TW201117953A - Amorphous solar absorption film - Google Patents

Amorphous solar absorption film Download PDF

Info

Publication number
TW201117953A
TW201117953A TW98140336A TW98140336A TW201117953A TW 201117953 A TW201117953 A TW 201117953A TW 98140336 A TW98140336 A TW 98140336A TW 98140336 A TW98140336 A TW 98140336A TW 201117953 A TW201117953 A TW 201117953A
Authority
TW
Taiwan
Prior art keywords
film
amorphous
carbon
metal
solar thermal
Prior art date
Application number
TW98140336A
Other languages
Chinese (zh)
Inventor
Ting-Pin Cho
Fu-Der Lai
Kung-Ming Hsu
Ting-Kuei Yeh
Ning-Yuan Ma
Cheng-Yen Wu
Original Assignee
Metal Ind Res & Dev Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metal Ind Res & Dev Ct filed Critical Metal Ind Res & Dev Ct
Priority to TW98140336A priority Critical patent/TW201117953A/en
Publication of TW201117953A publication Critical patent/TW201117953A/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

An amorphous solar absorption film comprises a metal film made of metal and an amorphous carbon film made of amorphous carbon provided on a surface of the metal film. Consequently, this invention can improve weather-resistance of the solar absorption film.

Description

201117953 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能熱吸收膜,特別是一種非晶 質太陽能熱吸收膜。 阳 【先前技術】 請參照第1圖所示,習知太陽能熱吸收膜8,通常係 依序由一鋁製反射層81、一第一鋁/氮化鋁薄膜82、一第 • 二鋁/氮化鋁薄膜83及一抗反射膜84所共同疊合而成。其 中,該鋁製反射層81之厚度約70nm,其係用以反射紅外 線(IR);該第一鋁/氮化鋁薄膜82係之厚度約5〇nm,其 係用以吸收該太陽能;該第二鋁/氮化鋁薄膜83係之厚度 約10nm,且該第二鋁/氮化鋁薄膜83之鋁含量較第一鋁/ 氮化鋁薄膜82低,其係用以吸收該太陽能;該抗反射膜 84係由不銹鋼(SUS) +鋁+氮化鋁作為材質所製成,且厚 度約為60mn’其係用以將因高溫所產生之輻射反射回該習 φ 知太陽能熱吸收膜8内,以避免能量之逸散。 該習知太陽能熱吸收膜8係用以設置於一基材9之表 面’例如設置於一銅管之表面,且該鋁製反射層81朝向該 基材9 °藉此’該習知太陽能熱吸收膜8於受到太陽光照 射時’便可吸收太陽光之能量,而轉換為熱能傳遞至該基 - 材9 (銅管),若該基材9 (銅管)内含有流動介質,例如 水,便可對該流動介質加熱,如此便可應用於太陽能熱水 器。 一般而言’由於台灣地區氣候較為潮濕,造成金屬表^ 201117953 面容易腐蝕。然而該習知太陽能熱吸收膜8中,該鋁製反 射層81、第一鋁/氮化鋁薄膜82、第二鋁/氮化鋁薄膜83 及抗反射膜84之耐银性較差,因此一旦該抗反射膜84受 到腐蝕,則容易造成該鋁製反射層81、一第一鋁/氮化鋁薄 膜82及一第二鋁/氮化鋁薄膜83亦接連產生腐蝕現象,而 造成該習知太陽能熱吸收膜8之崩壞或脫落,因而使其具 有而ί候性差及使用壽命低落之缺點。 再且,該習知太陽能熱吸收膜8由於結構為四層結構 ,層數較多,因此於製程上亦較為繁複,使其具有製程成 本較高之缺點。 基於上述原因,其有必要進一步改良上述習用非晶質 太陽能熱吸收膜。 【發明内容】 本發明目的乃改良上述缺點,以提供一種非晶質太陽 月b熱吸收膜’使該非晶質太陽能熱吸收膜具有高耐候性為 目的。 本發明次一目的係提供一種非晶質太陽能熱吸收膜 ’以增加該非晶質太陽能熱吸收膜之耐腐蝕性。 本發明再一目的係提供一種非晶質太陽能熱吸收膜 ,以簡化製程。 本發明又一目的係提供一種非晶質太陽能熱吸收膜 ,以降低製作成本。 根據本發明的非晶質太陽能熱吸收膜,係包含:一以 金屬材質製成之金屬膜及一非晶質碳碳膜以非晶質碳為材 201117953 質製成’且係形成於該金屬膜之一表面。 【實施方式】 為讓本發明之上述及其他目的、特徵及優點能更明顯 易懂,下文待舉本發明之較佳實施例,並配合所附圖式, 作詳細說明如下: 請參照第2圖所示’本發明之非晶質太陽能熱吸收膜 1係依序由一金屬膜n及一非晶質碳碳膜12疊合而成。 該金屬膜11係可選擇由銅(Cu)、銀(Ag)、鉻(Cr )、鈦(Ti)、鋁(A1)或鍅(Zr)等金屬材質製成,以作 為反射層,該金屬膜n之厚度係為1〇~2〇〇nm。 該非晶質碳碳膜12係設置於該金屬膜n之表面用以 吸收太陽此,且該非晶質碳碳膜12之厚度係介於2⑻〜 lOOOnm,該非晶質碳碳膜12之厚度低於2〇〇nm時,熱吸 收效果不佳。該非晶質碳碳膜12係以非晶質碳為材質製成 ’由於由於碳的耐餘性較高,因此該非晶質碳碳膜12可提 ^該非晶質太陽能熱吸收膜1之耐候性,以避免因腐餘而 ^該非晶f太陽能熱吸收膜1之破損或脫^。該非晶質 炭炭膜12可為純非晶質碳开》成;或者,該非晶質碳碳膜 12中係可另摻雜有—摻雜金屬,崎升該非晶質碳碳膜12 之整體機械強度。該非晶質碳碳膜12中之摻雜金屬較佳係 選擇與該金屬膜11相同材質之金屬,以增加該非晶質碳碳 膜12於該金;|膜u表面之附著性,當然亦可選擇換雜與 該金屬膜11不同材質之金屬。該摻雜金屬於該非晶質碳碳 膜12中所佔之原子百分比較佳係低於10%,高於0.1%, 201117953 以避免摻雜了過多的摻雜金屬,而造成該非晶質碳碳膜12 之耐钱性下降。如此,該金屬膜11及非晶質碳碳膜12便 可共同構成本發明之非晶質太陽能熱吸收膜1,有效提升 該非晶質太陽能熱吸收膜1之财候性。 請參照第3圖所示’較佳地,一抗反射膜13係進一 步設置於該非晶質碳碳膜12之表面,使得該非晶質碳碳膜 12係介於該金屬膜u及抗反射膜13之間。透過該抗反射 膜13之設置可避免太陽能以輻射方式逸散至該非晶質太 陽能熱吸收膜1外,而造成熱吸收效率降低。該抗反射膜 13係可選擇以氧化鋁(Ai2〇3)、二氧化矽(Si〇2)、氧化矽 (Si0)、二氧化鈦(Ti02)及氧化锆(Zr02)等材質製成 。該抗反射膜13之厚度係介於2〇〜300nm。 本發明係可於一基材2 (例如鋁片或鋼片)之表面依 序設置該金屬膜11及非晶質碳碳膜12,或者進一步於該 非晶質碳碳膜12之表面設置該抗反射膜13,以構成本發 明之非晶質太陽能熱吸收膜丨,以吸收太陽能並將熱傳至 該基材2,例如可應用於太陽能熱水器。 本發明第一實施例之非晶質太陽能熱吸收膜: 請參照第2圖所示,本發明第一實施例之非晶質太陽 月b熱吸收膜1係包含一金屬膜η及一非晶質碳碳膜12。 本實施例之該金屬膜U係為5〇nm厚之鈦質金屬膜;該非 晶質碳碳膜12係為5〇〇nm厚之無摻雜金屬的非晶質碳碳 膜 12。 、 本實施例之非晶質太陽能熱吸收膜1係選擇以批次式 濺鍍設備進行進行製作,詳細製程如下: 201117953 、,首先’親基材2置放於—批次式賴設備之腔體中 ,亚關閉腔門。接著,it過—真空裝置對該腔體内進行抽 真空^直至該腔體内之壓力低於3xl〇-5t〇rr。接著,將3〇sccm 之氬氣(Ar)通入該腔體内,腔體内之壓力維持在3〇mT〇订 ,再對該基材2施加-400V的偏壓,並對該基材2施以電聚前 處理’以初步清潔該基板2之表面。 接著,啟動鈦金屬靶濺鍍電源,且濺射功率係為〇 5kw ,靶材濺射電流係為2A,並進行濺鍍形成鈦質的金屬膜 • 11,直至該金屬膜11之厚度達5〇11111後,便關閉該鈦金屬 械鑛電源。如此便可於該基材2之表面形成該金屬膜2i ’如第2圖所示。 再進行邊非晶質碳碳膜12之製作,係啟動石墨乾濺 鍍電源,且靶材濺射功率係調整為15kw,靶材濺射電流 係為3A。通入氬氣(^)與乙炔(C2H2)的比例為5 : 1,工作壓 力係維持在5.9mToir,直至於該金屬膜u之表面形成厚度 500nm無摻雜金屬之非晶質碳碳膜12後,便關閉該石墨乾 • 濺鍍電源,如此,便完成第一實施例該非晶質太陽能熱吸 收膜1之製作。 本發明第二實施例之非晶質太陽能熱吸收膜: 請參照第3圖所示’本發明第二實施例之非晶質太陽 • 能熱吸收膜1係包含一金屬膜11、一非晶質碳碳膜12及 • 一抗反射膜13。本實施例之該金屬膜11係為50nm厚之鈦 質金屬膜;該非晶質碳碳膜12係為5〇〇nm厚之無摻雜金 屬的非晶質碳碳膜12;該抗反射膜π係為85nm之二氧化 矽薄膜。 201117953 本實施例之非晶質太陽能熱吸收膜1係選擇以批次式 濺鍍設備進行進行製作,詳細製程如下: 首先,將該基材2置放於一批次式濺鍍設備之腔體中 ,並關閉腔門。接著,透過一真空裝置對該腔體内進行抽 真空’直至該腔體内之壓力低於3χ丨〇-5t〇rr。接著,將3〇 sccm 之氬氣(Ar)通入該腔體内,腔體内之壓力維持在3 〇mT〇rr ,再對該基材2施加-400V的偏壓,並對該基材2施以電漿前 處理’以初步清潔該基板2之表面。 接著’啟動鈦金屬歡賤鍍電源,且賤射功率係為〇.处界 ,靶材濺射電流係為2A,並進行濺鍍形成鈦質的金屬膜 11,直至該金屬膜11之厚度達5〇11111後,便關閉該鈦金屬 靶濺鍍電源。如此便可於該基材2之表面形成該金屬膜u ’如第2圖所示。 再進行該非晶質碳碳膜丨2之製作,係啟動石墨靶濺 鍍電源,且靶材濺射功率係調整為15kw,靶材濺射電流 係為3A。通入氬氣(Ar)與乙炔((^氏)的比例為5 : 1,工作壓 力係維持在5.9mT〇rr,直至於該金屬膜u之表面形成厚度 500nm無摻雜金屬之非晶質碳碳膜12後,便關閉該石墨乾 濺鍍電源。 最後,再進行該抗反射膜13之濺鍍,本實施例接著 係啟動矽(si)靶濺鍍電源,把材濺射功率為15kw,把材藏射 電流係為3A。通入腔體之氬氣(Ar)與氧氣(〇2)的比例為5 : i ,腔體内之壓力係維持於4.5 mTorr,直至於該非晶質碳碳膜 12之表面形成厚度為85nm之二氧化石夕薄膜作為該抗反射 膜13,便完成第二實施例該非晶質太陽能熱吸收膜丨之製 201117953 作。 本發明第三實施例之非晶質太陽能熱吸收膜: 請參照第3圖所示,本發明第三實施例之非晶質太陽 月b熱吸收膜1係包令金屬膜11、一非晶質碳碳膜12及 一抗反射膜13。本實施例之該金屬膜11係為50mn厚之鈦 • 質金屬膜,邊非晶質碳碳膜12係為500nm厚,且換雜有 3.5at%鈦金屬的非晶質碳碳膜12;該抗瓦射膜13係為 85nm之二氧化矽薄膜。 •本實施例之非晶質太陽能熱吸收膜丨相同係選擇以批 次式濺鍍設備進行進行製作,詳細製程如下: 首先,將該基材2置放於一批次式濺鍍設備之腔體中 ’並關閉腔門。接|,透過-真空裝置對該腔體内進行抽 真空’直至該腔體内之壓力低於3xl 0-5t〇rr。接著,將3〇 sccm 之氬氣通入該腔體内,腔體内之壓力維持在30mTorr,再 對該基材2施加-400V的偏壓,並對該基材2施以電裝前處理 ’以初步清潔該基板2之表面。 • 接著,啟動鈦金屬靶濺鍍電源,靶材濺射功率係為 0.5kW ’歸蘭電流係為2A ’進行雜形成該鈦質的金 屬膜11,直至該金屬膜11之厚度達5〇nm。如此便可於該 基材2之表面形成該金屬膜u,如第2圖所示。 • ①成极質的金屬膜11後’保持該鈦金屬如賤鑛電源 . 之開啟’並另啟動石墨乾賊電源,且乾材濺射功率係調 整為1.5kW,輕材鋪電流係為3A。通入氮氣(Ar)與乙择 (c2h2)的比例為5:】’工作壓力係維持在5 9mT。订,直至於該 金屬膜11之表面形成厚度為500聰之非晶質碳碳膜12後, 201117953 便關閉該鈦金屬乾猶電源及石錄騎電源。如此,本 實施例之非晶質碳碳膜12中便摻雜有3 5娜之欽金屬, 以提升該非晶質碳韻12之整體频強度及相對於該鈦 質之金屬膜1表面的附著性。 ,最後,再進行該抗反射膜13之濺鍍,本實施例接著 係啟動柳他麟騎Ά材麟辨為15kw,乾材藏射 電流係為3A。通入胜體之氬氣㈣與氧氣(〇2)的比例為5 : i ’腔體内之壓力係維持於4·5 mTorr,直至於該非晶質碳碳膜 12之表面形成厚度為85nm之二氧化矽薄膜作為該抗反射 膜13,便完成第三實施例該非晶質太陽能熱吸收膜丨之製 作。 如此’透過設置該非晶質碳碳膜12作為熱吸收膜, 可大幅強化該非晶質太陽能熱吸收膜丨之耐候性及耐腐钱 性,可避免因腐蝕而造成太陽能熱吸收膜之脫落或崩壞; 再且本發明之非晶質太陽能熱吸收膜僅為三層結構,僅需 三道製程便可完成該非晶質太陽能熱吸收膜1的製作,使 得該非晶質太陽能熱吸收膜1之結構可大幅簡化製程,降 低製程成本,且本發明之非晶質太陽能熱吸收膜1的熱吸 收效率亦可達92%以上。 本發明係提供一種非晶質太陽能熱吸收膜,使該非晶 質太陽能熱吸收膜具有高耐候性之功效。 本發明係提供一種非晶質太陽能熱吸收膜,以增加該 非晶質太陽能熱吸收膜之耐腐蝕性。 本發明係提供一種非晶質太陽能熱吸收膜以簡化製 201117953 本發明係提供一種非晶質太陽能熱吸收膜,以降低製 作成本。 雖然本發明已利用上述較佳實施例揭示,然其並非用 以限定本發明,任何熟習此技藝者在不脫離本發明之精神 和範圍之内,相對上述實施例進行各種更動與修改仍屬本 發明所保護之技術範疇,因此本發明之保護範圍當視後附 之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖:習知太陽能熱吸收膜的剖面圖。 第2圖:本發明苐一實施例之非晶質太陽能熱吸收膜的 剖面圖。 第3圖:木發明第二、三實施例之非晶質太陽能熱吸收 膜的剖面圖。 【主要元件符乾說明】 〔本發明〕 1 非晶質太陽能熱吸收膜11金屬膜 12 非晶質碳碳膜 13 抗反射膜 2 基材 〔先前技術〕 鋁製反射層 第二鋁/氮化鋁薄膜 8 習知太陽能熱吸收膜 81 82第一鋁/氮化鋁薄膜 83 201117953 84 抗反射膜 9 基材201117953 VI. Description of the Invention: [Technical Field] The present invention relates to a solar heat absorbing film, particularly an amorphous solar heat absorbing film. Yang [Prior Art] Referring to Fig. 1, a conventional solar thermal absorption film 8 is generally composed of an aluminum reflective layer 81, a first aluminum/aluminum nitride film 82, and a second aluminum alloy. The aluminum nitride film 83 and an anti-reflection film 84 are laminated together. Wherein, the aluminum reflective layer 81 has a thickness of about 70 nm for reflecting infrared rays (IR); the first aluminum/aluminum nitride film 82 has a thickness of about 5 nm, which is used for absorbing the solar energy; The second aluminum/aluminum nitride film 83 has a thickness of about 10 nm, and the second aluminum/aluminum nitride film 83 has a lower aluminum content than the first aluminum/aluminum nitride film 82 for absorbing the solar energy; The anti-reflection film 84 is made of stainless steel (SUS) + aluminum + aluminum nitride and has a thickness of about 60 mn' to reflect the radiation generated by the high temperature back to the solar heat absorbing film 8 . Inside to avoid the escape of energy. The conventional solar heat absorbing film 8 is disposed on a surface of a substrate 9, for example, disposed on a surface of a copper tube, and the aluminum reflective layer 81 faces the substrate at a temperature of 9 °. The absorbing film 8 absorbs the energy of sunlight when it is exposed to sunlight, and converts it into heat energy to the substrate 9 (copper tube) if the substrate 9 (copper tube) contains a flowing medium such as water. The flow medium can be heated so that it can be applied to a solar water heater. Generally speaking, due to the relatively humid climate in Taiwan, the metal surface is prone to corrosion. However, in the conventional solar heat absorbing film 8, the aluminum reflective layer 81, the first aluminum/aluminum nitride film 82, the second aluminum/aluminum nitride film 83, and the anti-reflection film 84 have poor silver resistance, so once When the anti-reflection film 84 is corroded, the aluminum reflective layer 81, a first aluminum/aluminum nitride film 82, and a second aluminum/aluminum nitride film 83 are also corroded in succession. The solar heat absorbing film 8 collapses or falls off, so that it has the disadvantages of poor durability and low service life. Further, since the conventional solar thermal absorption film 8 has a four-layer structure and a large number of layers, it is complicated in the process, which has the disadvantage of high process cost. For the above reasons, it is necessary to further improve the above-mentioned conventional amorphous solar heat absorbing film. SUMMARY OF THE INVENTION An object of the present invention is to improve the above disadvantages and to provide an amorphous solar thermal absorption film of the solar solar thermal absorption film having high weather resistance. A second object of the present invention is to provide an amorphous solar heat absorbing film 'to increase the corrosion resistance of the amorphous solar heat absorbing film. Still another object of the present invention is to provide an amorphous solar heat absorbing film to simplify the process. Another object of the present invention is to provide an amorphous solar heat absorbing film to reduce the manufacturing cost. The amorphous solar thermal absorption film according to the present invention comprises: a metal film made of a metal material and an amorphous carbon carbon film made of amorphous carbon as a material 201117953 and formed on the metal One of the surfaces of the film. The above and other objects, features, and advantages of the present invention will become more apparent and understood. As shown in the figure, the amorphous solar thermal absorption film 1 of the present invention is formed by laminating a metal film n and an amorphous carbon carbon film 12 in this order. The metal film 11 may be made of a metal material such as copper (Cu), silver (Ag), chromium (Cr), titanium (Ti), aluminum (A1) or ytterbium (Zr) as a reflective layer. The thickness of the film n is 1 〇 to 2 〇〇 nm. The amorphous carbon-carbon film 12 is disposed on the surface of the metal film n for absorbing the sun, and the thickness of the amorphous carbon-carbon film 12 is between 2 (8) and 100 nm, and the thickness of the amorphous carbon-carbon film 12 is lower than At 2 〇〇 nm, the heat absorption effect is not good. The amorphous carbon-carbon film 12 is made of amorphous carbon as a material. Since the carbon has high residual durability, the amorphous carbon-carbon film 12 can improve the weather resistance of the amorphous solar thermal absorption film 1. In order to avoid damage or breakage of the amorphous f solar heat absorbing film 1 due to corrosion. The amorphous carbon carbon film 12 may be pure amorphous carbon; or the amorphous carbon carbon film 12 may be doped with a doping metal, and the whole of the amorphous carbon carbon film 12 may be ascended. Mechanical strength. The doping metal in the amorphous carbon-carbon film 12 is preferably selected from the same material as the metal film 11 to increase the adhesion of the amorphous carbon-carbon film 12 to the surface of the gold film. A metal different in material from the metal film 11 is selected. The atomic percentage of the doping metal in the amorphous carbon-carbon film 12 is preferably less than 10%, more than 0.1%, 201117953 to avoid doping too much doping metal, thereby causing the amorphous carbon and carbon. The durability of the film 12 is reduced. Thus, the metal film 11 and the amorphous carbon-carbon film 12 can collectively constitute the amorphous solar heat absorbing film 1 of the present invention, and the fiscal property of the amorphous solar heat absorbing film 1 can be effectively improved. Referring to FIG. 3, preferably, an anti-reflection film 13 is further disposed on the surface of the amorphous carbon-carbon film 12 such that the amorphous carbon-carbon film 12 is interposed between the metal film u and the anti-reflection film. Between 13 The arrangement of the anti-reflection film 13 prevents the solar energy from being radiated to the outside of the amorphous solar heat absorbing film 1, resulting in a decrease in heat absorption efficiency. The antireflection film 13 may be made of a material such as alumina (Ai2〇3), cerium oxide (Si〇2), cerium oxide (SiO), titanium oxide (Ti02), and zirconium oxide (ZrO 2 ). The thickness of the anti-reflection film 13 is between 2 Å and 300 nm. In the present invention, the metal film 11 and the amorphous carbon-carbon film 12 may be sequentially disposed on the surface of a substrate 2 (for example, an aluminum sheet or a steel sheet), or the anti-carbon carbon film 12 may be further provided on the surface of the amorphous carbon-carbon film 12. The reflective film 13 is formed to constitute the amorphous solar heat absorbing film crucible of the present invention to absorb solar energy and transfer heat to the substrate 2, for example, to a solar water heater. The amorphous solar heat absorbing film of the first embodiment of the present invention: Referring to FIG. 2, the amorphous solar moon b heat absorbing film 1 of the first embodiment of the present invention comprises a metal film η and an amorphous Carbon carbon film 12. The metal film U of the present embodiment is a 5 〇 nm thick titanium metal film; the amorphous carbon carbon film 12 is a 5 〇〇 nm thick undoped metal amorphous carbon film 12 . The amorphous solar thermal absorption film 1 of the present embodiment is selected to be produced by a batch sputtering apparatus, and the detailed process is as follows: 201117953, first, the 'parent substrate 2 is placed in the cavity of the batch type device. In the body, the sub-closure door. Then, the vacuum device vacuums the chamber until the pressure in the chamber is lower than 3xl〇-5t〇rr. Next, 3 〇 sccm of argon (Ar) was introduced into the chamber, the pressure in the chamber was maintained at 3 〇mT, and a bias of -400 V was applied to the substrate 2, and the substrate was applied. 2 applying a pre-polymerization treatment to initially clean the surface of the substrate 2. Next, the titanium metal target sputtering power source is activated, and the sputtering power is 〇5kw, the target sputtering current is 2A, and sputtering is performed to form a titanium metal film • 11, until the thickness of the metal film 11 reaches 5 After 〇11111, the titanium metal ore power supply is turned off. Thus, the metal film 2i' can be formed on the surface of the substrate 2 as shown in Fig. 2. Further, the amorphous carbon-carbon film 12 was produced, and a graphite dry sputtering power source was activated, and the sputtering power of the target was adjusted to 15 kW, and the sputtering current of the target was 3 Å. The ratio of argon gas (^) to acetylene (C2H2) is 5:1, and the working pressure is maintained at 5.9 mToir until an amorphous carbon-carbon film of undoped metal having a thickness of 500 nm is formed on the surface of the metal film u. Thereafter, the graphite dry/sputtering power source is turned off, and thus, the fabrication of the amorphous solar heat absorbing film 1 of the first embodiment is completed. The amorphous solar heat absorbing film of the second embodiment of the present invention: Referring to FIG. 3, the amorphous solar heat absorbing film 1 of the second embodiment of the present invention comprises a metal film 11 and an amorphous film. Carbon carbon film 12 and • an anti-reflection film 13. The metal film 11 of the present embodiment is a 50 nm thick titanium metal film; the amorphous carbon carbon film 12 is an amorphous carbon carbon film 12 of 5 nm thick undoped metal; the antireflection film The π system is a 85 nm ruthenium dioxide film. 201117953 The amorphous solar thermal absorption film 1 of the present embodiment is selected to be produced by a batch sputtering apparatus. The detailed process is as follows: First, the substrate 2 is placed in a cavity of a batch of sputtering equipment. Medium and close the door. Next, the chamber is evacuated through a vacuum device until the pressure in the chamber is below 3 χ丨〇 -5 t rr. Next, 3 〇 sccm of argon (Ar) was introduced into the chamber, the pressure in the chamber was maintained at 3 〇mT rr, and a bias of -400 V was applied to the substrate 2, and the substrate was applied. 2 applying a plasma pretreatment to initially clean the surface of the substrate 2. Then, the titanium metal oxide plating power source is started, and the sputtering power is 〇. The target sputtering current is 2A, and the titanium metal film 11 is sputtered until the thickness of the metal film 11 reaches After 5〇11111, the titanium target sputtering power supply is turned off. Thus, the metal film u' can be formed on the surface of the substrate 2 as shown in Fig. 2. Further, the amorphous carbon-carbon film tantalum 2 was produced, and the graphite target sputtering power source was activated, and the target sputtering power was adjusted to 15 kW, and the target sputtering current was 3 Å. The ratio of argon (Ar) to acetylene (5) was 5:1, and the working pressure was maintained at 5.9 mT rr until a surface of the metal film u was formed with a thickness of 500 nm of undoped metal. After the carbon-carbon film 12, the graphite dry sputtering power supply is turned off. Finally, the anti-reflection film 13 is sputtered, and in this embodiment, the cesium (si) target sputtering power source is started, and the sputtering power of the material is 15kw. The current of the material is 3A. The ratio of argon (Ar) to oxygen (〇2) into the chamber is 5: i, and the pressure in the chamber is maintained at 4.5 mTorr until the amorphous carbon The surface of the carbon film 12 is formed as a thin film of a rare earth oxide having a thickness of 85 nm as the anti-reflection film 13, and the amorphous solar heat absorbing film of the second embodiment is manufactured in 201117953. The amorphous portion of the third embodiment of the present invention The solar solar heat absorbing film: Referring to FIG. 3, the amorphous solar ray b heat absorbing film 1 of the third embodiment of the present invention is a metal film 11, an amorphous carbon film 12 and an anti-reflection film. Membrane 13. The metal film 11 of the present embodiment is a 50 nm thick titanium metal film, and the amorphous carbon film 12 is 500 nm thick. And an amorphous carbon-carbon film 12 having 3.5 at% titanium metal; the anti-glare film 13 is a 85 nm cerium oxide film. The amorphous solar heat absorbing film of the present embodiment is selected by the same system. The batch sputtering equipment is fabricated. The detailed process is as follows: First, place the substrate 2 in the cavity of a batch of sputtering equipment and close the chamber door. The chamber is evacuated until the pressure in the chamber is lower than 3xl 0-5t rr. Then, 3 〇 sccm of argon gas is introduced into the chamber, and the pressure in the chamber is maintained at 30 mTorr. The substrate 2 is biased by -400 V, and the substrate 2 is subjected to pre-electrical treatment to initially clean the surface of the substrate 2. • Next, the titanium metal target sputtering power source is activated, and the target sputtering power system The titanium metal film 11 is formed by heterogeneously forming a titanium metal film 11 at a 0.5 kW 'green current system of 2A', so that the metal film 11 can be formed on the surface of the substrate 2 by using a thickness of 5 Å. As shown in Figure 2. • 1 into the extremely thin metal film 11 'keep the titanium metal such as the antimony ore power supply. The graphite dry thief power supply is started, and the dry material sputtering power is adjusted to 1.5 kW, and the light material flow current is 3 A. The ratio of nitrogen (Ar) to B (h2h2) is 5:] The working pressure system is maintained at 5 9mT. After the amorphous carbon carbon film 12 having a thickness of 500 is formed on the surface of the metal film 11, the titanium metal power supply and the stone recording power supply are turned off in 201117953. Thus, the present embodiment is not The crystalline carbon-carbon film 12 is doped with a metal of 35 nanometers to enhance the overall frequency intensity of the amorphous carbon crystal 12 and the adhesion to the surface of the titanium metal film 1. Finally, the sputtering of the anti-reflection film 13 is further performed. In this embodiment, the Liu Tallin riding coffin is 15kw, and the dry material current is 3A. The ratio of the argon gas (4) to the oxygen gas (〇2) which is introduced into the body is 5: i. The pressure in the cavity is maintained at 4·5 mTorr until the surface of the amorphous carbon-carbon film 12 is 85 nm thick. As the anti-reflection film 13, a ruthenium dioxide film is used to fabricate the amorphous solar heat absorbing film of the third embodiment. By providing the amorphous carbon-carbon film 12 as a heat absorbing film, the weather resistance and the rot-resistant property of the amorphous solar heat absorbing film can be greatly enhanced, and the solar heat absorbing film can be prevented from falling off or collapsing due to corrosion. Further, the amorphous solar heat absorbing film of the present invention has only a three-layer structure, and the amorphous solar heat absorbing film 1 can be completed in only three processes, so that the structure of the amorphous solar heat absorbing film 1 is The process can be greatly simplified, and the process cost can be reduced, and the heat absorption efficiency of the amorphous solar thermal absorption film 1 of the present invention can also be 92% or more. The present invention provides an amorphous solar heat absorbing film which has the effect of high weather resistance. The present invention provides an amorphous solar heat absorbing film for increasing the corrosion resistance of the amorphous solar heat absorbing film. The present invention provides an amorphous solar heat absorbing film to simplify the process. 201117953 The present invention provides an amorphous solar heat absorbing film to reduce the manufacturing cost. While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a conventional solar heat absorbing film. Fig. 2 is a cross-sectional view showing an amorphous solar heat absorbing film of an embodiment of the present invention. Fig. 3 is a cross-sectional view showing an amorphous solar heat absorbing film of the second and third embodiments of the invention. [Description of main components] [Invention] 1 Amorphous solar heat absorbing film 11 Metal film 12 Amorphous carbon film 13 Antireflection film 2 Substrate [Prior Art] Aluminum reflective layer second aluminum/nitriding Aluminum film 8 conventional solar heat absorbing film 81 82 first aluminum/aluminum nitride film 83 201117953 84 anti-reflection film 9 substrate

—12 ——12 —

Claims (1)

201117953 七、申請專利範圍: 1、一種非晶質太陽能熱吸收膜,包含: 一金屬膜,係以金屬材質製成;及 一非晶質碳碳膜,係以非晶質碳為材質製成,且係形成 . 於該金屬膜之一表面。 . 2、依申請專利範圍第1項所述之非晶質太陽能熱吸收膜, 其中該非晶質碳碳膜中係另摻雜一掺雜金屬。 3、 依申請專利範圍第2項所述之非晶質太陽能熱吸收膜, φ 其中該摻雜金屬於該非晶質碳碳膜中所佔的原子百分 比係低於1 Oat%。 4、 依申請專利範圍第2項所述之非晶質太陽能熱吸收膜, 其中該摻雜金屬與該金屬膜之製成材質相同。 5、 依申請專利範圍第2項所述之非晶質太陽能熱吸收膜, 其中該摻雜金屬與該金屬膜之製成材質不同。 6、 依申請專利範圍第1項所述之非晶質太陽能熱吸收膜, 其中該非晶質碳碳膜之厚度係介於2〇〇〜1〇〇〇nm。 • 7、依申請專利範圍第1項所述之非晶質太陽能熱吸收膜, 其中該金屬膜係以銅(Cu)、銀(Ag)、絡(Cr)、鈦( Ti)、铭(A1)及錯(Zr)之一的金屬材質製成。 8、依申請專利範圍第1項所述之非晶質太陽能熱吸收膜, . 其中該金屬膜之厚度係為1〇〜2〇〇nm。 . 9、依申請專利範圍第1項所述之非晶質太陽能熱吸收膜, 其中更包含一抗反射膜形成於該非晶質碳碳膜之表面 ,且該非晶質碳碳膜係介於該金屬膜及抗反射膜之間。 —13 — 201117953 10、 依申請專利範圍第9項所述之非晶質太陽能熱吸收膜, 其中該抗反射膜係以氧化叙(Al2〇3)、二氧化石夕(si〇2 )、氧切(Si〇)、二氧化鈦(Ti〇2)及氧化 )之一的材質製成。 11、 依申請專利範圍第9項所述之非晶質太陽能熱⑽膜, 其中該抗反射膜之厚度介於2〇〜3〇〇nm。 、201117953 VII. Patent application scope: 1. An amorphous solar thermal absorption film comprising: a metal film made of a metal material; and an amorphous carbon carbon film made of amorphous carbon. And formed on one surface of the metal film. 2. The amorphous solar thermal absorption film according to claim 1, wherein the amorphous carbon carbon film is doped with a doping metal. 3. The amorphous solar thermal absorption film according to item 2 of the patent application scope, wherein the atomic percentage of the doping metal in the amorphous carbon carbon film is less than 1 Oat%. 4. The amorphous solar thermal absorption film according to claim 2, wherein the doping metal is made of the same material as the metal film. 5. The amorphous solar thermal absorption film according to claim 2, wherein the doping metal is different from the material of the metal film. 6. The amorphous solar thermal absorption film according to claim 1, wherein the amorphous carbon carbon film has a thickness of between 2 Å and 1 〇〇〇 nm. 7. The amorphous solar thermal absorption film according to claim 1, wherein the metal film is copper (Cu), silver (Ag), complex (Cr), titanium (Ti), and Ming (A1). And one of the wrong (Zr) metal materials. 8. The amorphous solar thermal absorption film according to claim 1, wherein the thickness of the metal film is 1 〇 2 〇〇 nm. 9. The amorphous solar thermal absorption film according to claim 1, wherein an anti-reflection film is further formed on the surface of the amorphous carbon-carbon film, and the amorphous carbon-carbon film is interposed therebetween. Between the metal film and the anti-reflection film. The amorphous solar thermal absorption film according to claim 9, wherein the antireflection film is oxidized (Al2〇3), dioxide dioxide (si〇2), oxygen It is made of one of cut (Si〇), titanium dioxide (Ti〇2) and oxidized. 11. The amorphous solar thermal (10) film according to claim 9, wherein the antireflection film has a thickness of between 2 Å and 3 〇〇 nm. , ~ 14 —~ 14 —
TW98140336A 2009-11-26 2009-11-26 Amorphous solar absorption film TW201117953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98140336A TW201117953A (en) 2009-11-26 2009-11-26 Amorphous solar absorption film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98140336A TW201117953A (en) 2009-11-26 2009-11-26 Amorphous solar absorption film

Publications (1)

Publication Number Publication Date
TW201117953A true TW201117953A (en) 2011-06-01

Family

ID=44935433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98140336A TW201117953A (en) 2009-11-26 2009-11-26 Amorphous solar absorption film

Country Status (1)

Country Link
TW (1) TW201117953A (en)

Similar Documents

Publication Publication Date Title
Li et al. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers
JP2009198170A (en) Radiation-selective absorber coating, absorber tube, and manufacturing method of absorber tube
JP5603010B2 (en) Substrate manufacturing method
JP5775151B2 (en) Method for providing a heat absorbing material
WO2007098708A1 (en) Light selectively absorbing layers and method for making the same
WO2014007218A1 (en) Selective light absorption film, heat collection tube and solar thermal power generation system
CN110699642B (en) High-entropy alloy-based high-temperature solar energy absorbing coating and preparation method thereof
JP5953592B2 (en) Transparent heat ray reflective laminate
CN110643942B (en) Spectrum-selective high-temperature solar energy absorption coating and preparation method thereof
CN102102917A (en) Amorphous solar heat absorption film
US11149987B2 (en) Solar heat collector tube and production method thereof
CN105929471B (en) A kind of low-cost solar film reflecting mirror material
US9551507B2 (en) Process for producing an element for absorbing solar radiation for a thermal concentrating solar power plant
TW201117953A (en) Amorphous solar absorption film
EP3080326A1 (en) Method for producing an element for absorbing solar radiation for a concentrating solar thermal power plant, element for absorbing solar radiation
US10866013B2 (en) Solar selective coating
CN110527970B (en) Full ceramic-based high-temperature solar energy absorbing coating and preparation method thereof
Kondaiah et al. Fabrication of spectrally selective tandem stack of HfZrC/HfZrCN/HfZrON/HfZrO by reactive magnetron sputtering for CSP applications
CN108603693B (en) Solar heat collecting pipe
JPH0659120A (en) Wavelength band selective absorption film
JP6549491B2 (en) Solar collector
JP2019143245A (en) Oxide film and manufacturing method of oxide film and nitrogen containing oxide sputtering target
CN112639374A (en) Solar heat collecting pipe
TW201305080A (en) IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof
WO2020097811A1 (en) Full-ceramic and high-temperature solar energy selective absorbing coating and manufacturing method therefor