TW201116866A - Method for manufacturing a tunable long-period fiber grating - Google Patents

Method for manufacturing a tunable long-period fiber grating Download PDF

Info

Publication number
TW201116866A
TW201116866A TW98137211A TW98137211A TW201116866A TW 201116866 A TW201116866 A TW 201116866A TW 98137211 A TW98137211 A TW 98137211A TW 98137211 A TW98137211 A TW 98137211A TW 201116866 A TW201116866 A TW 201116866A
Authority
TW
Taiwan
Prior art keywords
fiber
layer
photoresist layer
photoresist
variable length
Prior art date
Application number
TW98137211A
Other languages
Chinese (zh)
Other versions
TWI394993B (en
Inventor
Chia-Chin Chiang
Hao-Jhen Chang
Original Assignee
Nat Kaohsiung University Of Applied Scienses
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Kaohsiung University Of Applied Scienses filed Critical Nat Kaohsiung University Of Applied Scienses
Priority to TW98137211A priority Critical patent/TWI394993B/en
Publication of TW201116866A publication Critical patent/TW201116866A/en
Application granted granted Critical
Publication of TWI394993B publication Critical patent/TWI394993B/en

Links

Abstract

A method for manufacturing a tunable long-period fiber grating, comprising the steps of: peeling off a coating of a fiber and reducing a thickness of a cladding of the fiber by etching; forming a metal layer on a surface of a substrate; covering at least a photoresist on a surface of the metal layer and performing a soft baking procedure; exposing the photoresist and re-heating up the photoresist after the exposing step; removing the un-exposed photoresist with a developer to form a lower geometric structure on the surface of the metal layer; fixing the fiber above the lower geometric structure; re-covering at least a photoresist on the fiber and above the lower geometric structure and exposing the photoresist to form an upper geometric structure stack above the lower geometric structure, such that the upper and lower geometric structures form a photoresist with a sawtooth-like geometric structure on an outer surface of the fiber; heating up the fiber and the photoresist on the outer surface of the fiber; separating the photoresist on the outer surface of the fiber from the metal layer with a separation medium, thereby obtaining the tunable long-period fiber grating.

Description

201116866 六、發明說明: 【發明所屬之技術領域】 =明係關於-種可崎長軸光纖光栅的製作方 其疋-種提升可調變長週期光纖光柵尺寸精度的製 作万法。 【先前技術】 請參照第】圖所示,習用可調變長週期光纖光桃的製 =法主要包含下列步驟:職_—級最外層之一纖 ί層(㈤ing)’使該光纖之-披覆層(dadding)形成外 路接著直接於該光纖之披覆層上均句塗覆一光阻層, 並加熱該姐層進行軟烤;_紫外統合—鮮對完成 軟烤之該局部組層進㈣光,使該受料光之局部光阻 層產生光分子聚物鏈結,同時該光纖之—纖芯(.)在 受到紫外光照射後亦形成數個具有不同折射率的部位; 又,藉由-顯騎賴未曝光之総層去除,如此該光阻 層即可於該光纖之賴層场成―保制;接著,利用— 餘刻液觸域未受縣護層覆蓋的披制進賴刻,以 便於該光纖之披㈣上烟形成凹槽結構;最後,再利用 另-㈣m去除該賴層,藉此在絲纖外表面形成具有 錯齒狀幾何結構的可調變長週期光絲柵成品。 由於習料調變長勒練鎌的t作方法主要係 多次利用該顯影液及不_㈣液直接從該光阻層表面向 該光纖纖芯#_方絲成職織狀幾何構造,且該顯 影液細時間係直接影響到魏齒狀幾何構造的尺寸,再 201116866 者由於蝕刻時間與蝕刻深度的對 類、光阻材質及其他環境參數(例如: 時間的掌握極為困難,導致在羽 、口此蝕刻 構造時其成品尺寸容易產生偏;,特;是 於各齒部之間的凹部)時== 成触_間過長而使該光纖之披覆層受損,或 短而造成該凹部深度不足等尺寸精度 二二 述原因,前述可調變具调#π , 研2基於上 以改善之必要。又。从'纖光栅的製作方法碟實有加 【發明内容】 法,2種可調變長週期光纖光柵的製作方 本發明之發明週期光纖光拇成品的尺寸精密度,為 法,種可崎魏期賴光栅的製作方 本發明之另°°又長週期光纖光栅成品的侧靈敏度,為 本發明之另一目的。 法,提供—種可調變長週期光纖光柵的製作方 凹邻、1二求在光纖外周面形成具有不同尺寸之齒部及 凹邛,為本發明之再—目的。 法,係提供—種可調變長週期光纖光柵的製作方 狀幾二&至〃 #光阻材料堆4形成光纖外周面的鑛齒 狀幾储造’為本發明之再一目的。 a.猫!重可D周文長週期光纖光拇的製作方法,其步驟包 、去除I纖的纖衣層,並伽彳誠該光纖的披覆層 201116866 ’予度至1〇至125⑽以物理或化學氣相沉 材表面形成一金屬層;在該貝式在基 材料,以形成至少一光阻層;:=少一種光阻 阻層中的溶劑,並== 在完成—光罩對該光阻層進行曝光,並 由光阻層至玻璃轉換溫度以上;經 n去除該未曝光的局部光阻層,以使該光阻層顯 何構造;_域以於該下幾何構造上;再 主覆至>、—層的另—光阻層於該光纖及下幾何構造上 h且對光阻層進行曝光顯影,以便在該下幾何構 、方隹宜开》成一上幾何構造,藉此使該上幾何構造與該 2歲何構造共同在該光纖外表面構成鋸齒狀之幾何構造; 且…、該光纖及位於光纖外表面之幾何構造,以揮發各該光 離層中的洛劑,並讓光阻流動填滿空隙;最後,利用一分 π液使该光纖外表面之光阻層與該金屬層相互分離,以取 件可調變長軸光纖光柵成品。 【實施方式】 為讓本發明之上述及其他目的、特徵及優點能更明顯 易丨董下文特舉本發明之較佳實施^丨,並配合所附圖式, 作詳細說明如下: 睛參照第2圖所示,本發明第一實施例之可調變長週 /月光纖光柵的製作方法係包含下列步驟:一光纖成形步驟 1 一金屬層成形步驟S2、一下光阻成形步驟S3、一軟 烤步驟S4、一曝光步驟.S5、一顯影步驟S6、一光纖固定 201116866 步驟S7、一上光阻成形步驟S8、一硬烤步驟S9及一分割 步驟S10。201116866 VI. Description of the invention: [Technical field to which the invention pertains] = The production method of the singular-type long-axis fiber grating is a method for manufacturing the dimensional accuracy of the adjustable variable-length fiber grating. [Prior Art] Please refer to the figure]. The method of using the variable length-period fiber optic peach mainly includes the following steps: one of the outermost layers of the fiber layer ((5) ing) The dadding layer forms an external path and then directly coats a photoresist layer on the coating layer of the optical fiber, and heats the layer to soft-bake; _UV integration-fresh pair completes the local group of soft baking Layering (four) light, the partial photoresist layer of the received light generates a photopolymeric polymer chain, and at the same time, the core (.) of the optical fiber forms a plurality of portions having different refractive indexes after being irradiated by ultraviolet light; Moreover, by removing the unexposed layer of germanium, the photoresist layer can be formed in the field of the optical fiber; and then, the contact layer of the residual liquid is not covered by the county cover. Dipping into the etch, so that the fiber is embossed (4) to form a groove structure; finally, the other layer is removed by using another - (4) m, thereby forming an adjustable deformation on the outer surface of the fiber with a wrong tooth geometry. Long-period light wire grid finished product. Because the t-modulation method of the material is changed, the developing solution and the non-(iv) liquid are directly used from the surface of the photoresist layer to the fiber-optic core #_方丝的-woven geometric structure, and The developer fine time directly affects the size of the Wei tooth geometry, and in 201116866, due to the etching time and etching depth, the photoresist material and other environmental parameters (for example: time is extremely difficult to master, resulting in feather, When the etching structure is formed, the size of the finished product is liable to be biased; when it is a recess between the tooth portions, == the contact between the teeth is too long to damage the coating layer of the optical fiber, or short The dimensional accuracy of the recess is insufficient, such as the dimensional accuracy, and the above-mentioned adjustable variable is adjusted to #π, and the research 2 is based on the improvement. also. From the method of making a fiber grating, the invention has a method, and two kinds of adjustable variable length fiber gratings are produced. The dimensional precision of the optical fiber optical thumb product of the invention of the invention is a method, and the species can be The side sensitivity of the further long-period fiber grating of the present invention is another object of the present invention. The method provides a method for manufacturing a variable length-period fiber grating, and forming a tooth portion and a concave portion having different sizes on the outer peripheral surface of the optical fiber for the purpose of the present invention. The method of providing a variable length-period fiber grating is a further object of the present invention. The photo-resistive material stack 4 forms a mineral-shaped reservoir of the outer peripheral surface of the optical fiber. a. Cat! The method of making the D-week long-period fiber optic light thumb, the step of packing, removing the fiber layer of the I fiber, and the coating of the fiber of the fiber, 201116866 'to the degree of 1 to 125 (10) to the physics Or forming a metal layer on the surface of the chemical vapor deposition material; forming the at least one photoresist layer in the base material;: = less solvent in the photoresist layer, and == completing - the mask The photoresist layer is exposed and passed from the photoresist layer to the glass transition temperature; the unexposed partial photoresist layer is removed by n to make the photoresist layer exhibit a structure; the domain is for the lower geometry; The other photoresist layer is overlaid onto the optical fiber and the lower geometric structure, and the photoresist layer is exposed and developed, so as to form an upper geometric structure in the lower geometry and the square. This causes the upper geometry to form a zigzag geometry on the outer surface of the fiber together with the 2 year old structure; and... the fiber and the geometry on the outer surface of the fiber to volatilize the agent in the photoion layer And let the photoresist flow fill the gap; finally, use a π liquid to make the fiber outside The surface of the photoresist layer and the metal layer is separated from each other, to pick tunable fiber grating becomes long axis of the finished product. The above and other objects, features, and advantages of the present invention will become more apparent from the description of the preferred embodiments of the invention. 2, the manufacturing method of the variable length long-period/month fiber grating of the first embodiment of the present invention comprises the following steps: a fiber forming step 1 a metal layer forming step S2, a lower photoresist forming step S3, and a soft The baking step S4, an exposure step S5, a development step S6, a fiber fixing 201116866 step S7, an upper photoresist forming step S8, a hard baking step S9 and a dividing step S10.

请參照弟2及3圖所示,本發明之光纖成形步驟S1 係預先去除至少一光纖1之一纖衣層U之後,再利用一蝕 刻液(BOE)蝕刻該光纖1之一披覆層丨2,以縮減該彼覆 層12的厚度為1〇至125 其中該坡覆層12的厚度最 佳為85 μιη ’藉此提升該光纖1在相對量測應變量或其他 物理量時的靈敏度。 請參照第2及4圖所示,本發明之金屬層成形步驟S2 係在一基材2表面形成一金屬層3。更詳言之,該基材2 較佳係選自石夕晶圓基材或玻璃基材,本實施例選擇以矽晶 圓作為該基材2 ’並預先對該基材2表面進行表面處理, 例如:以乙醇或丙酮清潔該基材2表面,以去除該基材2 表面的雜質’提升與該金屬層3之間的附著性;接著,利 用物理氣相沉積(PVD)或化學氣相沉積(CVD)等方式 於D玄基材2表面形成該金屬層3,本實施例選擇將銅以藏 鑛(SpimeO方式形成於該基材2表面,⑽成—銅層作 為該金屬層3。 之下光阻成形步驟S3係藉由旋轉塗覆(郎Referring to Figures 2 and 3, the fiber forming step S1 of the present invention removes at least one fiber layer U of at least one optical fiber 1 and then etches one of the fibers 1 by an etching solution (BOE). 2, in order to reduce the thickness of the cladding layer 12 from 1 〇 to 125, wherein the thickness of the slope layer 12 is preferably 85 μm, thereby improving the sensitivity of the optical fiber 1 when relatively measuring the strain or other physical quantity. Referring to Figures 2 and 4, the metal layer forming step S2 of the present invention forms a metal layer 3 on the surface of a substrate 2. More specifically, the substrate 2 is preferably selected from a stone substrate or a glass substrate. In this embodiment, a germanium wafer is selected as the substrate 2' and the surface of the substrate 2 is surface-treated in advance. For example, cleaning the surface of the substrate 2 with ethanol or acetone to remove the impurities on the surface of the substrate 2 to enhance adhesion with the metal layer 3; then, using physical vapor deposition (PVD) or chemical vapor phase The metal layer 3 is formed on the surface of the D-base substrate 2 by deposition (CVD) or the like. In this embodiment, copper is selected as a deposit (Spime O is formed on the surface of the substrate 2, and (10) is formed into a copper layer as the metal layer 3. The photoresist forming step S3 is performed by spin coating (Lang)

…光阻材料均勻旋伟於該金 一下光阻層4,且竹*_4目士 ㈣以升J 1〇圖所示)。另外' 有—預定厚度Ti (如1 負M1SU.8 _,但誠輯料並不侷限刪 ’亦可廷擇為其他光阻材科’例如: ” K—k747或JSRmN等。 卿HR觀⑵、 201116866 溫产ίϊΓΓ軟烤步驟S4係加熱該基材2上之光阻層的 兮ΐ光阻> 4的麵轉換溫度(Tg)以上,以揮發殘留於 内之溶劑。更詳言之,此時本實施例係先對 分為;進T軟烤步驟% ’其中本發明之軟烤步驟 W 1 —階段係預紐過加熱元件將位於該基 溫产:Γ之:光阻層4加熱至su-8光阻材料的玻璃轉換 :二p ,由於該SU-8的玻璃轉換溫度大約為55ΐ,故 糸Γ=]在該軟烤步驟S4的第—階段係選擇預先將該下 光阻層4的溫度㈣至抗,使得訂級層 =體狀,以便該下植層4可憑藉自身的流動性埴補^下 2層4表㈣不平整缺陷,提升該下光阻層*的表面平 至:Ϊ路第—階段係進一步再次提升該下光阻層4的 狐又至揮發溫度以上,該揮發溫度係指殘留於光阻 之命劑的可揮發溫度’本實闕之第二階段麵將該下 阻層4的/m度加熱至坑,以便殘留於該下光阻層4中 办劑揮發至空氣中,並使該下光阻層4硬化成形。、 請麥照第2及5圖所示,本發明之曝光步驟%係利 用i外光對轨層進行曝光’並在^祕光後再次加熱光 =層的溫度至其自身的玻璃轉換溫度以上。更詳言之’,此 時士實施_先職下光阻層4進行該曝辭驟%,其中 本貝%例係選用鄰接式印像機(卩皿㈤❼ρ如如)提供具 有特^波長之料光’並配合具有輯形幾何圖樣之一光 罩,1外光係穿賴光罩之後投紐該下光阻層*,使該 下光阻層4内的部分光分子聚物鏈結。接著,再次將完成 曝光之該下光阻層4的溫度加熱至其自身的玻璃轉換溫度 201116866 以上 進行曝光後烘烤動作。 其中該曝光後供烤動 將完成曝光之下光阻層’弟-階段係㈣ 提升該下光阻層4的夺面亚5C,亚維持1分鐘,以 步再次加熱該下光阻層4 至^ ’,第f階段係進一 以便殘留於該下光阻層4 : ,且維持8分鐘, 光阻層4硬化挪纟溶解發至空氣中,使該下 能量,促使梅子提供該下光阻層4足夠之 析度。 重新排列,進而平均駐波效應並增加解 月i -、第2及6圖所示,本發明 一 由一顯影液错核^丄 貞〜轉S6係經 何構造之該光阻阻層’以便光阻層形成具有幾 成曝光步扣之^7言之’糾本實施例係先對已完 該顯影液谓賴該㈣㈣86,其中 EPD2000 f X 、又白用的頒影液(例如:EPD1000或 合招士丄、)’由於該下光阻層4受到紫外光照射的部位 鏈結,使得該顯影液僅能將未形成光分 ) 八、、”的忒°卩分下光阻層4(即未曝光的下光阻層4 光阻二除,藉此殘留於該金屬層3表面的下 該 ^ 對應该光罩之幾何圖樣顯影成具有幾何構造之 二下光阻層4 (以下簡稱下幾何構造),其中本實施例之 成何構造轉間距排列的矩形塊。 下 ^ ^ BS ^ λ — 么…、,、弟2、7及8圖所示,本發明之光纖固定步骤 —7係將完成該光纖成形步驟 s 1之至·少一光纖1經由〜固 、 堆宜置放於該金屬層3及下幾何構造上方。其中! 201116866 。玄=夂組件5具有一定位座51及二定位座標52,該光纖工 一柒係固定於該定位座51上,而該定位座標52則對位設 置於靠近該光纖1侧邊的位置’該定位座標52用以標定該 光纖1與該下幾何構造之間的相對位置,以避免後續製程 產生對位上的偏差。 /請參照第7至u圖所示,本發明之上光阻成形步驟 S8係於該光纖1及供該光纖1固定的光阻層上再次選擇塗 覆相同於該下光阻層4之光陴材料,以形成至少一上光阻 層6,並對該上光阻層6重複前述步驟S4至S6 ,以便該 上光阻層6同樣形成具有幾何構造的上光阻層6堆疊於該 下幾何構造上。更詳言之,本實施例係再次以旋轉塗佈方 式於該光纖1及下光阻層4上塗覆形成該上光阻層6,且 該上光阻層6具有一預定厚度T2,其中該上光阻層6之厚 度T2大於該下光阻層4之厚度T1,但該上光阻層6頂面 至该光纖1軸心之間的距離R1等於該下光阻層4底面至 該光纖1軸心之間的距離R2。.接著,對該上光阻層6重複 前述之軟烤步驟S4、曝光步驟S5及顯影步驟S6,進而使 該具有幾何構造的上光阻層6 (以下簡稱上幾何構造)對 位顯影於該下幾何構造上。由於該上幾何構造係為相同於 該下幾何構造形成之等間距排列的矩形塊,且該上幾何構 造與該下幾何構造具有相同之俯視形狀,使得本實施例形 成於該光纖1外表面的光阻層形狀在側視角度係為等間距 的凹凸鋸齒狀(如第12圖所示)。其中,在重複進行該曝 光步驟S5時係透過該定位座標52確認該上光阻層6所欲 曝光之部位與該下幾何構造之間的相對位置是否對齊,以 201116866 確保该上幾何構造能夠精準堆疊於該下幾何構迻的上方 ,明之硬烤步驟S9係將完成該上光^形步= =1、、1及上、下光阻層6、4再次加熱至該揮發溫度以上’ 本貫施例之硬烤步驟S9則選擇將該光纖丨及上、下光阻声 6、4加熱至15(rc,以便殘留於該上、下光限層64中二 :揮:去:’且更可使該上、下光阻層6、4轉變成微流 胆狀’進-步填補該上、下光阻層6、4 _微小孔隙。另 外/’該硬烤步驟S9可選擇實施於該剝離步驟⑽之前或 ^後,_烤步驟S9的實施咖點料受本實施例所偈 請^第8及12圖所示’本發明之分割步驟⑽係 利用一分離液使該下光阻層4另 層及讀座51卿該金屬層 3 ’以A传该可調變長週期光纖光栅的成品。更詳言之 步驟S10分為二階段,其中第一階段係預先將 =屬層3、下光阻層4及定位座51浸潰於該分離液中, 離液較佳選自氯化鐵溶液,藉此讓該下光阻層4 51脫離該金屬層3。再者,由於本發明在該光纖 係利用該定位座51定位該光纖丨,因此需進 位^础肖化學妓潰絲理_方式雜光纖1自 =的ΐΓ取下’亚去除殘餘在該光纖1或其表面幾何構 ‘ =!二,以獲得該可調變長週期光纖光柵的成品。其 顯影液等,該物理切割二二:=、光阻去除液或 等方式。 万去則可選自雷射切割或刀具切割 本《明可_長㈣光纖光柵之製作方法的主要技 201116866 ,特徵在於:本發縣直接於該基材2上預先成形具有孩 定厚度的該下幾何構造,接著光纖丨及上幾何構造對 位堆疊於該下幾何構造上方,使具有_㈣何構造的光 阻層得以成形於該光纖丨外表面。由於本發明之上、下光 =層6、4可預先在成形該上、下光阻層6、4時分別精嘁 ί二制其厚度’並在顯影時直接去除該未曝光的全部光隊 層,因此可控綱軸狀幾何構造其各齒㈣端至該光纖 1轴、具有相同的距離,且該銀齒狀幾何構造的各凹部(位 :各w之間的凹。卩)深度等同於該齒部的厚度(即光卩旦層 厚度)。 、由此可知’使用者可依照所需該鑛#狀幾何構造的尺 t預先在進行該下植成形步驟S3及上光阻成形步驟S8 時控制該下、上光阻層4、6的厚度,即可進—步控制該鑛 歯狀幾何構造維持麵f的尺寸,㈣提升後續量測應用 的量測精確枓。 ^ a ㈣之光纖1預先利祕财式縮減該 復曰12的厚度,藉此提升該光纖丨在相對制應變量或 其他物理量時的測量靈敏度。 之可:第14至25圖所不’其揭示本發明第二實施例 ,可,長週期光纖光柵的製作方法。相較於第一實施 二=一貫施例之上、下光阻層6、4係為複數層結構,且 二、下先阻層6、4的材質可選擇為不同的光阻材料。 更评吕之,在本實施例完成前述步驟W、s2之後 驟S3至S6預先於該金屬層3表面形成一第“ W層4,並對該第一下光阻層斗,進行軟烤及曝光顯影的 201116866 程序,以便該第一下光阻層4,在該 幾何構造之第一下光阻層4, _ θ 3上顯影成具有 如第Μ圖所示)。接著,請泉:::二稱第-下幾何構造, 重複前述步驟S3至S6於兮證’、、、 及16圖所示,再次 第二下光阻層4,,,並在進層4’上堆疊塗佈一 _—下細㈣,在 造及第-F幾何構造具有㈣之俯;)以―下各何構 光阻層相互堆4而成之下幾何構造。/彳’以構成複數個 層4,ί ^ \8Λ21圖所示’完成該第一下光阻 步驟S7 且S 4之後,本實施例麵行該光纖固定 节上1固定賤下幾何結構上,並接著進行 二2细彡步心8在絲纖丨及下幾何結構上堆疊塗佈 光阻層6’,並對該第一上光阻層6,進行軟烤及# 光顯影的辦L以__ 口人烤及曝 更°亥弟一上光阻層6,在該下幾何構造上 成具有幾何構造之第—上光阻層6,(以下簡稱第 ^上幾何構造);又,請參照第22至24圖所示,再次重複 ^上光阻成形步驟S8麟第-上光阻層6,上堆疊塗佈一 第二上光阻層6”,並在進行軟烤及曝光顯影的程序後,在 忒第一上幾何構造上堆疊形成具有相同幾何構造之第二上 光阻層6 (以下簡稱第二上幾何構造),以構成複數個光 阻,相互堆疊而成之上幾何構造,其中該上幾何構造與該 下4何構造係進—步共同於該光纖丨外周面構絲齒狀幾 何結構之光阻層。 最後,請參照第25圖所示,於該光纖1外周面完成, 201116866 6,及第弟T光阻層4,、第二下光阻層4,,、第—上光阻層 步驟S9上光阻層6”的疊置成形程序後,本實施例係依照 二僅n+至810對該光纖1及光阻層進行硬烤及切割,進 而獲㈣可調變長週期光纖光柵的成品。...the photoresist material is evenly swirled over the gold photoresist layer 4, and the bamboo *_4 mesh (four) is shown in liter J 1 )). In addition, 'there is a predetermined thickness Ti (such as 1 negative M1SU.8 _, but the compilation is not limited to the deletion) can also be selected as other photoresist materials 'for example: ” K-k747 or JSRmN, etc. Qing HR view (2) , 201116866 Warming, soft baking step S4 is to heat the surface switching temperature (Tg) of the photoresist layer of the photoresist layer on the substrate 2 to volatilize the solvent remaining in the solvent. More specifically, At this time, the embodiment is divided into two parts; the T soft baking step % 'where the soft baking step W 1 of the present invention is the stage pre-heating element will be located at the base temperature: Γ: the photoresist layer 4 is heated Glass conversion to su-8 photoresist material: two p, since the glass transition temperature of the SU-8 is about 55 ΐ, 糸Γ =] in the first stage of the soft baking step S4, the lower photoresist is selected in advance. The temperature of the layer 4 is (4) to the resistance, so that the ordering layer=body shape, so that the sub-planting layer 4 can compensate for the surface of the lower photoresist layer* by virtue of its own fluidity. Pingzhi: The road-stage is to further increase the fox of the lower photoresist layer 4 to above the volatilization temperature, which is the life of the photoresist. The volatilization temperature 'the second stage of the actual layer heats the /m degree of the lower resist layer 4 to the pit so that the remaining photoresist in the lower photoresist layer 4 is volatilized into the air, and the lower photoresist is caused The layer 4 is hardened and formed. As shown in Figures 2 and 5 of the photo, the exposure step % of the present invention exposes the rail layer by using the external light, and reheats the temperature of the layer to the temperature after the secret light. The glass transition temperature is above. In more detail, at this time, the implementation of the _ pre-employment photoresist layer 4 to perform the exposure of the %, in which the example of Benbee is the use of a neighboring printer (卩 (5) ❼ρ如如) Providing a material light having a specific wavelength and matching a reticle having a geometric pattern, and the outer light is passed through the reticle and then the lower photoresist layer* is applied to make a portion of the light in the lower photoresist layer 4 Molecular polymer chain. Then, the temperature of the lower photoresist layer 4 after exposure is again heated to its own glass transition temperature of 201116866 or more for post-exposure baking operation. The photoresist layer 'di-stage system (4) enhances the face of the lower photoresist layer 4, 5C, and maintains for 1 minute. Reheating the lower photoresist layer 4 to ^ ' in step, the f-stage is further extended to remain in the lower photoresist layer 4: and maintained for 8 minutes, and the photoresist layer 4 is hardened and dissolved to the air, so that The lower energy causes the plum to provide sufficient resolution of the lower photoresist layer 4. The rearrangement, and thus the average standing wave effect, and the increase of the solution i-, the second and sixth figures, the present invention is a core error ^丄贞~ 转S6 is the structure of the photo-resistive layer' so that the photoresist layer is formed with several exposure bumps. The corrective embodiment is the first to correct the developer (4) (four) 86 , in which the EPD2000 f X and the white-use illuminating liquid (for example: EPD1000 or sputum, '), because the lower photoresist layer 4 is exposed to ultraviolet light, the developing solution can only be formed. The light is divided into the photoresist layer 4 (ie, the photoresist layer 4 of the unexposed lower photoresist layer 4 is removed, thereby remaining under the surface of the metal layer 3, corresponding to the mask The geometric pattern is developed into a second photoresist layer 4 having a geometric structure (hereinafter referred to as a lower geometry), wherein the embodiment is Configuration arranged in rectangular blocks turn spacing. The lower part of the optical fiber fixing step 7 of the present invention is completed by the lower part of the optical fiber forming step -7, and the optical fiber 1 is passed through the solid state. The stack is preferably placed over the metal layer 3 and the lower geometry. among them! 201116866. The 夂=夂 assembly 5 has a positioning base 51 and two positioning coordinates 52. The optical fiber is fixed on the positioning base 51, and the positioning coordinate 52 is disposed in a position close to the side of the optical fiber 1 The positioning coordinates 52 are used to calibrate the relative position between the optical fiber 1 and the lower geometry to avoid deviations in the alignment of subsequent processes. / Referring to Figures 7 to u, the photoresist forming step S8 of the present invention is again applied to the optical fiber 1 and the photoresist layer fixed to the optical fiber 1 to selectively coat the light of the lower photoresist layer 4. a germanium material to form at least one upper photoresist layer 6 and repeating the foregoing steps S4 to S6 on the upper photoresist layer 6 so that the upper photoresist layer 6 is also formed with a geometrically-structured upper photoresist layer 6 stacked thereon Geometrically constructed. More specifically, in this embodiment, the upper photoresist layer 6 is coated on the optical fiber 1 and the lower photoresist layer 4 by spin coating, and the upper photoresist layer 6 has a predetermined thickness T2. The thickness T2 of the upper photoresist layer 6 is greater than the thickness T1 of the lower photoresist layer 4, but the distance R1 between the top surface of the upper photoresist layer 6 and the axis of the optical fiber 1 is equal to the bottom surface of the lower photoresist layer 4 to the optical fiber. 1 distance between the axes R2. Then, the soft-baking step S4, the exposing step S5, and the developing step S6 are repeated on the upper photoresist layer 6, and the upper photoresist layer 6 (hereinafter referred to as the upper geometric structure) having the geometric structure is aligned and developed. The lower geometry is constructed. Since the upper geometrical structure is the same rectangular block formed by the lower geometrical structure, and the upper geometrical configuration has the same planar shape as the lower geometrical configuration, the embodiment is formed on the outer surface of the optical fiber 1. The shape of the photoresist layer is an uneven pitch in the side view angle (as shown in Fig. 12). Wherein, when the exposure step S5 is repeated, it is confirmed through the positioning coordinates 52 whether the relative position between the portion to be exposed of the upper photoresist layer 6 and the lower geometry is aligned, and the upper geometric structure is ensured by 201116866. Stacked above the lower geometry shift, the hard baking step S9 will complete the glazing step = =1, 1 and the upper and lower photoresist layers 6 and 4 are again heated to above the volatilization temperature. The hard baking step S9 of the embodiment selects to heat the fiber 丨 and the upper and lower photoresists 6, 4 to 15 (rc, so as to remain in the upper and lower light limiting layers 64: wave: go: 'and more The upper and lower photoresist layers 6, 4 can be converted into a microfluidic shape to further fill the upper and lower photoresist layers 6, 4 _ tiny pores. In addition, the hard baking step S9 can be selectively implemented in the Before or after the stripping step (10), the implementation of the baking step S9 is subject to the present embodiment. The dividing step (10) of the present invention uses a separating liquid to make the lower photoresist layer. 4, the other layer and the reading block 51, the metal layer 3' transmits the finished product of the variable length-period fiber grating by A. More specifically, step S1 0 is divided into two stages, wherein the first stage is to first immerse the genus layer 3, the lower photoresist layer 4 and the positioning block 51 in the separation liquid, and the liquid separation is preferably selected from the ferric chloride solution, thereby allowing the The lower photoresist layer 4 51 is separated from the metal layer 3. Further, since the optical fiber system uses the positioning block 51 to position the optical fiber raft in the optical fiber system, it is necessary to carry out the chemical 妓 妓 妓 _ _ _ _ _ _ _ _ _ _ _ _ _ The undercut 'sub-removal residue in the fiber 1 or its surface geometry' =! 2 to obtain the finished product of the tunable variable-length fiber grating. Its developer, etc., the physical cut 22:=, photoresist The liquid removal or the like. The 10,000 can be selected from the laser cutting or cutting of the tool. The main technology of the method of manufacturing the Mingke_long (four) fiber grating is 201116866, which is characterized in that: Benfa County is pre-formed directly on the substrate 2. The lower geometry having a child's thickness, followed by the alignment of the fiber and the upper geometrical structure over the lower geometry, such that a photoresist layer having a structure of - (4) is formed on the outer surface of the fiber bundle. Upper and lower light = layers 6, 4 can be pre-formed in the upper and lower photoresist When layers 6 and 4 are respectively finely 嘁 其 厚度 厚度 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 显影 显影 显影 显影 ' ' The distance, and the depth of each concave portion of the silver-toothed geometric structure (position: concave between each w) is equivalent to the thickness of the tooth portion (ie, the thickness of the light layer). The thickness of the lower and upper photoresist layers 4 and 6 is controlled in advance according to the required ruler of the mineral structure of the mine, and the thickness of the lower and upper photoresist layers 4 and 6 is controlled in advance. The ore-like geometry maintains the size of the face f, and (4) improves the accuracy of the subsequent measurement application. ^ a (4) The fiber 1 pre-profits reduce the thickness of the retanning 12, thereby enhancing the fiber 丨 relative Measurement sensitivity when straining or other physical quantities. It is possible to: Fig. 14 to Fig. 25 show a second embodiment of the present invention, and a method for fabricating a long period fiber grating. Compared with the first embodiment, the upper and lower photoresist layers 6 and 4 are a plurality of layers, and the materials of the second and second barrier layers 6 and 4 may be selected as different photoresist materials. Further, in the present embodiment, after completing the foregoing steps W and s2, steps S3 to S6 form a first "W layer 4" on the surface of the metal layer 3, and soft-bake the first lower photoresist layer. Exposing the developed 201116866 program so that the first lower photoresist layer 4 is developed on the first lower photoresist layer 4, _ θ 3 of the geometric structure to have a pattern as shown in the first figure. Then, please: : Second, the first-lower geometry, repeating the foregoing steps S3 to S6, as shown in the diagrams of ',, and 16, the second lower photoresist layer 4, and stacked and coated on the layer 4'. _—lower (four), with (4) in the creation of the -F geometry;) the lower geometry of the lower-layered photoresist layers. /彳' to form a plurality of layers 4, ί ^ \8Λ21 shown in the figure 'After completing the first lower photoresist step S7 and S 4 , the embodiment of the optical fiber fixing section 1 is fixed on the underarm geometry, and then the second 2 fine step 8 is performed. The photoresist layer 6' is stacked and coated on the silk fiber and the lower geometric structure, and the first upper photoresist layer 6 is soft-baked and #光光的的 L is __ 口人烤烤和暴露°海弟The upper photoresist layer 6 has a geometrical structure of the first-upper photoresist layer 6 (hereinafter referred to as the upper geometric structure); and, as shown in FIGS. 22 to 24, repeat again ^ The upper photoresist forming step S8 is on the upper-upper photoresist layer 6, and a second upper photoresist layer 6" is stacked and coated thereon, and after being subjected to the process of soft baking and exposure development, stacked on the first upper geometric structure of the crucible Forming a second upper photoresist layer 6 having the same geometric configuration (hereinafter referred to as a second upper geometric structure) to form a plurality of photoresists stacked on each other to form an upper geometric structure, wherein the upper geometric structure and the lower structure The step-by-step is common to the photoresist layer of the outer peripheral surface of the fiber bundle. Finally, please refer to FIG. 25, completed on the outer peripheral surface of the optical fiber 1, 201116866 6, and the first T photoresist layer 4, the second lower photoresist layer 4, and the first upper photoresist layer step S9. After the stacking forming process of the photoresist layer 6", the present embodiment performs hard baking and cutting of the optical fiber 1 and the photoresist layer according to only n+ to 810, thereby obtaining the finished product of the (four) adjustable variable length period fiber grating.

展,μ本發明係紐於該基材2上預先成形數個光阻 光顯衫成具有預定厚度的該複數層下幾何構造, #输1=光纖1堆3於該下幾何構造上方之後,再次於該 .•下成何構造上堆疊形成該複數層上幾何構造,使 ^狀幾何構造之紐層得以絲於該光纖丨外表 ^此本發啊在堆疊成形各該光阻層時依照需求選擇 山 層為_料同的光阻材料,進而使本發明製作The invention is based on the substrate 2 pre-forming a plurality of photoresist screens into a predetermined layer of the lower layer geometry having a predetermined thickness, after the input 1 = the fiber 1 stack 3 is above the lower geometry, Once again, the geometric structure on the plurality of layers is stacked on the structure, so that the layer of the geometric structure can be silked on the outer surface of the fiber, and the present invention is formed in the stacking of the photoresist layers. Selecting the mountain layer as the same photoresist material, thereby making the invention

2可調變長職錢光柵在料表面㈣具有由數個不 材料構成軸餘幾何構造,關應各種使用需求。 ,外’雖然本實施例之該第二上光阻層6”頂面至該光 、止“之間的距離R3等於該第_下光阻層4,底面至該 光纖1軸心之間的_R4,但該第一下光阻層4,、第二下 光阻層4”、第一上光阻層6,及第二上光阻層6”亦可在各 ㈣成形步驟中選擇具有相同或不同的厚度,進—步調整 «玄距離R3不同於該距離R4,使得該鑛齒狀幾何構造具有 不同尺寸的齒部,以因應各種使用需求。 、雖然本發明已利用上述較佳實施例揭示,然其並非用 、,疋本U ’任何力習此技勢者在不脫離本發明之精神 和範圍之内,姆上述實施例進行各種更動與修改仍屬本 發明所保護之技術鱗,因此本制之賴制當視後附 之申請專利範圍所界定者為準。 ~ 14 — 201116866 【圖式簡單說明】 第1圖·白1用可調變長週期光纖光柵的製作$法的流程 示意圖。 第圖本發明可調變長週期光纖光栅的製作方法第一 • 貫施例之流程示意圖。 $ ® t發日月可調變長週期光纖光柵的餅方法第一 實施例之光纖局部剖視及立體圖。 * 4 ·本發明可調變切期賴細的製作方法第- • 料例㈣材上塗覆金屬層及光阻層之剖視示意圖。 第5圖’本㈣可調變長週期光纖級的製作方法第一 實施例對τ光阻層進行曝光之剖視示意圖。 第6圖:本發明可調變長週期光纖光_製作方法第一 實施例下光阻層完成顯影之剖視示意圖。 第7圖:本發明可調變長週期光纖光柵的製作方法第-實施例光纖固定於下幾何構造上之立體示意圖。 第8 ® :本發明可輕長袖賴光_製作方法第一 • 實施例光纖固定於下幾何構造上之剖視示意圖。 第9圖:本個可輕長光纖光柵㈣作方法第一 實施例在光纖及下幾何構造上塗佈上光阻層之剖視示意 圖。 - 第1G ® :本發明可調變長週期賴光柵的製作方法第 .一貫施例在光纖及下幾何構造上塗佈上光阻層之後視圖。 第11圖:本發明可調變長週期光纖光柵的製作方法第 一實施例對上光阻層進行曝光之剖視示意圖。 第12圖:本發明可調變長週期ι纖光柵的製作方法第 —15 — 201116866 -實施例上光阻層完成顯影之剖視示意圖。 —第二圖:本發啊霞長·域光柵的製作方法第 一料例之可調變長週期光纖光栅成品之剖視示意圖。 ^ 14圖.本發_崎長獅 二實施例對第-下練層完成㈣之剖視示意圖。方去弟 第15 f .本發明可調變長週期光纖光栅的製作方法第 二實施例塗佈第二下光阻層之剖視示意圖。方去弟 第16圖.本發日柯調變長週期光纖光栅 二實施例對第二下轨層進行曝光之剖視示意圖。弟 二二:·明可調變長週期光纖光柵的製作方法第 一具第一下光阻層完成顯影且疊置於第-光阻層上之 剖視示意圖。 第18圖:本發__長週期域光_製作方法第 二實關光_定於下幾何構造上之立體示意圖。 第19圖:本發明可調變長週期光纖光柵的製作方法第 二實施例在光纖及下幾何構造上塗佈第—上光阻層之剖視 示意圖。 第20圖:本發明可調變長週期光纖光拇的製作方法第 二實施例對第-上練層進行曝光之剖視示意圖。 第21圖:本發明可調變長週期先纖光栅的製作方法第 二貫施例上光阻層完成顯影之剖視示意圖。 第22圖:本發明可調變長週期先纖光柵的製作方法第 二實施例塗佈第二上光阻層之剖視示意圖。 第23圖:本發明可調變長週期先纖光栅的製作方法第 二實施例對第:上光阻層進行曝光之剖視示意圖。 ——16 — 201116866 第24圖:本發明可調變長週期光纖光柵的製作方法第 二實施例第二上光阻層完成顯影之剖視示意圖。 第25圖:本發明可調變長週期光纖光柵的製作方法第 二實施例之可調變長週期光纖光栅成品之剖視示意圖。 【主要元件符號說明】 〔本發明〕 1 光纖 12披覆層 2 基材 4 下光阻層 4” 第二下光阻層 51 定位座 6 上光阻層 6”第二上光阻層 11 纖衣層 13 纖芯 3 金屬層 4’第—下光阻層 5 固定組件 52 定位座標 6’ 第一上光阻層 —17 —2 Adjustable long-length money grating on the material surface (4) has a number of non-materials to form the shaft geometry, which is suitable for various use requirements. , although the distance R3 between the top surface of the second upper photoresist layer 6' of the embodiment to the light and the end is equal to the first photo-resist layer 4, and the bottom surface to the axis of the optical fiber 1 _R4, but the first lower photoresist layer 4, the second lower photoresist layer 4", the first upper photoresist layer 6, and the second upper photoresist layer 6" may also be selected in each (4) forming step. The same or different thicknesses, the stepwise adjustment «the sinus distance R3 is different from the distance R4, so that the ore-toothed geometry has different sized teeth to meet various usage requirements. The present invention has been disclosed in the above-described preferred embodiments, and it is not intended to be used in any way without departing from the spirit and scope of the invention. Modifications are still subject to the technical scales protected by the present invention, and therefore the system is governed by the scope defined in the appended claims. ~ 14 — 201116866 [Simple description of the diagram] Fig. 1 Schematic diagram of the flow of the $ method for the production of the variable length-period fiber grating. BRIEF DESCRIPTION OF THE DRAWINGS The method for fabricating the variable length-period fiber grating of the present invention is the first schematic flow chart of the embodiment. $ ® t-Piece method for the variable length-period fiber grating of the first embodiment. The partial cross-section and perspective view of the optical fiber of the first embodiment. * 4 · The method for making the adjustable cut-off period of the present invention - The cross-sectional view of the coated metal layer and the photoresist layer on the material of the material (4). Fig. 5 is a cross-sectional view showing the exposure of the τ photoresist layer in the first embodiment. Fig. 6 is a cross-sectional view showing the development of the photoresist layer in the first embodiment. Fig. 7 is a perspective view showing the method of fabricating a variable length-period fiber grating of the present invention. 8th: The light-length long-sleeved glazing of the present invention _ The first method of fabrication is a cross-sectional view of the embodiment in which the optical fiber is fixed to the lower geometric structure. Figure 9: This is a light-length fiber grating (4). The first embodiment is a schematic cross-sectional view of a photoresist layer coated on an optical fiber and a lower geometry. - 1GG: A method for fabricating a variable length-period ray grating of the present invention. A consistent view of a photoresist layer coated on a fiber and a lower geometry. 11 is a cross-sectional view showing the exposure of the upper photoresist layer in the first embodiment of the present invention. Fig. 12 is a cross-sectional view showing the process of completing the development of the photoresist layer on the first embodiment of the present invention. —Second Picture: A schematic diagram of the finished product of the adjustable variable length period fiber grating finished product of the first example. ^ 14 Figure. This is a cross-sectional view of the second embodiment of the first-lower layer (4). The method of manufacturing the adjustable variable length period fiber grating of the second embodiment of the present invention is a schematic cross-sectional view of coating the second lower photoresist layer. Fang Dedi. Figure 16. This is a cross-sectional view of the second lower rail layer. Brother 22: The method for fabricating the first variable-length-period fiber grating is a cross-sectional view of the first lower photoresist layer that is developed and stacked on the first photoresist layer. Figure 18: The present invention __ long period domain light _ production method second real off light _ fixed on the lower geometry of the three-dimensional diagram. Fig. 19 is a cross-sectional view showing the coating of the upper-upper photoresist layer on the optical fiber and the lower geometry in the second embodiment. Fig. 20 is a cross-sectional view showing the exposure of the first-up layer in the second embodiment of the present invention. Fig. 21 is a cross-sectional view showing the development of the photo-resist layer in the second embodiment. Fig. 22 is a cross-sectional view showing the second embodiment of the second upper photoresist layer coated by the second variable embodiment of the present invention. Fig. 23 is a cross-sectional view showing the exposure of the upper photoresist layer in the second embodiment of the present invention. ——16 — 201116866 Fig. 24: Method for fabricating the variable length-period fiber grating of the present invention. FIG. 2 is a cross-sectional view showing the second upper photoresist layer in development. Fig. 25 is a cross-sectional view showing the finished variable length period fiber grating of the second embodiment of the present invention. [Main component symbol description] [Invention] 1 Optical fiber 12 coating layer 2 Substrate 4 Lower photoresist layer 4" Second lower photoresist layer 51 Positioning seat 6 Upper photoresist layer 6" Second upper photoresist layer 11 Fiber Coating layer 13 core 3 metal layer 4' first-lower photoresist layer 5 fixing component 52 positioning coordinate 6' first upper photoresist layer - 17 -

Claims (1)

201116866 七、申請專利範圍: > —— 種可調變長週期光纖光柵的製作方法,其步驟包含 ⑴預先去除至少—賴賴衣層,錢雜減該光纖 的披覆層厚度至10至125 μιη ; (2)以物理或化學氣相沉積方式在—基材表面形成—金 屬層; 以形成至 ⑶在該金屬層表面塗覆至少—縣阻材料, 少一光阻層; ⑼加熱該光阻層至玻璃轉換溫度以上,以揮發殘留於 α玄光阻層中的;谷劑,並使該光阻層硬化; ⑶曝光該轨層,並在完祕錢再次加熱該光阻層 至玻璃轉換溫度以上; θ 以使該 ⑹經由-㈣液絲該未曝光的局部光阻層, 光阻層顯影成一下幾何構造; ⑺將完成”⑽該光纖岐觸下幾何構造上方· ⑻再次於該光纖及下幾何構造上方塗覆至少一層的另 一光阻層’且該另-光阻層重複上述步驟(4)至;),以 便在該下幾何構造上方堆疊形成一上幾何構造,且該 上系何構造與該下幾何構造共同覆蓋在該光纖外表面 ⑼加熱完成步驟⑻_光纖及位 揮發各絲阻料的溶劑,並讓 滿空隙;及 共 —18 — 201116866 ⑽利用—分離液使該光纖外表面之光阻層與該金屬 層相互分離,以取得可調變長週期錢光栅成品。 2、^請專利範㈣丨項所述可調變長週期光纖光拇的 :作方法,其中該步驟⑺係利用雜方式將銅佈設於 5亥基材表面,以形成—銅層。 3=申請專利範㈣2項所述可調變長週期光纖光搞的 土作方法,其中該步驟(2)在利用濺錄形成該銅層之 月|』,係預先以乙醇或丙酮清潔該基材表面,去除該基材 表面的雜質。 土 4、 :申請㈣範圍第丨項所述可調變長週期光纖光樹的 衣作方法,其中依照該步驟(3)至⑹於該金屬層上形成 該下幾何構造後,係於該下幾何構造上再次重複該步驟 (3)至⑹,以便於該下幾何構造上堆疊成形具有相同俯 視形狀之另一下幾何構造。 5、 依申料利第丨或4項所述可調變長週期光纖光拇 的製作方法,.其中該步驟⑻在該光纖及下幾何構造上 f堆疊形成該上幾何構造之後,係於該上幾何構造上再 1塗覆-光阻層,並重複該步驟⑷至⑹,以便於該上 幾何構造上堆疊形成具有相同俯視形狀之另一上幾何 構造。 6 :中4專利補帛5項所料調變魏期光纖光栅的 衣乍方法4中m幾何構造及下幾何構造係由不同 之光阻材料所構成。 制申明專利範圍第3項所述可調變長週期光纖光柵的 衣作方法,其中各該上幾何構造及下幾何構造係由相同 —19 — 201116866 之光限材料構成。 :3m圍第6項所述可調變長週期光纖光柵的 其中該上幾何構造及τ幾何構造個別具有不 上;變長週期光纖光栅的 同之厚度。 、7構k及下幾何構造個別具有不 ίο 依申請專利範圍第丨項所t 製作方法,1中述可長週期光纖光栅的 备刻料 材料為一商用負型光阻劑SU-8 二:(:分為二階段,第,^ 雜層表__缺心以填補該 95°C,以揮發殘留t 光阻屬至 硬化。 於5亥先阻層中的溶劑,並使該光阻層 11 項所述可調變長週期光纖光柵的 衣候法二其中進行該步驟⑺時該光纖係 座固疋於该金屬層及下幾何構造上方, 之側邊位置設有—定位座標, === 幾何構造能夠與訂幾何構造姆位。驟(8)喊上 12、依申請專利範圍第υ馆知#, 製作方法,其中:步光纖光柵的 ==先阻層及定位座浸漬於該分= 邊先阻層及疋位座脫離該 履中使 液浸潰或她_方式_ 用化學 得該可調變長週期光纖光柵成品。座取下,以取 —20〜 201116866 ' 13、依申請專利範圍第1或12項所述可調變長週期光纖光 • 柵的製作方法,其中該分離液係為氯化鐵溶液。 14、依申請專利範圍第12項所述可調變長週期光纖光栅的 製作方法,其中該化學液可選自硫酸、鹽酸、氫氟酸、 • 光阻去除液或顯影液。 • 15、依申請專利範圍第12項所述可調變長週期光纖光柵的 製作方法,其中該物理切割方法係為雷射切割或刀具切 割。 • 16、依申請專利範圍第1項所述可調變長週期光纖光柵的 製作方法,其中該步驟(9)實施於該步驟(9)之前或之後。 —21201116866 VII, the scope of application for patents: > —— a method for manufacturing a variable length-period fiber grating, the steps comprising: (1) pre-removing at least the layer of coating, and reducing the thickness of the coating layer of the fiber to 10 to 125 (2) forming a metal layer on the surface of the substrate by physical or chemical vapor deposition; to form (3) coating at least a county resistive material on the surface of the metal layer, and less one photoresist layer; (9) heating the light Resisting layer to glass transition temperature to volatilize residual in the α-Xuan photoresist layer; and to harden the photoresist layer; (3) Exposing the rail layer and heating the photoresist layer to glass again after the secret money Above the temperature; θ such that the (6) through the - (four) liquid filament the unexposed partial photoresist layer, the photoresist layer is developed into a lower geometry; (7) will be completed "(10) the fiber 岐 touches the top of the geometric structure ... (8) again in the fiber Applying at least one layer of another photoresist layer over the lower geometry and repeating the above steps (4) to;) to stack an upper geometric structure over the lower geometry, and the upper What is the structure? Cooperating with the lower geometrical structure to cover the outer surface of the optical fiber (9), heating the solvent of the step (8) _ fiber and volatilizing the wire, and allowing the void to be filled; and a total of 18-201116866 (10) using the separation liquid to make the outer surface of the fiber The photoresist layer and the metal layer are separated from each other to obtain a finished product of the variable length-period money grating. 2. Please refer to the patent variable (4) item for the variable length-period fiber optical thumb: the method, wherein the step (7) The copper cloth is disposed on the surface of the 5 keling substrate by a heterogeneous method to form a copper layer. 3 = The method for making the variably variable length fiber optic light in the patent application (4) 2, wherein the step (2) is utilized The surface of the copper layer is smeared, and the surface of the substrate is cleaned with ethanol or acetone to remove impurities on the surface of the substrate. Soil 4: Application of the variable length-period fiber light tree described in the fourth paragraph a method of coating, wherein the step (3) to (6) are repeated on the lower geometry after forming the lower geometry on the metal layer according to the steps (3) to (6), so as to facilitate the lower geometry. Stack forming has the same pitch Another geometric configuration of the shape. 5. The method for fabricating the optical fiber of the adjustable variable length fiber according to claim 4 or 4, wherein the step (8) is formed by stacking the fiber and the lower geometry. After the geometrical configuration, the photoresist layer is further coated on the upper geometrical structure, and the steps (4) to (6) are repeated to form the upper geometrical structure to form another upper geometrical configuration having the same top view shape. The medium geometry and the lower geometry are composed of different photoresist materials. The m geometry and the lower geometry are composed of different photoresist materials. The long-period fiber grating coating method, wherein each of the upper geometric structure and the lower geometric structure is composed of the same light-limiting material of 19-19116866. : The above-mentioned upper geometrical structure and the τ geometrical structure of the adjustable variable length long-term fiber grating of the sixth item are not the same; the same thickness of the variable-length fiber grating. The 7-k and the lower geometry are individually produced according to the method of the patent application. The preparation material of the long-period fiber grating is a commercial negative photoresist SU-8 2: (: divided into two stages, the first, ^ miscellaneous layer table __ lack of heart to fill the 95 ° C, to volatilize the residual t-resistance to harden. The solvent in the 5 hai first barrier layer, and the photoresist layer 11th item of the adjustable variable length period fiber grating, wherein the fiber holder is fixed above the metal layer and the lower geometry when the step (7) is performed, and the side position is provided with a positioning coordinate, == = geometric structure can be used to construct the geometric position with the geometrical structure. (8) shouting on the 12th, according to the scope of the patent application No. 2, the production method, wherein: the step of the fiber grating == the first resistance layer and the positioning seat is immersed in the = The first resist layer and the squat seat are separated from the stalk to make the liquid immersed or her _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The method for manufacturing the adjustable variable length fiber optical grating according to Item 1 or 12, The separation liquid is a ferric chloride solution. 14. The preparation method of the adjustable variable length fiber grating according to claim 12, wherein the chemical liquid is selected from the group consisting of sulfuric acid, hydrochloric acid, hydrofluoric acid, and light. Removing liquid or developing solution. • 15. The method for manufacturing the variable length and long-term fiber grating according to the scope of claim 12, wherein the physical cutting method is laser cutting or cutting. The method for fabricating the variable length-changing fiber grating of the first item, wherein the step (9) is performed before or after the step (9).
TW98137211A 2009-11-03 2009-11-03 Method for manufacturing a tunable long-period fiber grating TWI394993B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137211A TWI394993B (en) 2009-11-03 2009-11-03 Method for manufacturing a tunable long-period fiber grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137211A TWI394993B (en) 2009-11-03 2009-11-03 Method for manufacturing a tunable long-period fiber grating

Publications (2)

Publication Number Publication Date
TW201116866A true TW201116866A (en) 2011-05-16
TWI394993B TWI394993B (en) 2013-05-01

Family

ID=44934998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137211A TWI394993B (en) 2009-11-03 2009-11-03 Method for manufacturing a tunable long-period fiber grating

Country Status (1)

Country Link
TW (1) TWI394993B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543490A (en) * 2013-11-07 2014-01-29 安徽大学 Long-period fiber bragg grating manufacturing method based on ink-jet printing technology
CN103941329A (en) * 2014-04-10 2014-07-23 安徽大学 Method for manufacturing embedded fiber grating filter
TWI452416B (en) * 2013-01-21 2014-09-11 Univ Nat Kaohsiung Applied Sci Adjustable photo-mask
TWI484232B (en) * 2013-12-09 2015-05-11 Metal Ind Res & Dev Ct Method for manufacturing a tunable long-period fiber grating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951881A (en) * 1996-07-22 1999-09-14 President And Fellows Of Harvard College Fabrication of small-scale cylindrical articles
TWI261123B (en) * 2004-05-14 2006-09-01 En-Boa Wu Adjustable long period fiber grating structure and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452416B (en) * 2013-01-21 2014-09-11 Univ Nat Kaohsiung Applied Sci Adjustable photo-mask
CN103543490A (en) * 2013-11-07 2014-01-29 安徽大学 Long-period fiber bragg grating manufacturing method based on ink-jet printing technology
CN103543490B (en) * 2013-11-07 2016-05-25 安徽大学 A kind of LPFG preparation method based on inkjet technology
TWI484232B (en) * 2013-12-09 2015-05-11 Metal Ind Res & Dev Ct Method for manufacturing a tunable long-period fiber grating
CN103941329A (en) * 2014-04-10 2014-07-23 安徽大学 Method for manufacturing embedded fiber grating filter
CN103941329B (en) * 2014-04-10 2016-02-24 安徽大学 A kind of preparation method of the fiber grating filter that is nested

Also Published As

Publication number Publication date
TWI394993B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
TWI338615B (en) Self-aligned process for fabricating imprint templates containing variously etched features
TW201116866A (en) Method for manufacturing a tunable long-period fiber grating
KR20160140598A (en) Methods of fabricating photoactive substrates for micro-lenses and arrays
KR102445641B1 (en) Superstrate and a method of using the same
TW200405947A (en) Fiber array and methods for fabricating the fiber array
TW201137420A (en) 3-D waveguide coupler capable of two-step coupling and manufacture method thereof
JP2012035578A (en) Mold for nanoimprinting
CN106707381A (en) Technique for preparing microlens array
JP2945440B2 (en) Method for manufacturing solid-state imaging device
JP2005119940A (en) Etched article, mold structure using the same and method for production thereof
TW540096B (en) Fabrication of optical waveguides for reduction of minimum waveguide spacing
CN108645836A (en) Stacked in parallel double-level-metal optical grating construction surface enhanced Raman substrate and preparation method thereof
JP6394114B2 (en) Template manufacturing method and template
JPH11183706A (en) Highly integrated optical element and its production
Mi et al. Fabrication of circular sawtooth gratings using focused UV lithography
TWI484232B (en) Method for manufacturing a tunable long-period fiber grating
TWI406022B (en) A manufacturing method of a tunable long-period fiber grating
CN110035981A (en) Method for forming ion-exchange waveguides in glass substrate
EP2088120A2 (en) Systems and methods for MEMS device fabrication
CN109932768A (en) The manufacturing method of scale and scale
JP6268137B2 (en) Manufacturing method of concave lens
Stillman et al. Aspect ratios, sizes, and etch rates in photostructurable glass-ceramic
CN108957624A (en) A kind of transfer method of micro-nano structure in fiber end face
TWI241415B (en) Microlens arrays having high focusing efficiency
CN110520392B (en) Method for producing a metal film supported by a glass support

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees