TW201114372A - Embedding method for chlorophyll - Google Patents

Embedding method for chlorophyll Download PDF

Info

Publication number
TW201114372A
TW201114372A TW98135038A TW98135038A TW201114372A TW 201114372 A TW201114372 A TW 201114372A TW 98135038 A TW98135038 A TW 98135038A TW 98135038 A TW98135038 A TW 98135038A TW 201114372 A TW201114372 A TW 201114372A
Authority
TW
Taiwan
Prior art keywords
chlorophyll
embedding
group
wall material
drying
Prior art date
Application number
TW98135038A
Other languages
Chinese (zh)
Inventor
Chi-Ching Yang
jian-bin Lai
Ming-His Lu
Ya-En Chou
Original Assignee
Univ Nat Pingtung Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Pingtung Sci & Tech filed Critical Univ Nat Pingtung Sci & Tech
Priority to TW98135038A priority Critical patent/TW201114372A/en
Publication of TW201114372A publication Critical patent/TW201114372A/en

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

An embedding method for chlorophyll comprises: dissolving the chlorophyll in a solvent to form a solution; adding gel into the solution to obtain a gel solution; and drying the gel solution.

Description

201114372 六、發明說明: 【發明所屬之技術領域】 本發明係關於建立一種葉綠素之包埋方法。 【先前技術】201114372 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method of embedding a chlorophyll. [Prior Art]

早期色素來源,大都取自於動物、植物及礦物質,其 取這些天然物質當作天然色素使用,朗腦年科學: 利用人工合成的方法製造人工色素,人工合成色素 :鮮f二二色力強、穩定性佳、無臭無味、易溶於水和調 二Γ 成本低鱗特點。但是隨著社會的發展和 人們生H平的提南,以及科學技 成色素都無法提供人體營養物 ;=以期食用人工合成色素危害 赠開始變等嚴重後果。因此,西方有 限制或禁止使用合成色素,與此同時,人 城色素越來越感興趣,特別是不少食用天然色 二之㈣或藥理作用’因而更增加了人們的安 天:::天然色素的研究和應用也曰益增多。 值,有類繁多,色澤自然,不少品種兼有營養價 值有的遇具有藥療效果(如振子黃、 安全性a人們所信賴。但“ “、疋 源的食用色素,其品質不容易二 ==自:天然資 及加工處理過程的影響,有時會c、熱、氣以 -般會有價值大大降低督 二私的味道、價格高及色素穩定性不高,因 201114372 而八毛展和使用受到一定的限制秋 然不同的是,食用/廿…、色素,、口成色素截 的營養,甚至-定的寧^用有毒性’㈣還有一定 、 的条理作用。目前,開發研製天.然色辛, 勢。天然色素代替人工合成色素已經成爲食品業的發展趨 由於4菜中昌含綠色天缺色专 :=:被作—、:=(:=常 使蔬菁後’便直接熱風乾燥, 係可作為天韻綠,該蔬菜粉 菜,會高溫破壞風乾燥蔬 也不溶於水,而色’對光、熱及氧氣極不安定, 形成降解產物,使加工及貯藏過程中受到破壞裂解 佳品質下降。若顏色產生變化,導致外觀呈色不 食品上的應用性,殊^、色素的不穩定性,而限制了其於 -步開發穩定葉綠基於上述,其有必要進 【發明内容】 本發明倾供1魏素之包财法 固態化的穩定性為之目的。 钗回茱、、,彔素於 本發明次-目㈣提供 低外界環境對葉綠素顏色之影響"匕埋方法,以降 外目的係提供-種葉綠素之包埋方法,俘可以 立曰加茱、‘彔素的貯藏穩定性者。 、了乂 201114372 根據本發明一種葉綠素(chlorophyll)之包埋方法, 係包 含 ' '奋解步驟,係使葉綠素均句溶解於一溶劑中,以步 j此口冷/夜,一壁材添加步驟,係於該混合溶液中添加 土材以形成—膠體溶液;及一乾燥步驟,係用 膠體溶液。 从無該 【實施方式] 易懂為、雜及伽能更明顯 作詳細說=之紐貫施例’並配合所附圖式’ 凊翏照第1圖所示,本發明之葉綠素之包埋 卜溶解步驟S卜-壁材添加步驟S2及一乾燥牛驟:包 该溶解步驟S1争 ,、乂驟S3。 一、θ 係使茱,,彔素均勻〉谷解於一溶劑中, =二溶t該壁材添加步驟S2係於該混合溶液中^成 材形成一膠體溶外、加壁 固能仆,π α、 木步驟S3,使該膠體溶、发 貯藏測試。 卫取如樣囊茱綠素進行 、葉綠素之包埋方法步驟 溶解步驟S1 : 5亥溶解步驟S1係將葉綠♦始 詳言之,太每A/ “ 素句勻〉谷解於一溶劑中。* ,=之=:::選擇為蔬菜,再: 於該溶劑中,形成—混合溶液。々之某綠素均勻溶解 葉,較佳菜係選擇為甘藉 除射·上__,再選 201114372 擇以彿水川燙30秒至6〇秒 * 使酵素不活化且益法降 4青趣射料内之酵素, 將再將-溶劑加:該甘匕=内,營養物質。接著再 力口入的水量係選擇為該甘藉=劑較佳係選擇為水,且 例係於10毫升水中加入^里之20% ’例如,本實施 葉中所含之葉綠素均、,再經均質使該甘藷 夜。該甘藷葉之料去Γ 中,進而形成該混合溶 合溶、;;’、已均勻分散於該混合溶液中,$、、β //夜係為—芯材,以與壁材添加步驟S2之辟t 違而共同形成微膠囊。 ’、 土材結合之, 壁材添加步釋S2 : =發明之壁材添加步驟幻係取 作為芯材,並於該-合溶液中添加壁= 二混係選擇將-預定比例之』: 料,主^由m㈣為形成微膠囊之外部成膜材 精: 纖維素、麥牙糊精、環狀糊 以麥芽^/ _之鱗。本發明之較佳實施例係選擇 辟=糊精、阿拉鱗及卡特蘭勝之混合物做為微缪囊的 :材’該混合溶液與該壁材之混合比例係較佳選擇為混合 〇谷液:麥芽糊精:阿拉伯膠:卡特蘭膠:飲用水以6 ·] · —〇·3 . 2較佳比例混合,例如,本實施例係分別選擇混 S溶液60毫升、麥芽糊精10毫克、阿拉伯膠7毫克、卡 特蘭膠3毫克及飲用水2〇毫升,以形成一朦體溶液,以於 诶績步驟中使該膠體溶液形成一微膠囊之型態。 取4該膠體溶液後便可直接進行該乾燥步驟S3,或者 2〇Ui4372 再如-均質步驟,該均f步驟之均質條 為1〇_哪,15秒,冷卻1分鐘,直到完全均質,、节均 質步驟可使該膠體溶液内成份更微小細緻且乂 1 高該微膠囊之包覆性。 J刀佈’ k 乾燥步驟S3 : 本發明之乾燥步驟S3係將該膠體溶液經 ^ S2 乾燥方式财噴霧乾燥法、噴料卻她 乾^ 覆法、空氣料包覆法、流動床包 ::…佳實施例係選擇熱風噴霧乾燥法,該乾 ^皿度係教佳選擇為進口溫度⑽。c,出口 萃乙 料速度為每分鐘5.5毫 又 NL/h(每小時正常 置控制為綱 於本發明之較佳麻工亂里)’该乾燥條件並不受限 一二 λ施例之乾燥條件。 之該S3、’使得_2切㈣_驟S1 内部芯材形成該微膠囊。如此,該微膠囊可保護 影響,於是該;=材^質不被外界環境 該微膠囊内,函少、 s養成伤及葉綠素都將被保護於 壁材製成之汽脱^ ’本發明之葉綠素包埋方法便可透過由 綠素。些葉綠素之成分’進而穩定該葉 該微膠囊葉綠♦於適當時機下破壞壁材,釋放芯材。取得 壁材保護於^亍色素變化_,證實將葉綠素被 二'經本^、内’可増加葉綠素的色素穩定性。 測試 明方法所製備之微膠囊葉綠素的色素變化 201114372 為驗證本發明之葉綠素包埋方法確實可提升葉綠素 之穩定性’錢行色素變化測試。該色素變化測試係ς上 述製備條件完成之該微膠囊葉綠素設為一微膠囊化組,以 下稱為微膠囊化組,包裝於可透枝封之玻她,瓶内含 有二氧化矽乾燥劑,於不同貯藏條件下測試該微膠囊組之 葉綠素色素變化。該貯藏條件包含是否避光、不同貯藏時 間及不同貯藏溫度等條件,並測試葉綠素色素的保留率了 色澤及抗氧化能力之變化;另設有一控制組(未微膠囊化之 葉綠素)’以下稱為控制組,與該微膠囊化組比較色素保留 率、色澤變化及抗氧化能力測試,測試有無微膠囊化對葉綠 素變化之影響。 〜 色素保留率試驗: 分別取該控制組(未微膠囊化之葉綠素)及該微膠囊化 組(本發明該微膠囊葉綠素),貯藏於避光及自然光條件 下,分別給予室溫處理及4。〇處理後,測試葉綠素保留率, s亥葉綠素保留率測試方法如下所述: 取存放於不同貯藏條件下之該微膠囊化組丨克,並選 擇加入25 mL之80%丙_進行萃取得一葉綠素溶液,再以 濾紙(NO.l,ADVANTEC 90 mm)過濾該葉綠素溶液並定 量至50 mL後’得最終一微膠囊化組之葉綠素萃取液,亦 取該控制組進行上述之萃取,得一控制組之葉綠素萃取 液。分別測定該微膠囊化級之葉綠素萃取液及該控制組之 葉綠素萃取液於波長647及664 nm時之吸光值,並以下列 公式計算得一貯藏後葉綠素之總含量。 201114372Most of the early pigment sources are taken from animals, plants and minerals. These natural substances are used as natural pigments. The science of the brain is used to produce artificial pigments by artificial synthesis. Synthetic pigments: fresh fructose Strong, stable, odorless, tasteless, soluble in water and adjustable in temperature. However, with the development of society and the people's birth of H Ping, and the scientific and technical pigments can not provide human nutrients; = the serious consequences of the consumption of artificial synthetic pigments. Therefore, there are restrictions or prohibitions on the use of synthetic pigments in the West. At the same time, people's pigments are becoming more and more interesting, especially in the consumption of natural color II (4) or pharmacological effects, thus increasing people's peace::: natural The research and application of pigments has also increased. Values, there are many kinds, the color is natural, many varieties have both nutritional value and some have the effect of medicine (such as vibrator yellow, safety a people trust. But ",, Wuyuan food color, its quality is not easy == From: the impact of natural resources and processing, sometimes c, heat, gas will have a value that greatly reduces the taste of the two private, high price and low pigment stability, due to 201114372 and the eight hair exhibition Different from the use of certain restrictions, the consumption of food / 廿 ..., pigment, and the pigmentation of the mouth pigmentation, and even the use of toxic ^ (four) has a certain degree of structure. Currently, development Tian. Ranxin, potential. Natural pigment instead of synthetic pigment has become the development trend of the food industry due to 4 dishes in the Changchun green day lack of color: =: was made -, : = (: = often make the vegetable after the ' It is directly dried by hot air, which can be used as a natural rhyme. The vegetable powdered vegetables will destroy the wind and dry vegetables and are not soluble in water. The color 'is extremely unstable to light, heat and oxygen, forming degradation products, making processing and storage process. The quality of the damaged cleavage is degraded. If the color changes, the appearance of the color is not applied to the food, the instability of the pigment, and the stability of the pigment is limited to the development of the green leaf based on the above-mentioned development, and it is necessary to enter the invention. For the purpose of the stability of solidification of 1 Weisu's package method. 钗回茱,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - a method for embedding chlorophyll, which can be used for the storage stability of 彔 茱, '彔 。. 乂 201114372 包 包 14 14 14 14 14 14 14 14 14 14 14 14 14 14 乂 乂 乂 乂 14 chloro chloro chloro chloro chloro chloro chloro chloro chloro chloro chloro The chlorophyll is dissolved in a solvent, and the step is to add a soil material to the mixed solution to form a colloidal solution; and a drying step is to use a colloidal solution. From the absence of the [Embodiment], it is easy to understand, the miscellaneous and the gamma can be more clearly described in the detailed description of the method of 'in conjunction with the drawing', as shown in Figure 1, the embedding of the chlorophyll of the present invention Bulysis step S - Wall material addition step S2 and a drying bovine step: including the dissolution step S1, step S3. 1. The θ system makes 茱, the 彔 均匀 uniform> 谷 solution in a solvent, = two dissolved t the wall material The adding step S2 is formed in the mixed solution to form a colloidal dissolution, adding a wall solid energy servant, π α, and wood step S3, so that the colloid is dissolved and stored for storage test. The chlorophyll is carried out, and the chlorophyll is carried out. The embedding method step dissolving step S1: 5 ha dissolving step S1 is to start the leaf green ♦, too, every A / "pronunciation" is dissolved in a solvent. * , = ==:: Vegetables, then: In the solvent, form a mixed solution. The chlorophyll of the sputum dissolves the leaves evenly. The preferred cuisine is selected to be smuggled and removed. __, then select 201114372 to choose Foshuichuan for 30 seconds to 6 seconds. * If the enzyme is not activated and the enzyme is reduced to 4 enzymes in the green fun, the solvent will be added: the candied fruit = nutrients. Then, the amount of water to be injected is selected to be water, and the method is preferably selected as water in 10 ml of water, for example, the chlorophyll contained in the leaves of the present embodiment, and then The homogenization makes the sweet potato night. The sweet potato leaf material is removed from the crucible to form the mixed solution, and is uniformly dispersed in the mixed solution, and the $, , β, and the night are the core materials, and the wall material is added to the step S2. It is a violation of the common formation of microcapsules. ', combined with soil materials, wall material addition step release S2: = invented wall material addition step magic line as a core material, and add the wall in the - mixture solution = two mixed system selection will be - predetermined ratio of: The main ^ by m (four) for the formation of microcapsules of the outer film forming material: cellulose, wheat amygdino, ring paste with malt ^ / _ scales. In a preferred embodiment of the present invention, a mixture of dextrin, arsenic, and carterland is used as a microcapsule: a mixture of the mixture solution and the wall material is preferably a mixed solution of glutinous solution: Maltodextrin: Gum arabic: Cattle gum: Drinking water is mixed in a ratio of 6 ·] · 〇 · 3.2. For example, in this example, 60 ml of mixed S solution and 10 mg of maltodextrin are separately selected. 7 kg of gum arabic, 3 mg of cartland gum and 2 ml of drinking water to form a steroid solution to form the colloidal solution into a microcapsule form in the performance step. After taking the colloidal solution, the drying step S3 can be directly performed, or 2〇Ui4372 can be further as a homogenization step, and the homogenous strip of the step f is 1〇_, 15 seconds, and cooled for 1 minute until completely homogenized, The homogenization step can make the composition of the colloidal solution more minute and fine and the coating property of the microcapsule is high. J knife cloth 'k drying step S3: The drying step S3 of the present invention is a method of drying the colloidal solution by means of a dry cleaning method, a spray coating method, a dry coating method, an air material coating method, and a flowing bed package: The preferred embodiment is to select a hot air spray drying method, which is selected as the inlet temperature (10). c, the speed of the outlet extraction material is 5.5 millimeters per minute and NL/h (normally controlled every hour is the preferred trouble of the invention). The drying conditions are not limited by the drying of the application. condition. The S3, 'so that the _2 cut (four)_th S1 inner core material forms the microcapsule. In this way, the microcapsule can protect the influence, so that the material is not affected by the external environment, the microcapsule, the letter is less, the s is formed, and the chlorophyll is protected from the vaporization of the wall material. The chlorophyll embedding method can be transmitted by chlorophyll. Some of the chlorophyll components' further stabilize the leaf. The microcapsule leaf green ♦ destroys the wall material at an appropriate timing and releases the core material. The wall material was protected from the pigment change _, and it was confirmed that the chlorophyll was stabilized by the pigmentation of the chlorophyll. The pigment change of the microcapsule chlorophyll prepared by the method was tested. 201114372 To verify that the chlorophyll embedding method of the present invention can enhance the stability of chlorophyll, the test of pigmentation change. The pigment change test system is characterized in that the microcapsule chlorophyll is completed in the above-mentioned preparation conditions, and is referred to as a microencapsulation group, which is hereinafter referred to as a microencapsulated group, and the bottle contains a cerium oxide desiccant. The chlorophyll pigment changes of the microcapsule group were tested under different storage conditions. The storage conditions include conditions such as protection from light, different storage time and different storage temperatures, and test the retention of chlorophyll pigments in color and antioxidant capacity; another control group (not microencapsulated chlorophyll) For the control group, the pigment retention rate, color change and antioxidant capacity test were compared with the microencapsulated group to test whether the effect of microencapsulation on chlorophyll changes was observed. ~ Pigment retention rate test: The control group (not microencapsulated chlorophyll) and the microencapsulation group (the microcapsule chlorophyll of the present invention) were respectively stored under the conditions of being protected from light and natural light, and respectively subjected to room temperature treatment and 4 . After treatment, the chlorophyll retention rate was tested. The chlorophyll retention rate test method was as follows: The microencapsulation group was stored under different storage conditions, and 25 mL of 80% C was selected for extraction. The chlorophyll solution was filtered through a filter paper (NO.l, ADVANTEC 90 mm) and quantified to 50 mL, and then the chlorophyll extract of the final microencapsulated group was obtained, and the control group was also subjected to the above extraction to obtain a chlorophyll solution. Control group of chlorophyll extract. The microencapsulated chlorophyll extract and the chlorophyll extract of the control group were measured for absorbance at wavelengths of 647 and 664 nm, respectively, and the total chlorophyll content after storage was calculated by the following formula. 201114372

葉綠素 a (mg /g) ^11^25(^664)--2.55(^647)1^ KChlorophyll a (mg / g) ^11^25(^664)--2.55(^647)1^ K

1000 xPF1000 xPF

葉綠素b (mg/g)= fe^l〇i^lZ)r4-9lU664)lxFChlorophyll b (mg/g) = fe^l〇i^lZ)r4-9lU664)lxF

lOOOxPF ,綠素總含量(mg♦葉綠素a+葉綠素b .茶綠素80%丙酉同抽出液的 妒:甘藷葉粉重量(g) " 1 } 進行該微膠囊化組之葉綠, 量。葉綠轉胃+ 起始葉綠素之總令 職軸籠及祕膠囊化& 職後某綠素之總含量及 下列公式計算得之: 朱丁κ、,,心3里,你 葉綠素保留率(%)計算=雙菱查差^素之總含量____ 起始葉綠素之總含量xl00% 綠素=;:,率统計,結果如第2圖所示, 控===於❹藏下,較㈣ 素保留率從〇個以“ 臧於4°c時’該控制叙之聋 失’4 1個月損失47%,而該微膠囊化組則只 較佳實施例另取上述控制組及微膠囊 示,炒料腴真―至,皿“件進行測試,結果如第3圖 月士 Λ 、、1之葉料保留率比控伽佳,於第4 月時,趣㈣化組仍有約雜时;而= 201114372 於第2個月只剩8%葉綠素保留率,到第3個月就已經無葉 綠素保留率。 μ 由上述之色素保留率試驗得知,經本發明方 之微膠囊化葉綠素保留率條件明顯較佳,且較佳貯藏停件 為避光及4°C貯藏。 色澤變化:本發明較佳實施·取上述之該控制租之 葉綠素萃取液及該微膠囊化組之葉綠素萃取液,測試貯藏 於避光及自然光條件下,及給予室溫處理及代處理後之 色澤變化’係選擇使用色差儀(LA助,CDM_G8,lapan)測得 樣品Lab值,L值為明亮度(0〜100)數值越高表示越白亮,數 值越低表示色澤歧暗;a與b值絲彩度伽咖㈣,+a : 表不紅色度,-a:表示綠色度,+b :表示黃色度,_ b :表示藍 色度,測定前先以白色標準板炉8〇46,γ==818〇,z=9l况) 杈正’並以下述公式分別計算色相角度(細如㈣及彩度 (Chroma),共進行三次重複試驗。 又 色相角度stai^Cb/a) 彩度=(a2+b2)U2 一財藏於避光條件及不同溫度處理之結果如第4圖所 不’於4C貯藏4個月後,該控制組之色澤指標從〇51降至 〇三42 ’降幅18% ’而該微膠囊化組則沒有明顯降幅;於室溫貯 藏4個月後,該控做之色澤指標從Q51降至Q35,降幅 31/。’而邊微膠囊化組從〇·42降至〇 4〇,降幅5%,比較兩者 之幅度相差約6倍。 ^貯藏於自然光條件及室溫處理之結果如第5圖所示, «玄控制組之色澤指標於第3個月就降至〇,而該微膠囊化级於 201114372 第4個月從0.42降至0.32,降幅24%。 由上述之色澤變化試驗得知,色澤變化降幅較低者為 經本發明方法處理過之微膠囊化葉綠素,且較佳貯藏條件 為避光及4°C貯藏。 抗氧化能力測試:lOOOOxPF, total chlorophyll content (mg ♦ chlorophyll a + chlorophyll b. chlorophyll 80% 酉 酉 抽 抽 妒: sweet potato leaf powder weight (g) " 1 } The micro-encapsulation group of leaf green, amount. Leaf green to stomach + starting chlorophyll total command shaft cage and secret capsules & the total content of a green chlorophyll after occupation and the following formula calculated: Zhu Ding κ,,, heart 3, your chlorophyll retention rate ( %) Calculation = total content of Shuangling checksum ____ Total content of starting chlorophyll xl00% chlorophyll =;:, rate statistics, the results are shown in Figure 2, control === under sputum, compare (4) The retention rate of the primes is 47% of the loss of the control in the case of "臧 at 4 °C", and the microencapsulation group is only the preferred embodiment and the above control group and micro The capsules show that the fried oysters are really ―, and the dishes are tested. The results are as shown in Fig. 3, and the retention rate of leaf material is higher than that of control. In the fourth month, there is still about the interest group. Heterogeneous; while = 201114372 only 8% chlorophyll retention rate remained in the second month, and there was no chlorophyll retention rate by the third month. μ From the above pigment retention rate test, after the hair The chlorophyll retention rate of the microcapsules is obviously better, and the storage stoppers are better protected from light and stored at 4 ° C. Color change: preferred embodiment of the invention · taking the above-mentioned controlled chlorophyll extract and the micro The chlorophyll extract of the encapsulated group was tested and stored under the conditions of being protected from light and natural light, and the color change after treatment at room temperature and treatment was selected. The sample Lab value was selected by using a color difference meter (LA assist, CDM_G8, lapan). The L value is brightness (0~100). The higher the value, the brighter the color, the lower the value, the darker the color; the a and b values, the chromaticity of the gamma (4), +a: the table is not red, and the -a: indicates the greenness. , +b : indicates yellowness, _ b : indicates blueness, before the measurement, the white standard plate furnace 8〇46, γ==818〇, z=9l condition) 杈正' and calculate the hue angle by the following formula (As detailed as (4) and chroma (Chroma), a total of three repeated tests. Also hue angle stai ^ Cb / a) chroma = (a2+b2) U2 a hidden in the dark conditions and different temperature processing results as 4 Figure is not '4C after 4 months of storage, the color index of the control group decreased from 〇51 to 4242' decreased by 1 The microencapsulated group showed no significant decrease; after 4 months of storage at room temperature, the color index of the control decreased from Q51 to Q35, a decrease of 31/. The microcapsule group decreased from 〇·42 to 〇 4〇, a decrease of 5%, which is about 6 times the difference between the two. ^The results of storage in natural light conditions and room temperature treatment are shown in Figure 5. «The color index of the Xuan control group fell to 〇 in the third month, and the microencapsulation level fell from 0.42 in the fourth month of 201114372. To 0.32, a drop of 24%. It is known from the color change test described above that the lower the change in color tone is the microencapsulated chlorophyll treated by the method of the present invention, and the preferred storage conditions are dark and 4 ° C storage. Antioxidant ability test:

本發明較佳實施例係取該控制組之葉綠素萃取液及該 微膠囊化組之葉綠素萃取液,於貯藏於避光及自然光條 件’及給予室溫處理及4。(:處理後,測試將葉綠素微膠囊 化後’是否提升葉綠素的抗氧化能力,分別由測試 a,a-diphenyl-p-picrylhydrazyl ( DPPH )清除自由基能力 (%) 、Ferric-Reducing Antioxidant P〇wer (FRAP) (mmol/100g)及總酚含量(mg/1 〇〇g)。以下分別介紹實驗原理 及本發明之操作步驟: DPPH清除自由基能力(%)測定: DPPH自由基溶液在517·具有吸收波峰,當該 DPPH自纟基接受樣本巾抗氧化騎提供的電子合形成電 删. + AH —DPPH:H + A.),而使吸收料消失, ==齡中抗氧化劑清除自由基的能力,當 示氫的能力_,清除百分率越高。 =述^制組及該微膠囊化組之萃取液為樣品4此 入ImL新鮮配製雌丙酮溶液,振還 分鐘後,以分⑽計檢測在5π 吸 先值。以下列公式,得到清除效應百分率。長下 201114372 DPPH 清除百分率 L未加樣品控制組吸光值j x 100°/〇 FRAP測定: 利用樣品與鐵離子作用生成的普魯士藍為測定才t 標。樣品中的還原物質可將赤血鹽還原成黃血鹽,黃血二 再和三價鐵離子作用,形成普魯士藍,如下所示: K3Fe(CN)6 + sample — K4Fe(CN)6 + sampie_〇xide K4Fe(CN)6 + Fe3+ — Fe4〔 Fe(CN)6〕3 利用普魯士藍的生成量做為樣品還原過氧化物的能 力。取上述該控制組及該微膠囊化組之萃取液為樣品贫取 液0.04 mL,加入〇. 12 mL 80°/。丙酮與1.2 mL FRAP試劑均 勻震盪’於恆溫37°C下避光作用6分鐘後,以分光光度計 檢測593 nm吸光值。以FeS〇4.7H20溶液為標準品,綠製 標準曲線,換算樣品還原能力之濃度。當吸光值越高 示樣品的遥原力越強。 總酚測定: 係採磷鉬酸化複合物中,苯酚可以還原鉬,當樣品中 的苯齡環越多時,酚基與F〇lin_Ci〇calteau,s phenol試劑反 應,其中之多酚化合物之苯酚環,會還原羥基,作用後就 可以產生藍綠色複合物,其吸光值愈高,代表所含的多酚 類化合物愈多。取〇‘l mL之上述該控制組之萃取液及該微 膠囊化組之萃取液作為樣本與0.1 mL Folin-Ciocalteau,s ——12—— 201114372 phenol試劑混勻後,在室溫避光靜置5分鐘後,加入2 mL 15%Na2C03混勻。在避光的條件下靜置30 min,測在750 nm之吸光值。樣品總驗之含量以萃取物中每100 g甘藷葉 粉的乾重表示(mg /100 g)。以gallic acid當做標準品,並 繪製出標準曲線。 抗氧化能力測試結果如表一所示: 表一、抗氧化能力測試 避光 … 貯藏溫度貯藏時間DPPH清除自由基能FRAP 總酚含量 (°C) (月) 力」%)_(mmol/100 g) (mg/100 g) 96.7±0.3 150.5 士 0.3 7.32±0.04 83.5±0.3 119.5±1·5 5.69±0.08 67.5±0.3 78_1±0.8 3.96±0.11 51·6±0·4 52.2±0.6 2.52±0.04 40.3±0.3 41.8±0.4 2.05±0.05 81.3±0·3 57·3±0·7 3.17±0.03 79.7±0.4 54.7±0.3 2.77 士 0.08 75·4±0.3 52.6 士 0_9 2.63±0.07 70.6±0.9 49.5±0.6 2.36±0.04 67.7±0.4 45.9±0.7 2.25±0.01 ο 1234 ο 1234 0 12 3 40 12 3 4 ο 12 3 40 1234 96.7±0.3 150.5 士 0_9 7.32 士 0.05 72.4±0.3 82.2±0.9 4.61±0.04 53.9±0.7 57.9 士 1.4 2.95±0.03 38.4±0.1 34.1±0·4 1.86±0.03 31·7±0_3 26.8±0.4 1·53±0_08 81.3±0.1 57.3±0.7 3.17±0·08 72.4 士 0.1 49·6±0_1 2·34±0.04 65·8±0_6 43.4±0.8 1.98±0.05 58_6 士 0.3 39.2±0.4 1_79 士 0.05 55_1±0·3 36·1±0.3 1.58±0.01 96.7±0.3 150.5±0.5 7.32±0 32.7 士 0.4 34.8 士 0.8 1.96±0.04 9.5±0·6 13.3 士 0.2 0.74±0.02 non-detect 4.5±0.1 0·18±0_02 non-detect non-detect non-detect 81.3±0.4 57.3±0.4 3.17±0.01 67.5±0.5 45.4±0.4 2.27 士 0.08 59·8±0‘1 42.3±0.3 1.89±0.03 50.7±0.4 38.7±0.7 1.68±0.04 43_5 士 0.1 34.1±0.2 1.35±0.01 控制組 (4°〇) 微膠囊化組 (4°〇) 控制組 (室溫) 微膠囊化組 (室溫) 自然光 控制組 (室溫) 微膠囊化組 (室溫) —13 — 201114372 由表一結果得知,在避光貯藏條件下,該控制組在貯 藏期間,DPPH清除自由基能力從〇個月到4個月由96.7% 降至40.3% ’降幅為41.7% ’該微膠囊化组則從81 3%降至 67.7%,降幅卻只有16.7% ’FRAP與總盼含量測定方面, s亥控制組在貝丁藏0個月到4個月,FRAP從150.5下降至 41.8 (mm〇l/100g),降幅72%,而該微膠囊化組則為57 3 降至45.9 (mm〇l/100g),降幅20% ;總酚含量則該控制組 在貯藏0値月到4個月,從7.32降至2.05,降幅72%,該 微膠囊化組則從3·17降至2.25 (mg/100g),降幅29%,且 該微膠囊化組之FRAP與總酚含量在貯藏第4個月皆高於 該控制組。 在自然光貯藏條件下,該控制組在貯藏第2個月, DPPH 清除率只剩下 9,5%、FRAP 為 13.3 (mmol/100g)、總 酚含量為0.74 (mg/100g),顯示幾乎已不具抗氧化能力, 到第4個月已完全測不到抗氧化能力;該微膠囊化組在貯 藏第4個月,DPPH清除率為43.5%、FRAP為34.1 (mmol/100g) '總酚含量為1.35 (mg/100g),仍保有抗氧化 能力。 综合上述色素變化測試結果得知,貯藏條件以「光」 對蔬菜粉之葉綠素影響最大,「溫度」次之,而經過經過本 發明方法處理過之微膠囊化葉綠素明顯可減缓光及溫度的 影響,不會因外界環境因素而影響,且將該微膠囊化葉綠 素在避光條件下,貯藏溫度為4Ϊ時,貯藏4個月,葉綠 素保留率最高達86%、色澤指標0.40、DPPH自由基清除 201114372 • 率 67.7%、FRAP 45.9 (mmol/lOOg)、總酚含量 2.25 ~ (mg/IGGg),表示經過本發明方法處理過之微膠囊化葉綠素 確實可提高貯藏穩定性。 μ 处綜合以上結果,不論在色素保留率、色澤變化及抗氧化 能^測試巾’得知有添加壁材職囊$綠素者,係能增 • 加葉綠素義色效果及增加葉綠素的貯藏穩定性。 " . 本發明之—種葉綠素之包埋方法,係將利用壁材形成 •=囊包覆葉綠素,可以提高葉綠素於S]態化的穩定性為 本發明之-種葉綠素之包埋方法,顧㈣微膠囊保 ^茱綠素,而達成使該葉綠素免受外界環境时改變其色 素顏色的功效。 本發明之-種葉綠素之包埋方法,葉綠素透過微膠囊 化的保護,可以增加其貯藏穩定性的功效。 、 雖然本發明已利用上述較佳實施例揭示,缺立並非用In a preferred embodiment of the present invention, the chlorophyll extract of the control group and the chlorophyll extract of the microencapsulated group are stored in a dark and natural light condition and subjected to room temperature treatment and 4 . (: After treatment, the test will increase the antioxidant capacity of chlorophyll after microencapsulation of chlorophyll, respectively, by testing a, a-diphenyl-p-picrylhydrazyl (DPPH) to scavenge free radicals (%), Ferric-Reducing Antioxidant P〇 Wer (FRAP) (mmol/100g) and total phenol content (mg/1 〇〇g). The experimental principle and the operation steps of the present invention are respectively described below: DPPH scavenging free radical ability (%) determination: DPPH free radical solution at 517 · With absorption peaks, when the DPPH receives the electrons provided by the anti-oxidation ride of the sample towel from the thiol group, it forms an electric deletion. + AH —DPPH:H + A.), and the absorption material disappears, == the antioxidant free in the age The ability of the base, when the ability to demonstrate hydrogen _, the higher the percentage of clearance. = The extract of the system and the microencapsulation group is sample 4, and 1 mL of freshly prepared estradiol solution is added. After a minute of shaking, the value of 5π is measured in minutes (10). The percentage of scavenging effect is obtained by the following formula. Long down 201114372 DPPH Clearance percentage L No sample control group absorbance value j x 100°/〇 FRAP measurement: Prussian blue generated by the action of sample and iron ions is used as the measurement. The reducing substance in the sample can reduce red blood salt to yellow blood salt, yellow blood and ferric ion to form Prussian blue, as shown below: K3Fe(CN)6 + sample — K4Fe(CN)6 + sampie _〇xide K4Fe(CN)6 + Fe3+ — Fe4[ Fe(CN)6]3 The amount of Prussian blue produced is used as a sample to reduce peroxide. The extract liquid of the above control group and the microencapsulation group was taken as 0.04 mL of the sample depleted liquid, and 〇. 12 mL 80°/ was added. Acetone and 1.2 mL of FRAP reagent were uniformly shaken. After 6 minutes of heat at 37 ° C, the absorbance at 593 nm was measured with a spectrophotometer. The FeS 〇 4.7H20 solution was used as a standard, and the green standard curve was used to convert the concentration of the sample reducing ability. The higher the absorbance value, the stronger the remote force of the sample. Determination of total phenol: In the phosphorus-phosphoric acid compound, phenol can reduce molybdenum. When the benzene ring in the sample is more, the phenol group reacts with F〇lin_Ci〇calteau, s phenol reagent, and the phenol of polyphenol compound The ring will reduce the hydroxyl group, and after the action, a blue-green complex can be produced. The higher the absorbance value, the more polyphenolic compounds are contained. The extract of the above control group and the extract of the microencapsulated group were taken as a sample and mixed with 0.1 mL of Folin-Ciocalteau, s-12-201114372 phenol reagent, and then kept at room temperature. After 5 minutes, add 2 mL of 15% Na2C03 and mix. Allow to stand for 30 min in the dark, and measure the absorbance at 750 nm. The total sample content is expressed as the dry weight per 100 g of sweet potato leaf powder in the extract (mg / 100 g). Use gallic acid as a standard and draw a standard curve. The results of antioxidant capacity test are shown in Table 1: Table 1. Antioxidant ability test and protection from light... Storage temperature Storage time DPPH scavenging free radical energy FRAP Total phenolic content (°C) (month) Force “%)_(mmol/100 g) (mg/100 g) 96.7±0.3 150.5 ± 0.3 7.32±0.04 83.5±0.3 119.5±1·5 5.69±0.08 67.5±0.3 78_1±0.8 3.96±0.11 51·6±0·4 52.2±0.6 2.52±0.04 40.3±0.3 41.8±0.4 2.05±0.05 81.3±0·3 57·3±0·7 3.17±0.03 79.7±0.4 54.7±0.3 2.77 士0.08 75·4±0.3 52.6 士0_9 2.63±0.07 70.6±0.9 49.5±0.6 2.36±0.04 67.7±0.4 45.9±0.7 2.25±0.01 ο 1234 ο 1234 0 12 3 40 12 3 4 ο 12 3 40 1234 96.7±0.3 150.5 士0_9 7.32 士 0.05 72.4±0.3 82.2±0.9 4.61±0.04 53.9±0.7 57.9士1.4 2.95±0.03 38.4±0.1 34.1±0·4 1.86±0.03 31·7±0_3 26.8±0.4 1·53±0_08 81.3±0.1 57.3±0.7 3.17±0·08 72.4 士 0.1 49·6±0_1 2· 34±0.04 65·8±0_6 43.4±0.8 1.98±0.05 58_6 ± 0.3 39.2±0.4 1_79 ± 0.05 55_1±0·3 36·1±0.3 1.58±0.01 96.7±0.3 150.5±0.5 7.32±0 32.7 ± 0.4 34.8 0.8 1.96±0.04 9.5±0·6 13.3 ± 0.2 0.74±0.02 non-detect 4.5±0.1 0·18±0_02 non-detect non-detect non-detect 81.3±0.4 57.3±0.4 3.17±0.01 67.5±0.5 45.4±0.4 2.27 士0.08 59 ·8±0'1 42.3±0.3 1.89±0.03 50.7±0.4 38.7±0.7 1.68±0.04 43_5 ± 0.1 34.1±0.2 1.35±0.01 Control group (4°〇) Microencapsulation group (4°〇) Control group (room Temperature) Microencapsulation group (room temperature) Natural light control group (room temperature) Microencapsulation group (room temperature) —13 — 201114372 It is known from Table 1 that the control group is under storage conditions during storage. The DPPH scavenging free radical capacity decreased from 96.7% to 40.3% from the month of the month to 4 months, and the decrease was 41.7%. The microencapsulation group decreased from 81.3% to 67.7%, but the decrease was only 16.7%. 'FRAP and total In terms of content determination, the shai control group decreased from 150.5 to 41.8 (mm〇l/100g) in the Bedding collection from 0 months to 4 months, a decrease of 72%, while the microencapsulation group was 57 3 To 45.9 (mm〇l/100g), the decrease was 20%; the total phenolic content was decreased from 7.32 to 2.05 in the control group from 7.0 to 2.0, a 72% decrease, and the microencapsulation group was 3.17 decreased to 2.25 (mg/100g), a decrease of 29%, and the FRAP and total phenolic content of the microencapsulated group were higher than the control group at the fourth month of storage. Under natural light storage conditions, the DPPH clearance rate was only 9.5%, FRAP was 13.3 (mmol/100g), and total phenol content was 0.74 (mg/100g) during the second month of storage. Without antioxidant capacity, no antioxidant capacity was detected by the fourth month. In the fourth month of storage, the DPPH clearance rate was 43.5%, and FRAP was 34.1 (mmol/100g) 'total phenolic content. It is 1.35 (mg/100g) and still retains antioxidant capacity. Based on the results of the above pigment change test, it was found that the storage condition had the greatest influence on the chlorophyll of the vegetable powder by "light", and the "temperature" was second, and the microencapsulated chlorophyll treated by the method of the present invention significantly slowed down the light and temperature. The effect will not be affected by external environmental factors, and the microencapsulated chlorophyll will be stored for 4 months when stored at a temperature of 4 ,, the chlorophyll retention rate is up to 86%, the color index is 0.40, DPPH free radicals. Clearing 201114372 • Rate 67.7%, FRAP 45.9 (mmol/lOOg), total phenol content 2.25 ~ (mg/IGGg), indicating that the microencapsulated chlorophyll treated by the method of the present invention can improve the storage stability. The above results are combined at μ, regardless of the pigment retention rate, color change, and antioxidant energy. The test towel is known to have the addition of a wall material, $ chlorophyll, which can increase the chlorophyll color effect and increase the storage stability of chlorophyll. Sex. " . The chlorophyll embedding method of the present invention is to form a chlorophyll-encapsulated method by using a wall material to form a chlorophyll, which can improve the stability of chlorophyll in the S] state. Gu (4) microcapsules protect chlorophyll, and achieve the effect of changing the color of the pigment when the chlorophyll is protected from the external environment. In the embedding method of the chlorophyll of the present invention, the protection of chlorophyll by microencapsulation can increase the storage stability. Although the present invention has been disclosed using the above preferred embodiments, the absence is not used.

2定本發明,任何熟習此技藝者在不脫離本發明之精神 ^圍之内’相對上述實施例進行各種更動與修改仍屬本 2所保護之技術,因此树明之贿範目當視後附 之申請專利範圍所界定者為準。 15 — 201114372 【圖式簡單說明】 第1圖:本發明之一種葉綠素之包埋方法步驟流程圖。 第2圖:本發明較佳實施例之有無微膠囊化,在避光條 件不同貯藏時間與不同溫度下,葉綠素保留率變化。 第3圖:本發明較佳實施例之有無微膠囊化,在自然光 條件不同貯藏時間與室溫下,葉綠素保留率變化。 第4圖:本發明較佳實施例之有無微膠囊化,在避光條 件不同貯藏時間與不同溫度下,葉綠素之色澤變化。 第5圖:本發明較佳實施例之有無微膠囊化,在自然光 條件不同貯藏時間與室溫下,葉綠素之色澤變化。 【主要元件符號說明】 S1溶解步驟 S2壁材添加步驟 S3乾燥步驟2 The present invention is not limited to the spirit of the present invention. Various modifications and modifications to the above embodiments are still protected by the present invention. Therefore, the stipulations of Shuming’s bribery are attached. The scope defined in the scope of application for patent application shall prevail. 15 — 201114372 [Simplified description of the drawings] Fig. 1 is a flow chart showing the steps of a method for embedding chlorophyll according to the present invention. Fig. 2 is a view showing the presence or absence of microencapsulation of the preferred embodiment of the present invention, and the chlorophyll retention rate changes under different storage times and at different temperatures. Fig. 3 is a view showing the presence or absence of microencapsulation of the preferred embodiment of the present invention, and the chlorophyll retention rate changes under natural light conditions at different storage times and room temperature. Fig. 4 is a view showing the presence or absence of microencapsulation of the preferred embodiment of the present invention, and the chlorophyll color change in different light storage conditions and at different temperatures. Fig. 5 is a view showing the presence or absence of microencapsulation of the preferred embodiment of the present invention, and the chlorophyll color change under natural light conditions at different storage times and room temperature. [Main component symbol description] S1 dissolution step S2 wall material addition step S3 drying step

—16 ——16 —

Claims (1)

201114372 七、申請專利範圍: - 1、一種葉綠素(chlorophyll)之包埋方法,包含下列步驟: 一溶解步驟,係使葉綠素均勻溶解於一溶劑中,以形成 一混合溶液; 一壁材添加步驟,係於該混合溶液中添加壁材,以形成 一膠體溶液;及 φ . 一乾燥步驟,係用以乾燥該膠體溶液,使該膠體溶液固 態化。 • 2、依申請專利範圍第1項所述之一種葉綠素之包埋方 法,其中,該壁材為碳水化合物。 3、 依申請專利範圍第2項所述之一種葉綠素之包埋方 法,其令,該壁材係選自於由阿拉伯膠、褐藻膠、澱粉、 纖維素、麥芽糊精、環狀糊精及卡特蘭膠所組成之族群。 4、 依申請專利範圍第1項所述之一種葉綠素之包埋方 法,其中,該乾燥步驟中,係以喷霧乾燥法、喷霧冷卻 乾燥法、冷凍乾燥法、鈣-褐藻膠包覆法、空氣懸浮包 ^ 覆法、流動床包覆法及共結晶法之一之方式乾燥該膠體 溶液。 5、 依申請專利範圍第1項所述之一種葉綠素之包埋方 法,其中,該溶劑係為水。 • 6、依申請專利範圍第1項所述之一種葉綠素之包埋方 • 法,其中,該壁材添加步驟中,於壁材添加後,另對該 膠體溶液進行一均質步驟,以形成該膠體溶液。201114372 VII. Patent application scope: - 1. A method for embedding chlorophyll, comprising the following steps: a dissolving step of uniformly dissolving chlorophyll in a solvent to form a mixed solution; a wall adding step, Adding a wall material to the mixed solution to form a colloidal solution; and φ. a drying step for drying the colloidal solution to solidify the colloidal solution. 2. A method of embedding chlorophyll according to claim 1, wherein the wall material is a carbohydrate. 3. A method for embedding a chlorophyll according to claim 2, wherein the wall material is selected from the group consisting of gum arabic, alginate, starch, cellulose, maltodextrin, and cyclodextrin. And the group of Catalan gum. 4. A method for embedding chlorophyll according to claim 1, wherein the drying step is a spray drying method, a spray cooling drying method, a freeze drying method, or a calcium-alginite coating method. The colloidal solution is dried by one of air suspension method, flow bed coating method and co-crystallization method. 5. A method of embedding chlorophyll according to claim 1, wherein the solvent is water. 6. A method for embedding chlorophyll according to claim 1, wherein in the step of adding the wall material, after the wall material is added, a homogenizing step is performed on the colloidal solution to form the Colloidal solution.
TW98135038A 2009-10-16 2009-10-16 Embedding method for chlorophyll TW201114372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98135038A TW201114372A (en) 2009-10-16 2009-10-16 Embedding method for chlorophyll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98135038A TW201114372A (en) 2009-10-16 2009-10-16 Embedding method for chlorophyll

Publications (1)

Publication Number Publication Date
TW201114372A true TW201114372A (en) 2011-05-01

Family

ID=44934057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135038A TW201114372A (en) 2009-10-16 2009-10-16 Embedding method for chlorophyll

Country Status (1)

Country Link
TW (1) TW201114372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111227257A (en) * 2020-01-15 2020-06-05 润科生物工程(福建)有限公司 Industrial method for refining spirulina protein peptide and spray drying microencapsulation
CN114766637A (en) * 2022-04-19 2022-07-22 大连工业大学 Color protection method of undaria pinnatifida product
CN116268393A (en) * 2023-04-13 2023-06-23 江苏大学 Natural chlorophyll microcapsule, preparation method thereof and flour product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111227257A (en) * 2020-01-15 2020-06-05 润科生物工程(福建)有限公司 Industrial method for refining spirulina protein peptide and spray drying microencapsulation
CN114766637A (en) * 2022-04-19 2022-07-22 大连工业大学 Color protection method of undaria pinnatifida product
CN114766637B (en) * 2022-04-19 2024-03-22 大连工业大学 Color protection method for undaria pinnatifida product
CN116268393A (en) * 2023-04-13 2023-06-23 江苏大学 Natural chlorophyll microcapsule, preparation method thereof and flour product

Similar Documents

Publication Publication Date Title
Pasukamonset et al. Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions
Negrão-Murakami et al. Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.)
Çam et al. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development
Moreno et al. Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics
Han et al. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity
JP5721702B2 (en) Spray dry dye composition, production method and use thereof
CN102524944A (en) Color regulator special for improving appearance of recombinant tobacco and preparation method of same
CN107259046A (en) Haematococcus pluvialis pressed candy with anti-oxidation function and preparation method thereof
Leandro et al. Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: Kinetic models, physicochemical characterization, and functional properties of biohybrids
Sakulnarmrat et al. Encapsulation of Melodorum fruticosum Lour. anthocyanin-rich extract and its incorporation into model food
TW201114372A (en) Embedding method for chlorophyll
Faria et al. Design and evaluation of microencapsulated systems containing extract of whole green coffee fruit rich in phenolic acids
Laureanti et al. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques
Sarabandi et al. Biological stabilization of natural pigment-phytochemical from poppy-pollen (Papaver bracteatum) extract: Functional food formulation
Rosales-Chimal et al. Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions
CN110915962A (en) Preparation method of microcapsule type instant black tea
TW201713352A (en) Sarcodia extract and extraction method thereof
EP2408319B1 (en) A process for obtaining insoluble substances from genipap-extract precipitates, substances from genipap-extract precipitates and their uses
Ahad et al. Effect of excipient wall materials on the development of ginger oleoresin microcapsules: assessing the physicochemical, antioxidant and structural properties
CN116869880A (en) Microcapsule containing green tea extract and preparation method and application thereof
Odabaş et al. Process for production of microencapsulated anthocyanin pigments from Rosa pimpinellifolia L. fruits: optimization of aqueous two-phase extraction, microencapsulation by spray and freeze-drying, and storage stability evaluation
TWI523657B (en) Rose petal extraction method
JP2003061593A (en) Propolis composition and its granular preparation
CN105663085B (en) A kind of Paeonol nano controlled-release preparation and preparation method thereof
CN108433000B (en) Sparassis crispa sobering-up beverage and preparation method thereof