TW201116651A - Etchant composition and etching process for titanium-aluminum complex metal layer - Google Patents

Etchant composition and etching process for titanium-aluminum complex metal layer Download PDF

Info

Publication number
TW201116651A
TW201116651A TW99124028A TW99124028A TW201116651A TW 201116651 A TW201116651 A TW 201116651A TW 99124028 A TW99124028 A TW 99124028A TW 99124028 A TW99124028 A TW 99124028A TW 201116651 A TW201116651 A TW 201116651A
Authority
TW
Taiwan
Prior art keywords
metal layer
titanium
etchant composition
aluminum
weight
Prior art date
Application number
TW99124028A
Other languages
Chinese (zh)
Inventor
Yung-I Yang
Mo-Hsun Tsai
Sheng-Hung Tu
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of TW201116651A publication Critical patent/TW201116651A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/067Etchants
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0317Thin film conductor layer; Thin film passive component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/098Special shape of the cross-section of conductors, e.g. very thick plated conductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Abstract

An etchant composition for titanium-aluminum complex metal layer comprising, on the basis of the total weight of the etchant composition, about 0.1 wt% to about 5 wt% of at least one quaternary ammonium compound containing fluorine, about 0.5 wt% to about 250 wt% of at least one oxidizing agent, about 0.2 wt% to about 20 wt% at least one acidic compound, and an aqueous medium is disclosed. A process for etching titanium-aluminum complex metal layer by using the above-mentioned etchant composition is also disclosed.

Description

201116651 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種蝕刻劑組合物,且特別關於用於鈦鋁 複合金屬層之蝕刻劑組合物,其可有效控制蝕刻後之金屬 層的錐形角度(taper angle)在約2〇度至約度之間,並且 不會對基板表面造成損傷。本發明之蝕刻劑組合物可應用 • 於具有鈦鋁複合金屬層結構之平面顯示器、積體電路、覆 晶封裝(flip chip)、印刷電路板或微機電等應用的蝕刻製 程中。 【先前技術】 在半導體及平面顯示器製程中的導線及電極(閘極、源 極及沒極)材料最初以絡為主,但隨著環保意識日漸高 漲’鉻製程將逐漸遭到禁止。 鋁在地殼中蘊藏豐富,並具有較低的金屬導體電阻率及 較好的圖案製作能力。但銘和石夕基板或玻璃基板之膨服係 .‘冑不同®此在製程中遇高溫會產生凸起,而此凸起現象 令易知成閘極與源極/汲極兩導體線路間短路。在鋁薄膜 上覆蓋銷或㈣呂合金或在紹中加入敍形成合金,以複合金 屬層的形式使用於電極材料,可解決以上問題。此_或 銘敍複口金屬層可使用磷酸作為主要成分之钱刻劑來進行 蝕刻。但因翻及斂的價格昂貴,並且有較易氧化的現象, 因此近年來已使用鈦或鈦合金來替代。鈦金屬可以作為銘 導線的潤濕層,提高銘原子的階梯覆蓋能力,並可作為用 來降低金屬與石夕或破璃的接觸電阻。然而,原本用來餘刻 l329S3.doc 1 201116651 由鈿或鉬合金及鋁合金所構成之複合金屬層的姓刻劑,並 無法用來钱刻欽或欽合金。 雖然現今在半導體或平面顯示器製程中通常是以氫氟酸 系姓刻劑來蝕刻鈦或鈦合金,但使用氫氟酸系蝕刻劑會使 得矽或玻璃基板表面遭受損傷而無法使用。 【發明内容】 鑑此,本發明之主要目的在於提供一種可以有效地蝕刻 鈦紹複合金屬層的蝕刻劑組合物,並且不會對基板表面造 成損傷。 本發明之蝕刻劑組合物包含,以組合物總重量計,約 〇. 1重里%至約5重量%之至少一種含氟四級銨化合物 '約 〇·5重量%至約20重量%之至少一種氧化劑、約〇2重量%至 約20重量%之至少一種酸性化合物、及水性介質。 本發明之另一目的在於提供一種使用本發明之蝕刻劑組 合物蝕刻鈦鋁複合金屬層之方法,其可有效控制蝕刻後該 金屬層的錐形角度在約2〇度至約6〇度之間,並且不會對基 板表面造成損傷。 本發明係使用接近令性的含氟四級銨化合物來取代習知 使用的氫氟酸或氫氟酸之銨鹽。由於四級銨化合物比一般 的銨鹽(ΝΗ^具有更大的立體結構障礙,因此,相較於小 分子的氟化銨更不容易腐蝕矽及玻璃基板表面。此外,本 發明藉由添加酸性化合物,以與含氟四級銨化合物形成醆 性的氟離子緩衝溶液’因此,可穩定持續地釋出部份解離 的亂離子,保持氟離子濃度在固定的範圍,藉以改善溶液 132983.doc 201116651 在钱刻過私中因氟離子濃度下降而造成對欽/18金屬餘刻 速度變慢的缺點。 【實施方式】 ▲本發明係關於—種㈣劑,其包含,以組合物總重量 -十’約0.1重量%至約5重量%之至少_種含氟四級銨化合 $、約0.5重量%至約2〇重量%之至少一種氧化劑、約重 直%至約20重量❶/。之至少一種酸性化合物、及水性介質。 適合以本發明㈣劑組合物進行㈣之鈦㈣合金屬層 係包含至少一鈦或鈦合金金屬詹及至少-結或銘合金金屬 層0 本發明係利用含氟四級胺化合物與酸性化合物所形成的 氣化氫緩衝溶液來進行主要㈣,以溶解鈦㈣合金屬層 中之氧化鋁及氧化鈦中氧化鋁及氧化鈦是經由蝕刻劑 組合物中所含之氧化劑對鈦鋁複合金屬層中之鋁合金及鈦 合金氧化所形成。 適用於本發明㈣劑組合物中之含氣四級敍化合物係具 通式㈣㈣仰,其中Rl、R2 ' &及&可獨立為相同或 不同之直鏈或分支CVC6-烷基(較佳為^^4·烷基)、直鏈或 刀支C2 CV烯基(較佳為烯基)、或C^C8—環烷基,其 中燒基、縣或環烧基可視需要經至少—個經基取代。在 本發明之具體實施態樣中,^鳴鳴㈣較佳獨立為相 同或不同之直鏈或分支^^4—院基。在本發明之具體實施 態樣中,纟氟四級銨化合物可為四甲基氟化銨、四乙基氟 化錄、四丙基氟⑽或四了基氟傾,最佳為四甲基氣化 132983.doc 201116651 敍。 本發明所使用之含氟四級銨化合物的含量,以蝕刻劑組 合物總重量計,為約〇· 11量至約5重量%,較佳為約0.2重 量°/。至約3重量%。 本發明所使用之氧化劑係作為蝕刻前的起始劑,用於氧 化鈦紹複合金屬層中之鋁、鈦或鋁鈦合金’其可為技藝中 已知適用於氧化鈦鋁複合金屬之各種氧化劑,例如(但不 限於)選自由硝酸、過氯酸、過氧化物、或其鹽及其混合 物所組成之群,較佳係選自由硝酸、硝酸銨、硝酸銨鈽、 過氯酸、過氣酸銨、過氯酸鈉、過氣酸鉀、過氧二硫酸 銨、過氧二硫酸鉀、過氧化氫及其混合物所組成之群。 本發明所使用之氧化劑的含量,以蝕刻劑組合物總重量 计,為約0.5重量%至約2〇重量%,更佳為丄〇%至1〇%。 本發明所使用之酸性化合物係可與含氟四級胺化合物形 成的氟化氫緩衝溶液,以溶解鈦鋁複合金屬層中之氧化鋁 及氧化鈦,其可為本領域中已知可使含氟四級録化合物解 離的酸性化合物,例如(但不限於)選自由硫酸、氫氯酸、 醋酸、磷酸及其混合物所組成之群的酸性化合物。 :發明所使用之酸性化合物的含量,以蝕刻劑組合物總 重量計,為約0.2重量%至約2〇重量%,更佳為〇5%至 10〇/〇 〇 本發明所使用的水性介質對於此技術領域中具有通常知 識者而言軸而易知的,例如水、蒸館水、超純水及去離 子水,較佳係超純水或去離子水。 132983.doc 201116651 本發明之#刻劑組合物係用於鈦鋁電子線路圖案之成 形’具有姓刻速率快及可控制蝕刻後該鈦鋁複合金屬層的 錐形角度在約20度至約60度之間等優點。根據本發明之一 具體實施態樣,本發明之蝕刻劑組合物可應用於具有鈦鋁 複合金屬層結構之平面顯示器、積體電路、覆晶封裝⑺斤 chip)、印刷電路板或微機電等應用之蝕刻製程中。 據此,本發明另提供一種鈦鋁複合金屬層之蝕刻方法, 其包括: 提供一基板; 於該基板上形成第一鈦金屬層; 於該第一鈦金屬層上形成鋁金屬層; 於該紹金屬層上形成第二鈦金屬層; 於該第二鈦金屬層上形成圖案化光阻層;及 以該圖案化光阻層為罩幕,使用具有如前所定義之組份 及比例的蝕刻劑組合物對該第一鈦金屬層、該鋁金屬層 及該第二鈦金屬層進行蝕刻製程。 根據本發明之一具體實施態樣,在本發明鈦鋁複合金層 屬之蝕刻方法中,該第一鈦金屬層及該第二鈦金屬層包含 2或鈦合金,及該鋁金屬層包含鋁或铭合金,且形成該第 一鈦金屬層、該鋁金屬層及該第二鈦金屬層之方法可以本 技術領域習知之—船方法谁;^ 1 , 舣万忐進仃,例如但不限於,物理氣相 沈積法、化學氣相沈積法或電錄法。 本^月姓刻方法中對於所要姓刻之包含鈦铭複合金屬層 的基板並無特別㈣’例如但不限於1基板或玻璃基 132983.doc 201116651 板,如矽晶或二氧化矽玻璃基板β 根據本發明之鈦鋁複合金屬層之蝕刻方法可在本技術領 域習知之一般操作條件下進行。於一具體實施態樣中,本 發明之蝕刻方法的溫度範圍為約丨5。匸至約5〇。匚,較佳為約 25°C至約40°C ;蝕刻處理時間為約〇 5分鐘至約1〇分鐘。 本發明之蝕刻方法能有效對鈦鋁複合金屬層進行蝕刻, 而不會對矽或玻璃基板表面造成損傷,並可控制蝕刻後該 鈦铭複合金屬層的錐形角度在約2〇度至約60度之間。 以下實施例係用於對本發明作進一步說明,唯非用以限 制本發明之範圍β任何熟悉此項技藝之人士可輕易達成之 修飾及改變均包括於本案說明書揭示内容及所附申請專利 範圍之範圍内。 實施例 圖1係在姓刻前(a)及姓刻後(b),於玻璃基板上形成鈦鋁 複合金屬層及圖案化光阻層之側視圖。 如圖1(a)所示,提供一玻璃基板(1),於基板上形成7〇〇a 鈦金屬(2)/210〇A鋁金屬(3)/20〇A鈦金屬(2)之複合金屬層, 接著於鈦鋁複合金屬層上形成圖案化光阻層(4),然後於溫 度約3 5 °C下,將基板浸潰於表1之實例1至14的姓刻劑組合 物中’待蝕刻完畢後,使用超純水洗滌玻璃基板,並以氮 氣乾燥,得到如圖1 (b)所示之包含姓刻後之鈦鋁複合金屬 層巧基板。 132983.doc 201116651 表1 實例 蝕刻劑組合物(重量%),其餘為水 姓刻時間 (分鐘) 導線錐形 角度 基板 損傷 1 四曱基氟化銨:硫酸:硝酸=0.6 : 1_0 : 3.0 2.0 25 否 2 四甲基氟化銨:硫酸:硝酸=1.0 : 1.0 : 3.0 1.4 22 否 3 四曱基氟化銨:硫酸:硝酸=1.0 : 10·0 : 3.0 2.5 20 微 4 四甲基氟化銨:硫酸:硝酸=3.0: 1.0:3.0 0.5 20 微 5 四曱基氟化銨:氫氣酸:硝酸=1.0 : 1.0 : 3_0 2.1 30 否 6 四甲基氟化銨:醋酸:硝酸=1.0 : 2.0 : 3.0 3.5 25 否 7 四甲基氟化銨:醋酸:硝酸=1.0 :2.0: 15.0 0.6 20 微 S 四甲基氟化銨:醋酸:硝酸=1.0 : 15.0 : 3.0 1.1 22 微 9 四甲基氟化銨:硫酸:硝酸:過氧二硫酸銨=1.0 : 1.0 : 3.0 : 1.0 1.5 35 否 10 四曱基氟化銨:硫酸:硝酸:過氧二硫酸銨=1.0 : 1.0 : 3.0 : 2.0 1.6 63 否 11 四甲基氟化銨:硫酸:過氧化氫=1.0 : 1.0 : 5.0 1.2 60 否 12 四曱基氟化銨:硫酸··過氧化氫=1.0 : 3.0 : 5.0 L4 48 否 13 四曱基氟化銨:硫酸:過氧化氬=1.0 : 3.0 : 10·0 L5 70 否 14 四甲基氟化銨:硫酸:硝酸:過氧化氫=1.0 : 1.0 : 3.0 :3.0 1,3 45 否 藉由掃瞄式電子顯微鏡(SEM)觀察經蝕刻後之鈦鋁複合 金屬層的形狀,其中實例1的SEM照片如圖2所示,實例7 的SEM照片如圖3所示。在本發明之蝕刻劑組合物中,當 含氟四級銨化合物之濃度小於約5重量%時,不會對矽或 玻璃基板造成損傷;當含氟四級銨化合物之濃度高於約 0.1重量%時,可增加對鈦或鈦合金的蝕刻能力,且蝕刻後 的形狀較佳。 當氧化劑之濃度高於約0.5重量%時,對鈦或鈦合金的蝕 刻較快,效果較好;當氧化劑的含量低於約20重量%時, 不會對光阻造成損傷,又可以藉由單獨使用或與其他氧化 劑組合使用來改變姓刻後之複合金屬層的錐形角度。 综上所述,本發明之蝕刻劑組合物及蝕刻方法不但可以 132983.doc 201116651 有效地蝕刻在基板上之鈦鋁複合金屬層,且不會對基板表 面及光阻造成損傷,適合用於鈦鋁電子線路圖案之成形, 並具有钱刻速率快及可控制蝕刻後該鈦鋁複合金屬層的錐 形角度在約20度至約60度之間等優點。 雖然本發明已以較佳實施例揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神與 範圍内’當可做些許之改變與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1係在蝕刻前(a)及蝕刻後(b),於玻璃基板上形成鈦鋁 複合金屬層及圖案化光阻層之側視圖。 圖2係藉由掃瞄式電子顯微鏡觀察在實例1中,蝕刻後之 欽IS複合金屬層的形狀之照片圖。 圖3係藉由掃瞄式電子顯微鏡觀察在實例7中,钱刻後之 鈦紹複合金屬層的形狀之照片圖。 【元件符號說明】 (1) 玻璃基板 (2) 鈦金屬層 (3) 鋁金屬層 (4) 圊案化光阻層 132983.doc -10-201116651 VI. Description of the Invention: [Technical Field] The present invention relates to an etchant composition, and more particularly to an etchant composition for a titanium-aluminum composite metal layer, which can effectively control the metal layer after etching The taper angle is between about 2 degrees and about degrees and does not cause damage to the surface of the substrate. The etchant composition of the present invention can be applied to an etching process of a flat panel display, an integrated circuit, a flip chip, a printed circuit board or a microelectromechanical device having a titanium aluminum composite metal layer structure. [Prior Art] In the semiconductor and flat panel display process, the wires and electrodes (gate, source, and immersion) are initially dominated by the network, but as the environmental awareness grows higher, the chrome process will be gradually banned. Aluminum is abundant in the earth's crust and has a low metal conductor resistivity and good patterning ability. However, Ming and Shixi substrates or glass substrate expansion system. '胄 Different® This will cause bumps in the process of high temperature, and this convex phenomenon makes it easy to know between the gate and the source/drain two conductor lines. Short circuit. The above problem can be solved by covering the pin on the aluminum film or (4) Lu alloy or adding an alloy to the alloy in the form of a composite metal layer. This _ or inscription of the metal layer can be etched using a phosphoric acid as a main component. However, titanium or titanium alloys have been used in recent years because of the high price and the tendency to oxidize. Titanium can be used as a wetting layer for the wire, which improves the step coverage of the Ming atom and can be used as a contact resistance to reduce the contact resistance between metal and stone or glass. However, the original engraving of the composite metal layer consisting of tantalum or molybdenum alloy and aluminum alloy was not used for the engraving of l329S3.doc 1 201116651. Although titanium or titanium alloys are usually etched with a hydrofluoric acid-based surname in the semiconductor or flat panel display process, the use of a hydrofluoric acid-based etchant may cause damage to the surface of the resulting or glass substrate and may be unusable. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide an etchant composition which can effectively etch a titanium-based composite metal layer without causing damage to the surface of the substrate. The etchant composition of the present invention comprises, based on the total weight of the composition, from about 1% by weight to about 5% by weight of at least one fluorine-containing quaternary ammonium compound from about 5% by weight to about 20% by weight. An oxidizing agent, from about 2% by weight to about 20% by weight of at least one acidic compound, and an aqueous medium. Another object of the present invention is to provide a method for etching a titanium aluminum composite metal layer using the etchant composition of the present invention, which can effectively control the taper angle of the metal layer after etching to be about 2 to about 6 degrees. There is no damage to the surface of the substrate. In the present invention, a fluorine-containing quaternary ammonium compound which is similar in nature is used in place of the ammonium salt of hydrofluoric acid or hydrofluoric acid which is conventionally used. Since the quaternary ammonium compound has a larger steric structure than the general ammonium salt, it is less likely to corrode the surface of the glass substrate than the ammonium fluoride of the small molecule. Further, the present invention is added by adding acidity. The compound forms a hydrophobic fluoride buffer solution with the fluorine-containing quaternary ammonium compound. Therefore, the partially dissociated chaotic ions can be stably and continuously released, and the fluoride ion concentration is maintained in a fixed range, thereby improving the solution 132983.doc 201116651 In the case of money, the disadvantage of slowing down the concentration of fluoride ions caused by the decrease of the concentration of fluoride ions. [Embodiment] ▲ The present invention relates to a kind of (four) agent, which comprises the total weight of the composition - ten 'from about 0.1% by weight to about 5% by weight of at least one fluorine-containing quaternary ammonium compound, from about 0.5% by weight to about 3% by weight of at least one oxidizing agent, from about 5% by weight to about 20% by weight. An acidic compound and an aqueous medium. The titanium (tetra) metal layer suitable for carrying out the (four) agent composition of the present invention comprises at least one titanium or titanium alloy metal and at least a knot or alloy metal layer. The main (4) is carried out by using a vaporized hydrogen buffer solution formed of a fluorine-containing quaternary amine compound and an acidic compound to dissolve aluminum oxide and titanium oxide in the titanium (tetra) metal layer through the etchant composition. The oxidant contained is formed by oxidizing an aluminum alloy and a titanium alloy in the titanium-aluminum composite metal layer. The gas-containing quaternary compound compound suitable for use in the composition of the invention (4) has a general formula (4) (four), wherein Rl, R2 ' & And & can be independently the same or different straight or branched CVC6-alkyl (preferably ^^4·alkyl), linear or scalloped C2 CV alkenyl (preferably alkenyl), or C ^C8—cycloalkyl, wherein the alkyl group, the county or the cycloalkyl group may be substituted with at least one basis group. In a specific embodiment of the invention, the ringing (4) is preferably independently the same or different straight chain. Or a branch ^^4 - a hospital base. In a specific embodiment of the present invention, the fluorinated quaternary ammonium compound may be tetramethylammonium fluoride, tetraethylfluorinated, tetrapropyl fluoride (10) or tetraradine Fluorine tilting, preferably tetramethyl gasification 132983.doc 201116651. The fluorine-containing four-stage used in the present invention The content of the ammonium compound is from about 〇·11 to about 5% by weight, preferably from about 0.2% by weight to about 3% by weight based on the total weight of the etchant composition. The oxidizing agent used in the present invention is used as an etching. The former initiator, for aluminum, titanium or aluminum titanium alloy in the titanium oxide composite metal layer, which may be various oxidants known in the art to be suitable for the titanium aluminum composite metal, such as, but not limited to, selected from The group consisting of nitric acid, perchloric acid, peroxide, or a salt thereof and mixtures thereof is preferably selected from the group consisting of nitric acid, ammonium nitrate, ammonium nitrate, perchloric acid, ammonium perchlorate, sodium perchlorate, a group consisting of potassium oxylate, ammonium peroxodisulfate, potassium peroxodisulfate, hydrogen peroxide, and mixtures thereof. The oxidizing agent used in the present invention is present in an amount of about 0.5% by weight based on the total weight of the etchant composition. Up to about 2% by weight, more preferably from % to about 1%. The acidic compound used in the present invention is a hydrogen fluoride buffer solution which can be formed with a fluorine-containing quaternary amine compound to dissolve aluminum oxide and titanium oxide in the titanium aluminum composite metal layer, which can be known in the art to be fluorine-containing The acidic compound from which the graded compound dissociates, such as, but not limited to, an acidic compound selected from the group consisting of sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, and mixtures thereof. The content of the acidic compound used in the invention is from about 0.2% by weight to about 2,000% by weight, more preferably from 5% to 10% by weight based on the total weight of the etchant composition, of the aqueous medium used in the present invention. It is well known to those of ordinary skill in the art, such as water, steamed water, ultrapure water, and deionized water, preferably ultrapure or deionized water. 132983.doc 201116651 The invention of the invention is used for the formation of a titanium-aluminum electronic circuit pattern. The taper angle of the titanium-aluminum composite metal layer having a fast surname rate and controllable etching is from about 20 degrees to about 60 degrees. The advantages between degrees. According to an embodiment of the present invention, the etchant composition of the present invention can be applied to a flat panel display, an integrated circuit, a flip chip package, a printed circuit board or a microelectromechanical device having a titanium aluminum composite metal layer structure. Applied in the etching process. According to the present invention, the present invention further provides a method for etching a titanium-aluminum composite metal layer, comprising: providing a substrate; forming a first titanium metal layer on the substrate; forming an aluminum metal layer on the first titanium metal layer; Forming a second titanium metal layer on the metal layer; forming a patterned photoresist layer on the second titanium metal layer; and using the patterned photoresist layer as a mask, using components and ratios as defined above The etchant composition etches the first titanium metal layer, the aluminum metal layer, and the second titanium metal layer. According to an embodiment of the present invention, in the etching method of the titanium aluminum composite gold layer of the present invention, the first titanium metal layer and the second titanium metal layer comprise 2 or a titanium alloy, and the aluminum metal layer comprises aluminum Or an alloy, and the method of forming the first titanium metal layer, the aluminum metal layer, and the second titanium metal layer may be known in the art - the ship method; ^ 1 , 舣 忐 仃 仃, for example but not limited to , physical vapor deposition, chemical vapor deposition or electro-recording. In the method of engraving in this month, there is no special (4) for the substrate containing the titanium alloy composite layer, such as but not limited to 1 substrate or glass substrate 132983.doc 201116651 plate, such as twinned or ceria glass substrate β The etching method of the titanium aluminum composite metal layer according to the present invention can be carried out under the general operating conditions conventionally known in the art. In one embodiment, the temperature of the etching method of the present invention ranges from about 丨5.匸 to about 5 〇. Preferably, it is from about 25 ° C to about 40 ° C; and the etching treatment time is from about 5 minutes to about 1 minute. The etching method of the invention can effectively etch the titanium-aluminum composite metal layer without causing damage to the surface of the crucible or the glass substrate, and can control the taper angle of the titanium metal composite layer after etching to about 2 to about Between 60 degrees. The following examples are intended to be illustrative of the present invention and are not intended to limit the scope of the present invention. Any modifications and variations that can be readily made by those skilled in the art are included in the disclosure of the present specification and the scope of the appended claims. Within the scope. EXAMPLES Fig. 1 is a side view showing a titanium aluminum composite metal layer and a patterned photoresist layer formed on a glass substrate before the last name (a) and the last name (b). As shown in Fig. 1(a), a glass substrate (1) is provided, and a composite of 7〇〇a titanium metal (2)/210〇A aluminum metal (3)/20〇A titanium metal (2) is formed on the substrate. a metal layer, followed by forming a patterned photoresist layer (4) on the titanium aluminum composite metal layer, and then dipping the substrate into the surname composition of Examples 1 to 14 of Table 1 at a temperature of about 35 ° C. After the etching was completed, the glass substrate was washed with ultrapure water and dried with nitrogen to obtain a titanium-aluminum composite metal layered substrate including the last name as shown in Fig. 1 (b). 132983.doc 201116651 Table 1 Example etchant composition (% by weight), the rest is water time (minutes) Wire taper angle substrate damage 1 Tetramethylammonium fluoride: sulfuric acid: nitric acid = 0.6 : 1_0 : 3.0 2.0 25 No 2 Tetramethylammonium fluoride: sulfuric acid: nitric acid = 1.0 : 1.0 : 3.0 1.4 22 no 3 tetradecyl ammonium fluoride: sulfuric acid: nitric acid = 1.0 : 10 · 0 : 3.0 2.5 20 micro 4 tetramethylammonium fluoride : sulfuric acid: nitric acid = 3.0: 1.0: 3.0 0.5 20 micro 5 tetradecyl ammonium fluoride: hydrogen acid: nitric acid = 1.0 : 1.0 : 3_0 2.1 30 no 6 tetramethylammonium fluoride: acetic acid: nitric acid = 1.0 : 2.0 : 3.0 3.5 25 No 7 Tetramethylammonium fluoride: Acetic acid: Nitric acid = 1.0 : 2.0: 15.0 0.6 20 Micro S Tetramethylammonium fluoride: Acetic acid: Nitric acid = 1.0 : 15.0 : 3.0 1.1 22 Micro 9 Tetramethyl fluoride Ammonium: sulfuric acid: nitric acid: ammonium peroxodisulfate = 1.0 : 1.0 : 3.0 : 1.0 1.5 35 no 10 tetradecyl ammonium fluoride: sulfuric acid: nitric acid: ammonium peroxodisulfate = 1.0 : 1.0 : 3.0 : 2.0 1.6 63 No 11 Tetramethylammonium fluoride: sulfuric acid: hydrogen peroxide = 1.0 : 1.0 : 5.0 1.2 60 no 12 tetradecyl ammonium fluoride: sulfuric acid · hydrogen peroxide = 1.0 : 3.0 : 5.0 L4 48 No 13 Tetramethylammonium fluoride: sulfuric acid: argon peroxide = 1.0 : 3.0 : 10·0 L5 70 No 14 Tetramethylammonium fluoride: sulfuric acid: nitric acid: hydrogen peroxide = 1.0 : 1.0 : 3.0 :3.0 1,3 45 No. The shape of the etched titanium-aluminum composite metal layer was observed by a scanning electron microscope (SEM), wherein the SEM photograph of Example 1 is shown in FIG. 2, and the SEM photograph of Example 7 is shown in FIG. . In the etchant composition of the present invention, when the concentration of the fluorine-containing quaternary ammonium compound is less than about 5% by weight, no damage is caused to the crucible or the glass substrate; when the concentration of the fluorine-containing quaternary ammonium compound is higher than about 0.1% by weight When % is used, the etching ability to titanium or a titanium alloy can be increased, and the shape after etching is preferable. When the concentration of the oxidizing agent is higher than about 0.5% by weight, the etching of titanium or titanium alloy is faster, and the effect is better; when the content of the oxidizing agent is less than about 20% by weight, the photoresist is not damaged, and Used alone or in combination with other oxidizing agents to change the taper angle of the composite metal layer after the last name. In summary, the etchant composition and the etching method of the present invention can effectively etch the titanium-aluminum composite metal layer on the substrate by 132983.doc 201116651 without damage to the surface of the substrate and the photoresist, and is suitable for titanium. The aluminum electronic circuit pattern is formed, and has the advantages of a fast engraving rate and a controlled taper angle of the titanium-aluminum composite metal layer after etching to be between about 20 degrees and about 60 degrees. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a side view showing a titanium-aluminum composite metal layer and a patterned photoresist layer formed on a glass substrate before (a) etching and after (b) etching. Fig. 2 is a photograph showing the shape of the etched IS composite metal layer in Example 1 by a scanning electron microscope. Fig. 3 is a photograph showing the shape of the titanium-based composite metal layer in Example 7 by a scanning electron microscope. [Description of component symbols] (1) Glass substrate (2) Titanium layer (3) Aluminum metal layer (4) Patterned photoresist layer 132983.doc -10-

Claims (1)

201116651 七、申請專利範園: 1. 一種用於鈦鋁複合金屬層之蝕刻劑組合物,其包含,以 蝕刻劑組合物總重量計,約〇.丨重量%至約5重量%之至少 種含氟四級錄化合物、約0 5重量%至約2〇重量。之至 少一種氧化劑、約0.2重量。/。至約20重量◦/❶之至少一種酸 性化合物、及水性介質。 2.如請求項1之蝕刻劑組合物,其中該鈦鋁複合金屬層係 包含至少一鈦或鈦合金金屬層及至少一鋁或鋁合金金屬 層。 3 ·如味求項1之蝕刻劑組合物,其中蝕刻後之鈦鋁複合金 屬層的錐形角度(taper angle)為約20度至約60度。 4. 如°月求項1之姓刻劑組合物’其中該含氟四級敍化合物 係具通式r丨r2R3r4N+f-,其中&、&、1及&可獨立為 相同或不同之直鏈或分支Ci_c6_烷基、直鏈或分支c2_c6_ 婦基、或q-C8-環烷基,其中烷基、烯基或環烷基可視 需要經至少一個羥基取代。 5. 如喷求項4之蝕刻劑組合物,其中R!、R2、R3及R4可獨 立為相同或不同之直鏈或分支Ci_C4_烷基。 6·如β求項5之蝕刻劑組合物,其中該含氟四級銨化合物 包含四曱基氟化銨、四乙基氟化銨、四丙基氟化銨或四 丁基氟化錢。 如明求項1、4、5或6之蝕刻劑組合物,其中該含氟四級 安化5物之含量,以姓刻劑組合物之總重量計,為約0.2 重量%至約3重量%。 132983.doc 201116651 8·如請求項1之蝕刻劑組合物,其中該氧化劑係選自由硝 酸、硝酸銨、硝酸銨鈽、過氯酸、過氯酸銨、過氯酸 鈉、過氯酸鉀、過氧二硫酸銨、過氧二硫酸鉀、過氧化 氫及其混合物所組成之群及其混合物所組成之群。 9.如請求項1或8之蝕刻劑組合物’其中該氧化劑之含量, 以蝕刻劑組合物之總重量計,為約〇5重量%至約ι〇重量 % 〇 里 10·如請求項1之蝕刻劑組合物,其令該酸性化合物係選自 由硫酸、醋酸、氫氯酸、磷酸及其混合物所組成之群。 11.如請求項丨或⑺之蝕刻劑組合物,其中該酸性化合物之 含量,以蝕刻劑組合物之總重量計,為約0 5重量%至約 5重量% 。 6、8及10中任一項之蝕刻劑 12.如請求項1、2、3、4 組合物,其中該水性介質係超純水或去離子水。 13. —種鈦鋁複合金屬層之蝕刻方法,其包括: 提供一基板; 於該基板上形成第一鈦金屬層; 於該第一鈦金屬層上形成鋁金屬層; 於該鋁金屬層上形成第二鈦金屬層; 於該第二鈦金屬層}形1^、^1&/,, 闻尽上形成圖案化光阻層;及 以該圖案化光阻層為葚莖 增马罩幕,使用如請求項1至12中1 一項之蝕刻劑組合物對兮梦 0 對遠苐一鈦金屬層、該鋁金屬層』 該弟*—欽金屬層進行钱刻。 14·根據請求項13之方法 其中該第一鈦金屬層及該第二鈦 132983.doc 201116651 金屬層包含鈦或鈦合金 金。 及該鋁金屬層包含鋁或鋁合 15. 16. 17. 18. 19. 根據請求項13之方法,其中 金屬層及該第二鈦金屬層之 化學氣相沈積法或電鍍法。 根據請求項13之方法,其中 板0 形成該第一鈦金屬層、該銘 方法包含物理氣相沈積法、 該基板係為矽基板或玻璃基 根據請求項13至16中任一項之方法,其中蝕刻後之鈦鋁 複合金屬層的錐形角度為約20度至約60度。 根據請求項丨3至1 6中任一項之方法,其中該蝕刻係在溫 度範圍為約15。(:至約50°C下進行。 根據請求項13至16中任一項之方法,其中該蝕刻之處理 時間為約0.5分鐘至約10分鐘。 132983.doc S.201116651 VII. Patent Application: 1. An etchant composition for a titanium-aluminum composite metal layer, comprising at least about 5% by weight to about 5% by weight based on the total weight of the etchant composition. A fluorine-containing quaternary compound, from about 0.5% by weight to about 2% by weight. At least one oxidizing agent, about 0.2% by weight. /. Up to about 20 parts by weight of bismuth / hydrazine of at least one acid compound, and an aqueous medium. 2. The etchant composition of claim 1, wherein the titanium aluminum composite metal layer comprises at least one titanium or titanium alloy metal layer and at least one aluminum or aluminum alloy metal layer. 3. The etchant composition of claim 1, wherein the etched titanium aluminum composite metal layer has a taper angle of from about 20 degrees to about 60 degrees. 4. The surname composition of claim 1 wherein the fluorine-containing four-step compound has the formula r丨r2R3r4N+f-, wherein &, &, 1 and & can be independently the same or Different straight chain or branched Ci_c6_alkyl, straight or branched c2_c6_, or q-C8-cycloalkyl, wherein the alkyl, alkenyl or cycloalkyl group may optionally be substituted with at least one hydroxyl group. 5. The etchant composition of claim 4, wherein R!, R2, R3 and R4 are independently the same or different straight or branched Ci_C4_alkyl groups. An etchant composition according to the invention of claim 5, wherein the fluorine-containing quaternary ammonium compound comprises tetradecyl ammonium fluoride, tetraethyl ammonium fluoride, tetrapropyl ammonium fluoride or tetrabutyl fluoride. The etchant composition of claim 1, 4, 5 or 6, wherein the content of the fluorine-containing quaternary ampoule 5 is from about 0.2% by weight to about 3 parts by weight based on the total weight of the surname composition. %. The etchant composition of claim 1, wherein the oxidizing agent is selected from the group consisting of nitric acid, ammonium nitrate, ammonium nitrate, perchloric acid, ammonium perchlorate, sodium perchlorate, potassium perchlorate, peroxygen A group of ammonium disulfate, potassium peroxodisulfate, hydrogen peroxide, and mixtures thereof, and mixtures thereof. 9. The etchant composition of claim 1 or 8 wherein the oxidizing agent is present in an amount of from about 5% by weight to about 10% by weight based on the total weight of the etchant composition. An etchant composition which is selected from the group consisting of sulfuric acid, acetic acid, hydrochloric acid, phosphoric acid, and mixtures thereof. 11. The etchant composition of claim IA or (7), wherein the acidic compound is present in an amount of from about 0.5% by weight to about 5% by weight based on the total weight of the etchant composition. An etchant according to any one of clauses 8, 8 and 10, wherein the aqueous medium is ultrapure water or deionized water, as claimed in claim 1, 2, 3, and 4. 13. A method of etching a titanium-aluminum composite metal layer, comprising: providing a substrate; forming a first titanium metal layer on the substrate; forming an aluminum metal layer on the first titanium metal layer; and forming the aluminum metal layer on the aluminum metal layer Forming a second titanium metal layer; forming a patterned photoresist layer on the second titanium metal layer; forming a patterned photoresist layer; and using the patterned photoresist layer as a stalk Using the etchant composition of one of claims 1 to 12 for the nightmare 0, the titanium metal layer, the aluminum metal layer, and the metal layer of the younger brother. 14. The method of claim 13 wherein the first titanium metal layer and the second titanium 132983.doc 201116651 metal layer comprise titanium or titanium alloy gold. And the aluminum metal layer comprises aluminum or aluminum. 15. 16. 17. 18. 19. The method according to claim 13, wherein the metal layer and the second titanium metal layer are chemical vapor deposited or plated. The method of claim 13, wherein the plate 0 forms the first titanium metal layer, the method comprises a physical vapor deposition method, and the substrate is a germanium substrate or a glass substrate according to any one of claims 13 to 16, The tapped angle of the etched titanium aluminum composite metal layer is from about 20 degrees to about 60 degrees. The method of any one of claims 3 to 16, wherein the etching is in a temperature range of about 15. The method of any one of claims 13 to 16, wherein the etching treatment time is from about 0.5 minutes to about 10 minutes. 132983.doc S.
TW99124028A 2009-07-22 2010-07-21 Etchant composition and etching process for titanium-aluminum complex metal layer TW201116651A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22745109P 2009-07-22 2009-07-22

Publications (1)

Publication Number Publication Date
TW201116651A true TW201116651A (en) 2011-05-16

Family

ID=42782260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99124028A TW201116651A (en) 2009-07-22 2010-07-21 Etchant composition and etching process for titanium-aluminum complex metal layer

Country Status (2)

Country Link
TW (1) TW201116651A (en)
WO (1) WO2011009764A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216681A (en) * 2020-09-24 2021-01-12 云谷(固安)科技有限公司 Display panel with side etching amount monitoring function and manufacturing method and monitoring method thereof
CN113102541A (en) * 2021-04-21 2021-07-13 湖南工程学院 Processing method of titanium-aluminum composite metal sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112828291B (en) * 2020-12-31 2023-03-31 宁波通导电子有限公司 Manufacturing method of high-temperature operation robot

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240424B2 (en) * 1998-10-23 2009-03-18 エルジー ディスプレイ カンパニー リミテッド Etching agent and method for manufacturing substrate for electronic device using the same
SG129274A1 (en) * 2003-02-19 2007-02-26 Mitsubishi Gas Chemical Co Cleaaning solution and cleaning process using the solution
TWI245317B (en) * 2004-05-21 2005-12-11 Mosel Vitelic Inc Method of wafer reclaiming, the wafer and producing method of the same
EP1628336B1 (en) * 2004-08-18 2012-01-04 Mitsubishi Gas Chemical Company, Inc. Cleaning liquid and cleaning method
WO2006137497A1 (en) * 2005-06-24 2006-12-28 Mitsubishi Gas Chemical Company, Inc. Etching composition for metal material and method for manufacturing semiconductor device by using same
WO2007111694A2 (en) * 2005-11-09 2007-10-04 Advanced Technology Materials, Inc. Composition and method for recycling semiconductor wafers having low-k dielectric materials thereon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216681A (en) * 2020-09-24 2021-01-12 云谷(固安)科技有限公司 Display panel with side etching amount monitoring function and manufacturing method and monitoring method thereof
CN112216681B (en) * 2020-09-24 2022-08-09 云谷(固安)科技有限公司 Display panel with side etching amount monitoring function and manufacturing method and monitoring method thereof
CN113102541A (en) * 2021-04-21 2021-07-13 湖南工程学院 Processing method of titanium-aluminum composite metal sheet
CN113102541B (en) * 2021-04-21 2021-11-16 湖南工程学院 Processing method of titanium-aluminum composite metal sheet

Also Published As

Publication number Publication date
WO2011009764A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
TWI572745B (en) Etchant composition for copper-containing metal film and etching method using the same
TWI358466B (en) Etchant composition for indium oxide layer and etc
JP5753180B2 (en) Etching solution composition
JP5604056B2 (en) Etching solution for copper-containing laminated film
CN103526206B (en) Metal wiring etching solution and metal wiring forming method using same
TW200902762A (en) Etchant and method for fabricating electric device including thin film transistor using the same
CN101130870A (en) Laminated film
TW201139742A (en) Etchant for metal wiring and method for manufacturing metal wiring using the same
JPWO2009066624A1 (en) Method for etching glass substrate
JP2008053374A (en) Titanium, aluminum metal laminated film etchant composition
TW201200465A (en) Nano/micro-structure and fabrication method thereof
TW201335433A (en) Etching solution composition for bulk etching of metal laminated film with titanium and titanium alloy
TWI444488B (en) Etchant compositions for metal laminated films having titanium and aluminum layer
CN100537847C (en) Titanium, aluminium cascade metal films etchant
TW201142085A (en) Etching solution composition for metal layer comprising copper and titanium (1)
TW201116651A (en) Etchant composition and etching process for titanium-aluminum complex metal layer
US8318606B2 (en) Dielectric etching
CN106555187B (en) Etchant composition, method for etching copper-based metal layer, method for manufacturing array substrate and array substrate manufactured by same
KR102179756B1 (en) Etching solution composition for a metal nitride layer
JP4941335B2 (en) Etching solution and etching method
KR101745721B1 (en) Etching solution composition for formation of cu line
JP2725875B2 (en) Etching agent
US6893578B1 (en) Selective etchant for oxide sacrificial material in semiconductor device fabrication
JP2013509702A (en) Etching solution composition
TW201204874A (en) Etching solution composition for metal layer comprising copper and titanium