nafion 15.2 Nafion/PVA fiber 20.4 4. Nafion/PVA nanofiber proton exchange Membrane proton conduction resistance measurement The impedance R value of the membrane was measured by a frequency response analyzer (Solartron SA1255B) at a temperature of 70 ° C and RH 95%, and substituted into the formula (1) to calculate the proton conduction of the membrane. Rate σ. (l) σ = L / (RxA) where σ = proton conductivity; L = film thickness; A = impedance measurement area (A = 3.14 cm 2 ). • Before the membrane impedance measurement, the Nafion/PVA fiber proton exchange composite membrane and Nafion-117 membrane were placed in a 0.5 Μ sulfuric acid aqueous solution, heated at 85 ° C for one hour, taken out and washed with 85 ° C distilled water for 10 minutes. After washing, conduct AC-impedance measurement. Table 2 shows the impedance value and proton conductivity of the Nafion/PVA fiber composite membrane. It can be seen that although the Nafion-117 proton conductivity is higher than that of the Nafion/PVA fiber proton exchange composite membrane, the Nafion/PVA fiber membrane of the present invention 15 201122037 (film The film thickness of 50 μm thick is lower, so the impedance ratio (L/σ) is lower than that of Nafion-117 (film thickness 175 μm). Table 2. Nafion/PVA fiber membrane proton conduction impedance data (Temp= 70°C; RH= 95%) Proton exchange membrane thickness Μμπι) Impedance K(Q) Conductivity σ (S/cm) Impedance Ι7σ(Ω cm2) Nafion 117 175 0.29 0.0192 0.911 Nafion/PVA fiber 50 0.14 0.0114 0.438 5· Nafion/PVA fiber proton exchange composite membrane sterol permeability coefficient measurement Proton exchange membrane is sandwiched between two glass tanks, both sides of the membrane are filled Concentration 2 曱 曱 曱 (methanol,

MerckCo)水溶液的a槽及純水的B槽。A槽及 B槽溶液體積各為400 m卜測試溫度為7〇°c。 每隔一小時抽取B槽的溶液2 ml三次,使用密 度計量測B槽溶液密度。將數值代入預先製作 的已知甲醇濃度之曱醇水溶液的密度對曱醇濃 度的檢量線’可量測B槽溶液的曱醇濃度 cBW。將量測所得的曱醇濃度Cb⑴對(t_t〇)作 圖,計算斜率代入式(2) ’即可求得甲醇滲透係 數P值。 ’、 (2) - t0) 201122037 其中,膜厚,柯醇渗透係數量測之膜截面積, to為起始制_。甲醇在A槽溶液的起始漢度為 CA(t〇)=2 Μ ’圖5是⑽vs· %作圖,由斜率可求 得曱醇滲透係數户值,如表3所示。由表3可知 Nafion/PVA纖維質子交換複合膜膜厚雖然比 Nafion-117薄’但甲醇滲透係數卻低於Nafi〇n ii7, 且Nafion/PVA纖維複合膜的σ/ρ值高於Naf勝ιΐ7 膜。此證明本發明Naflon/PVA奈米纖維質子交換膜 具備優越的甲醇阻絕特性,及低質子傳導阻抗,能 提升DMFC的性能。 表十甲醇滲逸·係麩P产σ/Ρ數據(TeniD^ 70〇C,CA(U= 2 M、 質子交換膜 膜厚 L(pm) 甲醇滲透係數 P (cm2/sec) W z觸 σ/Ρ (S sec/cm3) Naflon -117 175 3·31χ1〇·1 5.80xl03 Nafion/PVA 纖維 50 1.73xl〇'1 6.58xl03 1MerckCo) a tank of aqueous solution and tank B of pure water. The volume of the A tank and the B tank solution are each 400 m and the test temperature is 7 ° C. The solution of the B tank was extracted 2 ml three times every hour, and the density of the B tank solution was measured by density. The sterol concentration cBW of the B-tank solution can be measured by substituting the value into the previously prepared density of the aqueous methanol solution of known methanol concentration versus the concentration of the sterol concentration. The methanol osmotic coefficient P value can be obtained by plotting the measured sterol concentration Cb(1) versus (t_t〇) and calculating the slope substitution equation (2)'. ', (2) - t0) 201122037 wherein, the film thickness, the film cross-sectional area measured by the permeability coefficient of co-alcohol, to is the starting system _. The initial enthalpy of methanol in the A-slot solution is CA(t〇)=2 Μ ′. Figure 5 is a plot of (10) vs. %, and the sterol permeability coefficient is obtained from the slope, as shown in Table 3. It can be seen from Table 3 that although the film thickness of the proton exchange membrane of Nafion/PVA fiber is thinner than that of Nafion-117, the methanol permeability coefficient is lower than that of Nafi〇n ii7, and the σ/ρ value of the Nafion/PVA fiber composite membrane is higher than that of Nafion ιΐ7. membrane. This proves that the Naflon/PVA nanofiber proton exchange membrane of the present invention has superior methanol resistance characteristics and low proton conduction resistance, and can improve the performance of the DMFC. Table 10 methanol bleed · gluten P production σ / Ρ data (TeniD ^ 70 〇 C, CA (U = 2 M, proton exchange membrane thickness L (pm) methanol permeability coefficient P (cm2 / sec) W z touch σ /Ρ (S sec/cm3) Naflon -117 175 3·31χ1〇·1 5.80xl03 Nafion/PVA Fiber 50 1.73xl〇'1 6.58xl03 1

Nafion/PVA纖維質子交換複合膜膜電極組(MEA)製 備與DMFC單電池測試 6.1.電極組(MEA)製備 (1)質子交換膜前處理:放入5 wt%之H2〇2以 85°C加熱一小時,再放入蒸餾水中以85°C加 熱半小時,接著放入0.5 Μ之H2S04中以 85°C加熱10分鐘,最後再放入蒸餾水中以 85°C加熱10分鐘。 (¾觸媒漿料製備:陽極觸媒配方[pt_Ru/C (pt 20wt% ; RU 20wt%; E-Tek Co)]/ [Nafion (© 體)]/[水]/[異丙醇]=2/ 1/ 10/2 (重量比);陰 極觸媒配方[Pt/C (Pt 40 wt%; E-Tek)/ Nafion (固體)/水/異丙醇=2/ 1/ 10/2 (重量比)。觸媒 溶液以超音波震靈攪拌15 min混合均勻, 再以60°C溫度加熱以將溶劑揮發,使溶液形 成黏稠狀。 〇)觸媒塗布與膜電極組壓合:將陰、陽極觸媒 溶液塗布於碳紙(SGL-35BC; SGL)上,陽極 觸媒塗布量為Pt-Ru= 4 mg/cm2,陰極觸媒塗 布量為Pt= 2 mg/cm2。觸媒塗佈面積為 5.0x5.0 cm2。電極分別放置於質子交換膜的 兩侧重疊’藉由熱壓機以溫度135。(:,壓力 50 Kg/cm2 ’ 熱壓 30 秒後,再以 1〇〇 Kg/cm2 熱壓一分鐘。 單電池測試 單電池測試系統是5100 series CHINO燃料 電'也测5式糸統’氧氣流速為150ml/min,甲醇水 各液(甲醇(Merck)濃度)流速為2.5 ml/min,測試 溫度為7〇。(:,測定電池/-V曲線。 圖6是Nafion-117膜(臈厚=Π6 μιη)及本發 明Nafion/PVA纖維質子交換複合膜(膜厚=5〇 201122037 μιη)與Nafion/PVA纖維質子交換膜(膜厚=35 μηι),分別製成MEA之DMFC燃料電池i-V數 據圖。由圖6可知三個MEA的OCV(開路電壓) 數據大小依序是:Nafion-117膜(膜厚=175 μιη)> Nafion/PVA纖維質子交換複合膜(膜厚=50 μηι) > Nafion/PVA纖維質子交換複合膜(膜厚=35 μιη)。Nafion/PVA纖維質子交換複合膜(膜厚=35 μηι)製備之MEA的OCV偏低,可能是因為膜的 厚度太低,造成較高的甲醇滲透而使得OCV偏 低。圖6的i-V曲線顯示三個]V1EA的電池性能 依序是:Nafion/PVA纖維質子交換複合膜(膜厚 =50 μιη) > Nafion-117 膜(膜厚=175 μιη)> Nafion/PVA纖維質子交換複合膜(膜厚=35 μιη)。本發明Nafion/PVA纖維質子交換複合膜(膜 厚=50 μιη)的膜厚遠低於Nafion-117膜(膜厚= 176 μιη),使得Nafion/PVA纖維質子交換複合膜 質子傳導阻抗低於Nafion-117,加上PVA的高甲 醇阻隔能力,使得本發明Nafion/PVA纖維質子 父換膜(膜厚=50 μιη)的MEA性能優於Preparation of Nafion/PVA fiber proton exchange composite membrane electrode group (MEA) and DMFC cell test 6.1. Electrode assembly (MEA) preparation (1) Proton exchange membrane pretreatment: Put 5 wt% H2〇2 at 85 °C After heating for one hour, it was placed in distilled water and heated at 85 ° C for half an hour, then placed in 0.5 Torr of H 2 SO 4 and heated at 85 ° C for 10 minutes, and finally placed in distilled water and heated at 85 ° C for 10 minutes. (3⁄4 catalyst slurry preparation: anode catalyst formulation [pt_Ru/C (pt 20wt%; RU 20wt%; E-Tek Co)] / [Nafion (© body)] / [water] / [isopropyl alcohol] = 2/ 1/ 10/2 (weight ratio); Cathodic catalyst formulation [Pt/C (Pt 40 wt%; E-Tek) / Nafion (solid) / water / isopropanol = 2/ 1/ 10/2 ( Weight ratio). The catalyst solution is mixed by ultrasonic vibration for 15 min, and then heated at 60 ° C to volatilize the solvent to make the solution viscous. 〇) Catalyst coating and membrane electrode assembly: Yin The anode catalyst solution was coated on carbon paper (SGL-35BC; SGL), the amount of the anode catalyst coating was Pt-Ru = 4 mg/cm2, and the amount of the cathode catalyst coating was Pt = 2 mg/cm2. The catalyst coating area is 5.0 x 5.0 cm2. The electrodes were placed on opposite sides of the proton exchange membrane, respectively, by a hot press at a temperature of 135. (:, pressure 50 Kg/cm2 ' After 30 seconds of hot pressing, heat-press it for 1 minute at 1 〇〇Kg/cm2. The single-cell test cell test system is 5100 series CHINO fuel-electrical 'also measured type 5 糸' oxygen The flow rate was 150 ml/min, the flow rate of methanol water (Merck concentration) was 2.5 ml/min, and the test temperature was 7 〇. (:, the battery/-V curve was measured. Fig. 6 is the Nafion-117 film (臈) =Π6 μιη) and the Nafion/PVA fiber proton exchange composite membrane (film thickness=5〇201122037 μιη) and Nafion/PVA fiber proton exchange membrane (film thickness=35 μηι) of the present invention, respectively, to form MEA DMFC fuel cell iV data Figure 6. It can be seen from Figure 6 that the OCV (open circuit voltage) data size of the three MEAs is: Nafion-117 film (film thickness = 175 μιη) > Nafion/PVA fiber proton exchange composite film (film thickness = 50 μηι) &gt Nafion/PVA fiber proton exchange composite membrane (film thickness = 35 μιη). The OCV of MEA prepared by Nafion/PVA fiber proton exchange composite membrane (film thickness = 35 μηι) is low, probably because the thickness of the membrane is too low, resulting in The higher methanol permeation makes the OCV lower. The iV curve of Figure 6 shows that the battery performance of the three] V1EAs is: Nafion/P VA fiber proton exchange composite membrane (film thickness = 50 μm) > Nafion-117 membrane (film thickness = 175 μιη)> Nafion/PVA fiber proton exchange composite membrane (film thickness = 35 μm). Nafion/PVA fiber of the present invention The membrane thickness of the proton exchange composite membrane (film thickness = 50 μηη) is much lower than that of the Nafion-117 membrane (film thickness = 176 μηη), making the proton conduction resistance of the Nafion/PVA fiber proton exchange composite membrane lower than Nafion-117, plus PVA The high methanol barrier ability makes the MEA performance of the Nafion/PVA fiber proton parent film (film thickness = 50 μιη) of the present invention superior to that of the present invention.

Mafion_l 17 ° Nafion/PVA 纖維質子換膜(膜厚=35 μιη)則因為膜的厚度太低導致高曱醇滲透,故 OCV偏低而ΜΕΑ性能較差。 【實施例2】 201122037Mafion_l 17 ° Nafion/PVA fiber proton exchange film (film thickness = 35 μιη), because the thickness of the film is too low, resulting in high sterol penetration, so OCV is low and the enthalpy performance is poor. [Embodiment 2] 201122037

Nafion/PAN奈米纖維質子交換複合膜製備 本實施例使用電紡絲技術製作的PAN奈米纖維膜 浸潰Nafion溶液製作Nafion/PAN纖維質子交換複合 膜。製備程序敘述如下: 1. PAN電紡纖維膜製作: 電紡設備裝置如圖一,包括:(1)高壓電源供應 器(1〇) ; (2)注射針筒與針頭(2〇); (3)溶液注射幫 浦;(4)銅電極纖維收集滚筒(3〇)。 (1·1) PAN電紡纖維製作條件設定:⑷注射針 頭到銅電極收集板的工作距離為18 cm; (b)電壓 為 18 kV ; (c) PAN (polyacrylonitrile)/ DMAc(N,N、dimethyl acetamide)溶液之 PAN 濃 度為15 wt%;⑷溶液流速為i.2ml/min。利用上 述條件製作直徑500 nm以下的PAN電紡纖維 膜。圖7是PAN奈米纖維膜之SEM電子顯微鏡 照片。 2. Nafion/PAN纖維質子交換複合膜製備 (2.1) 將PAN纖維膜浸潰於2.〇 wt% Nafion溶液 中6小時。取出纖維膜,待溶劑稍微乾後,置 於125 C之烘相進行加熱退火2〇 min。 (2.2) 將步驟(2.1)之pan纖維膜浸潰於3 〇 wt% Nafion溶液中4小時。取出pAN纖維膜,待溶 劑稍微乾後,置於125°C之烘箱進行加熱退火20 分鐘。 20 201122037 (2.3)將步驟(2.2)之PAN纖維膜浸潰於5.0 wt% 之Nafion溶液中2小時,待溶劑稍微乾後,置 於125°C之烘箱進行加熱退火1小時。 圖8是完成步驟(2.3)後之膜的犯行〇11/?八]^纖維 複合膜之正面SEM照片(x3000)。由圖7及圖8 可以看出PAN奈米纖維膜在浸潰Nafion溶液前 可清楚看見交錯纖維,且具有相當多的孔洞, 然而在依次完成上述浸潰Nafion溶液的步驟 後,PAN奈米纖維膜的孔洞已被Nafion緻密填 補。Nafion/PAN奈米纖維膜平均膜厚為38 μιη, Nafion 含量約 82.0 wt0/〇。 3. Nafion/PAN纖維質子交換複合膜阻抗測定 測定步驟如實施例1所述。阻抗量測前,先 將質子交換膜放入0.5 Μ的硫酸水溶液中,以 85°C加熱一小時後,再取出以85°C蒸餾水洗淨 10分鐘,洗淨後再進行交流電阻抗(AC impedance)量測。測試環境為:溫度70°C、相對 濕度95%。測量得膜材的阻抗值R,代入式(1) 可計算求得膜材的質子傳導率σ。表4為 Nafion/PAN纖維複合膜與Nafion-117的阻抗值 與質子傳導率,可以得知Nafion-117質子傳導 率高於本發明Nafion/PAN纖維質子交換複合 膜,但低膜厚Nafion/PAN奈米纖維膜(膜厚38 μιη)的阻抗率(Ι7(σ)低於Nafion-117(膜厚175 21 201122037 μπι)。 表4. Nafion/PAN奈米纖維質子交換膜質子傳導阻抗數據 (Temp= 70°C; RH= 95 %; 3.14 cm2) _ 質子交換膜 膜厚 L (μπι) 阻抗 R(Q) 傳導率 σ (S/cm) 阻抗率 L/o(Qcm2) Nafion -117 175 0.290 0.0192 0.911 Nafion/PAN 纖維 38 0.114 0.0106 0.243 4. Nafion/PAN奈米纖維質子交換複合膜曱醇滲透量測 量測步驟如實施例1所述。量測溫度為70°C, 曱醇在A槽的起始濃度cA(t〇)= 3 Μ,將量測所#的 曱醇濃度CB(t)對(t-t。)作圖,計算數據圖之斜率代入 式(2)中’可求得曱醇滲透係數p值。圖9是cB(t) vs. (Η〇作圖’由斜率計算得到之曱醇滲透係數p值,如 表5所示。由表5可知,Nafion/PAN纖維質子交換 複合膜膜厚(38 μιη)雖然比Nafion-ΙΠ (厚度175 μιη) 薄,但曱醇滲透係數卻低於Nafi〇n_m,且 Nafion/PAN纖維複合膜的σ/ρ值高於Nafl〇n_U7膜。 顯示本發明質子交換膜具有優越的曱醇阻絕及低質 子傳導阻抗特性。 22 201122037 舰與刪 膜Preparation of Nafion/PAN nanofiber proton exchange composite membrane In this example, a PAN nanofiber membrane produced by electrospinning technique was used to impregnate a Nafion solution to prepare a Nafion/PAN fiber proton exchange composite membrane. The preparation procedure is as follows: 1. PAN electrospun fiber membrane production: The electrospinning equipment is shown in Figure 1. It includes: (1) high-voltage power supply (1〇); (2) injection syringe and needle (2〇); 3) solution injection pump; (4) copper electrode fiber collection roller (3 〇). (1·1) PAN electrospun fiber production conditions are set: (4) The working distance of the injection needle to the copper electrode collection plate is 18 cm; (b) The voltage is 18 kV; (c) PAN (polyacrylonitrile) / DMAc (N, N, The dimethyl acetamide) solution has a PAN concentration of 15 wt%; (4) the solution flow rate is i.2 ml/min. A PAN electrospun fiber membrane having a diameter of 500 nm or less was produced by the above conditions. Fig. 7 is a SEM electron micrograph of a PAN nanofiber membrane. 2. Preparation of Nafion/PAN fiber proton exchange composite membrane (2.1) PAN fiber membrane was immersed in 2. 〇 wt% Nafion solution for 6 hours. The fiber membrane was taken out, and after the solvent was slightly dried, it was placed in a baking phase of 125 C for heat annealing for 2 Torr. (2.2) The pan fiber membrane of step (2.1) was immersed in a 3 〇 wt% Nafion solution for 4 hours. The pAN fiber membrane was taken out, and after the solvent was slightly dried, it was placed in an oven at 125 ° C for heat annealing for 20 minutes. 20 201122037 (2.3) The PAN fiber membrane of the step (2.2) was immersed in a 5.0 wt% Nafion solution for 2 hours, and after the solvent was slightly dried, it was placed in an oven at 125 ° C for heat annealing for 1 hour. Fig. 8 is a front SEM photograph (x3000) of the film of the 〇11/?8] fiber after completion of the step (2.3). It can be seen from Fig. 7 and Fig. 8 that the PAN nanofiber membrane can clearly see the interlaced fibers before the Nafion solution is impregnated, and has a considerable number of pores. However, after the step of immersing the Nafion solution in sequence, the PAN nanofibers are sequentially obtained. The pores of the membrane have been densely filled by Nafion. The Nafion/PAN nanofiber membrane has an average membrane thickness of 38 μηη and a Nafion content of about 82.0 wt0/〇. 3. Nafion/PAN fiber proton exchange composite membrane impedance measurement The measurement procedure was as described in Example 1. Before the impedance measurement, the proton exchange membrane was placed in a 0.5 Μ sulfuric acid aqueous solution, heated at 85 ° C for one hour, and then taken out and washed with 85 ° C distilled water for 10 minutes, and then subjected to AC resistance (AC impedance). )Measure. The test environment is: temperature 70 ° C, relative humidity 95%. The impedance value R of the film is measured, and the proton conductivity σ of the film can be calculated by substituting the formula (1). Table 4 shows the impedance and proton conductivity of the Nafion/PAN fiber composite membrane and Nafion-117. It can be seen that the Nafion-117 proton conductivity is higher than the Nafion/PAN fiber proton exchange composite membrane of the present invention, but the low membrane thickness Nafion/PAN The impedance ratio of nanofiber membrane (film thickness 38 μιη) (Ι7(σ) is lower than Nafion-117 (film thickness 175 21 201122037 μπι). Table 4. Nafion/PAN nanofiber proton exchange membrane proton conduction impedance data (Temp = 70°C; RH= 95 %; 3.14 cm2) _ Proton exchange membrane thickness L (μπι) Impedance R(Q) Conductivity σ (S/cm) Impedance ratio L/o(Qcm2) Nafion -117 175 0.290 0.0192 0.911 Nafion/PAN fiber 38 0.114 0.0106 0.243 4. The Nafion/PAN nanofiber proton exchange composite membrane sterol permeation measurement step is as described in Example 1. The measurement temperature is 70 ° C, and the sterol is in the A tank. The initial concentration cA(t〇)= 3 Μ, the measured sterol concentration CB(t) is plotted against (tt.), and the slope of the calculated data map is substituted into the formula (2) to obtain the sterol. The permeability coefficient p value. Figure 9 is cB(t) vs. (Η〇图' The sterol permeability coefficient p value calculated from the slope, as shown in Table 5. As shown in Table 5, Nafion/PAN fiber Although the membrane thickness of the sub-exchange composite membrane (38 μιηη) is thinner than Nafion-ΙΠ (thickness 175 μηη), the permeability coefficient of sterol is lower than that of Nafi〇n_m, and the σ/ρ value of the Nafion/PAN composite membrane is higher than that of Nafl〇. n_U7 film. Shows that the proton exchange membrane of the present invention has superior sterol resistance and low proton conduction resistance characteristics. 22 201122037 Ship and membrane

Nafion -117 Nafion/PAN 纖維 膜厚L甲醇滲透係數 P (cm2/sec) 3.3UIQ-6 9.18x10'7~~Nafion -117 Nafion/PAN fiber film thickness L methanol permeability coefficient P (cm2/sec) 3.3UIQ-6 9.18x10'7~~

σ/Ρ (S sec/cm3) 5.80x103 11.5xl03 【圖式簡單說明】 圖1為本發明製作聚合物纖維之電紡設備裝置β 圖2為PVA交聯電紡纖維膜之SEM電子顯微鏡照 片(χ3000)。 圖3為Nafion/PVA奈米纖維質子交換複合膜之 SEM電子顯微鏡照片。Nafion/PVA奈米纖維質子交換 複合膜及膜厚約50μηι,PVA/Nafion重量比約1.〇/9.〇。 圖4為Nafion/ PVA纖維複合膜與純Nafion膜之 TGA數據圖。(一)表示為Nafion溶液注形膜;(—_)表示 為Nafion/PVA纖維複合膜。 圖5為Nafion-117與Nafion/PVA-f纖維膜之甲醇 渗透量測vs. ί々。作圖之數據圖;其中Temp= 70°C,CA(t〇)=2M; (♦)表示為 Nafion-117 膜;(+)表示 為Nafion/PVA纖維複合膜。 圖6為Nafion-117膜(膜厚=176μιη)及本發明 Nafion/PVA纖維質子交換複合膜(膜厚=50 μιη)與 Nafion/PVA纖維質子交換膜(膜厚=35 μιη),分別製成 ΜΕΑ之DMFC燃料電池i-V數據圖;其中[CH3OH]= 2 23 201122037 Μ,曱醇溶液流速為2.5ml/min,02流速=i50ml/min, 電池溫度為80°C。 圖7是PAN奈米纖維膜之SEM電子顯微鏡照片 (x3000)〇 圖8是Nafion/PAN纖維複合膜之正面SEM照片 (x3000)。 圖 9 為 Nafion-117 與 Nafion/PAN 纖維膜(膜厚=38 μιη)之曱醇滲透量測vs. 作圖數據圖;其中 Temp= 70°C ’ CA(t〇)= 2 Μ ; ()表示為 Nafion-117 (膜厚鲁 =175 μιη) ; (▼)表示為 Nafion/PAN (膜厚=38 μιη)。 【主要元件符號說明】 (10)高壓電源供應器 (20)注射針筒與針頭 (3〇)銅電極纖維收集滾筒σ/Ρ (S sec/cm3) 5.80x103 11.5xl03 [Simple description of the drawings] Fig. 1 is an electrospinning apparatus apparatus for producing a polymer fiber according to the present invention. Fig. 2 is a SEM electron micrograph of a PVA crosslinked electrospun fiber membrane (χ3000) ). Figure 3 is a SEM electron micrograph of a Nafion/PVA nanofiber proton exchange composite membrane. Nafion/PVA nanofiber proton exchange composite membrane and membrane thickness of about 50μηι, PVA / Nafion weight ratio of about 1. 〇 / 9. 〇. Figure 4 is a TGA data plot of a Nafion/PVA fiber composite membrane and a pure Nafion membrane. (I) is expressed as a Nafion solution injection film; (-_) is expressed as a Nafion/PVA fiber composite film. Figure 5 shows the methanol permeation measurement of Nafion-117 and Nafion/PVA-f fiber membranes vs. 々. A data plot of the graph; where Temp = 70 ° C, CA (t 〇) = 2 M; (♦) denoted as Nafion-117 membrane; (+) denotes Nafion/PVA fiber composite membrane. Figure 6 is a Nafion-117 film (film thickness = 176 μιη) and a Nafion/PVA fiber proton exchange composite membrane (film thickness = 50 μιη) and a Nafion/PVA fiber proton exchange membrane (film thickness = 35 μιη), respectively. i DMFC fuel cell iV data chart; where [CH3OH] = 2 23 201122037 Μ, sterol solution flow rate is 2.5ml / min, 02 flow rate = i50ml / min, battery temperature is 80 ° C. Fig. 7 is a SEM electron micrograph of a PAN nanofiber membrane (x3000). Fig. 8 is a front SEM photograph (x3000) of a Nafion/PAN fiber composite membrane. Figure 9 is a sterol permeation measurement vs. Nafion-117 and Nafion/PAN fiber membrane (film thickness = 38 μιη) vs. plot data; where Temp = 70 °C 'CA(t〇) = 2 Μ ; () It is expressed as Nafion-117 (film thickness Lu = 175 μιη); (▼) is expressed as Nafion/PAN (film thickness = 38 μιη). [Main component symbol description] (10) High-voltage power supply (20) Injection syringe and needle (3〇) copper electrode fiber collection roller

24twenty four

Claims (1)

201122037 七、申請專利範圍: 1. 一種質子交換複合膜,其包含: (1) 直徑500 nm以下的聚合物纖維所形成的奈 米聚合物纖維膜,該纖維膜孔徑在30 μιη以下,且 孔隙率大於70% ;以及 (2) 含浸填充於奈米纖維膜孔隙中的質子交換 樹脂; 其中該質子交換複合膜的整體膜厚在35〜70 μιη 〇 2. 如申請專利範圍第1項之質子交換複合膜,其中該 聚合物纖維係選自於至少一種下列群組:聚乙烯醇 (polyvinyl alcohol; PVA)、聚丙烯腈 (polyacrylonitrile; PAN)或聚酸胺(polyimide ; PIM)。 3. 如申請專利範圍第1項之質子交換複合膜,其中聚 合物纖維膜經化學交聯處理。 4. 如申請專利範圍第3項之質子交換複合膜,其中聚 合物纖維化學交聯處理所使用的交聯劑為含有至 少2個醛類官能基之有機脂肪族或芳香族化合 物、環氧樹脂或二碳酸化合物。 5. 如申請專利範圍第4項之質子交換複合膜,其中聚 合物纖維交聯所使用的交聯劑為戊二醛。 6. 如申請專利範圍第1項之質子交換複合膜,其中含 浸填充於奈米纖維膜孔隙中的質子交換樹脂係選 自於至少一種下列群組:全氟續酸樹脂、全氟碳酸 25 201122037 樹脂、磺酸化聚醚醚酮、磺酸化聚苯醚醚酮、磺酸 化聚醚礙。 7. 如申請專利範圍第6項之質子交換複合膜,其中質 子交換樹脂係以浸潰方式充填於該纖維膜的孔隙 中。 8. 如申請專利範圍第6項之質子交換複合膜,其中質 子交換樹脂係以塗佈方式充填於該纖維膜的孔隙 中。 9. 如申請專利範圍第6項之質子交換複合膜,其係使 用於直接甲醇燃料電池之膜電極組。 10. 如申請專利範圍第1項之質子交換膜,其中[質子 交換樹脂]/[聚合物纖維膜]的重量比為97/3至 80/20。 11. 如申請專利範圍第10項之質子交換複合膜,其中 該質子交換膜的整體膜厚為50 μπι。 12. —種質子交換複合膜製備方法,包括下述步驟: (1) 以電紡絲法製作纖維直徑500 nm以下的聚 合物纖維膜,其孔徑在30 μιη以下,且孔隙率大於 70% ; (2) 將前述步驟(1)之聚合物纖維膜浸潰或塗佈 質子交換樹脂溶液,使溶液中質子交換樹脂滲入聚 合物纖維膜之孔隙中,並重複浸潰或塗佈步驟以達 到35 μπι至70 μιη之膜厚,以及97/3至80/20之[質 子交換樹脂]/[聚合物纖維膜]重量比。 26 201122037 13. 如申請專利範圍第12項之質子交換複合膜製備方 法,其中該聚合物纖維係選自於至少一種下列群 組:聚乙烯醇、聚丙烯腈或聚醯胺。 14. 如申請專利範圍第12項之質子交換複合膜製備方 法,其中電紡絲製作聚合物纖維膜之電紡絲製程參 數設定為:注射針頭到銅電極收集板的工作距離 為5〜20 cm、操作電壓為10〜30 kV、聚合物溶液流 速為 0.8-1.5 ml/min。 15. 如申請專利範圍第14項之質子交換複合膜製備方 法,其中電紡絲製作之聚合物纖維膜係經化學交聯 處理。 16. 如申請專利範圍第15項之質子交換複合膜製備方 法,其中聚合物纖維交聯所使用的交聯劑為含有至 少2個醛類官能基之有機脂肪族或芳香族化合 物、環氧樹脂或二碳酸化合物。 17. 如申請專利範圍第16項之質子交換複合膜製備方 法,其中聚合物纖維交聯所使用的交聯劑為戊二 酸·。 18. 如申請專利範圍第12項之質子交換複合膜製備方 法,其中該質子交換填充樹脂係選自於至少一種下 列群組:全氟磺酸樹脂、全氟碳酸樹脂、磺酸化聚 醚醚酮、磺酸化聚苯醚醚酮、磺酸化聚醚砜。 19. 如申請專利範圍第12項之質子交換複合膜製備方 法,其中該質子交換複合膜製作步驟,各浸潰/塗 27 201122037 佈步驟之過程更包括退火步驟,係將質子交換膜於 120~125°C進行20分鐘〜1.5小時的退火步驟。 20.如申請專利範圍第12項之質子交換膜製備方法, 其最終完成之質子交換複合膜的整體膜厚在50 μιη。201122037 VII. Patent application scope: 1. A proton exchange composite membrane comprising: (1) a nano polymer fiber membrane formed by polymer fibers having a diameter of 500 nm or less, the pore diameter of the fiber membrane being less than 30 μηη, and pores The rate is greater than 70%; and (2) impregnating the proton exchange resin filled in the pores of the nanofiber membrane; wherein the overall membrane thickness of the proton exchange composite membrane is 35~70 μηη 〇2. Proton as claimed in claim 1 The composite film is exchanged, wherein the polymer fiber is selected from at least one of the group consisting of polyvinyl alcohol (PVA), polyacrylonitrile (PAN), or polyimide (PIM). 3. The proton exchange composite membrane according to claim 1, wherein the polymer fiber membrane is chemically crosslinked. 4. The proton exchange composite membrane according to claim 3, wherein the crosslinking agent used in the chemical fiber chemical crosslinking treatment is an organic aliphatic or aromatic compound containing at least two aldehyde functional groups, and an epoxy resin. Or a dicarbonate compound. 5. The proton exchange composite membrane according to claim 4, wherein the crosslinking agent used for crosslinking the polymer fibers is glutaraldehyde. 6. The proton exchange composite membrane according to claim 1, wherein the proton exchange resin impregnated in the pores of the nanofiber membrane is selected from the group consisting of at least one of the following groups: perfluoro acid anhydride, perfluorocarbonic acid 25 201122037 Resin, sulfonated polyetheretherketone, sulfonated poly(phenylene ether ether ketone), sulfonated polyether. 7. The proton exchange composite membrane of claim 6, wherein the proton exchange resin is impregnated in the pores of the fibrous membrane. 8. The proton exchange composite membrane according to claim 6, wherein the proton exchange resin is filled in the pores of the fibrous membrane by coating. 9. A proton exchange composite membrane as claimed in claim 6 which is used in a membrane electrode assembly for a direct methanol fuel cell. 10. The proton exchange membrane of claim 1, wherein the [proton exchange resin] / [polymer fiber membrane] has a weight ratio of from 97/3 to 80/20. 11. The proton exchange composite membrane according to claim 10, wherein the proton exchange membrane has an overall membrane thickness of 50 μm. 12. The method for preparing a proton exchange composite membrane comprises the following steps: (1) preparing a polymer fiber membrane having a fiber diameter of 500 nm or less by electrospinning, having a pore diameter of less than 30 μηη and a porosity of more than 70%; (2) The polymer fiber membrane of the foregoing step (1) is impregnated or coated with a proton exchange resin solution, so that the proton exchange resin in the solution penetrates into the pores of the polymer fiber membrane, and the impregnation or coating step is repeated to reach 35. The film thickness of μπι to 70 μηη, and the [proton exchange resin]/[polymer fiber membrane] weight ratio of 97/3 to 80/20. The method of preparing a proton exchange composite membrane according to claim 12, wherein the polymer fiber is selected from the group consisting of at least one of the group consisting of polyvinyl alcohol, polyacrylonitrile or polyamine. 14. The method for preparing a proton exchange composite membrane according to claim 12, wherein the electrospinning process parameter of the electrospinning polymer fiber membrane is set to: the working distance from the injection needle to the copper electrode collection plate is 5 to 20 cm. The operating voltage is 10~30 kV, and the flow rate of the polymer solution is 0.8-1.5 ml/min. 15. The method for preparing a proton exchange composite membrane according to claim 14, wherein the polymer fiber membrane produced by electrospinning is chemically crosslinked. 16. The method for preparing a proton exchange composite membrane according to claim 15, wherein the crosslinking agent used for crosslinking the polymer fibers is an organic aliphatic or aromatic compound having at least two aldehyde functional groups, and an epoxy resin. Or a dicarbonate compound. 17. The proton exchange composite membrane preparation method according to claim 16, wherein the crosslinking agent used for crosslinking the polymer fibers is glutaric acid. 18. The method for preparing a proton exchange composite membrane according to claim 12, wherein the proton exchange filler resin is selected from the group consisting of at least one of the following groups: a perfluorosulfonic acid resin, a perfluorocarbonic resin, and a sulfonated polyetheretherketone. , sulfonated poly(phenylene ether ether ketone), sulfonated polyether sulfone. 19. The method for preparing a proton exchange composite membrane according to claim 12, wherein the proton exchange composite membrane preparation step, the step of each impregnation/coating 27 201122037 cloth step further comprises an annealing step, wherein the proton exchange membrane is at 120~ An annealing step of 20 minutes to 1.5 hours was carried out at 125 °C. 20. The proton exchange membrane preparation method according to claim 12, wherein the final completed proton exchange composite membrane has an overall membrane thickness of 50 μm. 2828
TW098144683A 2009-12-24 2009-12-24 A proton exchange composite membrane and preparation thereof TWI452072B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098144683A TWI452072B (en) 2009-12-24 2009-12-24 A proton exchange composite membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098144683A TWI452072B (en) 2009-12-24 2009-12-24 A proton exchange composite membrane and preparation thereof

Publications (2)

Publication Number Publication Date
TW201122037A true TW201122037A (en) 2011-07-01
TWI452072B TWI452072B (en) 2014-09-11

Family

ID=45045896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098144683A TWI452072B (en) 2009-12-24 2009-12-24 A proton exchange composite membrane and preparation thereof

Country Status (1)

Country Link
TW (1) TWI452072B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100539271C (en) * 2004-09-09 2009-09-09 旭化成电子材料株式会社 Solid polyelectrolyte membrane and manufacture method thereof

Also Published As

Publication number Publication date
TWI452072B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
KR101818547B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membraneelectrode assembly comprising the same
Lin et al. Nafion/poly (vinyl alcohol) nano-fiber composite and Nafion/poly (vinyl alcohol) blend membranes for direct methanol fuel cells
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
Mollá et al. Novel ultrathin composite membranes of Nafion/PVA for PEMFCs
Lin et al. Preparation of Nafion/poly (vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells
CN1974639B (en) Polymer electrolyte membrane for fuel cell and fuel cell system
Lu et al. Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells
Yun et al. Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells
JP2013503436A (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2010538416A (en) Proton conducting polymer electrolyte membranes used in polymer fuel cells
Li et al. A poly (vinyl alcohol)-based composite membrane with immobilized phosphotungstic acid molecules for direct methanol fuel cells
KR20110021217A (en) Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR101135477B1 (en) A porous membrane and method for preparing thereof, polymer electrode membrane for fuel cell using the same, and fuel cell system comprising the same
JP6707519B2 (en) film
KR101433133B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method for Manufacturing the Same
KR101292214B1 (en) Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning
Wang et al. Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells
KR20130114187A (en) Porous nano-fiber mats to reinforce proton conducting membranes for pem applications
Park et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs
KR101275790B1 (en) Membrane-electrode assembly for fuel cell, methode of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
CN105047844A (en) Sandwich structured composite proton exchange membrane, and preparation method and use thereof
JP2006019294A (en) Polymer electrolyte membrane for fuel cell, and forming method for the same
Lee et al. Poly (ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells
KR20210132887A (en) Asymmetric electrolyte membrane, membrane electrode assembly comprising the same, water electrolysis apparatus comprising the same and method for manufacturing the same
JP2009521385A (en) Novel metal (III) -chromium phosphate complex and use thereof