201114915 r 六、發明說明: 【發明所屬之技術領域】 本發明通常涉及熔料的粒化,該熔料尤其指鐵產業或非鐵產 業的成品、半成品或副產品,例如鼓風爐產生的生鐵或煉鐵爐渣、 銅冶煉爐產生的冰銅(copper matte)或鎳冶煉爐產生的鎳冰銅。 更具體地說,本發明涉及一種包括如下類型粒化單元的粒化裝 置’該粒化單TG被構造成用於將水喷射到諸如爐渣或冰銅等自由 下降的熔料流中,以便通過熔料的快速淬火而實現粒化。 【先前技術】 具有被構造成用於將水喷射到熔融流中的粒化單元的一類眾 所周知的裝置是PAUL WURTH S.A.所銷售的以“INBA™系統,,為商 品名的裝置。在歐洲,這種粒化裝置是當制於處理鼓風爐舰 的最通用的解決方案。除了粒化單元本身,這種裝置通常包括動 力脫水單元(dynamic dewatering unit),用於借助於從漿料中 分離出粒化產品哺筒雜化物料和水的混和物(通常所謂的浆 料)進行脫水。例如在美國專利4, 2〇4,哪中公開了這種典型 的裝置。 圖5的平面圖示出了鼓風爐設備中公知的inbatm型粒化裝置 的典型佈局。該裝置包括粒化單元1〇,在該粒化單元中通過喷頭 產生的同壓喷水注人熔融的鼓風爐爐渣流。借助於佈置在從鼓風 爐16的㈣口(taphQle,出鐵σ) #向延伸的兩個主流道14、 14上的撇造器12、12,,爐潰流與炼融的生鐵流分離。該粒化 4 201114915 裝置包括流道結構2G (也稱為“流槽(laundei〇,,>,_^ 融爐舰兩個顧器12、12,㈣任—綱導到粒化單元ι〇。通 常,流道結構20是-些單獨流道構件的組裝件,這鲜獨流道構 件為财火㈣«的並且可岐水冷的。流道結構2q具有上游入 口區22和中間傳送區24,上游入口區具有兩個源自於任一撇渣器 12、12’的入口分支’中間傳送區用於朝向粒化單元⑺引導溶融 的舰流。傳送區24通向下游出口區26,該出口區終止於粒化單 元10處並且被構造成使得熔融舰能夠自由下降到通過水泮火 (即喷水喷射到下降流中)被粒化的粒化單元1〇中。圖5的平面 圖中進一步可見’該裝置包括佈置在粒化單元1G下游的動力脫水 單元27 ’用於對來自粒化單元1〇的粒化爐潰和水的聚料進行脫 水。雖賴5的裝置被設計賴來粒化鼓風爐難,但已經知道 類似的裝置可用絲化其他麵_熔料和非鐵熔料,例如冰銅 或鎳冰銅。 在本領域眾所周知的還有,所產生顆粒的品質和均勻性(尤 其是在非鐵冰銅粒化的情況下)有時令人不滿意,因此這就為進 一步改進留下了空間。不想被理論所約束,我們相信水與熔料之 間的更好的熱交換將提高玻璃含量(glass content)以及由粒化 過程形成的產品的體積密度。此外,粒化過程伴隨有氣體的形成, 諸如H2和a ’如果這些氣體在放熱反應中再結合,則可能造成雜 訊巨響。這種普遍現象也可能由於更好的傳熱而減少。為了解決 201114915 這些問題,已經嘗試改善相對冷的注射喷水與熱熔料流(例如爐 渣或冰銅)之間的熱交換。 例如盧森堡專利LU 88380和中國專利CN 1038602 C建議改 進上述類型的粒化裝置,從而終止於粒化單元處的下游出口區具 有加寬的且沿下游方向傾斜度增大的流道末端(tip)。然而這種 方法降低了注入到噴水中的液流區(fl〇w secti〇n)的高度,這 可能造成淬火之前的過度凝固和過度結殼(incrustinati〇n)問 【發明内容】 本發明的目的在於提供一種用於熔料的粒化裝置,在該裝置 中,改善了注入喷水與熱熔料流之間的熱交換。 爐渣或熔融的煉鐵爐渣,並且該教 到下降熔概巾的—練化單元。 本發明適用於如下的粒化裝置,該粒化裝置被設計成用來粒 化溶料’尤其是非鐵冰銅(例如熔融的銅或錄冰銅)、溶融的非鐵 ’並且該粒化裝置具有被構造成將水喷射201114915 r VI. Description of the invention: [Technical field to which the invention pertains] The present invention generally relates to the granulation of a melt, which in particular refers to finished products, semi-finished products or by-products of the iron or non-ferrous industry, such as pig iron or ironmaking produced by a blast furnace. Slag, copper matte produced by copper smelting furnace or nickel matte produced by nickel smelting furnace. More particularly, the present invention relates to a granulating apparatus comprising a granulating unit of the type ' granulated single TG configured to spray water into a freely falling melt stream such as slag or matte to pass Granulation is achieved by rapid quenching of the melt. [Prior Art] A well-known device having a granulation unit configured to inject water into a molten stream is a device sold under the trade name "INBATM System," sold by PAUL WURTH SA. In Europe, this The granulation device is the most versatile solution for the treatment of blast furnace ships. In addition to the granulation unit itself, such devices typically include a dynamic dewatering unit for separation of granulation from the slurry. The product is a mixture of a hybrid material and water (usually a so-called slurry) for dehydration. Such a typical device is disclosed, for example, in U.S. Patent 4,2,4, which shows a blast furnace. A typical layout of an inbatm type granulating apparatus known in the apparatus. The apparatus comprises a granulating unit 1 in which a blast furnace slag stream which is melted by a nozzle sprayed by a spray head is produced by means of a spray head. The (four) port of the blast furnace 16 (taphQle, tapping σ) # The splicers 12, 12 on the two main flow paths 14, 14 extending, the furnace collapse is separated from the smelted pig iron stream. The granulation 4 201114915 device Included in the flow channel structure 2G (also known as "laundei〇,, _^ two furnaces 12, 12, (4) any - guide to the granulation unit ι〇. Usually, the flow channel structure 20 is an assembly of a plurality of separate flow path members, the fresh flow path member being a fossil (four) « and water-coolable. The flow path structure 2q has an upstream inlet zone 22 and an intermediate transfer zone 24, and the upstream inlet zone has two The inlet branch 'intermediate transfer zone' originating from either skimmer 12, 12' is used to direct the molten ship towards the granulation unit (7). The transfer zone 24 leads to the downstream exit zone 26, which terminates in granulation At unit 10 and configured to enable the molten vessel to freely descend into the granulation unit 1 that is granulated by water bonfire (ie, spray water spray into the downflow). Further visible in the plan view of FIG. 5, the device includes The power dehydration unit 27' disposed downstream of the granulation unit 1G is used to dewater the granulation furnace from the granulation unit 1 和 and the water condensate. Although the apparatus of the lag 5 is designed to be difficult to granulate the blast furnace, It is known that similar devices can be used to silk other surfaces _ melt and non-ferrous melt, For example, matte or nickel matte. It is well known in the art that the quality and uniformity of the particles produced (especially in the case of non-iron copper granulation) is sometimes unsatisfactory, so this is further Improvement leaves room. Without wishing to be bound by theory, we believe that a better heat exchange between water and melt will increase the glass content and the bulk density of the product formed by the granulation process. The process is accompanied by the formation of gases, such as H2 and a 'if these gases recombine in an exothermic reaction, which can cause loud noises. This general phenomenon may also be reduced by better heat transfer. To solve these problems in 201114915 Attempts have been made to improve the heat exchange between a relatively cold injection spray and a hot melt stream, such as slag or matte. For example, the Luxembourg patent LU 88380 and the Chinese patent CN 1038602 C propose to improve the granulation device of the above type such that the downstream outlet zone terminating at the granulation unit has a widened flow tip with an increased inclination in the downstream direction. . However, this method reduces the height of the liquid flow region (fl〇w secti〇n) injected into the spray water, which may cause excessive solidification and excessive crusting before quenching. [Invention] The present invention It is an object to provide a granulation apparatus for a melt in which heat exchange between an injection spray and a hot melt stream is improved. Slag or molten iron slag, and it is taught to reduce the melting of the towel. The present invention is applicable to a granulation apparatus designed to granulate a solvent 'especially non-iron copper (such as molten copper or glazed copper), molten non-ferrous' and the granulation apparatus Having been constructed to spray water
6 201114915 為了解決上述間題,根據本發明,下游出口區包括多個(例 如2至6個)並排佈置的出口流道’每個出口流道具有獨立的流 道末端,熔料能夠從該流道末端下降到粒化單元中。該流道結構 還包括佈置在中間傳送區與下游出口區之間的一分流區。根據本 發明’該分流區被構造成將來自中間傳送區的整流分成多股單獨 的分流’每股分流被分別供給到—個出σ流道。此外,根據本發 月粒化單元包括多個並排地橫向佈置的噴頭,每個喷頭分別關 聯多個出π流道巾的-倾且佈置成將水儒舰簡聯的出口 流道的流道末端下降的熔料分流中。 所乂出的解决方案&面了熔料的分配,並允許通過幾侧立 的相鄰喷頭(也麟鼓風箱(bl〇wingb〇x),,)進行泮火。因 此可利用多個獨立的喷頭以更有效地粒化溶料。 在本發明的第-變型中,分流區包括一緩衝儲罐⑽知 reservoir)和多個排出噴嘴(drain _ie),該緩衝儲罐接收 來自中間傳送區的溶料,排出喷嘴將來自緩衝儲罐的溶料分別朝 向關聯的出口流道排出。有利地,排出噴嘴配備有一加熱裝置。 在該變型的優選實施例中,分流區包括位於傳送區下游且位於出 口區上游的中間包(t_ish)。該中間包優選地包括將中間包分 成緩衝儲罐和位於緩衝卿上_附加接收卿的内溢流堪 (internal weir)。該接收儲罐被構造成用於接收來自傳送區的 溶料流並使得緩衝儲罐中的爐浴敎。有利地,中間包佈置在中 201114915 間傳送區的伸出的流道末端的下方以及部分下游出口區的上方, 排出噴嘴定向成基本豎直以供給熔料使之自由下降到關聯的出口 流道中。優選地’中間包包括溢流槽(spillway chute),該溢流 槽被構造成通過該溢流槽將過多的熔料優選地排放到下游出口區 中。 在本發明的第二變型中,分流區包括一個或多個具有一個主 幹和兩個分支的γ形流道段,即具有構成流動分又的γ形平面圖 的流道段。在三個喷頭的解決方案中,分流區包括一系列的三重 或一級節&。一主γ形流道段後接著是一對次級Υ形流道段,再 接著是一三級Υ形流道段。次級γ形流道段將它們的主幹連接至 主段的任-分支。次級段_分支連接至三級γ形流道段的分支。 下游出口區包括三個出口流道。其中兩個出口流道分別連接至次 級段的外分支ϋ出㈣道連接至三級段的主幹,從而整流 破分成各自供給至三個出σ流道之—的三股分流。具有四個喷頭 的解決方_樣是可行的。其包括雙$_的-個主γ形流道段 和—對次級Υ形流道段。次級γ形流道段將它們的主幹連接1主= 形流道段的任-分支。四個出口流道中的每—個均分別連接至次 級Υ職道段的分支之-,分流區流分成各自供給至四 個出口流道之-的四股分流。優親,第—和第二級γ形流道^ 包括楔形部,該娜部具有至少的外角,優觀至少為 以防正急劇的流動偏差。楔形部的與楔形部橫向侧相交的前緣可 8 201114915 以是銳角或圓角。類似地,每個γ形段都優選地構造成其分支的 中心軸線之間的夾角(includedangle)在10。-40。範圍内,優選 地在18°-32°範圍内,以防止急劇的流動偏差。 無論採用哪種變型,在一有利的實施例中,為了避免液流過 寬,多個出口流道的流道區底部寬度的總和在中間傳送區的流道 區底部寬度的80%-120%範圍内’優選地在90°/〇-11〇%範圍内。此外, 多個出口流道的有效流道橫截面面積的總和優選地基本上等於中 間傳送區的有效流道橫截面面積,例如總計達中間傳送區的有效 流道橫截面面積的75%至125%之間’更優選地在90%至11〇%之間。 這確保了傳送區下游的熔料暢通流動。通常,流道結構包括以耐 火材料做襯裏的流道段’該耐火材料被設計成耐>155〇<>c的溫度, 優選地耐>1600°C的溫度。 【實施方式】 首先應該注意到圖1至圖4僅示出了與本發明相關的那些部 二。更具體地說’僅不出了粒化單元的一部分以及流道段的緊挨 著粒化單元上_-部分。與本發明不相_其他未示出部分根 據任何適當的已知設計來構造,例如,如圖5中所示和上 述的對於鼓風爐爐渣粒化裝置的情況。 田 JL—實施例 圖1和圖2A部分示出了粒化單元11〇,並示出了流道結構的 中間傳送區124的下游部分,通過該流道結構,粒化單元11〇被 供以溶料L熱崎融驗或熱麟融冰銅。财道結構朝 201114915 向粒化單το 110以確保形成重力引導流的斜率傾斜。巾間傳送區 124終止於中間流道末端125處,該中間流道末端例如支樓在鼓風 爐的爐前底板(casthQuse f丨⑴r) 127上。通常以規則的間隔(例 如在鼓風爐出_間)將轉從熔料源頭(例如,主出鋼流道上 的固定爐潰撇渣器或者可移動的冰銅洗包)供給到上游入口區(未 示出’見圖5)中’以便經由中間傳送區(未示出,見圖5)朝向 中間流道末端125來傳送。 圖1和圖2A還示出了流道結構的下游出口區126,其傾斜並 通入到粒化單it 110中。與中間傳送區124相反,且如圖i和圖 2B中最佳所示,下游出口區126包括多個(在示出的實施例中為 二個)獨立的並排佈置的出口流道、128_2、128_3。如圖 2A中最佳所示’每個出口流道⑽]、128_2、128_3具有對應的 流道末端129,熔料從所述流道末端注入到粒化單元11〇中。 如圖1和圖2A中進一步所示,在中間傳送區124與下游出口 區126之間設置有分流區130。分流區130將來自中間傳送區124 的熔料流劃分或分離成多股分流,更具體地在所示實施例中,劃 分成二股單獨的分流。如圖1和圖2A中所示,從分流區13〇流出 的每股分流分別被供給到一個特定的出口流道128-1、128-2、 128-3。換句話說,分流區13〇被構造成將中間傳送區124傳送的 熔料流以體積流速降低的三股分流的方式分配到每個出口流道 128-1、128-2、128-3。 201114915 如圖1和圖2A最佳所示,分流區130包括佈置在中間流道末 端125下方且位於出口流道128_卜128_2、128_3的上游部分(如 圖1中虛線所示)上方的中間包132。中間包132優選地由以兩層 耐火材料為襯裏的鋼桶做成,該耐火材料即為在桶的與熔料一側 相對的側面上的耐火碑’㈣火磚被覆以喷塗的(g_ed)耐火 材料。中間包132包括内溢流堪或壩134,其將中間包132的内部 分成相對較大容積的緩衝儲罐136及相對較小容積的接收儲罐 138 °緩衝儲罐136具有足夠大的容積,從而通過使緩衝儲罐咖 内部的熔料飾升高或降低而使從巾_祕124触的炫料流 的流速中的微流或微滴均衡^換句話說,緩衝儲罐136使得溶料 流速平穩地流出並供給到粒化單元m。另一側上的接收儲罐138 用作溢出池並起到穩定並消除緩衝儲罐136 +的爐浴_的作 用。將注意到’中間包132是可移動的(見圖2a中的虛點線), 以便快速更換-備財間包132,例如在兩次接連的出鋼之間 維修中間包132的情況下,例如需要重新整修财火材料。 在緩衝儲罐136的底部處設置有與出口流道跑、128 2 胸的數量相等的多個排㈣嘴謝、跑、勝3。每_ 出喷嘴14(M、14G-2、秦3觸自(起源於)緩 過中間包132中的對應開D α、 011 ^ ,並为別與一個出口流道128-1、 128-2、128-3關聯。雜’在圖13的實施例 140-2、140-3以向下的方向^ ^ 140-1 的方向德,即基本上為豎直 201114915 傾斜的斜向定位,只要從每個排出噴嘴14(Hl、14〇—2、i4〇_3的 流出物被相應的關聯出口流道128-卜128_2、128_3安全接收即 可。排出喷嘴H(M、H0-2、H0-3通常具有相同的結構並且由 耐熱和耐磨損㈣製成,並且優選地設置有加熱裝置,例如加熱 燃燒器,以便防止由於熔料固化造成阻塞。如圖Μ進一步可見, 在下游出口區126的-側上,中間包132設置有溢流槽142,該溢 流槽位於低於中間包132其他側壁的頂部的高度處。換句話說, 溢流槽142被構造成使得過多的溶料通過溢流槽142排出到下游 出口區126。優選地,該溢流槽被分成多個獨立的溢流道 (overflow) ’每個溢流道通入一個出口流道128一丨、一2、 128-3 〇 如圖2A和2B中最佳所示,粒化單元11〇包括與出口流道 128-卜128-2、128-3的數量對應的並排佈置的多個喷頭144-卜 144-2、144-3。每個噴頭144_卜144_2、144一3佈置在出口流道 128-卜128-2、128-3下方且在下游出口區126的下面以縮回 (retreat ’後退)方式受保護。因此,每個喷頭144一、144一2、 144-3被佈置成將高壓嘴水(喷流陣列)喷射到從關聯的出口流道 128-1、128-2、128-3的流道末端129注入到粒化單元11〇中的熔 料分流中。如0 2B中可見,噴頭144~1、144-2、144-3通常固定 地支樓在基本水準蚊撐轴146上,該支撐軸職其基本水準的 軸線可調節地轉動。因此,如圖2A巾可見,軸轉動位置的調 12 201114915 節能夠集中改變噴射到分流中的水的衝擊區域。可替換地,每個 t頭144-1、144-2、144-3能夠可調節地支撐在jg定的水準支樓 轴上,從而每個噴頭144-卜144-2、144-3 ®繞基本水準的軸線 各自可5周即地轉動。通常,喷頭144-1、144-2、144-3定向成使 得喷水朝下噴射。單—喷頭的適當結翻樣是已知的,例如在專 利申請職_4贿、EP_2279或EPGG4腿中所公開的。 如圖2A進一步可見,粒化單元110包括位於噴頭144-1、 2 144 3别方的粒化罐147,水/顆粒的混和物引入到該粒 化罐中。 差_二實施例 圖3及圖4A-E中所示實施例的與圖丨_2實施例中的特徵基本 相同的特徵具纽_參考標號(“2”作為雜元±的數字,即 lxy—2xy)’且為了簡潔起見不再描述。因此,下面僅描述相對於 前一實施例的主要不同之處,即分流區23〇的不同結構。 如圖3中可見,第二實施例包括具有多個流道段邪2、扔4、 256、258的分流區230,每個流道段都具有丫形平面圖。如圖仙 中最佳所示,每個γ形流道段252、254、256、258都具有—個主 幹261和兩個分支262、263,以便形成由對應的流道段(例如, 圖4D中的段254)限定的通道的分又(即’分成兩個分支的分界 點)。 1 13 201114915 在圖3中,分流區230包括一連串三重γ形流道段,即一個 單一的上游主Υ形流道段252提供兩股分流,接著是一對中間的 次級Υ形流道段254、256提供四股分流,而下游的三級γ形流道 段258將四股分流中的兩股結合在一起。2級流道段254、256將 它們的主幹連接至1級流道段252的任一分支。2級流道段254、 256的内分支分別連接至3級流道段258的兩個分支。因此,主和 次級Υ形流道段252、254、256用來分隔熔料流。相反,三級γ 形流道段258以相反的意義設置,即,以便結合來自流道段254、 256内分支的兩股内分流。 如圖3中進一步可見,三個出口流道228-1、228-2、228-3 分別連接至2級流道段254、256的外分支和3級流道段258的主 幹。利用Υ形流道段的分流區230提供了將熔料整流分成三股(戋 多股)分流的替換解決方案。因此,如圖4C中可見,粒化單元21〇 也具有三個喷頭244-卜244-2、244-3,這些噴頭以上述方式佈置 和構造並分別關聯至一個出口流道2284、228-2、228-3。如所理 解的,通過省去三級Y形流道段258,具有四個出口流道和四個噴 頭的結構同樣是可行的。 將注意到,由於採用奇數個出口流道228-1、228-2、228-3, 次級Y形流道段254、256被構造成不均等地或非對稱地分割入 流,優選地以入流體積流速的《2/3 〇66°/〇的比例朝向其外分支 262 ’而以4/3 033%)的比例朝向其内分支263 (見圖4D)。因 201114915 此’與主段252和三級段258相反,次級段254、256的分支262、 263是不對稱的。 圖4D最佳示出的是每個γ形段252、254、256、258優選地 佈置成使得其分支262、263中心軸線的豎直二等分面(如p2所 示)平行于中間傳送區224下游端處的流道段的豎直中心面(如 P1所示,又見圖3中的線IVE-IVE),即緊挨段252的上游處的流 道段的豎直中心面。 此外,如圖4D中最佳所示,可能除了三級段258之外,每個 Y形段252、254、256都包括用來將入口流分成獨立分流的楔形部 264。優選地,楔形部264具有至少測。(角度)的外角α,優選 地至少300。’以便能夠平穩分割並防止入流的急劇偏轉。一反向 佈置的&,諸如二級段258 ’優選地在其内分支側壁上具有對等 (comparable)的外角。出於同樣的目的,每個γ形段252、254、 256、258優選地以如下方式構造:其分支脱、挪的中心轴線之 間的夾角|3在10。-40。範圍内,陕選地在18。_32。範圍内。類似 地,每個出π流道2284、228_2、228_3的中心軸線(或豐直中 心面)與Y形段254、256、258的靠近上游連接_聯分支或主 幹的中心軸線(暨直中心面)之間的任何角度也優選地不大於 2〇° ’優選地不大於16。,以防止急劇的流動偏差。 为肌區230可以由組裂在一起的各自獨立的流道構件構成, 15 201114915 或如圖4A、4B、4C和4E中最佳所示,優選地形成單個“單件式” 流道構件270的-部分,該流道構件可以包括出口流道挪]、 228-2、228-3和/或傳送區224的下游段,並由支撐在一鋼制的普 通支撐框架或結構272上的澆鑄和/或噴塗耐火材料形成。 與圖4A、4B和4C相對照還可注意到,γ形段252、254、256、 258的每一級,流道橫截面的整個(附加的)底部寬度(基部寬度) 在流動方向上保持基本不變,從而防止液流過寬,尤其在低於中 級流速時。 圖3及圖4A-E的粒化單元的其他特徵基本上與_卜2的特徵 相同。 座j固實施例的嫵Mif沭 流道結構優選地包括具有左右對稱且向下變細的梯形流道截 面的流道。該結構由組裝在一起且以耐火材料為襯裏的獨立流道 構件構成,該耐火材料設計成用於冰銅時耐例如>155(rc的高溫, 並且取決於應用場合,例如用於鼓風爐爐渣時,耐>16〇(rc的溫 度。各個流道構件也可以由襯裏的或不襯裏的水冷金屬件製成, 例如’具有冷卻劑通道的銅件。 在上面的兩個實施例中,多個出口流道128-1、128-2、128-3 ; 228-1、228-2、228-3的有效流道橫截面面積/表面積(surface) 201114915 的總和優選地等於中間傳送區124; 224下游端的有效流道橫截面 面積/表面積(對照圖4A和4D)。更優選地,該總和達中間傳送區 124 ; 224下游端部的有效流道橫戴面面積的75%_125% (更優選地 為_-譲)。然而,為了防止液流過寬,多個出口流道n、 128-2 ^ 128-3 ; 228-1 ^ 228-2 > 228-3 中間傳送區124:224下游端部的流道區底部寬度的__範圍 内,優選地在90%-110%範圍内。 儘管上述實施例涉及分成三股分流的具體情況,但是類推 地,本發明同樣覆蓋具有任意數量的多股單獨分流(例如2-6股 分流)的裝置,該多股單獨分流由相應數量的喷頭單獨粒化。 如所意識到的’將熔料主流分成較小體積流速的獨立分流並 將每一股分流注入到“標準”喷頭的喷水中能夠改善水滲透、具 有更好的熱傳遞’從而熔料冷卻更快速。因此,提高了粒化物料 的品質、尤其是具有更高的砂粒密度(sand density)、較高的玻 璃含量以及降低的濕氣含量(在脫水之後)。 工業應用 根據本發明的裝置適用於熱熔料的粒化領域,該熔料尤其指 鐵產業或非鐵產業的成品、半成品或副產品,例如用於粒化銅或 鎳冰銅、煉鐵爐渣或生鐵。 【圖式簡單說明】 17 201114915 現在借助於實例’參照附圖來描述本發明的優選實施例,附 圖中: 圖1疋根據本發明第一實施例的粒化裝置的局部平面圖,示出了 流道結構的下游區域; 圖2A疋圖1中裝置的沿圖1中的線πA-IIA截取的豎向縱截面; 圖2B是根據圖1中箭頭IIB的前視圖,示出了三個出口流道的流 道末端及一組關聯的喷頭; 圖3疋根據本發明第二實施例的粒化裝置的局部平面圖,示出了 流道結構的下游區域; 圖4A是圖3中裝置的沿圖3中的線IVA_IVA截取的登向橫截面; 圖4B是圖3中裝置的沿圖3中的線IVB_IVB截取的登向橫截面; 圖4C是根據圖3中箭頭IVC的前視圖,示出了三個出口流道的流 道末端及一組關聯的喷頭; 圖4D是圖3中Y形流道段的放大平面圖; 圖4E是圖3中裂置的沿圖3中的線IVE IVe截取的g向縱截面; 圖5是現有技術中粒化裝置的平面圖。 【主要元件符號說明】 201114915 α 外角 β 夾角 Ρ1 豎直中心面 Ρ2 豎直中心面 10 粒化單元 110 粒化單元 12 撇渣器 12, 撇渣器 124 中間傳送區 125 中間流道末端 126 下游出口區 127 爐前底板 128-1出口流道 128-2 出口流道 128-3出口流道 129 流道末端 130 分流區 132 中間包 134 内溢流堪· 136 緩衝儲罐 138 接收儲罐 14 主流道 14, 主流道 140- -1排出喷嘴 140-2排出喷嘴 140-3排出喷嘴 142 溢流槽 144-1 喷頭 144- -2 喷頭 144- -3 喷頭 201114915 146 支撐軸 147 粒化罐 16 鼓風爐 20 流道結構 210 粒化單元 22 上游入口區 224 中間傳送區 226 下游出口區 227 爐前底板 228-1 出口流道 228-2 出口流道 228-3 出口流道 229 流道末端 230 分流區 24 中間傳送區 244-1 喷頭 244-2 喷頭 244-2 喷頭 246 支撐軸 247 粒化罐 252 Y形流道段 254 Y形流道段 256 Y形流道段 258 Y形流道段 26 下游出口區 261 主幹 262 分支 263 分支 264 楔形部 27 動力脫水單元 201114915 270 272 流道構件 鋼支撐框架6 201114915 In order to solve the above problems, according to the invention, the downstream outlet zone comprises a plurality (for example 2 to 6) of side-by-side outlet flow channels each having an independent flow channel end from which the melt can be passed The end of the channel drops into the granulation unit. The runner structure also includes a splitting zone disposed between the intermediate transfer zone and the downstream exit zone. According to the invention, the shunt area is configured to divide the rectification from the intermediate transfer zone into a plurality of separate splits each of the split streams to be supplied to the respective sigma flow paths. In addition, according to the present invention, the granulating unit comprises a plurality of nozzles arranged side by side laterally, each of which is associated with a plurality of π-flow sheds and is arranged to flow the outlet flow path of the water conservator The end of the channel drops in the melt split. The resulting solution & dispensed the distribution of the melt and allowed a bonfire through several adjacent side nozzles (also known as bl〇wingb〇x). Multiple separate spray heads can therefore be utilized to more efficiently granulate the melt. In a first variant of the invention, the splitting zone comprises a buffer tank (10) and a plurality of discharge nozzles (drain_ie), the buffer tank receiving the melt from the intermediate transfer zone, the discharge nozzle being from the buffer tank The dissolved materials are discharged toward the associated outlet flow paths, respectively. Advantageously, the discharge nozzle is provided with a heating device. In a preferred embodiment of this variant, the splitting zone comprises a tundish (t_ish) located downstream of the transfer zone and upstream of the exit zone. The tundish preferably includes dividing the tundish into a buffer tank and an internal weir on the buffer. The receiving storage tank is configured to receive a melt stream from the transfer zone and to cause a hearth bath in the buffer tank. Advantageously, the tundish is disposed below the end of the extended flow path of the transfer zone in mid-201114915 and above the portion of the downstream exit zone, the discharge nozzle being oriented substantially vertical to supply the melt to freely descend into the associated outlet flow path . Preferably, the tundish includes a spillway chute configured to preferentially discharge excess melt into the downstream outlet zone through the overflow trough. In a second variant of the invention, the splitting zone comprises one or more gamma-shaped flow path segments having one trunk and two branches, i.e. having a flow path segment forming a gamma-shaped plan view of the flow. In a three-nozzle solution, the split-zone includes a series of triple or primary sections & A primary gamma-shaped flow path section is followed by a pair of secondary meandering flow path segments, followed by a three-stage circular flow path segment. The secondary gamma-shaped flow path segments connect their trunks to any-branch of the main segment. The secondary segment_branch is connected to the branch of the tertiary gamma-shaped flow channel segment. The downstream exit zone includes three outlet runners. Two of the outlet flow passages are respectively connected to the outer branch of the secondary section, and the fourth (four) road is connected to the trunk of the third stage, so that the rectification is broken into three split streams which are respectively supplied to the three outflow channels. A solution with four nozzles is feasible. It includes two main gamma-shaped flow path segments of $_ and - a secondary meandering flow path segment. The secondary gamma-shaped flow path segments connect their trunks to any of the main-shaped flow path segments. Each of the four outlet flow paths is connected to the branch of the secondary duty track section, and the split flow stream is divided into four split streams each supplied to the four exit flow paths. The superior, first and second stage gamma-shaped flow channels include a wedge portion having at least an outer angle, preferably at least to prevent a sharp flow deviation. The leading edge of the wedge that intersects the lateral side of the wedge may be an acute angle or rounded corner. Similarly, each gamma segment is preferably constructed such that the included angle between its central axes is 10. -40. Within the range, preferably in the range of 18° to 32°, to prevent sharp flow deviation. Regardless of which variant is employed, in an advantageous embodiment, in order to avoid excessive flow, the sum of the widths of the bottoms of the flow passage regions of the plurality of outlet runners is between 80% and 120% of the width of the bottom of the runner region of the intermediate transfer zone. Within the range 'preferably in the range of 90°/〇-11〇%. Furthermore, the sum of the effective flow passage cross-sectional areas of the plurality of outlet flow passages is preferably substantially equal to the effective flow passage cross-sectional area of the intermediate transfer zone, for example up to 75% to 125 of the effective flow passage cross-sectional area of the intermediate transfer zone Between % is more preferably between 90% and 11%. This ensures a smooth flow of the melt downstream of the transfer zone. Typically, the runner structure comprises a runner section lined with a fire resistant material. The refractory material is designed to withstand temperatures of > 155 Å <> c, preferably < 1600 °C. [Embodiment] It should first be noted that Figs. 1 to 4 show only those parts related to the present invention. More specifically, only a portion of the granulation unit and the _- portion of the flow path segment immediately adjacent to the granulation unit are omitted. Not in accordance with the invention - other parts not shown are constructed according to any suitable known design, for example, as shown in Figure 5 and described above for the blast furnace slag granulation unit. Field JL - Embodiments Part 1 and Figure 2A show the granulation unit 11A and shows the downstream portion of the intermediate transfer zone 124 of the flow path structure by which the granulation unit 11 is supplied Dissolve L hot smelting or hot smelting ice copper. The financial structure moves toward 201114915 to granulate a single το 110 to ensure that the slope of the gravity-guided flow is inclined. The inter-tray transfer zone 124 terminates at an intermediate runner end 125, such as a branch on the furnace floor (casthQuse f(1)r) 127 of the blast furnace. The feed is usually supplied to the upstream inlet zone at regular intervals (for example, between blast furnaces) from the source of the melt (for example, a fixed furnace slag remover or a movable ice-copper wash on the main tapping runner) (not It is shown in 'see Fig. 5' for transmission via the intermediate transfer zone (not shown, see Fig. 5) towards the intermediate runner end 125. Figures 1 and 2A also show the downstream outlet zone 126 of the runner structure which is inclined and passed into the granulation unit it 110. Contrary to the intermediate transfer zone 124, and as best shown in Figures i and 2B, the downstream exit zone 126 includes a plurality (two in the illustrated embodiment) of independent side-by-side outlet flow channels, 128_2, 128_3. As shown best in Fig. 2A, 'each outlet flow path (10)', 128_2, 128_3 has a corresponding flow path end 129 from which the melt is injected into the granulation unit 11A. As further shown in Figures 1 and 2A, a splitting zone 130 is disposed between the intermediate transfer zone 124 and the downstream exit zone 126. The splitter zone 130 divides or separates the melt stream from the intermediate transfer zone 124 into multiple splits, more specifically in the illustrated embodiment, divided into two separate splits. As shown in Figs. 1 and 2A, the shunts flowing out from the splitting area 13〇 are supplied to a specific exit flow path 128-1, 128-2, 128-3, respectively. In other words, the splitter zone 13 is configured to distribute the melt stream delivered by the intermediate transfer zone 124 to each of the outlet runners 128-1, 128-2, 128-3 in a three-stream split with a reduced volumetric flow rate. 201114915 As best seen in Figures 1 and 2A, the splitter zone 130 includes an intermediate portion located below the intermediate runner end 125 and located above the upstream portion of the outlet runner 128_b 128_2, 128_3 (shown in phantom in Figure 1). Package 132. The tundish 132 is preferably made of a steel drum lined with two layers of refractory material, that is, a refractory monument on the side opposite the melt side of the barrel (four) fire bricks are coated for spraying (g_ed ) refractory material. The tundish 132 includes an inner overflow dam or dam 134 that divides the interior of the tundish 132 into a relatively large volume of buffer storage tank 136 and a relatively small volume of receiving storage tank 138. The buffer storage tank 136 has a sufficiently large volume, The microfluid or droplet in the flow rate of the sap flow from the towel 124 is thereby equalized by raising or lowering the melt inside the buffer tank. In other words, the buffer tank 136 causes the solvent to be dissolved. The flow rate smoothly flows out and is supplied to the granulation unit m. The receiving tank 138 on the other side acts as an overflow tank and acts to stabilize and eliminate the bath _ of the buffer tank 136+. It will be noted that 'the tundish 132 is movable (see the dotted line in Fig. 2a) for quick replacement - the money package 132, for example in the case of repairing the tundish 132 between two successive taps, For example, it is necessary to renovate the financial materials. At the bottom of the buffer tank 136, a plurality of rows (four), a run, a win, and a run, which are equal to the number of the 128 2 chests, are provided. Each of the nozzles 14 (M, 14G-2, Qin 3 touches (originate from) the corresponding opening D α, 011 ^ in the tundish 132 and is associated with an outlet flow channel 128-1, 128-2 , 128-3 associated. Miscellaneous in the embodiment 140-2, 140-3 of Figure 13 in the downward direction ^ ^ 140-1 direction de, that is, the vertical orientation of the vertical 201114915 tilt, as long as The effluent of each of the discharge nozzles 14 (H1, 14〇-2, i4〇_3 is safely received by the corresponding associated outlet flow passages 128-128_2, 128_3. The discharge nozzles H (M, H0-2, H0-) 3 generally has the same structure and is made of heat and wear resistant (four), and is preferably provided with a heating means, such as a heating burner, to prevent clogging due to solidification of the melt. As further seen in the downstream outlet zone 126 On the side, the tundish 132 is provided with an overflow trough 142 located at a level below the top of the other side walls of the tundish 132. In other words, the overflow trough 142 is configured such that excess dissolved material passes through The overflow trough 142 is discharged to the downstream outlet zone 126. Preferably, the overflow trough is divided into a plurality of independent overflows Each of the overflow passages opens into an outlet flow passage 128, 一, 2, 128-3. As best shown in Figs. 2A and 2B, the granulation unit 11A includes and the outlet flow passage 128-b 128-2. The number of 128-3 corresponds to a plurality of nozzles 144- 144-2, 144-3 arranged side by side. Each of the nozzles 144_b 144_2, 144-3 is arranged at the exit flow path 128-Bu 128-2, 128- 3 is below and below the downstream exit zone 126 in a retracted (retracted) manner. Therefore, each of the showerheads 144, 144-2, 144-3 is arranged to be a high pressure water (jet array) Injection into the melt split from the runner end 129 of the associated outlet runners 128-1, 128-2, 128-3 into the granulation unit 11A. As seen in 0 2B, the nozzles 144~1, 144 - 2, 144-3 usually fixed ground support on the basic level mosquito support shaft 146, the support shaft is adjustable in its basic level of axis. Therefore, as can be seen in Figure 2A, the rotation position of the shaft 12 201114915 can Concentratedly changing the impact area of the water injected into the split. Alternatively, each t-head 144-1, 144-2, 144-3 can be adjustably supported on the jg-level leveling axle Thus, each of the showerheads 144- 144-2, 144-3® can be rotated about 5 degrees around the axis of the basic level. Typically, the showerheads 144-1, 144-2, 144-3 are oriented such that the water spray is facing downwards. Spraying. A suitable closure of a single nozzle is known, for example, as disclosed in the patent application _4 bribe, EP 2279 or EPGG 4 legs. As further seen in Figure 2A, the granulation unit 110 includes a granulation tank 147 located in the other end of the spray heads 144-1, 2 144 3 into which the water/particle mixture is introduced. Difference_Two Embodiments The features of the embodiment shown in FIG. 3 and FIG. 4A-E that are substantially the same as those in the embodiment of FIG. 2 are reference numerals ("2" as the number of the cipher ±, ie, lxy —2xy)' and will not be described for the sake of brevity. Therefore, only the main difference from the previous embodiment, that is, the different structure of the shunt area 23A, will be described below. As can be seen in Figure 3, the second embodiment includes a splitter zone 230 having a plurality of runner segments 2, throws 4, 256, 258, each channel segment having a dome-shaped plan view. As best seen in the figure, each of the gamma-shaped flow path segments 252, 254, 256, 258 has a stem 261 and two branches 262, 263 to form a corresponding flow channel segment (for example, Figure 4D) The segment 254) in the segment defines the division of the channel (ie, the boundary point divided into two branches). 1 13 201114915 In FIG. 3, the diverting zone 230 includes a series of triple gamma-shaped flow path segments, ie a single upstream main-shaped flow channel segment 252 provides two partial flows, followed by a pair of intermediate secondary meandering flow segments. 254, 256 provides four splits, while the downstream three-stage gamma runner 258 combines two of the four splits. The two-stage flow path sections 254, 256 connect their trunks to any of the one-stage flow path sections 252. The inner branches of the two-stage flow path sections 254, 256 are respectively connected to the two branches of the three-stage flow path section 258. Thus, the primary and secondary sickle runner segments 252, 254, 256 are used to separate the melt stream. In contrast, the three-stage gamma-shaped flow path section 258 is disposed in the opposite sense, i.e., to combine the two inner shunts from the branches within the flow path segments 254, 256. As further seen in Figure 3, three outlet flow channels 228-1, 228-2, 228-3 are connected to the outer branches of the two-stage flow path segments 254, 256 and the mains of the three-stage flow channel segments 258, respectively. The use of the splitter zone 230 of the meandering runner section provides an alternative solution for splitting the melt into three strands (multiple strands). Thus, as can be seen in Figure 4C, the granulation unit 21A also has three spray heads 244- 244-2, 244-3 which are arranged and constructed in the manner described above and associated to an outlet flow path 2284, 228, respectively. 2, 228-3. As will be appreciated, by omitting the three-stage Y-shaped flow path section 258, a structure having four outlet flow paths and four spray heads is equally feasible. It will be noted that since an odd number of exit channels 227-1, 228-2, 228-3 are employed, the secondary Y-shaped flow path segments 254, 256 are configured to divide the incoming flow unevenly or asymmetrically, preferably with inflow The volumetric flow rate of "2/3 〇 66 ° / 〇 is directed toward its outer branch 262 ' toward 4/3 033%) toward its inner branch 263 (see Figure 4D). Since 201114915 this is opposite to the main segment 252 and the third segment 258, the branches 262, 263 of the secondary segments 254, 256 are asymmetrical. 4D is best shown in that each gamma segment 252, 254, 256, 258 is preferably arranged such that a vertical bisector of its central axis 262, 263 (as indicated by p2) is parallel to the intermediate transfer zone. The vertical center plane of the runner section at the downstream end of 224 (shown as P1, see also line IVE-IVE in Figure 3), i.e., the vertical center plane of the runner section immediately upstream of section 252. Moreover, as best shown in FIG. 4D, it is possible that in addition to the three-stage segment 258, each of the Y-shaped segments 252, 254, 256 includes a wedge portion 264 for dividing the inlet flow into separate splits. Preferably, the wedge 264 has at least a measurement. The outer angle α of (angle) is preferably at least 300. 'In order to be able to divide smoothly and prevent sharp deflection of the inflow. A reversely disposed &, such as secondary segment 258' preferably has a comparable outer corner on its inner branch sidewall. For the same purpose, each of the gamma segments 252, 254, 256, 258 is preferably constructed in such a way that the angle |3 between the central axes of the branches and the branches is at 10. -40. Within the scope, Shaanxi is at 18th. _32. Within the scope. Similarly, the center axis (or the abundance center plane) of each of the π flow paths 2284, 228_2, 228_3 is connected to the central axis of the Y-shaped segments 254, 256, 258 near the upstream branch or the main axis of the trunk (cum straight center plane) Any angle between ) is also preferably no greater than 2 〇 ° ' preferably no greater than 16. To prevent sharp flow deviations. The single "single piece" flow path member 270 is preferably formed for the muscle region 230 to be comprised of separate flow path members that are split together, 15 201114915 or as best seen in Figures 4A, 4B, 4C and 4E. The portion of the runner member may include an outlet runner, 228-2, 228-3, and/or a downstream section of the transfer zone 224, and is cast by a conventional support frame or structure 272 supported on a steel. And / or sprayed refractory material. It can also be noted in comparison with Figures 4A, 4B and 4C that for each stage of the gamma segments 252, 254, 256, 258, the entire (additional) bottom width (base width) of the flow channel cross section remains substantially constant in the flow direction. It does not change, thus preventing the flow from being too wide, especially below the intermediate flow rate. The other features of the granulation unit of Figures 3 and 4A-E are substantially the same as those of Figure 2. The 妩Mif沭 flow path structure of the seated solid embodiment preferably includes a flow path having a trapezoidal flow path section that is bilaterally symmetrical and tapered downward. The structure consists of a separate runner member that is assembled together and lined with a refractory material designed to withstand ice, for example, > 155 (rc high temperature, and depending on the application, such as for blast furnace slag) When resistant to temperatures of rc (r), each flow path member may also be made of a lining or unlined water-cooled metal member, such as a copper member having a coolant passage. In the above two embodiments, The sum of the effective runner cross-sectional area/surface area 201114915 of the plurality of outlet runners 128-1, 128-2, 128-3; 228-1, 228-2, 228-3 is preferably equal to the intermediate transfer zone 124 224 effective flow cross-sectional area/surface area at the downstream end (cf. Figures 4A and 4D). More preferably, the sum is 75% to 125% of the effective flow path cross-sectional area at the downstream end of the intermediate transfer zone 124; More preferably, it is _-譲. However, in order to prevent the liquid flow from being too wide, a plurality of outlet flow paths n, 128-2 ^ 128-3; 228-1 ^ 228-2 > 228-3 intermediate transfer zone 124: 224 is in the range of __ of the width of the bottom of the flow channel region at the downstream end, preferably in the range of 90% to 110%. The embodiments relate to the specific case of splitting into three splits, but analogously, the invention also covers a device having any number of separate splits (e.g., 2-6 splits) that are individually separated by a corresponding number of nozzles. Granulation. As recognized, 'dividing the melt mainstream into separate splits of smaller volume flow rates and injecting each split into the spray water of a "standard" nozzle improves water penetration and has better heat transfer. Thereby the melt cools more quickly. Therefore, the quality of the granulated material is improved, in particular with a higher sand density, a higher glass content and a reduced moisture content (after dewatering). The device of the invention is suitable for the field of granulation of hot melt, in particular for finished products, semi-finished products or by-products of the iron industry or the non-ferrous industry, for example for granulating copper or nickel ice copper, ironmaking slag or pig iron. BRIEF DESCRIPTION OF THE DRAWINGS 17 201114915 A preferred embodiment of the present invention will now be described by way of example with reference to the accompanying drawings in which: FIG. A partial plan view of the granulating device showing the downstream region of the flow channel structure; FIG. 2A is a vertical longitudinal section of the device taken along line πA-IIA in FIG. 1; FIG. 2B is an arrow according to FIG. Front view of IIB showing the end of the flow path of the three outlet flow channels and a set of associated spray heads; Figure 3 is a partial plan view of the granulation apparatus according to the second embodiment of the present invention, showing the flow path structure Figure 4A is a cross-sectional section taken along line IVA_IVA of Figure 3 of the apparatus of Figure 3; Figure 4B is a cross-sectional section of the apparatus of Figure 3 taken along line IVB_IVB of Figure 3; Figure 4C is According to the front view of arrow IVC in Fig. 3, the end of the flow path of the three outlet flow paths and a set of associated nozzles are shown; Figure 4D is an enlarged plan view of the Y-shaped flow path section of Figure 3; Figure 4E is Figure 3 The g-direction longitudinal section taken along the line IVE IVe in Fig. 3 of the middle split; Fig. 5 is a plan view of the granulation apparatus of the prior art. [Main component symbol description] 201114915 α External angle β angle Ρ 1 Vertical center plane Ρ 2 Vertical center plane 10 Granulation unit 110 Granulation unit 12 Slag remover 12, Slag remover 124 Intermediate transfer zone 125 Intermediate runner end 126 Downstream exit Zone 127 Furnace floor 128-1 Outlet channel 128-2 Outlet channel 128-3 Outlet channel 129 End of channel 130 Dividing zone 132 Tundish 134 Internal overflow 136 Buffer tank 138 Receiving tank 14 Main channel 14, the main flow channel 140-1 - discharge nozzle 140-2 discharge nozzle 140-3 discharge nozzle 142 overflow tank 144-1 nozzle 144- -2 nozzle 144- -3 nozzle 201114915 146 support shaft 147 granulation tank 16 Blast furnace 20 runner structure 210 granulation unit 22 upstream inlet zone 224 intermediate transfer zone 226 downstream exit zone 227 furnace front floor 228-1 outlet flow channel 228-2 outlet flow channel 228-3 outlet flow channel 229 runner end 230 split zone 24 Intermediate transfer area 244-1 Nozzle 244-2 Nozzle 244-2 Nozzle 246 Support shaft 247 Granulation tank 252 Y-shaped flow path section 254 Y-shaped flow path section 256 Y-shaped flow path section 258 Y-shaped flow path section 26 under Branch outlet region 261 263 262 Main branch portion 264 of the wedge 27 force the dewatering unit 201,114,915,270,272 runner steel support frame member