TW201120551A - Electrochromic element - Google Patents

Electrochromic element Download PDF

Info

Publication number
TW201120551A
TW201120551A TW98141318A TW98141318A TW201120551A TW 201120551 A TW201120551 A TW 201120551A TW 98141318 A TW98141318 A TW 98141318A TW 98141318 A TW98141318 A TW 98141318A TW 201120551 A TW201120551 A TW 201120551A
Authority
TW
Taiwan
Prior art keywords
layer
group
electrochromic
oxide
electrochromic element
Prior art date
Application number
TW98141318A
Other languages
Chinese (zh)
Inventor
Yi-Wen Chung
Chih-Ming Hu
Shu-Jiuan Huang
Shin-Liang Kuo
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98141318A priority Critical patent/TW201120551A/en
Publication of TW201120551A publication Critical patent/TW201120551A/en

Links

Abstract

An electrochromic element is proposed, comprising subsequently forming a first substrate, a transparent conductive layer, an electrochromic material layer, an electrolyte layer, and a second substrate containing a nano carbon layer made of nano carbon material. The invention takes advantage of the ion storage capability and the high percentage of surface area of the nano carbon layer to enable fast color change and extension of usage life.

Description

201120551 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種電致變色元件,尤指一種利用奈 米碳質層降低製作成本及加快變色速度之電致變色元件。 【先前技術】 節能減碳為近年來很重要的一個研究主題,尤其是在 地球環境迅速變遷與能源危機之後,此議題又更顯得重 要。隨著節能建築的推廣,已發展幾十年的電致變色元件 籲近年來又被熱門的討論。 電致變色元件主要的機制為材料接受電子後會產生 價數變化,導致改變對光的吸收性,因此會有顏色改變的 現象。此顏色變化機制常應用於顯示器或電子紙上,而較 多為應用於建築物或車子的智慧窗戶。一般而言,智慧窗 可分為兩種,一種以液晶材料為基礎,另一種以電致變色 材料為架構,液晶的顏色切換速度較快,且因為液晶顯示 器的蓬勃發展,利用液晶材料製成智慧窗的技術也較為成 熟。然而,由於液晶的製程與材料成本過高,對於民生用 品無法普遍使用,再者,智慧窗對於紅外線的阻隔效果不 佳,但太陽光中乃以紅外線為主要產生熱源的光波,因此, 以液晶製程的智慧窗沒有隔熱效果,無法當作建築的節能 窗使用。 相對於液晶材料,以電致變色元件為材質的智慧窗可 有效阻擋太陽中的紅外線,且材料成本較低廉,所謂電致 變色係由Platt於1961年提出,指藉由通電使得材料產生 3 111419 201120551 新的光學吸收帶㈣色,同時伴隨 反應的著色現象。-般電致變色 及氧化還房 構,請參閱第1圖,π 、要架構為七層結 架構示意圖。如圖所示,爭认" 义色兀件1之主要 位於透明綱 16’設置於透明導電薄 、1為透明導電薄膜】2、 電解質層U及離子錯=5上的/序為電致變色層η、 版12'16的材質係以氧化銦錫στ〇)為主,而電二t:涛 存性能的# 41對電極端存在有提供離子儲 们生月匕的屬層,如圖示中的離子儲存層15。 域 方面在使用氣化銦錫作為透命 中’亦有以氧化銦錫同時充當離子儲存声而技術 子儲存層的六層元件結構,然而,^來细2略離 少其成本也日益提高,研發 年末銦的έ量漸 導電声以替^: 電致變色元件的透明 變色^件=锡勢必成為日後的趨勢,此外,電致 —色兀件*應用於智慧窗,變色的速度亦是考量的重 ^是以’提供—種具有較快變色速度、良好電子導電性 、包致變色元件’遂成為目前亟待解決的課題。 【發明内容】 f此,本發明提供一種電致變色元件,係包括第—基 ^ L月導电層,係形成於該第一基材上;電致變色層, h形成於該透明導電層上,使該透明 基村與該電致變色層之間;電解質層,係形成於該: 1Π419 4 201120551 色層上;使該電致變色層夾置於該透明導電層與該電解質 層之間;奈米碳質層,係形成於該電解質層上,俾使該電 解質層夾置於該電致變色層與該奈米碳質層之間,其中, 該奈米碳質層包含奈米碳材料;以及第二基材,係形成於 該奈米碳質層上,使該奈米碳質層夾置於該電解質層與該 第二基材之間。 於另一態樣中,該透明導電層亦可選自奈米碳材料。 於本發明中,奈米碳材料主要包括選自奈米碳管、奈 • 米碳纖維及石墨碳烯所組成群組之一者或多者。於實施 上,該奈米碳管係選自單層奈米碳管、多層奈米碳管或其 混合物。 於較佳實施例中,本發明之電致變色元件復包括形成 於該第二基材上之第一介質層,俾使該第一介質層夾置於 該第二基材與該奈米碳質層之間,其中,該第一介質層之 材質包括奈米無機物。 於透明導電層選自奈米碳材料的較佳實施例中,本發 ❿ 明之電致變色元件復包括第二介質層,係形成於該第一基 材與該透明導電層之間。 相較於習知技術,本發明以包含奈米碳材料之奈米碳 質層取代透明導電層及離子儲存層。具體而言,雖然本發 明使用較薄及簡化之奈米碳質層,但元件在一個驅動能量 下,如經之離子會遷入奈米碳質層中,亦即,經離子會存 在碳六環的結構中以形成復合結構,因此奈米碳質層可提 供離子儲存之性能,此外,因奈米結構增加了比表面積更 5 111419 201120551 提升電致變色元件顏色的切換率,另一方面,奈米碳質層 本身亦可為透明導電層。是故,奈米碳質層之使用,可減 小電致變色元件體積、降低成本並進而提高顏色變化率。 【實施方式】 以下係藉由特定的具體實施例說明本發明之實施方 式,熟悉此技術之人士可由本說明書所揭示之内容輕易地 了解本發明之其他優點與功效。本發明亦可藉由其他不同 的具體實施例加以施行或應用。本說明書中的各項細節亦 可基於不同觀點與應用,在不悖離本發明之精神下進行各 種修飾與變更。 以下之實施例係進一步詳細說明本發明之觀點,但並 非以任何觀點限制本發明之範疇。 請參閱第2圖,係本發明電致變色元件之剖面示意 圖。如圖所示,電致變色元件2為一個六層結構,依序包 括第一基材21、形成於第一基材21上之透明導電層22、 電致變色層23、電解質層24、奈米碳質層25及第二基材 26 ° 電致變色層23係形成於透明導電層22上,以使透明 導電層22夾置於第一基材21與電致變色層23之間。在材 料的選擇上,電致變色層23可選自包括常用的W03、 Mo〇3、Nb205、Ti02、NiOx、Ir02、Fe4[Fe(CN)6]3、V205、 Co〇x 或 Rh2〇3 ’ 其中 X=1 〜2。詳言之 ’ WO3、M0O3、Nb2〇5 及Ti02為還原態著色,其氧化態為透明,還原態為深藍 色;NiOx、Ir02及Fe4[Fe(CN)6]3為氧化態著色,其氧化 201120551 態分別為深青銅色、黑色及深藍色,還原態為透明;而 V205、Co〇x及Rh203為還原態及氧化態均著色,其氧化 態分別為灰色、紅色及黃色,還原態分別為黃色、藍色及 綠色。 電解質層24係形成於電致變色層23上,以使電致變 色層23夾置於透明導電層22與電解質層24之間。電解質 層的材料可選自習用之電解質組成物,通常,常用的電解 質組成物係包含鋰離子與氫離子。 奈米碳質層25形成於電解質層24上以與電解質層24 接觸,俾使電解質層24夾置於電致變色層23與奈米碳質 層25之間,且奈米碳質層25係選自奈米碳材料。詳言之, 奈米碳材料可選自包括奈米碳管、奈米碳纖維及石墨碳烯 所組成群組之一者或多者,其中,奈米碳管可選自包括單 層奈米碳管、多層奈米碳管或其混合物。於具體實施例中, 單層奈米碳管之管徑以1 nm至1 Onm為佳,多層奈米碳管 之管徑以lnm至20nm為佳。 第二基材26形成於奈米碳質層25上,以使奈米碳質 層25夾置於電解質層24與第二基材26之間。具體而言, 第一基材21及第二基材26可選自包括如玻璃等硬質基 材、如塑膠或合成樹脂等具有彎曲性之軟性基材。 需說明者,於含有鋰離子之電解質組成物的元件中, 於奈米碳質層25中所進行之反應機制包括下式⑴所示者:201120551 VI. Description of the Invention: [Technical Field] The present invention relates to an electrochromic element, and more particularly to an electrochromic element which utilizes a carbonaceous layer to reduce the manufacturing cost and speed up the discoloration. [Prior Art] Energy conservation and carbon reduction have been an important research topic in recent years, especially after the rapid changes in the global environment and the energy crisis. With the promotion of energy-efficient buildings, electrochromic components that have been developed for decades have been discussed in recent years. The main mechanism of electrochromic elements is that when a material accepts electrons, it will produce a change in the valence, resulting in a change in the absorption of light, and thus a color change. This color change mechanism is often applied to displays or electronic paper, and more to smart windows for buildings or cars. In general, smart windows can be divided into two types, one based on liquid crystal materials and the other based on electrochromic materials. The color switching speed of liquid crystals is faster, and because of the vigorous development of liquid crystal displays, liquid crystal materials are used. The technology of the smart window is also relatively mature. However, due to the high process and material cost of liquid crystals, it is not widely used for people's livelihood products. Moreover, the wisdom window has a poor barrier effect on infrared rays. However, in sunlight, infrared light is the main source of light, so liquid crystal The wisdom window of the process has no insulation effect and cannot be used as an energy-saving window of the building. Compared with the liquid crystal material, the smart window made of electrochromic elements can effectively block the infrared rays in the sun, and the material cost is relatively low. The so-called electrochromic system was proposed by Platt in 1961, which means that the material is generated by energization 3 111419 201120551 The new optical absorption band (four) color, accompanied by the coloration of the reaction. For general electrochromic and oxidative remodeling, please refer to Figure 1, π, which is to be constructed as a seven-layer junction architecture. As shown in the figure, the contending " color component 1 is mainly located in the transparent frame 16' on the transparent conductive thin, 1 is the transparent conductive film 】 2, the electrolyte layer U and the ion error = 5 / order is electro The discoloration layer η, the material of the plate 12'16 is mainly composed of indium tin oxide στ〇), and the electric electrode of the electric t2: oscillating performance has a genus layer which provides ion storage for the electrode end, as shown in the figure. The ion storage layer 15 is shown. In terms of domain, the use of indium tin oxide as a breakthrough is also a six-layer component structure in which indium tin oxide is used as an ion storage sound and a technical storage layer. However, the cost is also increased and the cost is also increased. At the end of the year, the amount of indium is gradually conductive to replace the ^: The transparent color change of the electrochromic element = tin tends to become a trend in the future. In addition, the electro-color element* is applied to the smart window, and the speed of color change is also considered. The weight is based on 'providing a kind of fast color change speed, good electronic conductivity, and package-like color-changing elements', which has become an urgent problem to be solved. SUMMARY OF THE INVENTION The present invention provides an electrochromic element comprising a first-period conductive layer formed on the first substrate; an electrochromic layer, h formed on the transparent conductive layer Between the transparent base and the electrochromic layer; an electrolyte layer formed on: 1Π419 4 201120551 color layer; the electrochromic layer is sandwiched between the transparent conductive layer and the electrolyte layer a carbonaceous layer formed on the electrolyte layer, the electrolyte layer being interposed between the electrochromic layer and the nanocarbonaceous layer, wherein the nanocarbonaceous layer comprises nanocarbon And a second substrate formed on the nanocarbonaceous layer, the nanocarbonaceous layer being sandwiched between the electrolyte layer and the second substrate. In another aspect, the transparent conductive layer may also be selected from a nano carbon material. In the present invention, the nanocarbon material mainly comprises one or more selected from the group consisting of a carbon nanotube, a carbon fiber, and a graphene carbene. In practice, the carbon nanotubes are selected from the group consisting of single-layer carbon nanotubes, multilayer carbon nanotubes, or mixtures thereof. In a preferred embodiment, the electrochromic element of the present invention further comprises a first dielectric layer formed on the second substrate, the first dielectric layer being sandwiched between the second substrate and the nanocarbon Between the layers, wherein the material of the first dielectric layer comprises a nano inorganic substance. In a preferred embodiment wherein the transparent conductive layer is selected from the group consisting of nanocarbon materials, the electrochromic element of the present invention further comprises a second dielectric layer formed between the first substrate and the transparent conductive layer. In contrast to the prior art, the present invention replaces the transparent conductive layer and the ion storage layer with a nanocarbon layer comprising a nanocarbon material. In particular, although the present invention uses a thinner and simplified nanocarbonaceous layer, the element will migrate into the nanocarbonaceous layer at a driving energy, such as ions, that is, the carbon will exist in the ion. The structure of the ring forms a composite structure, so the nano-carbonaceous layer can provide ion storage properties, and in addition, the nanostructure increases the specific surface area by 5 111419 201120551 to increase the color switching rate of the electrochromic element, on the other hand, The nanocarbon layer itself may also be a transparent conductive layer. Therefore, the use of the nanocarbon layer can reduce the volume of the electrochromic element, reduce the cost and thereby increase the color change rate. [Embodiment] The embodiments of the present invention are described below by way of specific embodiments, and those skilled in the art can readily understand other advantages and effects of the present invention from the disclosure. The invention may also be embodied or applied by other different embodiments. The details of the present specification can be variously modified and changed without departing from the spirit and scope of the invention. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention in any way. Referring to Figure 2, there is shown a cross-sectional view of an electrochromic element of the present invention. As shown, the electrochromic element 2 is a six-layer structure comprising a first substrate 21, a transparent conductive layer 22 formed on the first substrate 21, an electrochromic layer 23, an electrolyte layer 24, and a nano layer. The carbonaceous layer 25 and the second substrate 26 ° electrochromic layer 23 are formed on the transparent conductive layer 22 such that the transparent conductive layer 22 is sandwiched between the first substrate 21 and the electrochromic layer 23. In the choice of materials, the electrochromic layer 23 may be selected from the group consisting of commonly used W03, Mo〇3, Nb205, Ti02, NiOx, Ir02, Fe4[Fe(CN)6]3, V205, Co〇x or Rh2〇3. ' where X=1 ~2. In detail, 'WO3, M0O3, Nb2〇5 and Ti02 are colored in a reduced state, the oxidation state is transparent, and the reduced state is dark blue; NiOx, Ir02 and Fe4[Fe(CN)6]3 are oxidized and oxidized. The 201120551 states are dark bronze, black and dark blue, and the reduced state is transparent. V205, Co〇x and Rh203 are both reduced and oxidized, and their oxidation states are gray, red and yellow, respectively. Yellow, blue and green. The electrolyte layer 24 is formed on the electrochromic layer 23 such that the electrochromic layer 23 is interposed between the transparent conductive layer 22 and the electrolyte layer 24. The material of the electrolyte layer may be selected from conventional electrolyte compositions. Usually, a common electrolyte composition contains lithium ions and hydrogen ions. The nano-carbonaceous layer 25 is formed on the electrolyte layer 24 to be in contact with the electrolyte layer 24, so that the electrolyte layer 24 is interposed between the electrochromic layer 23 and the nano-carbonaceous layer 25, and the nano-carbonaceous layer 25 is Selected from nano carbon materials. In detail, the nano carbon material may be selected from one or more of the group consisting of a carbon nanotube, a nano carbon fiber, and a graphene carbene, wherein the carbon nanotube may be selected from the group consisting of a single layer of nanocarbon. Tube, multilayer carbon nanotube or a mixture thereof. In a specific embodiment, the diameter of the single-layer carbon nanotube is preferably 1 nm to 1 Onm, and the diameter of the multilayer carbon nanotube is preferably 1 nm to 20 nm. The second substrate 26 is formed on the carbonaceous layer 25 such that the nanocarbonaceous layer 25 is interposed between the electrolyte layer 24 and the second substrate 26. Specifically, the first substrate 21 and the second substrate 26 may be selected from a flexible substrate including a rigid substrate such as glass, such as plastic or synthetic resin. It should be noted that in the element containing the lithium ion electrolyte composition, the reaction mechanism carried out in the nanocarbon layer 25 includes those represented by the following formula (1):

Lix C ^ xLi + xe + C„ ⑴ 如第3A圖所示,其係電致變色元件之鋰離子遷入奈Lix C ^ xLi + xe + C„ (1) As shown in Fig. 3A, the lithium ion of the electrochromic element is moved into the Nye

f ς· I 7 111419 一 201120551 米碳層之示意圖,在一個驅動能量下,鋰離子3會邊入碳 層30之間,而各碳層30相距約0.37nm,於一碳層30中 兩鋰離子相距約0.43nm,接著請參閱第3B圖,其係電致 變色元件之鋰離子遷入碳六環之另一示意圖,如第3B圖 所示,鋰離子3存在於碳六環31結構中,以形成LiC6的 複合結構。由於,式(I)之反應為可逆反應,因此,離子流 不會有極化的現象,提供良好的電子導電性,相對地電解 質層就相對穩定,故以奈米碳材料所製成之奈米碳質層25 具有儲存大量陽離子的功能,可使電致變色的切換速度提 升。於較佳實施例中,本發明之電致變色元件無需於導電 層與電解質層之間設置離子儲存層。 當然,相較於習知技術,本發明鄰接於電解質層24 之奈米碳質層25具有較大的比表面積,亦給予較快之電致 變色切換速率。此外,由於式(I)之反應為可逆反應,可反 覆儲存及釋放離子,進而延長電致變色元件的使用壽命。 另外,在本發明之較佳實施例中,如第4A圖所示, 電致變色元件4除了第一基材41、透明導電層42、電致變 色層43、電解質層44、奈米碳質層45及第二基材46外, 復包括形成於該第二基材46與該奈米碳質層45之間的第 一介質層451。在第4B圖所示的另一實施例中,該透明導 電層42係選自奈米碳材料,且較佳地,電致變色元件4’ 可復包括第二介質層421,係形成於該第一基材41與該透 明導電層42之間。在本發明中,介質層之材質包括奈米無 機物,具體而言,所謂的奈米無機物可選自包括氧化物、 8 111419 [S ] 201120551 • 矽酸鹽‘、氫氧化物、碳酸鹽、硫酸鹽、磷酸鹽及硫化物所 組成群組之一種或多種,其中,該氧化物係選自氧化矽、 氧化錫、氧化鈦、氧化鋅、氧化鋁、氧化錯、氧化銦、氧 化銻'氧化鎢、氧化釔、氧化鎂、含有摻雜物之上述氧化 物或其組成群組,而該矽酸鹽包括選自矽礬石黏土、蛭石、 管狀高嶺土、絹雲母、息土、雲母或其組成群組,尤其, 係以片狀奈求黏土為佳。前述「含有播雜物之上述氧化物」 係指,例如,含有摻雜物之氧化矽或氧化錫等,而「其組 • 成群組」,以氧化物為例,係指可選擇氧化矽及氧化錫兩 種,或者可選擇氧化錫、氧化鈦及氧化鋅三種,甚至任意 的數種氧化物。 於一較佳實施例中,介電層之材質係以非金屬的無機 氧化物為佳,如Si02。舉例而言,若選用Si02分散液進行 無機物塗佈,Si02的平均粒徑為10至20nm。當然,亦可 使用金屬氧化物,如改用溶膠凝膠法製備之Sn02膠體, $ 則Sn02的粒徑約為1 Onm ;若選用Ti02水性分散液,Ti02 的粒徑約為27nm ;若選用奈米層狀黏土分散液 (SEN/CO-OP),片狀奈米黏土長寬約為100至200nm,厚 度為lnm。 介質層的存在係用以調整第一基材41之表面形貌以 提升奈米碳材料與基材之間的作用力。需注意者,介質層 的厚度相較於電致變色元件之其他層而言乃非常薄,因此 不會因為增加了介質層而大幅增加電致變色元件的尺寸。 於又一具體實施例中,該奈米碳質層除包含奈米碳材 9 111419 201120551 料外’復包括前述之奈米無機I舉例而言,若選用.Si〇2 則奈米碳材料與Si〇2之重量比範圍介於! : !至1:1〇。 為使本領域技蟄人士更清楚本發明之特徵,特以實施 例說明本發明之電致變色元件之奈米碳質層之製備。 實施例1 取s】〇2分散液(購自長春化工,分散相為2_丁酮相 (MEK) ’固含量10至5〇 wt%、平均粒徑為ι〇至2〇腿), 再以線棒將其塗佈於聚乙婦對笨二甲㈣旨(ρΕτ)基材上,於 80°c烘乾。 接著取純度為60至70%、平均管束管徑大小為 10nm 之單層奈米碳管(Single-walled carbon nanotube,SWCNT, 購自Iljin’商品型號ASP-100F)、十二烷基笨績酸鈉(so(jium dedocylbenzene sulfonate)及去離子水以重量比 0 2/0.2/100 方式混合,並以細胞粉碎機進行震盪分散一小時形成奈米 碳管分散液,再以線棒將其塗布於Si〇2層上,以8〇〇c烘 乾即形成奈米碳質層及介質層。 奈米碳質層之透光度係利用紫外線/可見光分光光譜 儀(UV/Visible spectrometer)以波長550nm進行量測。以基 材及無機層為背景(background) ’本實施例之奈米碳質層之 透光度在扣除背景值後為95.1%。 奈米碳質層經四點探針電阻計量測,其片電阻為14 χ 103Ω/[Ι]。 實施例2 重複實施例1之步驟,惟,差別在於將無機物材料由 Π1419 10 201120551f ς· I 7 111419 a diagram of the 201120551 m. carbon layer. Under a driving energy, lithium ions 3 will enter between the carbon layers 30, and the carbon layers 30 are separated by about 0.37 nm, and two lithium in one carbon layer 30. The ions are separated by about 0.43 nm, and then refer to FIG. 3B, which is another schematic diagram of lithium ion migration of the electrochromic element into the carbon six ring. As shown in FIG. 3B, lithium ion 3 is present in the carbon six ring 31 structure. To form a composite structure of LiC6. Since the reaction of the formula (I) is a reversible reaction, the ion current does not have a polarization phenomenon, provides good electron conductivity, and the electrolyte layer is relatively stable, so the naphthalene made of nano carbon material The carbonaceous layer 25 has a function of storing a large amount of cations, which can increase the switching speed of electrochromism. In a preferred embodiment, the electrochromic element of the present invention does not require an ion storage layer to be disposed between the conductive layer and the electrolyte layer. Of course, the nanocarbonaceous layer 25 of the present invention adjacent to the electrolyte layer 24 has a larger specific surface area than the prior art, and also gives a faster rate of electrochromic switching. In addition, since the reaction of the formula (I) is a reversible reaction, ions can be stored and released in reverse, thereby prolonging the service life of the electrochromic element. Further, in a preferred embodiment of the present invention, as shown in FIG. 4A, the electrochromic element 4 is in addition to the first substrate 41, the transparent conductive layer 42, the electrochromic layer 43, the electrolyte layer 44, and the carbonaceous material. The layer 45 and the second substrate 46 further include a first dielectric layer 451 formed between the second substrate 46 and the nanocarbonaceous layer 45. In another embodiment shown in FIG. 4B, the transparent conductive layer 42 is selected from a nano carbon material, and preferably, the electrochromic element 4' may further include a second dielectric layer 421 formed thereon. The first substrate 41 is between the transparent conductive layer 42. In the present invention, the material of the dielectric layer includes a nano inorganic substance, specifically, the so-called nano inorganic substance may be selected from the group consisting of oxides, 8 111419 [S ] 201120551 • citrate', hydroxide, carbonate, sulfuric acid One or more groups consisting of salts, phosphates, and sulfides, wherein the oxide is selected from the group consisting of cerium oxide, tin oxide, titanium oxide, zinc oxide, aluminum oxide, oxidized aluminum, indium oxide, and cerium oxide , cerium oxide, magnesium oxide, the above oxide containing dopants or a group thereof, and the cerium salt comprises a layer selected from the group consisting of vermiculite clay, vermiculite, tubular kaolin, sericite, clay, mica or its composition Groups, in particular, are preferably in the form of flakes. The above-mentioned "the above-mentioned oxide containing a dopant" means, for example, a cerium oxide or a tin oxide containing a dopant, and "groups thereof", in the case of an oxide, for example, an optional cerium oxide. And tin oxide, or can choose three kinds of oxides of tin oxide, titanium oxide and zinc oxide, or even any of several oxides. In a preferred embodiment, the dielectric layer is preferably made of a non-metallic inorganic oxide such as SiO 2 . For example, if the SiO 2 dispersion is used for inorganic coating, the average particle diameter of SiO 2 is 10 to 20 nm. Of course, metal oxides can also be used, such as the Sn02 colloid prepared by the sol-gel method, and the particle size of Sn02 is about 1 Onm; if the aqueous dispersion of Ti02 is used, the particle size of Ti02 is about 27 nm; Rice layered clay dispersion (SEN/CO-OP), sheet-like nano-clay with a length and width of about 100 to 200 nm and a thickness of 1 nm. The presence of the dielectric layer serves to adjust the surface topography of the first substrate 41 to enhance the force between the nanocarbon material and the substrate. It should be noted that the thickness of the dielectric layer is very thin compared to the other layers of the electrochromic element, so that the size of the electrochromic element is not greatly increased by the addition of the dielectric layer. In another embodiment, the nanocarbonaceous layer comprises, in addition to the nano carbon material, 9 111419 201120551, the above-mentioned nano inorganic I, for example, if the .Si〇2 is used, the nano carbon material and The weight ratio of Si〇2 is in the range! : ! To 1:1. In order to make those skilled in the art more aware of the features of the present invention, the preparation of the nanocarbonaceous layer of the electrochromic element of the present invention will be described by way of examples. Example 1 Take s] 〇 2 dispersion (purchased from Changchun Chemical, the dispersed phase is 2 - butanone phase (MEK) 'solid content 10 to 5 〇 wt%, average particle size is ι〇 to 2 〇 legs), and then This was applied to a polyethylene terephthalate (pΕτ) substrate by a wire rod and dried at 80 ° C. Then, a single-walled carbon nanotube (SWCNT, commercially available from Iljin's model ASP-100F) having a purity of 60 to 70% and an average tube bundle diameter of 10 nm was obtained, and dodecyl-based acid was obtained. Sodium (so (jium dedocylbenzene sulfonate) and deionized water were mixed at a weight ratio of 0 2/0.2/100, and dispersed by a cell pulverizer for one hour to form a carbon nanotube dispersion, which was then coated with a wire rod. On the Si〇2 layer, the nano-carbonaceous layer and the dielectric layer are formed by drying at 8 〇〇c. The transmittance of the nano-carbonaceous layer is carried out by ultraviolet/visible spectrometer (UV/Visible spectrometer) at a wavelength of 550 nm. The measurement was based on the substrate and the inorganic layer. [The transmittance of the nanocarbon layer of this example was 95.1% after subtracting the background value. The nanocarbon layer was measured by four-point probe resistance. The sheet resistance was measured as 14 χ 103 Ω/[Ι]. Example 2 The procedure of Example 1 was repeated except that the inorganic material was made of Π1419 10 201120551.

Si〇2分散液改為利用溶膠凝膠法製備之Sn02膠體,Sn02 粒徑為1 Onm。 本實施例之奈米碳質層之透光度在扣除背景值後為 95.1%,其片電阻為 1.5 X 103Ω/[ϋ。 實施例3 重複實施例1之步驟,惟,差別在於將無機物材料由 Si02分散液改為利用溶膠凝膠法製備之Ti02水性分散 液,Ti〇2粒徑為27nm。 本實施例之奈米碳質層之透光度在扣除背景值後為 94.0%,其片電阻為 1.7 X 103Ω/〇。 實施例4 重複實施例1之步驟,惟,差別在於將無機物材料由 Si02分散液改為利用奈米層狀黏土分散液 (SWN/CO-OP),片狀奈米黏土長寬約為100至200nm,厚 度為lnm。 本實施例之奈米碳質層之透光度在扣除背景值後為 96.6%,其片電阻為2.5 X 103〇/匚]。 實施例5 重複實施例1之步驟,惟,差別在於將SWCNT分散 液加入Si02驗性溶膠以使碳管與Si〇2之重量比範圍為1 : 3,Si〇2 粒徑為 l〇nm。 本實施例之奈米碳質層之透光度在扣除背景值後為 93.5%,其片電阻為1.2 X 103Ω/匚]。 實施例6 11 111419 201120551 重複實施例1之步驟,惟,差別在於將單層奈系碳營 改為多層奈米碳管(Multi-walled carbon nanotube, MWNT,購自Nanocy卜商品型號Nanocyl-7000),其管束 平均管徑大小為10至20nm。 本實施例之奈米碳質層之透光度在扣除背景值後為 88.0%,其片電阻為 1·0χ 1〇4Ω/〇。 實施例7 重複實施例6之步驟,惟,差別在於將Si〇2分散液改 為1 wt%奈米黏土水性分散液,片狀奈米黏土長寬約為1 〇〇 至200nm,厚度為lnm。 本實施例之奈米碳質層之透光度在扣除背景值後為 89.5%,其片電阻為 2.4χ 104Ω/[ΙΙ。 實施例8 重複實施例6之步驟,惟,差別在於將Si〇2分散液改 為Ti02水性分散液,Ti02粒徑為27nm。 本實施例之奈米碳質層之透光度在扣除背景值後為 89.0%,其片電阻為 1.9 X 104Ω/ϋ1。 由上述實施利1至8可知,普遍而言,使用單層奈米 碳管之奈米碳質層較使用多層奈米碳管之奈米碳質層之透 光度高,而片電阻較低,具體實施時,可依電致變色元件 之應用而選擇不同的實施例予以實現。 综上所述,本發明之電致變色元件,由於以奈米碳材 料所製成之奈米碳質層具有良好透明性及導電度,因此可 替代習知技術之離子儲存層及透明導電層以縮小電致變色 12 ]]]419 201120551 兀件之紐積、進而減少製作成本,此外,奈米碳材料較大 &表面知可加快電致變色元件的顏色變化率,且奈米碳 料與料間之反應為可逆反應,導致化學式可循環次數 曰加進而延長電致變色元件的使用壽命。 上述各實施例僅例示性說明本發明之原理及 非用於限制本發明。紅而 背本發明之浐、“ 51免、習此項技術之人士均可在不違 二本U之精神及範訂,對上述實施例進行修飾與改 ΐΐ圍戶 =。’本發明之彳_護㈣,應如後述之申請專利 【圖式簡單說明】The Si〇2 dispersion was changed to a Sn02 colloid prepared by a sol-gel method, and the Sn02 particle size was 1 Onm. The transmittance of the carbonaceous layer of the present embodiment was 95.1% after subtracting the background value, and the sheet resistance was 1.5 X 103 Ω/[ϋ. Example 3 The procedure of Example 1 was repeated except that the inorganic material was changed from the SiO 2 dispersion to the TiO 2 aqueous dispersion prepared by the sol-gel method, and the Ti 〇 2 particle size was 27 nm. The transmittance of the nanocarbon layer of this example was 94.0% after subtracting the background value, and the sheet resistance was 1.7 X 103 Ω/〇. Example 4 The procedure of Example 1 was repeated except that the inorganic material was changed from the SiO 2 dispersion to the nano layered clay dispersion (SWN/CO-OP), and the sheet-like nano-clay has a length and width of about 100 to 200 nm, thickness lnm. The transmittance of the nanocarbon layer of this example was 96.6% after subtracting the background value, and the sheet resistance was 2.5 X 103 〇 / 匚]. Example 5 The procedure of Example 1 was repeated except that the SWCNT dispersion was added to the SiO 2 test sol so that the weight ratio of the carbon tube to Si 〇 2 was 1:3, and the Si 〇 2 particle size was 10 〇 nm. The transmittance of the carbonaceous layer of the present embodiment was 93.5% after subtracting the background value, and the sheet resistance was 1.2 X 103 Ω/匚]. Example 6 11 111419 201120551 The procedure of Example 1 was repeated except that the single-layered carbon camp was changed to a multi-walled carbon nanotube (MWNT, available from Nanocy Bu product model Nanocyl-7000). The average tube diameter of the tube bundle is 10 to 20 nm. The transmittance of the carbonaceous layer of the present embodiment was 88.0% after subtracting the background value, and the sheet resistance was 1·0 χ 1 〇 4 Ω/〇. Example 7 The procedure of Example 6 was repeated except that the Si〇2 dispersion was changed to an aqueous dispersion of 1 wt% nanoclay, and the sheet-like nano-clay has a length and width of about 1 Å to 200 nm and a thickness of 1 nm. . The transmittance of the nanocarbon layer of this example was 89.5% after subtracting the background value, and the sheet resistance was 2.4 χ 104 Ω/[ΙΙ. Example 8 The procedure of Example 6 was repeated except that the Si〇2 dispersion was changed to the Ti02 aqueous dispersion, and the TiO 2 particle size was 27 nm. The transmittance of the carbonaceous layer of the present embodiment was 89.0% after subtracting the background value, and the sheet resistance was 1.9 X 104 Ω/ϋ1. As can be seen from the above-mentioned embodiments 1 to 8, in general, the nanocarbon layer using a single-layer carbon nanotube has a higher transmittance than the nanocarbon layer using a multi-layered carbon nanotube, and the sheet resistance is low. In the specific implementation, different embodiments may be selected according to the application of the electrochromic element. In summary, the electrochromic element of the present invention can replace the ion storage layer and the transparent conductive layer of the prior art because the nano carbonaceous layer made of nano carbon material has good transparency and electrical conductivity. In order to reduce the electrochromic 12]]] 419 201120551 纽 之 纽 纽 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 The reaction with the material is a reversible reaction, which leads to the increase in the number of chemical cycles and thus the service life of the electrochromic element. The above-described embodiments are merely illustrative of the principles of the invention and are not intended to limit the invention. The red and the back of the invention, "51 exemption, the person who learns this technology can modify and modify the above-mentioned embodiments without violating the spirit and norms of the two U." _ protection (four), should apply for a patent as described later [simple description of the schema]

^1圖係顯m技術之電致變色元件結構示意圖; 二2圖係顯示本發明之電致變色元件結構示意圖; 圖係顯示離子遷入奈米碳層中之示意圖; 圖係顯示離子遷入碳六環中之示意圖;以及 結構:意:及4B圖係顯示本發明另一之電致變色元件之 【主要元件符號說明】 1 ' 2 ^ 4 、4’電致變色元件 11 、17 透明基材層 12 、16 透明導電薄膜 13 電致變色層 14 電解質層 15 離子儲存層 2] 、41 第一基材 111419 13 201120551 22 ' 42 透明導電層 23、43 電致變色層 24 ' 44 電解質層 25、45 奈米碳質層 26 ' 46 第二基材 3 鋰離子 30 碳層 31 碳六環 451 第一介質層 421 第二介質層Figure 1 shows the structure of the electrochromic element of the m technology; Figure 2 shows the structure of the electrochromic element of the present invention; the figure shows the schematic diagram of the ion migration into the nanocarbon layer; Schematic diagram of carbon hexagon; and structure: meaning: and 4B diagram showing the main element symbol of another electrochromic element of the present invention 1 ' 2 ^ 4 , 4 ' electrochromic element 11 , 17 transparent basis Material layer 12, 16 transparent conductive film 13 electrochromic layer 14 electrolyte layer 15 ion storage layer 2], 41 first substrate 111419 13 201120551 22 '42 transparent conductive layer 23, 43 electrochromic layer 24' 44 electrolyte layer 25 45 nm carbonaceous layer 26 ' 46 second substrate 3 lithium ion 30 carbon layer 31 carbon six ring 451 first dielectric layer 421 second dielectric layer

Claims (1)

201120551 七’、申·請專利範圍: 1. 一種電致變色元件,係包括: 第一基材; 透明導電層,係形成於該第一基材上; 電致變色層,係形成於該透明導電層上,使該透明 導電層夾置於該第一基材與該電致變色層之間; 電解質層,係形成於該電致變色層上,使該電致變 色層夾置於該透明導電層與該電解質層之間; • 奈米碳質層,係形成於該電解質層上,俾使該電解 質層夾置於該電致變色層與該奈米碳質層之間,其中, 該奈米碳質層包含奈米碳材料;以及 第二基材,係形成於該奈米碳質層上,使該奈米碳 質層夾置於該電解質層與該第二基材之間。 2. 如申請專利範圍第1項之電致變色元件,其中,該奈米 碳材料係包括選自奈米碳管、奈米碳纖維及石墨碳烯所 組成群組之一者或多者。 3. 如申請專利範圍第2項之電致變色元件,其中,該奈米 碳管係選自單層奈米碳管、多層奈米碳管或其混合物。 4. 如申請專利範圍第3項之電致變色元件,其中,該單層 奈米碳管之管徑介於1 nm至1 Onm之間。 5. 如申請專利範圍第3項之電致變色元件,其中,該多層 奈米碳管之管徑介於1 nm至20nm之間。 6.如申請專利範圍第1項之電致變色元件,復包括第一介 質層,係形成於該第二基材與該奈米碳質層之間。 111419 201120551 7. 如申請專利範圍第. 介質屌夕#所电双义色兀件,其中,該第一 貝層之材質包括奈米無機物。 8. ::請專利範圍第7項之電致變 ,包括選自氧化物、痛、氯氧化丄::水 9. 如申請專利範圍第8:Γ —種或多種。 物係選自氧色元件,其中,該氧化 -化錯、氧化銦'氧化銻'氧 、=、 含有掺雜物之上述氧化物或其組成群組。.氧化鎮' 〇.如申請專利範圍第8項 鹽係選自矽礬;^+ / 件’其中,該石夕酸 ^夕恭石黏土、垣石'管狀高嶺土、絹雲母、合 土、丢母或其組成群組。 t u.t申料利範圍第6項之電致變色 介質層係選自片狀奈米黏土。 /、中該弟- 請專利範圍第i項之電致變色 導電層係選自奈米碳材料。 T該透明 13.如申料㈣圍第12項之電致變色元件, =係包括選自奈米碳管'奈米碳纖維及石墨= 所組成群組之一者或多者。 肺 14·如申請專利範圍第13項之電致變色元件,其中 米碳管係包括選自單声太半山其 一不 合物。、自早u妷官、多層奈米碳管或其混 15.如申請專利範圍第14項之電致變色元件 層奈米碳管之管徑介於lnm至1Gnm之間/、5亥早 111419 16 201120551 .Hi專利範圍第14項之電致變色元件,1中,y I?二::碳管之管徑介於inm至—之間。、… .申凊專利範圍第12項之電致變色元株卜 介質層’係形成於該第一基材與該透c 18. 如申請專利範圍第η項之電致變色元:二層中之間” 二介質層之材質包括奈米無機物。 〃中’心 19. 如申請專利範圍第18項之電致變色元件, 米無機物包括選自氧化物、石夕酸鹽、氫氧化物、山广不 疏酸鹽、碟酸鹽及硫化物所組成群經之一種或=夂鹽 讥如申請專利範圍第19項之電致變色 ^ :::選自氧化一、氧化鈦、氧化錦= ::鍅、乳化銦、氧化銻、氧化鎢、氧化釔、氧化鎂、 3有摻雜物之上述氧化物或其組成群組。 、 21.如申請專利範圍第19項之電致變色元件, ,鹽包括選自矽礬石黏土、蛭石、管狀高嶺土、絹雲母、 t 土、雲母或其組成群組。 过如申請專利範圍第17項之電致變色元件,1中 二介質層係選自片狀奈米黏土。 ^ 23. 如申請專利範圍第i項之電致變色元件,其中,該第一 基材或該第二基材係選自軟性或硬性材料。 μ 24. 如申請專利範圍第i項之電致變色元件,其中,該電致 變色層係選自 W03、Mo〇3、Nb2〇5、Ti〇2、Νί〇χ、lr〇2、 Fe4[Fe(CN)6]3、V2〇5、Co〇x 或处2〇3,其中 。 A如申請專利範圍第!或2項之電致變色元件,該奈米碳 111419 17 201120551 質層復包括奈米無機物。 | 26. 如申請專利範圍第25項之電致變色元件,其中,該奈 米無機物包括選自氧化物、矽酸鹽、氫氧化物、碳酸鹽、 硫酸鹽、填酸鹽及硫化物所組成群組之一種或多種。 27. 如申請專利範圍第26項之電致變色元件,其中,該氧 化物係選自氧化碎、氧化錫、氧化鈦、氧化鋅、氧化I呂、 氧化錯、氧化銦、氧化録、氧化鶴、氧化記、氧化鎂、 含有摻雜物之上述氧化物或其組成群組。 28. 如申請專利範圍第26項之電致變色元件,其中,該矽 酸鹽包括選自矽礬石黏土、蛭石、管狀高嶺土、絹雲母、 皂土、雲母或其組成群組。 29. 如申請專利範圍第27項之電致變色元件,其中,該氧 化物為氧化矽,且該奈米碳材料與氧化矽之重量比介於 1 : 1 至 1:10。 18 111419201120551 VII', the scope of the patent application: 1. An electrochromic element, comprising: a first substrate; a transparent conductive layer formed on the first substrate; an electrochromic layer formed in the transparent On the conductive layer, the transparent conductive layer is sandwiched between the first substrate and the electrochromic layer; an electrolyte layer is formed on the electrochromic layer, so that the electrochromic layer is sandwiched between the transparent layer Between the conductive layer and the electrolyte layer; a nano carbonaceous layer formed on the electrolyte layer, the electrolyte layer being sandwiched between the electrochromic layer and the nanocarbonaceous layer, wherein The nano carbonaceous layer comprises a nanocarbon material; and a second substrate is formed on the nanocarbonaceous layer such that the nanocarbonaceous layer is interposed between the electrolyte layer and the second substrate. 2. The electrochromic element according to claim 1, wherein the nanocarbon material comprises one or more selected from the group consisting of a carbon nanotube, a nano carbon fiber, and a graphene carbene. 3. The electrochromic element according to claim 2, wherein the carbon nanotube is selected from the group consisting of a single layer of carbon nanotubes, a plurality of layers of carbon nanotubes or a mixture thereof. 4. The electrochromic element according to claim 3, wherein the single-layer carbon nanotube has a diameter of between 1 nm and 1 Onm. 5. The electrochromic element according to claim 3, wherein the multi-layered carbon nanotube has a diameter of between 1 nm and 20 nm. 6. The electrochromic element of claim 1, further comprising a first dielectric layer formed between the second substrate and the nanocarbonaceous layer. 111419 201120551 7. For example, the application of the patent scope No. 屌 屌 # 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 , , , , , , , 8. :: Please call the electrical variation of item 7 of the patent range, including from oxides, pain, bismuth oxychloride: water 9. If the scope of application is 8: Γ one or more. The system is selected from the group consisting of an oxidative element, wherein the oxidized-degraded, indium oxide 'yttria' oxygen, =, the oxide containing the dopant, or a group thereof. Oxidation Town ' 〇. If the scope of application for the 8th item of salt is selected from 矽矾; ^ + / piece ' Among them, the ishixi acid ^ 恭 石 stone clay, ochre 'tubular kaolin, sericite, soil, lost Mother or a group of them. The electrochromic medium layer of item 6 of the t u.t application range is selected from the group consisting of sheet-like nano-clay. /, Zhongdidi - Please call the electrochromic conductive layer of the i-th patent range from nano carbon materials. T. The transparent 13. The electrochromic element according to item 12 of the claim (4), = includes one or more selected from the group consisting of carbon nanotubes 'nano carbon fiber and graphite=. Pulmonary 14. The electrochromic element of claim 13, wherein the carbon nanotube system comprises one or more compounds selected from the group consisting of monosemis. , since the early u official, multi-layer carbon nanotubes or their mixing 15. The electro-chromic element layer of the carbon nanotubes of the application of the scope of the 14th tube diameter between lnm to 1Gnm /, 5 Hai early 111419 16 201120551 .Hi The electrochromic element of the 14th patent range, 1 , y I? 2:: The diameter of the carbon tube is between inm and -. The electrochromic element strain dielectric layer of claim 12 is formed on the first substrate and the translucent element 18. The electrochromic element in the nth item of the patent application scope: in the second layer The material of the two dielectric layers includes nano inorganic materials. 〃中'心 19. As the electrochromic element of claim 18, the rice inorganic substance includes an oxide selected from the group consisting of an oxide, a sulphate, a hydroxide, and a mountain. A group consisting of a group of sulphate, a sulphate, and a sulphide, or an samarium salt, such as electrochromic as claimed in claim 19: :: selected from the group consisting of oxidation, titanium oxide, and oxidation: : 鍅, emulsified indium, cerium oxide, tungsten oxide, cerium oxide, magnesium oxide, 3 oxides of the above oxide or a group thereof. 21. The electrochromic element according to claim 19, The salt includes a group selected from the group consisting of vermiculite clay, vermiculite, tubular kaolin, sericite, t soil, mica or a group thereof. The electrochromic element according to claim 17 of the patent application, wherein the medium layer is selected from the group consisting of Sheet-like nano-clay. ^ 23. Electrochromic element as claimed in item i of the patent scope And the second substrate or the second substrate is selected from the group consisting of a soft or a hard material. The 24. The electrochromic element of claim i, wherein the electrochromic layer is selected from the group consisting of W03, Mo〇3, Nb2〇5, Ti〇2, Νί〇χ, lr〇2, Fe4[Fe(CN)6]3, V2〇5, Co〇x or 2〇3, where A is as claimed The electrochromic element of item No. 2 or 2, wherein the nano-carbon 111419 17 201120551 is composed of a nano-inorganic substance, as described in claim 25, wherein the nano-inorganic substance includes One or more of the group consisting of oxides, citrates, hydroxides, carbonates, sulfates, sulphates, and sulphides. 27. The electrochromic element of claim 26, wherein The oxide is selected from the group consisting of oxidized slag, tin oxide, titanium oxide, zinc oxide, oxidized I, oxidized, indium oxide, oxidized, oxidized crane, oxidized, magnesium oxide, the above oxide containing a dopant or Forming a group. 28. The electrochromic element of claim 26, wherein the The acid salt comprises an element selected from the group consisting of vermiculite clay, vermiculite, tubular kaolin, sericite, bentonite, mica or a combination thereof. 29. The electrochromic element according to claim 27, wherein the oxide is Cerium oxide, and the weight ratio of the nano carbon material to cerium oxide is between 1: 1 and 1:10.
TW98141318A 2009-12-03 2009-12-03 Electrochromic element TW201120551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98141318A TW201120551A (en) 2009-12-03 2009-12-03 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98141318A TW201120551A (en) 2009-12-03 2009-12-03 Electrochromic element

Publications (1)

Publication Number Publication Date
TW201120551A true TW201120551A (en) 2011-06-16

Family

ID=45045223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98141318A TW201120551A (en) 2009-12-03 2009-12-03 Electrochromic element

Country Status (1)

Country Link
TW (1) TW201120551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031838A (en) * 2018-07-13 2018-12-18 江西沃格光电股份有限公司 Electrochomeric glass and preparation method thereof
CN109683416A (en) * 2019-01-28 2019-04-26 青岛九维华盾科技研究院有限公司 A kind of double-colored adjustable electrochromism thin-film device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031838A (en) * 2018-07-13 2018-12-18 江西沃格光电股份有限公司 Electrochomeric glass and preparation method thereof
CN109683416A (en) * 2019-01-28 2019-04-26 青岛九维华盾科技研究院有限公司 A kind of double-colored adjustable electrochromism thin-film device
CN109683416B (en) * 2019-01-28 2021-10-26 青岛九维华盾科技研究院有限公司 Double-color adjustable electrochromic thin film device

Similar Documents

Publication Publication Date Title
Zhao et al. Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances
Wang et al. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte
Chen et al. High performance and enhanced durability of thermochromic films using VO2@ ZnO core–shell nanoparticles
Wu et al. Electrochromic metal oxides: recent progress and prospect
Cong et al. Tungsten oxide materials for optoelectronic applications
Wang et al. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods
Kalantar-zadeh et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide
Koo et al. Switching electrochromic performance improvement enabled by highly developed mesopores and oxygen vacancy defects of Fe-doped WO3 films
TWI379316B (en) Conductivity enhanced transparent conductive film and fabrication method thereof
Chu et al. Synthesis and characterization of titania nanostructures on glass by Al anodization and sol− gel process
Zhang et al. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template
Xie et al. Fast-switching quasi-solid state electrochromic full device based on mesoporous WO3 and NiO thin films
Zheng et al. Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube
Granqvist Electrochromic metal oxides: an introduction to materials and devices
Shi et al. Rational design of oxygen deficiency-controlled tungsten oxide electrochromic films with an exceptional memory effect
TW201230075A (en) Transparent electrically conductive film, method for manufacturing transparent electrically conductive film, photoelectric conversion device and electronic equipment
Chang et al. Assembly of tungsten oxide nanobundles and their electrochromic properties
Kim et al. Effects of Sb-doped SnO2–WO3 nanocomposite on electrochromic performance
Zhou et al. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation
TW201212327A (en) Organic electroluminescence device
Delalat et al. Blue colloidal nanoparticles of molybdenum oxide by simple anodizing method: decolorization by PdCl2 and observation of in-liquid gasochromic coloration
Yu et al. Novel MoO3-TiO2 composite nanorods films with improved electrochromic performance
Li et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device
Zou et al. Pd-doped TiO2@ polypyrrole core-shell composites as hydrogen-sensing materials
Koo et al. Percolation effect of V2O5 nanorod/graphene oxide nanocomposite films for stable fast-switching electrochromic performances