JP4114791B2 - Laminated optical waveguide - Google Patents

Laminated optical waveguide Download PDF

Info

Publication number
JP4114791B2
JP4114791B2 JP2003103597A JP2003103597A JP4114791B2 JP 4114791 B2 JP4114791 B2 JP 4114791B2 JP 2003103597 A JP2003103597 A JP 2003103597A JP 2003103597 A JP2003103597 A JP 2003103597A JP 4114791 B2 JP4114791 B2 JP 4114791B2
Authority
JP
Japan
Prior art keywords
core
optical
optical coupling
waveguide
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103597A
Other languages
Japanese (ja)
Other versions
JP2004309807A (en
Inventor
賢哉 鈴木
幹隆 井藤
善典 日比野
伸介 松井
隆志 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003103597A priority Critical patent/JP4114791B2/en
Publication of JP2004309807A publication Critical patent/JP2004309807A/en
Application granted granted Critical
Publication of JP4114791B2 publication Critical patent/JP4114791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高密度集積を可能にする積層光導波路に係り、上下導波路層(上下コア)の偏波依存性の違いを解消すると共に、層間光方向性結合器に適用した場合に結合率の偏波依存性を低減できるように工夫したものである。
【0002】
【従来の技術】
光通信技術の急速な発達により、各種光部品が研究開発されているが、中でも平面基板上の光導波路を基本とした導波路型光部品が最も重要な位置を占めている。これは、導波路型光部品がフォトリソグラフィ技術および微細加工技術により光波長以下の精度で再現性良く量産可能という特徴を有するからである。
【0003】
しかしながら、これらの導波路型光部品の規模は通信システムの規模に比べて小さく、多数の部品を組み合わせてシステムを実現する必要がある。例えば、実用化が進みつつある256の入力線と256の出力線を任意の組み合わせで実現するクロスコネクトシステムでは、8×8マトリックススイッチを用いた場合でも、1000個以上ものモジュールが必要となる。したがって、個々の光部品の大規模化が切望されている。
【0004】
光回路の規模を大きくするには、回路基板のサイズを大きくして集積する方法や、回路を構成する要素素子を小型化して集積度を高める方法が挙げられる。チップサイズを大きくするには導波路作製装置の大型化が必要であり、その開発には多くの時間が必要であり短時間での対応は困難である。また、チップサイズの大型化はそのチップを搭載したモジュールサイズの大型化を招くが、モジュールに搭載可能な基板には規定の大きさがあり、チップサイズを無限に大型化することはできない。
【0005】
一方、要素素子を小型化するためには、光導波路におけるコアとその周囲のクラッドの比屈折率差を大きくすることで、コア中の光の閉じ込め効果を強くして導波路の曲げ半径を小さくすることが有効である。しかしながら、比屈折率差を大きくするに従って、同じ量の作製誤差に対する光路長の誤差も大きくなる。比屈折率差が変わっても幾何的な作製精度は同じであるから、光の干渉によりその制御を行う導波路型光部品においては比屈折率差が大きくなるほど、光の干渉状態を大きく狂わせてしまい、部品の性能低下を招いてしまう。そのため、比屈折率差を大きくし、集積度を高める方式にも限界がある。
【0006】
集積度を上げるもうひとつの方法として、基板と垂直な方向に複数の光導波路構造を多層に形成し、回路を基板に対して垂直に積み上げていく積層回路構造がある。積層回路構造を用いる場合、上下層の異なる導波路で光の受け渡しを行う層間光方向性結合器の実現が不可欠である。層間光方向性結合器の例として、発明者らによる報告(第62回応用物理学会学術講演会 講演予稿集(2001.9.愛知工業大学)、P900、講演番号:12p−Y−6、“研磨を用いた石英系PLCの積層化”鈴木他)がある(図8参照)。
【0007】
この報告によれば、下部クラッド、中間クラッド、上部クラッド、下部コアおよび上部コアを火炎堆積法(FHD法)により成膜し、中間クラッド層堆積直後に、中間クラッド層表面を研磨することで層間光方向性結合器を作製できることが示されている。
【0008】
図8においては、シリコン基板1上に下部クラッド層2、下部コア3、中間クラッド層4、上部コア5、上部クラッド層6を有し、光結合直線部7において一定のギャップ8を有する層間光方向性結合器が示されている。
【0009】
なお理解を容易にするため、図8の層間光方向性結合器の上面図を図9に、図9の位置AA−AA’、BB−BB’、CC−CC’における断面図を図10(a)(b)(c)にそれぞれ示す。
【0010】
図11は、前記報告において示された層間光方向性結合器の結合特性である。図11において横軸は光結合直線部7の長さ、縦軸はTE,TM両偏波に対する結合率である。上部コア5、下部コア3ともに比屈折率差0.75%の導波路で構成され、そのサイズ(断面の縦寸法及び横寸法)は6μm×6μm、上下コア間のギャップ8は3μmであった。この報告の層間光方向性結合器では、TE偏波に対しては、光結合直線部7の長さが1400μmでほぼ100%の結合が得られているのに対し、TM偏波に対しては、最大でも70%程度の結合しか得られていない。
【0011】
【非特許文献1】
第62回応用物理学会学術講演会 講演予稿集(2001.9.愛知工業大学)、P900、講演番号:12p−Y−6、“研磨を用いた石英系PLCの積層化”
【0012】
【発明が解決しようとする課題】
前述のように従来の積層光導波路(層間光方向性結合器)は、TE偏波に対してはほぼ100%の結合率が得られているものの、TM偏波に対しては高々70%程度の結合率しか得られていなかった。
【0013】
一般に、石英系光導波路では、その成膜工程において高温の熱処理を必要とする。この工程は、導波路コアに対して基板水平方向の圧縮応力を誘起するが、積層光導波路においては、上部コアおよび下部コアのシリコン基板からの距離が異なるため、その圧縮応力も上部コア、下部コアで異なる。一般に、光導波路の伝搬定数は偏波方向と垂直な応力成分が大きく影響する。したがって、この基板水平方向の応力の違いはTM偏波に対して、上下コア間での伝搬定数の不整合を生み、層間光方向性結合器においてはTM偏波に対して非対称方向性結合器を生み出し、その偏波依存性を誘起する。
【0014】
本発明は、光通信用デバイスである積層光導波路の上下導波路層間での偏波依存性の差を低減し、且つ、上下導波路各層での偏波依存性を低減する、積層光導波路を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明において開示される発明の概要を簡単に説明すれば次の通りである。
板上に、下部クラッド層、下部コア、中間クラッド層、上部コア、上部クラッド層を順次積層してなる積層光導波路であって、入力湾曲部において上部コアと下部コアがそれぞれの存在する平面上で光結合を生じる距離まで徐々に湾曲しながら接近し、一定長の光結合直線部において前記上部コアが前記下部コアの真上に位置しながら平行に延在し、再び出力湾曲部において前記上部コアと前記下部コアがそれぞれの存在する平面上で両コア間の光結合を生じない距離まで徐々に湾曲しながら離れていく構造の層間光方向性結合器を有し、前記一定長の光結合直線部を構成する前記下部コアの高さHlと前記一定長の光結合直線部を構成する前記上部コアの高さHuとが等しく、前記一定長の光結合直線部を構成する前記下部コアのコア幅Wlが前記一定長の光結合直線部を構成する前記上部コアのコア幅Wuよりも狭い構造とすることによって、前記層間光方向性結合器におけるTE偏波に対する伝搬定数を前記上部コアと前記下部コアの間で等しくし、かつTM偏波に対する伝搬定数を前記上部コアと前記下部コアの間で等しくしたことを特徴とする。
【0018】
こうすることで、積層光導波路に作製された層間光方向性結合器において上部コア、下部コアの複屈折をともにゼロとすることができるため、層間光方向性結合器の偏波依存性を解消することができる。積層光導波路においては、上部コア、下部コアにはたらく応力の基板垂直方向成分はほぼ等しいので、Hl=Huとすることで、TE偏波に対する伝搬定数を上部コア、下部コア間で等しくすることができる。さらに、Wl<Wuとすることで、応力の基板水平方向成分が下部コア、上部コア間で等しく設定され、TM偏波に対する伝搬定数を上部コア、下部コア間で等しくすることができる。結果として、上部コア、下部コアでの伝搬定数を全て等しく設定することが可能であり、層間光方向性結合器において偏波依存性を低減することができる。
【0019】
加えて、前記入力湾曲部において、前記下部コアが徐々にコア幅を狭めながら前記光結合直線部に向かって接近するとともに、前記出力湾曲部において、前記下部コアが前記光結合直線部から徐々にコア幅を広げながら離れていく構造の層間光方向性結合器を有してもよい。
また、前記積層光導波路はシリコン基板上に構成されたガラス導波路であってもよい。
【0020】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号をつけ、その繰り返しの説明は省略する。
【0021】
[実施例1]
図1は本発明の実施例1にかかる、層間光方向性結合器を有する積層光導波路を示す斜視図、図2は積層光導波路における層間光方向性結合器を示す上面図、図3(a)(b)(c)(d)(e)は図2のA−A’,B−B’,C−C’,D−D’,E−E’断面図である。
【0022】
図1に示すように、この積層光導波路は、シリコン基板1上に、火炎積層法(FHD法)による成膜により、下部クラッド層2、下部コア21、中間クラッド層4、上部コア22、上部クラッド層6を順次積層して構成された石英系光導波路である。なお、7は予め設定された長さ(一定長さ)となっている光結合直線部、8はギャップである。
【0023】
図1及び図2に示されるように、層間光方向性結合器は、下部コア21と上部コア22により構成されている。
【0024】
このうち、下部コア21は、下部入力導波路11、下部入力導波路11に接続された下部入力湾曲部13、下部入力湾曲部13に接続された下部光結合直線部15、下部光結合直線部15に接続された下部出力湾曲部17、および下部出力湾曲部17に接続された下部出力導波路19により構成される。
【0025】
また、上部コア22は、上部入力導波路12、上部入力導波路12に接続された上部入力湾曲部14、上部入力湾曲部14に接続された上部光結合直線部16、上部光結合直線部16に接続された上部出力湾曲部18、上部出力湾曲部18に接続された上部出力導波路20から構成される。
【0026】
図3に示すように、層間光方向性結合器は、断面A−A’において、互いに光結合を生じない距離に位置する下部入力導波路11および上部入力導波路12が、下部入力湾曲部13および上部入力湾曲部14にて徐々に接近した後(断面B−B’)、互いに光結合を生じる位置に存在する下部光結合直線部15が上部光結合直線部16へと光接続される。
【0027】
断面C−C’を含む光結合直線部7において、上部光結合直線部16は下部光結合直線部15の真上に位置し、両者の間で光結合を生じる。ここで、下部光結合直線部15の上面と上部光結合直線部16の下面は一定のギャップGをもって平行に延在する。一定の長さLにわたって平行に延在した下部光結合直線部15と上部光結合直線部16はそれぞれ、下部出力湾曲部17および上部出力湾曲部18において(断面D−D’)、再び光結合を生じない位置に存在する下部出力導波路19および上部出力導波路20まで徐々に離遠する(断面E−E’)。
【0028】
下部コア21および上部コア22の高さはその全体にわたってともにHであり、上部コアの幅はその全体にわたってW1で一定である。
さらに、下部コア21は、下部入力湾曲部13において徐々にその幅をW1からW2まで狭めつつ湾曲し、下部出力湾曲部17において徐々にその幅をW2からW1まで広げつつ湾曲する。
【0029】
したがって、光結合直線部7を構成する下部コア21(下部光結合直線部15)の幅は、光直線部7を構成する上部コア22(上部光結合直線部16)の幅よりも狭くなっている。
【0030】
本実施例1では、G=3μm、H=6μm、W1=7.5μm、W2=6.5μmとして層間光方向性結合器を含む積層光導波路を火炎堆積法による石英系光導波路にて作製した。
【0031】
また、下部入力導波路11と上部入力導波路12との間の水平方向距離(幅方向に沿う距離)は、互いに光結合を生じないようにするため、本実施例1では200μmとした。
同様に、下部出力導波路19と上部出力導波路20との間の水平距離(幅方向に沿う距離)は、互いに光結合を生じないようにするため、本実施例1では200μmとした。
【0032】
図4は、本実施例1の層間光方向性結合器の光結合直線部7の長さLに対する結合率の変化を示すグラフである。TM偏波モードに対し、層間光方向性結合器の非対称性は低減され、最大結合率は従来値70%が90%まで改善された。TM,TE両偏波に対して、偏波依存性なく、50%結合長240μmが得られている。
【0033】
[実施例2]
図5は本発明の実施例2における積層光導波路における層間マッハツェンダ干渉計の概略図であり、図6(f)(g)(h)(i)(j)は図5のF−F’,G−G’,H−H’,I−I’,J−J’断面図である。
【0034】
本実施例2においても実施例1と同様に、積層光導波路は火炎堆積法による石英系光導波路によって作製した。
【0035】
図5,図6に示す層間マッハツェンダ干渉計は、層間光方向性結合器31,32と下部導波路層に形成された下部アーム導波路33、および上部導波路層に形成された上部アーム導波路34からなる。また、上部アーム導波路34の真上には薄膜ヒータ35を配置した。また、上部アーム導波路34の幅Wuはその全体にわたって7.5μmとし、下部アーム導波路33の幅Wlはその全体にわたって6.5μmとした。さらに、下部アーム導波路33の高さHl、上部アーム導波路34の高さHuはともに6μmとした。また、層間光方向性結合器31,32の光結合直線部の長さは240μm、層間ギャップは3μmとした。
【0036】
結局、下部アーム導波路33のコア断面のアスペクト比をRl=Hl/Wl、上部アーム導波路のコア断面のアスペクト比をRu=Hu/Wuと定義するときに、上部コアのアスペクト比Ruと下部コアのアスペクト比RlがRl>Ruとなるようにしている。
【0037】
層間マッハツェンダ干渉計の上部入力導波路36へ入射した光波は、上部出力導波路37へと出力されるが、薄膜ヒータ35への印加電力により、出力強度は変化する。
【0038】
図7は層間マッハツェンダ干渉計の薄膜ヒータ35への印加電力と上部出力導波路37への出力強度の関係である。図7に示されるように、OFF電力はTM偏波に対して0.46W、TE偏波に対して0.48Wと偏波依存性の小さい良好な特性が得られた。
【0039】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば次のとおりである。すなわち、本発明によれば、積層光導波路の上部コアのアスペクト比Ruと下部コアのアスペクト比RlがRl>Ruとなるようにしたので、積層光導波路において上下導波路層の偏波依存性の違いを解消することができる。
【0040】
また、層間光方向性結合器に本発明を適用した場合、光結合直線部において、下部コアの高さHlと上部コアの高さHuとが等しく、下部コアのコア幅Wlが上部コアのコア幅Wuよりも狭くしたので、その結合率の偏波依存性は低減でき、TM,TE両偏波に対して良好に完全結合が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1にかかる、層間光方向性結合器を含む積層光導波路を示す斜視図である。
【図2】本発明の実施例1にかかる、層間光方向性結合器を含む積層光導波路を示す上面図である。
【図3】本発明の実施例1にかかる、層間光方向性結合器を含む積層光導波路を示す断面図であり、図3(a)(b)(c)(d)(e)は図2のA−A’,B−B’,C−C’,D−D’,E−E’断面図である。
【図4】本発明の実施例1の層間光方向性結合器の光結合直線部の長さLに対する結合率の変化を示すグラフである。
【図5】本発明の実施例2にかかる層間マッハツェンダ干渉計を示す上面図である。
【図6】本発明の実施例2にかかる層間マッハツェンダ干渉計を示す断面図であり、図6(f)(g)(h)(i)(j)は図5のF−F’,G−G’,H−H’,I−I’,J−J’断面図である。
【図7】本発明の実施例2の層間マッハツェンダ干渉計の印加電力に対する出力強度の関係を示すグラフである。
【図8】従来の層間光方向性結合器を含む積層光導波路を示す斜視図である。
【図9】従来の層間光方向性結合器を含む積層光導波路を示す上面図である。
【図10】従来の層間光方向性結合器を含む積層光導波路を示す断面図であり、図10(a)(b)(c)は図9のAA−AA’、BB−BB’、CC−CC’断面図である。
【図11】従来の層間光方向性結合器の結合特性を示す特性図である。
【符号の説明】
1 シリコン基板
2 下部クラッド層
3,21 下部コア
4 中間クラッド層
5,22 上部コア
6 上部クラッド層
7 光結合直線部
8 ギャップ
31,32 層間光方向性結合器
33 下部アーム導波路
34 上部アーム導波路
35 薄膜ヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated optical waveguide that enables high-density integration, eliminates the difference in polarization dependence between the upper and lower waveguide layers (upper and lower cores), and provides a coupling rate when applied to an interlayer optical directional coupler. It has been devised to reduce the polarization dependence of.
[0002]
[Prior art]
Due to the rapid development of optical communication technology, various optical components have been researched and developed. Among them, the waveguide type optical component based on the optical waveguide on the flat substrate occupies the most important position. This is because the waveguide-type optical component has a feature that it can be mass-produced with high reproducibility with accuracy below the optical wavelength by photolithography technology and microfabrication technology.
[0003]
However, the scale of these waveguide type optical components is smaller than that of the communication system, and it is necessary to realize a system by combining a large number of components. For example, in a cross-connect system that realizes 256 input lines and 256 output lines that are being put to practical use in any combination, even when an 8 × 8 matrix switch is used, 1000 or more modules are required. Accordingly, there is an urgent need to increase the scale of individual optical components.
[0004]
In order to increase the scale of the optical circuit, there are a method of increasing the size of the circuit board and integrating, and a method of increasing the degree of integration by reducing the element elements constituting the circuit. In order to increase the chip size, it is necessary to increase the size of the waveguide fabrication apparatus, and the development thereof requires a lot of time, and it is difficult to cope with it in a short time. Further, an increase in chip size leads to an increase in the size of the module on which the chip is mounted, but the substrate that can be mounted on the module has a prescribed size, and the chip size cannot be increased indefinitely.
[0005]
On the other hand, in order to reduce the size of the element element, by increasing the relative refractive index difference between the core and the surrounding cladding in the optical waveguide, the light confinement effect in the core is increased and the bending radius of the waveguide is reduced. It is effective to do. However, as the relative refractive index difference increases, the optical path length error for the same amount of manufacturing error also increases. Even if the relative refractive index difference changes, the geometrical fabrication accuracy is the same. Therefore, in the waveguide type optical component that controls it by the interference of light, the greater the relative refractive index difference, the more the optical interference state is greatly altered. As a result, the performance of the parts is reduced. Therefore, there is a limit to the method of increasing the relative refractive index difference and increasing the degree of integration.
[0006]
As another method for increasing the degree of integration, there is a laminated circuit structure in which a plurality of optical waveguide structures are formed in multiple layers in a direction perpendicular to the substrate, and the circuits are stacked perpendicular to the substrate. When a laminated circuit structure is used, it is essential to realize an interlayer optical directional coupler that transmits and receives light through different waveguides in the upper and lower layers. As an example of an interlayer optical directional coupler, a report by the inventors (Proceedings of the 62nd Japan Society of Applied Physics Academic Lectures (2001. 9. Aichi Institute of Technology), P900, Lecture Number: 12p-Y-6, “ There is a lamination of quartz-based PLC using a polishing method (“Suzuki et al.”) (See FIG. 8).
[0007]
According to this report, the lower clad, intermediate clad, upper clad, lower core and upper core are formed by the flame deposition method (FHD method), and the intermediate clad layer surface is polished immediately after the intermediate clad layer is deposited. It has been shown that an optical directional coupler can be made.
[0008]
In FIG. 8, interlayer light having a lower cladding layer 2, a lower core 3, an intermediate cladding layer 4, an upper core 5, and an upper cladding layer 6 on a silicon substrate 1, and having a certain gap 8 in the optical coupling linear portion 7. A directional coupler is shown.
[0009]
For easy understanding, the top view of the interlayer optical directional coupler of FIG. 8 is shown in FIG. 9, and the cross-sectional views at positions AA-AA ′, BB-BB ′, CC-CC ′ of FIG. a), (b) and (c), respectively.
[0010]
FIG. 11 shows the coupling characteristics of the interlayer optical directional coupler shown in the report. In FIG. 11, the horizontal axis represents the length of the optical coupling straight line portion 7, and the vertical axis represents the coupling rate with respect to both TE and TM polarized waves. Both the upper core 5 and the lower core 3 are configured by waveguides having a relative refractive index difference of 0.75%, the size (vertical dimension and horizontal dimension of the cross section) is 6 μm × 6 μm, and the gap 8 between the upper and lower cores is 3 μm. . In this reported interlayer optical directional coupler, for the TE polarized wave, the optical coupling linear part 7 has a length of 1400 μm and almost 100% coupling is obtained. Has a bond of about 70% at the maximum.
[0011]
[Non-Patent Document 1]
62nd Japan Society of Applied Physics Academic Lecture Proceedings (2001.9, Aichi Institute of Technology), P900, Lecture Number: 12p-Y-6, “Lamination of Silica-Based PLC Using Polishing”
[0012]
[Problems to be solved by the invention]
As described above, the conventional laminated optical waveguide (interlayer optical directional coupler) has a coupling rate of almost 100% with respect to the TE polarized wave, but about 70% at most with respect to the TM polarized wave. Only a binding rate of was obtained.
[0013]
In general, a quartz-based optical waveguide requires high-temperature heat treatment in its film forming process. This process induces compressive stress in the substrate horizontal direction with respect to the waveguide core. However, in the laminated optical waveguide, the distance between the upper core and the lower core from the silicon substrate is different. Different in the core. In general, the propagation constant of an optical waveguide is greatly influenced by a stress component perpendicular to the polarization direction. Therefore, the difference in the stress in the horizontal direction of the substrate causes a mismatch in propagation constant between the upper and lower cores with respect to the TM polarization, and in the interlayer optical directional coupler, the asymmetric directional coupler with respect to the TM polarization. And induces its polarization dependence.
[0014]
The present invention provides a laminated optical waveguide that reduces the difference in polarization dependence between the upper and lower waveguide layers of the laminated optical waveguide that is a device for optical communication, and reduces the polarization dependence in each layer of the upper and lower waveguides. The purpose is to provide.
[0017]
[Means for Solving the Problems]
The outline of the invention disclosed in the present invention will be briefly described as follows.
On a base plate, a lower cladding layer, the lower core, intermediate cladding layer, an upper core, a laminated optical waveguide comprising an upper clad layer are sequentially laminated, a plane upper core and the lower core at the input curved portion is present in each The upper core extends in parallel while being positioned just above the lower core in the optical coupling straight line portion of a certain length, and gradually approaches the distance causing the optical coupling, and again in the output bending portion. An interlayer optical directional coupler having a structure in which the upper core and the lower core are separated from each other while gradually curving to a distance that does not cause optical coupling between the two cores on a plane in which the upper core and the lower core exist; The lower core that constitutes the constant-length optical coupling linear part, wherein the height Hl of the lower core that constitutes the coupling linear part is equal to the height Hu of the upper core that constitutes the constant-length optical coupling linear part Core width l by the a narrower construction than the core width Wu of the upper core constituting the optical coupling linear portion of the fixed length, the propagation constants for the TE polarization in the interlayer optical directional coupler with the upper core lower It is characterized in that it is made equal between the cores, and the propagation constant for TM polarization is made equal between the upper core and the lower core.
[0018]
This eliminates the polarization dependence of the interlayer optical directional coupler because the birefringence of the upper and lower cores can be made zero in the interlayer optical directional coupler fabricated in the laminated optical waveguide. can do. In the laminated optical waveguide, the substrate vertical component of the stress acting on the upper core and the lower core is almost equal. Therefore, by setting Hl = Hu, the propagation constant for TE polarization can be made equal between the upper core and the lower core. it can. Furthermore, by setting Wl <Wu, the substrate horizontal component of stress is set equal between the lower core and the upper core, and the propagation constant for TM polarization can be made equal between the upper core and the lower core. As a result, the propagation constants in the upper core and the lower core can all be set equal, and the polarization dependence can be reduced in the interlayer optical directional coupler.
[0019]
In addition, in the input curved portion, the lower core approaches the optical coupling linear portion while gradually reducing the core width, and in the output curved portion, the lower core gradually moves from the optical coupling linear portion. You may have an interlayer optical directional coupler of the structure which leaves | separates, expanding a core width.
Further, the laminated optical waveguide may be a glass waveguide configured on a silicon substrate.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.
[0021]
[Example 1]
1 is a perspective view showing a laminated optical waveguide having an interlayer optical directional coupler according to Example 1 of the present invention, FIG. 2 is a top view showing the interlayer optical directional coupler in the laminated optical waveguide, and FIG. (B), (c), (d), and (e) are cross-sectional views taken along the lines AA ′, BB ′, CC ′, DD ′, and EE ′ of FIG.
[0022]
As shown in FIG. 1, this laminated optical waveguide is formed on a silicon substrate 1 by a flame lamination method (FHD method) to form a lower clad layer 2, a lower core 21, an intermediate clad layer 4, an upper core 22, and an upper portion. This is a silica-based optical waveguide configured by sequentially laminating the cladding layer 6. In addition, 7 is an optical coupling straight line portion having a preset length (fixed length), and 8 is a gap.
[0023]
As shown in FIGS. 1 and 2, the interlayer optical directional coupler includes a lower core 21 and an upper core 22.
[0024]
Among these, the lower core 21 includes a lower input waveguide 11, a lower input bending portion 13 connected to the lower input waveguide 11, a lower optical coupling linear portion 15 connected to the lower input bending portion 13, and a lower optical coupling linear portion. 15, a lower output bending portion 17 connected to 15, and a lower output waveguide 19 connected to the lower output bending portion 17.
[0025]
The upper core 22 includes an upper input waveguide 12, an upper input curved portion 14 connected to the upper input waveguide 12, an upper optical coupling linear portion 16 connected to the upper input curved portion 14, and an upper optical coupling linear portion 16. The upper output bending portion 18 is connected to the upper output bending portion 18, and the upper output waveguide 20 is connected to the upper output bending portion 18.
[0026]
As shown in FIG. 3, the interlayer optical directional coupler includes a lower input curved portion 13 and a lower input waveguide 11 and an upper input waveguide 12 that are positioned at a distance that does not cause optical coupling with each other in a cross section AA ′. Then, after gradually approaching at the upper input bending portion 14 (cross section BB ′), the lower optical coupling linear portion 15 existing at a position where optical coupling occurs is optically connected to the upper optical coupling linear portion 16.
[0027]
In the optical coupling linear part 7 including the cross section CC ′, the upper optical coupling linear part 16 is positioned immediately above the lower optical coupling linear part 15 and optical coupling occurs between them. Here, the upper surface of the lower optical coupling linear part 15 and the lower surface of the upper optical coupling linear part 16 extend in parallel with a certain gap G. The lower optical coupling linear portion 15 and the upper optical coupling linear portion 16 extending in parallel over a certain length L are optically coupled again at the lower output curved portion 17 and the upper output curved portion 18 (cross section DD ′), respectively. Are gradually separated to the lower output waveguide 19 and the upper output waveguide 20 that exist at positions where no cross-section occurs (cross-section EE ′).
[0028]
The heights of the lower core 21 and the upper core 22 are both H throughout, and the width of the upper core is constant at W 1 throughout.
Further, the lower core 21 is bent while gradually reducing its width from W 1 to W 2 at the lower input bending portion 13, and is bent while gradually increasing its width from W 2 to W 1 at the lower output bending portion 17. .
[0029]
Therefore, the width of the lower core 21 (lower optical coupling linear portion 15) constituting the optical coupling linear portion 7 is narrower than the width of the upper core 22 (upper optical coupling linear portion 16) constituting the optical linear portion 7. Yes.
[0030]
In the first embodiment, G = 3 μm, H = 6 μm, W 1 = 7.5 μm, W 2 = 6.5 μm, and a laminated optical waveguide including an interlayer optical directional coupler is a quartz optical waveguide by a flame deposition method. Produced.
[0031]
Further, the horizontal distance (the distance along the width direction) between the lower input waveguide 11 and the upper input waveguide 12 is set to 200 μm in the first embodiment so as not to cause optical coupling with each other.
Similarly, the horizontal distance (distance along the width direction) between the lower output waveguide 19 and the upper output waveguide 20 is set to 200 μm in Example 1 so as not to cause optical coupling with each other.
[0032]
FIG. 4 is a graph showing a change in the coupling rate with respect to the length L of the optical coupling straight line portion 7 of the interlayer optical directional coupler according to the first embodiment. For the TM polarization mode, the asymmetry of the interlayer optical directional coupler is reduced, and the maximum coupling ratio is improved from the conventional value of 70% to 90%. A 50% coupling length of 240 μm is obtained for both TM and TE polarized waves without polarization dependency.
[0033]
[Example 2]
FIG. 5 is a schematic view of an interlayer Mach-Zehnder interferometer in a laminated optical waveguide in Example 2 of the present invention. FIGS. 6 (f), (g), (h), (i), and (j) are FF ′, FIG. It is GG ', HH', II ', and JJ' sectional drawing.
[0034]
Also in Example 2, as in Example 1, the laminated optical waveguide was manufactured by a silica-based optical waveguide by a flame deposition method.
[0035]
The interlayer Mach-Zehnder interferometer shown in FIGS. 5 and 6 includes interlayer optical directional couplers 31 and 32, a lower arm waveguide 33 formed in the lower waveguide layer, and an upper arm waveguide formed in the upper waveguide layer. 34. A thin film heater 35 is disposed directly above the upper arm waveguide 34. The width Wu of the upper arm waveguide 34 is 7.5 μm over the whole, and the width Wl of the lower arm waveguide 33 is 6.5 μm over the whole. Further, the height Hl of the lower arm waveguide 33 and the height Hu of the upper arm waveguide 34 are both 6 μm. The length of the optical coupling straight part of the interlayer optical directional couplers 31 and 32 was 240 μm, and the interlayer gap was 3 μm.
[0036]
After all, when the aspect ratio of the core cross section of the lower arm waveguide 33 is defined as Rl = Hl / Wl and the aspect ratio of the core cross section of the upper arm waveguide is defined as Ru = Hu / Wu, the aspect ratio Ru of the upper core The aspect ratio Rl of the core is set to satisfy Rl> Ru.
[0037]
The light wave incident on the upper input waveguide 36 of the interlayer Mach-Zehnder interferometer is output to the upper output waveguide 37, but the output intensity changes depending on the power applied to the thin film heater 35.
[0038]
FIG. 7 shows the relationship between the power applied to the thin film heater 35 of the interlayer Mach-Zehnder interferometer and the output intensity to the upper output waveguide 37. As shown in FIG. 7, the OFF power was 0.46 W for the TM polarized wave and 0.48 W for the TE polarized wave, and good characteristics with small polarization dependence were obtained.
[0039]
【The invention's effect】
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows. That is, according to the present invention, the aspect ratio Ru of the upper core of the laminated optical waveguide and the aspect ratio Rl of the lower core are such that Rl> Ru, so that the polarization dependence of the upper and lower waveguide layers in the laminated optical waveguide is reduced. The difference can be resolved.
[0040]
Further, when the present invention is applied to the interlayer optical directional coupler, the height H1 of the lower core is equal to the height Hu of the upper core in the optical coupling linear portion, and the core width W1 of the lower core is equal to the core of the upper core. Since it is narrower than the width Wu, the polarization dependency of the coupling rate can be reduced, and perfect coupling can be obtained satisfactorily for both TM and TE polarized waves.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a laminated optical waveguide including an interlayer optical directional coupler according to Embodiment 1 of the present invention.
FIG. 2 is a top view showing a laminated optical waveguide including an interlayer optical directional coupler according to Embodiment 1 of the present invention.
3 is a cross-sectional view showing a laminated optical waveguide including an interlayer optical directional coupler according to Example 1 of the present invention, and FIGS. 3 (a) (b) (c) (d) (e) are diagrams. 2 is a cross-sectional view taken along line AA ′, BB ′, CC ′, DD ′, and EE ′.
FIG. 4 is a graph showing a change in coupling ratio with respect to a length L of an optical coupling linear portion of the interlayer optical directional coupler according to the first embodiment of the present invention.
FIG. 5 is a top view showing an interlayer Mach-Zehnder interferometer according to Embodiment 2 of the present invention.
6 is a cross-sectional view showing an interlayer Mach-Zehnder interferometer according to Embodiment 2 of the present invention, and FIGS. 6 (f), (g), (h), (i), and (j) are FF ′ and G in FIG. It is -G ', HH', II ', and JJ' sectional drawing.
FIG. 7 is a graph showing a relationship between output power and applied power of the interlayer Mach-Zehnder interferometer of Example 2 of the present invention.
FIG. 8 is a perspective view showing a laminated optical waveguide including a conventional interlayer optical directional coupler.
FIG. 9 is a top view showing a laminated optical waveguide including a conventional interlayer optical directional coupler.
10 is a cross-sectional view showing a laminated optical waveguide including a conventional interlayer optical directional coupler, and FIGS. 10 (a), 10 (b), and 10 (c) are AA-AA ′, BB-BB ′, CC of FIG. -CC 'sectional drawing.
FIG. 11 is a characteristic diagram showing coupling characteristics of a conventional interlayer optical directional coupler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Lower clad layer 3,21 Lower core 4 Intermediate clad layer 5,22 Upper core 6 Upper clad layer 7 Optical coupling linear part 8 Gap 31,32 Interlayer optical directional coupler 33 Lower arm waveguide 34 Upper arm guide Waveguide 35 Thin film heater

Claims (3)

基板上に、下部クラッド層、下部コア、中間クラッド層、上部コア、上部クラッド層を順次積層してなる積層光導波路であって、
入力湾曲部において上部コアと下部コアがそれぞれの存在する平面上で光結合を生じる距離まで徐々に湾曲しながら接近し、一定長の光結合直線部において前記上部コアが前記下部コアの真上に位置しながら平行に延在し、再び出力湾曲部において前記上部コアと前記下部コアがそれぞれの存在する平面上で両コア間の光結合を生じない距離まで徐々に湾曲しながら離れていく構造の層間光方向性結合器を有し、
前記一定長の光結合直線部を構成する前記下部コアの高さHlと前記一定長の光結合直線部を構成する前記上部コアの高さHuとが等しく、
前記一定長の光結合直線部を構成する前記下部コアのコア幅Wlが前記一定長の光結合直線部を構成する前記上部コアのコア幅Wuよりも狭い構造とすることによって、前記
層間光方向性結合器におけるTE偏波に対する伝搬定数を前記上部コアと前記下部コアの間で等しくし、かつTM偏波に対する伝搬定数を前記上部コアと前記下部コアの間で等しくしたことを特徴とする積層光導波路。
A laminated optical waveguide obtained by sequentially laminating a lower clad layer, a lower core, an intermediate clad layer, an upper core, and an upper clad layer on a substrate,
In the input curved portion, the upper core and the lower core approach each other while gradually curving up to the distance that causes optical coupling on the plane where each exists, and the upper core is directly above the lower core in the optical coupling straight portion of a certain length. It extends in parallel while being positioned, and again in the output curved part, the upper core and the lower core are separated while gradually curving to a distance that does not cause optical coupling between both cores on the plane where each exists. Having an interlayer optical directional coupler;
The height Hl of the lower core that constitutes the constant-length optical coupling straight line portion is equal to the height Hu of the upper core that constitutes the constant-length optical coupling straight line portion,
By performing the fixed length of narrower construction than the core width Wu of the upper core core width Wl of the lower core constituting the optical coupling linear portion of the fixed length constituting the optical coupling straight portion, said <br / > The propagation constant for TE polarization in the interlayer optical directional coupler is made equal between the upper core and the lower core, and the propagation constant for TM polarization is made equal between the upper core and the lower core. A laminated optical waveguide characterized.
前記入力湾曲部において、前記下部コアが徐々にコア幅を狭めながら前記光結合直線部に向かって接近するとともに、
前記出力湾曲部において、前記下部コアが前記光結合直線部から徐々にコア幅を広げながら離れていく構造の層間光方向性結合器を有することを特徴とする請求項に記載の積層光導波路。
In the input curved portion, the lower core approaches the optical coupling straight portion while gradually reducing the core width,
2. The laminated optical waveguide according to claim 1 , wherein the output curved portion includes an interlayer optical directional coupler having a structure in which the lower core is separated from the optical coupling straight portion while gradually increasing the core width. .
前記積層光導波路はシリコン基板上に構成されたガラス導波路によることを特徴とする請求項1または請求項2に記載の積層光導波路。 3. The laminated optical waveguide according to claim 1, wherein the laminated optical waveguide is a glass waveguide configured on a silicon substrate.
JP2003103597A 2003-04-08 2003-04-08 Laminated optical waveguide Expired - Fee Related JP4114791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103597A JP4114791B2 (en) 2003-04-08 2003-04-08 Laminated optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103597A JP4114791B2 (en) 2003-04-08 2003-04-08 Laminated optical waveguide

Publications (2)

Publication Number Publication Date
JP2004309807A JP2004309807A (en) 2004-11-04
JP4114791B2 true JP4114791B2 (en) 2008-07-09

Family

ID=33466643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103597A Expired - Fee Related JP4114791B2 (en) 2003-04-08 2003-04-08 Laminated optical waveguide

Country Status (1)

Country Link
JP (1) JP4114791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275210B1 (en) * 2018-12-07 2022-03-15 PsiQuantum Corp. Waveguide couplers for multi-mode waveguides
US11635570B1 (en) 2019-02-08 2023-04-25 PsiQuantum Corp. Multi-mode multi-pass delay
US11789205B1 (en) 2019-05-15 2023-10-17 PsiQuantum Corp. Multi-mode spiral delay device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114624A1 (en) 2007-03-20 2008-09-25 Nec Corporation Optical waveguide and spot size converter using this
JP6131285B2 (en) * 2015-03-24 2017-05-17 沖電気工業株式会社 Optical waveguide device
JP6503825B2 (en) * 2015-03-25 2019-04-24 富士通株式会社 Photovoltaic power generation device, sensing device and information processing system
JP6663145B2 (en) * 2015-06-10 2020-03-11 国立研究開発法人産業技術総合研究所 Optical directional coupler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275210B1 (en) * 2018-12-07 2022-03-15 PsiQuantum Corp. Waveguide couplers for multi-mode waveguides
US11714329B1 (en) 2018-12-07 2023-08-01 PsiQuantum Corp. Waveguide couplers for multi-mode waveguides
US11635570B1 (en) 2019-02-08 2023-04-25 PsiQuantum Corp. Multi-mode multi-pass delay
US11789205B1 (en) 2019-05-15 2023-10-17 PsiQuantum Corp. Multi-mode spiral delay device

Also Published As

Publication number Publication date
JP2004309807A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
KR101893048B1 (en) Apparatus and method for waveguide polarizer comprizing series of bends
US7239779B2 (en) Broadband optical via
WO2022088228A1 (en) End face coupler and semiconductor device
JP2005128419A (en) Optical waveguide structure and its manufacturing method
JP2002221630A (en) Interference device optical circuit and its manufacturing method
Takagi et al. Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure
CN115857091A (en) MMI polarization beam splitter of lithium niobate thin film
Dhingra et al. Ultralow loss and high extinction ratio TM-pass polarizer in silicon photonics
JP4114791B2 (en) Laminated optical waveguide
JP3552159B2 (en) Temperature-independent arrayed waveguide grating device
Li et al. Optical waveguides fabricated via femtosecond direct laser writing: processes, materials, and devices
CN114488405A (en) Design method of double-waveguide adiabatic mode coupler
JPH1048443A (en) Polymer waveguide and its production
EP3227750B1 (en) Stress-tuned planar lightwave circuit and method therefor
TW588167B (en) Polarization-insensitive planar lightwave circuits and method for fabricating the same
JP7401823B2 (en) Optical waveguide components and their manufacturing method
JP3552592B2 (en) Manufacturing method of optical waveguide
JP4095358B2 (en) Holy waveguide type optical circuit and manufacturing method thereof
CN102565935A (en) Resonant-coupling two-way transmission photon crystal waveguide and manufacturing method thereof
JP7008316B2 (en) Optical connection structure
WO2018150899A1 (en) Optical waveguide element and method for producing optical waveguide element
JP2000321454A (en) Multi-mode interference optical coupler and manufacture thereof
CN114924348B (en) Three-dimensional edge coupler based on silicon dioxide optical waveguide
JP2004317687A (en) Multilayer optical waveguide with groove
JP2004151175A (en) Optical directional coupler and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees