TW201115196A - Grating-assist three dimension waveguide couple device and a method for manufacturing thereof - Google Patents

Grating-assist three dimension waveguide couple device and a method for manufacturing thereof Download PDF

Info

Publication number
TW201115196A
TW201115196A TW098136872A TW98136872A TW201115196A TW 201115196 A TW201115196 A TW 201115196A TW 098136872 A TW098136872 A TW 098136872A TW 98136872 A TW98136872 A TW 98136872A TW 201115196 A TW201115196 A TW 201115196A
Authority
TW
Taiwan
Prior art keywords
layer
dimensional
waveguide
grating
substrate
Prior art date
Application number
TW098136872A
Other languages
Chinese (zh)
Inventor
Ming-Chang Lee
Chun-Wei Liao
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW098136872A priority Critical patent/TW201115196A/en
Publication of TW201115196A publication Critical patent/TW201115196A/en

Links

Abstract

The present invention relates to a grating-assist three dimension waveguide couple device and a method for manufacturing thereof, the grating-assist three dimension waveguide couple device has at least one three dimension structure layer, the propagation parameter of the three dimension structure layer is being corresponded to a waveguide layer's by way of height variation of the three dimension structure layer, so that the light is able to lead into the waveguide layer more easily, moreover, the refraction parameter of the three dimension structure layer can not be limited to over the waveguide layer's due to the assistance of the assist grating. The method for manufacturing the grating-assist three dimension waveguide couple device is capable of utilizing the present semiconductor fabrication technology to fabricate the grating-assist three dimension waveguide couple device.

Description

201115196 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種波導耦合裝置,尤指於一波導層之 上形成至少一三維錐狀結構,透過該三維錐狀結構漸變高 度之變化與一光柵結構之輔助,以將光波於光纖與波導層 間進行能量轉換的一種光柵輔助式之三維錐狀波導耦合裝 置及其製造方法。 φ 【先前技術】 隨著咼速網路時代來臨,為了因應網際網路對於頻寬 上之需求,因此,使得光通訊領域之發展越趨進步,其中, 更包括了光學元件之發展。由於光波之波長遠小於微波之 波長’故光學元件具有代替高頻電子元件之潛力,因此, 光學元件的研發係於光通訊領·域之中扮演了極重要之角 色。 _ 光學元件可分為主動元件、及被動元件,主動元件係 指具有可執行能量轉換功能之光學元件,例如電光調制器 月b夠進行電光轉換之光源,而被動元件所指的是對於光波 呈現靜態轉換效應之光學元件,例如熟知的透鏡、及反射 鏡等。 耗合器係屬於被動元件的一種,其功能係可將光能量 於波導管(waveguide)與波導管之間、或者光纖(打“犷) 與波導管之間互相轉換。耦合器依照其耦合光波方向之不 201115196 -1* « 5可刀為顺向輕合器(c〇directi〇n 叩⑹與反向輕合器 (C〇ntra_direetiGn_pier),當兩個波導管的傳播常數相同 寺可利用順向耗合器使得光波可於兩個波導管間進行能 繼’即可將光波由一波導管導入另一波導管;然:: *兩個波導管的傳播常數相異時’則必須透過週期性的光 柵(gratmg)’以使得特定波長之光波能夠於兩個波導管之 間,進行能量轉換。 & 籲 冑著半導體積體化製程技術之發展,目前已經能夠利 用薄膜,儿積與微影餘刻等半導體製程技術來製造小型化之 輛合器,並於輕合器之一波導層表面製造具有辅助光波能 量轉換之一表面光柵,接著於表面光柵之上再形成一保護 層而升4光柵輔助式波導耦合器然而,這樣的耦合器 構部無法有效率地執行光波能量轉換,並具有諸多之缺 點: φ 1.該光柵辅助式波導輕合器係透過該表面光拇之辅助而加 以改Q其光忐量耦合效率,但是光柵輔助式波導耦合器 與' 光波傳播裝置,例如一光纖,進行光能量轉換時, 由於光拇週期和光波長必須有一定的關係(相位匹配) 才可達到有效之能量轉換,因此對於寬頻光源其總體耦 合效率將受到限制。 2·該光柵辅助式波導_合11與該光纖之連接方式,係透過 該表面光拇上方之該保護層而連接,因此,連接時必須 201115196 將光纖對準保講Μ β + 層之表面,以完成兩者之連接,然而, :此直立式的連接方式,對於入射角度相當地敏感,使 付在最"產°°的封装過程中,往往造成良率低因而增加 成本’同時對於光柵辅助式波導耗合器之通訊效果造成 影響。 3.該光柵辅助式波導輕合器之高度(厚度)係受限於半導 體之薄膜製程,而無法被製作得太高。 • ®此’本案之發明人有鑑於上述該光柵輔助式波導耦 δ器仍”有諸多之缺點,極力加以研究,終於研發完成本 發明之一種光柵輔助式之三維結構波導耦合裝置及其製造 方法。 【發明内容】 本發明之主要目的,在於提供一種光柵輔助式之三維 結構波導耦合裝置,透過三維結構層三維尺度之非同次 籲 (non-hom〇geneous )變化,可協助光波於光纖與波導層之 間進行能量轉換,使得光波更容易導入波導層内傳遞,提 升光波能量轉換之效率。 本發明之另一目的,在於提供一種光柵輔助式之三維 結構波導耦合裝置之製造方法,係可利用半導體之製程技 術’以製作辅助光柵係形成於波導層上方之光栅輔助式三 維結構波導耦合裝置。 本發明之再一目的’在於提供一種光栅輔助式之三維 201115196 結構波導搞合裝置之製造方法,係可利用半導體之製程技 術’以製作輔助光柵係形成於三維結構層上方之光撕辅助 式三維結構波導耦合裝置。 因此,為了達到上述之主要目的,本案之發明人提出 一種光栅輔助式之三維結構波導耦合裝置,其包括:一第 一基板;一波導層;至少一三維結構層,係形成於該波導 層之一表面,該二維結構層形成時兩側之間具有一高度 差,且其單位表面積係隨著該高度差而改變,因此造成三 維尺度之變化,故,當光波於三維結構層之間傳遞至某一 尺度時,三維結構層與波導層之傳播常數將一致,而使得 光波被導入於波導層之内;及至少一辅助光栅,該輔助光 柵可形成於該波導層之一表面,或形成於該三維結構層之 表面,當光波於三維結構層之間傳遞且未達三維結構層 與波導層傳播常數將一致之該尺度時,輔助光柵可輔助將 光波導入波導層。 且為了達到上述之另一目的,本案之發明人提出—種 光柵輔助式之三維結構波導耦合裝置之製造方法,該方法 包括以下步驟:〇)於一第一基板上形成一波導層;(2) 使用一第一光罩於該波導層之上製作至少一辅助光栅;(3) 將一第二基板製作成一注膜基板;(4)將該注膜基板反面 置於波導層之上;(5)利用注膜基板於波導層之上製作一 二維結構層;(0)將注膜基板從波導層上方移除;及(7) 201115196 使用具有至少一平面錐狀圖形之一第二光罩將該三維結構 層製作成至少一三維錐狀結構。 而為了達到上述之再一目的,本案之發明人提出—種 光拇輔助式之三維結構波導耦合裝置之製造方法,該方法 包括以下步驟:(〇於一第一基板上形成一波導層;(2) 將一第二基板製作成具有至少一光柵結構之一注膜基板. (3)將該注膜基板反面置於該波導層之上;(4)利用注膜 •基板於波導層之上製作一三維結構層;(5)將注膜基板從 波導層上方移除;及(6)使用具有至少一平面錐狀圖形之 一第二光罩將該三維結構層製作成至少一三維錐狀結構。 【實施方式】 之一種光栅辅助 ’以下將配合圖 為了能夠更清楚地描述本發明所提出 式之三維結構波導耦合裝置及其製造方法 示,詳盡說明之。201115196 VI. Description of the Invention: [Technical Field] The present invention relates to a waveguide coupling device, and more particularly to forming at least one three-dimensional tapered structure over a waveguide layer, through which a change in the gradient height of the three-dimensional tapered structure is A grating-assisted three-dimensional tapered waveguide coupling device for assisting energy conversion between optical fibers and a waveguide layer, and a method for fabricating the same. φ [Prior Art] With the advent of the idle network era, in order to respond to the demand for bandwidth in the Internet, the development of the optical communication field has become more and more advanced, including the development of optical components. Since the wavelength of the light wave is much smaller than the wavelength of the microwave, the optical element has the potential to replace the high-frequency electronic component. Therefore, the development of the optical element plays a very important role in the field of optical communication. _ Optical components can be divided into active components and passive components. Active components refer to optical components with executable energy conversion functions, such as electro-optic modulators, which are capable of performing electro-optical conversion, while passive components are referred to as optical waves. Optical elements of static conversion effects, such as well-known lenses, mirrors, and the like. The consumable device is a passive component that functions to convert light energy between a waveguide and a waveguide, or between an optical fiber ("犷") and a waveguide. The coupler is coupled to the light wave. The direction is not 201115196 -1* « 5 can be a forward light combiner (c〇directi〇n 叩 (6) and reverse light combiner (C〇ntra_direetiGn_pier), when the propagation constants of the two waveguides are the same, the temple can be used To the consumable device, the light wave can be relayed between the two waveguides, that is, the light wave can be guided from one waveguide to the other; however: * When the propagation constants of the two waveguides are different, the period must pass through The grating (gratmg) is used to enable energy conversion of light waves of a specific wavelength between two waveguides. & Aiming at the development of semiconductor integrated process technology, it is now possible to utilize thin films, chiral and micro A semiconductor process technology such as a shadow engraving to manufacture a miniaturized clutch, and a surface grating having an auxiliary light wave energy conversion is fabricated on the surface of one of the waveguide layers of the light combiner, and then formed on the surface grating. Layer-up 4 grating-assisted waveguide coupler However, such a coupler configuration cannot efficiently perform light-wave energy conversion and has many disadvantages: φ 1. The grating-assisted waveguide light coupler passes through the surface of the light Auxiliary to change the coupling efficiency of Q, but the grating-assisted waveguide coupler and the 'optical wave propagation device, such as an optical fiber, must have a certain relationship (phase matching) due to the optical repetition period and optical wavelength when performing light energy conversion. Effective energy conversion can be achieved, so the overall coupling efficiency of the broadband source will be limited. 2. The grating-assisted waveguide _11 is connected to the fiber by the protective layer above the surface optical thumb. Therefore, the connection must be 201115196 to align the fiber to the surface of the Μβ + layer to complete the connection between the two, however, this upright connection is quite sensitive to the angle of incidence, so that it is paid at the most In the packaging process of °°, the yield is often low and the cost is increased. At the same time, the communication effect of the grating-assisted waveguide consumulator is made. 3. The height (thickness) of the grating-assisted waveguide combiner is limited by the thin film process of the semiconductor, and cannot be made too high. • The inventor of the present invention has the above-mentioned grating-assisted waveguide. The coupling δ device still has many shortcomings, and it is researched to finally develop a grating-assisted three-dimensional structure waveguide coupling device and a manufacturing method thereof according to the present invention. SUMMARY OF THE INVENTION The main object of the present invention is to provide a grating assist The three-dimensional structure waveguide coupling device can transmit the energy between the optical fiber and the waveguide layer through the non-hom〇geneous change of the three-dimensional dimension of the three-dimensional structural layer, so that the light wave is more easily introduced into the waveguide layer. Passing, improving the efficiency of light wave energy conversion. Another object of the present invention is to provide a grating-assisted three-dimensional structure waveguide coupling device manufacturing method, which can utilize a semiconductor process technology to fabricate an auxiliary grating system to form a grating-assisted three-dimensional structure waveguide coupling device over a waveguide layer. . A further object of the present invention is to provide a grating-assisted three-dimensional 201115196 structure waveguide bonding device manufacturing method, which is capable of fabricating an auxiliary grating system formed on a three-dimensional structural layer by using a semiconductor process technology. Structure waveguide coupling device. Therefore, in order to achieve the above-mentioned main object, the inventor of the present invention proposes a grating-assisted three-dimensional structure waveguide coupling device comprising: a first substrate; a waveguide layer; at least one three-dimensional structural layer formed in the waveguide layer a surface, the two-dimensional structural layer is formed with a height difference between the two sides, and its unit surface area changes with the height difference, thereby causing a change in three-dimensional dimensions, so when light waves are transmitted between the three-dimensional structural layers At a certain scale, the propagation constants of the three-dimensional structural layer and the waveguide layer will be identical, so that the light waves are introduced into the waveguide layer; and at least one auxiliary grating, which may be formed on one surface of the waveguide layer, or formed On the surface of the three-dimensional structural layer, when the light wave is transmitted between the three-dimensional structural layers and the dimension of the three-dimensional structural layer and the waveguide layer propagation constant will be the same, the auxiliary grating can assist in introducing the light wave into the waveguide layer. In order to achieve the above other object, the inventor of the present invention proposes a method for manufacturing a grating-assisted three-dimensional structure waveguide coupling device, the method comprising the steps of: forming a waveguide layer on a first substrate; Using a first mask to form at least one auxiliary grating on the waveguide layer; (3) forming a second substrate as a film-injecting substrate; and (4) placing the opposite surface of the film-forming substrate on the waveguide layer; 5) using a film-coated substrate to form a two-dimensional structural layer on the waveguide layer; (0) removing the film-coated substrate from above the waveguide layer; and (7) 201115196 using a second light having at least one planar tapered pattern The cover forms the three-dimensional structural layer into at least one three-dimensional tapered structure. In order to achieve the above-mentioned further object, the inventor of the present invention proposes a method for manufacturing a three-dimensional structure waveguide coupling device for an optical thumb-assisted method, the method comprising the steps of: forming a waveguide layer on a first substrate; 2) forming a second substrate into a film-coated substrate having at least one grating structure. (3) placing the reverse side of the film-coated substrate on the waveguide layer; (4) using the film-injecting substrate on the waveguide layer Making a three-dimensional structural layer; (5) removing the film-coated substrate from above the waveguide layer; and (6) forming the three-dimensional structural layer into at least one three-dimensional cone using a second photomask having at least one planar tapered pattern [Embodiment] One type of grating assisting will be described in detail below in order to more clearly describe the three-dimensional structure waveguide coupling device of the present invention and its manufacturing method.

凊參閱第一圖,係一種光柵輔助式之三維結構波導耦 合裝置之第一實施例側視圖,一種光柵辅助式之三維結構 波導耦合裝置1係包括: 一第一基板11,以作為該光柵輔助式之三維結構波導 輕合裝置之…’該第一基板u可為半導體'絕緣層 (silicon-on-insu丨at〇r ’ S0I )基板、氮化氧矽-絕緣層 (SiON-〇n-i_lt〇r)基板、氮化石夕—絕緣層(siN 〇n-insulator)基板、或半導體基板,於第_實施例中第一 201115196 111與一絕緣層 基板11為一 SOI基板,其具有一半導體層 112 ; 一波導層丨2,係形成於該第一基板U之上以作為 光波之傳播層,形成該波導層12之材 』為♦( silicon,Referring to the first figure, a side view of a first embodiment of a grating-assisted three-dimensional structure waveguide coupling device, a grating-assisted three-dimensional structure waveguide coupling device 1 comprising: a first substrate 11 as a grating auxiliary The three-dimensional structure waveguide light combining device... 'The first substrate u can be a semiconductor' insulating layer (silicon-on-insu丨at〇r 'S0I) substrate, a silicon nitride-insulating layer (SiON-〇n- An i_lt〇r) substrate, a silicon nitride-insulating layer (siN 〇n-insulator) substrate, or a semiconductor substrate. In the first embodiment, the first 201115196 111 and an insulating layer substrate 11 are an SOI substrate having a semiconductor. a layer 112 is formed on the first substrate U as a propagation layer of light waves, and the material forming the waveguide layer 12 is ♦ (silicon,

Si )、氮化石夕(siliC0I1 nitride,SiN、、备儿产 )I化氧矽(silicon oxinitride,SiON)、或碳化矽(silic n carbine,Sic),而 於第一實施例中’波導層12之材料為砂; 至少一輔助光柵4,係形成於該波導層12之上該輔 助光栅4可輔助地將光波導入波導層12内 及 至少一三維結構層15,係形成於該波導層a之上, 該三維結構層15可依實際需求而不限只於波導層丨上 形成-個’三維結構層15 I感光材料,其#料編號為 SU-8,透過該感光材料之特性,使得三維結構層15形成時 係整個包覆住該辅助光柵4,並造成三維結構層15之下表 面(底面)的兩側邊之間具有一高户塞 又左,而造成三維結構 層15具有三維尺度之變化。故,當# 田先波於三維結構層15 之間傳遞時’將由於三維結構層15漸蠻 啊雙之同度變化,使得 三維結構層15與波導層12之傳播當叙 预*數—致,而提高了兩 者間的耦合參數’並進一步有效率地骆止 千地將先波由三維結構層 15内直接地導入於波導層12内傳遞, ^ 而楗升了光波於兩 傳播介質間的之能量耦合效率。且,輔 荆助光栅4亦可提高 三維結構層15之有效折射係數,而可争L α坦1 』更加地提升三維結構 201115196 1 5之間傳遞 而致使三維結 層15之柄合參數值’使得光波於三維結構層 時更谷易因為三維結構層15漸變之高度, 構層15與波導層12之傳播常數一致。Si), nitrite (Si), silicon oxinitride (SiON), or silic n carbine (Sic), and in the first embodiment, the 'waveguide layer 12 The material is sand; at least one auxiliary grating 4 is formed on the waveguide layer 12. The auxiliary grating 4 can auxiliaryly introduce light waves into the waveguide layer 12 and at least one three-dimensional structural layer 15 formed on the waveguide layer a. The three-dimensional structural layer 15 can be formed on the waveguide layer 不限 without forming a 'three-dimensional structural layer 15 I photosensitive material according to actual needs, and the # material number is SU-8, and the characteristics of the photosensitive material are used to make three-dimensional When the structural layer 15 is formed, the auxiliary grating 4 is entirely covered, and a high-cement and left-side between the two sides of the lower surface (bottom surface) of the three-dimensional structural layer 15 is caused, and the three-dimensional structural layer 15 has a three-dimensional scale. Change. Therefore, when #田先波 is transferred between the three-dimensional structural layers 15, 'the three-dimensional structural layer 15 gradually becomes the same as the double-degree change, so that the propagation of the three-dimensional structural layer 15 and the waveguide layer 12 is predicted to be The coupling parameter between the two is improved and the first wave is directly introduced into the waveguide layer 12 by the three-dimensional structural layer 15 in the first place, and the light wave is lifted between the two propagation media. Energy coupling efficiency. Moreover, the auxiliary grating 6 can also increase the effective refractive index of the three-dimensional structural layer 15, and can compete for the transfer of the three-dimensional structure 15 and the resulting parameter value of the three-dimensional layer 15 It is easier to make the light wave in the three-dimensional structural layer because the height of the three-dimensional structural layer 15 is gradually changed, and the configuration 15 is consistent with the propagation constant of the waveguide layer 12.

'於上述之第一實施例十,接著請繼續參閱第二圖,係 先桃輔助式之三維結構波導輕合裝置之施例立體社 構圖’該三維結構層15係形成-三維錐狀結# 19,該、I 維錐狀結構19之上表面(頂面)與下表面(底面)為幾: :狀之-錐狀表面,因此,三維結構層15之頂面係部分覆 盍該波導層12之上表面;當然,於製作之時,三維結構層 15之頂面亦可全部覆蓋波導層12之上表面且必須特 別說明的是,當光波由外部輸人於三維結構層Η傳遞之 時,若尚未達到最佳的能量輛合效率,而無法透過三維結 構層15直接地將光波導人波導層12内傳遞,此時,仍可 透過該輔助光栅4而輔助地將光波導入於波導層12之内。 另外,基於該三維結構層15具有三維尺度變化之特性 下,於製作之時,亦可將上述第一實施例之三維結構層η 稍作變形如下: (a )將該三維結構層丨5之幾何形狀上表面(頂面),以一 不規則表面代替,且,三維結構層15下表面(底面) 之兩側邊之間,不具有高度差。 (b )於製作該二維結構層丨5之時,若將三維結構層1 $以 (a)之方式製作,而形成不同於該三維錐狀結構之 201115196 三維結構層1 5,其仍具有三維尺度變化之特性,且為 非同次(non-homogeneous )之三維尺度變化,因此, 當光波於三維結構層1 5内傳遞時,將由於三維結構 (non-homogeneous )之三維尺度變化, 使得三維結構層15之傳播常數與該波導層12之傳播 常數一致’故’當光波於此三維結構層15内傳遞時, 其仍可因為三維結構層15之膏耦合參數值,而被有 效率地導入波導層12内傳遞。 另外’請參閱第三圖,係光柵輔助式之三維結構波導 耦合裝置之第二實施例側視圖,該光柵輔助式之三維結構 波導輕合裝置1之第二實施例,係包括: 第一基板11 ’以作為該光栅輔助式之三維結構波導 耦合裝置1之基層; 波導層12,係形成於該第—基板11之上,以作為 鲁 光波之傳播層;'In the first embodiment of the above tenth embodiment, please continue to refer to the second figure, which is a three-dimensional structure layer 15 system formed by the first peach-assisted three-dimensional structure waveguide light-splicing device. 19. The upper surface (top surface) and the lower surface (bottom surface) of the I-dimensional tapered structure 19 are: a tapered-shaped surface, and therefore, the top surface of the three-dimensional structural layer 15 partially covers the waveguide layer. 12 top surface; of course, at the time of fabrication, the top surface of the three-dimensional structural layer 15 may also completely cover the upper surface of the waveguide layer 12 and must be specifically stated when the light wave is transmitted from the outside to the three-dimensional structural layer If the optimal energy sharing efficiency has not been achieved, and the optical waveguide human waveguide layer 12 cannot be directly transmitted through the three-dimensional structural layer 15, at this time, the auxiliary grating 4 can still be used to assist in introducing the optical wave into the waveguide layer. Within 12. In addition, based on the three-dimensional structural layer 15 having a three-dimensional scale change, the three-dimensional structural layer η of the first embodiment may be slightly modified as follows: (a) the three-dimensional structural layer 丨5 The upper surface of the geometric shape (top surface) is replaced by an irregular surface, and there is no height difference between the two sides of the lower surface (bottom surface) of the three-dimensional structural layer 15. (b) at the time of fabricating the two-dimensional structural layer 丨5, if the three-dimensional structural layer 1$ is fabricated in the manner of (a), a 201115196 three-dimensional structural layer 15 different from the three-dimensional tapered structure is formed, which still has The characteristics of the three-dimensional scale change, and are non-homogeneous three-dimensional scale changes, therefore, when the light wave is transmitted in the three-dimensional structural layer 15 , it will change due to the three-dimensional scale of the non-homogeneous structure. The propagation constant of the three-dimensional structural layer 15 is identical to the propagation constant of the waveguide layer 12. Therefore, when the light wave is transmitted in the three-dimensional structural layer 15, it can still be efficiently used because of the paste coupling parameter value of the three-dimensional structural layer 15. It is introduced into the waveguide layer 12 for transmission. In addition, please refer to the third figure, which is a side view of a second embodiment of a grating-assisted three-dimensional structure waveguide coupling device. The second embodiment of the grating-assisted three-dimensional structure waveguide coupling device 1 includes: a first substrate 11' is a base layer of the grating-assisted three-dimensional structure waveguide coupling device 1; a waveguide layer 12 is formed on the first substrate 11 to serve as a propagation layer of the Luguang wave;

三維結構層15與波導層j 2 至少一三維結構層15,係形成於該波導層12之上 化,因此,當光波於三維結構層 ^維結構層1 5漸變之高度,使得 12之傳播常數一致,而提高了兩 201115196The three-dimensional structural layer 15 and the waveguide layer j 2 are at least one three-dimensional structural layer 15 formed on the waveguide layer 12, so that when the light wave is gradated to the height of the three-dimensional structural layer, the propagation constant of 12 Consistent, and improved two 201115196

♦ I 者間的輕合參數’並進—步有效率地將光波由三維結構層 15内直接地導人於波導们2内傳遞,而提升了光波於兩 傳播介質間的之能量耦合效率;及 至沙—辅助光柵4,該輔助光柵4係形成於該三維結 構層b之上表面(頂面)’透過辅助光柵4可提高三維結 構層15之有效折射係數,以提升三維結構層15之輕合^ 數值,而可辅助地將光波導入波導層12内。♦ I-light-parameter parameter 'parallel-step-efficiently transmits light waves directly from the three-dimensional structural layer 15 into the waveguides 2, thereby improving the energy coupling efficiency of the light waves between the two propagation media; A sand-assisted grating 4 is formed on the upper surface (top surface) of the three-dimensional structural layer b. The effective refractive index of the three-dimensional structural layer 15 can be improved by the auxiliary grating 4 to enhance the lightness of the three-dimensional structural layer 15. The value is used to assist in introducing light waves into the waveguide layer 12.

與第-實施例相同的是,於第二實施例中,該三維結 構層15係形成一三維錐狀結構,故,三維結構層15之上 表面(頂面)與下表面(底面)為-錐狀表面,因此,三 維結構層15之頂面係部分覆蓋該波導層12之上表面;當 然’於製作之時,亦可使得三維結構層15之頂面全部覆蓋 波導層12之上表面;且,同樣地’基於三維結構層15具 有三維尺度變化的特性下,亦可將第二實施例之三維結構 層15稍作變形如下: (〇將該三維結構層15冑何形狀之上表® (頂φ ),以一 維結構層1 5上表面(底3 不規則表面代替,且 之兩側邊之間,不具有高度差 d)於製作該二維結構層15時,若以(c)之方式製作 該三維錐狀結構之三維結構層15,其仍具有三維尺 變化之特性,且為非同次(n〇n h〇m〇gene〇us )之 維尺度變化’故,當光波於三維結構層15内傳遞κ 12 201115196 將由於三維結構層i 5非同次(n〇n_h〇m〇gene〇us )之 二維尺度變化,使得三維結構層15之傳播常數與該 波導層12之傳播常數—致,因此,當光波於此三維 結構層15内傳遞時,其可被有效率地導入波導層12 内。 並且’於第—實施例與第二實施例之中,該三維結構 層15係透過注膜之方式所製作,因此,三維結構層”之 高度可被製作成高於10微米之大尺寸,故,當該光栅輔助 式之一维,.Ό構波導輕合裝置i與一外部之光波傳遞裝置連 接時,例如’與一光纖連接,只需將該光纖對準三維結構 層15之開口端,即可完成連接。另外,必須強調的是,雖 然該光拇輔助式之三維結構波導耗合裝置!之第-實施例 與第二實施例’係將該三維結構層15定義為該三維錐狀結 構’然而’本發明衫限定三維結構層15必須是三維錐狀 結構,如上述對於第一實施例與第二實施例之非三維錐狀 結構之製作方式之定義,盆製 所裝作出之二維結構層15係具 有三維尺度非同次(繼‘㈣咖簡)變化之特性,故三 =二,播常數係隨著尺度變化而改變,使得三維 而提"數可與該波導層12之傳播常數相同,因 知升了二維結構層15與波 而处执士 t 网香間的耦合參數, 而此夠有效率地將光波由三 m . 再s >導入波導層12内 傳遞。因此’日後若有 助式之二維結構波導耦合 13 201115196 裝置1為基礎之其它發明,若其形成之三維結構層ί5無法 具^二.维尺度非料(。㈣e〇Us )變化之特性’則 不f其幾何外形、社福总L / 、,。構係如何地變化,皆無法利用「傳播 常數相同」之手段,而楛弁 升光波於兩傳播介質間之能量耦 合效率。 上述已完全揭露該光柵辅助式之三維結構波導麵合裝 置之^層結構與其材料特性’為了能夠以半導體製程技術 里地製作光柵輔助式之三維結構波導麵合裝置,請參 閱第四圖’係一種光柵辅助式之三維結構波導耦合裝置之 製作方法"IL程圖,並同時參閱第五圖至第十二圖之製 程不意圖’光栅輔助式之三維結構波導輕合裝置係具有兩 種製作方法,其第―製作方法包括以下步驟: 執行步驟(201),於一第一基板u上形成一波 導層12;接著,鈾, 執仃步驟(202 ),使用一第一光罩3於該 波導層12之上翻从 製作至少一輔助光柵4 ;然後,執行步驟 (203 ),將一第一 —基板221製作成一注膜基板22 ;接著, 步驟(2〇4) ’將該注膜基板22反面置於波導層12之 後執订步驟(205 ),利用注臈基板22於波導層 2之上製作三維結構層15 ;當該三維結構層15製作完 灸則執行步驟(2〇6),將注膜基板22從波導層12 上方移降· I、/ U t ” ’ 及’執行步驟(207 ),使用具有至少—平面 錐狀圖形61 $ — # 第二光罩6將該三維結構層1 5製作成至 201115196Similar to the first embodiment, in the second embodiment, the three-dimensional structural layer 15 forms a three-dimensional pyramid structure, so that the upper surface (top surface) and the lower surface (bottom surface) of the three-dimensional structural layer 15 are - a tapered surface, therefore, the top surface of the three-dimensional structural layer 15 partially covers the upper surface of the waveguide layer 12; of course, at the time of fabrication, the top surface of the three-dimensional structural layer 15 may also completely cover the upper surface of the waveguide layer 12; Moreover, similarly, the three-dimensional structural layer 15 of the second embodiment can be slightly modified as follows based on the characteristic that the three-dimensional structural layer 15 has a three-dimensional scale change: (〇 the three-dimensional structural layer 15 has a shape above the surface® (top φ ), with the upper surface of the one-dimensional structural layer 15 (the bottom 3 irregular surface is replaced, and the height difference d between the two sides) is used to make the two-dimensional structural layer 15 The three-dimensional structural layer 15 of the three-dimensional pyramidal structure is formed, which still has the characteristics of three-dimensional rule change, and is a dimensional change of the non-same (n〇nh〇m〇gene〇us), so when the light wave is Transfer of κ 12 within the three-dimensional structural layer 15 201115196 will be due to the three-dimensional structural layer i 5 The two-dimensional variation of the non-homogeneous (n〇n_h〇m〇gene〇us) causes the propagation constant of the three-dimensional structural layer 15 to be consistent with the propagation constant of the waveguide layer 12, and therefore, when the light wave is within the three-dimensional structural layer 15 When transferred, it can be efficiently introduced into the waveguide layer 12. And in the first embodiment and the second embodiment, the three-dimensional structural layer 15 is formed by means of a film injection, and therefore, the three-dimensional structural layer" The height can be made larger than 10 micrometers, so when the one of the grating-assisted ones is connected to an external lightwave transmitting device, for example, 'connected to an optical fiber, The connection can be completed by simply aligning the optical fiber with the open end of the three-dimensional structural layer 15. In addition, it must be emphasized that the optical-slide-assisted three-dimensional structure waveguide consuming device is the first embodiment and the second implementation. For example, the three-dimensional structural layer 15 is defined as the three-dimensional tapered structure. However, the three-dimensional structural layer 15 of the present invention must be a three-dimensional tapered structure, such as the non-three-dimensional cone described above for the first embodiment and the second embodiment. Systematic structure According to the definition of the method, the two-dimensional structural layer 15 made by the potting system has the characteristics of three-dimensional scale non-same order (following the '(four) coffee simple) change, so three=two, the broadcast constant system changes with the scale change, making the three-dimensional The reference number can be the same as the propagation constant of the waveguide layer 12, because it knows that the coupling parameter between the two-dimensional structural layer 15 and the wave is at the scent of the net, and the light wave is efficiently efficient by three m. And then s > is introduced into the waveguide layer 12. Therefore, if the two-dimensional structure of the waveguide is coupled in the future, the other three inventions based on the device 1 may not have the dimension of the three-dimensional structure layer ί5. Unexpected (. (4) e〇Us) the characteristics of the change 'is not its geometric shape, social welfare total L /,,. How the structure changes, it is impossible to use the "propagation constant is the same" means, and the energy coupling efficiency between the two propagation media is increased. The layer structure and material properties of the grating-assisted three-dimensional structure waveguide surface-engaging device have been fully disclosed. In order to be able to fabricate a grating-assisted three-dimensional structure waveguide surface-engaging device in a semiconductor process technology, please refer to the fourth figure. A grating-assisted three-dimensional structure waveguide coupling device manufacturing method "IL process diagram, and also refers to the process of the fifth to twelfth drawings. The grating-assisted three-dimensional structure waveguide light-synthesis device has two kinds of fabrications. The method of the first method includes the following steps: performing step (201), forming a waveguide layer 12 on a first substrate u; then, uranium, performing the step (202), using a first mask 3 The waveguide layer 12 is flipped over to form at least one auxiliary grating 4; then, step (203) is performed to form a first substrate 221 into a film injection substrate 22; then, step (2〇4) 'the film substrate After the reverse side is placed on the waveguide layer 12, the step (205) is performed, and the three-dimensional structural layer 15 is formed on the waveguide layer 2 by using the injection substrate 22; when the three-dimensional structural layer 15 is finished with moxibustion, the steps are performed (2〇6) ), the film-coated substrate 22 is removed from above the waveguide layer 12 · I, / U t ′′ ' and 'execution step (207 ), using at least a flat cone-shaped pattern 61 $ — # second mask 6 to the three-dimensional Structural layer 1 5 is made up to 201115196

• I 少一三維錐狀結構19。复 ,該第一基板11可為一半導 體一絕緣層基板、一氮化矽〜紹A 千導 板,而於第二製作方法中,係緣層基板、與一半導體基 作為第-基板U;波導層=用該半導體-絕緣層基板 氮化氧石夕、與一碳化石夕,而2可為—石夕、一氮化石夕、一 M 於第二製作方法t,係於第一 基板11之上形成該矽層以 兩,皮導層12;且,該第-其 板221可為一玻璃、 1第-基 t # ^ ^, 、與—矽,而於第二製作方法 lc .、 基板221 ;另外,三維妹槿屉 為一感光材料,於第二製 之嗜咸弁心 展作方法中係採用材料編號SU-8 之該感先材料,以形成三維結構層Μ。 上述為該光栅辅助式之二 製作方氺沾士 一維結構波導耦合裝置之第一 之詳細步驟★ 閱第十二圖,係步驟( 202) 圖,係第, 帛五圖、第六圖與第七 製程干意圖 &lt;俯視圖與於波導層之上製作輔助光栅之 =圖,其中,步驟(㈣更包括以下詳細步驟: 執行步驟( 2021 ),塗佈—第 該波導層 师第-感光材料Μ於 之上,接著,執行步驟( 2022),將且有# 柵圖形^將具有一先 之該第一光罩3置於咳第忒丄 方;缺後,抽 $於該第-感光材料Η之上 …、爰執行步驟(2023 ),以曝光之方 形31轉 先之方式,將該光柵圖 王第—感光材料14;接著,勃广止 以顯影之方今 Μ執仃步驟( 2024), 式,於第一感光材料14上形 以及,執 上形成先柵圖形31; ^驟(2025),以敍刻之方式剪 ^製作出該輔助光 r »—· -» 15 201115196 拇4。 並且,如上述該光柵輔助式之三維結構波導耦合萝 之第一製作方法的步驟流程,請參閱第十四圖,係步 (203 )之詳細步驟流程圖,並請同時參閱第八圖,係將 一基板製作為注膜基板之製程示意圖,其中,步驟(2〇3 更包括以下詳細步驟: 首先,執行步驟(2〇31),製備該第二基板221 :拯著 執行步驟⑽),於第二基板221之上形成一斜’ 222;然後,執行步驟(2〇33),塗佈一石夕聚合物a於第: 基板221之上;以及,執行步驟(2〇34),等待該矽聚合 16固化’其中’第一製作方法所採用之該矽聚合物為聚二 甲基石夕氧烷(P〇1ydimethyl siloxane ’ PDMS )。 且’如上述該光柵辅助式之三維結構波導耦合裝置之 第-製作方法的步驟流程,請參閱第十五圓,係步驟(則 之詳細步驟流程圖’並請同時參閱第九圖與第十圖,係注 膜基板之底視圖與利用注膜基板於波導層之上製作三維結 構層之示意圖,其中,步驟(2〇5)审 7骅〈2〇5)更包括以下詳細步驟: 首先’執行步驟(2〇5丨)乂對 耵早之方式將該注膜基板 22置於該波導層12之上.技芏 ^ y 之上,接著,執行步驟(2〇52),將一 第三感光材料1 8注入於注膜基板2 “興波導層12之間的凹 槽;以及,執行步驟(2〇53),等 矛行这第二感光材料18固 化0 201115196 請再參閱第十六圖,係步驟( 207)之詳細方法步驟流 程圖’並同時參閱第十一圖與第十二圖,係第二光單之: 視圖與將三維結構層製作成至少—三維錐狀結構之製程示 思圖其中#驟(2G7 )更包括以下詳細步驟: 貫先執订步驟( 2071 ),將該第二光罩6置於該三維 結構層15上方;接英,勒仁止 接著,執仃步驟(2072),以曝光之方式 於二維結構層15之上定義+ $ t 上疋我出至少一個該平面錐狀圖形 61 ;以及’執行步驟(2〇73),以顯影之方式將三維結構層 15製作成為該至少-三維錐狀結構19。如此,透過上述該 光柵辅助式之三維έ士播道^ 维、,,。構波導耦合褒置之第-製作方法與1 詳細步驟流程,如第一圖盥 …、 弟一圖所不,光柵輔助式 維結構波導輕合裝置被製作完成。 - 另外,該光柵輔助式之=维社接如人壯 ^ 一維結構耦合裝置更有第二製 方法,明參閱第十七圖,係 輕合裝置之第二製作方法、^輔助式之三維結構波導 至第二十圖之· …程圖,並同時參閱如第十八圖 一 意圖’光柵輔助式之三維結構波導耦 合裝置之第二製作方沬.^ 稱及導耦 I作方法,係包括以下步驟: 首先,執行步驟(301),於 導層】?.拉# 第基板11上形成—波 ,接者,執行步驟〇02),• I has one less three-dimensional cone structure 19 . The first substrate 11 may be a semiconductor-insulating layer substrate, a tantalum nitride layer, and in the second manufacturing method, the edge layer substrate, and a semiconductor substrate as the first substrate U; The waveguide layer = using the semiconductor-insulating layer substrate oxynitride, and a carbonized stone eve, and 2 can be - shi, a nitridite eve, a M in the second manufacturing method t, on the first substrate 11 The enamel layer is formed on the two, the skin guide layer 12; and the first plate 221 can be a glass, a 1st-base t #^^, and -矽, and in the second production method lc. The substrate 221; in addition, the three-dimensional sister drawer is a photosensitive material, and the first material of the material number SU-8 is used in the second method of the salty and sable development method to form a three-dimensional structural layer. The above is the first step of the first method of fabricating the grating-assisted two-dimensional structure waveguide coupling device. ★ The twelfth figure is the step (202), the first, the fifth, the sixth and The seventh process dry intention &lt;top view and the auxiliary grating on the waveguide layer =, wherein the step ((4) further comprises the following detailed steps: performing step (2021), coating - the waveguide layer division first photosensitive material Above, then, step (2022) is performed, and there is a # grid pattern ^ which has a first photomask 3 placed on the cough side; after the missing, the first photosensitive material is pumped Η Above..., 爰 Execute step (2023), and use the square of the exposure 31 to firstly, the grating image of the photographic material-photosensitive material 14; then, the embossing of the development of the plaque (2024) Forming on the first photosensitive material 14 and forming a first gate pattern 31; ^ (2025), and cutting the auxiliary light r »-· -» 15 201115196 to the thumb 4 in a sculpt manner. And, as described above, the grating-assisted three-dimensional structure waveguide is coupled to the first production side For the flow of the method, please refer to the fourteenth figure, the detailed step flow chart of step (203), and also refer to the eighth figure, which is a schematic diagram of the process of making a substrate as a film-coated substrate, wherein the steps (2〇) 3 further includes the following detailed steps: First, the step (2〇31) is performed to prepare the second substrate 221: the step (10) is performed steadily, and an oblique '222 is formed on the second substrate 221; then, the step (2) is performed. 〇33), coating a radix polymer a on the substrate 221; and, performing the step (2〇34), waiting for the ruthenium polymerization 16 to be cured, wherein the ruthenium polymer used in the first production method is P〇1ydimethyl siloxane 'PDMS. ' And the step flow of the first method of fabricating the grating-assisted three-dimensional structure waveguide coupling device, please refer to the fifteenth circle, the step ( Then the detailed step flow chart 'and please refer to the ninth and tenth views at the same time, which is a bottom view of the film substrate and a schematic diagram of forming a three-dimensional structure layer on the waveguide layer by using the film substrate, wherein the step (2〇5) ) Review 7骅 <2〇5) The detailed steps are as follows: First, the step (2〇5丨) is performed on the waveguide layer 12 by placing the film substrate 22 on top of the waveguide layer 12. Next, the steps are performed (2〇52). a third photosensitive material 18 is injected into the groove between the waveguide substrate 12 and the waveguide layer 12; and, the step (2〇53) is performed, and the second photosensitive material 18 is cured. Referring again to the sixteenth figure, the detailed method step flow chart of step (207) is also referred to the eleventh and twelfth figures, which are the second light sheet: the view and the three-dimensional structure layer are made into at least three-dimensional The process diagram of the tapered structure, wherein the step (2G7) further comprises the following detailed steps: a step (2071) is performed first, and the second mask 6 is placed above the three-dimensional structure layer 15; Then, the step (2072) is performed to define + $ t on the two-dimensional structure layer 15 by exposure, and at least one of the planar pyramid patterns 61; and 'execution step (2〇73) to The three-dimensional structural layer 15 is formed into the at least three-dimensional tapered structure 19 in a manner of development. In this way, through the above-mentioned grating-assisted three-dimensional gentleman broadcast channel, and. The first-step manufacturing method and the detailed step flow of the waveguide coupling device are as follows: the first image is not shown, and the grating-assisted dimensional structure waveguide light combining device is completed. - In addition, the grating-assisted type = Weishe is connected to the human body. The one-dimensional structure coupling device has a second method. See the seventeenth figure, which is the second production method of the light-sense device, and the auxiliary three-dimensional method. The structure waveguide is shown in the twentieth diagram, and reference is made to the second fabrication method of the three-dimensional structure waveguide coupling device which is intended to be 'grating-assisted type', and the conduction coupling I method is used as the method. The following steps are included: First, perform step (301) in the guide layer? .拉# Forming a wave on the first substrate 11, and then performing the step 〇02),

成具有至少一第一基板221製作 光拇結構2 2 3之—、、主肢A 步驟㈤),將該注胺其把,膜基板22;然後,執行 接著杜 ^ 、土 22反面置於該波導層之上12. 接著,執行步驟(304) 12, J用皮膜基板22於波導層12之 201115196 上製作-三維結構層15 ;然後 * 1 , 鄉(3〇5),將注膜 基板22從波導層12上方移除;以 、 ^ 執仃步驟(306 ), 使用具有至少—平面錐狀圖形61之一第_ 第—先罩6將該三錐 結構層1 5製作成至少一三維 構19。而於第二製作 方法中所採用之該第—美. — #基板11 &gt;皮導層12、該第二基板 221、及三維結構層15 ^表作方法相同,在此便不 多加贅述,因此,嗜炎 °月參閱第-十圖,係光柵辅助式之三維 結構波導耦合裝置之第-實施例立辦# 4 g 罘一貫施例立體結構圖,藉由上述第 二製作方式’可製作出該輔助光柵4係位於三維結構層15 上方之光柵輔助式之三維結構波導耦合裝置。 並且,如上述該光柵輔助式之三維結構波導麵合襄置 之第-製作方法的步驟流請 叫乐一十一圖,係步驟 (則之詳細步驟流程圖,並請同時參閱第十人圖,係具 有光柵結構之注膜某柄之相I丨雜同甘^ 犋丞板之側視圖,其中,步驟(302 )更 包括以下詳細步驟: 首先,執行步驟(3021 ),製備該第二基板221;接著, .、 於第一基板221之上形成一斜面凹槽 」1執行步驟(3〇23 ),於該斜面凹槽222之斜面 上形成該光柵結構223 ;接著,執行步驟(舰),塗佈一 ^合物16於第_ | 、一基板221之上;以及,執行步驟(3〇25), 等待該碎聚人&amp;, 口物16固化,而其中,該矽聚合物為聚二曱基 矽氧烷(PDMS)。 18 201115196 並且,如上述該光柵輔助式之三維結構波導耦合裝置 之第二製作方法的步驟流程,請參閱第二十二圖,係步驟 ( 304)之詳細步驟流程圖,並請同時參閱第十九圖係利 用具有光柵結構之注膜基板於波導層之上製作三維結構層 之示意圖,其中,步驟(304 )更包括以下詳細步驟: 首先’執行步驟(洲),以對準之方式將該注膜基板 22置於該波導層12之上;接著,執行步驟(3〇42),將 第三感光材料18注入於注膜基板22與波導層12之間的凹 槽;以及’執行步驟(3〇43),等待該第三感光材料 化。 最後,請參閱第二十三圖,係 流程圖,其中,步驟Mα Μ、·,田步驟 驟(306)更包括以下詳細步驟: :先’執行步驟(3061 ),將該第二光罩6置於 構層15上方;接著, 維 執仃步驟(3〇62),以曝光之方 ;二維結構層1 5之上定羞φ姑&gt;τ 工 疋義出該平面錐狀圖形61; 執行步驟(3063 ),L7 as於 及’ 該至少1錐/ 方式使得三維結構層15成為 二、准錐狀結構19。如此,透過上 之三維結構波導耦合裝置之第^ 栅補助式 锃’如第二圖與第二+ 艾驟流 導_人祐 不,光柵辅助式之三維結構波 導耦合裝置1即被製作完成。 攝皮 上述已完整且清接从命 月楚地揭硌了該光柵輔助式 '皮導耦合裝置與其製造古土 ^ 又一,准結構 “方法,其令包含第-實施例、第二 201115196 實施例、帛-製作方法、及第二製作方法,综合上述,可 得知本發明係具有下列之優點: 1. 藉由該三維結構層之三維尺度變化,使得光波可更有效 率地被導入該波導層之内傳遞,且,該光柄辅助式之三 維結構波導耦合裝置可傳遞之光波長範圍,係相較於習 知的光栅輔助式波導耦合器來得更為寬廣。 2. 由於該輔助光栅之使用,可使得該三維結構層之材料折Forming at least one first substrate 221 to form an optical thumb structure 2 2 3, and a main limb A step (5)), and placing the amine on the film substrate 22; then, performing the reverse layer and the soil 22 on the reverse side Above the waveguide layer 12. Next, performing step (304) 12, J uses the film substrate 22 to form a three-dimensional structural layer 15 on the 201115196 of the waveguide layer 12; then *1, township (3〇5), the film-coated substrate 22 Removing from above the waveguide layer 12; and performing the step (306), using the at least one-plane-first mask 6 having at least a planar tapered pattern 61 to form the three-cone structure layer 15 into at least one three-dimensional structure 19. In the second manufacturing method, the first substrate, the # substrate 11 &gt; the skin guide layer 12, the second substrate 221, and the three-dimensional structure layer 15 are the same, and will not be described here. Therefore, the inflammatory period is referred to in the tenth embodiment, and the third embodiment of the three-dimensional structure waveguide coupling device of the grating-assisted type is established. The auxiliary grating 4 is a grating-assisted three-dimensional structure waveguide coupling device located above the three-dimensional structural layer 15. Moreover, as described above, the flow of the first method of the grating-assisted three-dimensional structure waveguide surface-mounting device is called a music chart, and the steps are detailed (see the detailed step flow chart, and please also refer to the tenth person figure). And a side view of the phase I of the film having a grating structure, wherein the step (302) further comprises the following detailed steps: First, the step (3021) is performed to prepare the second substrate. Then, a bevel groove is formed on the first substrate 221. Step 1 (3〇23) is performed, and the grating structure 223 is formed on the inclined surface of the inclined groove 222. Then, the step (ship) is performed. Applying a compound 16 on the first substrate 221; and performing the step (3〇25), waiting for the fragmentation person &amp; the mouthpiece 16 to be cured, wherein the ruthenium polymer is Polydidecylhydroxane (PDMS). 18 201115196 Further, as described above, the flow of the second fabrication method of the grating-assisted three-dimensional structure waveguide coupling device is referred to the twenty-second diagram, which is the step (304). Detailed step flow chart, and please also refer to the nineteenth system A schematic diagram of fabricating a three-dimensional structural layer on a waveguide layer by using a film-coated substrate having a grating structure, wherein step (304) further comprises the following detailed steps: First, 'execution step (continent), the substrate is aligned in an aligned manner 22 is placed on the waveguide layer 12; then, a step (3〇42) is performed to inject a third photosensitive material 18 into the groove between the film-coated substrate 22 and the waveguide layer 12; and 'execution step (3〇43) Waiting for the third photosensitive material. Finally, please refer to the twenty-third figure, which is a flow chart, wherein the step Mα ·, ·, the field step (306) further includes the following detailed steps: First, the 'execution step ( 3061), the second mask 6 is placed above the layer 15; then, the step (3〇62) is performed to expose the square; the two-dimensional structure layer 15 is set to be ashamed. Deriving the planar pyramid pattern 61; performing step (3063), L7 as and 'the at least 1 cone/mode such that the three-dimensional structural layer 15 becomes a two-quasi-conical structure 19. Thus, the three-dimensional structure waveguide is coupled through the three-dimensional structure The second gate of the device is 锃' as shown in the second figure and the second + Ai Guide _ people do not, the grating-assisted three-dimensional structure waveguide coupling device 1 is completed. The above-mentioned complete and clear connection has revealed the grating-assisted 'skin guide coupling device and its ancient soil ^ In addition, the quasi-structure "method, which includes the first embodiment, the second embodiment 201115196, the 帛-making method, and the second manufacturing method, is integrated into the above, and it can be seen that the present invention has the following advantages: 1. The three-dimensional scale change of the three-dimensional structural layer enables light waves to be more efficiently introduced into the waveguide layer, and the wavelength range of light that the light handle-assisted three-dimensional structure waveguide coupling device can transmit is compared with Conventional grating-assisted waveguide couplers are more widely available. 2. Due to the use of the auxiliary grating, the material of the three-dimensional structural layer can be folded

射係數,可不限定必須大於該波導層之材料折射係數, 即可得到良好的光耦合效果。 3. 該三維結構層可不受限於半導體製程之薄膜製程,而可 透過注膜之方式,將其製作成大尺寸(高度大於1〇微 米)大尺寸的二維結構層可與外部之光波傳遞裝置直接 連接。 4.透過該光柵輔助式之三維結構波導耦合裝置之第一種製 造方法,即可利用半導體之製程技術,製作出該輔助光 柵係形成於該波導層上方之光柵輔助式三維結構波導耦 穿置 而不需要特殊之製程技術或製造設備。 5·透過該光柵辅助式之三維結構波導耦合裝置之第二種製 方法即可利用半導體之製程技術,製作出該輔助光 成於該二維結構層上方之光柵輔助式三維結構波 導輕合裝置’而不需要特殊之製程技術或者製造設備。 上述之詳細說明係針對本發明之可行實施例之具體說, 20 201115196 明,惟該實施例並非用 離本發明技藝精神所為 案之專利範圍申。 以限制本發明之專利範®,凡未脫 之等效實施或變更,均應包含於本The coefficient of incidence may not be limited to be greater than the refractive index of the material of the waveguide layer, and a good optical coupling effect can be obtained. 3. The three-dimensional structural layer can be made into a thin film process of a semiconductor process, and can be formed into a large-sized (higher than 1 〇 micrometer) large-sized two-dimensional structural layer through a film injection method to transmit light waves with external light. The device is directly connected. 4. Through the first manufacturing method of the grating-assisted three-dimensional structure waveguide coupling device, the grating-assisted three-dimensional structure waveguide coupling of the auxiliary grating system formed on the waveguide layer can be fabricated by using the semiconductor process technology. No special process technology or manufacturing equipment is required. 5. The second method of the grating-assisted three-dimensional structure waveguide coupling device can utilize the semiconductor process technology to fabricate the grating-assisted three-dimensional structure waveguide light-synthesis device with the auxiliary light formed above the two-dimensional structure layer. 'No need for special process technology or manufacturing equipment. The above detailed description is directed to the specific embodiments of the present invention, and the scope of the invention is not limited by the scope of the invention. In order to limit the patents of the present invention, the equivalent implementation or modification of the invention shall be included in

【圖式簡單說明】 第一圖 $二圖 第三圖 第四圖 第五圖 第六圖與第七圖 第八圖 第九圖 第十圖 係一種光栅輔助式之三維結構波導輕 合裝置之第一實施例側視圖; 係光柵輔助式之三維結構波導耦合裝 置之第一實施例立體結構圖; 係光柵輔助式之三維結構波導耦合裝 置之第二實施例側視圖; 係一種光柵輔助式之三維結構波導耦 合裝置之第一製作方法流程圖; 係一第一光罩之俯視圖; 係於一波導層上製作一輔助光栅之製 程示意圖; 係將一第二基板製作為一注膜基板之 製程示意圖; 係注膜基板之底視圖; 係利用注膜基板於波導層之上製作一[Simple diagram of the drawing] First diagram $2, third diagram, fourth diagram, fifth diagram, sixth diagram, seventh diagram, eighth diagram, ninth diagram, tenth diagram, a grating-assisted three-dimensional structure waveguide light-synthesis device 1 is a side view of a first embodiment of a grating-assisted three-dimensional structure waveguide coupling device; a second embodiment of a grating-assisted three-dimensional structure waveguide coupling device; a grating-assisted type A flow chart of a first manufacturing method of a three-dimensional structure waveguide coupling device; a top view of a first photomask; a process diagram for fabricating an auxiliary grating on a waveguide layer; and a process for fabricating a second substrate as a film-injecting substrate Schematic; a bottom view of the film substrate; a film substrate is used to make a layer on the waveguide layer

三維結構層之示意圖; 係具有至少一平面錐狀圖形之—第 光罩之俯視圖; 21 201115196 第十二圖 係將三維結構層製作成至少一三維錐 狀結構之製程示意圖; 第十三圖 係步驟(202 )之詳細步驟流程圖; 第十四圖 係步驟( 203 )之詳細步驟流程圖; 第十五圖 係步驟( 205 )之詳細步驟流程圖; 第十六圖 係步驟( 207 )之詳細步驟流程圖; 第十七圖 係光栅輔助式之三維結構波導耦合裝 置之第二製作方法流程圖; 第十八圖 係具有一光柵結構之注膜基板之側視 圖, 第十九圖 係利用具有光柵結構之注膜基板於波 導層之上製作一三維結構層之示意圖; 第二十圖 係光柵輔助式之三維結構波導耦合裝 置之第二實施例立體結構圖; 第二十一圖 係步驟(302 )之詳細步驟流程圖; 第二十二圖 係步驟(3 04 )之詳細步驟流程圖;及 第二十三圖 係步驟(306 )之詳細步驟流程圖。 22 201115196Schematic diagram of a three-dimensional structural layer; a plan view of a photomask having at least one planar pyramidal pattern; 21 201115196 The twelfth diagram is a schematic diagram of a process for fabricating a three-dimensional structural layer into at least one three-dimensional pyramidal structure; Detailed step flow chart of step (202); fourteenth step is a detailed step flow chart of step (203); the fifteenth figure is a detailed step flow chart of step (205); the sixteenth figure is step (207) Detailed step flow chart; Figure 17 is a flow chart of a second method for fabricating a grating-assisted three-dimensional structure waveguide coupling device; Figure 18 is a side view of a film-coated substrate having a grating structure, and the nineteenth image is utilized A schematic diagram of a three-dimensional structural layer formed on a waveguide layer with a grating structure; a twenty-dimensional diagram of a second embodiment of a grating-assisted three-dimensional structure waveguide coupling device; (302) detailed step flow chart; twenty-second figure is a detailed step flow chart of step (3 04); and twenty-third figure is detailed step (306) Detailed step flow chart. 22 201115196

【主要元件符號說明】 1 光柵輔助式之三維結構波導耦合裝置 11 第一基板 111 半導體層 112 絕緣層 12 波導層 14 第一感光材料 15 三維結構層 16 碎聚合物 17 第二感光材料 18 第三感光材料 19 三維錐狀結構 2 曝光光源 22 注膜基板 221 第二基板 222 斜面凹槽 223 光桃結構 3 第一光罩 31 光柵圖形 4 輔助光柵 6 第二光罩 61 平面錐狀圖形 23 201115196 201 〜207 方法步驟 2021 〜2025 方法步驟 2031〜2034 方法步驟 2051 〜2053 方法步驟 2071 〜2073 方法步驟 301 〜306 方法步驟 3021〜3025 方法步驟 • 3041〜3043 方法步驟 3061 〜3063 方法步驟 • 24[Main component symbol description] 1 Grating-assisted three-dimensional structure waveguide coupling device 11 First substrate 111 Semiconductor layer 112 Insulating layer 12 Waveguide layer 14 First photosensitive material 15 Three-dimensional structural layer 16 Broken polymer 17 Second photosensitive material 18 Third Photosensitive material 19 Three-dimensional tapered structure 2 Exposure light source 22 Film-implanted substrate 221 Second substrate 222 Bevel groove 223 Light peach structure 3 First mask 31 Raster pattern 4 Auxiliary grating 6 Second mask 61 Flat cone pattern 23 201115196 201 ~ 207 Method steps 2021 to 2025 Method steps 2031 to 2034 Method steps 2051 to 2053 Method steps 2071 to 2073 Method steps 301 to 306 Method steps 3021 to 3025 Method steps • 3041 to 3043 Method steps 3061 to 3063 Method steps • 24

Claims (1)

201115196 七、申請專利範圍: 1. -種光栅輔助式之三維結構波導耦合裝置,其包括: -第-基板,以作為該光柵輔助式之三維結構波導輕合 裝置之基層; 一波導層 係由其一第一表面形成於該第 一基板之一表 面上’以作為光波之傳播層;201115196 VII. Patent application scope: 1. A grating-assisted three-dimensional structure waveguide coupling device, comprising: - a first substrate as a base layer of the grating-assisted three-dimensional structure waveguide light-synthesis device; a first surface is formed on a surface of the first substrate to act as a propagation layer of light waves; 至少一輔助光栅,係形成於該波導層之—第二表面,其 中’該第二表面係相對於波導層之該第一表面,該輔助 光栅可辅助地將光波導入於波導層内;及 至少-三維結構層,係由其—第_表面形成於波導層第 一表面,且該二維結構層形成時係&amp;覆整個輔助光拇, 三維結構層4該第一表面,纟兩側邊之間具有一高度 差,而造成三維結構層具有三維尺度之變化,因此,當 光波於—維結構層内傳遞時,將由於三維結構層漸變之 门度使得二維結構層與波導層之傳播常數一致,提高 了兩者間的耗合參數,並進—步有效率地將光波由三維 、-·〇構層内直捿地導入於波導層内傳遞,而提升了光波於 兩傳播介質間的之能量耦合效率。 2·如專利巾凊範圍帛1項所述之-種光柵辅助式之三維結 構波導_合裝置,其中,該基板可為下列任—種··半導 體絕緣層(silicon-on-insulator,SOI )基板、氮化氧 矽—絕緣層(SiON-〇n_insult〇r)基板、氮化石夕—絕緣層 25 201115196 (SiN-on_insuiator)基板、與半導體基板。 3·如專利申請範圍第丨項所述之一種光柵辅助式之三維結 構波導耦合裝置,其中,該波導層可為下列之任一材料: 碎(Silicon,以)、氮化石夕(silicon nitride,SiN)、氮 化氧矽(silicon 〇xinitride,si〇N)、與碳化矽(仙咖 carbine,SiC )。 4.如專利申請範圍第1項所述之一種光柵辅助式之三維; 構波導辑合裝置,其中,該三維結構層為_感光材料。 5·如專利中請範圍第i項所述之—種光柵辅助式之三維$ 構波導輕合裝置’其中,該三維結構層更包括相對於」 維結構層之該第一表面一篦— 夂第一表面且,俯視三維j 構層之該第二表面時,= ~~維、°。構層之弟一表面係部分^ 盖該波導層之該第二表面。 6.如專利中㈣圍第5項所述之一種光柵輔助式之三㈣ 構波導耗合裂置,其中,該三維結構層之該第一表面$ 相對於第-表面之該第二表面為幾何表面。 7·如專利中請範圍第1項所述之-種光柵輔助式之三心 構波導耦合裝置,直6 ' 中’該三維結構層更包括一第二」 面,該第二表面係相料认 &quot; 相對於三維結構層之該第一表面,且 俯視三維結構層,三維社 、·。構層之該第一表面係完全^ 該波導層之該第二表面。 」 8.如專利申請範圍第7ϊ§ 、所述之一種光栅輔助式之三維參 26 201115196 • t 構波導耦合裝置, 、 二維結構層之今笛 ± 相對於第—表胃層之該第-表面與 第二表面為幾 9. 一種光柵輔助&lt; _ -第-以, 構波導輕合裝置,其包括: 土 以作為該光柵辅助式 裝置之基層; '〈-、准結構波導耦合 一波導層,係由其— 品u 第一表面形成於該第一基板之一表 面上,以作為光波之傳播層; &gt; 至少一二维結構層, 一 保由其第一表面形成於該波導層 之一第二表面’其令,波導層之該第二表面係相對於其 該第一表面,且該三維結構層形成時,其該第一表面的 兩側邊之間具有—古疮 、頁呵度差,而造成三維尺度之變化,因 此,虽光波於三維結構層内傳遞時,將由於三維結構層 斩變Γ7度使得二維結構層與波導層之傳播常數一 I S门了兩者間的輕合參數’並進一步有效率地將光 波由一維、,α構層内直接地導入於波導層内傳遞,而提升 了光波於兩傳播介質間的之能量耦合效率;及 至少一輔助光柵,係形成於三維結構層之一第二表面, 其中,三維結構層之該第二表面係相對於其該第一表 面’透過該輔助光柵可提高三維結構層之有效折射係 數,以輔助地將光波導入波導層内。 10.如專利申請範圍第9項所述之一種光栅辅助式之三維結 構波導柄合裝置’其中,該第一基板可為下列任一種: « _ 27 201115196 • I 半導體一絕緣層(silicon-on-insulator,SOI)基板、氮 化氧妙一絕緣層(Si〇N-〇n-insultor )基板、氮化石夕—絕 緣層(SiN-on-insulator)基板、與半導體基板。 11·如專利申請範圍第9項所述之一種光柵輔助式之三維結 構波導耦合裝置’其中,該波導層可為下列之任一材 料:矽(silicon ’ Si) ' 氮化矽(silicon nitride,SiN)、 氮化氧矽(silicon 0Xinitride,Si〇N)、與碳化矽(siHc〇nAt least one auxiliary grating is formed on the second surface of the waveguide layer, wherein the second surface is opposite to the first surface of the waveguide layer, the auxiliary grating can assist in introducing light waves into the waveguide layer; and at least a three-dimensional structural layer formed by the first surface thereof on the first surface of the waveguide layer, and the two-dimensional structural layer is formed to cover the entire auxiliary light, the first surface of the three-dimensional structural layer 4, and the two sides of the crucible There is a height difference between them, which causes the three-dimensional structural layer to have a three-dimensional scale change. Therefore, when the light wave is transmitted in the -dimensional structural layer, the two-dimensional structural layer and the waveguide layer are propagated due to the gradient of the three-dimensional structural layer. The constants are consistent, the constrained parameters between the two are improved, and the light waves are efficiently introduced into the waveguide layer by the three-dimensional and -·〇 layers, and the light waves are enhanced between the two propagation media. Energy coupling efficiency. 2. The three-dimensional structure waveguide-coupling device of the grating-assisted type according to the scope of the patented invention, wherein the substrate can be any of the following: a silicon-on-insulator (SOI) A substrate, a silicon nitride-insulating layer (SiON-〇n_insult〇r) substrate, a nitride-on-insulation layer 25 201115196 (SiN-on_insuiator) substrate, and a semiconductor substrate. 3. A grating-assisted three-dimensional structure waveguide coupling device according to the scope of the invention, wherein the waveguide layer can be any of the following materials: silicon nitride, silicon nitride, SiN), silicon 〇xinitride (si〇N), and tantalum carbide (SiC). 4. A grating-assisted three-dimensional structure as described in claim 1, wherein the three-dimensional structural layer is a photosensitive material. 5. The grating-assisted three-dimensional structure-guided light-spinning device as described in the scope of the invention, wherein the three-dimensional structural layer further comprises a first surface relative to the first dimensional layer of the dimensional structure layer. When the second surface of the three-dimensional j-layer is viewed from the first surface, it is = ~~ dimension, °. The surface layer of the layered layer covers the second surface of the waveguide layer. 6. A grating-assisted three-(four)-structure waveguide constrained split according to item 4, wherein the first surface of the three-dimensional structural layer is opposite to the second surface of the first surface. Geometric surface. 7. The three-cardior waveguide coupling device of the grating-assisted type described in the first aspect of the patent, wherein the three-dimensional structure layer further comprises a second surface, the second surface is a phase material Recognition &quot; relative to the first surface of the three-dimensional structural layer, and overlooking the three-dimensional structural layer, three-dimensional society. The first surface of the layer is completely the second surface of the waveguide layer. 8. A grating-assisted three-dimensional reference 26 201115196 • t-structure waveguide coupling device, as described in the patent application scope, § § §, the two-dimensional structural layer of the flute ± relative to the first - stomach layer - The surface and the second surface are a 9. A grating-assisted &lt; _ - - -, constituting waveguide light combining device comprising: soil as a base layer of the grating auxiliary device; '<-, a quasi-structure waveguide coupling-waveguide a layer formed on a surface of one of the first substrates as a propagation layer of the light wave; &gt; at least one two-dimensional structural layer, the first surface being formed on the waveguide layer a second surface 'which causes the second surface of the waveguide layer to be opposite to the first surface thereof, and when the three-dimensional structural layer is formed, between the two sides of the first surface - an ancient sore, a page The degree of turbulence is different, and the three-dimensional scale is changed. Therefore, although the light wave is transmitted in the three-dimensional structural layer, the propagation constant of the two-dimensional structural layer and the waveguide layer is changed by the 三维7 degree of the three-dimensional structural layer. Lightness The number ' further efficiently transmits light waves directly from the one-dimensional, alpha-structure layer into the waveguide layer, thereby improving the energy coupling efficiency of the light wave between the two propagation media; and at least one auxiliary grating And a second surface of the three-dimensional structural layer, wherein the second surface of the three-dimensional structural layer transmits the auxiliary grating with respect to the first surface thereof to improve an effective refractive index of the three-dimensional structural layer to assist in guiding the light wave into the waveguide Within the layer. 10. A grating-assisted three-dimensional structure waveguide shank device according to claim 9, wherein the first substrate can be any of the following: « _ 27 201115196 • I semiconductor-insulation layer (silicon-on -insulator, SOI) substrate, a silicon nitride insulating layer (Si〇N-〇n-insultor) substrate, a nitride-on-insulator (SiN-on-insulator) substrate, and a semiconductor substrate. 11. A grating-assisted three-dimensional structure waveguide coupling device according to claim 9, wherein the waveguide layer can be any of the following materials: silicon 'Si' silicon nitride (silicon nitride) SiN), silicon oxide (silicon 0Xinitride, Si〇N), and tantalum carbide (siHc〇n) carbine,SiC )。 12.如專利申請範圍第9項所述之一種光柵輔助式之三維 構波導耦合裝置’其中’該三維結構層為-感光材料 如專利申請範圍第9項所述之一種光柵輔助式之三維 構波導輕合裝置,其中,俯視該三維結構層時,三維 構層之該第二表面係部分覆蓋該波導層之該第二表面 如專利巾請範圍第13項所述之—種光栅輔助式之三 結構波導耦合裝置,其 — 、甲該二維結構層之該第一表 與相對於第一^ ' 該第二表面為幾何表面。 1 5 .如專利申請範圍第 圍第9項所述之一種光柵輔助式 構波導耦合裴置,复中於 二維 '、甲,俯視該三維結構層時,= 構層之該第二表面係— 一維 '、心王覆蓋該波導層之該第-矣工 16.如專利申請範圍第15馆 昂一表面 ^ 項所述之一種光柵辅助式之二 結構波導耦合裝置,苴 ^ 、中,該二維結構層之兮笛 與相對於第一表面之該笛 , 这第一表 μ第一表面為一幾何表面。 28 201115196 • 1 17. —種光柵輔助式之三維結構波導麵合裝置,其包括: 一第一基板,以作為該光柵輔助式之三維結構波導耦合 裝置之基層; 一波導層,係由其一第一表面形成於該第一基板之—表 面上’以作為光波之傳播層; 至少一輔助光柵,係形成於相對該波導層之一第二表 面,其中,該第二表面係相對於波導層之該第一表面, • 該輔助光柵可輔助地將光波導入於波導層内;及 至;一二維結構層,係由其一第一表面形成於波導層第 二表面,且該三維結構層形成時係包覆輔助光柵,三維 構層具有二維尺度之非同次(n〇n_h〇ln〇gene〇US )變 化,因此,當光波於三維結構層内傳遞時,將由於三維 結構層二維尺度之非同次(n〇n_h〇in〇geneous )變化, 使得二維結構層與波導層之傳播常數一致,而提高了兩 鲁 者間的耦合參數,並進一步有效率地將光波由三維結構 層内直接地導入於波導層内傳遞,而提升了光波於兩傳 播介質間的之能量輕合效率。 18. 如專利申請範圍第17項所述之一種光柵輔助式之三維 結構波導耦合裝置,其中,該第一基板可為下列任— 種.半導體一絕緣層(silicon-on-insulator,SOI )基板、 氮化氧石夕—絕緣層(SiON-〇n-insultor )基板、氮化石夕— 絕緣層(SiN-on-insulator)基板、與半導體基板。 29 201115196 19.如專利申請範圍第〗7項所述之一種光柵輔助式之三維 結構波導耦合裝置,其中,該波導層可為下列之任一材 料:矽(silicon,Si)、氮化矽(silic〇n nitride,SiN)、 氮化氧石夕(silicon oxinitride,SiON)、與碳化矽(siHc〇n carbine,SiC )。 20. 如專利申請範圍第17項所述之一種光柵辅助式之三維 結構波導耦合裝置,其中,該三維結構層為一感光材料。 21. 如專利申請範圍第17項所述之一種光栅輔助式之三維 結構波導_合裝置’其中,該三維結構層更包括相對於 三維結構層之該第一|面之一第二表面,且,俯視三維 結構層時’三維結構層之該第二表面係部分覆蓋該波導 層之該第二表面。 一 a 一粳元柵輔助式之 結構波導_合裝置,其巾,該三維結構層之相對於$ 一表面之該第二表面為-不規則表面’三維結構層, 由該不規則表面而使其具有三維尺度之非同次(n〇 homogeneous )變化。 ”如專利申請_ 17項所述之—種光柵辅助式之 結構波導箱合裝置,其中,該三維結構層更包括一 表面’該第二表面係相對於三維結構層之該第—表 且’俯視三維結構層時’三維結構層之該第二表面 全覆蓋該波導層之該第二表面。 30 201115196 * 24·如專利申請範圍第23項 結構波導耦合裝置,其中 一表面之該第二表面為— 由該不規則表面而使其具 所述之一種光柵輔助式之三維 ’該三維結構層之相對於該第 不規則表面’三維結構層係藉 有二維尺度之非同次(η〇η_ homogeneous )變化。 25.-種光柵輔助式之三維結構波導輕合裝置,其包括: -第-基板’以作為該光柵輔助式之三維結構波導輕合 鲁 裝置之基層; ° 一波導層,係由其一第一表面形成於該第—基板之—表 面上,以作為光波之傳播層; &gt;、-三維結構層,係由其—第—表面形成於該波導層 之-第二表面,其中,波導層之該第二表面係相對於其 該第一表面,該三維結構層具有三維尺度之非同次(如〇Carbine, SiC). 12. A grating-assisted three-dimensional waveguide coupling device as described in claim 9, wherein the three-dimensional structural layer is a photosensitive material, such as a grating-assisted three-dimensional structure according to claim 9 of the patent application scope. a waveguide light fitting device, wherein, when the three-dimensional structural layer is viewed from above, the second surface portion of the three-dimensional layer partially covers the second surface of the waveguide layer, such as the grating-assisted type described in claim 13 A three-structure waveguide coupling device, wherein the first surface of the two-dimensional structural layer and the second surface are geometric surfaces with respect to the first surface. 1 5 . A grating-assisted waveguide coupling device according to the ninth aspect of the patent application, wherein the second surface is a two-dimensional ', A, when looking down the three-dimensional structural layer, the second surface system of the formation layer - a one-dimensional ', the core of the core covering the first layer of the waveguide layer. 16. A grating-assisted two-structure waveguide coupling device as described in the fifteenth aspect of the patent application, 苴^, 中, The two-dimensional structural layer has a flute and a flute relative to the first surface, and the first surface of the first surface is a geometric surface. 28 201115196 • 1 17. A grating-assisted three-dimensional structure waveguide surface-engaging device comprising: a first substrate as a base layer of the grating-assisted three-dimensional structure waveguide coupling device; a waveguide layer a first surface is formed on the surface of the first substrate as a propagation layer of light waves; at least one auxiliary grating is formed on a second surface opposite to the waveguide layer, wherein the second surface is opposite to the waveguide layer The first surface, the auxiliary grating can assist in introducing light waves into the waveguide layer; and a two-dimensional structural layer is formed on a second surface of the waveguide layer by a first surface thereof, and the three-dimensional structural layer is formed When the time is coated with an auxiliary grating, the three-dimensional layer has a non-homogeneous (n〇n_h〇ln〇gene〇US) variation of the two-dimensional scale. Therefore, when the light wave is transmitted in the three-dimensional structural layer, it will be two-dimensional due to the three-dimensional structural layer. The non-same (n〇n_h〇in〇geneous) variation of the scale makes the two-dimensional structural layer and the waveguide layer have the same propagation constant, which improves the coupling parameter between the two Lu, and further efficiently Lightwave introduced directly from the three-dimensional structure of the waveguide layer in the transfer layer, and improve the energy efficiency of the lightwave engagement between the two light propagation medium. 18. A grating-assisted three-dimensional structure waveguide coupling device according to claim 17, wherein the first substrate can be any of the following: a silicon-on-insulator (SOI) substrate. And a silicon nitride-insulating layer (SiON-〇n-insultor) substrate, a nitride-on-insulator (SiN-on-insulator) substrate, and a semiconductor substrate. 29 201115196 19. A grating-assisted three-dimensional structure waveguide coupling device according to claim 7, wherein the waveguide layer can be any of the following materials: silicon (silicon), tantalum nitride ( Silic〇n nitride, SiN), silicon oxinitride (SiON), and silicon carbide (siHc〇n carbine, SiC). 20. A grating-assisted three-dimensional structure waveguide coupling device according to claim 17, wherein the three-dimensional structural layer is a photosensitive material. 21. The grating-assisted three-dimensional structure waveguide-combining device of claim 17, wherein the three-dimensional structural layer further comprises a second surface of the first | face relative to the three-dimensional structural layer, and The second surface portion of the three-dimensional structural layer partially covers the second surface of the waveguide layer when the three-dimensional structural layer is viewed. An a-cell-assisted structure waveguide-to-device, the towel, the second surface of the three-dimensional structural layer with respect to a surface of the surface is an irregular surface 'three-dimensional structural layer, which is caused by the irregular surface It has a non-homogeneous change in three dimensions. The grating-assisted structure waveguide box assembly device of claim 17, wherein the three-dimensional structure layer further comprises a surface 'the second surface system relative to the third surface of the three-dimensional structural layer and The second surface of the three-dimensional structural layer completely covers the second surface of the waveguide layer when the three-dimensional structural layer is viewed. 30 201115196 * 24. The structural waveguide coupling device of claim 23, wherein the second surface of a surface By the irregular surface having the grating-assisted three-dimensional shape of the three-dimensional structural layer relative to the first irregular surface, the three-dimensional structural layer is not the same as the two-dimensional dimension (n〇 Η_ homogeneous) 25. A grating-assisted three-dimensional structure waveguide light-splicing device comprising: - a first substrate as a base layer of the grating-assisted three-dimensional structure waveguide light-and-lubrication device; Forming a first surface thereof on the surface of the first substrate as a propagation layer of light waves; &gt;, a three-dimensional structural layer formed by the first surface thereof on the waveguide layer - a second surface, wherein the waveguide layer of the second surface opposite the first surface based thereon, the three-dimensional structure layer having three dimensions of unusual views (e.g., square -h〇m〇geneous)變化,因此,當光波於三維結構層内傳 遞時,將由於三維結構層具有三維尺度之非同次 hom〇geneous )變化,使得三維結構層與波導層之傳播 常數一致’而提高了兩者間的耦合參數,並 一 ^ 少有效 率地將光波由三維結構層内直接地導入於波導層 1*^- 遞’而提升了光波於兩傳播介質間的之能量耦合致率. 及 至少一輔助光柵’係形成於三維結構層之—笙一 示一衣面 其中’三維結構層之該第二表面係相對於其該 31 201115196 面’透過該辅助光柵可提高三維結構層之有效折射係 數,以辅助地將光波導入波導層内。 26. 如專利申請範圍第25項所述之一種光柵輔助式之三維 結構波導耦合裝置,其中,該第一基板可為下列任一 種.半導體—絕緣層(silicon-on-insulator,SOI )基板、 氮化氧石夕一絕緣層(Si〇N-〇n-insultor )基板、氮化石夕― 絕緣層(SiN-〇n-insulator )基板、與半導體基板。 27. 如專利申請範圍第25項所述之一種光柵輔助式之三維 結構波導耦合裝置,其中,該波導層可為下列之任一材 料·石夕(silicon,Si)、氮化矽(siHc〇n nitdde,_)、 氮化氧矽(silicon oxinitride,si〇N )、與碳化矽(silic〇n carbine,SiC )。 28. 如專利申請範圍第25項所述之一種光柵輔助式之三維 、’》構波導耦合裝置,其中,該三維結構層為一感光材料。 29♦如專利中請範圍f 25項所述之—種光柵輔助式之三維 。構波導相合裝置,其中,俯視該三維結構層時,該三 維結構層之該第二表面係部分覆蓋該波導層之該第二 表面。 non- 專利申请範圍第29項所述之一種光柵輔助式之三維 :構波導輕合裝置,其中,該三維結構層之相對於該第 &amp;面之該第—表面為—不規則表面,三維結構層係藉 由該不規則表面而使其具有三維尺度之非同次( 32 201115196 homogeneous )變化。 31. 如專利申請範圍第25項所述之一種光栅輔助 工、&lt; 二維 結構波導輕合裝置,其中,俯視該三維結構層時,該三 維結構層之該第二表面係完全覆蓋該波導層之該第二 表面。 32. 如專利申請範圍帛31項所述之一種光柵輔助式之三維 結構波導輕合裝置,其中,該三維結構層之相對於該第 • 一表面之該第二表面為一不規則表面,三維結構層係藉 由該不規則表面而使其具有三維尺度之非同次(n〇n_ homogeneous )變化。 33. —種光柵輔助式之三維結構波導耦合裝置之製造方法, 係包括以下步驟: (1) 於一第一基板上形成一波導層; (2) 使用一第一光罩於該波導層之上製作至少一輔 Φ 助光栅; (3) 將一第二基板製作成一注膜基板; (4) 將該注膜基板反面置於波導層之上; (6) (7) 利用注膜基板於波導層之上製作一三維結構層; 將注膜基板從波導層上方移除;及 使用具有至少一平面錐狀圖形之一第二光罩將 該三維結構層製作成至少一三維錐狀結構。 4.如申明專利範圍第33項所述之一種光柵辅助式之三維 33 201115196 i 結構波導相合裝置之製造方法,其中,該步驟⑺更 包括以下步驟: 21 塗佈—第一感光材料於該波導層之上; 22 )將具有至少一光栅圖形之該第一光罩置於該 第—感光材料之上方; 、曝光之方式,將該光柵圖形轉移至第一感光 材料;-h〇m〇geneous) changes, therefore, when the light wave is transmitted in the three-dimensional structural layer, the three-dimensional structural layer has the same propagation constant as the waveguide layer because the three-dimensional structural layer has a three-dimensional non-homogeneous change. 'Improve the coupling parameters between the two, and efficiently introduce the light wave directly into the waveguide layer from the three-dimensional structure layer to improve the energy coupling between the two propagation media. And the at least one auxiliary grating is formed in the three-dimensional structural layer, wherein the second surface of the three-dimensional structural layer is increased relative to the surface of the three-dimensional structural layer by the auxiliary grating The effective refractive index of the layer to assist in introducing light waves into the waveguide layer. 26. A grating-assisted three-dimensional structure waveguide coupling device according to claim 25, wherein the first substrate can be any one of the following: a silicon-on-insulator (SOI) substrate, a silicon nitride-insulating layer (Si〇N-〇n-insultor) substrate, a nitride-intercal-insulator (SiN-〇n-insulator) substrate, and a semiconductor substrate. 27. A grating-assisted three-dimensional structure waveguide coupling device according to claim 25, wherein the waveguide layer can be any of the following materials: silicon (Si), tantalum nitride (siHc〇) n nitdde, _), silicon oxinitride (si〇N), and silic〇n carbine (SiC). 28. A grating-assisted three-dimensional, &apos;structural waveguide coupling device according to claim 25, wherein the three-dimensional structural layer is a photosensitive material. 29♦ As described in the patent, please refer to the range of 25, the grating-assisted three-dimensional. A waveguide conforming device is configured, wherein the second surface of the three-dimensional structural layer partially covers the second surface of the waveguide layer when the three-dimensional structural layer is viewed from above. A grating-assisted three-dimensional structure: a waveguide light-spinning device, wherein the first surface of the three-dimensional structural layer relative to the first surface is an irregular surface, three-dimensional The structural layer is made to have a non-homogeneous (32 201115196 homogeneous) variation of the three-dimensional scale by the irregular surface. 31. A grating assistor, &lt; two-dimensional structure waveguide light combining device according to claim 25, wherein the second surface of the three-dimensional structural layer completely covers the waveguide when the three-dimensional structural layer is viewed from above The second surface of the layer. 32. A grating-assisted three-dimensional structure waveguide light-synthesis device as described in claim 31, wherein the second surface of the three-dimensional structural layer is an irregular surface with respect to the first surface, three-dimensional The structural layer is made to have a non-homogeneous (n〇n_homogeneous) change in three dimensions by the irregular surface. 33. A method for fabricating a grating-assisted three-dimensional structure waveguide coupling device, comprising the steps of: (1) forming a waveguide layer on a first substrate; (2) using a first photomask on the waveguide layer Making at least one auxiliary Φ assisting grating on the upper surface; (3) forming a second substrate into a film injection substrate; (4) placing the reverse side of the film injection substrate on the waveguide layer; (6) (7) using the film substrate Forming a three-dimensional structural layer on the waveguide layer; removing the film-implanted substrate from above the waveguide layer; and forming the three-dimensional structural layer into at least one three-dimensional tapered structure using a second photomask having at least one planar tapered pattern. 4. A method of manufacturing a grating-assisted three-dimensional 33 201115196 i-structure waveguide matching device according to claim 33, wherein the step (7) further comprises the following steps: 21 coating - the first photosensitive material is applied to the waveguide Above the layer; 22) placing the first photomask having at least one grating pattern over the first photosensitive material; and exposing the grating pattern to the first photosensitive material; (24) 以顯影之方式,於第一感光材料上形成光拇圖 形;及 25)以姓刻之方式,製作出該輔助光拇。 3 5 _如申請專利範圍第 結構波導相合裝置 包括以下步驟: 33項所述之一種光柵輔助式之三維 之製造方法,其中,該步驟( (31)製備該第二基板;(24) forming a light thumb pattern on the first photosensitive material by means of development; and 25) producing the auxiliary light thumb by means of a surname. 3 5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (32) #第二基板之上形成一斜面凹槽; (33) 塗佈—矽聚合物於第二基板之上;及 (34) 等待該矽聚合物固化。 36.如申請專利範圍第33 之三維 (5)更 項所达之一種光栅輔助式 結構波導耦合裝置之製诰古 ·方法,其中,該步驟 包括以下步驟: (51) 以對準之方式將該注 (52) 將一第三感光材料注 膜基板置於該波導層之上 入於注膜基板與波導層之 34 201115196 間的凹槽;及 (53)等待該第三感光材料固化。 37·如申請專利範圍帛33項所述之-種光柵輔助式之三維 結構波導叙合裝置之製造方法,其t,該步驟(?)更 包括以下步驟: (71) 將該第二光罩置於該三維結構層上方; (72) 以曝光之方式於三維結構層之上定義出至少一 • 個該平面錐狀圖形;及 (73) 以顯影之方式將三維結構層製作成為該至少一 ^維錐狀結構。 38·如申明專利範圍第33項所述之一種光柵輔助式之三維 結構波導耗合裝置之製造方法,其中,該第一基板可為 下列任一種:半導體—絕緣層(silic〇n-〇n-insulator, SOI)基板、氮化氧矽一絕緣層(si〇N 〇n insu丨t〇r)基 ® 板氮化妙一絕緣層(SiN-〇n-insulator)基板、與半導 體基板。 39. 如專利申請範圍第33項所述之一種光柵輔助式之三維 結構波導耦合裝置之製造方法,其中,該波導層可為下 列之任一材料:矽(silieon,Si)、氮化矽(siHc〇n nitride, SiN)、氮化氧矽(siiie〇I1 〇xinitride,si〇N)、與碳化 矽(silicon carbine,SiC )。 40. 如專利申請範圍第33項所述之一種光柵輔助式之三維 35 201115196 ' I 結構波導耦合裝置之製造方法,其中,該第二基板可為 下列任一種:玻璃、石英、及矽。 41.如專利申請範圍第33項所述之一種光栅輔助式之三維 結構波導耦合裝置之製造方法,其中,該三維結構層為 一感光材料。 42·如專利申請範圍第35項所述之一種光栅輔助式之三維 結構波導耦合裝置之製造方法,其中,該矽聚合物為聚 鲁 一曱基碎氧烧(P〇lydimethyl siloxane,PDMS )。 43 ·—種光柵輔助式之三維結構波導耦合裝置之製造方法, 係包括以下步驟: (1) 於一第一基板上形成一波導層; (2) 將一第二基板製作成具有至少一光柵結構之〆 注膜基板; 鲁 (3)將該注膜基板反面置於該波導層之上; (4 )利用注膜基板於波導層之上製作一三維結搆層; (5) 將注膜基板從波導層上方移除;及 (6) 使用具有至少一平面錐狀圖形之一第二光罩將 該三維結構層製作成至少一三維錐狀結構。 4.如申請專利範圍第43項所述之一種光柵輔助式之彡雉 結構波導耦合裝置之製造方法,其中,該步驟(2)更 包括以下步驟: (21)製備該第二基板; 36 201115196 (22)於第二基拓 板之上形成一斜面凹槽; (23 )於該斜面凹辨, 曰斜面上形成該光柵結構 (24) 塗佈—石夕聚人私 7物於第二基板之上;及 (25) 等待該矽聚合物固化。 4 5.如申請專利範圍第 結構波導耦合裝置 包括以下步驟: U項所述之一種光柵辅助式之三維 之製造方法’其中’該步驟(4)更 (4 1 )以對準之方汰腺 I万式將該注膜基板置於該波導層之上; (42) 將一第三感氺好姓、+ 琢先材枓注入於注膜基板與波導層之 間的凹槽;及 (43) 等待該第三感光材料固化。 46.如申請專利範圍第43 固弟Μ項所述之一種光柵輔助式之三維 結構波導耦合裝置之製造 瑕&amp;方法,其申,該步驟(6)更 包括以下步驟: (61 (62 將該第一光罩置於該三維結構層上方; 以曝光之方式於三維結構層之上定義出該平 面錐狀圖形;及 (63 以顯影之方式使得三維結構層成為該至少一 三維錐狀結構。 47.如申响專利把圍帛43項所述之一種光柵辅助式之三維 結構波導心裝置之製造方法,其巾,該第-基板可為 下列任一種:半導體—絕緣層(sili⑶n-〇rMnSulator,S0I 37 201115196 • &lt; .)基板、氮化氧矽-絕緣層(Si〇N_〇n_insult〇r)基板、 亂化石夕—絕緣層(SiN-on-insulator )基板、與半導體基 板0 48. 如專利申請範圍第43項所述之一種光柵輔助式之三維 結構波導耦合裝置之製造方法,其中,該波導層之材料 可為下列之任一種:矽(silic〇n,Si)、氮化矽(snic〇n itride SiN)、氮化氧碎(smc〇n〇xinitride,、 與兔化石夕(silicon carbine,SiC )。 49. 如專利巾㈣圍帛43帛所述之―帛光柵辅助式之三維 結構波導箱合裝置之製造方法,其中,該第二基板可為 下列任一種:玻璃、石英、及矽。 50. 如專利申請範圍冑43項所述之一種光柵輔助式之三維 結構波導相合裝置之製造方法,其中,該三維結構層為 一感光材料。 51. 如專利申請範圍帛44項所述之一種光柵輔助式之三維 結構波導以裝置之製造方法,其中,料聚合物為聚 二甲基矽氧烷(P〇lydimethyl sil〇xane,pDMs )。(32) # forming a bevel groove on the second substrate; (33) coating the ruthenium polymer on the second substrate; and (34) waiting for the ruthenium polymer to solidify. 36. The method of claim 6, wherein the step comprises the following steps: (51) aligning The note (52) places a third photosensitive material film-coated substrate on the waveguide layer into a groove between the film-film substrate and the waveguide layer 34 201115196; and (53) waits for the third photosensitive material to solidify. 37. The method of manufacturing a three-dimensional structure waveguide recombining device of the grating-assisted type according to claim 33, wherein the step (?) further comprises the following steps: (71) the second mask Positioned above the three-dimensional structural layer; (72) defining at least one of the planar pyramid patterns on the three-dimensional structural layer by exposure; and (73) forming the three-dimensional structural layer into the at least one in a developing manner ^ Dimensional pyramidal structure. 38. The method of manufacturing a grating-assisted three-dimensional structure waveguide consuming device according to claim 33, wherein the first substrate can be any one of the following: a semiconductor-insulation layer (silic〇n-〇n) -insulator, SOI) substrate, silicon nitride oxide-insulating layer (Si〇N 〇n insu丨t〇r) base plate, SiN-〇n-insulator substrate, and semiconductor substrate. 39. A method of fabricating a grating-assisted three-dimensional structure waveguide coupling device according to claim 33, wherein the waveguide layer can be any of the following materials: silieon (Si), tantalum nitride ( siHc〇n nitride, SiN), bismuth oxynitride (siiie〇I1 〇xinitride, si〇N), and silicon carbide (SiC). 40. A method of manufacturing a grating-assisted three-dimensional 35 201115196 'I structure waveguide coupling device according to claim 33, wherein the second substrate can be any of the following: glass, quartz, and tantalum. The method of manufacturing a grating-assisted three-dimensional structure waveguide coupling device according to claim 33, wherein the three-dimensional structural layer is a photosensitive material. 42. A method of fabricating a grating-assisted three-dimensional structure waveguide coupling device according to claim 35, wherein the ruthenium polymer is P〇lydimethyl siloxane (PDMS). 43. A method for fabricating a grating-assisted three-dimensional structure waveguide coupling device, comprising the steps of: (1) forming a waveguide layer on a first substrate; (2) fabricating a second substrate to have at least one grating a structure of the film substrate; Lu (3) the reverse side of the film substrate is placed on the waveguide layer; (4) using the film substrate to form a three-dimensional structure layer on the waveguide layer; (5) the film substrate Removing from above the waveguide layer; and (6) forming the three-dimensional structural layer into at least one three-dimensional tapered structure using a second photomask having at least one planar tapered pattern. 4. The method of manufacturing a grating-assisted 彡雉 structure waveguide coupling device according to claim 43 , wherein the step (2) further comprises the following steps: (21) preparing the second substrate; 36 201115196 (22) forming a bevel groove on the second base plate; (23) forming the grating structure on the bevel surface, and forming the grating structure (24) coating - the stone substrate is disposed on the second substrate Above; and (25) waiting for the ruthenium polymer to solidify. 4 5. The structural waveguide coupling device according to the patent application scope comprises the following steps: a grating-assisted three-dimensional manufacturing method described in item U, wherein 'the step (4) is more (4 1 ) to align the squared gland a type I substrate is placed on the waveguide layer; (42) a third sensing first name, + 琢 precursor material 枓 is injected into the groove between the film substrate and the waveguide layer; and (43) Waiting for the third photosensitive material to solidify. 46. The method of manufacturing a grating-assisted three-dimensional structure waveguide coupling device as described in claim 43 of the patent application, wherein the step (6) further comprises the following steps: (61 (62 The first mask is disposed above the three-dimensional structure layer; the planar pyramid pattern is defined on the three-dimensional structure layer by exposure; and (63) the three-dimensional structure layer is formed into the at least one three-dimensional pyramid structure by development 47. The method for manufacturing a grating-assisted three-dimensional structure waveguide core device according to claim 43, wherein the first substrate can be any one of the following: a semiconductor-insulating layer (sili(3)n-〇 rMnSulator, S0I 37 201115196 • &lt; .) substrate, silicon nitride-insulating layer (Si〇N_〇n_insult〇r) substrate, chaotic Si-on-insulator substrate, and semiconductor substrate 48. A method of manufacturing a grating-assisted three-dimensional structure waveguide coupling device according to the invention of claim 43, wherein the material of the waveguide layer is any one of the following: 〇(silic〇n, Si), nitrogen s (snic〇n itride SiN), oxynitride (smc〇n〇xinitride, and silicon carbine (SiC). 49. 专利 帛 辅助 辅助 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利The method of manufacturing the three-dimensional structure waveguide box assembly, wherein the second substrate may be any one of the following: glass, quartz, and germanium. 50. A grating-assisted three-dimensional structure waveguide according to claim 43 A manufacturing method of a matching device, wherein the three-dimensional structural layer is a photosensitive material. 51. A grating-assisted three-dimensional structure waveguide according to claim 44, wherein the polymer is a polymer. P〇lydimethyl sil〇xane (pDMs). 3838
TW098136872A 2009-10-30 2009-10-30 Grating-assist three dimension waveguide couple device and a method for manufacturing thereof TW201115196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098136872A TW201115196A (en) 2009-10-30 2009-10-30 Grating-assist three dimension waveguide couple device and a method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098136872A TW201115196A (en) 2009-10-30 2009-10-30 Grating-assist three dimension waveguide couple device and a method for manufacturing thereof

Publications (1)

Publication Number Publication Date
TW201115196A true TW201115196A (en) 2011-05-01

Family

ID=44934354

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098136872A TW201115196A (en) 2009-10-30 2009-10-30 Grating-assist three dimension waveguide couple device and a method for manufacturing thereof

Country Status (1)

Country Link
TW (1) TW201115196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601940B (en) * 2012-07-04 2017-10-11 Vega格里沙貝兩合公司 Waveguide couplr and high-frequency module, fill-level radar and field device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601940B (en) * 2012-07-04 2017-10-11 Vega格里沙貝兩合公司 Waveguide couplr and high-frequency module, fill-level radar and field device having the same

Similar Documents

Publication Publication Date Title
US8412007B2 (en) 3-D waveguide coupling device capable of two-step coupling and manufacture method thereof
CN108107506A (en) A kind of optical communicating waveband polymer waveguide grating coupler and preparation method thereof
US20090080847A1 (en) Optical waveguide and method for manufacturing the same
US20100014808A1 (en) Hybrid dielectric/surface plasmon polariton waveguide with grating coupling
CN102385109B (en) The method for making of optical wave guide coupling structure
TW200305740A (en) High density integrated optical chip
TW202032188A (en) Waveguide bends with field confinement
Ghosh et al. Aluminum nitride grating couplers
Takei et al. Low-loss and low wavelength-dependence vertical interlayer transition for 3D silicon photonics
CN115857091A (en) MMI polarization beam splitter of lithium niobate thin film
CN105759463A (en) Waveguide thermo-optic switch and manufacturing method thereof
TW200303999A (en) High density integrated optical chip with low index difference and high index difference waveguide functions
US11520175B2 (en) Active region-less modulator and method
CN110824612A (en) Multilayer silicon photon three-dimensional optical connection structure
Petra et al. HWCVD a-Si: H interlayer slope waveguide coupler for multilayer silicon photonics platform
US6937804B2 (en) Non-linear photonic switch and method of making the same
TW201115196A (en) Grating-assist three dimension waveguide couple device and a method for manufacturing thereof
CN112946824A (en) Three-dimensional mode separator/multiplexer based on silicon-based optical waveguide and preparation method thereof
JP2016045294A (en) Optical semiconductor device and fabrication method of the same
TW517418B (en) Optical integrated circuits (ICs)
CN104900749A (en) Optical coupling device and forming method thereof
JP4114791B2 (en) Laminated optical waveguide
JP4095358B2 (en) Holy waveguide type optical circuit and manufacturing method thereof
CN115616703A (en) Grating coupler based on double-layer silicon nitride structure and manufacturing method thereof
CN112925057A (en) Three-dimensional integrated interlayer optical interconnection structure and forming method