TW201117358A - Electronic device and fabrication method thereof and memory device - Google Patents

Electronic device and fabrication method thereof and memory device Download PDF

Info

Publication number
TW201117358A
TW201117358A TW98137190A TW98137190A TW201117358A TW 201117358 A TW201117358 A TW 201117358A TW 98137190 A TW98137190 A TW 98137190A TW 98137190 A TW98137190 A TW 98137190A TW 201117358 A TW201117358 A TW 201117358A
Authority
TW
Taiwan
Prior art keywords
layer
trench
conductive
electronic device
sidewall
Prior art date
Application number
TW98137190A
Other languages
Chinese (zh)
Other versions
TWI418018B (en
Inventor
Chih-Hao Lin
Yung-Chang Lin
Original Assignee
Taiwan Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Memory Corp filed Critical Taiwan Memory Corp
Priority to TW98137190A priority Critical patent/TWI418018B/en
Publication of TW201117358A publication Critical patent/TW201117358A/en
Application granted granted Critical
Publication of TWI418018B publication Critical patent/TWI418018B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The embodiment provides an electronic device and fabrication method thereof and a memory device. The electronic device includes a substrate. A trench is formed in the substrate. A diffusion region formed in a portion of the substrate adjacent the trench. A conductive structure is disposed in the trench. The conductive structure includes a conductive layer having a recess covers a bottom of the trench. The diffusion region is exposed from the recess. A conductive plug fills the recess, covering sidewalls of the diffusion region. A barrier layer is disposed between the conductive plug and the conductive layer.

Description

201117358 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種電子裝置及其製造方法,特别是 有關於一種動態隨機存取s己憶體晶胞的位元線及其製造方 法。 【先前技術】 動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)屬於一種揮發性記憶體(v〇latile memory)’主要的作用原理是利用電容内儲存電荷的多寡來 代表一個二進位位元(bit)是1還是〇,以儲存資料。為達到 高密度的要求,目前最有效的方法是透過縮小製造製程和 採用單元設計技術來減小晶片的尺寸。減小晶片尺寸的另 一種方法是實現更為有效的陣列架構,在連續幾代發展 後,儲存技術通常會變成某種單元佈局的限制,單元 的每-次改善都需要進行大量的工作來減少則=小尺 寸。 因此,亟需-種具有新顆結構的動態隨機存取記憶體 及其製造方法。 u 【發明内容】 有鑑於此,本發明之一實施例係提供一種電子誓置, 包括一基板;一溝槽,形成於上述基板中;一 & 擴月文區,形 成於鄰接上述溝槽側壁的部分上述基板中;— ’ 電結構, 設置於上述溝槽中,包括-導電層,覆蓋上述溝槽的底面, 9095-A34433TWF 4 201117358 上述導電層具有一凹陷,以使上述擴散區從上述凹陷暴露 出來;一導電插塞,填入上述凹陷,並覆蓋上述擴散區的 侧壁,其中上述導電插塞與上述導電層之間設有一阻障層。 本發明之另一實施例係提供一種記憶體裝置,包括一 基板;至少一垂直電晶體,形成於上述基板中,其具有一 垂直側壁;至少一字元線,沿一第一方向形成於上述基板 中,上述字元線設於上述對垂直電晶體的上述垂直側壁 上;至少一位元線,沿不同於上述第一方向的一第二方向 Φ 形成於上述基板中的至少一溝槽中,且位於上述對垂直電 晶體的下方,並藉由形成於鄰接上述溝槽側壁的部分上述 基板中的一擴散區電性接觸上述垂直電晶體的一沒極區, 其中上述位元線包括一導電層,覆蓋上述溝槽的底面,上 述導電層具有一凹陷,以使上述擴散區從上述凹陷暴露出 來;一導電插塞,填入上述凹陷,並覆蓋上述擴散區的側 壁,其中上述導電插塞與上述導電層之間設有一阻障層。 本發明之又另一實施例係提供一種電子裝置的製造 • 方法,包括提供一基板;於上述基板中形成一溝槽;於上 述溝槽中形成一導電層,覆蓋上述溝槽的底面和部分側 面,上述導電層具有鄰接上述溝槽側壁的一凹陷;於鄰接 上述凹陷的部分上述基板中形成一擴散區;順應性於上述 溝槽中形成一阻障層,覆蓋上述導電層;於上述溝槽中形 成一導電插塞,填入上述凹陷,且覆蓋上述擴散區的側壁。 【實施方式】 以下以各實施例詳細說明並伴隨著圖式說明之範 9095-A34433TWF 5 201117358 例,做為本發明之參考依據。在圖式或說明書描述中,相 似或相同之部分皆使用相同之圖號。且在圖式中,實施例 之形狀或是厚度可擴大,並以簡化或是方便標示。再者, 圖式中各元件之部分將以分別描述說明之,值得注意的 是,圖中未繪示或描述之元件,為所屬技術領域中具有通 常知識者所知的形式,另外,特定之實施例僅為揭示本發 明使用之特定方式,其並非用以限定本發明。 第1圖係顯示本發明一實施例之電子裝置600的透視 圖。在本發明一實施例中,電子裝置600可例如為一記憶 體裝置,特別為晶胞尺寸為4F2(其中F為最小微影製程尺 寸,或稱單元尺寸)的一動態隨機存取記憶體晶胞(DRAM cell)600。如第1圖所示,上述動態隨機存取記憶體晶胞600 的一垂直電晶體300、例如為位元線(bit line,BL)500的一 導電結構500和一字元線(word line, WL)308皆設於一基板 200中。如第1圖所示,電子裝置600包括一基板200。一 垂直電晶體300,形成於基板200中。垂直電晶體300係 具有垂直堆疊的一下層汲極區314、一中間層通道區316 和一上層之源極區318。另外,垂直電晶體300係具有至 少一垂直側壁302。一字元線308,沿一第一方向322形成 於基板200中,其中字元線308係設於垂直電晶體300的 垂直側壁302上,並做為垂直電晶體300的閘極。字元線 308與垂直電晶體300之間係設有一絕緣層306,以做為垂 直電晶體300的閘極絕緣層。如第1圖所示,電子裝置600 更包括一位元線500,沿不同於第一方向322的一第二方 向320形成於基板200中的一溝槽202中,且位於垂直電 9095-A34433TWF 6 201117358 '晶體300的下方,並藉由形成於鄰接溝槽202侧壁的部分 基板200中的一擴散區230電性接觸該對垂直電晶體300 的汲極區314。另外,電子裝置600更包括一電容312,電 性接觸垂直電晶體300的源極區318。 第2a〜2e圖為沿第1圖的A-A’切線的剖面圖,其顯示 本發明不同實施例之電子裝置之例如位元線的導電結構 500a〜500e(也可視為位元線500a〜500e)的剖面圖。另外, 第2a〜2e圖更顯示鄰接位元線500a〜500e的擴散區230。如 φ 第2a圖所示,本發明一實施例之位元線500a包括一導電 層214,覆蓋溝槽202的底面,導電層214具有一凹陷247, 以使擴散區230從凹陷247暴露出來;一導電插塞220a, 填入凹陷247,並覆蓋擴散區230的側壁,其中導電插塞 220a與導電層214之間設有一阻障層218,其中導電插塞 220a的材質為鎢。如第2b圖所示,本發明另一實施例之 位元線500b,其與位元線500a的不同處為,位元線500b 更包括一矽化物層232,形成於溝槽202之未被絕緣墊層 • 208覆蓋的側壁上,且鄰接擴散區230。如第2c圖所示, 本發明又另一實施例之位元線500c,其與位元線500a的不 同處為,位元線500c更包括一擴散源層228和形成於擴散 源層228側壁上的一矽化物層232,其中擴散源層228形 成於溝槽202之未被絕緣墊層208覆蓋的側壁上,且介於 矽化物層232和擴散區230之間。如第2d圖所示,本發明 又另一實施例之位元線500d,其與位元線500a的不同處 為,位元線500d的導電插塞220a的材質為多晶矽。如第 2e圖所示,本發明又另一實施例之位元線500e,其與位元 9095-A34433TWF 7 201117358 線500a的不同處為,位元線500d的導電插塞220a的材質 為多晶矽,且位元線500b更包括一矽化物層232,形成於 溝槽202之未被絕緣塾層208覆蓋的側壁上,且鄰接擴散 區 230。 第3〜10圖係顯示如第2a圖所示之本發明一實施例之 電子裝置600的導電結構500a的製造方法的剖面示意圖, 其特別顯示動態隨機存取記憶體晶胞的位元線500a的製 造方法。如第3圖所示,首先,提供一基板200。在本發 明一實施例中,基板200可為石夕基板。在其他實施例中, 可利用鍺化碎(SiGe)、塊狀半導體(bulk semiconductor)'應 變半導體(strained semiconductor)、化合物半導體 (compound semiconductor)、絶緣層上覆矽(silicorl on insulator, SOI),或其他常用之半導體基板做為基板2〇〇。 基板200可植入p型或n型摻質,以針對設計需要改變其 導電類型。在本發明一實施例中,基板2〇〇可植入ρ型摻 質。 然後’可利用沉積和圖案化製程,於基板2〇〇上形成 一圖案化硬遮罩層201 ’並定義出溝槽202的形成位置。 在本發明一貫施例中,圖案化硬遮罩層201可包括由下層 的一氧化矽墊層201a和上層的一氮化矽層2〇lb形成的疊 層結構。接著,可利用圖案化硬遮罩層2〇1做為蝕刻硬遮 罩層(etch hard mask layer),進行一非等向性蝕刻製程,移 除未被圖案化硬遮罩層201覆蓋的部分基板2〇〇,以於基 板200中形成一溝槽202。 之後,可利用例如化學氣相沉積(CVD)法、低壓化學BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device and a method of fabricating the same, and more particularly to a bit line for a dynamic random access s memory cell and a method of fabricating the same. [Prior Art] Dynamic Random Access Memory (DRAM) belongs to a kind of volatile memory (v〇latile memory). The main principle of operation is to use the amount of charge stored in the capacitor to represent a binary bit. (bit) is 1 or 〇 to store data. To achieve high density requirements, the most effective method at present is to reduce the size of the wafer by reducing the manufacturing process and using cell design techniques. Another way to reduce the size of the wafer is to implement a more efficient array architecture. After several generations of development, the storage technology usually becomes a certain unit layout limitation. Every improvement of the unit requires a lot of work to reduce it. = small size. Therefore, there is a need for a dynamic random access memory having a new structure and a method of fabricating the same. In view of the above, an embodiment of the present invention provides an electronic swearing device, including a substrate; a groove formed in the substrate; a & a moon expansion region formed adjacent to the groove a portion of the sidewall of the substrate; - an electrical structure disposed in the trench, including a conductive layer covering the bottom surface of the trench, 9095-A34433TWF 4 201117358, the conductive layer having a recess to allow the diffusion region to be The recess is exposed; a conductive plug is filled in the recess and covers a sidewall of the diffusion region, wherein a barrier layer is disposed between the conductive plug and the conductive layer. Another embodiment of the present invention provides a memory device including a substrate; at least one vertical transistor formed in the substrate and having a vertical sidewall; at least one word line formed along the first direction In the substrate, the word line is disposed on the vertical sidewall of the pair of vertical transistors; at least one bit line is formed in at least one trench in the substrate along a second direction Φ different from the first direction. And being located below the pair of vertical transistors, and electrically contacting a non-polar region of the vertical transistor by a diffusion region formed in a portion of the substrate adjacent to the sidewall of the trench, wherein the bit line includes a bit line a conductive layer covering a bottom surface of the trench, the conductive layer having a recess to expose the diffusion region from the recess; a conductive plug filling the recess and covering a sidewall of the diffusion region, wherein the conductive plug A barrier layer is disposed between the plug and the conductive layer. Still another embodiment of the present invention provides a method of manufacturing an electronic device, including: providing a substrate; forming a trench in the substrate; forming a conductive layer in the trench to cover a bottom surface and a portion of the trench a conductive layer having a recess adjacent to the sidewall of the trench; a diffusion region formed in the substrate adjacent to the recess; a barrier layer formed in the trench to cover the conductive layer; A conductive plug is formed in the groove to fill the recess and cover the sidewall of the diffusion region. [Embodiment] The following is a detailed description of each embodiment and a description of the example 9095-A34433TWF 5 201117358, which is a reference for the present invention. In the drawings or the description of the specification, the same drawing numbers are used for the similar or identical parts. Also, in the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention. Fig. 1 is a perspective view showing an electronic device 600 according to an embodiment of the present invention. In an embodiment of the invention, the electronic device 600 can be, for example, a memory device, in particular, a dynamic random access memory crystal with a cell size of 4F2 (where F is the minimum lithography process size, or cell size). DRAM cell 600. As shown in FIG. 1, a vertical transistor 300 of the above-described dynamic random access memory cell 600, for example, a conductive structure 500 of a bit line (BL) 500, and a word line (word line, WL) 308 are all disposed in a substrate 200. As shown in FIG. 1, the electronic device 600 includes a substrate 200. A vertical transistor 300 is formed in the substrate 200. The vertical transistor 300 has a vertically stacked lower layer drain region 314, an intermediate layer channel region 316, and an upper layer source region 318. Additionally, vertical transistor 300 has at least one vertical sidewall 302. A word line 308 is formed in the substrate 200 along a first direction 322, wherein the word line 308 is disposed on the vertical sidewall 302 of the vertical transistor 300 and serves as a gate of the vertical transistor 300. An insulating layer 306 is disposed between the word line 308 and the vertical transistor 300 as a gate insulating layer of the vertical transistor 300. As shown in FIG. 1 , the electronic device 600 further includes a bit line 500 formed in a trench 202 in the substrate 200 along a second direction 320 different from the first direction 322 and located at a vertical voltage 9095-A34433TWF. 6 201117358 'Under the crystal 300, and electrically contacting the drain region 314 of the pair of vertical transistors 300 by a diffusion region 230 formed in a portion of the substrate 200 adjacent to the sidewall of the trench 202. In addition, the electronic device 600 further includes a capacitor 312 electrically contacting the source region 318 of the vertical transistor 300. 2a to 2e are cross-sectional views taken along line A-A' of Fig. 1 showing conductive structures 500a to 500e of, for example, bit lines of an electronic device according to various embodiments of the present invention (also referred to as bit lines 500a~). Sectional view of 500e). Further, the 2a to 2e diagrams further show the diffusion regions 230 adjacent to the bit lines 500a to 500e. As shown in FIG. 2a, the bit line 500a according to an embodiment of the present invention includes a conductive layer 214 covering the bottom surface of the trench 202. The conductive layer 214 has a recess 247 to expose the diffusion region 230 from the recess 247. A conductive plug 220a is filled in the recess 247 and covers the sidewall of the diffusion region 230. A barrier layer 218 is disposed between the conductive plug 220a and the conductive layer 214. The conductive plug 220a is made of tungsten. As shown in FIG. 2b, the bit line 500b of another embodiment of the present invention differs from the bit line 500a in that the bit line 500b further includes a germanide layer 232 formed in the trench 202. The insulating mat layer 208 covers the sidewalls and is adjacent to the diffusion region 230. As shown in FIG. 2c, in another embodiment of the present invention, the bit line 500c is different from the bit line 500a. The bit line 500c further includes a diffusion source layer 228 and a sidewall formed on the diffusion source layer 228. A germanide layer 232 is formed, wherein the diffusion source layer 228 is formed on sidewalls of the trench 202 that are not covered by the insulating pad layer 208 and between the germanide layer 232 and the diffusion region 230. As shown in Fig. 2d, the bit line 500d of still another embodiment of the present invention differs from the bit line 500a in that the material of the conductive plug 220a of the bit line 500d is polysilicon. As shown in FIG. 2e, in another embodiment of the present invention, the bit line 500e is different from the bit 9095-A34433TWF 7 201117358 line 500a. The conductive plug 220a of the bit line 500d is made of polysilicon. The bit line 500b further includes a germanide layer 232 formed on the sidewall of the trench 202 not covered by the insulating germanium layer 208 and adjacent to the diffusion region 230. 3 to 10 are schematic cross-sectional views showing a method of manufacturing the conductive structure 500a of the electronic device 600 according to an embodiment of the present invention shown in FIG. 2a, which particularly shows a bit line 500a of the dynamic random access memory cell. Manufacturing method. As shown in FIG. 3, first, a substrate 200 is provided. In an embodiment of the invention, the substrate 200 may be a stone substrate. In other embodiments, a germanium telluride (SiGe), a bulk semiconductor 'strained semiconductor, a compound semiconductor, a silicorl on insulator (SOI), Or other commonly used semiconductor substrates are used as the substrate 2〇〇. The substrate 200 can be implanted with a p-type or n-type dopant to change its conductivity type for design needs. In an embodiment of the invention, the substrate 2 can be implanted with a p-type dopant. Then, a patterned hard mask layer 201' can be formed on the substrate 2'' and a formation position of the trench 202 can be defined by a deposition and patterning process. In a consistent embodiment of the present invention, the patterned hard mask layer 201 may include a stacked structure formed of a lower layer of a hafnium oxide underlayer 201a and an upper layer of a tantalum nitride layer 2? Then, using the patterned hard mask layer 2〇1 as an etch hard mask layer, an anisotropic etching process is performed to remove the portion not covered by the patterned hard mask layer 201. The substrate 2 is formed to form a trench 202 in the substrate 200. After that, for example, chemical vapor deposition (CVD), low pressure chemistry can be utilized.

9095-A34433TWF 201117358 法或高溫氧化⑽剛法等沉積方 緣塾層。在本發明一 〇由6和底面篇上形成一絕 _ 貝鈀例中,絕緣墊層208可包括 一虱化層、一氮化物層或1纟 層观可為四乙基与酸鹽本實施例中,絕緣塾 ,.氣化石夕層(TEOS oxide)。 接者’請參考第4圖,可剝田 _ 中形成—阻障層212,並覆 / 。在本發明—實施例中,阻障層212可包 欽和氮其組合。在本實施例中,阻障層212可為 疊層結構。然後,可利用化學氣相沉積 靜2〇2二★方式’全面性形成—導電材料211,並填入 溝糟202。在本發明一音价a丨 如姨之金屬。 仏例中導電材料犯可包括例 之後,請參者μ @ 4s » λ 圖,可利用回蝕刻(etching back)製 211,反〇〇、上方和部分位於溝槽202中的導電材料 垃、材料21-1的頂面係低於基板2〇〇的表面。 ”藉方^ °月參考第6 51 ’可利用原子層沉積法(ALD)之 lit:應性於溝糟2〇2中形成-第-介電層240, 並覆盍導電材料211。_ 7ΛΠ - 在本發明一實施例中,第一介電層 初辟二:化層或氮化層。本實施例中,襯於溝槽202 側壁的第一介電屏24f) 數㈣_k)介電/(古人^為例如氧化銘(Al2〇3)之高介電常 的介電常數42^^常數是指介電常數大於二氧化石夕 後續利用氣相拎…其擁有較佳之緻密度’因此,可於 中形成摻雜;::於鄰近漢槽202部分側壁的基板 避免掺質氣體擴散進入其他不想要9095-A34433TWF 201117358 Method or high temperature oxidation (10) rigid method and other deposition edge layer. In the case of forming a ruthenium-palladium from 6 and the bottom surface of the present invention, the insulating underlayer 208 may comprise a deuterated layer, a nitride layer or a layer of tantalum which may be tetraethyl and an acid salt. In the example, insulating germanium, TEOS oxide. Receiver' Please refer to Figure 4, which can be formed in the stripping field _ in the barrier layer 212 and covered with /. In the present invention-embodiment, the barrier layer 212 can be combined with nitrogen and nitrogen. In the present embodiment, the barrier layer 212 may be a laminated structure. Then, the conductive material 211 can be formed by chemical vapor deposition in a static manner and filled into the trenches 202. In the present invention, a sound price is a metal such as ruthenium. After the conductive material is included in the example, please refer to the μ @ 4s » λ diagram, which can be made by etching back 211, 〇〇, upper and part of the conductive material in the trench 202, material The top surface of 21-1 is lower than the surface of the substrate 2〇〇. "The borrower ^ ° month refers to the 6th 51' can use the atomic layer deposition method (ALD) lit: the formation of the -dielectric layer 240 in the trench 2〇2, and covering the conductive material 211. _ 7ΛΠ In an embodiment of the invention, the first dielectric layer is formed by a second layer or a nitride layer. In this embodiment, the first dielectric screen 24f) lining the sidewall of the trench 202 is (4)_k) dielectric/ (Ancient person ^ is, for example, a high dielectric constant of constant density (Al2〇3). The constant of 42^^ means that the dielectric constant is greater than that of the dioxide, and the subsequent use of the gas phase 拎...which has a better density. Therefore, Doping can be formed in the middle;:: the substrate adjacent to the side wall of the Hankou 202 part avoids diffusion of dopant gas into other unwanted

9095-A34433TWF 201117358 、品域並可利於後續蝕刻製程做為餘刻硬遮罩而不損傷 二下的導電材料2U。在本發明-實施例中,在形成 展^電層240之後,可進行一退火製程,以使第一介電 :”的’。構更為緻密。然後,可利用化學氣相沉積(CM) 沉積t式,順應性於溝槽202十形成一第二介電層 八,、、覆蓋第一介電層240。在本發明—實施例中,第二 7丨電層242和第—介電層謂為不同的材質,第二介電層 犯例如為未推雜非晶石夕(und〇ped麵汹_训議)。曰 請參考第7圖,可沿—方向(5卩為元件㈣262 ==)對第二介電層242進行一離子植入步驟— 弟圖所不,由於離子植入步驟262的方南rg|7故-放# 號262箭頭的方向)與基板2〇〇表面具有° Ί二 由後續擴散區的形成位置或 可 ⑽。之間’而上述擴散區的形成位置或J =介於 師CeSi_ati〇n)方式決定。因此離=用兀件減 第二介電詹242形成一摻雜區242a和〜非^驟262可於 在本發明-實施财,離子植人步驟祕^雜區遍。 化硼(BF2)。 的摻質可為二氟 接著,請參考第8圖, 關製程,移除部分的摻雜區242aV非^ 242進行一濕 到暴露出部分第-介電層24〇為止。在濕、你雜區242b,直 如第7圖所示的具有推質的捧雜區斯的^製程期間, 不具有捧質的非摻雜區2條,兩者彼此==率會小於 比,因此當非摻雜區242b完全被雜 2㈣選擇 摻雜區242a。 15會殘留部分的9095-A34433TWF 201117358, the product domain and can facilitate the subsequent etching process as a residual hard mask without damaging the second conductive material 2U. In the present invention-embodiment, after the formation of the electrical layer 240, an annealing process may be performed to make the first dielectric: "more dense". Then, chemical vapor deposition (CM) may be utilized. Depositing a t-type, conforming to the trench 202 to form a second dielectric layer 八, covering the first dielectric layer 240. In the present invention - an embodiment, the second 丨 electrically layer 242 and the first dielectric The layer is said to be a different material, and the second dielectric layer is, for example, an undoped amorphous stone eve (und 〇 汹 汹 训 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ==) An ion implantation step is performed on the second dielectric layer 242 - not shown in the figure, because of the ion implantation step 262, the direction of the arrow 262, and the surface of the substrate 2 Having a Ί2 is determined by the formation position of the subsequent diffusion zone or may be between (10) and the formation position of the above diffusion zone or J = between the divisions CeSi_ati〇n). Therefore, the second dielectric is subtracted from the component. 242 forming a doped region 242a and a non-defective 262 can be implemented in the present invention, the ion implantation step is performed in the secret region. The boron (BF2) dopant can be For difluoride, please refer to Figure 8, to close the process, remove part of the doped region 242aV 242 to wet a portion of the first dielectric layer 24 。. In the wet, your miscellaneous region 242b, straight As shown in Fig. 7, during the process of the doping region, there is no non-doped region of the holding, and the ratio of the two is lower than the ratio, so when the undoped region 242b is completely The doped region 242a is selected by the impurity 2 (four).

9095-A34433TWF 201117358 然後,可利用殘齒换他广 行例如乾㈣之雜區池做為侧硬遮罩層,進 覆蓋的第-介電層24ϋ刻製程’移除未被摻雜區斯 -實施例中,因為岭二形成硬遮罩結構243。在本發明 第-介電層24G為不電層242形成的摻雜區勘與 v个Η的材質,例如,筮 人 氧化摩州,而推雜區池為多晶石夕因^電層240為 適當的_劑’以使第—介電層施具有 的姓刻率(具有良好的_選㈣。9095-A34433TWF 201117358 Then, the residual tooth can be replaced by a wide-area pool such as dry (4) as a side hard mask layer, and the covered first-dielectric layer 24 engraving process 'removes the undoped area' - In the embodiment, the ridge 2 forms a hard mask structure 243. In the first dielectric layer 24G of the present invention, the doped region formed by the non-electric layer 242 is etched with v Η materials, for example, 筮 氧化 氧化 摩 摩 , , , , , , , , , , , 240 240 240 The appropriate _agent' is such that the first dielectric layer has a surname (having a good _ selection (four).

之後,係形成硬遮罩結構243,其具 等向蝕刻农耘 出部分導電材料211。在明、一” f 〇 246’並暴露 置或尺寸。 尺竹以_%成職區的位 之後’再利用硬遮罩結構243做為麵刻硬遮罩層,進 行例如乾㈣之-非等向_製程,移除從開口施暴露 出的部分導電材料211和阻障層212,以形成具有四陷247 的導電層214。上述具有凹陷247的導電層214可於後續 製程中定義出擴散區230的形成位置。 接著,再利用硬遮罩結構243和導電層214做為蝕刻 硬遮罩層’進行例如濕蝕刻之一等向蝕刻製程,移除從凹 陷247暴露出的部分絕緣墊層208,以暴露出溝槽2〇2的 部分側壁226。在本發明一實施例中,由於硬遮罩結構 243、導電層214與絕緣墊層208分別為不同的材質,例如, 硬遮罩結構243為氧化(Al_2〇3)和多晶發組成的疊層結 構’導電層214為例如鶴的金屬’而絕緣塾声208為氧化 物’因此,可以選用適當的蝕刻劑,以使絕緣墊層208為 9095-A34433TWF 11 201117358 具有較硬遮罩結構243和導電層214高的蝕刻率(具有良好 的蝕刻選擇比)。經過等向蝕刻製程之後,係暴露出溝槽210 的部分侧壁226,。 然後,於鄰接凹陷247的部分基板200中形成一擴散 區230。可利用氣相摻雜(gas phase doping)方式,將摻質氣 體從溝槽202暴露的侧壁226注入其鄰接的部分基板200 中’以形成擴散區230。在本發明一實施例中,氣相摻雜(gas phase doping)方式可包括高溫快速氣相摻雜(RvD)、室溫氣 相摻雜、氣體沉浸雷射摻雜(GILd)等。在本發明一實施例 中’擴散區230可做為位元線與垂直電晶體之汲極的擴散 接面(diffusion junction)。在基板2〇〇的導電類型為p型之 一實施例中,擴散區230的導電類型可為n型。擴散區23〇 的導電類型係依據氣體摻質的導電類型而定,但非限定本 實施例。在本發明一實施例中,硬遮罩結構243中的例如 為氧化鋁(α〗2〇3)的第一介電層24〇以及導電層214可做為 進行氣相摻雜製私的阻擋層,避免摻質氣體從第一介電層 240以及導電層214覆蓋的溝槽2〇2的側壁擴散進入基板 200中不想要的區域而影響位元線的性能。 然後,請參考第9圖,可利用濕蝕刻方式 ,移除如第 8圖所示的硬遮罩結構243。接著,可進行一預清潔步驟 (pre-clean)’以移除位於溝槽2〇2的側壁226上的例如原生 氧化物(native oxide)。之後,可利用原子層沉積法(ALD) 之、/儿積方式,順應性於溝槽202中形成一阻障層218,並 覆蓋絕緣墊層208、導電層214和擴散區23〇的側壁。在 本發明一實施例中,阻障層218可包括鈦、氮化鈦或其組Thereafter, a hard mask structure 243 is formed which is an isotropically etched portion of the conductive material 211. In the Ming, one "f 〇 246' and exposed or size. After the _% position of the zoning area, 'reuse the hard mask structure 243 as a hard mask layer, for example dry (four) - non The isotropic process removes a portion of the conductive material 211 and the barrier layer 212 exposed from the opening to form a conductive layer 214 having a quadrant 247. The conductive layer 214 having the recess 247 may define a diffusion region in a subsequent process. The formation position of 230. Next, the hard mask structure 243 and the conductive layer 214 are used as an etching hard mask layer to perform an isotropic etching process such as wet etching, and a portion of the insulating pad layer 208 exposed from the recess 247 is removed. In order to expose a portion of the sidewall 226 of the trench 2 〇 2, in an embodiment of the invention, since the hard mask structure 243, the conductive layer 214 and the insulating pad layer 208 are respectively made of different materials, for example, the hard mask structure 243 The laminated structure 'the conductive layer 214 which is composed of oxidized (Al 2 〇 3) and polycrystalline hair is a metal such as a crane', and the insulating click 208 is an oxide. Therefore, an appropriate etchant may be selected to make the insulating underlayer 208 For 9095-A34433TWF 11 201117358 has a harder The mask structure 243 and the conductive layer 214 have a high etch rate (having a good etch selectivity). After the isotropic etch process, portions of the sidewalls 226 of the trenches 210 are exposed. Then, a portion of the substrate 200 adjacent the recesses 247. A diffusion region 230 is formed in the gas phase doping manner, and the dopant gas is injected into the adjacent portion of the substrate 200 from the exposed sidewall 226 of the trench 202 to form the diffusion region 230. In an embodiment of the invention, the gas phase doping method may include high temperature rapid gas phase doping (RvD), room temperature gas phase doping, gas immersion laser doping (GILd), etc. In the present invention In the embodiment, the diffusion region 230 can be used as a diffusion junction of the bit line and the drain of the vertical transistor. In the embodiment in which the conductivity type of the substrate 2 is p-type, the diffusion region 230 The conductivity type may be n. The conductivity type of the diffusion region 23〇 depends on the conductivity type of the gas dopant, but is not limited to the embodiment. In an embodiment of the invention, the hard mask structure 243 is, for example, oxidized. First dielectric layer 24 of aluminum (α 〇 2 〇 3) And the conductive layer 214 can be used as a barrier layer for gas phase doping, preventing the dopant gas from diffusing into the substrate 200 from the sidewalls of the first dielectric layer 240 and the trench 2 〇 2 covered by the conductive layer 214. The area affects the performance of the bit line. Then, referring to Fig. 9, the hard mask structure 243 as shown in Fig. 8 can be removed by wet etching. Then, a pre-cleaning step (pre-clean) can be performed. 'To remove, for example, a native oxide on the sidewall 226 of the trench 2〇2. Thereafter, a barrier layer 218 can be formed in the trench 202 by atomic layer deposition (ALD), and the sidewalls of the insulating pad layer 208, the conductive layer 214, and the diffusion region 23A can be covered. In an embodiment of the invention, the barrier layer 218 may comprise titanium, titanium nitride or a group thereof

9095-A34433TWF 12 201117358 合。在本實施例中,阻障層218可為鈦和氮化鈦組成的疊 層結構。然後,可利用化學氣相沉積(CVD)法之沉積方式, 全面性形成一導電材料220,並填入溝槽202。在本實施例 中,導電材料220可包括例如鎢之金屬。如第9圖所示, 導電材料220填入凹陷247,且覆蓋擴散區230的側壁。 之後,請參考第10圖,可利用回蝕刻(etching back) 製程,移除基板200上方和部分位於溝槽202中的導電材 料220,以形成導電插塞220a,其中導電插塞220a的頂面 φ 係低於基板200的表面。之後’可利用例如化學氣相沉積 法(CVD)及後續之例如回餘刻(etching back)製程,於溝槽 202中形成覆蓋層258,且覆蓋導電插塞220a。在本發明 一實施例中’覆蓋層258的材質可例如為二氧化矽之絕緣 材料。再經過後續之例如化學機械研磨(CMP)之平坦化製 程’係形成如第2a圖所示之本發明一實施例之導電結構 500a ° 如第2a圖所示之本發明一實施例之導電結構5〇〇a, • 係利用自對準(self_aligned)方式於溝槽202中形成蝕刻選 擇比彼此不同的複數層硬遮罩結構,以形成具有凹陷247 的導電層214。再藉由後續的蝕刻製程定義出擴散區23〇 的形成位置。並且,擴散區230直接藉由例如金屬材料的 阻障層電性接觸至導電插塞,可避免界面因素影響位元線 的導電特性。另外,硬遮罩結構可包括例如為氧化雖i2〇3) 的高介電常數第-介電層240,其擁有較佳之緻密度,因 而可做為用以形成擴散區之氣相擦雜製程的阻擒層,避免 摻質氣體從第-介電層覆蓋的溝槽2Q2的侧壁擴散進9095-A34433TWF 12 201117358 合. In the present embodiment, the barrier layer 218 may be a stacked structure composed of titanium and titanium nitride. Then, a conductive material 220 can be formed in a comprehensive manner by a chemical vapor deposition (CVD) deposition method, and the trench 202 can be filled. In the present embodiment, the conductive material 220 may include a metal such as tungsten. As shown in FIG. 9, the conductive material 220 fills the recess 247 and covers the sidewall of the diffusion region 230. Thereafter, referring to FIG. 10, the conductive material 220 above the substrate 200 and partially located in the trench 202 may be removed by an etching back process to form the conductive plug 220a, wherein the top surface of the conductive plug 220a φ is lower than the surface of the substrate 200. Thereafter, a capping layer 258 may be formed in the trench 202 by, for example, chemical vapor deposition (CVD) and subsequent etching, for example, an etching back process, and the conductive plug 220a may be covered. In an embodiment of the invention, the material of the cover layer 258 may be, for example, an insulating material of cerium oxide. Then, through a subsequent planarization process such as chemical mechanical polishing (CMP), the conductive structure 500a of an embodiment of the present invention as shown in FIG. 2a is formed, and the conductive structure of an embodiment of the present invention as shown in FIG. 2a is formed. 5〇〇a, • A plurality of hard mask structures having etching options different from each other are formed in the trenches 202 by self-aligned to form a conductive layer 214 having recesses 247. The formation position of the diffusion region 23A is defined by a subsequent etching process. Moreover, the diffusion region 230 is directly electrically contacted to the conductive plug by a barrier layer such as a metal material, and the interface factor can be prevented from affecting the conductive property of the bit line. In addition, the hard mask structure may include, for example, a high dielectric constant dielectric-dielectric layer 240 that oxidizes i2〇3), which has a better density and thus can be used as a vapor phase rubbing process for forming a diffusion region. The barrier layer prevents the dopant gas from diffusing into the sidewall of the trench 2Q2 covered by the first dielectric layer

9095-A34433TWF 13 201117358 入基板200中不想要的區域而影響位元線的性能。 第11圖係顯示如第2b圖所示之本發明另一實施例之 電子裝置600的導電結構500b的製造方法的剖面示意圖, 其與導電結構500a的不同處為導電結構500b更包括覆蓋 擴散區230側壁的矽化物層232,上述圖式中的各元件如 有與第1〜10圖所示相同或相似的部分,則可參考前面的相 關敍述,在此不做重複說明。請參考第11圖,可於形成擴 散區230以及移除如第8圖所示的硬遮罩結構243之後, 進行一矽化製程,於溝槽202的側壁226上形成矽化物層 232,且覆蓋擴散區230的側壁。在本發明一實施例中,矽 化物層232可包括鈦矽化物或鈷矽化物,其用以降低擴散 區230與後續形成的導電插塞220a之間的電阻。再經過後 續之例如化學機械研磨(CMP)之平坦化製程,係形成如第 2b圖所示之本發明一實施例之導電結構500b。 第12〜13圖係顯示如第2c圖所示之本發明又另一實 施例之電子裝置600的導電結構500c的製造方法的剖面示 意圖,其與導電結構500a的不同處為導電結構500c的擴 散區230係利用於溝槽202暴露的側壁226上形成的擴散 源層228進行摻質擴散而形成,上述圖式中的各元件如有 與第1〜11圖所示相同或相似的部分,則可參考前面的相關 敍述,在此不做重複說明。 請參考第12圖,可於第8圖說明之移除從凹陷247 暴露出的部分絕緣墊層208,以暴露出溝槽202的部分側 壁226的步驟之後。利用例如化學氣相沉積法(CVD)之薄 膜沉積方式以及後續的回蝕刻步驟,以於溝槽202暴露的 9095-A34433TWT 14 201117358 侧壁226上形成擴散源層228,且移除由第二介電層祀 ^成的摻雜區242a。在本發明一實施例中’擴散源層228 可為摻雜多晶矽層之導電層,例如為摻雜砷的多晶矽層 (As-doped poly)。然後,可利用例如退火製程,將擴散源層 228的摻質擴散進入鄰接的基板2〇〇中,以於鄰接擴散源 層228的部分基板2〇〇中形成一擴散區23〇。 然後’請參考第13圖,可利用濕蝕刻方式,移除如 第12圖所不的第一介電層24〇。之後,可進行矽化製程, _於溝槽202形成石夕化物層232,且覆蓋擴散源層似的侧 壁。在本發明一實施例中,石夕化物層232可包括鈦石夕化物 或銘夕化物,其用以降低擴散源層228與後續形成的導電 插塞220a之間的電阻。再經過後續之例如化學機械研磨 (CMP)之平坦化製程,係形成如第2c圖所示之本發明一實 施例之導電結構500c。 ' 第14圖係顯示如第2d圖所示之本發明又另一實施例 之電子裝置600的導電結構测的製造方法的剖面示意 _圖’其與導電結構5G0a的不同處為導電結構5刪的導電 插塞的材貝為摻雜多晶石夕(d〇ped p〇丨力,上述圖式中的各元 件如有與第1〜13圖所示相同或相似的部分,則可參考前面 ,相關敍述,在此不做重複說明。請參考第14圖,可利用 氣相擴散方式於形成擴散區230以及形成阻障層218之 後,+利用例如化學氣相沉積法(CVD)之薄膜沉積方式以及 Α續的回#刻步驟’形成材質轉雜多晶石夕的導電插塞 220b。在本實施例中,導電插塞22〇b可例如為摻雜砷的多 晶矽層(As-d〇ped poly)。再經過後續之例如化學機械研磨 r r9095-A34433TWF 13 201117358 Entering an unwanted area in the substrate 200 affects the performance of the bit line. 11 is a cross-sectional view showing a method of fabricating the conductive structure 500b of the electronic device 600 according to another embodiment of the present invention as shown in FIG. 2b, which differs from the conductive structure 500a in that the conductive structure 500b further includes a covered diffusion region. For the vaporization layer 232 of the side wall of the 230, if the components in the above-mentioned drawings have the same or similar parts as those shown in the first to the tenth, the above description can be referred to, and the description thereof will not be repeated. Referring to FIG. 11 , after the diffusion region 230 is formed and the hard mask structure 243 as shown in FIG. 8 is removed, a deuteration process is performed to form a germanide layer 232 on the sidewall 226 of the trench 202 and covered. The sidewall of the diffusion region 230. In an embodiment of the invention, the germanide layer 232 may comprise a titanium germanide or a cobalt germanide for reducing the electrical resistance between the diffusion region 230 and the subsequently formed conductive plug 220a. Further, a subsequent planarization process such as chemical mechanical polishing (CMP) is performed to form the conductive structure 500b of an embodiment of the present invention as shown in Fig. 2b. 12 to 13 are schematic cross-sectional views showing a method of fabricating the conductive structure 500c of the electronic device 600 according to still another embodiment of the present invention as shown in Fig. 2c, the difference from the conductive structure 500a being the diffusion of the conductive structure 500c. The region 230 is formed by diffusion diffusion of the diffusion source layer 228 formed on the exposed sidewall 226 of the trench 202. If each element in the above figure has the same or similar portion as shown in FIGS. 1 to 11, Please refer to the previous related description, and no repeated explanation is given here. Referring to Fig. 12, a portion of the insulating underlayer 208 exposed from the recess 247 may be removed after exposing a portion of the sidewall 226 of the trench 202 as illustrated in FIG. A diffusion source layer 228 is formed on the sidewalls 226 of the 9095-A34433TWT 14 201117358 exposed by the trench 202 by a thin film deposition method such as chemical vapor deposition (CVD) and a subsequent etch back step, and removed by the second dielectric layer The electric layer is doped into a doped region 242a. In an embodiment of the invention, the diffusion source layer 228 may be a conductive layer doped with a polysilicon layer, such as an arsenic doped poly layer (As-doped poly). Then, the dopant of the diffusion source layer 228 can be diffused into the adjacent substrate 2 by, for example, an annealing process to form a diffusion region 23 in a portion of the substrate 2A adjacent to the diffusion source layer 228. Then, please refer to Fig. 13, and the first dielectric layer 24〇 as shown in Fig. 12 can be removed by wet etching. Thereafter, a deuteration process can be performed to form a lithiation layer 232 in the trench 202 and to cover the side walls of the diffusion source layer. In an embodiment of the invention, the lithium layer 232 may comprise a titanium alloy or an enamel compound for reducing the electrical resistance between the diffusion source layer 228 and the subsequently formed conductive plug 220a. Further, through a subsequent planarization process such as chemical mechanical polishing (CMP), a conductive structure 500c of an embodiment of the present invention as shown in Fig. 2c is formed. FIG. 14 is a cross-sectional view showing a manufacturing method of the conductive structure of the electronic device 600 according to still another embodiment of the present invention as shown in FIG. 2d. FIG. 2 is a conductive structure 5 different from the conductive structure 5G0a. The material of the conductive plug is doped with a polycrystalline stone. If the components in the above figures have the same or similar parts as those shown in Figures 1 to 13, refer to the front. The related description will not be repeated here. Referring to FIG. 14, the vapor deposition method can be used to form the diffusion region 230 and the barrier layer 218 is formed, and the film deposition by, for example, chemical vapor deposition (CVD) is performed. The method and the subsequent step of forming the conductive plug 220b of the material turned into a polycrystalline spine. In the present embodiment, the conductive plug 22〇b can be, for example, an arsenic doped polysilicon layer (As-d〇). Ped poly). After subsequent CMP, for example

9095-A34433TWF 15 201117358 (CMP)之平坦化製程,係形成如第2d圖所系之本發明一貫 施例之導電結構500d。 第15圖係顯示如第2e圖所示之本發明又另—貫施例 之電子裝置600的導電結構500e的製造方法的剖面不意 圖,其與導電結構500a的不同處為導電結構5〇〇e更包括 覆蓋擴散區230側壁的矽化物層232,真其導電插塞的材 質為摻雜多晶矽(doped poly),上述圖式中的各元件如有與 第1〜14圖所示相同或相似的部分,則可參考前面的相關敍 述’在此不做重複說明。請參考第15圖,可於形成擴散區 230以及移除如第8圖所示的硬遮罩結構243之後,進行 一矽化製程,於溝槽202的侧壁226上形成矽化物層232, 且覆蓋擴散區230的侧壁。在本發明一實施例中,矽化物 層232可包括鈦矽化物或録石夕化物,其用以降低擴散區2如 與後續形成的導電插塞220a之間的電阻。之後,可於形成 阻障層218之後,利用例如化學氣相沉積法(CVD)之薄膜 沉積方式以及後續的回蝕刻步驟,形成材質為摻雜多晶矽 的導電插塞220b。在本實施例中,導電插塞22卟可例如 為摻雜珅的多晶石夕層(As_d〇ped 。再經過後續< 學機械研磨(CMP)之平坦化製程,係形成如第& 本發明一實施例之導電結構5〇〇e。 τ 雖然本發明已以實施例揭露如上,然其並非用以限一 本發明,任何熟習此技藝者,在不脫離本發明之精 ^ 圍内,當可作些許之更動與潤飾,因此本發明之保護= 當視後附之申請專利範圍所界定為準。9095-A34433TWF 15 201117358 (CMP) The planarization process is to form a conductive structure 500d according to a consistent embodiment of the present invention as shown in Fig. 2d. Fig. 15 is a cross-sectional view showing a method of manufacturing the conductive structure 500e of the electronic device 600 of the present invention as shown in Fig. 2e, and the difference from the conductive structure 500a is a conductive structure. The e further includes a germanide layer 232 covering the sidewall of the diffusion region 230. The material of the conductive plug is doped poly, and the components in the above figures are the same as or similar to those shown in FIGS. For the part, please refer to the previous related description 'Do not repeat here. Referring to FIG. 15, after the diffusion region 230 is formed and the hard mask structure 243 as shown in FIG. 8 is removed, a germanium formation process is performed to form a germanide layer 232 on the sidewall 226 of the trench 202, and The sidewalls of the diffusion region 230 are covered. In an embodiment of the invention, the germanide layer 232 may comprise a titanium germanide or a lithium compound for reducing the electrical resistance between the diffusion region 2, such as the subsequently formed conductive plug 220a. Thereafter, after the barrier layer 218 is formed, a conductive plug 220b made of doped polysilicon is formed by a thin film deposition method such as chemical vapor deposition (CVD) and a subsequent etch back step. In this embodiment, the conductive plug 22 can be, for example, a doped eutectic polycrystalline layer (As_d〇ped.) and then subjected to a subsequent <scientific mechanical polishing (CMP) planarization process, forming a & The conductive structure of the embodiment of the present invention is 〇〇e. τ Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and anyone skilled in the art can avoid the invention. The protection of the present invention is defined as defined in the appended claims.

9095-A34433TWF 201117358 【圖式簡單說明】 第1圖係顯示本發明一實施例之電子裝置的透視圖。 第2a〜2e圖為沿第1圖的A-A’切線的剖面圖,其顯示 本發明不同實施例之電子裝置之例如位元線的導電結構。 第3〜10圖係顯示如第2a圖所示之本發明一實施例之 電子裝置的導電結構的製造方法的剖面示意圖。 第11圖係顯示如第2b圖所示之本發明另一實施例之 電子裝置的導電結構的製造方法的剖面示意圖。 第12〜13圖係顯示如第2c圖所示之本發明又另一實 施例之電子裝置的導電結構的製造方法的剖面示意圖。 第14圖係顯示如第2d圖所示之本發明又另一實施例 之電子裝置的導電結構的製造方法的剖面示意圖。 第15圖係顯示如第2e圖所示之本發明又另一實施例 之電子裝置的導電結構的製造方法的剖面示意圖。 【主要元件符號說明】 200〜基板; 201〜圖案化硬遮罩層; 201a〜氧化矽墊層; 201b〜氮化矽層; 202〜溝槽; 204、212〜底面; 206〜側壁; 208〜絕緣墊層; 211、220〜導電材料; 9095-A34433TWF 17 201117358 212、218〜阻障層; 214〜導電層; 22 8〜擴散源層; 230〜擴散區; 232〜石夕化物層; 240〜第一介電層; 242〜第二介電層; 242a〜摻雜區; 242b〜非摻雜區; 243〜硬遮罩結構; 246〜開口, 24 7〜凹陷, 262〜離子植入步驟; 220a、220b〜導電插塞; 258〜覆蓋層; 300〜垂直電晶體; 302〜垂直側壁; 306〜絕緣層; 308〜字元線; 312〜電容; 314 ~ >及極區, 316〜通道區; 318〜源極區, 320〜第一方向; 322〜第二方向;9095-A34433TWF 201117358 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an electronic device according to an embodiment of the present invention. 2a to 2e are cross-sectional views taken along line A-A' of Fig. 1 showing conductive structures such as bit lines of the electronic device of the different embodiments of the present invention. 3 to 10 are schematic cross-sectional views showing a method of manufacturing a conductive structure of an electronic device according to an embodiment of the present invention as shown in Fig. 2a. Figure 11 is a cross-sectional view showing a method of manufacturing a conductive structure of an electronic device according to another embodiment of the present invention as shown in Figure 2b. Figs. 12 to 13 are schematic cross-sectional views showing a method of manufacturing a conductive structure of an electronic device according to still another embodiment of the present invention as shown in Fig. 2c. Fig. 14 is a schematic cross-sectional view showing a method of manufacturing a conductive structure of an electronic device according to still another embodiment of the present invention as shown in Fig. 2d. Figure 15 is a cross-sectional view showing a method of manufacturing a conductive structure of an electronic device according to still another embodiment of the present invention as shown in Figure 2e. [Main component symbol description] 200 to substrate; 201 to patterned hard mask layer; 201a to yttrium oxide pad layer; 201b to tantalum nitride layer; 202 to trench; 204, 212 to bottom surface; 206 to sidewall; Insulation underlayer; 211, 220~ conductive material; 9095-A34433TWF 17 201117358 212, 218~ barrier layer; 214~ conductive layer; 22 8~ diffusion source layer; 230~ diffusion region; 232~ Shi Xihua layer; a first dielectric layer; 242~2nd dielectric layer; 242a~doped region; 242b~undoped region; 243~hard mask structure; 246~opening, 24 7~ recessed, 262~ ion implantation step; 220a, 220b~ conductive plug; 258~ cover layer; 300~ vertical transistor; 302~ vertical sidewall; 306~insulation layer; 308~word line; 312~capacitor; 314~> and pole region, 316~ channel Area; 318 ~ source area, 320 ~ first direction; 322 ~ second direction;

9095-A34433TWF 201117358 一 500、500a、500b、500c、500d、500e 〜導電結構 600〜電子裝置; a〜角度。9095-A34433TWF 201117358 A 500, 500a, 500b, 500c, 500d, 500e ~ conductive structure 600 ~ electronic device; a ~ angle.

9095-A34433TWF 199095-A34433TWF 19

Claims (1)

201117358 七、申請專利範圍: 1.一種電子裝置,包括: 一基板; 一溝槽’形成於該基板中; 擴放區,形成於鄰接該溝槽側壁的部分該基板中. 以及 ’ 一導電結構’設置於該溝槽中,包括: 一導電層’覆蓋該溝槽的底面,該導電層具有一凹 陷,以使該擴散區從該凹陷暴露出來;以及 -導電插塞’填域凹陷,並魏該擴散區的側壁, 其中該導電插塞與該導電層之間設有一阻障層。 2. 如申請專利範圍第丨項所述之電子裝置,更包括一 絕緣塾層,覆蓋該溝槽的側壁和底面,其中該擴散區鄰接 該溝槽之未被絕緣墊層覆蓋的側壁。 3. 如申請專利範圍第2項所述之電子裝置,其中該阻 障層覆蓋該擴散區的侧壁。 X 4. 如申請專利範圍第1項所述之電子裝置,其中該導 電結構更包括一矽化物層,形成於該溝槽之未被該絕緣墊 層覆蓋的側壁上,且鄰接該擴散區。 5. 申請專利範圍第4項所述之電子裝置,其中該導電 結構更包括一擴散源層,形成於該溝槽之未被該絕緣墊岸 覆蓋的側壁上,且介於該矽化物層和該擴散區之間。曰 6·如申請專利範圍第1項所述之電子裝置,其中該導 電插塞包括金屬或多晶矽。 7.如申請專利範圍第1項所述之電子裝置,其中該導 9095-A34433TWF 20 201117358 電層為金屬。 8.如申請專利範圍第i項所述之電子 , 障層包括鈦、氮化鈦或其組合。 、㈡阻 —9.如中請專利範圍第1項所述之電子裝置,更包括一 覆蓋層’形成於該溝槽中,且覆蓋該導電插塞。 10. 如申請專利範圍第3項所述之電子裝置,其中該絕 緣墊層包括-氧化層、—氮化物層或其組合。 11. 如申請專利範圍第5項所述之電子裝置,其中該 散源層包括摻雜多晶矽。 、 12·如申請專利範圍第1項所述之電子震置,其中該導 電層與該溝槽之間設有另一阻障層。 1項所述之電子裝置,其中該導 U·如申請專利範圍第 電結構為一位元線。 14. 如申料利範圍第i項所述之電子裝置為一動解 隨機存取記記憶體裝置1 〜 15. —種記憶體裝置,包括:201117358 VII. Patent application scope: 1. An electronic device comprising: a substrate; a trench formed in the substrate; a diffusion region formed in a portion of the substrate adjacent to the sidewall of the trench; and 'a conductive structure Locating in the trench, comprising: a conductive layer covering a bottom surface of the trench, the conductive layer having a recess to expose the diffusion region from the recess; and a conductive plug filling a recess The sidewall of the diffusion region is provided with a barrier layer between the conductive plug and the conductive layer. 2. The electronic device of claim 2, further comprising an insulating layer covering a sidewall and a bottom surface of the trench, wherein the diffusion region abuts a sidewall of the trench not covered by the insulating pad. 3. The electronic device of claim 2, wherein the barrier layer covers a sidewall of the diffusion region. The electronic device of claim 1, wherein the conductive structure further comprises a germanide layer formed on a sidewall of the trench not covered by the insulating pad and adjacent to the diffusion region. 5. The electronic device of claim 4, wherein the conductive structure further comprises a diffusion source layer formed on a sidewall of the trench not covered by the insulating pad, and interposed between the germanide layer and Between the diffusion zones. The electronic device of claim 1, wherein the conductive plug comprises a metal or polysilicon. 7. The electronic device of claim 1, wherein the conductive layer 9095-A34433TWF 20 201117358 is a metal layer. 8. The electron according to claim i, wherein the barrier layer comprises titanium, titanium nitride or a combination thereof. (2) The electronic device of claim 1, wherein a cover layer is formed in the trench and covers the conductive plug. 10. The electronic device of claim 3, wherein the insulating mat layer comprises an oxide layer, a nitride layer, or a combination thereof. 11. The electronic device of claim 5, wherein the source layer comprises doped polysilicon. 12. The electronic device of claim 1, wherein another barrier layer is disposed between the conductive layer and the trench. The electronic device of claim 1, wherein the conductive structure is a one-dimensional line. 14. The electronic device as described in item ii of the claim is a mobile memory random access memory device 1 to 15. a memory device, including: 一基板; 侧壁至少—Μ電《’形成於該基板中,其具有一垂直 至少一字儿線,沿—第一方向形成於該基板中,該字 几線設於該對垂直電晶體的該垂直側壁上;以及 、至少一位元線,沿不同於該第一方向的一第二方向形 成;該基板中的至;—溝槽中,且位於該對垂直電晶體的 下方’並藉由形成於鄰接該溝槽側壁的部分該基板中的一 擴散區電性侧該m日日㈣-祕區,其巾該位元亨 9095-A34433TWF 21 201117358 包括: 導包層,覆盍該溝槽的底面,該導電層具有一凹 陷,以使該擴散區從該凹陷暴露出來丨以及 V電插塞’填人該凹陷,並覆蓋該擴散區的側壁, 其中該導電插塞與該導電層之間設有一阻障層。 16.如申請專利範圍第15項所述之記憶^裝置,更包 括至少一電容,電性接觸該垂直電晶體的一源極區。 Π.如申請專利範圍第15項所述之記憶體裝置,其中 該位7L線更包括更包括一絕緣塾層,覆蓋該溝槽的侧壁和 底面其中錢散區鄰接該溝槽之未被絕緣塾層覆蓋的側 綠〇 18.如申請專利範圍第17項所述之記憶體裳置,其中 該阻P早層覆盖該擴散區的側壁。 19·如中明專利範圍第15項所述之記憶體裝置,立中 更包括一魏物層,形成於該溝槽之未被該絕緣 塾層覆盖的側壁上,且鄰接該擴散區。 如申明專利範圍第19項所述之記憶體裝置,1中 線更包括一擴散源層,形成於該溝槽之未被該絕緣· a 1瓜的側壁上’ _§_介於該_化物層和該擴散區之間。 .如申《月專利範圍第15項所述之記憶體裝置,其中 該導電插塞包括金屬或多晶矽。 八 22. 如申請專利範圍第15項所述之記憶體裝置,其中 該導電層為金屬。 23. 如申請專利範圍第15項所述之記憶體裝置,其中 該阻障層包括鈦、氮化鈦或其組合。 9095-A34433TWF 22 201117358 24. 如申請專利範圍第15項所述之記憶體裝置,更包 括一覆蓋層,形成於該溝槽中,且覆蓋該導電插塞。 25. 如申請專利範圍第17項所述之記憶體裝置,其中 該絕緣塾層包括一氧化層、一氮化物層或其組合。 26. 如申請專利範圍第20項所述之記憶體裝置,其中 該擴散源層包括摻雜多晶矽。 27. 如申請專利範圍第15項所述之記憶體裝置,其中 該導電層與該溝槽之間設有另一阻障層。 φ 28.—種電子裝置的製造方法,包括下列步驟: 提供一基板; 於該基板中形成一溝槽; 於該溝槽中形成一導電層,覆蓋該溝槽的底面和部分 側面,該導電層具有鄰接該溝槽側壁的一凹陷; 於鄰接該凹陷的部分該基板中形成一擴散區; 順應性於該溝槽中形成一阻障層,覆蓋該導電層;以 及 • 於該溝槽中形成一導電插塞,填入該凹陷,且覆蓋該 擴散區的側壁。 29. 如申請專利範圍第28項所述之電子裝置的製造方 法,其中形成該導電層的步驟之前更包括順應性於該溝槽 的側壁和底面上形成一絕緣墊層。 30. 如申請專利範圍第29項所述之電子裝置的製造方 法,其中形成該導電層的步驟更包括: 全面性形成一導電材料,並填入該溝槽;以及 進行一回蝕刻製程,移除該基板上方和部分位於該溝 . i 9095-A34433TWF 23 201117358 槽中的導電材料; 口,順Π生於該溝槽中形成一硬遮罩結構,其具有-開 ,以暴露出部分該導電材料;以及 点且二Γ未被該硬遮罩結構覆蓋的部分該導電材料,以形 成具有该凹陷的該導電層。 H如申清專利範圍第30項所述之電子裝置的製造方 法,其中形成該擴散區的步驟之前更包括: =除從凹陷暴露絲的該部分該絕緣㈣,以暴露出 該溝槽的部分側壁;以及 一 移除該硬遮罩結構。 ^2,如申料·圍第3G項所狀電子裝置的製造方 ㈣L中形成該導電層的步驟之前更包括順應性於該漢槽 勺侧土和底面上形成另一阻障層。 33.如申請專利範㈣%項所述之電子裝置的製造方 ',其中形成該硬遮罩結構的步驟更包括: 順應性於該溝槽中形成一下層之第一介電層和一上 層之弟二介電層; ^ 方向對δ亥第一介電層進行一離子植入步驟,以於 該第一 電層形成一摻雜區和一非摻雜區; 、二*進行濕蝕刻製程,移除該非掺雜區,直到暴露出部 分該第一介電層為止;以及 ' —進行乾钱刻製程,移除未被姓刻後的該第二介電層 覆盍的該第一介電層,以形成硬遮罩結構。 、34.如申請專利範圍第28項所述之電子裝置的製造方 法’其中形成該擴散區的步驟更包括: 9095-A34433TWF 24 201117358 利用氣相摻雜方式,將含有摻質的一氣體從 露的側壁注人部分縣板中,㈣成該擴散區。 * 、35’如申凊專利範圍第28項所述之電子裝置的製造 ^其:形成該擴散區的步驟之前更包括於該溝槽的側壁 上形成一擴散源層。 ^如帽翻範_ 35項所叙好裝置的製造方 、〃中該擴散區鄰接該擴散源層。 法H如申明專利^圍第36項所述之電子裝置的製造方 Ϊ料IT成該阻障層的步驟之前更包括於該溝槽中形成 夕匕物層,且覆蓋該擴散源層的侧壁。 法,jlH明專利範圍第33項所述之電子裝置的製造方 ^中該第-介電層和該第二介電層為不同的材質。 法,盆中H明專利祀圍第38項所述之電子農置的製造方 層為未層包括氧化層或氮化層,該第二介電 法 ㈣28項騎之電子裝置的製造方 /、中該導電插塞包括金屬或多晶矽。 法 並中=申°月專利乾圍第28項所述之電子裝置的製造方 具中該導電層為金屬。 42·如申請專利範圍 法,其中該雷;胜^ 所述之電子裝置的製造方 元線。 動態隨機存取記憶體晶胞的一位 9095-A34433TWF 25a substrate; at least the sidewall is formed in the substrate, having a vertical at least one word line formed along the first direction in the substrate, the word lines being disposed on the pair of vertical transistors And the at least one element line is formed along a second direction different from the first direction; in the substrate; the groove is located below the pair of vertical transistors and borrows Formed on a portion of the substrate adjacent to the sidewall of the trench, the m-day (four)-secret region of the substrate, the towel of the bit 9090-A34433TWF 21 201117358 includes: a cladding layer covering the trench a bottom surface of the trench, the conductive layer having a recess such that the diffusion region is exposed from the recess, and a V-electrode plug fills the recess and covers a sidewall of the diffusion region, wherein the conductive plug and the conductive layer There is a barrier layer between them. 16. The memory device of claim 15, further comprising at least one capacitor electrically contacting a source region of the vertical transistor. The memory device of claim 15, wherein the 7L line further comprises an insulating layer covering the sidewall and the bottom surface of the trench, wherein the money gap is adjacent to the trench. The side green raft covered by the insulating enamel layer 18. The memory body according to claim 17, wherein the early layer of the resisting P covers the side wall of the diffusion region. The memory device of claim 15, wherein the memory device further comprises a wafer layer formed on the sidewall of the trench not covered by the insulating layer and adjacent to the diffusion region. The memory device according to claim 19, wherein the first center line further comprises a diffusion source layer formed on the sidewall of the trench that is not insulated by the insulating layer _§_ Between the layer and the diffusion zone. The memory device of claim 15, wherein the conductive plug comprises a metal or polysilicon. 8. The memory device of claim 15, wherein the conductive layer is a metal. 23. The memory device of claim 15, wherein the barrier layer comprises titanium, titanium nitride, or a combination thereof. The memory device of claim 15 further comprising a cover layer formed in the trench and covering the conductive plug. 25. The memory device of claim 17, wherein the insulating germanium layer comprises an oxide layer, a nitride layer, or a combination thereof. 26. The memory device of claim 20, wherein the diffusion source layer comprises doped polysilicon. 27. The memory device of claim 15, wherein another barrier layer is disposed between the conductive layer and the trench. Φ 28. The manufacturing method of the electronic device comprises the steps of: providing a substrate; forming a trench in the substrate; forming a conductive layer in the trench covering the bottom surface and a portion of the side surface of the trench, the conductive The layer has a recess adjacent to the sidewall of the trench; a diffusion region is formed in the substrate adjacent to the recess; a barrier layer is formed in the trench to cover the conductive layer; and in the trench A conductive plug is formed to fill the recess and cover the sidewall of the diffusion region. 29. The method of fabricating an electronic device according to claim 28, wherein the step of forming the conductive layer further comprises forming an insulating underlayer on the sidewalls and the bottom surface of the trench. 30. The method of manufacturing the electronic device of claim 29, wherein the step of forming the conductive layer further comprises: forming a conductive material in a comprehensive manner and filling the trench; and performing an etching process, shifting In addition to the substrate above and partially located in the trench. i 9095-A34433TWF 23 201117358 conductive material in the trench; the port is formed in the trench to form a hard mask structure, which has - open to expose a portion of the conductive a material; and a portion of the conductive material that is not covered by the hard mask structure to form the conductive layer having the recess. The method for manufacturing an electronic device according to claim 30, wherein the step of forming the diffusion region further comprises: = removing the portion (4) of the portion of the wire from the recess to expose the portion of the trench a sidewall; and a removal of the hard mask structure. ^2, as in the manufacturing method of the electronic device of the 3G item, the step of forming the conductive layer in L further includes conforming to form another barrier layer on the side soil and the bottom surface of the Hankor spoon. 33. The method of claim 4, wherein the step of forming the hard mask structure further comprises: conforming to forming a first dielectric layer and an upper layer in the trench. a second dielectric layer; ^ an ion implantation step on the first dielectric layer of the δH to form a doped region and an undoped region in the first electrical layer; Removing the undoped region until a portion of the first dielectric layer is exposed; and '- performing a dry etching process to remove the first dielectric layer that is not covered by the second dielectric layer after the last name The electrical layer forms a hard mask structure. 34. The method of manufacturing an electronic device according to claim 28, wherein the step of forming the diffusion region further comprises: 9095-A34433TWF 24 201117358 using a gas phase doping method to remove a gas containing a dopant from the dew The side wall is in the part of the county plate, and (4) into the diffusion zone. *, 35' The manufacture of an electronic device as claimed in claim 28, wherein the step of forming the diffusion region further comprises forming a diffusion source layer on the sidewall of the trench. ^ As for the manufacturer of the device, the diffusion region is adjacent to the diffusion source layer. The method of manufacturing the electronic device of the electronic device described in claim 36, before the step of forming the barrier layer, further comprises forming a layer of the cerium in the trench and covering the side of the diffusion source layer. wall. The method of manufacturing an electronic device according to Item 33 of the patent application of the present invention, wherein the first dielectric layer and the second dielectric layer are made of different materials. In the method of the invention, the manufacturing layer of the electronic farm described in Item 38 of the patent application is an uncoated layer including an oxide layer or a nitride layer, and the second dielectric method (4) is a manufacturer of 28 electronic devices for riding. The conductive plug includes a metal or polysilicon. In the manufacturing method of the electronic device described in Item 28 of the Japanese Patent Application Serial No. 28, the conductive layer is a metal. 42. If the patent scope law is applied, the manufacturing line of the electronic device of the mine; One of the dynamic random access memory cells 7095-A34433TWF 25
TW98137190A 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device TWI418018B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137190A TWI418018B (en) 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137190A TWI418018B (en) 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device

Publications (2)

Publication Number Publication Date
TW201117358A true TW201117358A (en) 2011-05-16
TWI418018B TWI418018B (en) 2013-12-01

Family

ID=44935211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137190A TWI418018B (en) 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device

Country Status (1)

Country Link
TW (1) TWI418018B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456699B (en) * 2011-06-08 2014-10-11 Winbond Electronics Corp Bit line structure and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW388877B (en) * 1997-04-23 2000-05-01 Toshiba Corp Semiconductor device and its manufacturing process
JP2000012678A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Structure of semiconductor device and manufacture thereof
DE10205077B4 (en) * 2002-02-07 2007-03-08 Infineon Technologies Ag Semiconductor memory cell with a trench and a planar selection transistor and method for their preparation
TW587305B (en) * 2003-05-30 2004-05-11 Nanya Technology Corp A method for controlling the upper width of a trench
TWI229940B (en) * 2004-01-30 2005-03-21 Nanya Technology Corp Memory cell with a vertical transistor and fabrication method thereof
JP4781673B2 (en) * 2004-12-28 2011-09-28 ルネサスエレクトロニクス株式会社 Semiconductor memory device
US7303964B2 (en) * 2005-04-25 2007-12-04 Spansion Llc Self-aligned STI SONOS
US7399673B2 (en) * 2005-07-08 2008-07-15 Infineon Technologies Ag Method of forming a charge-trapping memory device
JP4665665B2 (en) * 2005-08-25 2011-04-06 株式会社豊田自動織機 Industrial vehicle cargo handling control device
JP4446202B2 (en) * 2006-09-22 2010-04-07 エルピーダメモリ株式会社 Semiconductor device and manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456699B (en) * 2011-06-08 2014-10-11 Winbond Electronics Corp Bit line structure and method for manufacturing the same

Also Published As

Publication number Publication date
TWI418018B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
CN109328397B (en) Multi-layer memory stack structure containing two types of pillar structures
TWI329351B (en) Silicided recessed silicon
US10204913B2 (en) Method for forming buried bit line, semiconductor device having the same, and fabricating method thereof
CN108028256B (en) Robust nucleation layer for enhanced fluorine protection and stress reduction in 3D NAND word lines
TWI323511B (en) Semiconductor device having a recess channel transistor
TWI242262B (en) Integrating n-type and p-type metal gate transistors
US7564084B2 (en) Dual-gate dynamic random access memory device having vertical channel transistors and method of fabricating the same
JP5739210B2 (en) Semiconductor structure and manufacturing method thereof
US10991699B2 (en) Semiconductor memory devices
US20070063244A1 (en) Trench metal-insulator-metal (mim) capacitors and method of fabricating same
WO2015126664A1 (en) A multilevel memory stack structure and methods of manufacturing the same
CN109427900A (en) Semiconductor devices and its manufacturing method including channel pattern
US20150111360A1 (en) Method of manufacturing a semiconductor device
TW201210000A (en) Semiconductor memory device having vertical transistor and buried bit line and method for fabricating the same
TWI306670B (en) Memory device
TW201338023A (en) Method for fabricating transistor gate and semiconductor device comprising transistor gate
US9960168B2 (en) Capacitor strap connection structure and fabrication method
TW200917247A (en) Thickened sidewall dielectric for momory cell
TW201117359A (en) Buried bit line process and scheme
TW201117358A (en) Electronic device and fabrication method thereof and memory device
CN113437070A (en) Semiconductor device and method of forming the same
TWI469299B (en) Buried bit line process and scheme
US8866261B2 (en) Self-aligned silicide bottom plate for eDRAM applications by self-diffusing metal in CVD/ALD metal process
WO2023245803A1 (en) Semiconductor structure and manufacturing method therefor, and memory
TWI425521B (en) Method of forming bit line