TW200912383A - Stereo projection optical system - Google Patents

Stereo projection optical system Download PDF

Info

Publication number
TW200912383A
TW200912383A TW096133435A TW96133435A TW200912383A TW 200912383 A TW200912383 A TW 200912383A TW 096133435 A TW096133435 A TW 096133435A TW 96133435 A TW96133435 A TW 96133435A TW 200912383 A TW200912383 A TW 200912383A
Authority
TW
Taiwan
Prior art keywords
light
beam splitter
optical system
polarized light
projection optical
Prior art date
Application number
TW096133435A
Other languages
Chinese (zh)
Other versions
TWI352216B (en
Inventor
Chia-Hung Kao
Chien-Wen Hsu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096133435A priority Critical patent/TWI352216B/en
Publication of TW200912383A publication Critical patent/TW200912383A/en
Application granted granted Critical
Publication of TWI352216B publication Critical patent/TWI352216B/en

Links

Abstract

The present invention discloses a stereo projection optical system. The stereo projection optical system includes a first polarization beam splitter configured for separating a light input into a first polarized light and a second polarized light, a first spatial light modulator positioned to receive the first polarized light emitted from the first polarization beam splitter, a second spatial light modulator positioned to receive the second polarized light emitted from the first polarization beam splitter, and a second polarization beam splitter positioned to respectively receive the light output emitted from the first, and the second spatial light modulators. The first, and the second spatial light modulators project two images respectively formed by the first polarized light and the second polarized light with spatial information in the stereo projection optical system. When viewers draw on a glass that has two polarizers whose polarization direction is vertical relative to each other, the viewers can watch three-dimensional images.

Description

200912383 九、發明說明: 【發明所屬之技術領域】 本發明關於—種投影絲系統,尤其係—種 體投影顯示功能之立體投影光學系統。 v、 【先前技術】 近年來,圖像投影儀,尤其數位投影儀,作為向觀 本顯不多種訊息之卫具已經逐漸流行。—般,這些投影 ,用於將由電腦生成之圖像投影到螢幕上。對觀看= 說,圖像投影儀投影之圖像通常看起來係平面二維圖 像’除圖像本身外無法顯示任何圖像景深訊息。這種顯 不可以適用於顯示多種訊息。但是,在某些情況下,觀 看者希望能有比二維顯示能夠更大程度地顯示圖像之景 深或結構特徵之投影儀。 ’、 、使二維顯示之圖像能給出圖像景深之一種方式係通 過立體地顯示圖像。立體圖像,通常稱為“三維,,或 3D圖像,在觀看者看來具有深度尺寸。這些圖像包 括分開的、疊合的左眼及右眼圖像,這些圖像設置成模 仿人之左右眼觀看時,由於人眼睛間隔引起之三維物體 表=之微小差別’而具有之景深圖像。左眼及右眼圖像 係每樣來顯示’即觀看者之右眼看不到左眼圖像,左眼 看不到右眼圖像。這種顯示方式-般借助於觀看者佩戴 之光學濾光鏡。 通常顯不立體圖像之方式係使用兩個分開之圖像投 5V系、.先刀別來投景》左眼圖像及右眼圖像。而這種系統在 200912383 成功地用於形成立體圖像之同時,系統之成本和重量則 比單個投影儀要高很多。而且,兩個投影儀要求光學對 準相對困難並比較費時。還有,由於這兩個系統之重量 及體積,使這種系統在兩個位置之間移動起來特別困 難,還有存在潛在之圖像對準之問題。 【發明内容】 有鑒於此,有必要提供一種單個的能夠投影立體圖像 的立體投影光學系統。 一種立體投影光學系統,其包括: 一第一偏振分束器,該第一偏振分束器用於將入射光 分成偏振狀態相互垂直之第一偏振光及第二偏振光; 一第一、第二穿透式空間光調制器,分別對應設置於 所述第一偏振分束器之第一、第二偏振光之出射方向上; 一個第二偏振分束器,該第二偏振分束器設置於所述 第一、第二穿透式空間光調制器之出射光之光路上; 從所述第一偏振分束器出射之第一偏振光被投射入 第一穿透式空間光調制器,該第一穿透式空間光調制器 將該第一偏振光調制成第二偏振光發射出去,並透過第 二偏振分束器發射出去; 從所述第一偏振分束器出射之第二偏振光被投射入 第二穿透式空間光調制器,該第二穿透式空間光調制器 將該第二偏振光調制成第一偏振光發射出去,該第一偏 振光經過第二偏振分束器後反射出去。 上述之立體投影光學系統通過為第一、第二穿透式空 200912383 間光調制器分別輸入載有不同訊息之光,而該第一、第 二穿透式空間光調制器所形成之兩幅圖像分別以第一偏 振光及第二偏振光通過投影鏡頭投影出去,當觀看者之 左右眼分別戴上檢偏方向相互垂直之兩片偏振片,就可 以觀察到立體之圖像訊息。 【實施方式】 下面將結合附圖,舉以下較佳實施例並配合圖式詳 細描述如下。 請參閱圖1,為本發明所提供之第一實施例之立體投 影光學系統100之結構示意圖。該立體投影光學系統100 包括沿光路方向依次設置之一光源元件11、一第一偏振 分束器12,分別設置於第一偏振分束器12不同出射光路 上之第一、第二反射裝置13、14,分別設置於所述第一、 第二反射裝置13、14之出射光路上之第一、第二穿透式 空間光調制器15、16,一設置於所述第一、第二穿透式 空間光調制器15: 16出射光路上之第二偏振分束器17, 以及一設置於第二偏振分束器17出射光路上之投影鏡頭 18。 所述光源元件11包括依光路設置之一照明光源 111、一色輪112以及一積分器113。所述照明光源111 發射包括顯示彩色圖像所需之紅光(R)、綠光(G)及藍光(B) 之白光。該光源11可以為鹵素燈、金屬il化物燈或氙燈 等。在本實施例中,該光源11為鹵素燈。所述色輪112 包括紅、綠、藍三色區,其可在電機(圖未示)的帶動下高 200912383 速方疋轉,以給投影光路配以各種色彩。所述積分器113 用來均勻化及有效地使用光源u發出之光。 斤过第偏振分束器(Polarization Beam Splitter,PBS) ^ +用於將&來自光源組件^之非偏振光變成偏振方向相 =垂直之第一偏振光及第二偏振光,例如變成S偏振光 :偏振光。該s偏振光被該第一偏振分束器12反射, 2偏振光透過該第1振分㈣12。該第—偏振分束 柵格型偏㈣(W心id編如,簡 偏振q,也可以為偏振分紐鏡,在例 12為缝分紐鏡。' 設置於所述第二二射裝置13、14可以為-種反射鏡, 振分束器nU 束器12出射之光到下述之第二偏 t. 振分束器12夕+之光之光路上,其可分別設置於第一偏 —偏振分束器u =出射光路上,也可以都設置於所述第 之光路上,用於射,S、P偏振光之其中-條出射光 振光之光路,以將弟二偏振分束器12出射之S、P偏 第二偏振分束/弟—偏振分束器12之出射光耦合到 射裝置13、。在本實施例中,該第一、第二反 P偏振光之出射刀光:上置於如第—1振分束器12出射之S、 二反射裝置13 圖2所不,為另一種第一、第 裝置13、14設置於^置方法,其將該第…第二反射 =路上。當然可 U'U還可設 疋邊苐一、第二反射裝置 置於弟—偏振分束器12之?偏振光之出射 200912383 光路上。另外,需要說明的是,該第一、第二反射裝置 13、14可以設置於所述第一、第二穿透式空間光調制器 15、16之入射光路上,也可以設置於其出射光路上。在 本實施例中,該第一、第二反射裝置設置於所述第一、 第二穿透式空間光調制器15、16之入射光路上。 所述第一、第二穿透式空間光調制器15、16結構及 工作原理基本相同,下面以第一穿透式空間光調制器15 為例來說明其結構及工作原理。 所述第一穿透式空間光調制器15可以為液晶顯示裝 置(Liquid Crystal Dispaly,LCD)。所述第一穿透式空間光 調制器15通過控制輸入光之偏振狀態來調制入射光並給 入射光加入空間訊息,形成包括該空間訊息之經過調制 的出射光。所述空間訊息可以為所述第一穿透式空間光 調制器15所載入之控制訊號電壓,該控制訊號電壓直接 控制薄膜電晶體之開關狀態,再利用該薄膜電晶體來控 制所述液晶分子4偏轉狀態,而液晶分子具有明顯之光 學各向異性,能夠控制來自入射光之光線,從而實現為 入射光載入圖像訊號之目的。在本實施例中,該所述第 一穿透式空間光調制器15對入射之S偏振光進行調制, 並在所述S偏振光上疊加空間訊息,以產生一包括空間 訊息之出射光,即包括有空間訊息之P偏振光。該P偏 振光被該第一穿透式空間光調制器15發射並透過第二偏 振分束器17發射出去。 所述第二穿透式空間光調制器16對入射之所述P偏 11 200912383 振光進行調制,並在所述p偏振光上疊加空間訊息,以 產生一包括空間訊息之出射光,即包括有空間訊息之s 偏振光。該S偏振光被第二穿透式空間光調制器16發射 並又被第二偏振分束器17反射而發射出去。 所述第二偏振分束器17與第一偏振分束器12之結構 及工作原理基本相同,在此不再贅述。該第二偏振分束 器17設置於第一、第二穿透式空間光調制器15、16之 出射光之光路上。由所述第一穿透式空間光調制器15之 出射光即P偏振光透過該第二偏振分束器17發射出去而 進入下述之投影鏡頭16中。而第二穿透式空間光調制器 16的出射光即S偏振光被該第二偏振分束器17反射而發 射出去而進入投影鏡頭18中,以被投影到螢幕上(圖未 示)。 所述投影鏡頭18設置於第二偏振分束器17之出射光 的光路上,用於將出射光所形成之圖像放大,並將放大 之圖像投影到螢幕上。 可以理解的是,為了進一步提高系統之對比度,還可 以在上述之立體投影光學系統中加入複數偏振片19,如 圖3所示,該偏振片17可以讓一定偏振方向之光通過, 而吸收其他偏振方向之光,例如讓P偏振光通過,而吸 收S偏振光或者讓S偏振光通過,而吸收P偏振光。該 多個偏振片19的具體之放置位置可以為第一、第二偏振 分束器12、17之光路之間的任意位置。在本實施例中在 第一所述第一穿透式空間光調制器15與第二偏振分束器 12 200912383 17之間以及第二穿透式空間光調制器16與第二偏振分 束器Π之間都設置有偏振片19。 /請參閱®4,林發明提供之第二實施例之投影光學 糸統200之結料意圖。該立體投影光料統包二 :光路方向依次設置之一光源元件21、一第 Π別設置於第-偏振分束器22不㈣射光路2 第、第二反射裝置23、24,設置於所述第—、第二 射=23、24之出射光路上之第_、第二穿透式空㈣ 25、26,—設置於所述第―、第二穿透式空間光 调制器25、26出射光路上之第二偏振分束器27以及一 设置於第二偏振分束器17出射光路上之投影鏡頭28。 該第二實施例與第一實施例之不同在於所述第―、第 二偏振分束器22、27對S偏振光及ρ偏振光之作用不 同。在該第二實施例中,所述第一、第二偏振分束器&、 反射Ρ偏振光’而可以讓S偏振光透過各偏振分束哭。 而該ρ偏振光及$偏振光在各光學元件即第一偏振八°° 器22、第—、第二穿透式空間光調制器25、 :二束 值八土 〜Μ及弟二 艰搌刀束器27中之傳輸光路係相同的。 同理,為了進一步提高系統之對比度,還可以在第一 實=例之立體投影光學系統200中加入複數偏振片二丁 其設置位置與第一實施例相同。 ’ 上述之立體投影光學系統通過為第一、第_ 、 空間光調制器分別輸入載有不同訊息之光,而該第—式 第二穿透式空間光調制器所形成之兩幅圖像分別 Ρ偏 13 200912383 振光及S偏振光或S偏振光及P偏振光通過投影鏡頭投 影出去,當觀看者之左右眼分別戴上檢偏方向相互垂直 之兩片偏振片,就可以觀察到立體之圖像訊息。 綜上所述,本發明符合發明專利要件,爰依法提出 專利申請。惟,以上所述者僅為本發明之較佳實施方式, 本發明之範圍並不以上述實施方式為限,舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明第一實施例之立體投影光學系統之結 構示意圖。 圖2係圖1之立體投影光學系統之另一種結構之示 意圖。 圖3係在圖1之立體投影光學系統設置有複數偏振 片之結構不意圖。 圖4係本發明第二實施例之立體投影光學系統之結 構示意圖。 14 21 200912383 【主要元件符號說明】 立體投影光學系統 100、200 光源組件 11 > 照明光源 111 色輪 112 積分器 113 投影鏡頭 18、 偏振片 19、29 28 第一、第二反射裝置 13、14、23、24 第一、第二偏振分束器 12、17、22、27 第一、第二穿透式空間光調制器15、16、25、26 15200912383 IX. Description of the Invention: [Technical Field] The present invention relates to a projection silk system, and more particularly to a stereoscopic projection optical system of a subject projection display function. v. [Prior Art] In recent years, image projectors, especially digital projectors, have become popular as a support for viewing a variety of messages. Typically, these projections are used to project a computer-generated image onto the screen. For viewing = say, the image projected by the image projector usually looks like a flat two-dimensional image 'cannot display any image depth of field information except the image itself. This display is not suitable for displaying multiple messages. However, in some cases, the viewer desires to have a projector that can display the depth of field or structural features of the image to a greater extent than the two-dimensional display. ', a way to make an image of a two-dimensional display give an image depth of field is to stereoscopically display an image. Stereoscopic images, often referred to as "three-dimensional," or 3D images, have depth dimensions to the viewer's view. These images include separate, superimposed left and right eye images that are set to mimic people When viewing left and right eyes, there is a depth of field image due to the small difference in the three-dimensional object table caused by the human eye interval. The left and right eye images are displayed every time, that is, the right eye of the viewer cannot see the left eye. The image, the left eye does not see the right eye image. This display mode is generally by means of the optical filter worn by the viewer. Usually the method of displaying the stereo image is to use two separate images to cast the 5V system. The first shot is to project the left eye image and the right eye image. While this system was successfully used to form a stereo image in 200912383, the cost and weight of the system is much higher than that of a single projector. Moreover, The two projectors require optical alignment to be relatively difficult and time consuming. Also, due to the weight and volume of the two systems, it is particularly difficult to move the system between two positions, and there are potential image pairs. Quasi-problem In view of this, it is necessary to provide a single stereoscopic projection optical system capable of projecting a stereoscopic image. A stereoscopic projection optical system comprising: a first polarization beam splitter for injecting a first polarization beam splitter The light is divided into a first polarized light and a second polarized light whose polarization states are perpendicular to each other; a first and a second transmissive spatial light modulator respectively corresponding to the first and second polarizations of the first polarizing beam splitter a second polarization beam splitter disposed on the optical path of the outgoing light of the first and second transmissive spatial light modulators; and the first polarization The first polarized light emitted by the beam splitter is projected into the first transmissive spatial light modulator, and the first transmissive spatial light modulator modulates the first polarized light into the second polarized light and transmits a second polarizing beam splitter is emitted; the second polarized light emerging from the first polarizing beam splitter is projected into a second transmissive spatial light modulator, the second transmissive spatial light modulator Two-polarized light modulation The first polarized light is emitted, and the first polarized light is reflected out through the second polarizing beam splitter. The stereoscopic projection optical system described above is respectively input by the first and second transmissive air interposer The light of the message, and the two images formed by the first and second transmissive spatial light modulators are respectively projected through the projection lens with the first polarized light and the second polarized light, respectively, when the left and right eyes of the viewer wear Three-dimensional image information can be observed by detecting two polarizing plates whose directions are perpendicular to each other. [Embodiment] Hereinafter, the following preferred embodiments will be described in detail with reference to the accompanying drawings. The structure of the stereoscopic projection optical system 100 according to the first embodiment of the present invention is provided. The stereoscopic projection optical system 100 includes a light source component 11 and a first polarization beam splitter 12 disposed in the optical path direction. The first and second reflecting means 13, 14 respectively on the different outgoing light paths of the first polarizing beam splitter 12 are respectively disposed on the outgoing light of the first and second reflecting means 13, 14 The first and second transmissive spatial light modulators 15, 16 are disposed on the first polarizing beam splitter 17 of the first and second transmissive spatial light modulators 15:16, And a projection lens 18 disposed on the outgoing light path of the second polarization beam splitter 17. The light source element 11 includes an illumination source 111, a color wheel 112, and an integrator 113 disposed in accordance with the optical path. The illumination source 111 emits white light including red (R), green (G), and blue (B) colors required to display a color image. The light source 11 may be a halogen lamp, a metal illuminator lamp, a xenon lamp or the like. In this embodiment, the light source 11 is a halogen lamp. The color wheel 112 includes red, green and blue color zones, which can be rotated by a motor (not shown) to rotate the corners of the 200912383 to match the projection light path with various colors. The integrator 113 is used to homogenize and effectively use the light emitted by the light source u. Polarization Beam Splitter (PBS) ^ + is used to change the unpolarized light from the light source component into a polarization direction phase = vertical first polarized light and second polarized light, for example, into S polarization Light: polarized light. The s-polarized light is reflected by the first polarization beam splitter 12, and the second polarized light is transmitted through the first vibration component (four) 12. The first polarization splitting grid type is biased (four) (W core id is programmed, the simple polarization q is also a polarization beam splitter, and in the example 12 is a slit mirror). The second binocular device 13 is disposed. , 14 may be a type of mirror, the beam splitter nU beam 12 out of the light to the second bias t. The beam splitter 12 light + light of the light, which can be set to the first bias - a polarizing beam splitter u = an outgoing light path, which may also be disposed on the first optical path, for the light path of the S, P-polarized light, which emits light, to split the second polarized beam The exiting light of the S, P and the second polarizing beam splitter/the polarization beam splitter 12 is coupled to the emitting device 13. In this embodiment, the first and second anti-P polarized light exiting blades are provided. Light: S is placed on the S-beam splitter 12, and the second reflecting device 13 is not shown in FIG. 2, and the other first and third devices 13 and 14 are disposed in the method, which is the first... Two reflections = on the road. Of course, U'U can also be set up with a second reflection device placed on the optical path of the polarized light beam splitter 12 on the 200912383 light path. In addition, it needs to be said It is to be noted that the first and second reflecting means 13, 14 may be disposed on the incident light path of the first and second transmissive spatial light modulators 15, 16 or may be disposed on the outgoing optical path. In this embodiment, the first and second reflecting devices are disposed on the incident optical paths of the first and second transmissive spatial light modulators 15, 16. The first and second transmissive spatial light modulations The structure and working principle of the devices 15 and 16 are basically the same. The structure and working principle of the first transmissive spatial light modulator 15 will be described below. The first transmissive spatial light modulator 15 may be a liquid crystal display device. (Liquid Crystal Dispaly, LCD). The first transmissive spatial light modulator 15 modulates the incident light by controlling the polarization state of the input light and adds a spatial message to the incident light to form a modulated outgoing light including the spatial information. The spatial information may be a control signal voltage loaded by the first transmissive spatial light modulator 15, the control signal voltage directly controlling the switching state of the thin film transistor, and then using the thin film transistor to control The liquid crystal molecules 4 are deflected, and the liquid crystal molecules have obvious optical anisotropy, and can control the light from the incident light, thereby achieving the purpose of loading the image signals into the incident light. In this embodiment, the A transmissive spatial light modulator 15 modulates incident S-polarized light and superimposes spatial information on the S-polarized light to produce an outgoing light comprising a spatial message, ie, P-polarized light including spatial information. The P-polarized light is emitted by the first transmissive spatial light modulator 15 and transmitted through the second polarization beam splitter 17. The second transmissive spatial light modulator 16 is incident on the P-bias 11 200912383 The illuminating is modulated, and a spatial message is superimposed on the p-polarized light to generate an outgoing light including a spatial information, that is, s-polarized light including a spatial information. The S-polarized light is emitted by the second transmissive spatial light modulator 16 and is again reflected by the second polarizing beam splitter 17 to be emitted. The structure and working principle of the second polarization beam splitter 17 and the first polarization beam splitter 12 are substantially the same, and are not described herein again. The second polarization beam splitter 17 is disposed on the optical path of the outgoing light of the first and second transmissive spatial light modulators 15, 16. The P-polarized light, which is emitted from the first transmissive spatial light modulator 15, is transmitted through the second polarizing beam splitter 17 and enters the projection lens 16 described below. The S-polarized light of the second transmissive spatial light modulator 16 is reflected by the second polarizing beam splitter 17 and emitted into the projection lens 18 to be projected onto the screen (not shown). The projection lens 18 is disposed on the optical path of the outgoing light of the second polarization beam splitter 17 for amplifying the image formed by the outgoing light and projecting the enlarged image onto the screen. It can be understood that, in order to further improve the contrast of the system, a plurality of polarizing plates 19 can be added to the above-mentioned stereoscopic projection optical system. As shown in FIG. 3, the polarizing plate 17 can pass light of a certain polarization direction and absorb other light. The light of the polarization direction, for example, allows P-polarized light to pass, absorbs S-polarized light or allows S-polarized light to pass, and absorbs P-polarized light. The specific placement position of the plurality of polarizing plates 19 may be any position between the optical paths of the first and second polarization beam splitters 12, 17. In the present embodiment, between the first first transmissive spatial light modulator 15 and the second polarizing beam splitter 12 200912383 17 and the second transmissive spatial light modulator 16 and the second polarizing beam splitter A polarizing plate 19 is provided between the crucibles. / Please refer to the intent of the projection optical system 200 of the second embodiment provided by the invention. The stereoscopic projection light material package 2: one light source element 21 is sequentially disposed in the optical path direction, and the first light is disposed on the first polarization beam splitter 22, and the second and second reflection devices 23 and 24 are disposed at the The first and second penetrating air (four) 25, 26, which are disposed on the first and second shots = 23, 24, are disposed in the first and second transmissive spatial light modulators 25, 26 A second polarizing beam splitter 27 on the exiting optical path and a projection lens 28 disposed on the outgoing light path of the second polarizing beam splitter 17 are disposed. This second embodiment differs from the first embodiment in that the first and second polarization beam splitters 22, 27 have different effects on S-polarized light and ρ-polarized light. In this second embodiment, the first and second polarization beam splitters & reflect the Ρpolarized light' to allow S-polarized light to pass through each polarization splitting cry. And the ρ-polarized light and the polarized light in each optical element, that is, the first polarization octave 22, the first-and second-transmissive spatial light modulator 25, the two-beam value 八土~Μ and the younger brother The transmission optical path in the beam unit 27 is the same. Similarly, in order to further improve the contrast of the system, it is also possible to add a plurality of polarizing plates to the stereoscopic projection optical system 200 of the first embodiment to be disposed in the same position as the first embodiment. The above stereoscopic projection optical system respectively inputs light carrying different information for the first, the _th, and the spatial light modulator, and the two images formed by the second-type transmissive spatial light modulator respectively Ρ1 13 200912383 The illuminating and S-polarized or S-polarized and P-polarized light are projected through the projection lens. When the left and right eyes of the viewer wear two polarizing plates perpendicular to each other, the three-dimensional polarizing film can be observed. Image message. In summary, the present invention complies with the requirements of the invention patent, and proposes a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are It should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the configuration of a stereoscopic projection optical system according to a first embodiment of the present invention. Figure 2 is a schematic illustration of another configuration of the stereoscopic projection optical system of Figure 1. Fig. 3 is a schematic view showing a structure in which a plurality of polarizing plates are provided in the stereoscopic projection optical system of Fig. 1. Fig. 4 is a view showing the configuration of a stereoscopic projection optical system according to a second embodiment of the present invention. 14 21 200912383 [Description of main component symbols] Stereoscopic projection optical system 100, 200 Light source assembly 11 > Illumination light source 111 Color wheel 112 Integrator 113 Projection lens 18, polarizing plate 19, 29 28 First and second reflecting means 13, 14 , 23, 24 first and second polarization beam splitters 12, 17, 22, 27 first and second transmissive spatial light modulators 15, 16, 25, 26 15

Claims (1)

200912383 申請專利範園 1. ‘種立體投料學“, 一卓一偏振分束器,兮第二改進在於,其包括:丄 分成偏振狀態相互弟一偏振分束器用於將入射光 一第〜、第二穿透垂f之第—偏振光及第二偏振光, 所述第—偏振八式。二間光調制器,分別對應設t於 上; 刀益之第~、第二偏振光之出射方向 一弟二偏振分束器 ::第二穿透式空間光;束器設置於所述第 攸所述第一偏拓八土制益之出射光之光路上; 第1透式空間:調::射之第-偏振光被投射入 為將該第—偏振光, ;;,5亥弟—穿透式空間光調制 :::偏第振_分束器=,光_去,並透 \ 第二穿透式空間光出射之第二偏振光被投射入 器將該第二偏振光ί =第二穿透式空間光調制 偏振光經過第成苐偏振光發射出去,該第 2. 如申請專利範圍^振分束器後反射出去。 中,所述立體投參朵^所述之立體投影光學系統,其 於第1振分束器:糸統還包括一光源組件,設置 形色圖像所需之入射光路上’用於发射包括顯示 3. 如申請專利範圍第、綠光及藍光及白光。 中,所述光源級件=所述之立體投影光學系統,其 分器。 括一照明光源、一色輪以及〜产 16 200912383 4. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一、第二偏振分束器為金屬栅格型偏振片。 5. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一、第二偏振分束器為偏振分光棱鏡。 6. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一、第二穿透式空間光調制器為液晶顯示 裝置。 7. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一偏振光為S偏振光及P偏振光中之一 種。。 8. 如申請專利範圍第7項所述之立體投影光學系統,其 中,當第一偏振光為S偏振光時,第二偏振光為P偏 振光。 9. 如申請專利範圍第7項所述之立體投影光學系統,其 中,當第一偏振光為P偏振光時,第二偏振光為S偏 振光。 . 10. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述立體投影光學系統還包括一設置於所述第二 偏振分束器出射光方向上之投影鏡頭,用於將出射光 所形成之圖像放大。 11. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述立體投影光學系統還包括複數偏振片,該複 數偏振片分別設置於第一偏振分束器與第二偏振分束 器光路之間。 17 200912383 12.如申請專利範圍第1項所述之立體投影光學系統,其 中,所述立體投影光學系統還包括至少兩個反射裝 置,該兩個反射裝置設置於所述第一偏振分束器之出 射光到第二偏振分束器之入射光之光路上,用於將第 一偏振分束器之出射光耦合到第二偏振分束器中。 18200912383 Application for Patent Park 1. 'Three-dimensional feeding technology', a Zhuoyi polarizing beam splitter, the second improvement is that it includes: 丄 is divided into polarization states, and a polarizing beam splitter is used to make the incident light a ~ The first and second polarized lights of the first and second polarized lights, the two light modulators are respectively disposed corresponding to t; the exit direction of the first and second polarized lights of the knife a second polarizing beam splitter: a second transmissive spatial light; a beam device disposed on the optical path of the first partial extension of the first partial extension of the eight-earth benefit; the first transmissive space: tune: : The first-polarized light is projected into the first-polarized light, ;;, 5 hai - transparent spatial light modulation::: partial vibration _ beam splitter =, light _ go, and transparent \ The second polarized light emitted by the second transmissive spatial light is projected by the second polarized light ί=the second transmissive spatial light modulated polarized light to be emitted through the first 苐polarized light, the second. The patent range is reflected by the vibration beam splitter. The stereoscopic projection optical system described in the stereoscopic projection In the first vibration beam splitter: the system also includes a light source component, and the incident light path required for setting the color image is used for emission including display 3. For example, the patent scope, green light, blue light and white light. , the light source level member = the stereoscopic projection optical system, and the divider thereof, including an illumination source, a color wheel, and a color wheel, and the production of the stereoscopic projection optical system according to claim 1, wherein The first and second polarizing beam splitters are metal grid type polarizing plates. The stereoscopic projection optical system according to claim 1, wherein the first and second polarizing beam splitters are The stereoscopic projection optical system according to claim 1, wherein the first and second transmissive spatial light modulators are liquid crystal display devices. The stereoscopic projection optical system, wherein the first polarized light is one of S-polarized light and P-polarized light. 8. The stereoscopic projection optical system according to claim 7, wherein First polarized light In the case of S-polarized light, the second polarized light is a P-polarized light. The stereoscopic optical system according to claim 7, wherein when the first polarized light is P-polarized light, the second polarized light is 10. The stereoscopic projection optical system of claim 1, wherein the stereoscopic projection optical system further comprises a projection lens disposed in a direction of the second polarizing beam splitter to emit light. The stereoscopic projection optical system according to claim 1, wherein the stereoscopic projection optical system further includes a plurality of polarizing plates, and the plurality of polarizing plates are respectively set Between the first polarizing beam splitter and the second polarizing beam splitter optical path. The stereoscopic projection optical system of claim 1, wherein the stereoscopic projection optical system further comprises at least two reflection devices, the two reflection devices being disposed on the first polarization beam splitter The exiting light is incident on the optical path of the incident light of the second polarizing beam splitter for coupling the outgoing light of the first polarizing beam splitter into the second polarizing beam splitter. 18
TW096133435A 2007-09-07 2007-09-07 Stereo projection optical system TWI352216B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096133435A TWI352216B (en) 2007-09-07 2007-09-07 Stereo projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096133435A TWI352216B (en) 2007-09-07 2007-09-07 Stereo projection optical system

Publications (2)

Publication Number Publication Date
TW200912383A true TW200912383A (en) 2009-03-16
TWI352216B TWI352216B (en) 2011-11-11

Family

ID=44724875

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096133435A TWI352216B (en) 2007-09-07 2007-09-07 Stereo projection optical system

Country Status (1)

Country Link
TW (1) TWI352216B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987328A (en) * 2021-02-22 2021-06-18 京东方科技集团股份有限公司 3D projection assembly, 3D projector and display system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467242B (en) 2012-05-29 2015-01-01 Delta Electronics Inc Projection apparatus for providing multiple viewing angle images
TWI562638B (en) * 2012-07-25 2016-12-11 Chiun Mai Comm Systems Inc System and method for projection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987328A (en) * 2021-02-22 2021-06-18 京东方科技集团股份有限公司 3D projection assembly, 3D projector and display system

Also Published As

Publication number Publication date
TWI352216B (en) 2011-11-11

Similar Documents

Publication Publication Date Title
US8077196B2 (en) Stereo projection optical system
CN101398536B (en) Stereo projection optical system
CN101408675B (en) Stereo projection optical system
CN100371769C (en) Image display device
JP2017072835A (en) Projection type image display device
US7874677B2 (en) Stereo projection optical system
CN101377572A (en) Stereo projection optical system
TWI357986B (en) Optical system for stereo projection
CN101373275A (en) Stereo projection optical system
TW200916828A (en) Optical system for stereo projection
CN101398537A (en) Stereo projection optical system
TW200912383A (en) Stereo projection optical system
US20140307005A1 (en) Image display apparatus and image display method
US9268160B2 (en) Three dimensional image projector with single modulator
US8960913B2 (en) Three dimensional image projector with two color imaging
KR100925720B1 (en) Projection display having dual mode function
TWI359284B (en) Optical system for stereo projection
KR20150101153A (en) stereoscopic display device and driving method thereof using polarization beam splitter
JP5759288B2 (en) Polarization modulator and image projection apparatus
JP2014119472A (en) Image display system
CN101393322A (en) Stereo projection optical system
TW200918946A (en) Optical system for stereo projection
TWI356191B (en) Optical system for stereo projection
JP2006330328A (en) Projection type picture display device with sub display, rear projection television, and digital camera
TW200909863A (en) Stereo projection optical system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees