TW201113935A - Semiconductor device and method for fabricating the same - Google Patents

Semiconductor device and method for fabricating the same Download PDF

Info

Publication number
TW201113935A
TW201113935A TW98133994A TW98133994A TW201113935A TW 201113935 A TW201113935 A TW 201113935A TW 98133994 A TW98133994 A TW 98133994A TW 98133994 A TW98133994 A TW 98133994A TW 201113935 A TW201113935 A TW 201113935A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
substrate
width
region
Prior art date
Application number
TW98133994A
Other languages
Chinese (zh)
Other versions
TWI441244B (en
Inventor
Chun-Hsien Lin
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW98133994A priority Critical patent/TWI441244B/en
Publication of TW201113935A publication Critical patent/TW201113935A/en
Application granted granted Critical
Publication of TWI441244B publication Critical patent/TWI441244B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device and a method for fabricating the same are described. A polysilicon layer is formed on a substrate. The polysilicon layer is doped with an N-type dopant. A portion of the polysilicon layer is then removed to form a plurality of dummy patterns. Each dummy pattern has a top, a bottom, and a neck arranged between the top and the bottom, where the width of the neck is narrower than that of the top. A dielectric layer is formed on the substrate to cover the substrate disposed between adjacent dummy patterns, and the top of each dummy pattern is exposed. Thereafter, the dummy patterns are removed to form a plurality of trenches in the dielectric layer. A plurality of gate structures is formed in the trenches, respectively.

Description

201113935 UMCD-2009-0030 3195 ltwf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體元件及其製造方法,且特 別是有關於一種無孔洞(void-free)之半導體元件及其製造 方法。 【先前技術】 著半導體元件之尺寸的日益縮小,閘極、结構的尺寸 也隨之縮小。因此,閘介電層的厚度也必須減小以避免元 件效能受到影響。一般來說,閘介電層的材料通常是氧化 矽,但以氧化矽為材料的閘介電層在厚度減小時往往會有 漏電流(leakage current)的現象。為了減少漏電流的發生, S去的作法疋以南介電常數(high dielectric constant,high-k) 材料取代氧化矽來作為閘介電層。在使用高介電常數材料 作為閘介電層的情況下,以多晶矽為材料的閘極會與高介 電帛數材料反應產生費米能階釘紫pinning), 因而造成啟始電壓(threshold voltage)增大而影響元件效 施。習知技術中的一種作法是以金屬層來作為閘極,亦即 熟知的功函數金屬(workfonctionmetal)層,以避免啟始電壓 增大並降低元件的阻值。 以一般具有高介電常數介電層與金屬閘極的閘極結 構來說,目前習知的一種作法是利用先形成虛擬圖案再形 成閘極結構的方式來進行。也就是說,先於基底上形成虛 擬圖案與層間介電層,接著移除此虛擬圖案,然後才在移 201113935 ——-2009-0030 31951twf.doc/n 除虛擬圖案後所形成的開口巾形成金屬閘極結構。 然在圖案化虛擬圖案材料層以形成虛擬圖案的過 壬’大餘刻製程的限制’通常形成的虛擬圖案會呈上窄 :。之梯形’使得其頂部侧邊與層間介電層表面的爽角約 ί圖案於虛,案呈上窄下寬之梯形,在移除虛 勝二口後曰I成上部寬度較窄的開口,因此在開口中以 杜二私填入金屬層時,金屬填溝(metalSaPfl11)的效果不 • 土 ’容紐生突懸(Gvefhang)㈣題而造成金屬層中有孔洞 (void)的$41 ’進而影響元件的可靠度與效能。 【發明内容】 ,有鑑於此,本發明提供一種半導體元件的形成方法, 在形成虛擬圖案之前先進行離子植入製程,以提升元件的 可靠度與效能。 本發明提供一種半導體元件’其閘極結構配置於頂部 開口較寬的溝渠中,因而具有無孔洞(v〇id_free)的金屬層。 • 本發明提出-種半導體元件的製造方法。首先,於基 底上形成多晶矽層。在多晶矽層中摻雜N型掺質。接著, 移除部分多晶矽層,以形成多個虛擬圖案(dummy Pattern) °各虛擬圖案具有頂部、底部及位於頂部與底部之 間的頸部’其中顒部的寬度小於頂部的寬度。之後,於基 底·上形成介電層,介電層覆蓋虛擬圖案之間的基底並暴露 出虛擬圖案之頂部。隨之,移除虛擬圖案,以於介電層中 形成多個溝渠。然後,於溝渠中形成多個閘極結構。 201113935 UMCD-2009-0030 31951twf.doc/n 在本發明之一實施例中,上述之多晶矽層摻雜N型掺 質濃度最高的深度與頸部實質上位於相同水平高度。 在本發明之-實施例中,上述之多晶石夕層^部所捧 雜之N型掺質濃度大於多晶矽層的頂部所摻雜之N型掺質 濃度。201113935 UMCD-2009-0030 3195 ltwf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a void-free Semiconductor component and method of manufacturing the same. [Prior Art] As the size of semiconductor components is shrinking, the size of gates and structures is also reduced. Therefore, the thickness of the gate dielectric layer must also be reduced to avoid the effects of component performance. Generally, the material of the gate dielectric layer is usually yttrium oxide, but the gate dielectric layer made of yttrium oxide tends to have a leakage current when the thickness is reduced. In order to reduce the occurrence of leakage current, the S removal method uses a high dielectric constant (high-k) material instead of yttrium oxide as the gate dielectric layer. In the case of using a high dielectric constant material as the gate dielectric layer, a gate with polysilicon as a material reacts with a high dielectric germanium material to produce a Fermi level pinning, thereby causing a threshold voltage. ) increase and affect the efficiency of the component. One of the conventional techniques is to use a metal layer as a gate, that is, a well-known workfonction metal layer, to avoid an increase in the starting voltage and to lower the resistance of the element. In the case of a gate structure generally having a high-k dielectric layer and a metal gate, one conventional practice is to use a method in which a dummy pattern is formed first to form a gate structure. That is to say, the dummy pattern and the interlayer dielectric layer are formed on the substrate, and then the dummy pattern is removed, and then the opening towel formed after the dummy pattern is removed by moving the 201113935 ——-2009-0030 31951 twf.doc/n Metal gate structure. However, the virtual pattern that is typically formed by patterning the virtual pattern material layer to form a virtual pattern over the limit of the process is generally narrow: The trapezoidal shape is such that the top side of the interlayer dielectric layer and the surface of the interlayer dielectric layer are in a virtual shape, and the case is a trapezoid having a narrow width and a wide width. When the metal layer is filled in the opening with Du Er private, the effect of the metal filling groove (metalSaPfl11) is not affected by the earth's Gvefhang (4) problem, which causes the hole in the metal layer to have a hole of $41'. Component reliability and performance. SUMMARY OF THE INVENTION In view of the above, the present invention provides a method for forming a semiconductor device, which is subjected to an ion implantation process to improve the reliability and performance of the device before forming a dummy pattern. The present invention provides a semiconductor device whose gate structure is disposed in a trench having a wide top opening and thus has a metal layer having no voids (v〇id_free). • The present invention proposes a method of manufacturing a semiconductor device. First, a polycrystalline germanium layer is formed on the substrate. The polycrystalline germanium layer is doped with an N-type dopant. Next, a portion of the polysilicon layer is removed to form a plurality of dummy patterns. Each of the dummy patterns has a top portion, a bottom portion, and a neck portion between the top portion and the bottom portion, wherein the width of the crotch portion is smaller than the width of the top portion. Thereafter, a dielectric layer is formed over the substrate, the dielectric layer covering the substrate between the dummy patterns and exposing the top of the dummy pattern. Accordingly, the dummy pattern is removed to form a plurality of trenches in the dielectric layer. Then, a plurality of gate structures are formed in the trench. 201113935 UMCD-2009-0030 31951 twf.doc/n In one embodiment of the invention, the polysilicon layer doped N-type dopant has the highest concentration at substantially the same level as the neck. In an embodiment of the invention, the polycrystalline N-type dopant concentration of the polycrystalline layer is greater than the N-type dopant concentration doped by the top of the polycrystalline layer.

在本發明之一實施例中,上述之摻雜N型掺質的濃度 自多晶矽層的頂部往底部漸增。 '' X 在本發明之一實施例中,半導體元件的製造方法更包 括於多晶石夕層中擦雜另一種N型掺質。 在本發明之一實施例中,上述之N型掺質為磷(p)、 銻(Sb)或砷(As)。 在本發明之一實施例中,當N型掺質為磷時,進行摻 雜所使用的能量大於1 Kev但小於20 KeV,且劑量大於 1E15 cm_2但小於 8E15 cm 2。 在本發明之一實施例中,上述之頂部與頸部之間距離 第一高度’頸部與底部之間距離第二高度,第一高度與第 二高度的比例實質上為2:1。 在本發明之一實施例中,上述之溝渠的頂部侧壁與介 電層表面之間的夾角大於90°。 在本發明之一實施例中,上述移除部分多晶矽層的方 法包括使用含鹵素的反應物進行钱刻。 在本發明之一實施例中,在移除虛擬圖案之前,更包 括於基底與虛擬圖案之間形成高介電常數層。 在本發明之一實施例中,半導體元件的製造方法更包 201113935 umcu-2〇〇9-〇〇3 0 31951 twf.doc/n 括於閘極結構之兩側的基底中形成源極/汲極區。形成源極 /汲極區的方法例如是進行離子植入製程或選擇性磊晶成 長製程。 在本發明之一實施例中,於形成虛擬圖案之後及形成 介電層之前,更包括於虛擬圖案之側壁上形成間隙壁。In one embodiment of the invention, the concentration of the doped N-type dopant is increased from the top to the bottom of the polycrystalline layer. ''X In one embodiment of the invention, the method of fabricating a semiconductor device further includes rubbing another N-type dopant in the polycrystalline layer. In an embodiment of the invention, the N-type dopant is phosphorus (p), antimony (Sb) or arsenic (As). In one embodiment of the invention, when the N-type dopant is phosphorus, the energy used for doping is greater than 1 Kev but less than 20 KeV, and the dose is greater than 1E15 cm_2 but less than 8E15 cm 2 . In an embodiment of the invention, the distance between the top portion and the neck portion is a distance between the neck portion and the bottom portion. The ratio between the first height and the second height is substantially 2:1. In one embodiment of the invention, the angle between the top sidewall of the trench and the surface of the dielectric layer is greater than 90°. In one embodiment of the invention, the above method of removing a portion of the polysilicon layer includes the use of a halogen-containing reactant for credit engraving. In an embodiment of the invention, a high dielectric constant layer is further formed between the substrate and the dummy pattern before the dummy pattern is removed. In an embodiment of the present invention, the method for fabricating a semiconductor device further includes a source/defect formed in a substrate on both sides of the gate structure by 201113935 umcu-2〇〇9-〇〇3 0 31951 twf.doc/n. Polar zone. The method of forming the source/drain regions is, for example, an ion implantation process or a selective epitaxial growth process. In an embodiment of the invention, after the dummy pattern is formed and before the dielectric layer is formed, a spacer is further formed on the sidewall of the dummy pattern.

本發明另提出一種半導體元件,其包括基底、閘極結 構以及源極/汲極區。基底上配置有介電層,且介電層中配 置有溝渠。閘極結構位於溝渠中,閘極結構包括依序配置 在基底上的高介電常數層、功函數金屬層及金屬層。源極/ 汲極區配置在閘極結構之兩侧的基底中。溝渠具有頂部、 底部及位於頂部與底部之間的頸部,頸部的寬度小於頂部 的寬度,且頬部的寬度小於或等於底部的寬度。 —,本發明之一實施例中,上述之頂部與頸部之間距離 ^一同度須邛與底部之間距離第二高度,第一高度與第 二而度的比例實質上為2:1。 在本發明之一實施例中,上述之溝渠的頂部側壁與介 電層表面之間的夾角大於90。。 =發明之—實施例中,丰導體元件更包括絕緣層, 配置在基底與高介電常數層之間。 在本發明之—實施例中,上述之源極/錄區為推雜區 。 導體元件更包括間隙壁, 元件的製造方法,於形成 在本發明之一實施例中,半 配置在閘極結構之側壁上。 基於上述,本發明之半導體 201113935 UMCD-2009-0030 31951twf.doc/n 多晶石夕層之後先進行離子植入製程’因此在移除部分的多 晶矽層時可以利用經摻雜的多晶矽層在不同的深度位置具 有不同的蝕刻速率,而形成具有頸部寬度小於頂部寬度的 虛擬圖案。如此一來,在將虛擬圖案移除並填入金屬層時, 不僅有利於快速移除虛擬圖案,且金屬填溝的效果能夠獲 得改善,不易形成孔洞,可有助於大幅提升元件的可靠度 與效能。 本發明之半導體元件的閘極結構配置在上部開口較 寬的溝渠中,因此閘極結構的金屬層中不會有孔洞,而能 夠具有良好的元件效能。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 【實施方式】 圖1A至圖1E是依照本發明之一實施例所繪示之半導 體凡件的製造流程剖面示意圖。須注意的是,以下所述之 半導體兀件的製造方法是以利用後閘極製程(gate last process)來形成互補式金屬氧化物半導體(CM〇s)元件為例 ^進行說明,其主要是為了使熟習此項技術者能夠據以實 知’/旦ί非用以限定本發明之範圍。本發明之方法也可用 以形成單-個金屬氧化物半導體(M〇s)元件。至於其他構 件如金屬閘極結構、摻雜區、間隙壁、中止層等的配置位 置、形成料及順序,均可依所屬髓領域巾具有通常知 識者所知的技術製作’而不限於下述實施例所述。 201113935 um^-2009-0030 31951twf.doc/n 請參照圖1A,提供一基底100。基底1〇〇例如是半導 體基底,如N型或P型之石夕基底、三五族半導體基底等。 基底100中具有第一區101a與第二區101b,其中第一區 101a與第二區l〇lb之間是以隔離結構1〇2相分隔。在一 實施例中’當第一區l〇la為p型金屬氧化物半導體 區時,第二區101b為N型金屬氧化物半導體(NM〇s)區。 隔離結構102例如是淺溝渠隔離結構。The present invention further provides a semiconductor device including a substrate, a gate structure, and a source/drain region. A dielectric layer is disposed on the substrate, and a trench is disposed in the dielectric layer. The gate structure is located in the trench, and the gate structure comprises a high dielectric constant layer, a work function metal layer and a metal layer which are sequentially arranged on the substrate. The source/drain regions are disposed in the substrate on either side of the gate structure. The trench has a top, a bottom and a neck between the top and the bottom, the width of the neck being less than the width of the top, and the width of the crotch being less than or equal to the width of the bottom. In one embodiment of the present invention, the distance between the top portion and the neck portion is the same as the second height between the bottom portion and the bottom portion, and the ratio between the first height and the second degree is substantially 2:1. In one embodiment of the invention, the angle between the top sidewall of the trench and the surface of the dielectric layer is greater than 90. . Inventive - In the embodiment, the abundance conductor element further comprises an insulating layer disposed between the substrate and the high dielectric constant layer. In an embodiment of the invention, the source/recording area is a tick zone. The conductor element further includes a spacer, and the method of fabricating the component, in one embodiment of the invention, is semi-disposed on the sidewall of the gate structure. Based on the above, the semiconductor 201113935 UMCD-2009-0030 31951twf.doc/n of the present invention is subjected to an ion implantation process after the polycrystalline layer, so that the doped polysilicon layer can be utilized differently when removing a portion of the polysilicon layer. The depth locations have different etch rates and form a dummy pattern having a neck width that is less than the top width. In this way, when the dummy pattern is removed and filled into the metal layer, not only the virtual pattern is quickly removed, but also the effect of the metal filling groove can be improved, and the hole is not easily formed, which can greatly improve the reliability of the component. And performance. The gate structure of the semiconductor device of the present invention is disposed in a trench having a wide upper opening, so that there is no hole in the metal layer of the gate structure, and good component performance can be obtained. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. 1A to 1E are schematic cross-sectional views showing a manufacturing process of a semiconductor body according to an embodiment of the present invention. It should be noted that the manufacturing method of the semiconductor device described below is described by taking a gate last process to form a complementary metal oxide semiconductor (CM 〇 s) device as an example, which is mainly To the extent that the skilled artisan is aware of the scope of the invention. The method of the present invention can also be used to form single-metal oxide semiconductor (M?s) devices. As for other components such as the metal gate structure, the doping region, the spacer, the stop layer, and the like, the arrangement position, the material and the order can be made according to the technique known to those skilled in the art, and are not limited to the following implementations. As stated in the example. 201113935 um^-2009-0030 31951twf.doc/n Referring to FIG. 1A, a substrate 100 is provided. The substrate 1 is, for example, a semiconductor substrate such as an N-type or P-type base, a tri-five semiconductor substrate, or the like. The substrate 100 has a first region 101a and a second region 101b, wherein the first region 101a and the second region 10b are separated by an isolation structure 1〇2. In an embodiment, when the first region 10a is a p-type metal oxide semiconductor region, the second region 101b is an N-type metal oxide semiconductor (NM〇s) region. The isolation structure 102 is, for example, a shallow trench isolation structure.

接著’於基底100上依序形成高介電常數(high k)材料 層1〇4與多晶石夕層1〇6。高介電常數材料層1〇4的材料例 如是介電常數大於4的介電材料,其可以為Ti〇2、、 Zr02、A1203、La203、Y2〇3、Gd2〇3、Ta2〇5 或上 2 組合。高介電常數材料層104的形成方法例如是進行$ 氣相沉積(CVD)製程。在-實施例中,於形成高介= 材料層104之前,也可以選擇性地在基底1〇〇表面上 絕緣材料層1G3’以增加高介電常數材料層1()4與基底⑽ 之間的附著力。絕緣材料層103的材料例如是氧 其形成方法例如是熱氧化法'多晶砍層應例如是 續預形成之虛擬圖案的材料層’料形成方法例進 化學氣相沉積製程。 疋适订 然後 選灯離子植入製程107,以於多晶 植入製程107例如是利用垂直植入: 方式i夕日日夕層106進仃全面性摻雜。N型換質 (f)、録,或坤(As)。分佈在多料層106 t的 漢度會隨者在多晶㈣1G6t不同的深度位置而改變-、 201113935 UMCD-2009-0030 31951twf.doc/n n _質濃度最高的深度是位於多晶石夕層 ^ 主底部漸增。在一實施例中,當多晶 的厚度約為·u_A且植人㈣型 使用約介於1 Kev與20KeV之間的適合能量 ^用^丨於聰W與祕咖-2之間的劑量來進行離 日程l〇7’而使N型捧f濃度最高的位置落在距多 曰日夕層106表面約300人至4〇〇人的位置。 声ιοί參3 1B’於多晶碎層106上形成圖案化硬罩幕 ;分的多曰層1〇8例如是具有開口’以暴露出 108 ^ 面。在此步财,® 硬罩幕層 幵口配置疋根據後續預形成閘極結構的位置所設 °署/^即被圖案化硬罩幕層108所覆蓋的多晶石夕層106位 ::後續預形成閘極結構的位置。圖案化硬罩幕層⑽ 祖^可選用與多晶石夕層1〇6具有不同钱刻選擇性之材 = ’/、例如是氮化石夕、氧化石夕或氮氧化石夕。圖案化硬罩幕 I 08的形成方法例如是先以化學氣相沈積法於基底100 3成1硬罩幕材料層(未綠示),之後再利用光阻材料 ,進仃微影製程、银刻製程移除部分硬罩幕材料層 成之。 夕曰之後’以圖案化硬罩幕層108為罩幕,移除暴露出的 石夕層106,以形成多個虛擬圖案11〇。接著,圖案化高 二包吊數材料層104與絕緣材料層1〇3,以形成高介 數層购與絕緣層叫其中高介電常數層1G4a與;; 201113935 um^-2009-0030 31951twf.doc/n f 1二例如是共同作為後續預形成之 層:虛擬圖案m具有頂部ma、頸部liGb及, 頸邛110b位於頂部11〇a與底部 _ 智许}认相如 ”坻°丨110c之間。頸部110b的 見度小於頂部110a的寬度,且頸部u ,,的寬度而形成類似漏斗狀的剖面:在」實二 與頸部11〇b之間距離第—高度Ηι,而頸 二之間距離第二高度H2時,第-高度 ♦ i 6 H2的比例實質上為2:1。移除部分多晶石夕層 成虛擬随11G的方法包括使用含鹵素的反應物 刻。-般使用乾雜刻移除部分多晶石夕層觸的電 ^體源例如是含_、含氣(C1)或含漠㈣自由基的氣 體0 特別說明的是,由於摻雜有N型掺質之多晶矽層1〇6 、钱刻速率會南於未經摻雜之多晶石夕材料的钱刻速率,且 蝕刻速率會隨著N型掺質濃度的提高而增加,因此多晶矽 層1〇6摻雜N型掺質濃度最高的深度與頸部u〇b實質上 鲁 會位於相同水平高度’如圖1B所示。 在上述實例中,是以類似漏斗形剖面的虛擬圖案u〇 來說明,但並不用以限定本發明之範圍。本領域具有通常 識者應了解’虛擬圖案也可以形成其他形狀,只要使其 頸部的寬度小於頂部的寬度即可。也就是說,可以利用控 制離子植入製程107的植入能量等參數來調整多晶矽層 1〇6中N型掺質的濃度分布,以使N型掺質濃度最高的水 平高度位置可實質上對應於後續所形成之虛擬圖案寬度最 11 201113935 UMCD-2009-0030 31951twf.doc/n 窄處的水平高度位置。圖2與圖3分別是依照本發明之另 一實施例所繪示之虛擬圖案的剖面示意圖。在圖2與圖3 中,與圖1B相同的構件則使用相同的標號並省略其/說明。 在一實施例中,利用控制離子植入製程107植入 掺質的能量等參數使多晶矽層106的底部所摻雜型掺 質濃度大於頂部所摻雜之N型掺質濃度。如圖2所示,^ 進行侧製程移除部分多晶碎層祕之後,虛擬圖案2〇() 的頸部200b的寬度例如是小於頂部2〇〇a的寬度,且頸部Then, a high dielectric constant (high k) material layer 1〇4 and a polycrystalline stone layer 1〇6 are sequentially formed on the substrate 100. The material of the high dielectric constant material layer 1〇4 is, for example, a dielectric material having a dielectric constant greater than 4, which may be Ti〇2, Zr02, A1203, La203, Y2〇3, Gd2〇3, Ta2〇5 or 2 combination. The method of forming the high dielectric constant material layer 104 is, for example, a vapor deposition (CVD) process. In an embodiment, the insulating material layer 1G3' may also be selectively applied on the surface of the substrate 1 to increase the layer of the high dielectric constant material 1 () 4 and the substrate (10) before forming the high dielectric material layer 104. Adhesion. The material of the insulating material layer 103 is, for example, oxygen. The method for forming the insulating material is, for example, a thermal oxidation method. The polycrystalline chopping layer should be, for example, a material layer formed by a pre-formed dummy pattern. The lamp ion implantation process 107 is then selected for the polycrystalline implant process 107, for example, by means of vertical implantation: mode i-day layer 106 is fully doped. N-type change (f), record, or Kun (As). The Handu distributed in the multi-layer 106 t will change with different depth positions of polycrystalline (tetra) 1G6t -, 201113935 UMCD-2009-0030 31951twf.doc/nn _ The highest concentration of mass concentration is located in the polycrystalline stone layer ^ The main bottom is increasing. In one embodiment, when the thickness of the polycrystal is about .u_A and the implanted (four) type uses a suitable energy between about 1 Kev and 20 KeV, the dose between Cong W and Mier-2 is used. The position from the schedule l〇7' is made such that the highest concentration of the N-type holding f falls on the surface of the multi-layer day 106 from about 300 to 4 people. A patterned hard mask is formed on the polycrystalline layer 106; the divided plurality of layers 1 〇 8 have, for example, openings </ RTI> to expose the 108 Å surface. In this step, the ® hard mask layer port configuration is set according to the position of the subsequent pre-formed gate structure, ie, the polycrystalline stone layer 106 covered by the patterned hard mask layer 108:: Subsequent pre-formation of the location of the gate structure. The patterned hard mask layer (10) can be selected from the polycrystalline stone layer 1〇6 with a different material selectivity = ‘/, for example, nitrite, oxidized stone or nitrous oxide. The method for forming the patterned hard mask I 08 is, for example, first forming a hard mask material layer (not shown in green) on the substrate 100 by chemical vapor deposition, and then using the photoresist material to enter the lithography process, silver. The engraving process removes a portion of the hard mask material layer. After the eve, the exposed hard mask layer 108 is used as a mask to remove the exposed sap layer 106 to form a plurality of dummy patterns 11 〇. Next, the high-encapsulation material layer 104 and the insulating material layer 1〇3 are patterned to form a high-intermediate layer-by-layer and insulating layer called a high dielectric constant layer 1G4a;; 201113935 um^-2009-0030 31951twf.doc /nf 1 2, for example, is a common pre-formed layer: the virtual pattern m has a top ma, a neck liGb, and the neck 邛 110b is located between the top 11 〇 a and the bottom _ 智 智 ■ 认 坻 丨 丨 c 110c The neck 110b has a smaller visibility than the width of the top portion 110a, and the width of the neck u, has a funnel-like cross section: the distance between the real two and the neck 11〇b is the height - Ηι, and the neck two When the distance between the second height H2 is reached, the ratio of the first height ♦ i 6 H2 is substantially 2:1. The method of removing a portion of the polycrystalline layer to form a virtual with 11G involves the use of a halogen-containing reactant. Generally, the use of dry etching to remove a portion of the polycrystalline stone layer contact source is, for example, a gas containing _, gas (C1) or containing (4) radicals. Specifically, due to the doping of the N type The doped polysilicon layer 1〇6, the engraving rate will be souther than the undoped polycrystalline stone material, and the etching rate will increase with the increase of the N-type dopant concentration, so the polycrystalline layer 1 The depth of the 〇6-doped N-type dopant is the highest and the neck u〇b is substantially at the same level as shown in Fig. 1B. In the above examples, the virtual pattern u〇 resembling a funnel-shaped cross section is illustrated, but is not intended to limit the scope of the invention. It is common to those skilled in the art that the virtual pattern can be formed into other shapes as long as the width of the neck is less than the width of the top. That is to say, the concentration distribution of the N-type dopant in the polycrystalline germanium layer 1〇6 can be adjusted by using parameters such as the implantation energy of the ion implantation process 107, so that the horizontal height position with the highest concentration of the N-type dopant can substantially correspond. The width of the virtual pattern formed in the following is 11 201113935 UMCD-2009-0030 31951twf.doc/n The position of the horizontal position in the narrow. 2 and 3 are schematic cross-sectional views showing a virtual pattern according to another embodiment of the present invention. In FIGS. 2 and 3, the same members as those in FIG. 1B are denoted by the same reference numerals and their description is omitted. In one embodiment, the doping dopant concentration at the bottom of the polysilicon layer 106 is greater than the concentration of the N-type dopant doped at the top by controlling the ion implantation process 107 to implant dopant energy and the like. As shown in FIG. 2, after performing the side process to remove a part of the polycrystalline layer, the width of the neck 200b of the virtual pattern 2〇() is, for example, smaller than the width of the top 2〇〇a, and the neck

的寬度實質上相等於底部2〇〇c的寬度,而形成上寬 下窄的剖面。 ' 在一貝施例中,利用控制離子植入製程1〇7植入n号二 掺質的能量等參數使摻雜N型掺f的濃度自多晶發層^ ,部往底部漸增。如圖3所示’在進行蝕刻製程移曰的 为夕晶矽層106之後,虛擬圖案3〇〇的頸部3〇%的寬产^ 如是小於頂部3_喊度,且頸部现的寬度例如^ ^底部30〇c的寬度,而形成由上往下逐漸縮小的梯型音The width is substantially equal to the width of the bottom 2〇〇c to form an upper width and a narrower profile. In the case of a shell, the energy of the doped N-type doping is increased from the polycrystalline layer to the bottom by using the parameters such as the energy of the n-type dopant in the control ion implantation process 1〇7. As shown in FIG. 3, after the etching process is performed, the width of the neck of the virtual pattern 3〇〇 is 3小于%, which is smaller than the top 3_ shouting degree, and the width of the neck is present. For example, ^ ^ the width of the bottom 30〇c, and form a ladder sound that gradually shrinks from top to bottom.

_ h 其他實施财還可關用在多晶石 =中摻雜多種N型掺質,來使多晶料觸不同的浴 二夕所需祕刻速率,而有助於虛擬圖案的形成。當会 中#_型掺㈣枝並*侷限於實衣 成了斎,^、要此夠藉由在多晶石夕材料t摻雜N型摻質兩 邛寬度大於頸部寬度的虛擬圖案 具有通常知識者可視製程需求進行4 此技綱 12 201113935 UMco-2009-0030 31951twf.doc/n 請繼續參照圖1C ’以虛擬圖案uo為罩幕,進行離 子植入製程’以於第—區1Qla的虛擬圖案iiq兩側的基底 100中形成叙摻雜區113a,並於第二區1〇lb的虛擬圖案 11〇兩側的基底1〇〇巾形成輕_區mb,則乍為源極汲 極延伸區。當第一區l〇la為PM〇s區時,輕摻雜區丨 為P型輕摻雜區;當第二區101b為NM〇s區時,輕摻雜 區113b為N型輕摻雜區。之後,於虛擬圖案11〇之側壁 上形成間隙壁m。間隙壁112的材料例如是氧化石夕、氮 化矽或氮氧化矽。間隙壁112的形成方式例如是先以化學 氣相沈積製程在基底100上形成一層間隙壁材料層(未繪 示)’再以非等向性蝕刻移除部份的間隙壁材料層。此外, 雖然圖1C中僅以單層結構來表示間隙壁112,間隙壁112 也可以是多層間隙壁結構。 接著,在位於第一區101a的虛擬圖案11()兩側的基 底100中形成源極/没極區114a,並在位於第二區i〇lb的 虛擬圖案110兩側的基底1〇〇中形成源極/汲極區U4b。 當第一區101a為PMOS:區時,源極/汲極區114a例如是p 型重摻雜區或矽化鍺(SiGe)磊晶層;當第二區i〇lb為 NMOS區時,源極/汲極區114b例如是n型重摻雜區。在 一實施例中’形成源極/汲極區114a、114b的方法例如是 進行離子植入製程,而於基底1〇〇中分別形成p型或N型 重摻雜區。在另一實施例中’形成源極/汲極區l14a的方 法例如是先移除位於第一區l〇la的虛擬圖案no兩側的部 分基底100 ’以形成溝槽(未繪示);隨之進行選擇性磊晶成 13 201113935 UMCD-2009-0030 31951twf.doc/n 長(selective epitaxy growth,SEG)製程以於溝槽中开)成矽化 鍺(SiGe)蠢晶層。石夕化鍺蟲晶層除了可作為電晶體 的源極/沒極區外’同時還可以增加PMOS電晶體之通道的 麼縮應力,使電洞移動的速度變快,進而增加PM〇s電晶 體的操作速度及效能。 在形成源極/汲極區114a、114b之後 1以選擇性地 於基底100上形成中止層116,以全面性覆蓋第一區1〇la 及第二區101b。中止層116的材料例如是氮化矽,且其形 成方法例如是進行化學氣相沉積製程。在一實施例中,中 止層116可以作為提供壓縮應力或拉伸應力至通道區的應 力層,並可藉由改變形成中止層116的製程參數使得中止 層H6產生適用於NM〇s電晶體之通道的拉伸應力,或者 產生適用於PMQS電晶體之通道的壓縮應力。然後,在基 底·上形成介電層118,以作為層間介電層_)。介^ f 118例如是全面性覆蓋基底⑽與虛擬圖案ιι〇 是氧切’且其形成方法例如是進行化 請^照1D,移除部分介電層118及 116,以暴露出虛擬_ 11〇的上 刀Y此增 ns及部分中止層116的方法例如二 =)或,製程。接著,移除虛擬丁圖;=製 成溝知120,並暴露出成高介電常數 y 虛擬圖案110的方法例如是齡、仏,/的表面。移除 用助㈣軸倾,其可以是利 201113935 一^2009-0030 31951twf.d〇c/n_ h Other implementations can also be used to dope a variety of N-type dopants in polycrystalline stone = to make the polycrystalline material touch different baths, and to help the formation of virtual patterns. When the #_ type doped (four) branches and * are limited to the actual clothes, it is sufficient to have a virtual pattern with a width greater than the neck width of the t-doped N-type dopant in the polycrystalline stone material. Usually the knowledge can be carried out according to the process requirements. 4 This program 12 201113935 UMco-2009-0030 31951twf.doc/n Please continue to refer to Figure 1C 'Using the virtual pattern uo as a mask to carry out the ion implantation process' in the first district 1Qla A dummy doping region 113a is formed in the substrate 100 on both sides of the dummy pattern iiq, and the substrate 1 wiper on both sides of the dummy pattern 11〇 of the second region 1〇1b forms a light_region mb, and the source is the source bungee. Extension area. When the first region l〇la is a PM〇s region, the lightly doped region is a P-type lightly doped region; when the second region 101b is a NM〇s region, the lightly doped region 113b is an N-type lightly doped region. Area. Thereafter, a spacer m is formed on the sidewall of the dummy pattern 11A. The material of the spacers 112 is, for example, oxidized stone, cerium nitride or cerium oxynitride. The spacers 112 are formed by, for example, forming a layer of spacer material (not shown) on the substrate 100 by a chemical vapor deposition process and then removing a portion of the spacer material layer by anisotropic etching. Further, although the spacers 112 are only shown in a single layer structure in FIG. 1C, the spacers 112 may be a multilayer spacer structure. Next, a source/nopole region 114a is formed in the substrate 100 on both sides of the dummy pattern 11() of the first region 101a, and is in the substrate 1〇〇 on both sides of the dummy pattern 110 of the second region i〇1b A source/drain region U4b is formed. When the first region 101a is a PMOS: region, the source/drain region 114a is, for example, a p-type heavily doped region or a germanium telluride (SiGe) epitaxial layer; when the second region i〇lb is an NMOS region, the source is The /drain region 114b is, for example, an n-type heavily doped region. In one embodiment, the method of forming the source/drain regions 114a, 114b is, for example, an ion implantation process, and forming a p-type or N-type heavily doped region in the substrate 1 分别, respectively. In another embodiment, the method of forming the source/drain region l14a is, for example, first removing a portion of the substrate 100' located on both sides of the dummy pattern no of the first region 10a to form a trench (not shown); A selective epitaxy growth process is then performed to form a doped layer of germanium telluride (SiGe) in a process of selective epitaxy growth (SEG). In addition to being used as the source/no-polar region of the transistor, the Shiyue Aphid crystal layer can also increase the stress of the channel of the PMOS transistor, so that the speed of the hole moves faster, thereby increasing the PM〇s electricity. The operating speed and performance of the crystal. After forming the source/drain regions 114a, 114b, a stop layer 116 is selectively formed on the substrate 100 to comprehensively cover the first region 1a and the second region 101b. The material of the stop layer 116 is, for example, tantalum nitride, and is formed by, for example, performing a chemical vapor deposition process. In an embodiment, the stop layer 116 can serve as a stressor layer that provides compressive stress or tensile stress to the channel region, and can cause the stop layer H6 to be applied to the NM〇s transistor by changing the process parameters for forming the stop layer 116. The tensile stress of the channel or the compressive stress that is applied to the channel of the PMQS transistor. Then, a dielectric layer 118 is formed on the substrate as an interlayer dielectric layer _). For example, the comprehensive cover substrate (10) and the dummy pattern ιι〇 are oxygen-cut and the formation method thereof is, for example, performing a photo-removal of the dielectric layers 118 and 116 to expose the dummy _ 11 〇 The method of increasing the ns and partially stopping the layer 116 by the upper blade Y is, for example, two =) or a process. Next, the dummy image is removed; = the method of forming the trench 120 and exposing the high dielectric constant y dummy pattern 110 is, for example, the surface of age, 仏, /. Remove with the help of (four) axis tilt, which can be profit 201113935 a ^2009-0030 31951twf.d〇c/n

在此說明的是,摻雜有N 摻雜的多城具有較高的_縣,、的多,通常會比未 多晶石夕酬速率更是遠高於摻雜有的 _速率。由於先前步驟已於多晶 形成虛擬圖案⑽因此在利用‘ ^ 時會有較㈣移除率,且不移除虛擬圖案U〇 曰矽姑粗易溝渠12〇中殘留剩餘的多 曰曰石夕材科。此外’於多砂層中摻雜N师質還可進一牛It is explained here that a multi-dot doped with N-doping has a higher _ county, more, and is generally much higher than the doped _ rate. Since the previous step has formed a dummy pattern (10) in the polycrystal, there will be a more (four) removal rate when using '^, and the remaining multi-stones remaining in the dummy pattern U〇曰矽Materials. In addition, doping N in the multi-sand layer can also enter a cow.

,=mpensate)在形成輕擦雜區ma、⑽、或源極/汲ς =14a、114b時所植人的ρ型掺f,而可有助於防止虛擬 圖案11G掺雜過多P型掺f而不易移除等問題。 明參照圖1E ’於第-區1Gla的溝渠12()表面順應性 地形成功函數金屬層122,並於第二區1〇lb的溝渠12〇表 面順應性地形成功函數金屬層124。功函數金屬層122、124 的材料包括能達到所需功函數的所有材料,其例如是, =mpensate) The p-type doping f implanted in the formation of the light rubbing area ma, (10), or the source/汲ς = 14a, 114b, which can help prevent the dummy pattern 11G from being doped with too much P-type doping f It is not easy to remove and other issues. Referring to Figure 1E', the surface of the trench 12() of the first region 1Gla is compliant with the topographical success function metal layer 122, and the surface of the second region 1 lbb is compliant with the topographical success function metal layer 124. The material of the work function metal layers 122, 124 includes all materials capable of achieving a desired work function, such as

TiN、TiAlx、TaC、TaCNO、TaCN 或 TaN。功函數金屬詹 122、124的形成方法例如是進行化學氣相沉積或物理氣相 沉積(PVD)製程。功函數金屬層122的材料與功函數金屬 層124的材料例如是不相同。在一實施例中,當第一區1〇la 為PMOS區時,功函數金屬層122的材料例如是TiN ;當 第二區101b為NM0S區時,功函數金屬層124的材料例 如是TiAlx。接著,於溝渠120中填入金屬層126,而分別 形成閘極結構130a、130b。金屬層126的材料例如是A1、 富含A1之TiAlx、Ti或其組合’且其形成方法例如是化學 氣相沉積法或物理氣相沉積法。 15 201113935 UMCD-2009-0030 3195 ltwf.doc/n •股而言,JPMOS電 u日日肢nr禺叨函數值約介於5 〇 至5·1 ev之間,NMOS電晶體所需功函數值約介於4 〇 至4.1 eV之間。閘極結構13〇a的功函數是由金屬層以 j下的功函數金制122所決定,閘極結構丨鳥的 數疋由金屬層126及其下的功函數金屬層124所決定 此,可以藉由調整功函數金屬層122、124的材料及厚产, 來達到PMOS電晶體及NM0S電晶體分別所需的功:數TiN, TiAlx, TaC, TaCNO, TaCN or TaN. The method of forming the work function metals Zhan 122, 124 is, for example, a chemical vapor deposition or a physical vapor deposition (PVD) process. The material of the work function metal layer 122 is different from the material of the work function metal layer 124, for example. In one embodiment, when the first region 1〇1a is a PMOS region, the material of the work function metal layer 122 is, for example, TiN; and when the second region 101b is the NMOS region, the material of the work function metal layer 124 is, for example, TiAlx. Next, the metal layer 126 is filled in the trench 120 to form the gate structures 130a and 130b, respectively. The material of the metal layer 126 is, for example, A1, TiAlx rich in Al, Ti or a combination thereof' and its formation method is, for example, a chemical vapor deposition method or a physical vapor deposition method. 15 201113935 UMCD-2009-0030 3195 ltwf.doc/n • In terms of stocks, the JRP electric u-day nr禺叨 function value is between 5 〇 and 5·1 ev, and the required work function value of the NMOS transistor It is between 4 4.1 and 4.1 eV. The work function of the gate structure 13〇a is determined by the metal layer 122 of the work function of the metal layer, and the number of gate structures of the ostrich is determined by the metal layer 126 and the work function metal layer 124 underneath. The work required for the PMOS transistor and the NM0S transistor can be achieved by adjusting the material and thickness of the work function metal layers 122, 124:

特別說明的是,由於虛擬圖案的頸部寬度小於頂部寬 度,因此在移除虛擬圖案之後所形成的溝渠12〇會呈現上 部開口較寬的結構,也就是溝渠120的頂部12〇a^壁與介 電層118表面之間的夹角θι例如是大於9〇。。如此一來, 亡部開口較寬的溝渠12〇不僅有利於快速移除虛擬圖案, 還可在开&gt;成金屬層126時具有良好的金屬填溝效果,而不 易形成孔洞。 以下將繼續以圖1Ε為例,對本發明之半導體元件的 結構加以說明。Specifically, since the neck width of the virtual pattern is smaller than the top width, the trench 12 formed after removing the dummy pattern has a structure in which the upper opening is wider, that is, the top 12 of the trench 120 is The angle θι between the surfaces of the dielectric layer 118 is, for example, greater than 9 〇. . In this way, the wider trench 12 亡 opening is not only advantageous for quickly removing the dummy pattern, but also has a good metal filling effect when the metal layer 126 is opened, and the hole is not easily formed. The structure of the semiconductor device of the present invention will be described below by taking FIG. 1 as an example.

請參照圖1Ε,本實施例之半導體元件包括基底1〇〇、 閘極結構130a、130b以及源極/沒極區114a、114b。基底 100中具有以隔離結構1〇2相分隔的第一區1〇1&amp;與第二區 l〇lb,第一區l〇ia例如是p型金屬氧化物半導體(pM〇s) 區時,第一區101b例如是N型金屬氧化物半導體(NMOS) 區。基底1〇〇上例如是配置有介電層,且介電層118 中配置有溝渠120。溝渠120具有頂部120a、頸部120b 16 201113935 um^-2009-0030 3l951twf.doc/n 及底部120c,頸部i2〇b位於頂部120a與底部i2〇c之間。 閘極結構13〇a例如是配置在第一區l〇la内,閘極結 構130a包括依序配置在基底100上的絕緣層l〇3a、高介 電常數層104a、功函數金屬層122及金屬層126。高介電 常數層104a與絕緣層i〇3a例如是共同作為閘極結構13〇a 的閘介電層。閘極結構130a的功函數例如是由金屬層126 及其下的功函數金屬層122所決定。源極/汲極區114a配 置在閘極結構13〇a兩側的基底1〇〇中。在一實施例中,還 • 包括輕摻雜區113a配置在閘極結構13〇a與源極/汲極區 114a之間的基底10〇中。 閘極結構130b例如是配置在第二區i〇ib内,閘極結 構130b包括依序配置在基底1〇〇上的絕緣層1〇3a、高介 電常數層104a、功函數金屬層124及金屬層126。高介電 丰數層104a與絕緣層i〇3a例如是共同作為閘極結構i3〇b 的閘介電層。閘極結構130b的功函數例如是由金屬層126 及其下的功函數金屬層124所決定。源極/汲極區H4b配 φ 置在閘極結構13〇b兩側的基底1〇〇中。在一實施例中,還 包括輕摻雜區113b配置在閘極結構i3.〇b與源極/汲極區 114b之間的基底10〇中。 承上述,閘極結構13〇a、130b例如是配置於溝渠12〇 中。絕緣層103a配置在溝渠120中的基底1〇〇表面上,而 咼介電常數層104a配置在絕緣層l〇3a的表面上。功函數 金屬層122與功函數金屬層124分別是順應性地配置在位 於第一區l〇la與第二區l〇lb的溝渠120表面上,且覆蓋 17 201113935 UMCD-2009-0030 31951twf.doc/n 高介電常數層104a。金屬層126則填滿溝渠12〇,並费 功函數金屬層122、124。 復 特別說明的是,溝渠120例如是上部開口較寬的結 構’亦即溝渠120的頂部120a侧壁與介電層118表面之間 的夾角Θ!例如是大於90%溝渠120的頸部12%的寬度: 小於頂部120a的寬度,且溝渠12〇的頸部12〇b的寬^ 如疋小於底部120c的寬度而形成類似漏斗狀的剖面。在一 實施例中,頸部120b到頂部120a之間相距的高度與頸部 f〇b到底部120c之間相距的高度比實質上為2:1。也就是 說’當溝渠120的深度約為50〇入至6〇〇人時,而溝渠 的頸部礙與頂部120a之間的高度差例如是3〇 至 400 A。 此外’本發明之半導體元件中的閘極結構除了形成在 上述類似漏斗狀的溝渠中外,本發明之半導體元件也可以 具有其他構形。® 4是健本發明之另—實施騎緣示之 半導體元件的剖面示意圖。在圖4中,與圖出相同的構 件則使用相同的標號並省略其說明。 一凊參照® 4 ’在另—實施例中,組成圖4所示之半導 件的主要構件與組成圖m所示之半導體元件的主要 致相同,然而兩者之_差異主要是在於溝渠的構 乂 ?極結構130a、130b例如是配置於溝渠400中。溝渠 400例如是上部開口較寬的結構,且其頂部側壁與介 電層118表面之間的夾角例如是大於9〇。。溝渠4〇 頸部4_的寬度例如是小於頂部_a的寬度,且溝渠4〇〇 201113935 UMCD-2009-0030 31951twf.doc/n 的頸部400b的寬度實質上約略相等於底部她的寬度, 而形成上寬下窄的剖面。 綜上所述,上述實施例之半導體元件及其製造方法至 少具有下列優點·· 1. 上述實施例之半導體元件的閘極結構配置在頸 部見度小於頂部寬度的溝渠中,因此填滿溝渠的金屬層中 不會有孔洞的產生,而能夠具有良好的元件效能。 2. 上述實施例之半導體元件的溝渠具有頸部寬度 2或等於底部寬度的料,在獨小溝渠底部寬度的同 N·此夠形成開口較寬的溝渠’因此並不會影響元件的關鍵 尺寸(critical dimension, CD)。 3. 上述貫施例之半導體元件的製造方法在形成虛 ,圖案之前,先在多晶矽層中摻雜N型掺質來區域性地提 向多晶矽層的蝕刻速率,因此可以形成頸部寬度小於頂部 寬度的虛擬圖案,而可有助於提升金屬填溝能力,而不易 形成孔洞。 • 4·上述實施例之半導體元件的製造方法在爹晶矽 =中摻雜N型掺質還可進一步補償製程中所植入的p型掺 質,因而能夠快速移除虛擬圖案而不會在溝渠中殘留多晶 石夕材料。 Ba 5*上述實施例之半導體元件的製造方法可以應用 在所有的後閘極製程中,特別是形成金屬閘極的後閘極製 私中,並能夠與現有的半導體製程相整合,製程簡單且可 有效改善元件可靠度。 19 201113935 UMCD-2009-0030 31951twf.doc/n 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術倾巾具有通常知識者 ^發明之精#範_,當可作些許之更動與潤飾,= X明之保護當視後附之申請專利細所界定者為準。 【圖式簡單說明】 圖1A至圖1E是依照本發明之一實施例所繪示之半導 體元件的製造流程剖面示意圖。 圖2與圖3分別是依照本發明之另—實施例所繪示之 · 虛擬圖案的剖面示意圖。 圖4是依照本發明之另一實施例所繪示之半導體元件 的剖面示意圖。 【主要元件符號說明】 100 :基底 101a :第一區 101b :第二區 102 :隔離結構 ® 103 :絕緣材料層 103a :絕緣層 104 :高介電常數材料層 104a :高介電常數層 106 :多晶矽層 107 :離子植入製程 20 201113935 ujvlcjj-2009-0030 3195 ltwf.doc/n 108 :圖案化硬罩幕層 110、200、300 :虛擬圖案 110a、120a、200a、300a、400a :頂部 110b、120b、200b、300b、400b :頸部 110c、120c、200c、300c、400c :底部 113a、113b :輕摻雜區 112 :間隙壁 114a、114b :源極及極區 • 116 :中止層 118 :介電層 120、400 :溝渠 122、124 :功函數金屬層 126 :金屬層 130a、130b :閘極結構 氏:第一高度 H2 :第二高度 • θι、02 :夾角 21Referring to FIG. 1A, the semiconductor device of the present embodiment includes a substrate 1A, gate structures 130a, 130b, and source/no-polar regions 114a, 114b. The substrate 100 has a first region 1〇1&amp; and a second region 10b separated by an isolation structure 1〇2, and the first region l〇ia is, for example, a p-type metal oxide semiconductor (pM〇s) region. The first region 101b is, for example, an N-type metal oxide semiconductor (NMOS) region. For example, a dielectric layer is disposed on the substrate 1 and a trench 120 is disposed in the dielectric layer 118. The trench 120 has a top portion 120a, a neck portion 120b 16 201113935 um^-2009-0030 3l951twf.doc/n and a bottom portion 120c, and the neck portion i2〇b is located between the top portion 120a and the bottom portion i2〇c. The gate structure 13A is disposed, for example, in the first region 10a, and the gate structure 130a includes an insulating layer 103a, a high dielectric constant layer 104a, and a work function metal layer 122, which are sequentially disposed on the substrate 100. Metal layer 126. The high dielectric constant layer 104a and the insulating layer i 〇 3a are, for example, a thyristor layer which serves as the gate structure 13 〇 a. The work function of the gate structure 130a is determined, for example, by the metal layer 126 and the work function metal layer 122 under it. The source/drain regions 114a are disposed in the substrate 1〇〇 on both sides of the gate structure 13〇a. In an embodiment, the light-doped region 113a is further disposed in the substrate 10A between the gate structure 13a and the source/drain region 114a. The gate structure 130b is disposed, for example, in the second region i〇ib, and the gate structure 130b includes an insulating layer 1〇3a, a high dielectric constant layer 104a, and a work function metal layer 124, which are sequentially disposed on the substrate 1? Metal layer 126. The high dielectric abundance layer 104a and the insulating layer i〇3a are, for example, a gate dielectric layer which serves as a gate structure i3〇b. The work function of the gate structure 130b is determined, for example, by the metal layer 126 and the work function metal layer 124 under it. The source/drain region H4b is provided with φ in the substrate 1〇〇 on both sides of the gate structure 13〇b. In one embodiment, the lightly doped region 113b is further disposed in the substrate 10A between the gate structure i3.〇b and the source/drain region 114b. In the above, the gate structures 13A and 130b are disposed, for example, in the trenches 12A. The insulating layer 103a is disposed on the surface of the substrate 1 in the trench 120, and the dielectric constant layer 104a is disposed on the surface of the insulating layer 103a. The work function metal layer 122 and the work function metal layer 124 are respectively compliantly disposed on the surface of the trench 120 located in the first region 10a and the second region 10b, and cover 17 201113935 UMCD-2009-0030 31951twf.doc /n High dielectric constant layer 104a. The metal layer 126 fills the trenches 12 and the work function metal layers 122, 124. Specifically, the trench 120 is, for example, a structure having a wide upper opening, that is, an angle between the sidewall of the top 120a of the trench 120 and the surface of the dielectric layer 118. For example, it is greater than 90% of the neck of the trench 120. The width is smaller than the width of the top portion 120a, and the width of the neck portion 12b of the trench 12〇 is smaller than the width of the bottom portion 120c to form a funnel-like cross section. In one embodiment, the height ratio between the neck 120b and the top 120a and the height between the neck f〇b and the bottom 120c are substantially 2:1. That is, when the depth of the trench 120 is about 50 〇 to 6 〇〇, the height difference between the neck of the trench and the top 120a is, for example, 3 至 to 400 Å. Further, the gate structure in the semiconductor device of the present invention may have other configurations in addition to the above-described funnel-shaped trench. ® 4 is a schematic cross-sectional view of a semiconductor device in which the present invention is implemented. In Fig. 4, the same components as those in the drawings are denoted by the same reference numerals and the description thereof will be omitted. In the other embodiment, the main components constituting the semiconductor shown in FIG. 4 are mainly the same as those of the semiconductor component shown in FIG. m, but the difference between the two is mainly in the trench. The structure of the pole structures 130a, 130b is disposed, for example, in the trench 400. The trench 400 is, for example, a structure having a wide upper opening, and an angle between the top side wall and the surface of the dielectric layer 118 is, for example, greater than 9 Å. . The width of the ditch 4〇 neck 4_ is, for example, smaller than the width of the top_a, and the width of the neck 400b of the ditch 4〇〇201113935 UMCD-2009-0030 31951twf.doc/n is substantially equal to approximately the width of the bottom. The upper and lower narrow sections are formed. In summary, the semiconductor device of the above embodiment and the method of fabricating the same have at least the following advantages: 1. The gate structure of the semiconductor device of the above embodiment is disposed in a trench having a neck visibility smaller than the top width, thereby filling the trench There is no hole in the metal layer, and it has good component performance. 2. The trench of the semiconductor device of the above embodiment has a material having a neck width of 2 or a width of the bottom, and the width of the bottom of the single ditch is the same as that of the N. This can form a wide open trench. Therefore, the critical dimension of the component is not affected. (critical dimension, CD). 3. The method for fabricating a semiconductor device according to the above embodiment is to dope the polycrystalline germanium layer with an N-type dopant to form an etch rate of the polysilicon layer in a layered manner before forming a dummy pattern, thereby forming a neck width smaller than the top portion. A virtual pattern of width that helps to improve metal filling ability without forming holes. 4. The manufacturing method of the semiconductor device of the above embodiment can further compensate the p-type dopant implanted in the process by the doping of the N-type dopant in the germanium 矽=, thereby being able to quickly remove the dummy pattern without Residual polycrystalline stone material in the ditch. Ba 5* The manufacturing method of the semiconductor device of the above embodiment can be applied to all of the back gate processes, particularly the gate forming of the metal gate, and can be integrated with the existing semiconductor process, and the process is simple and Can effectively improve component reliability. 19 201113935 UMCD-2009-0030 31951twf.doc/n Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any of the technical tissues has the general knowledge of the invention. Make some changes and refinements, and the protection of X Ming will be subject to the definition of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1E are schematic cross-sectional views showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. 2 and 3 are schematic cross-sectional views of a virtual pattern, respectively, according to another embodiment of the present invention. 4 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention. [Main component symbol description] 100: Substrate 101a: First region 101b: Second region 102: Isolation structure о 103: Insulating material layer 103a: Insulating layer 104: High dielectric constant material layer 104a: High dielectric constant layer 106: Polycrystalline germanium layer 107: ion implantation process 20 201113935 ujvlcjj-2009-0030 3195 ltwf.doc/n 108: patterned hard mask layer 110, 200, 300: virtual patterns 110a, 120a, 200a, 300a, 400a: top 110b, 120b, 200b, 300b, 400b: neck 110c, 120c, 200c, 300c, 400c: bottom 113a, 113b: lightly doped region 112: spacers 114a, 114b: source and polar regions • 116: stop layer 118: Electrical layer 120, 400: trenches 122, 124: work function metal layer 126: metal layer 130a, 130b: gate structure: first height H2: second height • θι, 02: angle 21

Claims (1)

201113935 UMCD-2009-0030 3I95Itw£doc/n 七、申謗專利範面: I· -種半導體树㈣造方法, 於一基底上形成一多晶梦層,· 在該多晶矽層中摻雜一 N型掺質; 各該些 該底部之間 案 产擬石夕層’以形成多貝個虛擬圖案 f擬圖案具有一頂部、一底部及位於該頂部 的-頭部’其中_部的寬度小於該' 以及 分別於該些溝渠中形成多個閘極結構。 2.如申請專利範圍第丨項所述之 晶嶋雜該N型掺質濃== 該頸部實質上位於_水平高度。 m衣度與 方、請專利範圍第1項所述之半導觀件的製造 於詨多:欲=晶矽層的底部所摻雜之該N型掺質濃度大 、以夕日日夕層的頂部所摻雜之該N型掺質濃度。 古沐4.甘ί申請專利範圍第1項所述之半導體元件的製造 底部漸増她前型掺質的濃度自該多㈣層的頂部社 、、5,.如申請專利範圍第1項所述之半導體元件的製造 方法,更包括於該多晶矽層中摻雜另一 Ν型掺質。 、、6.如申請專利範圍第1項所述之半導體元件的製造 方法’其中該Ν型掺質為磷(Ρ)、銻(Sb)或砷(As)。 22 201113935 UMUU-2009-0030 31951twf.doc/n 7.如申請專利範图窗 方法,其中當該N雜項所述之半導體元件的製造 介於i Ke讀20 KeV之門為臂時,進行摻雜所使用的能量 cm_2之間。 且劑量介於⑻與8E15 古*8’豆圍第1項所述之半導體元件的製造 方法,其找頂部與_部 ς 與該底部之間距離-第二高度,該第一高二= 的比例實質上為2:1。 门反,、成弗一间展 方法9·二圍第1項所述之半導體元件的製造 夾角大i 90。〜的頂部侧壁與該介電層表面之間的 古冰,it專利,圍第1項所述之半導體元件的製造 的反應物進賴刻。夕層的方奸括制—含函素 11.如申請專利範圍第1項所 方=除該些虛擬圖案之前,更包括== i虡擬圖案之間形成—高介電常數層。 _ 太本勺2,利範圍第1項所述之半導體元件的製造 =區 閘極結構之兩侧的該基底中形成-源極/ 13. 如申5月專利範圍帛12項所述之半導體元 造方法’其巾形賴源極級極區的方法包子 入製程或-選擇性蠢晶成長製程。 &amp;丁離子根 14. 如申請專利範圍第丨項所述之半導體树的製造 方法,於喊該些虛擬圖案之後及形成該介電層之前,更 23 201113935 UMCD-2009-0030 31951twf.doc/n 包括於各該些虛擬圖案之側壁上形成一間隙壁。 15,一種半導體元件,包括: 配 一基底,該基底上配置有一介電層,且 置有一溝渠; 該閘極結構包括依序配 一功函數金屬層及一金 一閘極結構,位於該溝渠中 置在該基底上的一高介電常數層 屬層;以及 源極/汲極區,配置在該閘極結構之兩側的該基底201113935 UMCD-2009-0030 3I95Itw£doc/n VII. Application for patents: I. - A semiconductor tree (4) method for forming a polycrystalline dream layer on a substrate, · doping a N in the polysilicon layer a type of dopant; each of the bottom portions of the matrix is formed to form a multi-shell virtual pattern, the dummy pattern has a top portion, a bottom portion, and a head portion at the top portion where the width of the portion is smaller than the ' A plurality of gate structures are formed in the trenches respectively. 2. The crystal doping as described in the scope of claim 2 is rich in the N-type dopant == the neck is substantially at the _ level. m clothing and square, please refer to the patent range of the semi-guided material produced in the first section: the thickness of the N-type dopant doped with the bottom of the crystal layer is large, on the top of the layer The N-type dopant concentration doped. Gu Mu 4. Gan 申请 申请 申请 申请 申请 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体The method of fabricating a semiconductor device further includes doping the polysilicon layer with another germanium dopant. 6. The method of manufacturing a semiconductor device according to claim 1, wherein the cerium-type dopant is phosphorus (strontium), antimony (Sb) or arsenic (As). 22 201113935 UMUU-2009-0030 31951twf.doc/n 7. A method of applying for a patented window, wherein the fabrication of the semiconductor component described in the N miscellaneous is performed when the gate of the 20 KeV gate is an arm The energy used is between cm_2. And the method of manufacturing the semiconductor device according to item (1) and (8) and 8E15, wherein the distance between the top portion and the _ portion ς and the bottom portion is the second height, and the ratio of the first height two = It is essentially 2:1. The door is reversed, and the Chengfu exhibition is a method. The manufacturing method of the semiconductor component described in the first item of the second method is the i 90. The ancient ice between the top side wall and the surface of the dielectric layer, it patent, the reactants for the manufacture of the semiconductor element described in the first item.方 的 — — — — 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. _ Taisho 2, the manufacture of the semiconductor device described in item 1 of the range = the source on both sides of the gate structure is formed - source / 13. The semiconductor described in the scope of the patent application 帛 12 The method of meta-fabrication's method of wrapping the source-polar region of the source into the process or the selective crystal growth process. &amp; Ion ion root 14. The method for fabricating a semiconductor tree as described in the scope of the patent application, after calling the dummy patterns and before forming the dielectric layer, further 23 201113935 UMCD-2009-0030 31951twf.doc/ n is formed on a sidewall of each of the dummy patterns to form a spacer. A semiconductor device comprising: a substrate on which a dielectric layer is disposed, and a trench is disposed; the gate structure includes a work function metal layer and a gold-gate structure, which are located in the trench a high dielectric constant layer on the substrate; and a source/drain region, the substrate disposed on both sides of the gate structure 其中該溝渠具有一頂部、一底部及位於該頂部盒該底 部之間頸部,該頸部的寬度小於該頂部的寬度,且該 頸部的寬度小於或等於該底部的寬度。 16·如申請專利範圍第15項所述之半導體元件,其中 該頂4與,部之間距離―第—高度,該頸部與該底部之 間距離-第二高度,該第—高度與該第 例實質 上為2:1。Wherein the trench has a top portion, a bottom portion and a neck portion between the bottom portion of the top box, the neck portion having a width smaller than the width of the top portion, and the width of the neck portion being less than or equal to the width of the bottom portion. The semiconductor component according to claim 15, wherein the distance between the top portion 4 and the portion is - the height, the distance between the neck portion and the bottom portion - the second height, the first height and the The first example is essentially 2:1. 1又如申請專利範圍第15項所述之半導體元件,其中 各該些溝渠㈣頂部#j壁與該介電層表面之_夾角大於 90〇。 18·如申凊專利範圍第15項所述之半導體元件,更包 括一絕緣層,配置在該基底與該高介電常數層之間。 I9·如申睛專利範圍第15項所述之半導體元件,其中 該源極/汲極區為一摻雜區或一磊晶層。 2〇.,如申請專利範圍第15項所述之半導體元件,更包 括-間隙壁,配置在該閘極結構之側壁上。 241 . The semiconductor device according to claim 15 , wherein an angle between the wall of the top of each of the trenches (4) and the surface of the dielectric layer is greater than 90 〇. The semiconductor device of claim 15, further comprising an insulating layer disposed between the substrate and the high dielectric constant layer. The semiconductor device of claim 15, wherein the source/drain region is a doped region or an epitaxial layer. The semiconductor component of claim 15, further comprising a spacer disposed on a sidewall of the gate structure. twenty four
TW98133994A 2009-10-07 2009-10-07 Semiconductor device and method for fabricating the same TWI441244B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98133994A TWI441244B (en) 2009-10-07 2009-10-07 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98133994A TWI441244B (en) 2009-10-07 2009-10-07 Semiconductor device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201113935A true TW201113935A (en) 2011-04-16
TWI441244B TWI441244B (en) 2014-06-11

Family

ID=44909853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98133994A TWI441244B (en) 2009-10-07 2009-10-07 Semiconductor device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI441244B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717032B (en) * 2018-09-28 2021-01-21 台灣積體電路製造股份有限公司 Method for manufacturing semiconductor device and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717032B (en) * 2018-09-28 2021-01-21 台灣積體電路製造股份有限公司 Method for manufacturing semiconductor device and semiconductor device
US11088262B2 (en) 2018-09-28 2021-08-10 Taiwan Semiconductor Manufacturing Co., Ltd. Radical etching in gate formation

Also Published As

Publication number Publication date
TWI441244B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
US10340191B2 (en) Method of forming a fin structure of semiconductor device
TWI518909B (en) Integrated circuit device and method for forming the same
US8643126B2 (en) Self aligned silicided contacts
TWI317171B (en) Pmos transistor with discontinuous cesl and method of fabrication
CN105428361B (en) Cmos device and its manufacturing method
TWI411109B (en) Semiconductor device and method for production of semiconductor device
US9917191B2 (en) Semiconductor devices and methods of manufacture thereof
TWI483399B (en) Semiconductor device having tipless epitaxial source/drain regions
US7737468B2 (en) Semiconductor devices having recesses filled with semiconductor materials
US10707334B2 (en) Reduction of fin loss in the formation of FinFETs
KR101482200B1 (en) Recessed drain and source areas in combination with advanced silicide formation in transistor
KR20090019693A (en) Strained semiconductor device and method of making same
US7884002B2 (en) Method of fabricating self aligned Schottky junctions for semiconductor devices
WO2012055143A1 (en) Transistor and manufacturing method thereof
US11031489B2 (en) Semiconductor device
JP2009523326A (en) Semiconductor transistor with expanded gate top
CN105470256B (en) Cmos device and its manufacturing method
CN103579314B (en) Semiconductor devices and its manufacturing method
TWI831110B (en) Semiconductor device and method
US6787425B1 (en) Methods for fabricating transistor gate structures
JP2007317796A (en) Semiconductor device and method of manufacturing the same
JP2009117621A (en) Semiconductor device and manufacturing method thereof
TWI261336B (en) A semiconductor device
JP4951950B2 (en) Semiconductor device and manufacturing method thereof
TW201113935A (en) Semiconductor device and method for fabricating the same