TW201115721A - Resistive random access memory and its manufacturing method - Google Patents

Resistive random access memory and its manufacturing method Download PDF

Info

Publication number
TW201115721A
TW201115721A TW98136784A TW98136784A TW201115721A TW 201115721 A TW201115721 A TW 201115721A TW 98136784 A TW98136784 A TW 98136784A TW 98136784 A TW98136784 A TW 98136784A TW 201115721 A TW201115721 A TW 201115721A
Authority
TW
Taiwan
Prior art keywords
electrode
layer
dielectric layer
resistive memory
memory device
Prior art date
Application number
TW98136784A
Other languages
Chinese (zh)
Other versions
TWI412122B (en
Inventor
Chun-Yen Chang
Yao-Feng Chang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW98136784A priority Critical patent/TWI412122B/en
Publication of TW201115721A publication Critical patent/TW201115721A/en
Application granted granted Critical
Publication of TWI412122B publication Critical patent/TWI412122B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

This invention relates to a resistive random access memory, which includes a first electrode, a second electrode disposed on the top of the first electrode, a dielectric layer disposed between the first electrode and the second electrode, and an electrode-mixed system layer disposed between the first electrode and the dielectric layer; where at least one of the first electrode and the second electrode is composed of transition metal elements, and moreover, a first resistive transient layer composed of FeO or CoO can be formed between the electrode-mixed system layer and the dielectric layer by means of CVD or annealing treatment.

Description

201115721 • 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種電阻式隨機存取記憶體以及其製法特 別地,係_-種具有搭配電極齡系統所形成之電阻式記憶 體結構以及其製法。 【先前技術】 專利文獻 l(TW20〇8l8l9〇)與專利文獻 2(TW2〇〇824〇46) • $揭露一種電阻式記憶體元件及其製造方法,然而其具有下列 缺失: 1. 專利絲1與專敝獻2㈣姻金屬氧化物做為電阻轉態 層,其令此金屬氧化層之成分通常為非化學計量比 (n〇n-st〇ichi〇metric)且該成分在製程上並不容易製作亦即製 程均勻性變異大。 2. 若以專利文獻1與專利文獻2之技術來製作非化學計量比的 _ 金屬氧化物,必須要利用原子層蟲晶技術(⑽)來精媒控制, 然而此製作方法須耗費大量製作成本不符合量產需求。 3·以金屬氧化物做電阻式記憶體之製程*CM〇s製程較不相 容。 4.利用金屬氧化物做為電阻轉態層時,其蝕刻過程相對於剝離 (Lift-off)方法來說較為困難,而且金屬氧化物電阻轉態層常 須經過高溫處理,此步驟會大幅增加製程成本與製作時間。 此外,非專利文獻l(Lee et al., ‘‘Electr〇migratiQn etfeet Qf Μ201115721 • VI. Description of the Invention: [Technical Field] The present invention relates to a resistive random access memory and a method of manufacturing the same, in particular, a resistive memory structure formed by a system with a matching electrode age And its method of production. [Prior Art] Patent Document 1 (TW20〇8l8l9〇) and Patent Document 2 (TW2〇〇824〇46) • Reveals a resistive memory element and its manufacturing method, however, it has the following drawbacks: 1. Patented wire 1 And the special metal oxide (2) is used as a resistance transition layer, which makes the composition of the metal oxide layer usually non-stoichiometric (n〇n-st〇ichi〇metric) and the composition is not easy in the process. Production, that is, process uniformity variation is large. 2. If the non-stoichiometric _ metal oxide is produced by the techniques of Patent Document 1 and Patent Document 2, it is necessary to use the atomic layer insect crystal technology ((10)) for the fine medium control, but this production method requires a large amount of manufacturing cost. Does not meet the mass production needs. 3. The process of using metal oxide as a resistive memory *CM〇s process is incompatible. 4. When metal oxide is used as the resistance transition layer, the etching process is more difficult than the lift-off method, and the metal oxide resistance transition layer often has to be subjected to high temperature treatment, and this step is greatly increased. Process cost and production time. In addition, Non-Patent Document 1 (Lee et al., ‘‘Electr〇migratiQn etfeet Qf Μ

[S 3 201115721 electrodes on the resistive switching characteristics of NiO thin films,” Appl. Phys. Lett. 91,082104 (2007).)係利用混合電極作 為電阻式記憶體的電極’雖於此文獻中揭露其有轉態特性,然 而由於中間轉態層仍沿用Ni〇過渡態金屬氧化物,故非專利文 獻1將無法解決製作小尺寸時所遇到的蝕刻問題,並且混合電 極NiPt電極可能因為長時間操作下,造成電致遷移效應,使得[S 3 201115721 electrodes on the resistive switching characteristics of NiO thin films," Appl. Phys. Lett. 91,082104 (2007).) is the use of a hybrid electrode as an electrode of a resistive memory, although it is disclosed in this document. The transition state, however, since the intermediate transition layer still uses the Ni〇 transition state metal oxide, Non-Patent Document 1 cannot solve the etching problem encountered when fabricating a small size, and the mixed electrode NiPt electrode may be operated for a long time. , causing electromigration effects, making

Ni金屬導入絕緣層内造成轉態層内過多金屬成分而讓轉態特 性消失。 非專利文獻2(S. B. Lee et al.,“Resistance switching in Electroformed Pt/FeOx^>t Structure;5 Journal of the Korean Physical Society,51,S96 (2007).)揭露利用氧化鐵做為電阻式記 憶體材料,雖說其具有轉態特性,然而在製程微縮後氧化鐵厚 度於減薄時將會使轉態特性消失。 非專利文獻3(1. S. Park et. al.,“Resistance SwitchingThe introduction of Ni metal into the insulating layer causes excessive metal components in the transition layer to cause the transition characteristics to disappear. Non-Patent Document 2 (SB Lee et al., "Resistance switching in Electroformed Pt/FeOx^>t Structure; 5 Journal of the Korean Physical Society, 51, S96 (2007).) discloses the use of iron oxide as a resistive memory Although the bulk material has a transition property, the thickness of the iron oxide is reduced when the process is miniaturized. The non-patent document 3 (1. S. Park et. al., "Resistance Switching"

Characteristics for Nonvolatile Memory Operation of BinaryCharacteristics for Nonvolatile Memory Operation of Binary

Metal Oxides,” Jpn. J. Appl. Phys.,Vol. 46, No. 4B (2007),pp. 2172-2174.)揭露利用Si〇2當作絕緣層來使用,轉態特性差(高 低電阻比約10左右)’且操作電壓大(8¥與12乂),這使得元件操 作時產生過多的功率消耗,在實際應用層面上可能性低。 基於上述習知技術缺失,本發明在此提供一種電阻式隨機 存取記憶體以及其製造方法, 【發明内容】 201115721 本發明之主要目的之一係提供一種電阻式記憶體元件,其 包含:一第一電極;一第二電極,配置於該第一電極上方;一介電 層,®己置於該第一電極與該第二電極之間;第一電阻轉態層,配 置於該第一電極與該介電層之間;以及第二電阻轉態層,配置於 β亥弟一電極與έ亥介電層之間,其中該第一電極與該第二電極之 至少一者係由一過渡態元素所構成。 本發明之另一目的係提供一種電阻式記憶體元件之製造方 法,其包含:於一基底上依序形成一第一電極、一介電層、一電 極混合系統層及一第二電極,其中在形成該介電層與該電極混 合系統層時,可藉由CVD製程或退火製程而於該電極混合系統 層與该介電層之間形成一第一電阻轉態層;其中該第一電極與 該第二電極之至少一者係由一過渡態元素所構成。 依照上述該電阻式記憶體元件以及其製造方法,其中該過 渡態元素為PtFe、CGFe、PtHf、Fe、Ni、Co之任-者或者其合 金。 依照上述該電阻式記憶體元件以及其製造方法其中該第 一電極係由Ti、TiN、PtFe、CoFe、PtHf、Fe、Ni、C。之任-者所構成,以及其中該第二電極係由Ti、TiN、ptFe、c〇Fe、膽、 Fe、Ni、Co之任一者所構成。 依照上述該電阻式記賴元件以及·造方法,其中該介電 層係由魏錄或者魏氮讀所構成。 依照上述該電阻式記憶體元件以及其製造方法,其中該石夕氧 201115721 • 化物為二氧化矽(Si02)。 依照上述該電阻式記憶體元件以及其製造方法,其中該第一 電阻轉態層以及該第二電阻轉態層係由氧化鐵(Fe〇)或者氧化 钻(CoO)所構成。 本發明之再一目的係提供一種電阻式記憶體元件之製造方 法,其包含下列步驟:預備一基板;沈積一第—電極;於該第—電 極上沉積一電極混合系統層;利用CVD系統沉積一氧化絕緣 _ 層’接著利用沉積環境的加熱系統及沉積時通入的氧氣氣體環 境而自然形成-層擴散、過渡的極薄電阻轉態層;沈積—第二 電極,以及彻黃光、微影、侧技術訂出記憶體原件形狀並 且後續再配合金屬連縣引拉出量測電極以作為量測時探針 擺放的位置。 本發明具有下列技術特點及功效: 本發明係以化學氣相沉積方式沉積氧化物絕緣體(二氧化石夕 等)相關絕緣氧氮薄膜在電極混合系統(如c〇, &,灿,〇r峨,Metal Oxides," Jpn. J. Appl. Phys., Vol. 46, No. 4B (2007), pp. 2172-2174.) discloses the use of Si〇2 as an insulating layer, with poor transition characteristics (high and low resistance) It is about 10 or so) and the operating voltage is large (8¥ and 12乂), which causes excessive power consumption during operation of the component, and is low in practical application level. Based on the above-mentioned prior art, the present invention provides A resistive random access memory and a method of manufacturing the same, the invention provides a resistive memory device comprising: a first electrode; a second electrode disposed on the Above the first electrode; a dielectric layer, disposed between the first electrode and the second electrode; a first resistive transition layer disposed between the first electrode and the dielectric layer; and a second The resistance transition layer is disposed between the β-electrode and the 介 介 dielectric layer, wherein at least one of the first electrode and the second electrode is composed of a transition state element. Another object of the present invention Providing a method of manufacturing a resistive memory element, The method comprises: sequentially forming a first electrode, a dielectric layer, an electrode mixing system layer and a second electrode on a substrate, wherein the CVD process can be performed when the dielectric layer and the electrode are mixed with the system layer Or forming an initial resistive transition layer between the electrode mixing system layer and the dielectric layer; wherein at least one of the first electrode and the second electrode is composed of a transition state element. The resistive memory device and the method of manufacturing the same, wherein the transition state element is any one of PtFe, CGFe, PtHf, Fe, Ni, Co, or an alloy thereof. According to the above-described resistive memory device and a method of manufacturing the same The first electrode is composed of Ti, TiN, PtFe, CoFe, PtHf, Fe, Ni, C, and wherein the second electrode is composed of Ti, TiN, ptFe, c〇Fe, gall, Fe According to the above-described resistive recording element and method, the dielectric layer is composed of Wei Lu or Wei Ni reading. According to the above-described resistive memory element and the like Manufacturing method, wherein the Shi Xi oxygen 201115721 The compound is cerium oxide (SiO 2 ). The resistive memory device and the method of manufacturing the same according to the above, wherein the first resistive transition layer and the second resistive transition layer are made of iron oxide (Fe 〇) or an oxidized drill (CoO). A further object of the present invention is to provide a method for manufacturing a resistive memory device, comprising the steps of: preparing a substrate; depositing a first electrode; and depositing an electrode mixing system on the first electrode Layer; deposition of an oxidized insulating layer by a CVD system, followed by a heating system of the deposition environment and an oxygen gas atmosphere introduced during deposition to form a layer-diffusion, transitional ultra-thin resistance transition layer; deposition-second electrode, And the yellow light, the lithography, the side technology to set the shape of the original memory and then cooperate with the metal Lian County to pull out the measuring electrode as the position of the probe when measuring. The invention has the following technical features and effects: The invention is a method for depositing an oxide insulator (such as dioxide dioxide) in a chemical vapor deposition manner in an electrode mixing system (eg, c〇, & Oh,

Cc>Fe,PtHf...etc)上形成電阻轉態層。 本發明係彻PtFe或是過渡態元素電極混合系統(如% Fe,A resistive transition layer is formed on Cc>Fe, PtHf...etc). The invention is based on PtFe or a transition state element electrode mixing system (such as % Fe,

Ni,WPtFe,C〇Fe".etc)做為電極使用,搭配化學氣相沉積方 式形成二氧化石夕等相關石夕氧氮絕緣薄膜,做為非揮發性電阻 式儲存之記憶元件。 3.採用二氧化石夕與相關石夕氧氮氧化物(如麵,购及氧化物 絕緣體(如··細3,Tl〇2),搭配電極現合系統(如c〇, Fe,风〇r 201115721Ni, WPtFe, C〇Fe".etc) is used as an electrode, and is formed by a chemical vapor deposition method to form a non-volatile resistive memory element. 3. Use of sulphur dioxide and related stone oxides (such as surface, purchased and oxide insulators (such as · · fine 3, Tl 〇 2), with electrode ready system (such as c〇, Fe, pneumatic pick r 201115721

PtFe,㈣,亂.e嚇件作為餘式記憶體的結構。藉由 化學氣相沉魏航積氧化物絕緣體層時·(犠沉積的溫 度(如3〇〇c)與有氧氣氛之環境,亦或(2)藉由沉積完成後的 接、,長時間熱退火製程(如遍。c),所伴隨形成的極薄電阻 轉態層(如祕,㈤镇為元件電轉_有效區域。本案 利用過渡態元素易氧化的特性加上適當的絕緣體作為絕緣PtFe, (d), chaos.e scare the structure of the memory as a residual memory. When the chemical vapor phase is used to form an oxide insulator layer (the temperature of the deposition (such as 3〇〇c) and the atmosphere of the aerobic atmosphere, or (2) the connection after the deposition is completed, for a long time The thermal annealing process (such as pass. c), accompanied by the formation of a very thin resistance transition layer (such as secret, (5) town for the component electrical rotation _ effective area. This case uses the transition state element easy to oxidize characteristics plus appropriate insulator as insulation

層減少因為過_氧化物造成穿遂電流的可能,使得電阻式 記憶體元件在操作上相對穩定,因此具有做為下一世代非揮 發性儲存記憶體元件的潛力。 4.由於二氧切與CMOS製程相容性高,故本發明可應用於非 揮發性記憶體上。 5. 使用二氧切與下電極所形成之極薄電阻轉態層可使得元 件尺寸更往下微縮,進而提升儲存密度。 6. 不須高減理餘,且最高製紐躺·。c翻化學氣相 沉積氧化物絕緣體(如二氧切)時的溫度,並且在後段製程 上與CMOS製程相容性高。 、王 7. 利用過渡^素綠化的雖,加上藉由適當的絕緣體作為 絕緣層減少因為過薄的氧化物造成穿遂電流的可能,使得本 發明之電阻式記憶體元件在操作上相對穩定。 于 為使本發明之上述和其他目的、紐及伽能更明顯易 懂’下文特舉較佳實施例’並配合所附圖式,作詳細說明如下。 【實施方式】 ° 201115721 本發明之應用不侷限於下列敘述、圖式或所舉例說明之組 件構造和配置等細節所作之說明。本發明更具有其他實施例, 且可以各種不_方式予以實施或進行。此外,本發明所使用 之措辭及·均僅絲制本發明之目的,而不應視為本發明 之限制。 以了將參照圖式先詳細說明電阻式隨機存取記憶體之製造 方法。 參照第1圖,其為依照本發明之例示實施例說明一電阻式隨 機存取s己憶體之剖面示意圖。惟本發明並不偈限於此例示實施 例,亦即,其它實施例為所屬技術領域中具有通常知識者依照本 說明書之圖式及内容而仍可被推知。 如第1A〜1E圖中所示,在Si上長Si〇2(氧化物緩衝層亦可在 任思基材板上)’之後利用濺鍍方式鍍上刊1^(或者Fe),接著利 用化學氣相沉積方式沉積二氧化石夕,經過黃光與钱刻製程鍍 上PtFe上電極作為不同上電極大小的定彡,最後拉出ώ (或者‘ A1)電極作為我們量測時探針擺放的位置。 接著參照第2圖為在Ti/TiN/Si〇2/ptFe混合電極結構下之電 机電壓曲線圖。圖中左下角標示上電極面積’右下角標示從第 -人知也到第五十次掃描。箭頭標示經過負電麼形成伽―) 後的操作方向。由圖中可觀察到,利用二氧化石夕高能隙氧化物 在過渡態混合電極上可以有穩定的電阻轉態特性,且利用小尺 才製作方法可以讓轉㈣率消耗低,增加元件實際應用的可能 0 [ S3 201115721 - 性。 接著參照第3〜4圖,其中第3圖為顯示當上電極尺寸不同時 ⑽電阻值下降之示概以及_為顯示當上電極尺寸微缩 時重置電流值下降之示意圖。由第3〜4圖中可看出當上電極尺 寸不同時,LRSf崎下降,故可增何制電阻值的比 (rat1〇)。此外,當上電極尺寸微縮時,重置電流值會下降。 接著參照第5圖為利用Dc電壓來回操作麵次下讀取㈣ # 流的_度測試。圖中可分為二個部份:低電阻態與高電 阻態。從圖中可以看到經過_次的操作後,高低電阻態仍有 HM。電阻可判別區間。由此可以看出此種結構具有在現性與可 重複性。 ' 、曰接著參㈣6圖為高阻態和低域的記憶力測試,此測試方 式是操作件至阿電阻態後放置不動,並且每隔一段時間後用 謂電壓量測電流值,在固定時間内讀取-次電流值以觀察原 • 先的電阻狀態是否改變。藉由記憶力測試可以看出此結構做出 的元件其記航力的維持時間可以㈣住,碎是在哪或者 HRS上,外插可以轉mG年的記憶能力。 須注意的是,該中間的轉態層(例如,由FeOx構成)其實是利 用C·冗積步驟令自然形成的。或者,該中間的轉態層亦可用 後續外加的退火步驟再來製作形成。 、:<上所述者僅為本發明之較佳實施例,惟本發明之實施範 圍並非侷限於此,例如:該絕緣層亦可靠PVD物理氣象沉積來 201115721 形成;此外,該絕緣層之厚度至少大於5nm(防止穿隧電流發 生),亦可藉由調變厚薄來控制^厘的電子形成電壓 (electroforming voltage);再者,該絕緣層可藉由含有氧的絕緣體 材料(如二氧化矽,氧化鋁,氧化鈦,氮氧化矽)來構成。因此 在不脫離本發明之原理及精神下,所屬技術領域中具有通常知 識者依據本發明申請專利範圍及發明說明書内容所作之修飾 與變化,皆應屬於本發明專利所涵蓋之範圍。 【圖式簡單說明】 第1A〜1E圖係顯示依照本發明之例示實施例之電阻式隨機 存取記憶體之示意圖。 第2圖係顯示在本發明TiN/Si02/PtFe混合電極結構下之電 流壓曲線圖。 第3圖係顯示當上電極尺寸不同時LRS電阻值下降之示意 圖。 第4圖係顯示當上電極尺寸微縮時重置電流值下降之示意 圖。 第5圖係顯示利用DC電壓來回操作1 〇〇〇次下讀取〇.5 v下電 流的耐操度示意圖。 第6圖係顯示本發明於高阻態與低阻態之記憶力測試示意 圖。 【主要元件符號說明】 10 二氧化矽層 201115721 11 第一電極層 12 介電層 13 第二電極層 14 保護層 15、16 量測電極The layer reduces the possibility of passing current due to over-oxide, making the resistive memory element relatively stable in operation and therefore has the potential to be a non-volatile storage memory element for the next generation. 4. Since the dioxotomy is highly compatible with the CMOS process, the present invention can be applied to non-volatile memory. 5. Using the extremely thin resistive layer formed by the dioxoderes and the lower electrode allows the component size to be reduced further down, thereby increasing the storage density. 6. There is no need to reduce the balance and the highest system. c. Chemical vapor deposition The temperature at which an oxide insulator (such as dioxo) is deposited, and is highly compatible with CMOS processes in the latter process. Wang 7. The use of transitional greening, coupled with the use of a suitable insulator as an insulating layer to reduce the possibility of passing current due to excessively thin oxides, makes the resistive memory element of the present invention relatively stable in operation. . The above and other objects, advantages and advantages of the present invention will become more apparent from the following detailed description. [Embodiment] ° 201115721 The application of the present invention is not limited to the descriptions of the following description, drawings or the detailed construction and configuration of the components. The invention has further embodiments and can be implemented or carried out in various ways. In addition, the phrase used in the present invention is intended to be merely illustrative of the invention and is not to be construed as limiting. The manufacturing method of the resistive random access memory will be described in detail with reference to the drawings. Referring to Figure 1, there is shown a cross-sectional view of a resistive random access s memory in accordance with an illustrative embodiment of the present invention. However, the present invention is not limited to this exemplary embodiment, that is, other embodiments are still known to those of ordinary skill in the art in view of the drawings and contents of the present specification. As shown in FIGS. 1A to 1E, the long Si〇2 (the oxide buffer layer may also be on the substrate) after Si is plated with a sputtering method, or a chemical is used. Vapor deposition is used to deposit the dioxide, and the PtFe upper electrode is plated as a different upper electrode size through the yellow light and the engraving process. Finally, the ώ (or 'A1) electrode is pulled out as the probe placement during our measurement. s position. Next, Fig. 2 is a graph showing the voltage of the motor under the structure of the Ti/TiN/Si〇2/ptFe hybrid electrode. In the lower left corner of the figure, the area of the upper electrode is indicated. The lower right corner indicates the scan from the first to the fifth. The arrow indicates the direction of operation after a negative charge has formed gamma. It can be observed from the figure that the use of the dioxide high energy gap oxide can have stable resistance transition characteristics on the transition state mixed electrode, and the use of the small rule method can make the conversion rate low, and increase the practical application of the component. Possible 0 [ S3 201115721 - Sex. Referring to Figures 3 to 4, FIG. 3 is a view showing the decrease in the resistance value when the upper electrode is different (10) and the decrease in the reset current value when the size of the upper electrode is reduced. It can be seen from the figures 3 to 4 that when the size of the upper electrode is different, the LRSf is reduced, so that the ratio of the resistance value (rat1〇) can be increased. In addition, when the size of the upper electrode is reduced, the reset current value is lowered. Next, referring to Fig. 5, the _degree test of the (four) # stream is read by using the Dc voltage to operate the face back and forth. The figure can be divided into two parts: low resistance and high resistance. It can be seen from the figure that after _ times of operation, there is still HM in the high and low resistance states. The resistance can be distinguished by the interval. It can be seen that this structure is both current and reproducible. ' 曰 曰 参 ( 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四Read the secondary current value to see if the original resistance state has changed. It can be seen from the memory test that the maintenance time of the component made by this structure can be (4) live, where is the fragmentation or HRS, and the extrapolation can transfer the memory capacity of mG years. It should be noted that the intermediate transition layer (e.g., composed of FeOx) is naturally formed using the C· redundancy step. Alternatively, the intermediate transition layer can be formed by subsequent additional annealing steps. The above is only a preferred embodiment of the present invention, but the scope of implementation of the present invention is not limited thereto. For example, the insulating layer is also formed by reliable PVD physical weather deposition to 201115721; in addition, the insulating layer is The thickness is at least greater than 5 nm (to prevent tunneling current from occurring), and the electron forming voltage can be controlled by adjusting the thickness; further, the insulating layer can be made of an insulating material containing oxygen (such as dioxide)矽, alumina, titanium oxide, bismuth oxynitride). Therefore, modifications and variations of the present invention in accordance with the scope of the invention and the scope of the invention are intended to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1E are views showing a resistive random access memory according to an exemplary embodiment of the present invention. Fig. 2 is a graph showing the current pressure curve of the TiN/SiO 2 /PtFe mixed electrode structure of the present invention. Fig. 3 is a view showing a decrease in the LRS resistance value when the upper electrode size is different. Fig. 4 is a view showing a decrease in the reset current value when the size of the upper electrode is reduced. Fig. 5 is a schematic diagram showing the resistance of the current of 〇.5 v when the DC voltage is operated back and forth 1 time. Fig. 6 is a view showing the memory test of the present invention in a high resistance state and a low resistance state. [Description of main component symbols] 10 Ceria layer 201115721 11 First electrode layer 12 Dielectric layer 13 Second electrode layer 14 Protective layer 15、16 Measuring electrode

Claims (1)

201115721 七、申請專利範圍: 1. 一種電阻式記憶體元件,包含: 一第一電極; 一第二電極,配置於該第一電極上方; 一介電層,配置於該第一電極與該第二電極之間;以及 電極混合系統層,配置於該第一電極與該介電層之間, 其中該第一電極與該第二電極之至少一者係由一過渡態金 • 屬元素所構成。 2 _如申請專利範圍第1項之電阻式記憶體元件,其中該過渡態 金屬元素為Pt、Ta、Ti、A1之任一者或其合金。 ,3·如申請專利範圍第1項之電阻式記憶體元件,其中該第一電 極係由Ti、TiN、PtFe、CoFe、PtHf、Fe、Ni、Co之任一者 所構成。 4·如申請專利範圍第1項之電阻式記憶體元件,其中該第二電 • 極係由Ti、TiN、PtFe、CoFe、PtHf、Fe、Ni、Co之任一者 所構成。 5.如申請專利範圍第1項之電阻式記憶體元件,其中該介電層 係由石夕氡化物或者矽氧氮化物所構成。 6·如申請專利範圍第5項之電阻式記憶體元件,其中該矽氧化 物為二氧化矽(Si02)。 7.如申請專利範圍第1項之電阻式記憶體元件,其中於該電極 混合系統層與該介電層之間更可藉由CVD或退火製程而包 12 201115721 含一由氧化鐵(FeO)或氧化姑(CoO)所構成之第一電阻轉態 層。 8. 如申請專利範圍第1項之電阻式記憶體元件,其中當該電極 混合系統層係配置於該介電層與該第二電極層之間時,於該 介電層與該電極混合系統層之間更可藉由CVD或退火製程 而包含一由氧化鐵(FeO)或氧化銘(CoO)所構成之第二電阻 轉態層。 9. 如申請專利範圍第1項之電阻式記憶體元件,其中該電極混 合系統層係由Co, Fe,Ni,or PtFe,CoFe, PtHf之任一者或其 合金所構成。 10. —種電阻式記憶體元件之製造方法,包含: 於一基底上依序形成一第一電極、一電極混合系統層、一介 電層及一第二電極, 其中在形成該介電層與該電極混合系統層時可藉由CVD製 程或退火製程而於該電極混合系統層與該介電層之間形成 一第一電阻轉態層; 其中該第一電極與該第二電極之至少一者係由一過渡態元 素所構成。 11. 如申請專利範圍第10項之製造方法,其中該過渡態金屬元素 為Pt、Ta、Ti、A1之任一者或其合金。 12_如申請專利範圍第1〇項之製造方法,其中該第一電極係由 Ti、TiN、PtFe ' CoFe、PtHf、Fe、Ni、Co之任一者所構成。 13 201115721 13 ·如申請專利範圍第1 〇項之製造方法,其中該第二電極係由 Ή、TiN、PtFe、CoFe、PtHf、Fe、Ni、Co之任一者所構成。 14. 如申請專利範圍第10項之製造方法,其中該介電層係由矽氧 化物或者石夕氧氮化物所構成。 15. 如申請專利範圍第14項之製造方法,其中該矽氧化物為二氧 化矽(Si02)。 16. 如申請專利範圍第1〇項之製造方法,其中當該電極混合系統 層係配置於該介電層與該第二電極層之間時,於該介電層與 該電極混合系統層之間更可藉由CVD或退火製程而包含一 由氧化鐵(FeO)或氧化鈷(CoO)所構成之第二電阻轉態層。 17. 如申請專利範圍第10項之製造方法,其中該電極混合系統層 係由Co, Fe,Ni,or PtFe,CoFe,PtHf之任一者或其合金所構 成。 18. —種電阻式記憶體元件之製造方法,包含: 預備一基板; 沈積一第一電極; 於該第一電極上沉積一電極混合系統層; 利用CVD系統沉積—氧化絕緣層,接著_沉積環境的加熱 系統及沉鱗通人的氧氣氣體環境而自朗成—層擴散、過渡 的極薄電阻轉態層; 沈積一第二電極;以及 利用黃光、微影、侧技術訂出記憶體原件形狀並且後續再配 201115721 合金屬連線牽引拉出量測電極以作為量測時探針擺放的位置。201115721 VII. Patent application scope: 1. A resistive memory device, comprising: a first electrode; a second electrode disposed above the first electrode; a dielectric layer disposed on the first electrode and the first Between the two electrodes; and an electrode mixing system layer disposed between the first electrode and the dielectric layer, wherein at least one of the first electrode and the second electrode is composed of a transition state metal element . The resistive memory element of claim 1, wherein the transition metal element is any one of Pt, Ta, Ti, and A1 or an alloy thereof. 3. The resistive memory device of claim 1, wherein the first electrode is made of any one of Ti, TiN, PtFe, CoFe, PtHf, Fe, Ni, and Co. 4. The resistive memory device of claim 1, wherein the second electrode is made of any one of Ti, TiN, PtFe, CoFe, PtHf, Fe, Ni, and Co. 5. The resistive memory device of claim 1, wherein the dielectric layer is composed of a cerium oxide or a cerium oxynitride. 6. The resistive memory device of claim 5, wherein the antimony oxide is cerium oxide (SiO 2 ). 7. The resistive memory device of claim 1, wherein the electrode mixing system layer and the dielectric layer are further encapsulated by a CVD or annealing process. 12 201115721 comprising an iron oxide (FeO) Or a first resistive transition layer formed by a oxidized gutta (CoO). 8. The resistive memory device of claim 1, wherein when the electrode mixing system layer is disposed between the dielectric layer and the second electrode layer, the dielectric layer and the electrode mixing system The second resistive transition layer composed of iron oxide (FeO) or oxidized (CoO) may be further included between the layers by a CVD or annealing process. 9. The resistive memory device of claim 1, wherein the electrode mixing system layer is composed of any one of Co, Fe, Ni, or PtFe, CoFe, PtHf or an alloy thereof. 10. A method of fabricating a resistive memory device, comprising: sequentially forming a first electrode, an electrode mixing system layer, a dielectric layer, and a second electrode on a substrate, wherein the dielectric layer is formed When the system layer is mixed with the electrode, a first resistance transition layer may be formed between the electrode mixing system layer and the dielectric layer by a CVD process or an annealing process; wherein the first electrode and the second electrode are at least One is composed of a transition state element. 11. The method of claim 10, wherein the transition metal element is any one of Pt, Ta, Ti, A1 or an alloy thereof. The method of manufacturing the first aspect of the invention, wherein the first electrode is made of any one of Ti, TiN, PtFe 'CoFe, PtHf, Fe, Ni, and Co. The manufacturing method of the first aspect of the invention, wherein the second electrode is composed of any one of ruthenium, TiN, PtFe, CoFe, PtHf, Fe, Ni, and Co. 14. The method of manufacture of claim 10, wherein the dielectric layer is comprised of tantalum oxide or a shi oxynitride. 15. The method of manufacture of claim 14, wherein the niobium oxide is cerium oxide (SiO 2 ). 16. The method of claim 1, wherein when the electrode mixing system layer is disposed between the dielectric layer and the second electrode layer, the dielectric layer and the electrode mixing system layer are Further, a second resistance transition layer composed of iron oxide (FeO) or cobalt oxide (CoO) may be contained by a CVD or annealing process. 17. The manufacturing method according to claim 10, wherein the electrode mixing system layer is composed of any one of Co, Fe, Ni, or PtFe, CoFe, PtHf or an alloy thereof. 18. A method of fabricating a resistive memory device, comprising: preparing a substrate; depositing a first electrode; depositing an electrode mixing system layer on the first electrode; depositing an oxidized insulating layer using a CVD system, followed by _ deposition The environment's heating system and the squama's oxygen-environment environment are self-contained—layer-diffused, transitional, extremely thin-resistance transition layer; depositing a second electrode; and using yellow, lithography, and side techniques to define memory The original shape is shaped and subsequently matched with the 201115721 metal wire to pull out the measuring electrode as the position where the probe is placed during the measurement. 1515
TW98136784A 2009-10-29 2009-10-29 Resistive random access memory and its manufacturing method TWI412122B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98136784A TWI412122B (en) 2009-10-29 2009-10-29 Resistive random access memory and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98136784A TWI412122B (en) 2009-10-29 2009-10-29 Resistive random access memory and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201115721A true TW201115721A (en) 2011-05-01
TWI412122B TWI412122B (en) 2013-10-11

Family

ID=44934571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98136784A TWI412122B (en) 2009-10-29 2009-10-29 Resistive random access memory and its manufacturing method

Country Status (1)

Country Link
TW (1) TWI412122B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463641B (en) * 2012-02-24 2014-12-01 Nat Applied Res Laboratories Ultra-high density resistive memory structure and its manufacturing method
CN104733608A (en) * 2013-12-18 2015-06-24 华邦电子股份有限公司 Resistive memory and manufacturing method thereof
TWI508340B (en) * 2013-11-05 2015-11-11 Winbond Electronics Corp Resistive random access memory and method of manufacture thereof
US9728720B2 (en) 2014-09-24 2017-08-08 Winbond Electronics Corp. Resistive random access memory device and method for fabricating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061328B2 (en) * 2005-12-02 2008-03-19 シャープ株式会社 Variable resistance element and manufacturing method thereof
TWI342066B (en) * 2007-01-29 2011-05-11 Macronix Int Co Ltd Resistance random access memory
KR20080088776A (en) * 2007-03-30 2008-10-06 삼성전자주식회사 Storage of non-volatile memory device and method of forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463641B (en) * 2012-02-24 2014-12-01 Nat Applied Res Laboratories Ultra-high density resistive memory structure and its manufacturing method
TWI508340B (en) * 2013-11-05 2015-11-11 Winbond Electronics Corp Resistive random access memory and method of manufacture thereof
CN104733608A (en) * 2013-12-18 2015-06-24 华邦电子股份有限公司 Resistive memory and manufacturing method thereof
CN104733608B (en) * 2013-12-18 2017-06-09 华邦电子股份有限公司 Resistance-type memory and its manufacture method
US9728720B2 (en) 2014-09-24 2017-08-08 Winbond Electronics Corp. Resistive random access memory device and method for fabricating the same
US9966530B2 (en) 2014-09-24 2018-05-08 Winbond Electronics Corp. Resistive random access memory device and method for fabricating the same

Also Published As

Publication number Publication date
TWI412122B (en) 2013-10-11

Similar Documents

Publication Publication Date Title
EP1905086B1 (en) Method for forming multi-layered binary oxide film for use in resistance random access memory
TWI323950B (en) Method for making a keyhole opening during the manufacture of a memory cell
US7297975B2 (en) Non-volatile, resistive memory cell based on metal oxide nanoparticles, process for manufacturing the same and memory cell arrangement of the same
TWI357154B (en) Phase change memory cell with filled sidewall memo
TW484201B (en) Silicate gate dielectric
Banerjee et al. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals
TW200913254A (en) Current constricting phase change memory element structure
TW200915560A (en) Resistive memory structure with buffer layer
JP5270044B2 (en) Nonvolatile memory element manufacturing method and nonvolatile memory element
TW200828516A (en) Method for making a self-converged void and bottom electrode for memory cell
TW200820422A (en) Memory cell device with circumferentially-extending memory element
Prakash et al. Resistive switching memory characteristics of Ge/GeO x nanowires and evidence of oxygen ion migration
JP2007036256A (en) Non-volatile resistance memory cell based on metallic oxide nanoparticle, method for manufacturing same and arrangement of memory cell
TW201103141A (en) Phase change memory cell structure
TW201241922A (en) Nonvolatile memory element and method for manufacturing method same
Huang et al. Enhancement of DC/AC resistive switching performance in AlOx memristor by two-technique bilayer approach
TW201117207A (en) Semiconductor memory device and a method of manufacturing the same
CN104103756B (en) A kind of resistance-variable storing device and the method that multilevel storage is realized using it
Gao et al. Unipolar resistive switching characteristics in Co3O4 films
TW201115721A (en) Resistive random access memory and its manufacturing method
Gao et al. Unipolar resistive switching behaviors in amorphous lutetium oxide films
CN110047916A (en) A kind of silicon substrate charge trapping memory part and preparation method
US11133462B2 (en) Bottom electrode structure and method of forming the same
Guo et al. Enhanced magnetic modulation in HfO2-based resistive memory with an Hf top electrode
TW200933883A (en) Phase-change material, memory unit, and method for storing/reading data electrically

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees