TW201121705A - Automatic spindle shift correction device. - Google Patents

Automatic spindle shift correction device. Download PDF

Info

Publication number
TW201121705A
TW201121705A TW98145517A TW98145517A TW201121705A TW 201121705 A TW201121705 A TW 201121705A TW 98145517 A TW98145517 A TW 98145517A TW 98145517 A TW98145517 A TW 98145517A TW 201121705 A TW201121705 A TW 201121705A
Authority
TW
Taiwan
Prior art keywords
radial
axial
main shaft
magnetic pole
spindle
Prior art date
Application number
TW98145517A
Other languages
Chinese (zh)
Other versions
TWI401136B (en
Inventor
He-Gang Liu
shang-bin Xie
Zhao-Qi Liu
Original Assignee
Prec Machinery Res Dev Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prec Machinery Res Dev Ct filed Critical Prec Machinery Res Dev Ct
Priority to TW98145517A priority Critical patent/TW201121705A/en
Publication of TW201121705A publication Critical patent/TW201121705A/en
Application granted granted Critical
Publication of TWI401136B publication Critical patent/TWI401136B/zh

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

An automatic spindle shift correction device comprises an axial displacement meter that detects axial displacement of a spindle, at least one axial magnet unit that controls and compensates the axial displacement of the spindle, at lest one radial displacement meter that detects a radial displacement of the spindle, at least one radial magnet unit that controls and compensates the radial displacement of the spindle, and a controller. As such, the axial displacement meter and the radial displacement meter, after measuring the axial and radial displacement of the spindle, issues signals to the controller to control an actuator. Furthermore, the expelling forces are provided by the axial magnet unit and the radial magnet unit, which reduces the shift, vibration, and noise induced by the spindle to thereby improve machining precision.

Description

201121705 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種加工機主軸,特別是指一種適用 於高精密主軸之主軸偏擺自動調整裝置。 【先前技術】 隨著光電、電子、通訊、化學、醫療及生物科技等產 業的興起’對精密及微小元件之需求日益增加,這些元件 因具有輕、薄、短、小的特性,故在製作時無法以傳統的 加工設備加工,必須用精細加工設備才可做到。然而,精 細加工設備中的精密主軸是工件品質良窳的重要因素之一 ’如何減少精密主軸的偏擺(Run-〇ut)量、震動量及噪音 質’將是提升精細加工設備在市場中產品競爭力的重要因 素之一。 目前市面上所提供的精密主轴,不是内藏式馬達搭配 滾珠軸承,就是氣壓驅動搭配滾珠軸承,此種接觸式結構 在高轉速下將產生主軸震動、偏擺及噪音大等問題。另外 ’現有一種具有軸向動態精度補償功能的主軸裝置(申請 案號第90221764號專利案),是在一本體内部設有一馬達 及一心軸,該本體前端與一前蓋之間安裝有一盤形彈簧, 對應該前蓋的本體上套設一支架及一介於該支架與該本體 之間的致動器,另外,該本體後端裝設有一對應該心軸的 位移計及一加速規。藉由該位移計量測心軸之軸向偏擺變 化,該盤形彈簧的彈力對致動器產生預壓,以非接觸式位 移計量測心轴一轉各角度的軸向偏擺之平均值,做為致動 201121705 器在心轴每一轉各角度作軸向位移補償之參考值,最後, 加速規量測本體實際轴向位移的補償量,回饋至控制系統 ’與致動器之補償量作比較’判斷是否需要調整補償方式 ’以達到閉迴路控制降低軸向偏擺之目的。這種主軸裝置 雖然有使用位移計搭配盤形彈篑、致動器及加速規等元件 ’以建立迴路方式來補償軸向偏擺,然利用接觸式的補償 方式,使用一段時間後,會產生彈簧疲乏必須拆卸主軸裝 • 置以更換預壓盤形彈簧的困擾,且此方式僅提供軸向補償 功能。 【發明内容】 因此,本發明之目的,即在提供一種可量測軸向及徑 向之偏擺量並利用磁力控制進行調整,以減少該主軸的偏 擺量、震動量及噪音值,進而提昇加工精度主轴偏擺自動 調整裝置。 於是,本發明主軸偏擺自動調整袭置,該主軸沿一軸 • 線延伸且穿設在一殼體内部,該殼體與該主軸之間安裝有 -可驅動該主軸轉動的馬達,該調整裝置包含一軸向位移 計、至少一軸向磁極單元、至少一徑向位移計單元'至少 —徑向磁極單元及—控制器。該轴向位移計用於量測該主 軸沿,向的偏擺量,該軸向磁極單元可補償該主轴的轴向 2擺里’該住向位移計單元用於量測該主軸沿徑向的偏擺 f ’該徑向磁極單元可補償該主轴的徑向偏擺量,該控制 器内建有運算處理程式及致動控制程式,並電連接該軸向 位移計、該徑向位移計單元及一致動器,可依該轴向位移 201121705 計及徑向位移計單元測得之數據,計算出—補償量,並控 制該致動器執行該主軸的偏擺補償。 本發明之功效.利用該軸向位移計與該徑向位移計單 7G分別量測該主軸的軸、徑向偏移量,且將訊號提供至該 致動器,再由該軸向磁極單元、該徑向磁極單元提供斥力 ,以減少該主軸的偏擺量、震動量及噪音值,進而提昇加 工精度。201121705 VI. Description of the Invention: [Technical Field] The present invention relates to a processing machine spindle, and more particularly to a spindle yaw automatic adjusting device suitable for a high-precision spindle. [Prior Art] With the rise of industries such as optoelectronics, electronics, telecommunications, chemistry, medical and biotechnology, the demand for precision and tiny components is increasing. These components are made because of their light, thin, short and small characteristics. It cannot be processed by traditional processing equipment and must be done with fine processing equipment. However, the precision spindle in the fine processing equipment is one of the important factors for the quality of the workpiece. How to reduce the amount of yaw, vibration and noise of the precision spindle will improve the precision processing equipment in the market. One of the important factors in product competitiveness. The precision spindles currently available on the market are not built-in motors with ball bearings, or pneumatically driven with ball bearings. This type of contact structure will cause problems such as spindle vibration, yaw and noise at high speeds. In addition, a prior art spindle device having an axial dynamic precision compensation function (Application No. 90221764) is provided with a motor and a spindle inside a body, and a disk shape is installed between the front end of the body and a front cover. a spring, a bracket corresponding to the front cover and an actuator interposed between the bracket and the body, and a rear end of the body is provided with a pair of displacement gauges and an accelerating gauge. The axial deflection of the mandrel is measured by the displacement, the elastic force of the disc spring is pre-compressed to the actuator, and the non-contact displacement is used to measure the axial deflection of the mandrel at various angles. The average value is used as the reference value for the axial displacement compensation of the 201121705 at each angle of the mandrel. Finally, the acceleration gauge measures the compensation amount of the actual axial displacement of the body, and feeds back to the control system' and the actuator. The compensation amount is compared to 'determine whether the compensation method needs to be adjusted' to achieve the purpose of closed loop control to reduce axial deflection. Although the spindle device uses a displacement gauge with a disc-shaped magazine, an actuator, and an accelerometer to compensate for the axial yaw in a loop-like manner, the contact compensation method is used, and after a period of use, it is generated. If the spring is too tired, the spindle must be removed to replace the pre-pressed disc spring, and this mode only provides axial compensation. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a measurable axial and radial yaw amount and adjust it by magnetic control to reduce the yaw amount, the amount of vibration, and the noise value of the spindle. Improve the precision of the spindle yaw automatic adjustment device. Therefore, the spindle yaw of the present invention is automatically adjusted, and the spindle extends along an axis and is disposed inside a casing. A motor that can drive the spindle is mounted between the casing and the spindle. The invention comprises an axial displacement meter, at least one axial magnetic pole unit, at least one radial displacement meter unit 'at least the radial magnetic pole unit and the controller. The axial displacement meter is used for measuring the yaw amount of the main shaft along the direction, and the axial magnetic pole unit can compensate the axial 2 swing of the main shaft. The living displacement meter unit is used for measuring the radial direction of the main shaft. The yaw f 'the radial magnetic pole unit can compensate the radial yaw amount of the main shaft, the controller has an operation processing program and an actuation control program, and is electrically connected to the axial displacement meter, the radial displacement meter The unit and the actuator can calculate the compensation amount according to the axial displacement 201121705 and the data measured by the radial displacement meter unit, and control the actuator to perform the yaw compensation of the spindle. The effect of the present invention is that the axial displacement meter and the radial displacement gauge 7G respectively measure the axial and radial offset of the main shaft, and provide a signal to the actuator, and then the axial magnetic pole unit The radial magnetic pole unit provides a repulsive force to reduce the yaw amount, the vibration amount and the noise value of the main shaft, thereby improving the machining precision.

【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 如圖1及圖2所示,本發明之主抽偏擺自動調整裝置 之較佳實施例’該主轴⑽沿—轴線L延伸且穿設在一殼 體200内部,該殼體2⑽與該主軸⑽之間安裝有一可驅 動該主軸議轉動的馬達_,該調整裝置包含-軸向位移 計1〇、-軸向磁極單A 2〇、二徑向位移計單元3〇、3〇,、 二控向磁極單元40、40,、一栌制哭π a 朴 徑制态50及一稭於該主轴J〇〇 與該殼體200之間的液靜壓單元6〇。 u主軸100具有一第一端部11〇、一第二端杳"2〇、一 趨近於該第-端部110且沿徑向朝外凸設的突出圓盤⑽' "於該第一端部110與該突出圓般 丹通犬®回盤130之間的第一斜面 140、一趨近於該第二端 响。丨以u的第一斜面150。配合參閲 圖3,該突出圓盤13〇昱 具有一相反的盤面131及一連結在該 等盤面131周緣之間的環面132。 201121705 該殼體200具有一與該環s 132才目對的内壁自2i〇及 二與該内壁面210垂直銜接且與該等盤面131相對的定位 面 220。 該軸向位移計10用於量測該主軸1〇〇沿軸向的 ’且沿該軸線L設置,且設置在該主軸1〇〇之第二端部咖 的端面外侧。 該軸向磁極單元20可補償該主軸1〇〇的軸向偏擺量, φ 並具有二對分別安裝在該等盤面U1與該等定位面22〇且 相對設置的軸向磁極板21、22 ’相對設置的該等軸向磁極 板21、22彼此產生斥力。 該徑向位移計單元3〇、30,分別用於量測該主軸1〇〇第 一、二端部110、120沿徑向的偏擺量,該徑向位移計單元 30、30’對應該主軸1〇〇的第一、二端部11〇、12〇各設有一 對相隔90度設置的徑向位移計31、31’(見圖5),該等徑 向位移計31、31,分別設置在該主軸1〇〇之第一、二端部 0 110、120的周面外側。 如圖2、圖3及圖4所示,該徑向磁極單元4〇、4〇,可 分別補償該主軸100第一、二端部11〇、12〇的徑向偏擺量 ’該徑向磁極單元40、40,對應該主軸100的第一、二端部 110、120各設有一對徑向磁極線圈41、41’,其中該徑向磁 極單元40的徑向磁極線圈41呈相對且分別安裝在該内壁 面210與該環面132,該等徑向磁極線圈41彼此產生斥力 ’該徑向磁極單元40,的徑向磁極線圈41,呈相對且分別安 裝在該内壁面210與該主軸11〇的周面,且該等徑向磁極線 201121705 圈41’彼此產生斥力。 該控制器50内建有運算處理程式及致動控制程式,並 電連接該軸向位移計1〇、該徑向位移計單元3〇、3〇,及一致 動器70 ’可依該軸向位移計1〇及徑向位移計單元、3〇, 測得之數據’計算出一補償量,並控制該致動器執行該 主軸10的偏擺補償。 該液靜壓單元60具有二設置在該殼體200之内壁面 210且圍繞該軸線L呈環槽狀的油腔61及填置在該等油腔 61中的油62,該等油腔61分別對應於第一、二斜面M〇、 150,且在該等油腔61與該第一、二斜面14〇、15〇之間形 成油膜。 再如圖2及圖6所示,藉由上述構件所組成的調整裝 置’其運作及所能達成的功效說明如下: 虽該主軸100在高速運轉時,利用該軸向位移計 =1測該主軸的轴向偏擺,若轴向發生向右位移偏擺 變化時,該軸向位移計10會傳送一訊號至該控制器5〇,並 控制該致動器70,則位於該突出圓盤130右側的該等軸向 磁極板21將提供斥力,以減少右邊移動偏擺量,但若右邊 之該軸向磁極板21 S供之斥力過大,且超過—設定值而向 左偏擺,,則該轴向位移計1〇會傳送訊號,並控制該致動 器70提供位於該突出圓盤13〇左側該等軸向磁極板u斥 力的動作,反之,若軸向發生向左位移偏擺變化時,亦以 類似上述動作減少左邊移動偏擺量,而可達到該主轴100 轴向偏擺自動調整目的’且以建立閉迴路控制方式,達到 201121705 軸向偏擺補償目的。 二、利用該徑向位移計單元30、30’的各徑向位移計3i 31分別1測該主軸1 〇〇第一、二端部丨丨〇、丨2〇的徑向偏 擺置,若徑向發生向上位移偏擺變化時,該等徑向位移計 3 1 31會傳送一訊號至該控制器50,並控制該致動器70,The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. As shown in FIG. 1 and FIG. 2, a preferred embodiment of the main yaw automatic adjusting device of the present invention extends along the axis L and is disposed inside a casing 200. The casing 2 (10) and the main body A motor _ that drives the spindle to rotate is mounted between the main shafts (10), and the adjusting device comprises an axial displacement meter 1 -, an axial magnetic pole single A 2 〇, a two radial displacement meter unit 3 〇, 3 〇, The two control magnetic pole units 40, 40, a crying π a simple state 50 and a liquid static pressure unit 6 秸 between the main shaft J 〇〇 and the housing 200. The main shaft 100 has a first end portion 11〇, a second end portion quot2, a protruding disc (10) that is adjacent to the first end portion 110 and protrudes outward in the radial direction. The first slope 140 between the first end portion 110 and the protruding round-like Dantong dog® return tray 130 approaches a second end. The first slope 150 of u is used. Referring to Figure 3, the protruding disk 13'' has an opposite disk surface 131 and a toroid 132 joined between the circumferences of the disk surfaces 131. The housing 200 has a positioning surface 220 that is perpendicular to the inner wall surface 210 and opposite to the disk surface 131 from the inner wall of the ring s 132. The axial displacement gauge 10 is for measuring the axial direction of the main shaft 1' and is disposed along the axis L, and is disposed outside the end surface of the second end of the main shaft 1〇〇. The axial magnetic pole unit 20 can compensate the axial yaw amount of the main shaft 1 ,, and has two pairs of axial magnetic pole plates 21 and 22 respectively mounted on the disk surface U1 and the positioning surfaces 22 相对 opposite to each other. The oppositely disposed axial magnetic plates 21, 22 generate a repulsive force with each other. The radial displacement meter units 3〇, 30 are respectively used to measure the yaw amount of the first and second end portions 110 and 120 of the main shaft 1〇〇, and the radial displacement meter units 30, 30' correspond to each other. The first and second end portions 11〇, 12〇 of the main shaft 1〇〇 are respectively provided with a pair of radial displacement meters 31, 31' (see FIG. 5) which are arranged at intervals of 90 degrees, and the radial displacement meters 31 and 31 respectively It is disposed outside the circumferential surface of the first and second end portions 0 110 and 120 of the main shaft 1〇〇. As shown in FIG. 2, FIG. 3 and FIG. 4, the radial magnetic pole units 4〇, 4〇 can respectively compensate the radial yaw amount of the first and second end portions 11〇, 12〇 of the main shaft 100. The magnetic pole units 40, 40 are respectively provided with a pair of radial magnetic pole coils 41, 41' corresponding to the first and second end portions 110, 120 of the main shaft 100, wherein the radial magnetic pole coils 41 of the radial magnetic pole unit 40 are opposite and respectively Mounted on the inner wall surface 210 and the annular surface 132, the radial magnetic pole coils 41 generate a repulsive force 'the radial magnetic pole unit 40, the radial magnetic pole coil 41, oppositely and respectively mounted on the inner wall surface 210 and the main shaft The circumference of 11 turns, and the radial magnetic pole lines 201121705 circle 41' generate a repulsive force with each other. The controller 50 has an arithmetic processing program and an actuation control program built therein, and is electrically connected to the axial displacement meter 1 , the radial displacement meter unit 3〇, 3〇, and the actuator 70′ according to the axial direction. The displacement meter 1〇 and the radial displacement meter unit, 3〇, the measured data 'calculates a compensation amount, and controls the actuator to perform the yaw compensation of the spindle 10. The hydrostatic pressure unit 60 has two oil chambers 61 disposed on the inner wall surface 210 of the housing 200 and annularly surrounding the axis L, and oil 62 filled in the oil chambers 61. The oil chambers 61 are 61. Corresponding to the first and second inclined faces M〇, 150, respectively, and an oil film is formed between the oil chambers 61 and the first and second inclined faces 14〇, 15〇. As shown in FIG. 2 and FIG. 6, the operation of the adjusting device composed of the above components and the achievable functions are as follows: Although the spindle 100 is running at a high speed, the axial displacement meter is used to measure the The axial yaw of the main shaft, if the axial displacement yaw changes to the right, the axial displacement meter 10 transmits a signal to the controller 5 〇, and controls the actuator 70, which is located in the protruding disc The axial magnetic pole plates 21 on the right side of 130 will provide a repulsive force to reduce the amount of yaw applied to the right side, but if the axial magnetic pole plate 21 S on the right side is excessively repulsive and exceeds the set value and is deflected to the left, Then, the axial displacement meter transmits a signal, and controls the actuator 70 to provide an action of repulsion of the axial magnetic plates u on the left side of the protruding disk 13 ,, and vice versa if the axial direction shifts to the left. When changing, the left side movement yaw amount is reduced by the above-mentioned action, and the spindle 100 axial yaw automatic adjustment purpose can be achieved, and the closed loop control mode is established to achieve the 201121705 axial yaw compensation purpose. 2. Using the radial displacement meters 3i 31 of the radial displacement meter units 30, 30', respectively, to measure the radial deflection of the first and second ends 丨丨〇, 丨2〇 of the main shaft 1 , When the radial displacement yaw changes, the radial displacement meters 3 1 31 transmit a signal to the controller 50 and control the actuator 70,

則該徑向磁極單元40、4〇’的該等徑向磁極線圈41、41,將 提供斥力,使其磁力增大,以減少向上移動偏擺量,但若 提供之斥力過大,且超過一設定值而向下偏擺時,則該徑 向位移計單元30、30,會傳送訊號,並控制該致動器7〇提 供下部斥力的動作;反之,隸向發生向下位移偏擺變化 時,亦以類似上述動作減少向下移動偏擺量,而可達到該 主軸100 #向偏擺自動調整目的,且以建立閉迴路控制方 式’達到徑向偏擺補償目的。 二、該液靜壓單元60的油62具有阻尼作用,且藉該 該液靜壓單70 60所形成的油膜具有減少震動及噪音之功效 一 t w 用該軸向位移計10與該徑向位移計單 π 30、30’量測出該絲1〇〇的軸向及徑向偏擺量,且訊號 再透過該控制器5G控制該致動器7G,則使該軸向磁極單元° 如、該徑向磁極單元4〇、4〇,提供斥力以減少主轴1〇〇轴向 及徑向的偏擺量,亦可減少該主们⑼的震動量及噪音值 ’進而提昇加工精度。 —再者」如圖2所示,本發明是在對應該主轴_的第 端π 110、120分別設有一個徑向位移計單元川、 201121705 二,’且該等徑向位移計單元3G、3G,各具有_對相隔9〇度 又置的仏向位移计31、31 ’,所以即使對應該第一端部!】〇 的加工端會產生較大的偏擺量,但藉由對應該主轴100的 第一、二端部110、120所設有的徑向位移計單元30、30, ,可精確地量測該主軸100兩端沿徑向的偏擺量,再配合 對應該絲1〇〇的第一、二端冑11〇、12〇各設有一徑向磁 極單元40、40’ ’可達到精準補償徑向偏擺量之目的。另外 ,本實施例之圖2雖然僅設置一突出圓盤13〇,但也可對應 該主轴1〇〇的第一、二端部110、12〇設置二突出圓盤13〇 ,且每一突出圓盤都配合一軸向磁極單元2〇 (圖未示),則 可達到精準補償軸向偏擺量之目的。 值得一提的是,本發明的調整裝置適用於精細加工設 備的加工主抽(如銑削機、鑽孔機、磨削機)、精密量側 設備的量測軸(如真圓度量測儀)。亦適用於空氣軸承主 軸及磁浮軸承主軸。 惟以上所述者,僅為本發明之較佳實施例而已,當不 月b以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一控制流程方塊圖,說明本發明主軸偏擺自動 調整裝置的一較佳實施例; 圖2是本發明上述較佳實施例之一平面組合圖; 圖3是圖2的局部放大示意圖,說明一軸向磁極單元 201121705Then, the radial magnetic pole coils 41, 41 of the radial magnetic pole units 40, 4'' will provide a repulsive force to increase the magnetic force to reduce the upward yaw amount, but if the repulsive force provided is too large, and exceeds one When the set value is yawed downward, the radial displacement meter unit 30, 30 transmits a signal and controls the actuator 7 to provide a lower repulsion action; otherwise, when the directional shift occurs to the downward displacement yaw In addition, the yaw amount is reduced by the action similar to the above, and the spindle 100# is automatically adjusted for the yaw, and the closed loop control mode is established to achieve the radial yaw compensation purpose. 2. The oil 62 of the hydrostatic pressure unit 60 has a damping effect, and the oil film formed by the hydrostatic pressure unit 70 60 has the effect of reducing vibration and noise. The axial displacement meter 10 and the radial displacement are used. The meter π 30, 30' measures the axial and radial yaw amount of the wire 1 ,, and the signal further controls the actuator 7G through the controller 5G, so that the axial magnetic pole unit The radial magnetic pole units 4〇, 4〇 provide a repulsive force to reduce the axial and radial yaw amount of the main shaft 1,, and also reduce the vibration amount and noise value of the main (9) to improve the machining accuracy. - Again, as shown in Fig. 2, the present invention is provided with a radial displacement meter unit, respectively, at the first ends π 110, 120 corresponding to the main shaft _, 201121705 2, and the radial displacement meter units 3G, 3G, each has _ pairs of displacement gauges 31, 31 'separated by 9 degrees, so even if it corresponds to the first end! The machining end of the crucible generates a large amount of yaw, but can be accurately measured by the radial displacement gauge units 30, 30 provided for the first and second ends 110, 120 of the main shaft 100. The radial yaw amount of the two ends of the main shaft 100 is matched with the first and second ends 胄11〇, 12〇 corresponding to the wire 1 to be provided with a radial magnetic pole unit 40, 40'' to achieve accurate compensation diameter. The purpose of the yaw amount. In addition, although FIG. 2 of the present embodiment is provided with only one protruding disc 13〇, two protruding discs 13〇 may be provided corresponding to the first and second end portions 110 and 12〇 of the main shaft 1〇〇, and each protruding The disc is matched with an axial magnetic pole unit 2 〇 (not shown), so that the axial yaw amount can be accurately compensated. It is worth mentioning that the adjusting device of the present invention is suitable for processing main drawing of fine processing equipment (such as milling machine, drilling machine, grinding machine), measuring axis of precision measuring side equipment (such as true circle measuring instrument) ). It is also suitable for air bearing main shaft and magnetic bearing main shaft. However, the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes made by the scope of the invention and the description of the invention. Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a control flow block diagram showing a preferred embodiment of the spindle yaw automatic adjusting device of the present invention; FIG. 2 is a plan view of a preferred embodiment of the present invention; FIG. Figure 2 is a partially enlarged schematic view showing an axial magnetic pole unit 201121705

與一徑向磁極單元的配置; 圖4是沿圖2中之線IV -IV的一剖面圖; 圖5是本發明上述較佳實施例之一立體外觀圖;及 圖6是本發明上述較佳實施例之一控制程序圖。 10 201121705 【主要元件符號說明】Figure 4 is a cross-sectional view taken along line IV-IV of Figure 2; Figure 5 is a perspective view of one of the above preferred embodiments of the present invention; and Figure 6 is a comparison of the present invention One of the preferred embodiments controls the program diagram. 10 201121705 [Main component symbol description]

100… •…主轴 21 ·..·· ----轴向磁極板 L....... •…軸線 22··..· ----轴向磁極板 110… •…第一端部 30·.··. •…徑向位移計單元 120… •…第二端部 31 ••… …·徑向位移計 130… …·突出圓盤 30,.... •…徑向位移計單元 131 ··· …·盤面 31,·... …·徑向位移計 132… …·環面 40••… •…徑向磁極單元 140 ... …第 斜面 41 ·..·· •…徑向磁極線圈 150 ··.. …第二斜面 40,·.·. •…徑向磁極單元 200 ··· …·殼體 41,.·.· •…徑向磁極線圈 210 ···· …·内壁面 50·.··· •…控制器 220 ···· •…定位面 60 •…液静壓單元 300 *… …·馬達 61 "… …·油腔 10…… …軸向位移計 62·.·.· .…油 20…… …軸向磁極單元 70·.... •…致動器100... •... Spindle 21 ·..·· ----Axial magnetic plate L....... •...Axis 22····· ----Axial magnetic plate 110... •...first End 30····.•... Radial Displacement Meter Unit 120... •...Second End 31 ••... Radial Displacement Meter 130... Projecting Disc 30,....... Radial Displacement unit 131 ·····disk surface 31,····radial displacement meter 132...thereum 40••...•...radial magnetic pole unit 140...the inclined surface 41 ·..· ·•...radial magnetic pole coil 150 ···....second inclined surface 40,····•...radial magnetic pole unit 200 ····· housing 41,...·.......radial magnetic pole coil 210 · ··· ...· Inner wall surface 50·····•...Controller 220 ···· • Positioning surface 60 •...Hydraulic pressure unit 300 *... Motor motor 61 "... Oil chamber 10... ...axial displacement meter 62·····....oil 20......axial magnetic pole unit 70·.... •...actuator

1111

Claims (1)

201121705 七、申請專利範圍·· 1. 一種主軸偏擺自動調整裝置,該主軸沿一軸線延伸且穿 設在一殼體内部,該殼體與該主軸之間安裝有一可驅動 該主軸轉動的馬達’該調整裝置包含: 一軸向位移計,用於量測該主轴沿軸向的偏擺量; 至少一軸向磁極單元,可補償該主軸的轴向偏擺量 » φ 至〉、一徑向位移计單元,用於量測該主轴沿徑向的 偏擺量; 至少一徑向磁極單元,可補償該主軸的徑向偏擺量 ;及 一控制器,内建有運算處理程式及致動控制程式, 並電連接該軸向位移計、該徑向位移計單元及一致動器 ,可依該軸向位移計及徑向位移計單元測得之數據計 算出一補償量,並控制該致動器執行該主軸的偏擺補償 根據申叫專利範圍第1項所述之主軸偏擺自動調整裝置 ’其中’該軸向位移計沿該軸線設置,且設置在該主轴 一端面外側。 把據申叫專利範圍第1項所述之主軸偏擺自動調整裝置 ’其中,該徑向位移計單元對應該主軸的兩端各設有一 對相隔90度設置的徑向位移計,該等徑向位移計設置在 該主軸周面外側。 4.根據申請專利範圍第1項所述之主轴偏擺自動調整裝置 [si 12 201121705 ,、,該主軸具有至少一沿徑向朝外凸設的突出圓盤 该大出圓盤具有二相反的盤面及—連結在該等盤面周 緣::的環面,該殼體具有一與該環面相對的内壁面及 至少—對與該内帛面銜接且與該等盤面相對的定位面, 該轴向_單元具有兩對分別絲在料盤面與該等定 位面且相對設置的軸向磁極板。 5·根射請專利範圍第4項所述之主軸偏擺自動調整裝置 丄其中’該徑向磁極單減有兩個,其中—個徑向磁極 單兀具有一對對應該主軸其中一端的徑向磁極線圈,該 等徑向磁極線圈呈相對且安裝在該内壁面與該環面上, 另一個徑向磁極單元也具有一對對應該主軸另一端的徑 向磁極線圈,該等徑向磁極線圈呈相對且分別安裝在該 内壁面與該主軸的周面。 6. 根據申請專利範圍第5項所述之主轴偏擺自動調整裝置 ,其中,該轴向磁極單元呈相對的二個軸向磁極板彼此 產生斥力,該徑向磁極單元呈相對的二個徑向磁極線圈 彼此產生斥力。 7. 根據申請專利範圍第丨項所述之主軸偏擺自動調整裝置 ’更具有一液靜壓單元,該液靜壓單元具有至少一設置 在該威體一内壁面且圍繞該轴線呈環槽狀的油腔及填置 在該油腔中的油,且在該油腔與該主軸之周面之間形成 油膜。201121705 VII. Patent Application Range·· 1. A spindle yaw automatic adjusting device, the main shaft extends along an axis and is disposed inside a casing, and a motor for driving the spindle is mounted between the casing and the main shaft. 'The adjusting device comprises: an axial displacement meter for measuring the yaw amount of the main shaft in the axial direction; at least one axial magnetic pole unit for compensating the axial yaw amount of the main shaft » φ to 〉, a diameter a displacement meter unit for measuring a radial yaw amount of the main shaft; at least one radial magnetic pole unit for compensating for a radial yaw amount of the main shaft; and a controller having an arithmetic processing program built therein a control program, and electrically connecting the axial displacement meter, the radial displacement meter unit and the actuator, and calculating a compensation amount according to the data measured by the axial displacement meter and the radial displacement meter unit, and controlling the The actuator performs the yaw compensation of the spindle. The spindle yaw automatic adjusting device according to the first aspect of the patent application is wherein the axial displacement gauge is disposed along the axis and disposed outside the one end surface of the spindle. The spindle yaw automatic adjusting device according to the first aspect of the patent application scope, wherein the radial displacement meter unit is provided with a pair of radial displacement gauges disposed at 90 degrees apart from each other at both ends of the main shaft, the diameters The displacement meter is disposed outside the main axis of the main shaft. 4. The spindle yaw automatic adjusting device according to claim 1 of the patent application scope [si 12 201121705, wherein the main shaft has at least one protruding disc protruding outward in the radial direction, the large disc having two opposite a disk surface and a ring surface connected to the circumference of the disk surface: the housing has an inner wall surface opposite to the ring surface and at least a positioning surface that is coupled to the inner surface and opposite to the disk surface The _ unit has two pairs of axial magnetic plates respectively disposed on the surface of the tray and the positioning surfaces. 5. The root yaw automatic adjustment device described in item 4 of the patent scope, wherein the radial magnetic pole has two single reductions, wherein one radial magnetic pole has a pair of diameters corresponding to one end of the main shaft. To the magnetic pole coils, the radial magnetic pole coils are oppositely mounted on the inner wall surface and the annular surface, and the other radial magnetic pole unit also has a pair of radial magnetic pole coils corresponding to the other end of the main shaft, the radial magnetic poles The coils are oppositely and respectively mounted on the inner wall surface and the circumferential surface of the main shaft. 6. The spindle yaw automatic adjusting device according to claim 5, wherein the axial magnetic pole unit generates a repulsive force between the two axial magnetic pole plates, and the radial magnetic pole unit has two opposite diameters. A repulsive force is generated to each other to the magnetic pole coils. 7. The spindle yaw automatic adjusting device according to the scope of the patent application of the present invention has a liquid static pressure unit having at least one inner wall surface of the core body and a ring around the axis. a groove-shaped oil chamber and oil filled in the oil chamber, and an oil film is formed between the oil chamber and a circumferential surface of the main shaft. 1313
TW98145517A 2009-12-29 2009-12-29 Automatic spindle shift correction device. TW201121705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98145517A TW201121705A (en) 2009-12-29 2009-12-29 Automatic spindle shift correction device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98145517A TW201121705A (en) 2009-12-29 2009-12-29 Automatic spindle shift correction device.

Publications (2)

Publication Number Publication Date
TW201121705A true TW201121705A (en) 2011-07-01
TWI401136B TWI401136B (en) 2013-07-11

Family

ID=45045742

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98145517A TW201121705A (en) 2009-12-29 2009-12-29 Automatic spindle shift correction device.

Country Status (1)

Country Link
TW (1) TW201121705A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612232B (en) 2013-10-25 2018-01-21 財團法人工業技術研究院 The device of the axle oil chamber of hydrostatic spindle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989885A (en) * 1988-12-23 1991-02-05 Hitachi Metals, Ltd. Magnetic fluid retainer, and shaft sealer employing same
ATE134793T1 (en) * 1991-07-11 1996-03-15 Laube Hans Juergen MAGNETIC BODY COMPOSED OF SEVERAL INDIVIDUAL MAGNETIC BODY AND A PERMANENT MAGNETIC FLOATING BEARING WITH A TOTAL MAGNETIC BODY COMPOSED OF SEVERAL INDIVIDUAL MAGNETS
TW491743B (en) * 2001-09-28 2002-06-21 Ind Tech Res Inst Internal active compensation method and device for axial swinging of rotatory shaft tool
TW200800480A (en) * 2006-06-19 2008-01-01 Chih-Wei Chiang Method and structure of generating buffer reacting force for high speed main shaft of machine tool
TWI325212B (en) * 2006-11-03 2010-05-21 Ind Tech Res Inst Dual gap electromagnetic structure

Also Published As

Publication number Publication date
TWI401136B (en) 2013-07-11

Similar Documents

Publication Publication Date Title
CN102331349B (en) Permanent magnetic bearing rigidity measuring device
US20080226409A1 (en) Dental machining unit with tool spindle
MX2011002485A (en) Actuator with counter-rotating motors with linear output.
JP2008534303A (en) Hybrid orbit spindle for forming non-circular holes
CN106370349B (en) A kind of gyrorotor centroid position precision adjustment unit and method based on ultrasonic antifriction effect
CN106984836A (en) A kind of built-in dynamic/static piezoelectric main shaft of high-speed, high precision
CN110768424B (en) Rigid-flexible coupling high-precision galvanometer motor and control method thereof
CN109668663A (en) Micro-bearing friction torgue test device and test method
CN104227031A (en) Main spindle unit
TW201121705A (en) Automatic spindle shift correction device.
KR20110019656A (en) Actuator for active load test of bldc motor
CN105545955A (en) Magnetic bearing based on force feedback control
US11626815B2 (en) High-precision rigid-flexible coupling rotating platform and control method thereof
CN116840680B (en) Magnetic suspension molecular pump motor performance detection method and application thereof
CN101769731B (en) Gravity balance device and method of flexible coordinate measuring machine based on magnetic rheologic fluid
JPH1113760A (en) Hydrostatic magnetic composite bearing
CN103411733B (en) A kind of high-speed main shaft electromagnetic type spot dynamic balance device and method
JP5378160B2 (en) Rotating spindle with torque detection function
TWI835208B (en) Dynamic balancing system and monitoring method
CN104218707A (en) High-precision large-size hollow shaft system
CN110132582A (en) The load of friction free torque and measuring device under vacuum environment
US7127939B2 (en) Measuring method on an electric motor and measuring device for an electric motor for determining the fly height and/or axial play
CN111324152B (en) Rigid-flexible coupling high-precision rotating platform and control method thereof
CN205300822U (en) Motor developments moment of torsion detection device
CN204965198U (en) Autorotation drive and vibration isolation cloud platform system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees