TW201116850A - Stereo projection optical system - Google Patents

Stereo projection optical system Download PDF

Info

Publication number
TW201116850A
TW201116850A TW98137344A TW98137344A TW201116850A TW 201116850 A TW201116850 A TW 201116850A TW 98137344 A TW98137344 A TW 98137344A TW 98137344 A TW98137344 A TW 98137344A TW 201116850 A TW201116850 A TW 201116850A
Authority
TW
Taiwan
Prior art keywords
light
polarized light
polarization
optical system
projection optical
Prior art date
Application number
TW98137344A
Other languages
Chinese (zh)
Inventor
Li-Jen Liu
Original Assignee
Li-Jen Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li-Jen Liu filed Critical Li-Jen Liu
Priority to TW98137344A priority Critical patent/TW201116850A/en
Publication of TW201116850A publication Critical patent/TW201116850A/en

Links

Abstract

The present invention discloses a stereo projection optical system. The system includes a light source emitting non-polarized light and an image contrast enhancer to generate a first polarized light and a second polarized light with the same light path as that of the first polarized light from the non-polarized light emitted by the light source. The system further includes an image receiver disposed in the emitting light path of the image contrast enhancer for modulating the first polarized light and the second polarized light into a modulated second polarized light and a modulated first polarized light followed by reflecting them. The system also includes a projection lens for receiving the modulated first polarized light and the modulated second polarized light.

Description

201116850 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種立體影像顯示裝置,尤其是關於 一種具有立體投影顯示功能之立體投影光學系統。 【先前技術】 隨著光學科技的不斷進步,投影機已廣泛地應用於 籲各種場合。在-般的會議簡報等場合中,為了讓與會 者此清楚了解討論内容,主持人可以透過操作投影機 將報告相關的内容或圖表投射在顯示幕上,使得與會 者能藉由觀看投射在顯示幕上的資料清楚掌握報告= 内容。再者投影機的使用範圍隨著影音設備和儲存媒 體的進步’例如高功率的音響’高儲存容量的_等 等使# I又豕庭也能在家中透過投影機搭配著音 鲁響,藉由投影機投射出來的超大晝面享受如同電影院 中身歷其境的視聽感受。這使得投影機的使用範圍逐 漸普及到一般家庭中。 一般顯式立體哥彡v ^ . 像之方式係使用兩個分開之影像投 衫系統分別來投右眼旦彡 X右眼衫像與左眼影像。雖然此系統成 功用於形成立體影德夕 μ象之同日守,系統成本與重量則 個投影機高出很多。曰+人 、, j比早 兩D投影儀要求光學對準相針 困難並.比較費。 T平祁對 201116850 【發明内容】 λ有鑑於上判題,本發明的目时於提供-種立體 又5V光予系..4 ’藉由整合光學元件成為-能夠顯示立鐘影 象的單立體才又影光學系統,而不需使用兩個投影系 統,而達成降低成本及輕量化的效果。 ^ 根據上述目的,本發明實施例提供一種立體投影學系 、充八包括.一光源,用以發射非偏振光;一影像對比 增強器,用以使該光源發射的非偏振光產生同—出射光 路的第一偏振光及第二偏振光;一影像接收器,設置於 X和像對比增強器之出射光路上,用以將該第二偏振光 凋制成第一偏振光反射出去,且將該該第一偏振光調制 成第二偏振光反射出去;以及一投影鏡頭,用以接收來 自該影像接收器經調制的第一偏振光及第二偏振光。 上述之立體投影光學系統使用時可通過對影像 對比增強器使得影像的對比度增加,使得觀看者之 左、右眼能同時獲得不同偏振狀態之影像,觀看者之 左右眼分別戴上檢偏方向互相垂直之兩片偏振片,就 可以觀察到立體織影像訊息。 【實施方式】 下面將結合附圖’舉以下較佳實例並配合圖式詳細 描述如下。 201116850 、,月’閱圖1及圖2,為本發明實施例所提供之立體投 5V光予系統1 00之結構示意圖。該立體投影光學系統 刪包括沿光路方向依次設置之一光源n,一設置於光 源出射光路上之影像對比增強器12,一設置於影像 對比增強器12出射光路上之影像接收器13,以及-設 置於心像接收盗13出射光路上之投影鏡頭Η。 、光源11用來發射非偏振光,且可發射紅光、綠光、 藍光或白光’而用於顯不彩色影像。該光源η可以為 鹵素燈、金屬處化物燈或發光二極體。在本實施例中, 该光源11為發光二極體。 心像對比增強器12設置於所述光源卫玉的出射光 路上’用以使光源11發射的非偏振光產生第-偏振光 及第,偏振先。該影像對比增強器12包括—第一偏振 刀光元件121及第一、第二偏振轉換器n 123各一 個以及第-、第二光反射裝置124、⑶各―個並中 第一偏振轉換器122貼合於第—偏振分光元件121的 第-表面上,而第一光反射裝置124緊鄰於第一偏振轉 換杰122並與第一偏振轉換$⑵直接接觸。並且,第 二偏振轉換器123貼合於第—偏振分光元件i2i的第二 表面上,而第二光反射裝置125緊鄰於第二偏振轉換器 123’並與第二偏振轉換器123直接接觸。上述第一偏 振分光元件121的第-表面與第二表面垂直或大致上 201116850 垂直。在另一實施例中,第一偏振轉換器丨22或第二偏 振轉換器123可與第一偏振分光元件121的第一表面或 第一表面相隔一距離,如圖三所示。 第一偏振分光元件(Polarizati〇n Beam SpHtter, PBS)121用於將來自於光源u之非偏振光變成第一偏 振光及第二偏振光’在本實施例中第一偏振光為s偏振 光,第二偏振光為P偏振光。該第一偏振分光元件121 籲可以為金屬栅格型偏振片(WireGridp〇larizer,簡 稱WGP偏振片),也可以為偏振分光稜鏡。在本實施例 中,該第一偏振分光元件121為偏振分光稜鏡。該第一 偏振分光元件121可將光源U之非偏振光變成s偏振 光反射至第一偏振轉換器丨22以及第一光反射裝置 124,如1所示,同時,該將光源u之非偏振光變成 p偏振光並透射至第二偏振轉換器123以及第二光反射 鲁裝置125,如圖2所示。 第一、第二偏振轉換器122、123的結構及工作基 本原理相同,另一方面第一、第二光反射裝置124、125 之結構及工作原理也相同,下面以第一偏振轉換器m 及第一光反射裝置124為例來說明其工作原理。所述第 一偏振轉換器122可以為四分之—波長延遲片 CQuarterWave Plate,QWP),QWp 是利用雙折射原理, 也就是利用不同電場偏振方向其折射率也不同,可將分 201116850 別在互相垂直偏振方向的光變成彼此有1/4波長相位 差的光,QWP可以塑膠材質或玻璃材質;所述第一光反 射裝置124可以為反射鏡,反射鏡可以為平面,圓弧面 或非球面,反射鏡可以為金屬材質、玻璃材質或塑膠材 質,反射鏡可將入射光反射,使得入射光轉換成波長相 位相同但方向相反的反射光,經過偏振轉換器與光反射 裝置所造成的波長相位差,可將s偏振光轉換成p偏振 •光,同理可將P偏振光轉換成S偏振光;在本實施例中, 如圖1所示,當光源π之非偏振光變成s偏振光反射 至第一偏振轉換器122與第一光反射裝置124時,該第 一偏振轉換器122與第一光反射裝置124對該s偏振光 進行偏振轉換,以產生P偏振光。該p偏振光被第一光 反射裝置124反射並經由第一偏振分光元件121往影像 接收器13發射出去。 ® 如圖2所不,當光源11之非偏振光變成p偏振光入 射至第二偏振轉換器123與第二光反射裝置125時,該 第二偏振轉換器123與第二光反射裝置125對該p偏振 光進行偏振轉換,以產生S偏振光。該s偏振光被第二 光反射裝置125反射並經由第一偏振分光元件121往影 像接收器13反射出去。 影像接收器13設置於所述影像對比增強器12之出 射光路上。該影像接收器13包括—第二偏振分光元件 201116850 131以及第一、第_浔 弟一反射式空間光調制器 一個。第一反射式咖門# ° 133各 町八二間先調制器132與 件131的第-表面平行。另 二一偏振勿光元 調制器133與第八# 一㈣U間光 、乐一偏振为先兀件131的 所述第二偏振分光元件⑶與第—偏振;光元/° 121之結構及工作基太肩苗士 暴本原理相冋,在此不再贅述。該第 一偏振分光70件13卜當接收影像對比增強器12之入 射光為P偏振料,如圖丨心,t純料對比 器12之入射光為S偏振光時,如圖2所示。所述第一、 第二反射式空間光調制器132、133之結構及工作基本 原理相同,下面以第一反射式空間光調制器132為例來 說明其結構及工作原理。 第一反射式空間光調制器132可以為矽基液晶 (Liquid Crystal on Silicon, LCoS)顯示面板。LC〇s 鲁 面板利用半導體製程製作驅動面板,並鍍上鋁或銀等當 作反射鏡’形成CMOS基板,再將CMOS基板與含有透明 電極的玻璃基板貼全後灌入液晶分子並封裝測試,形成 LCoS面板。LCoS面板通過控制光的偏振狀態來調制入 射光並給入射光加入空間訊息,形成包括該入射光及該 空間訊息之經過調制之出射光。所述空間訊息可以為該 LCoS所載入之控制訊號電壓’該控制訊號電壓直接控 制薄膜電晶體之開關狀態’再利用該薄膜電晶體來控制 201116850 所述液晶分子之偏轉狀態,而液晶分子具有明顯之0 各異向性,能夠控制來自入射光之光線,而實現入射光 載人影像喊之目的。在本實施财,如®丨所示,該 第一反射式空間光調制器132對該p偏振光進行調制, 並在所述P偏振光上疊加空間訊息,以產生—包括㈣ 訊息之出射光,即包括有空間訊息之s偏振光。該s 偏振光被第-反射式空間光調制器132反射並經第二 ♦偏振分光元件⑶往投影鏡頭W發射出去。 如圖2所示’當影像對比增強器12射出p偏振光也 同時射出s偏振光,所述第二反射式空間光調制器m 對該S偏振光進行調制,並在所述s偏振光上疊加空間 吼心以產生—包括空間訊息之出射光,即包括有空間 訊息之P偏振光。該p偏振光被第二反射式空間光調制 器133反射並經第二偏振分光元件131往投影鏡頭14 _ 發射出去。 投影鏡頭14設置於第二偏振分光元件131之出射光 之光路上,用於用以接收來自該影像接收器經調制的第 偏振光及第二偏振光,並將出射光所形成之影像放 大,並將放大之影像投影到螢幕上。 可以理解的是,為了提高系統的亮度,如圖3所示’ 影像對比增強器22其中的光反射裝置124、125是可以 為圓弧面、或非球面之非平面反射裝置126、127。 201116850 上述之立體投影光學系統,由於同時輸出不同偏振 狀態之影像,觀看者之左右眼分別戴上檢偏方向相互垂 直之兩片偏振片,就可以觀察到立體之影像訊息。 綜上所述’本發明符合發明專利要件,爰依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,本發明之範圍並不以上述實施方式為限,舉凡熟悉 本案技藝人士援依本發明之精神所作之等效修舞或變 化’皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 第1圖為本發明實施例之立體投 振光之結構示意圖。 影光學系統第一偏 第2圖為本發明實施例之立體投 振光之結構示意圖。 影光學系統第二偏201116850 VI. Description of the Invention: [Technical Field] The present invention relates to a stereoscopic image display device, and more particularly to a stereoscopic projection optical system having a stereoscopic projection display function. [Prior Art] With the continuous advancement of optical technology, projectors have been widely used in various occasions. In the case of a general conference presentation, etc., in order to let the participants clearly understand the discussion content, the host can project the related content or chart on the display screen by operating the projector, so that the participant can display the projection on the display. The information on the screen clearly grasps the report = content. Furthermore, the range of use of projectors has progressed with the development of audio-visual equipment and storage media, such as high-powered audio, high storage capacity, etc., and #I, I can also use the projector to match the sound of the sound in the home. The super-large face projected by the projector enjoys the audio-visual experience of the cinema. This makes the use of the projector gradually spread to the general household. The general explicit stereogram v ^ . is like using two separate image projection systems to cast the right eye, the right eye, and the left eye. Although this system is successfully used to form a stereoscopic image, the cost and weight of the system are much higher.曰+人,,j is earlier than the two-D projector requires optical alignment of the phase pin. It is difficult and relatively expensive. T 平祁对201116850 [Summary of the Invention] λ In view of the above-mentioned problem, the present invention aims to provide a stereoscopic and 5V light to the system. The stereoscopic optical system eliminates the need for two projection systems to achieve cost reduction and weight reduction. According to the above objective, an embodiment of the present invention provides a stereoscopic projection system, comprising: a light source for emitting unpolarized light; and an image contrast enhancer for causing unpolarized light emitted by the light source to be generated simultaneously. a first polarized light and a second polarized light of the light path; an image receiver disposed on the exiting light path of the X and the contrast enhancer for reflecting the second polarized light into the first polarized light, and The first polarized light is modulated to be reflected by the second polarized light; and a projection lens is configured to receive the first polarized light and the second polarized light modulated from the image receiver. The above-mentioned stereoscopic projection optical system can increase the contrast of the image by using the image contrast enhancer, so that the left and right eyes of the viewer can simultaneously obtain images of different polarization states, and the left and right eyes of the viewer wear the detection directions respectively. Stereo-woven image information can be observed by two polarizing plates perpendicularly. [Embodiment] Hereinafter, the following preferred examples will be described in conjunction with the drawings in detail with reference to the drawings. 201116850, and FIG. 2 and FIG. 2 are schematic diagrams showing the structure of a stereoscopic 5V light-emitting system 100 provided by an embodiment of the present invention. The stereoscopic projection optical system includes a light source n disposed in the optical path direction, an image contrast enhancer 12 disposed on the light exiting light path, an image receiver 13 disposed on the light path of the image contrast enhancer 12, and A projection lens disposed on the exit path of the image receiving the pirate 13 Η. The light source 11 is used to emit unpolarized light and can emit red, green, blue or white light for use in displaying achromatic images. The light source η may be a halogen lamp, a metallization lamp or a light emitting diode. In this embodiment, the light source 11 is a light emitting diode. The heart image contrast enhancer 12 is disposed on the exiting light path of the light source weiyu to cause the unpolarized light emitted by the light source 11 to generate the first-polarized light and the first polarization. The image contrast enhancer 12 includes a first polarization knife optical element 121 and a first and a second polarization converter n 123, and first and second light reflecting means 124, (3) and a first polarization converter. 122 is attached to the first surface of the first polarization splitting element 121, and the first light reflecting means 124 is in close proximity to the first polarization conversion panel 122 and is in direct contact with the first polarization conversion $(2). Further, the second polarization converter 123 is attached to the second surface of the first polarization splitting element i2i, and the second light reflecting means 125 is in close contact with the second polarization converter 123' and in direct contact with the second polarization converter 123. The first surface of the first polarization splitting element 121 is perpendicular to or substantially perpendicular to the second surface. In another embodiment, the first polarization converter 22 or the second polarization converter 123 may be spaced apart from the first surface or the first surface of the first polarization splitting element 121 as shown in FIG. The first polarizing beam splitting element (PBS) 121 is used to convert the unpolarized light from the light source u into the first polarized light and the second polarized light. In the embodiment, the first polarized light is s-polarized light. The second polarized light is P-polarized light. The first polarization splitting element 121 may be a metal grid type polarizer (Wire Grid polarizer) or a polarization splitter. In the present embodiment, the first polarization splitting element 121 is a polarization splitter. The first polarization splitting element 121 can reflect the unpolarized light of the light source U into s-polarized light to the first polarization converter 丨22 and the first light reflecting device 124, as shown in FIG. 1, and at the same time, the unpolarized light source u The light becomes p-polarized light and is transmitted to the second polarization converter 123 and the second light reflection device 125, as shown in FIG. The first and second polarization converters 122 and 123 have the same basic structure and operation. On the other hand, the structures and working principles of the first and second light reflecting devices 124 and 125 are also the same. The first polarization converter m and The first light reflecting device 124 is taken as an example to explain its working principle. The first polarization converter 122 may be a quarter-wavelength retarder CQuarterWave Plate (QWP). The QWp is based on the principle of birefringence, that is, the refractive index is different by using different electric field polarization directions, and the points of 201116850 may be different from each other. The light in the vertical polarization direction becomes light having a phase difference of 1/4 wavelength with each other, and the QWP may be a plastic material or a glass material; the first light reflecting device 124 may be a mirror, and the mirror may be a plane, an arc surface or an aspheric surface. The mirror can be made of metal, glass or plastic. The mirror can reflect the incident light, so that the incident light is converted into the same phase but opposite direction of the reflected light, and the wavelength phase caused by the polarization converter and the light reflecting device. Poor, s-polarized light can be converted into p-polarized light, and P-polarized light can be converted into S-polarized light. In this embodiment, as shown in FIG. 1, when the unpolarized light of the light source π becomes s-polarized light When reflected to the first polarization converter 122 and the first light reflecting device 124, the first polarization converter 122 and the first light reflecting device 124 perform polarization conversion on the s-polarized light, P-polarized light is generated. The p-polarized light is reflected by the first light reflecting means 124 and transmitted to the image receiver 13 via the first polarization splitting element 121. As shown in FIG. 2, when the unpolarized light of the light source 11 becomes p-polarized light incident on the second polarization converter 123 and the second light reflecting device 125, the second polarization converter 123 and the second light reflecting device 125 are paired The p-polarized light undergoes polarization conversion to produce S-polarized light. The s-polarized light is reflected by the second light reflecting means 125 and reflected toward the image receiver 13 via the first polarization splitting element 121. The image receiver 13 is disposed on the outgoing light path of the image contrast enhancer 12. The image receiver 13 includes a second polarization splitting element 201116850 131 and a first, a _ 浔 一-reflective spatial light modulator. The first reflective coffee door # ° 133 each of the eighty-two first modulators 132 is parallel to the first surface of the member 131. The second polarized light element modulator 133 and the eighth # one (four) U light, the Le polarization is the first polarizing element 131 of the second polarizing beam splitting element (3) and the first polarization; the structure and operation of the optical element / ° 121 The principle of the base of the shoulders of the Miao is relatively different, and will not be repeated here. The first polarized light splitting 70 member 13 is such that the incident light received by the image contrast enhancer 12 is a P polarized material, as shown in Fig. 2, when the incident light of the t pure material comparator 12 is S polarized light. The structures and operations of the first and second reflective spatial light modulators 132 and 133 are basically the same. The first reflective spatial light modulator 132 is taken as an example to illustrate its structure and working principle. The first reflective spatial light modulator 132 can be a liquid crystal on silicon (LCoS) display panel. The LC〇s panel uses a semiconductor process to fabricate a driver panel, and is plated with aluminum or silver as a mirror to form a CMOS substrate. The CMOS substrate and the glass substrate containing the transparent electrode are then pasted and filled with liquid crystal molecules and packaged and tested. Form the LCoS panel. The LCoS panel modulates the incident light by controlling the polarization state of the light and adds a spatial message to the incident light to form a modulated outgoing light comprising the incident light and the spatial information. The spatial information may be a control signal voltage loaded by the LCoS, 'the control signal voltage directly controls the switching state of the thin film transistor', and the thin film transistor is used to control the deflection state of the liquid crystal molecules of 201116850, and the liquid crystal molecules have Obviously 0 anisotropy, able to control the light from the incident light, and achieve the purpose of the incident light-bearing image. In the implementation, as shown in FIG. 1, the first reflective spatial light modulator 132 modulates the p-polarized light and superimposes spatial information on the P-polarized light to generate an outgoing light including the (4) message. That is, it includes s-polarized light with spatial information. The s-polarized light is reflected by the first-reflective spatial light modulator 132 and transmitted to the projection lens W via the second ♦ polarizing beam splitting element (3). As shown in FIG. 2, when the image contrast enhancer 12 emits p-polarized light and simultaneously emits s-polarized light, the second reflective spatial light modulator m modulates the S-polarized light and is on the s-polarized light. The superimposed space is created to produce - including the outgoing light of the spatial message, ie P-polarized light comprising spatial information. The p-polarized light is reflected by the second reflective spatial light modulator 133 and transmitted through the second polarization splitting element 131 to the projection lens 14_. The projection lens 14 is disposed on the optical path of the light emitted from the second polarization beam splitting element 131 for receiving the first polarized light and the second polarized light modulated by the image receiver, and amplifying the image formed by the emitted light. Project the magnified image onto the screen. It can be understood that in order to increase the brightness of the system, the light reflecting means 124, 125 of the image contrast enhancer 22 shown in Fig. 3 are non-planar reflecting means 126, 127 which may be circular or aspherical. 201116850 The above-mentioned stereoscopic projection optical system can observe stereoscopic image information by simultaneously outputting images of different polarization states, and the viewer's left and right eyes respectively wear two polarizing plates whose detection directions are perpendicular to each other. In summary, the invention conforms to the patent requirements of the invention, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and the equivalent of the dance or change made by those skilled in the art in accordance with the spirit of the present invention It should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a stereoscopic excitation light according to an embodiment of the present invention. Fig. 2 is a schematic view showing the structure of the stereoscopic excitation light according to the embodiment of the present invention. Shadow optics second deviation

第3圖係第1圖之影像對比增強 裝置之結構示意圖。 器之非平面光反射 1113 【主要元件符號說明】 光源 12 影像接收器 14 影像對比增強器 才又影鏡頭 [S1 10 201116850 100 立體投影光學系統 121 第一 偏振分光元件 122 第一偏振轉換元件 123 第二偏振轉換元件 124 第一光反射裝置 125 第二 .光反射裝置 126 第一非平面光反射裝127 第二 非平面光反射裝 置 置 131 第二偏振分光元件 132 第一 反射式空間光調 制器 133 第二反射式空間光調 制器 11Fig. 3 is a schematic view showing the structure of the image contrast enhancing apparatus of Fig. 1. Non-planar light reflection 1113 [Description of main component symbols] Light source 12 Image receiver 14 Image contrast enhancer only shadow lens [S1 10 201116850 100 Stereo projection optical system 121 First polarization beam splitting element 122 First polarization conversion element 123 Second polarization conversion element 124 First light reflection device 125 Second light reflection device 126 First non-planar light reflection device 127 Second non-planar light reflection device 131 Second polarization beam splitting element 132 First reflective spatial light modulator 133 Second reflective spatial light modulator 11

Claims (1)

201116850 七、申請專利範圍: 1. 一種立體投影學系統,其包括: 一光源,用以發射非偏振光; _ 衫像對比增強器,用以使該光源發射的非偏振光 產生同一出射光路的第一偏振光及第二偏振光; 一影像接收器,設置於該影像對比增強器之出射光 路上,用以將該第二偏振光調制成第一偏振光反射出 籲去且將。亥該第一偏振光調制成第二偏振光反射出去; 以及 ^ 才又知鏡頊,用以接收來自該影像接收器經調制的 第一偏振光及第二偏振光。 汝申明專利範圍第1項所述之立體投影光學系 、充其中該影像對比增強器更包括: 一第—偏振分光元件,用於將來自於光源之非偏振 #光變成第一偏振光及第二偏振光; —一第一偏振轉換元件與一第一光反射裝置,對該第 偏振分光元件產生的第一偏振光進行偏振, 該第二偏振光;以及 成為 ——第二偏振轉換元件與一第二光反射裴置,對該第 偏振分光元件產生的第二偏振光進行偏振轉換,成 該第—偏振光。 3’如申凊專利範圍第2項所述之立體投影光學系 12 201116850 統其中。亥第—偏振分光元件為金屬栅格型偏振片或偏 振分光棱鏡。 4·如申喷專利範圍第2項所述之立體投影光學系 、光八中^第、第二偏振轉換元件為四分之一波長 遲片。 .如申明專利|έ圍帛2項所述之立體投影光學系 統’其t該第一、第二光反射裝置為平面反射鏡。 6·如申請專利範圍第2項所述之立體投影光學系 、先其中》亥第一、第二光反射裝置為圓弧面反射鏡。 申明專利範圍第2項所述之立體投影光學系 、、充’、中.亥第一、第二光反射裝置為非球面反射鏡。 士申。月專利圍第1項所述之立體投影光學系 統,其中該影像接收器更包括: 、 =第二偏振分光元件’設置於該影像對比增強器的出 射統上’反射該第—偏振光並穿射該第二偏振光; :第一反射式空間光調制器,對該第二偏振分光元 件穿射的第:偏振光進行調制並疊加空間訊息,成為謂 經調制的第一偏振光;以及 ^ -第二反射式空間光調制器’對該第二偏振分光元 ^射的第一偏振光進行調制並疊加空間訊息,成^ 調制的第二偏振光。 9·如申請專利範圍第8項所述之立體投影光學系 201116850 統,其中該第二偏振分光元件為金屬柵格型偏振片或偏 振分光棱鏡。 10. 如申請專利範圍第8項所述之立體投影光學系 統’其中該第一、第二反射式空間光調制器為矽基液晶 面板。 11. 如申請專利範圍第1項所述之立體投影光學系 統,其中該光源發射彩色影像所需之紅光、綠光、藍光 鲁 或白光。 12·如申請專利範圍第丨項所述之立體投影光學系 統’其中該第-偏振光為S偏振光’且該第二偏:光為 P偏振光。 13.如申請專利範圍第丨項所述之立體投影光學系 統,其中該投影鏡頭用於將接收之經調制的第一 一 及第二偏振光之影像放大。 $振光201116850 VII. Patent application scope: 1. A stereoscopic projection system, comprising: a light source for emitting unpolarized light; _ a shirt image contrast enhancer for causing unpolarized light emitted by the light source to generate the same outgoing light path The first polarized light and the second polarized light; an image receiver disposed on the outgoing light path of the image contrast enhancer for modulating the second polarized light into the first polarized light to be reflected off. The first polarized light is modulated to be reflected by the second polarized light; and the mirror is configured to receive the first polarized light and the second polarized light modulated from the image receiver. The stereoscopic projection optical system according to claim 1, further comprising: a first polarization polarization component for converting the unpolarized light from the light source into the first polarization and the first a polarized light; a first polarization converting element and a first light reflecting device, polarizing the first polarized light generated by the first polarizing beam splitting element, the second polarized light; and becoming a second polarization converting element A second light reflecting means polarizes and converts the second polarized light generated by the first polarization splitting element to the first polarized light. 3' is the stereoscopic projection optical system 12 201116850 as described in claim 2 of the patent scope. The Hidd-polarization beam splitting element is a metal grid type polarizing plate or a polarization beam splitting prism. 4. The stereoscopic projection optical system, the optical octave, and the second polarization conversion element described in the second paragraph of the patent application scope are quarter-wavelength delay patches. The stereoscopic projection optical system as described in claim 2, wherein the first and second light reflecting means are plane mirrors. 6. The stereoscopic projection optical system according to item 2 of the patent application scope, wherein the first and second light reflecting devices are circular arc mirrors. The stereoscopic projection optical system according to the second aspect of the patent scope, the charging, the first and second light reflecting devices are aspherical mirrors. Shishen. The stereoscopic projection optical system of claim 1, wherein the image receiver further comprises: a second polarizing beam splitting element disposed on the exiting system of the image contrast enhancer to reflect the first polarized light and wear Emulating the second polarized light; the first reflective spatial light modulator modulating the polarized light that is transmitted through the second polarizing beam splitting element and superimposing the spatial information to become the first polarized light modulated; and a second reflective spatial light modulator modulating the first polarized light of the second polarization splitting element and superimposing the spatial information to form a second polarized light. 9. The stereoscopic projection optical system according to claim 8, wherein the second polarization beam splitting element is a metal grid type polarizing plate or a polarization beam splitting prism. 10. The stereoscopic projection optical system of claim 8, wherein the first and second reflective spatial light modulators are germanium-based liquid crystal panels. 11. The stereoscopic projection optical system of claim 1, wherein the light source emits red, green, blue or white light required for color images. 12. The stereoscopic projection optical system of claim </ RTI> wherein the first polarized light is S-polarized light and the second biased light is P-polarized light. 13. The stereoscopic projection optical system of claim 3, wherein the projection lens is for amplifying the received modulated first and second polarized light images. $Vibration
TW98137344A 2009-11-04 2009-11-04 Stereo projection optical system TW201116850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137344A TW201116850A (en) 2009-11-04 2009-11-04 Stereo projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137344A TW201116850A (en) 2009-11-04 2009-11-04 Stereo projection optical system

Publications (1)

Publication Number Publication Date
TW201116850A true TW201116850A (en) 2011-05-16

Family

ID=44934992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137344A TW201116850A (en) 2009-11-04 2009-11-04 Stereo projection optical system

Country Status (1)

Country Link
TW (1) TW201116850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452341B (en) * 2011-12-09 2014-09-11 Delta Electronics Inc Stereoscopic display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452341B (en) * 2011-12-09 2014-09-11 Delta Electronics Inc Stereoscopic display apparatus
US9039202B2 (en) 2011-12-09 2015-05-26 Delta Electronics, Inc. Multi-view display apparatus

Similar Documents

Publication Publication Date Title
US11003066B2 (en) Projection display unit and direct-view display unit
US8004761B2 (en) Stereo projection optical system
US8077196B2 (en) Stereo projection optical system
TWI358601B (en) Light-mixing device and projector
US7878656B2 (en) Stereo projection optical system
US9389427B2 (en) Optical system and projection display apparatus using the same
US20110043712A1 (en) Projector
JP3174812U (en) Optical engine for small projectors
US20090051878A1 (en) Stereo projection optical system
JP5386815B2 (en) Projection type display device and image display method
JP5675330B2 (en) Image display device
TWI357986B (en) Optical system for stereo projection
JP2015222418A (en) Color separating/combining system, and color separating/combining device using the same, and image display device
US11592735B2 (en) Image display apparatus and image display unit
US20120200788A1 (en) Distributed Polarizer And Liquid-Crystal Projection Display Apparatus Using The Same
TW201116850A (en) Stereo projection optical system
CN115145097A (en) Two-piece type 3D projection system and imaging method thereof
KR20150101153A (en) stereoscopic display device and driving method thereof using polarization beam splitter
CN102313996A (en) Stereo projection optical system
TWI359284B (en) Optical system for stereo projection
US7837331B2 (en) Illuminator and projector with increased illumination efficiency
TW200912383A (en) Stereo projection optical system
JP2013015632A (en) Polarization conversion element and image display apparatus using the same
JP2013011672A (en) Polarization modulation device and image projection device
TW556041B (en) Liquid crystal projection system