KR101292214B1 - Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning - Google Patents

Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning Download PDF

Info

Publication number
KR101292214B1
KR101292214B1 KR1020100140642A KR20100140642A KR101292214B1 KR 101292214 B1 KR101292214 B1 KR 101292214B1 KR 1020100140642 A KR1020100140642 A KR 1020100140642A KR 20100140642 A KR20100140642 A KR 20100140642A KR 101292214 B1 KR101292214 B1 KR 101292214B1
Authority
KR
South Korea
Prior art keywords
exchange membrane
ion exchange
speek
membrane
fuel cell
Prior art date
Application number
KR1020100140642A
Other languages
Korean (ko)
Other versions
KR20120078363A (en
Inventor
황택성
최은정
곽노석
구진선
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020100140642A priority Critical patent/KR101292214B1/en
Publication of KR20120078363A publication Critical patent/KR20120078363A/en
Application granted granted Critical
Publication of KR101292214B1 publication Critical patent/KR101292214B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 폴리에테르에테르케톤(Polyetheretherketone, PEEK)을 출발물질로 하여 술폰기를 도입한 관능화 된 고분자를 형성하고, 추가적으로 전기방사와 핫 프레스의 적용을 통한 술폰화 폴리에테르에테르케톤 (Sulfonated Polyetheretherketone, SPEEK) 나노 이온교환막 제조 방법에 관한 것이다. 본 제조 방법에 의하여 제조된 SPEEK 나노 이온교환막은 고온에서도 수소이온전도도가 우수하여 연료전지에서의 고분자 전해질 막으로 응용이 가능하다. The present invention is a polyetheretherketone (PEEK) as a starting material to form a sulfonated functionalized polymer, and further sulfonated polyetheretherketone (Sulfonated Polyetheretherketone, SPEEK through the application of electrospinning and hot press) The present invention relates to a nano ion exchange membrane production method. SPEEK nano ion exchange membrane prepared by the present method is excellent in hydrogen ion conductivity even at high temperature, it can be applied as a polymer electrolyte membrane in a fuel cell.

Figure 112010088116919-pat00005
Figure 112010088116919-pat00005

Description

전기방사에 의한 연료전지용 술폰화 폴리에테르에테르케톤 나노 이온교환막의 제조방법{Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning}  Preparation method of sulfonated polyetheretherketone nano ion exchange membrane for fuel cell by electrospinning {Preparation and characterization of sulfonated polyetheretherketone (SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning}

본 발명은 폴리에테르에테르케톤(Polyetheretherketone, PEEK)을 술폰화 반응을 통하여 술폰산기를 도입하고 이를 전기방사법을 이용하여 술폰화 폴리에테르에테르케톤 (Sulfonated Polyetheretherketone, SPEEK) 나노 이온교환막을 제조하는 방법 및 이를 통해 제조되는 나노 이온교환막에 관한 것이다. 더욱 상세하게는 전기방사법을 이용하여 나노 이온교환막을 제조하여 비표면적을 극대화하고 수소이온 전도도를 향상시킴으로서 열적 기계적 안정성이 우수한 연료전지용 나노 이온교환막을 제조하는 방법 및 본 제조 방법에 의하여 제조되는 나노 이온교환막에 관한 것이다.   The present invention is a method for preparing a sulfonated polyetheretherketone (SPEEK) nano-ion exchange membrane by introducing a sulfonic acid group to the polyetheretherketone (PEEK) through a sulfonation reaction and electrospinning it and through It relates to a nano ion exchange membrane produced. More specifically, a method for producing a nano-ion exchange membrane for a fuel cell having excellent thermal and mechanical stability by maximizing a specific surface area and improving hydrogen ion conductivity by preparing a nano-ion exchange membrane using an electrospinning method and a nano ion produced by the production method It relates to an exchange membrane.

연료전지(Fuel cell)는 전기화학반응을 통해 연료를 직접 전기에너지로 변환하는 장치로 기존의 내연기관보다 효율이 높고 공해물질을 배출하지 않아 신재생에너지원으로 주목받고 있다.  The fuel cell is a device that converts fuel directly into electrical energy through electrochemical reactions, and is attracting attention as a renewable energy source because it is more efficient than existing internal combustion engines and does not emit pollutants.

연료전지는 전해질의 종류에 따라 알칼리형 연료전지(Alkaline Fuel Cell, AFC), 인산형 연료전지(Phosphoric Acid Fuel Cell, PAFC), 용융 탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC), 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC), 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC), 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등으로 분류된다. 이들 중 PEMFC는 다른 연료전지에 비해 전해질 누출이 없고 낮은 온도에서 작동하며 다양한 범위의 출력을 낼 수 있는 장점이 있기 때문에 무공해 차량의 동력원, 현지 설치형 발전, 우주선용 전원, 군사용 전원 및 이동용 전원 등의 그 적용 범위가 매우 넓다.  Depending on the type of electrolyte, the fuel cell may be an alkaline fuel cell (AFC), a phosphate fuel cell (PAFC), a molten carbonate fuel cell (MCFC), or a solid oxide fuel cell. (Solid Oxide Fuel Cell, SOFC), Polymer Electrolyte Membrane Fuel Cell (PEMFC), and Direct Methanol Fuel Cell (DMFC). Among these, PEMFC has the advantages of no electrolyte leakage, operates at low temperature, and produces a wide range of outputs compared to other fuel cells, so that PEMFC has a power source of pollution-free vehicles, on-site power generation, spacecraft power, military power, and mobile power. The scope of application is very wide.

상기와 같은 PEMFC의 고분자 전해질 막이 갖추어야 할 조건은 높은 수소이온 전도도와 기계적, 화학적, 전기적 안정성이 우수해야하며 가격도 저렴해야 한다. 현재 전해질 막으로 가장 널리 사용되고 있는 막은 과불소계 고분자 전해질 막으로서 듀퐁(Du pont)사의 나피온(Nafion)과 아사히 케미컬(Asahi chemical)사의 아시플렉스(Aciplex) 등이 있다. 그러나 이들 막을 PEMFC로 적용하였을 경우 높은 가격, 장시간 사용시 전도도 감소와 촉매효과 감소, 80℃이상에서의 성능의 급격한 하락 등의 문제점을 가지고 있다.   The conditions for the PEMFC polymer electrolyte membrane as described above should be excellent in high hydrogen ion conductivity, mechanical, chemical and electrical stability, and low cost. Currently, the most widely used electrolyte membranes are perfluorinated polymer electrolyte membranes such as Nafion of DuPont and Asiplex of Asahi Chemical. However, when these membranes are applied as PEMFC, they have problems such as high price, reduced conductivity and reduced catalytic effect when used for a long time, and sudden drop in performance above 80 ° C.

따라서 성능이 우수하고, 열적 기계적 안정성이 높으면서, 80℃ 이상의 고온에서도 작동이 가능한 고분자 전해질 막의 개발이 요구되어 왔다. 이러한 요구를 반영하여 상기 과불소계 막의 문제점을 보완하기 위해서 새로운 탄화수소계 고분자 전해질 막의 합성이 시도되고 있다. 탄화수소계 고분자 중 폴리에테르에테르케톤(Polyetheretherketone, PEEK)은 비불소계 내열성 고분자로서 수소이온 전도도가 우수하고 화학적 안정성, 내산화안정성 및 기계적 물성이 우수하여 PEMFC 고분자 전해질 막으로서 적용이 가능하여 연구가 활발히 진행되고 있다.  Therefore, there has been a demand for the development of a polymer electrolyte membrane having excellent performance, high thermal mechanical stability, and capable of operating at a high temperature of 80 ° C or higher. In order to reflect these demands, new hydrocarbon-based polymer electrolyte membranes have been attempted to supplement the problems of the perfluorinated membranes. Among the hydrocarbon polymers, polyetheretherketone (PEEK) is a non-fluorine heat-resistant polymer, which has excellent hydrogen ion conductivity, excellent chemical stability, oxidation stability, and mechanical properties, so it can be applied as a PEMFC polymer electrolyte membrane. It is becoming.

하지만 캐스팅(casting)과 같은 막 제조방법으로 제조된 기존의 술폰화 폴리에테르에테르케톤 (Sulfonated Polyetheretherketone, SPEEK)막은 나피온 수준의 이온 전도도를 유지하면서 상용화된 연료전지 성능을 보여주지 못한 실정이다. 따라서 기존의 막의 단점을 개선하기 위한 새로운 연구가 필요하다.  However, conventional sulfonated polyetheretherketone (SPEEK) membranes manufactured by membrane manufacturing methods such as casting have not shown commercial fuel cell performance while maintaining ionic conductivity at the Nafion level. Therefore, new research is needed to improve the disadvantages of existing membranes.

이에 본 출원에서는 기존의 막을 개선하기 위한 방안으로 폴리에테르에테르케톤(Polyetheretherketone, PEEK)에 술폰산기를 관능화하고, 추가적으로 전기방사법을 이용하여 나노 이온교환막을 제조하는 방법 및 이를 통해 제조되는 나노 이온교환막을 제공하고자 한다.  Therefore, in the present application, as a method for improving the existing membrane, a sulfonic acid group is functionalized in polyetheretherketone (PEEK), and a method for preparing a nano ion exchange membrane using an electrospinning method and a nano ion exchange membrane manufactured through the same To provide.

더욱 상세하게는 전기방사법을 이용하여 나노 이온교환막을 제조하여 무게대비 높은 비표면적 특성으로 수소이온 전도도를 향상시키고 열적 기계적 안정성이 우수한 연료전지용 술폰화 폴리에테르에테르케톤(Sulfonated Polyetheretherketone, SPEEK) 나노 이온교환막의 제조방법과 기존의 SPEEK막보다 개선된 SPEEK막을 제공하는데 목적이 있다.  More specifically, a nano ion exchange membrane is prepared by electrospinning to improve hydrogen ion conductivity with high specific surface area to weight ratio, and have excellent thermal and mechanical stability. Sulfonated Polyetheretherketone (SPEEK) nano ion exchange membrane The purpose of the present invention is to provide an improved SPEEK film and a method of manufacturing SPEEK film.

본 발명은 상기의 목적을 달성하기 위하여 폴리에테르에테르케톤(Polyetheretherketone, PEEK)에 양이온 교환기 술폰산기를 도입하기 위하여 황산과 클로로술폰산을 첨가하여 술폰화 폴리에테르에테르케톤(Sulfonated polyetheretherketone, SPEEK)을 제공한다.  The present invention provides a sulfonated polyetheretherketone (SPEEK) by adding sulfuric acid and chlorosulfonic acid to introduce a cation exchanger sulfonic acid group to polyetheretherketone (PEEK) in order to achieve the above object.

이어서 용매에 녹여 일정한 점성을 가지는 방사 용액을 제조하고 상기 방사 용액을 일정 전압과 유속 및 방사거리에 전기방사를 실시한다. 본 발명의 전기방사공정에서 용매 농도, 방사 전압, 유속, 방사 거리 등은 목적에 맞게 적절하게 조절할 수 있을 뿐만 아니라 다양하게 응용을 가할 수도 있다. 상기 나노섬유는 전기방사를 통하여 30∼200 nm 의 직경을 지닌 나노섬유가 제조된다.   Subsequently, it is dissolved in a solvent to prepare a spinning solution having a constant viscosity, and the spinning solution is electrospun at a constant voltage, flow rate and spinning distance. In the electrospinning process of the present invention, the solvent concentration, spinning voltage, flow rate, spinning distance and the like can be appropriately adjusted to suit the purpose, and various applications may be applied. The nanofibers are nanofibers having a diameter of 30 to 200 nm through electrospinning.

나노 이온교환막은 핫 프레스(hot press)를 통해 300~1000 psi 의 압력을 가하여 10~50 ℃, 좋게는 20~30℃ 에서 제조하는 것이 바람직하며, 핫 프레스의 적용 시간은 30초~30분, 좋게는 2~10분, 제조된 나노 이온교환막은 두께가 0.001~0.05cm, 좋게는 0.006∼0.008 cm인 것이 바람직하다.  The nano ion exchange membrane is preferably prepared at 10 to 50 ° C., preferably at 20 to 30 ° C. by applying a pressure of 300 to 1000 psi through a hot press, and the application time of the hot press is 30 seconds to 30 minutes, Preferably 2 to 10 minutes, the prepared nano ion exchange membrane is preferably 0.001 ~ 0.05cm thick, preferably 0.006 ~ 0.008 cm.

이를 구체적으로 좀더 살피면,다음과 같다.  To look more specifically at this,

본 발명은,According to the present invention,

a) 폴리에테르에테르케톤(Polyetheretherketone, PEEK)을 클로로술폰산과 반응하여 술폰화 하는 술폰화 폴리에테르에테르케톤(Sulfonated polyetheretherketone, SPEEK) 제조단계; a) sulfonated polyetheretherketone (SPEEK) manufacturing step of sulfonating polyetheretherketone (PEEK) with chlorosulfonic acid to sulfonate;

b) 상기 SPEEK를 전기방사하여 SPEEK 나노섬유 제조단계; 및 b) SPEEK nanofiber manufacturing step by electrospinning the SPEEK; And

c) 상기 SPEEK 나노섬유를 핫 프레스를 사용하여 SPEEK 나노 이온교환막 제조단계; 를 포함한다.c) SPEEK nano-ion exchange membrane manufacturing step using the SPEEK nanofibers hot press; .

상기 a) 단계(도 1)에서는 PEEK의 술폰화단계는 PEEK 용액에 술폰화제를 투입하고, 이를 가열함으로써, 제조되어 진다. 예를 들면, 본 발명에서 설폰화제는 술폰산 등의 이 분야에 공지된 화합물을 채택하는 한 제한하지 않는다. 또한 본 단계의 술폰화는 60~150℃에서 1~30시간 반응하여 술폰화율을 조절가능하다. 더욱 구체적으로 보면 예를 들면, PEEK에 관능기를 도입하기 위하여 PEEK을 12시간동안 100℃에서 건조 후, 황산 200 ml에 10 g의 PEEK를 넣고 60℃에서 24 시간동안 교반하였다. In step a) (FIG. 1), sulfonation of PEEK is prepared by adding a sulfonating agent to a PEEK solution and heating it. For example, the sulfonating agent in the present invention is not limited as long as it adopts compounds known in the art such as sulfonic acid. In addition, the sulfonation of this step can be controlled by the sulfonation rate by reacting for 1 to 30 hours at 60 ~ 150 ℃. To be more specific, for example, PEEK was dried at 100 ° C. for 12 hours to introduce functional groups into PEEK, and then 10 g of PEEK was added to 200 ml of sulfuric acid and stirred at 60 ° C. for 24 hours.

본 발명의 술폰기(-SO3H)를 치환율은 술폰기가 치환되는 한에서는 크게 제한이 되지 않지만, PEEK 100중량부에 대하여 술폰화제는 1~50중량부, 좋게는 2~20중량부를 투입하여 투입하여 상온, 질소분위기에서 1∼30 시간 동안 술폰화 반응한다. 반응 후 술폰화 반응을 종결시키기 위하여 용액을 증류수 등의 켄칭(quenching)용액에 투입하여 반응을 종결한다. 예를 들면, 냉각된 물에 투입하여 침전시키고 pH가 7∼8이 될 때까지 증류수로 반복 세척하는 것을 예로 들 수 있다. Substitution rate of the sulfone group (-SO 3 H) of the present invention is not particularly limited as long as the sulfone group is substituted, 1 to 50 parts by weight of sulfonating agent, preferably 2 to 20 parts by weight based on 100 parts by weight of PEEK. And sulfonation reaction at room temperature and nitrogen atmosphere for 1 to 30 hours. In order to terminate the sulfonation reaction after the reaction, the solution is added to a quenching solution such as distilled water to terminate the reaction. For example, the solution may be precipitated by being poured into cooled water and washed repeatedly with distilled water until the pH becomes 7-8.

본 발명의 술폰화PEEK의 수분을 제거하기 위하여 건조하는 단계를 가진다. 건조는 크게 제한되지 않지만, 예를 들면 상온에서 24시간 동안 건조하여 SPEEK를 제조하는 것이 열화등을 방지할 수 있어서 좋다.   Drying to remove moisture of the sulfonated PEEK of the present invention. Although drying is not restrict | limited greatly, For example, manufacturing SPEEK by drying for 24 hours at normal temperature may prevent deterioration etc ..

상기 b) 단계에서는 상기 a) 단계에서 제조된 관능화 된 고분자를 전기방사법을 이용하여 SPEEK 나노섬유를 제조한다. 나노섬유를 제조하는 방법은 이 분야의 통상의 방법에 의해 제조하는데. 예를 들면, 통상의 방사기나 방사기를 대용할 수 있는 수단 등을 사용할 수 있고, 더욱 좋게는 전기방사법 등을 예로 들 수 있다.   In step b), the functionalized polymer prepared in step a) is prepared using SPEEK nanofibers by electrospinning. The method for producing nanofibers is prepared by conventional methods in the art. For example, a normal spinning machine, a means which can substitute a spinning machine, etc. can be used, More preferably, an electrospinning method etc. are mentioned.

본 발명으로 제조된 술폰화 폴리에테르에테르케톤(Sulfonated polyetheretherketone, SPEEK) 나노 이온교환막의 물리 화학적 특징은 다음과 같다. 프레스 (Press)에 의해 제조된 막의 표면은 매끈하고 균일한 형태학적 특징을 가진다. 또한 술폰산 도입에 의한 막의 친수성(hydrophilicity)이 유도되어 물의 흡수는 술폰화 반응의 시간이 증가할수록 증가하며 이온교환능과 양성자 전도성도 이에 따라 증가한다.The physicochemical characteristics of sulfonated polyetheretherketone (SPEEK) nano ion exchange membranes prepared according to the present invention are as follows. The surface of the membrane produced by Press has a smooth and uniform morphological characteristic. In addition, the hydrophilicity of the membrane is induced by the introduction of sulfonic acid, so that water absorption increases with increasing time of sulfonation reaction, and ion exchange capacity and proton conductivity increase accordingly.

본 발명으로 제조되는 SPEEK 나노 이온교환막은 술폰화 반응을 통해 친수성 양자가 도입되면서 나노섬유의 제조 특성에 의한 이온 전도성이 증가하여 연료전지에서의 고분자 전해질 막으로 적용 가능할 정도로 우수한 물리 화학적 특성을 가지게 된다.SPEEK nano ion exchange membrane prepared by the present invention has excellent physicochemical properties to be applied as a polymer electrolyte membrane in a fuel cell by increasing the ionic conductivity by the production characteristics of nanofibers as the hydrophilic proton is introduced through the sulfonation reaction .

본 발명에 의해 제조된 나노 이온교환막은 전기방사법을 통하여 제조되어 수소이온전도도가 우수하며, 80℃의 고온에서도 높은 수소이온전도도를 나타내어 열적 기계적 안정성이 우수하므로 연료전지에서의 고분자 전해질 막으로 응용이 가능하다.The nano-ion exchange membrane prepared by the present invention is prepared by electrospinning method and has excellent hydrogen ion conductivity, and shows high hydrogen ion conductivity even at high temperature of 80 ° C., which is excellent in thermal and mechanical stability. It is possible.

도 1은 본 발명에 따른 술폰화 반응의 메카니즘을 나타낸다.
도 2는 본 발명에 따른 술폰화 폴리에테르에테르케톤(Sulfonated polyetheretherketone, SPEEK) 나노섬유의 주사전자현미경(Scanning Electron Microscopy, SEM) 사진을 나타낸다.
도 3은 본 발명에 따른 SPEEK 나노 이온교환막의 제조방법을 도식화한 그림을 나타낸다.
도 4는 본 발명에 따른 실시예의 함수율을 나타낸 그래프이다.
도 5는 본 발명에 따른 실시예의 이온교환용량을 나타낸 그래프이다.
도 6은 본 발명에 따른 실시예의 25 ℃에서의 수소이온 전도도를 나타낸 그래프이다.
도 7은 본 발명에 따른 실시예의 80 ℃에서의 수소이온 전도도를 나타낸 그래프이다.
1 shows the mechanism of the sulfonation reaction according to the present invention.
Figure 2 shows a Scanning Electron Microscopy (SEM) photograph of sulfonated polyetheretherketone (SPEEK) nanofibers according to the present invention.
Figure 3 shows a schematic diagram illustrating a method for producing a SPEEK nano ion exchange membrane according to the present invention.
4 is a graph showing the water content of the embodiment according to the present invention.
5 is a graph showing the ion exchange capacity of the embodiment according to the present invention.
Figure 6 is a graph showing the hydrogen ion conductivity at 25 ° C of the embodiment according to the present invention.
Figure 7 is a graph showing the hydrogen ion conductivity at 80 ° C of the embodiment according to the present invention.

이하 각 과정에 따라 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail according to each process.

하기의 실시예와 비교예에 의해 본 발명을 보다 상세하게 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것 일뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.The present invention will be described in more detail with reference to the following Examples and Comparative Examples, which are intended only for understanding the constitution and effects of the present invention and are not intended to limit the scope of the present invention.

[실시예][Example]

표 1에 수록한 함량의 원료를 사용하여 술폰화하고, 이를 이용하여 물성을 측정하였다. 즉, PEEK에 관능기를 도입하기 위하여 PEEK을 12시간동안 100℃에서 건조 후, 황산 200 ml에 10 g의 PEEK를 넣고 60℃에서 24 시간동안 교반하였다. 제조된 용액에 술폰기(-SO3H)를 치환하기 위하여 6∼12 g의 클로로술폰산를 투입하여 상온, 질소분위기에서 1~5 시간 동안 술폰화 반응을 하였다. 반응 후 술폰화 반응을 종결시키기 위하여 용액을 얼음이 든 증류수에 침전시키고 pH가 7∼8이 될 때까지 증류수로 반복 세척한다. 고분자의 수분을 제거하기 위하여 상온에서 24시간 동안 건조하여 SPEEK를 제조하였다. Sulfonation was carried out using the raw materials of the contents listed in Table 1, and physical properties were measured using the same. That is, PEEK was dried at 100 ° C. for 12 hours to introduce functional groups into PEEK, and then 10 g of PEEK was added to 200 ml of sulfuric acid and stirred at 60 ° C. for 24 hours. 6-12 g of chlorosulfonic acid was added to replace the sulfonic group (-SO 3 H) in the prepared solution, and the sulfonation reaction was performed at room temperature and nitrogen atmosphere for 1 to 5 hours. After the reaction, to terminate the sulfonation reaction, the solution is precipitated in distilled water with ice and washed repeatedly with distilled water until the pH is 7-8. SPEEK was prepared by drying at room temperature for 24 hours to remove moisture of the polymer.

상기 b) 단계에서는 상기 a) 단계에서 제조된 관능화 된 고분자를 전기방사법을 이용하여 SPEEK 나노섬유를 제조하였다. 상기 선 관능화된 고분자 용액을 20 cc 주사기에 주입하여 주사기 노즐과 접속 롤러 사이 거리를 10 cm로 고정하고 공급유속을 0.3 ml/hr로 전압을 22 kV로 하여 SPEEK 나노섬유를 제조하였다. 접속 롤러는 길이가 20 cm에 원주가 25 cm인 스테인레스 소재의 원형드럼을 사용하였으며 회전속도와 왕복속도는 각각 30 cm/min, 2 cm/min으로 고정하였다. 이와 같은 방법으로 제조된 이온교환 섬유의 직경은 80 nm 로 제조되었고 제조된 SPEEK 나노섬유를 주사전자현미경(Scanning Electron Microscopy, SEM)으로 관찰하였다(도 2). In step b), the functionalized polymer prepared in step a) was prepared using SPEEK nanofibers by electrospinning. SPEEK nanofibers were prepared by injecting the pre-functionalized polymer solution into a 20 cc syringe, fixing the distance between the syringe nozzle and the connecting roller at 10 cm, and supplying the flow rate at 0.3 ml / hr at 22 kV. The connecting roller was a circular drum made of stainless steel with a length of 20 cm and a circumference of 25 cm, and the rotational speed and the reciprocating speed were fixed at 30 cm / min and 2 cm / min, respectively. The diameter of the ion exchange fiber prepared in this manner was prepared at 80 nm and the prepared SPEEK nanofibers were observed by scanning electron microscopy (Scanning Electron Microscopy, SEM) (Fig. 2).

상기 c) 단계에서는 상기 b) 단계에서 제조된 나노섬유를 핫 프레스(hot press)를 사용하여 0.007cm막을 제조하였다. 압력은 600 psi, 온도는 25 ℃로 고정하였으며 적용시간은 5분 내외로 설정하였다.   In step c), the nanofibers prepared in step b) were prepared by using a hot press. The pressure was fixed at 600 psi, the temperature was 25 ℃ and the application time was set to about 5 minutes.

상기 c)단계까지 거쳐(도 3) 제조된 나노 이온교환막의 물성(함수율, 이온교환용량, 수소이온전도도)을 측정하여 결과를 하기 표 1에 나타내었다. The physical properties (water content, ion exchange capacity, hydrogen ion conductivity) of the prepared nano ion exchange membrane through step c) (FIG. 3) were measured and the results are shown in Table 1 below.

함수율 측정Moisture content measurement

막의 함수율 측정을 위하여 일정 크기로 전단한 막(3cm × 3cm)의 무게를 측정하고 증류수에 24시간 동안 침적시켜 충분히 팽윤시킨 다음 이온교환막 표면의 자유수(free water)를 제거하고 무게를 측정한 후 식 (1)에 대입하여 이온교환막의 함수율을 측정하였다. To measure the moisture content of the membrane, measure the weight of the sheared membrane (3cm × 3cm) to a certain size, immerse it in distilled water for 24 hours, swell it sufficiently, remove the free water on the surface of the ion exchange membrane, and weigh it. Substituted in Equation (1), the moisture content of the ion exchange membrane was measured.

Figure 112010088116919-pat00001
(1)
Figure 112010088116919-pat00001
(One)

여기서 Wwet는 습윤상태의 막의 무게이며, Wdry는 건조상태의 막의 무게이다.
Where W wet is the weight of the wet membrane and W dry is the weight of the dry membrane.

이온교환용량 측정 Ion exchange capacity measurement

적정방법으로 막의 이온교환용량을 측정하였다. 일정한 크기로 절단한 이온교환막을 1 N HCl 표준용액으로 여러번 세척하고 증류수로 씻은 후 250 ml 삼각플라스크에 넣고 여기에 0.1 N NaOH 표준용액 100 ml를 넣고 교반하면서 24시간 동안 반응시켜 평형에 도달시킨 후 상등액을 일정량 분취하여 50 ml 삼각플라스크에 넣고 페놀프탈레인 지시약 2∼3 방울 적가한 후 교반하면서 0.1 N HCl 표준용액으로 적정하고 식(2)으로 SBS 막의 이온교환 용량을 계산하였다. The ion exchange capacity of the membrane was measured by the titration method. The ion-exchange membrane cut to a certain size was washed several times with 1 N HCl standard solution, washed with distilled water, placed in a 250 ml Erlenmeyer flask, and 100 ml of 0.1 N NaOH standard solution was added thereto and reacted for 24 hours while stirring to reach equilibrium. An aliquot of the supernatant was added to a 50 ml Erlenmeyer flask, and 2-3 drops of phenolphthalein indicator were added dropwise, titrated with 0.1 N HCl standard solution while stirring, and the ion exchange capacity of the SBS membrane was calculated by Equation (2).

Figure 112010088116919-pat00002
(2)
Figure 112010088116919-pat00002
(2)

여기서 VHCl와 VNaOH은 적정에 사용된 HCl과 NaOH의 부피이며, NHCl과 NNaOH은 노르말 농도를 나타낸다.
Where V HCl and V NaOH are the volumes of HCl and NaOH used for the titration, and N HCl and N NaOH represent normal concentrations.

막의 전기이온전도도 측정Measurement of electric ion conductivity of membrane

막의 전기전도도를 측정하기 위하여 막의 전기저항 값을 이용하여 다음 식(3)로 전기전도도를 계산하였다. Using a membrane electrical resistance to measure the electrical conductivity of the film, the electric conductivity was calculated by the following equation (3).

Figure 112010088116919-pat00003
(3)
Figure 112010088116919-pat00003
(3)

여기서, σ는 전기 이온전도도를 나타내고 L은 막의 두께를 나타낸다. 또한 ER은 막의 전기저항이고 A는 막의 유효 면적을 나타낸다. Where sigma represents the electrical ion conductivity and L represents the thickness of the film. ER is the electrical resistance of the membrane and A is the effective area of the membrane.

막의 전기저항을 측정하기 위하여 3522-50 LCR meter(Japan)를 이용하여 2-compartment cell에 1.5 cm × 1.5 cm 크기의 막을 24시간 동안 0.5M NaCl 표준용액에 침적시킨 1.5 cm × 1.5 cm 크기의 막을 고정한 후 0.5 N NaCl 전해액을 채운 후 막의 전기저항을 측정(R1)하였다. 또한 NaCl 전해질 용액만의 저항을 측정(R2)하여 식(4)에 대입하여 막의 전기저항 값을 구하였다.In order to measure the electrical resistance of the membrane, a 1.5 cm × 1.5 cm membrane was deposited by dipping 1.5 cm × 1.5 cm membrane into a 2-compartment cell in 0.5M NaCl standard solution for 24 hours using a 3522-50 LCR meter (Japan). After fixing, the 0.5 N NaCl electrolyte was filled, and the electrical resistance of the membrane was measured (R 1 ). In addition, the resistance of only the NaCl electrolyte solution was measured (R 2 ) and substituted in Equation (4) to obtain the electrical resistance value of the membrane.

Figure 112010088116919-pat00004
(4)
Figure 112010088116919-pat00004
(4)

여기서, R1은 전기화학 셀에 막을 끼운 후 측정한 전기저항이고 R2는 막을 제거한 후 전해질만의 전기저항을 나타낸다. 또한 A는 막의 유효 면적을 나타낸다.Here, R 1 is the electrical resistance measured after inserting the membrane in the electrochemical cell and R 2 represents the electrical resistance of the electrolyte only after removing the membrane. In addition, A represents the effective area of the film.

[비교예][Comparative Example]

상기 실시예에서 캐스팅방법(70℃, 3일간 오븐 내에서 건조)한 후, 150℃에서 5시간 건조하여 0.007cm의 필름을 제조한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
In the above Example was carried out in the same manner as in Example 1 except that the casting method (70 ℃, dried in an oven for 3 days), then dried at 150 ℃ for 5 hours to produce a film of 0.007cm.

도4∼도7의 No.Nos. 4 to 7 실시예Example 폴리에테르에테르케톤(g)Polyether ether ketone (g) 클로로술폰산(g)Chlorosulfonic acid (g) 술폰화 시간(hr)Sulfonation time (hr) 함수율(%)Moisture content (%) 이온교환용량(meq/g)Ion exchange capacity (meq / g) 수소이온
전도도(S/cm) (25℃)
Hydrogen ion
Conductivity (S / cm) (25 ℃)
수소이온
전도도(S/cm) (80℃)
Hydrogen ion
Conductivity (S / cm) (80 ℃)
1One 실시예1Example 1 1010 66 1One 22.522.5 1.051.05 0.0160.016 0.0360.036 실시예2Example 2 1010 66 22 54.654.6 1.251.25 0.0350.035 0.0520.052 실시예3Example 3 1010 66 33 73.873.8 1.361.36 0.0630.063 0.0910.091 실시예4Example 4 1010 66 44 92.392.3 1.581.58 0.0860.086 0.1100.110 실시예5Example 5 1010 66 55 124.7124.7 1.831.83 0.0920.092 0.1200.120 22 실시예6Example 6 1010 99 1One 35.535.5 1.121.12 0.0220.022 0.0470.047 실시예7Example 7 1010 99 22 64.964.9 1.341.34 0.0470.047 0.0650.065 실시예8Example 8 1010 99 33 75.275.2 1.491.49 0.0680.068 0.0990.099 실시예9Example 9 1010 99 44 101.4101.4 1.621.62 0.0890.089 0.1200.120 실시예10Example 10 1010 99 55 135.5135.5 1.981.98 0.0970.097 0.1300.130 33 실시예11Example 11 1010 1212 1One 38.738.7 1.171.17 0.0250.025 0.0530.053 실시예12Example 12 1010 1212 22 69.569.5 1.451.45 0.0530.053 0.0780.078 실시예13Example 13 1010 1212 33 85.585.5 1.681.68 0.0750.075 0.1100.110 실시예14Example 14 1010 1212 44 127.3127.3 1.761.76 0.0930.093 0.1300.130 실시예15Example 15 1010 1212 55 143.6143.6 2.032.03 0.0990.099 0.1400.140 비교예Comparative example -- -- -- 72.372.3 0.870.87 0.0140.014 0.0130.013

상기의 실시예 및 비교예에서 보는 바와 같이, 본 발명에 따른 나노섬유방사 및 이를 프레싱하여 얻어지는 교환막은 이온교환용량에서 매우 우수한 특성을 나타내고 또한 수소이온전도도가 고온으로 갈 수록 더욱 우수하게 도는 등 특성이 매우 향상되는 효과를 가지는 것임을 알 수 있다.As shown in the above Examples and Comparative Examples, the nanofiber spinning according to the present invention and the exchange membrane obtained by pressing the same have very excellent characteristics in ion exchange capacity, and the hydrogen ion conductivity is more excellent at higher temperatures. It can be seen that this has a very improved effect.

Claims (8)

a) 폴리에테르에테르케톤을 클로로술폰산과 상온에서 1~30 시간 동안 반응하여 술폰화 하고, 상온 건조하는 술폰화 폴리에테르에테르케톤 제조단계;
b) 상기 술폰화 폴리에테르에테르케톤을 전기방사하여 술폰화 폴리에테르에테르케톤 나노섬유 제조단계; 및
c) 상기 술폰화 폴리에테르에테르케톤 나노섬유를 핫 프레스를 사용하여 술폰화 폴리에테르에테르케톤 나노 이온교환막 제조단계;
를 포함하는 술폰화 폴리에테르에테르케톤 나노 이온교환막 제조방법.
a) sulfonated polyether ether ketone by reacting with chlorosulfonic acid at room temperature for 1 to 30 hours, and sulfonated polyether ether ketone drying at room temperature;
b) sulfonated polyether ether ketone electrospinning to produce sulfonated polyether ether ketone nanofibers; And
c) sulfonated polyether ether ketone nanofibers using a hot press to form a sulfonated polyether ether ketone nano ion exchange membrane;
Sulfonated polyether ether ketone nano ion exchange membrane production method comprising a.
제 1항에 있어서,
상기 c) 단계의 핫 프레스의 조건으로 압력은 300~1000 psi, 온도는 10~50℃ 를 특징으로 하는 술폰화 폴리에테르에테르케톤 나노 이온교환막 제조방법.
The method of claim 1,
Sulfonated polyether ether ketone nano ion exchange membrane production method characterized in that the pressure is 300 ~ 1000 psi, the temperature is 10 ~ 50 ℃ under the conditions of the hot press of step c).
제 1항에 있어서,
상기 c) 단계의 핫 프레스를 사용한 나노 이온교환막의 제조시 나노 이온교환막의 두께가 0.006~0.008 cm를 특징으로 하는 술폰화 폴리에테르에테르케톤 나노 이온교환막 제조방법.
The method of claim 1,
Method for producing a sulfonated polyether ether ketone nano ion exchange membrane, characterized in that the thickness of the nano ion exchange membrane in the manufacturing of the nano ion exchange membrane using the hot press of step c) 0.006 ~ 0.008 cm.
삭제delete 삭제delete 삭제delete 제 1항 내지 제 3항 중 어느 한 항에 따른 제조방법으로 제조되는 나노 이온교환막.Nano ion exchange membrane prepared by the method according to any one of claims 1 to 3. 제 7항에 따른 나노 이온교환막을 포함하는 연료전지.


A fuel cell comprising the nano ion exchange membrane according to claim 7.


KR1020100140642A 2010-12-31 2010-12-31 Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning KR101292214B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100140642A KR101292214B1 (en) 2010-12-31 2010-12-31 Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100140642A KR101292214B1 (en) 2010-12-31 2010-12-31 Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning

Publications (2)

Publication Number Publication Date
KR20120078363A KR20120078363A (en) 2012-07-10
KR101292214B1 true KR101292214B1 (en) 2013-08-01

Family

ID=46711726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100140642A KR101292214B1 (en) 2010-12-31 2010-12-31 Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning

Country Status (1)

Country Link
KR (1) KR101292214B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882010B2 (en) 2016-04-21 2021-01-05 Industry-University Cooperation Foundation Hanyang University Humidifying membrane for reverse electrodialysis and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098639B1 (en) * 2013-09-30 2020-04-08 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
US11014050B2 (en) 2013-11-12 2021-05-25 Amogreentech Co., Ltd. Ion exchange membrane and filter module using same
KR101715811B1 (en) * 2013-11-12 2017-03-13 주식회사 아모그린텍 Ion exchange membrane
CN106887628A (en) * 2017-01-13 2017-06-23 杭州聚力氢能科技有限公司 Polyamide/sulfonated polyether-ether-ketone compound proton exchange membrane
KR102275161B1 (en) * 2018-12-14 2021-07-08 주식회사 씨투씨소재 Polymer electrolyte membrane for fuel cell, method of manufacturing the same, and polymer electrolyte membrane fuel cell having the same
CN109888344A (en) * 2019-02-18 2019-06-14 山东星火科学技术研究院 The method for preparing sulfonated polyether-ether-ketone load non-platinum catalyst proton exchange membrane using method of electrostatic spinning
CN112852101B (en) * 2021-01-22 2022-04-15 中国石油大学(北京) Sulfonated polyether ether ketone based proton exchange membrane and preparation method and application thereof
CN114006019B (en) * 2021-11-01 2024-02-02 北京化工大学 Method for constructing composite proton exchange membrane by high-sulfonation-degree polyether-ether-ketone fibers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
한국막학회 2005년 춘계총회 및 학술발표회 *
화학공학의 이론과 응용 제12권 제2호 2006년 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882010B2 (en) 2016-04-21 2021-01-05 Industry-University Cooperation Foundation Hanyang University Humidifying membrane for reverse electrodialysis and method for manufacturing the same

Also Published As

Publication number Publication date
KR20120078363A (en) 2012-07-10

Similar Documents

Publication Publication Date Title
KR101292214B1 (en) Preparation and characterization of sulfonated polyetheretherketone(SPEEK) nanofibrous membrane for proton exchange membrane fuel cell by electrospinning
Ogungbemi et al. Fuel cell membranes–Pros and cons
Sahin The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells
Shaari et al. Performance of crosslinked sodium alginate/sulfonated graphene oxide as polymer electrolyte membrane in DMFC application: RSM optimization approach
Shabani et al. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
Tanaka et al. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells
Muthumeenal et al. Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol
KR101279352B1 (en) Porous substrate with enhanced strength, reinforced composite electrolyte membrane using the same, membrane-electrode assembly having the same and fuel cell having them
Jothi et al. An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium
Gao et al. Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly (ether ether ketone)
Yang Composite membrane of sulfonated poly (ether ether ketone) and sulfated poly (vinyl alcohol) for use in direct methanol fuel cells
KR101135477B1 (en) A porous membrane and method for preparing thereof, polymer electrode membrane for fuel cell using the same, and fuel cell system comprising the same
KR102098639B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
Yang et al. SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell
Wang et al. PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications
KR100776911B1 (en) Novel metal?-chromium-phosphate complex and use thereof
KR20090088646A (en) The cation conductive polysulfone-type cross-linked polymer membranes, membrane-electrode assembly and fuel cell
Lee et al. Poly (ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells
KR101085358B1 (en) Hydrocarbon membranes comprising silane compound, method for manufacturing the same, mea and fuel cell using the same
KR100696680B1 (en) Polymer membrane for fuel cell and method for preparating the same
KR101070015B1 (en) Method for fabricating polymer electrolyte composite membrane and polymer electrolyte fuel cell including polymer electrolyte composite membrane fabricated using the same
KR20110054607A (en) Reinfored composite electrolyte membrane and manufacturing method thereof
KR20080039615A (en) Composite electrolyte membrane and fuel cell using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160627

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 5