TW201113651A - Method for removing photoresist - Google Patents

Method for removing photoresist Download PDF

Info

Publication number
TW201113651A
TW201113651A TW98134490A TW98134490A TW201113651A TW 201113651 A TW201113651 A TW 201113651A TW 98134490 A TW98134490 A TW 98134490A TW 98134490 A TW98134490 A TW 98134490A TW 201113651 A TW201113651 A TW 201113651A
Authority
TW
Taiwan
Prior art keywords
photoresist
substrate
stripping step
item
photoresist stripping
Prior art date
Application number
TW98134490A
Other languages
Chinese (zh)
Other versions
TWI456361B (en
Inventor
Chin-Cheng Chien
Chan-Lon Yang
Chiu-Hsien Yeh
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098134490A priority Critical patent/TWI456361B/en
Publication of TW201113651A publication Critical patent/TW201113651A/en
Application granted granted Critical
Publication of TWI456361B publication Critical patent/TWI456361B/en

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A method for removing a photoresist is disclosed. First, a substrate including a patterned photoresist is provided. Second, an ion implantation is carried out on the substrate. Then, a non-oxidative pretreatment is carried out on the substrate. The non-oxidative pretreatment provides hydrogen, a carrier gas and plasma. Later, a photoresist-stripping step is carried out so that the photoresist can be completely removed.

Description

201113651 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種移除光阻的方法。特定言之,本發明 係關於一種先對基材進行非氧化性前處理以破壞光阻,進而 使得光阻容易被移除的方法。 【先前技術】 * 在半導體元件的製造過程中,經常使用微影技術,來將 一預定圖形轉移至基材上或對基材進行選擇性的處理。在此 過程中,通常會先在基材上形成一層厚度均勻的光阻材料 層。爾後,再利用曝光與顯影的技術,圖案化光阻材料層來 定義所需要的半導體元件佈局圖案。 光阻去除則是圖案化製程或選擇性處理中的最後的一 個步驟,其要求的是光阻必須完全去除乾淨,以確保後續製 春程的潔淨度。習知的方式大多都是以含氧的灰化(Ashing)製 程來進行乾式光阻剝除法(dry PR strip ),此即利用含氧的 電漿(oxygen plasma)來與由碳氫化合物構成的光阻材料反 應,進而加以移除,但需避免光阻材料與含氧電漿反應後殘 留灰粒(ash)的問題,而且此法容易消耗基材中的矽原料。 因此,現行的方式又有利用高溫的硫酸混合雙氧水 (sulfuric-peroxide mix, SPM ),以其所形成的卡羅酸(Caro’s acid)來完全氧化以有機化合物為基礎之光阻材料,稱為濕 201113651 式光阻剝除法(wet PR strip);於是光阻材料得以移除,同 時又能避免光阻材料層所覆蓋之各薄膜層或基材中矽原料 的消耗。 然而,某些半導體元件的製作步驟可能會改變圖案化光 阻材料層的性質,使得高溫的硫酸與雙氧水混合物無法符合 預期將光阻材料層完全自基材上移除。為了能順利移除光阻 材料層,勢必需要一種移除光阻的新穎方法,來達成此等目 的。 【發明内容】 本發明即在於提出一種移除光阻的新穎方法,既能夠順 利移除光阻材料層,還能夠同時兼顧到基材上多晶矽線路的 完整性。本發明移除光阻的新穎方法,具有突破傳統技術障 礙的優點,而適用於半導體元件的製造過程中。 本發明於是提出一種移除光阻的方法。首先,提供一基 材,其包含一圖案化光阻。其次,對基材進行一離子植入步 驟。然後,對基材進行一非氧化性前處理。其中非氧化性前 處理提供包含氫氣、一載氣與一電漿。非氧化性前處理可以 在一階段性溫度下來進行。氧氣的濃度可以介於4%-40%之 間。另外,可以使用氮氣來作為載氣。電漿之處理條件可以 與電漿灰化步驟的處理條件相同。繼續,對基材進行一光阻 剝除步驟,以完全移除光阻。例如,可以使用硫酸之雙氧水 溶液來移除光阻。或是,也可以使用氨之雙氧水溶液來移除 201113651 光阻。 本發明方法的特徵即在於’對基材先進行非氧化性前處 理,既能破壞光阻,又不會造成矽基材進一步的氧化,進而 使得光阻容易被移除。本發明方法還能夠同時兼顧到多晶矽 線路的完整性。 【實施方式】 本發明係提供一種移除光阻的方法。第1-4圖例示本發 明移除光阻方法之一較佳實施方式,其具有既能破壞光阻, 又不會造成妙基材進—步的氧化,進而同時兼顧到多晶石夕線 路的完整性的優點。首先,如第1圖所示,提供基材101。 基材101通常為一半導體基材,例如矽基材。基材1〇1包含 -圖案化光阻110 ’位在基材1〇1的頂面,或是另外包含有 欲進行圖案化的材料層或多晶石夕線路102,例如閘極結構、 字兀線、位兀線、電阻或熔絲結構等。 依據不同之曝祕件,光阻材料層可以為正型光阻或是 負3L光阻另外’依據不同之曝光波長,光阻材料詹可以包 含多種不同之有機材料,例如㈣酸S旨(aeiylate)、乙稀嗣 (Vmylket〇ne)、聚乙烯酚(P〇lyhydroxyStyrene,PHS)…等 等本肩域技藝人士,可以依照不同之需求來選擇適當之光 阻材料。 其-人’如第2圖所*,對基材1〇1進行一半導體元件的 製作步驟,例如齙;枯x ^ ^ 子植入、電漿處理、姓刻步驟等。以離子 201113651 植入步驟為例,此等離子植入步驟,可以為任何將摻質i2〇 導入未被圖案化光阻覆蓋之基材101之離子植入步驟。例如 但不限於,輕汲極摻雜(LDD)離子植入、汲極離子植入或 是源極離子植入…等等。此等離子植入步驟係用來對基材 101或其上之薄膜層進行摻雜,但卻會影響光阻11〇之性 質,例如變成具有硬殼狀(hardshell)的表面,而實質上改 變光阻110之性質。 ' 例如,在某些離子摻雜步驟之後,圖案化光阻材料層的 性質會因為離子摻雜步驟所使用的摻質而實質上有所改 變,變成具有硬殼狀(hardshell)的表面。此等表面具有硬 殼的光阻材料層因為變地十分堅硬,很難再用高溫的硫酸與 雙氧水的混合物來完全㈣。因此,為了要完全剝除光阻材 料層’就需要更長時間的作用。如此—來,雖然能勉強移除 光阻材料層,但是同時也會附帶地傷害到基材上已被圖案化 之各薄膜層的品質’尤其是多晶料路,長時間的高溫硫酸 與雙氧水剝除處理會嚴重侵餘多晶判料,甚至造成多晶石夕 線路斷裂’半導體元件於是因此失效。 接下來,如第3圖所示,對基材101進行一非氧化性前 處理。此等非氧化性前處理會提供包含氫氣13G、載氣與電 聚之處理條件,以破壞光阻UG。如前所述,在離子換雜步 驟之後’圖案化光阻材料層的性質會因為離子摻雜步驟所使 用的摻質而實質上有所改變’變成具有硬殼狀(hardsheii) 的表面。此等表面具有硬殼的光阻材料層,很難再用高溫的 201113651 硫酸與雙氧水的混合物在短時間内來完全剝除。因此本發明 即是利用進行此非氧化性前處理,使得光阻材料層較容易受 到高溫的硫酸與雙氧水混合物的作用。 非氧化性前處理會提供包含氫氣、載氣與電漿之處理條 件。氫氣的濃度,例如可以介於4%-40%之間。另外,還可 以使用惰性氣體如氮氣來作為載氣。在進行非氧化性前處理 時,較佳可以在一階段性溫度下來進行。例如,加熱源位在 基材101之下方,溫度控制在250它時,基材1〇1先在遠離 加熱源之低溫下受熱處理300秒,然後基材1〇1位置再移近 加熱源,在咼溫下持續處理150秒。電漿之處理條件可以與 電聚灰化步驟的處理條件相同,以部分改變光阻1丨〇,尤其 是光阻110的硬殼狀表面。應瞭解,針對不同的光阻類型如 DUV光阻或IR光阻、光阻經過的不同半導體製程步驟如蝕 刻或植入、蝕刻或植入所使用的不同物種或不同植入能量或 不同氣體氛I,等等’可調整上述的非氧化性前處理參數如 溫度、時間、上下電極能量...等等。 非氧化性前處理是一種非氧化性的作用。此等非氧化性 二處理不使用氧,或是其他習知之氧化劑,例如氣,而使用 氫氣、氮氣等非氧化性氣體,使得基材與其上之元件可能的 損傷減到最小。 然後’如第4圖所示,就可以對基材1〇1進行一光阻剝 除步驟。光阻剝除步驟較佳會完全移除圖案化光阻110。可 以使用S知之光阻剝除方式,例如濕式清潔步驟來進行光阻 201113651 剝除步驟。例如,使用硫酸之雙氧水溶液來移除圖案化光阻 110。或是,使用氨之雙氧水溶液來移除圖案化光阻11〇。由 於圖案化光阻110已經經歷過非氧化性前處理而變地容易剝 除’所以後續之光阻㈣步㈣㈣完全移除圖案化光阻 110’也不會實質上傷害基材1(n,例如位於基材⑼上之多 晶矽線路102,而使得多晶矽線路1〇2得以維持其完整性。 在本發明方法中’由於對基材先進行過非氧化性前處 理’既能使得光阻容易被移除’又不會造切基材進 一步的 氧化’進而使得乡晶料路得以特其完紐。因此,本發 明移除光阻的方法,具有突破傳統技術障礙的優點。 以上所述僅為本發狀難實施例,驗本發明申請專利範圍 所做之均等變化婦飾,冑應屬本發私涵蓋範圍。 【圖式簡單說明】 第1-4圖例示本發明移除光JJ且 ‘ 方法之一較佳實施方式。 【主要元件符號說明】 101基材 1〇2多晶矽線路 110圖案化光阻 120摻質 130氫氣201113651 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of removing photoresist. In particular, the present invention relates to a method of non-oxidative pretreatment of a substrate to destroy the photoresist, thereby allowing the photoresist to be easily removed. [Prior Art] * In the manufacturing process of a semiconductor element, lithography is often used to transfer a predetermined pattern onto a substrate or to selectively treat a substrate. In this process, a layer of photoresist having a uniform thickness is usually formed on the substrate. Thereafter, the exposure and development techniques are utilized to pattern the photoresist layer to define the desired layout of the semiconductor device. Photoresist removal is the final step in the patterning process or selective processing. It requires that the photoresist must be completely removed to ensure cleanliness of the subsequent spring process. Most of the conventional methods are dry-type stripping (dry PR strip) by an oxygen-containing Ashing process, which uses an oxygen plasma to form a hydrogen-containing plasma. The photoresist material is reacted and removed, but the problem of residual ash after the photoresist material reacts with the oxygen-containing plasma is avoided, and the method easily consumes the ruthenium raw material in the substrate. Therefore, the current method uses a high-temperature sulfuric-peroxide mix (SPM) to completely oxidize an organic compound-based photoresist material, which is called wet, using Caro's acid. 201113651 type wipe stripping method (wet PR strip); then the photoresist material can be removed, and at the same time, the consumption of the germanium material in each film layer or substrate covered by the photoresist layer can be avoided. However, the fabrication steps of certain semiconductor components may alter the properties of the patterned photoresist layer such that the high temperature sulfuric acid and hydrogen peroxide mixture does not conform to the desired removal of the photoresist layer completely from the substrate. In order to smoothly remove the photoresist layer, a novel method of removing the photoresist is necessary to achieve such a goal. SUMMARY OF THE INVENTION The present invention is directed to a novel method of removing photoresist that is capable of smoothly removing the photoresist layer while also taking into account the integrity of the polysilicon trace on the substrate. The novel method of removing photoresist in the present invention has the advantage of breaking through the conventional technical obstacles and is suitable for use in the manufacturing process of semiconductor elements. The present invention thus proposes a method of removing photoresist. First, a substrate is provided that includes a patterned photoresist. Next, an ion implantation step is performed on the substrate. The substrate is then subjected to a non-oxidative pretreatment. The non-oxidative pretreatment provides hydrogen, a carrier gas and a plasma. Non-oxidative pretreatment can be carried out at a stage temperature. The concentration of oxygen can range from 4% to 40%. In addition, nitrogen gas can be used as the carrier gas. The treatment conditions of the plasma may be the same as those of the plasma ashing step. Continuing, a photoresist stripping step is applied to the substrate to completely remove the photoresist. For example, a solution of sulfuric acid in hydrogen peroxide can be used to remove the photoresist. Alternatively, an ammonia aqueous solution of ammonia can be used to remove the 201113651 photoresist. The method of the present invention is characterized in that the substrate is subjected to a non-oxidative pretreatment to both destroy the photoresist without causing further oxidation of the ruthenium substrate, thereby making the photoresist easily removed. The method of the present invention is also capable of taking into account the integrity of the polysilicon circuit. [Embodiment] The present invention provides a method of removing photoresist. 1-4 illustrate a preferred embodiment of the method for removing photoresist in the present invention, which has the function of both destroying the photoresist and preventing the oxidation of the substrate, thereby simultaneously taking into consideration the polycrystalline ridge line. The advantages of integrity. First, as shown in Fig. 1, a substrate 101 is provided. Substrate 101 is typically a semiconductor substrate, such as a tantalum substrate. The substrate 1〇1 includes a patterned photoresist 110′ located on the top surface of the substrate 1〇1 or additionally comprising a layer of material to be patterned or a polycrystalline circuit 102, such as a gate structure, a word兀 line, bit line, resistor or fuse structure. Depending on the exposure, the photoresist layer can be a positive photoresist or a negative 3L photoresist. In addition, depending on the exposure wavelength, the photoresist material can contain a variety of different organic materials, such as (4) acid S (aeiylate) ), acetonitrile (Vmylket〇ne), polyvinyl phenol (P〇lyhydroxyStyrene, PHS), etc., the shoulder-skilled artisan, can choose the appropriate photoresist material according to different needs. As shown in Fig. 2, the substrate 1 is subjected to a semiconductor element fabrication step, such as ruthenium; x ^ ^ sub-implantation, plasma treatment, surname step, and the like. Taking the ion 201113651 implantation step as an example, the plasma implantation step can be any ion implantation step of introducing the dopant i2〇 into the substrate 101 not covered by the patterned photoresist. For example, but not limited to, light erbium doped (LDD) ion implantation, bungee ion implantation or source ion implantation, and the like. This plasma implantation step is used to dope the substrate 101 or the film layer thereon, but it affects the properties of the photoresist 11, for example, becomes a hardshell surface, and substantially changes the light. The nature of resistance 110. For example, after some ion doping steps, the properties of the patterned photoresist layer will change substantially due to the dopant used in the ion doping step, becoming a hardshell surface. These layers of photoresist having a hard surface are very hard to change, and it is difficult to completely use a mixture of high-temperature sulfuric acid and hydrogen peroxide (4). Therefore, it takes a longer time to completely strip the photoresist layer. In this way, although the photoresist layer can be barely removed, it also incidentally damages the quality of the patterned film layers on the substrate, especially the polycrystalline material path, long-time high-temperature sulfuric acid and hydrogen peroxide. The stripping process can seriously invade the polycrystalline quiz, and even cause the polycrystalline rock to break the line' semiconductor component and thus fail. Next, as shown in Fig. 3, the substrate 101 is subjected to a non-oxidative pretreatment. These non-oxidative pretreatments provide processing conditions including hydrogen 13G, carrier gas and electropolymerization to destroy the photoresist UG. As previously mentioned, the nature of the patterned photoresist layer after the ion-exchange step will change substantially as a result of the dopant used in the ion doping step, becoming a hardsheii surface. These surfaces have a hard-shelled photoresist layer that is difficult to remove completely with a mixture of high-temperature 201113651 sulfuric acid and hydrogen peroxide in a short period of time. Therefore, the present invention utilizes the non-oxidative pretreatment to make the photoresist material layer more susceptible to high temperature sulfuric acid and hydrogen peroxide mixture. Non-oxidative pretreatment provides processing conditions including hydrogen, carrier gas and plasma. The concentration of hydrogen, for example, may be between 4% and 40%. Alternatively, an inert gas such as nitrogen may be used as the carrier gas. In the case of non-oxidative pretreatment, it is preferred to carry out the reaction at a stage temperature. For example, when the heating source is below the substrate 101 and the temperature is controlled at 250, the substrate 1〇1 is first heat treated at a low temperature away from the heating source for 300 seconds, and then the substrate 1〇1 position is moved closer to the heating source. Continue to treat for 150 seconds at room temperature. The treatment conditions of the plasma may be the same as those of the electro-agglomeration step to partially change the photoresist 1 丨〇, especially the hard shell-like surface of the photoresist 110. It should be understood that different species or different implant energies or different gas atmospheres may be used for different photoresist types such as DUV photoresist or IR photoresist, different semiconductor process steps such as etching or implantation, etching or implantation. I, etc. 'Adjust the above non-oxidative pretreatment parameters such as temperature, time, upper and lower electrode energy, etc. Non-oxidative pretreatment is a non-oxidative effect. These non-oxidative secondary treatments do not use oxygen, or other conventional oxidants, such as gas, but use non-oxidizing gases such as hydrogen, nitrogen, etc. to minimize possible damage to the substrate and components thereon. Then, as shown in Fig. 4, a photoresist stripping step can be performed on the substrate 1〇1. The photoresist stripping step preferably removes the patterned photoresist 110 completely. The photo-resistance 201113651 stripping step can be performed using a known photoresist stripping method, such as a wet cleaning step. For example, the patterned photoresist 110 is removed using an aqueous solution of sulfuric acid. Alternatively, the aqueous solution of ammonia is used to remove the patterned photoresist 11〇. Since the patterned photoresist 110 has undergone non-oxidative pretreatment and becomes easily peeled off, the subsequent photoresist (4) step (4) (4) completely removes the patterned photoresist 110' does not substantially damage the substrate 1 (n, For example, the polysilicon line 102 on the substrate (9) allows the polysilicon line 1〇2 to maintain its integrity. In the method of the invention 'because of the non-oxidative pretreatment of the substrate first', the photoresist can be easily The removal of 'there is no further oxidation of the substrate' is made, so that the crystallized material path can be specially finished. Therefore, the method for removing the photoresist of the present invention has the advantage of breaking through the conventional technical obstacles. In the present invention, it is difficult to implement the invention, and the equal variation of the scope of the patent application of the present invention should be covered by the present invention. [Simplified description of the drawings] Figs. 1-4 illustrate the removal of light JJ and the present invention. One preferred embodiment of the method. [Main component symbol description] 101 substrate 1 〇 2 polysilicon 矽 line 110 patterned photoresist 120 dopant 130 hydrogen

Claims (1)

201113651 七、申請專利範園: 一種移除光阻的方法,包含·· 提供-基材’其包含—_化光阻; 對該基材進行—離子植入步驟; 理提供 ,該基材進行—非氧傾前處理,射該非氧化性 L 3虱氣、一载氣與一電漿:以及201113651 VII. Application for Patent Park: A method for removing photoresist, comprising: providing - a substrate comprising - a photoresist; performing an ion implantation step on the substrate; providing the substrate - non-oxygen pre-treatment, shooting the non-oxidizing L 3 helium, a carrier gas and a plasma: and 對該基材進行一光阻剝除步; ,以完全移除該圖案化光阻 2.如請求項1的方法,其巾該基材包含石夕。 3. 如請求項1的方法 4. 如請求項1的方法 驟,以破壞該光阻。 ,其中該離子植人步驟為-㈣極摻雜。 ’其中該魏化性祕理包含—電聚灰化步Performing a photoresist stripping step on the substrate; to completely remove the patterned photoresist. 2. The method of claim 1, wherein the substrate comprises a stone eve. 3. Method of request item 1. 4. If the method of item 1 is requested, the photoresist is destroyed. Wherein the ion implantation step is -(tetra)polar doping. </ br /> 月长項1的方法,其中該載氣包含惰性氣體。 =如物心法,其中在-階段性溫度下進行該魏化性前處 二如4項6的方法,其中在卿至秒之_亍該階段性溫 201113651 8. 如請求項1的方法,其中該光阻剝除步驟包含使用硫酸之雙氧水 溶液。 9. 如請求項1的方法,其中該光阻剝除步驟包含使用氨之雙氧水溶 液。 10. 如請求項1的方法,其中該光阻剝除步驟實質上不傷害該基材。 11. 如請求項1的方法,其中該光阻剝除步驟為一濕式清潔步驟。 、圖式·The method of Moon Length Item 1, wherein the carrier gas comprises an inert gas. = as the centroid method, wherein the method of pre-differentiation at the pre-stage temperature is as in the case of the item 4, wherein the temperature is in the second to the second step 201113651. 8. The method of claim 1, wherein The photoresist stripping step comprises the use of a solution of sulfuric acid in hydrogen peroxide. 9. The method of claim 1, wherein the photoresist stripping step comprises using a hydrogen peroxide solution of ammonia. 10. The method of claim 1, wherein the photoresist stripping step does not substantially harm the substrate. 11. The method of claim 1, wherein the photoresist stripping step is a wet cleaning step. ,figure· 1010
TW098134490A 2009-10-12 2009-10-12 Method for removing photoresist TWI456361B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098134490A TWI456361B (en) 2009-10-12 2009-10-12 Method for removing photoresist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098134490A TWI456361B (en) 2009-10-12 2009-10-12 Method for removing photoresist

Publications (2)

Publication Number Publication Date
TW201113651A true TW201113651A (en) 2011-04-16
TWI456361B TWI456361B (en) 2014-10-11

Family

ID=44909706

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098134490A TWI456361B (en) 2009-10-12 2009-10-12 Method for removing photoresist

Country Status (1)

Country Link
TW (1) TWI456361B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656414B (en) * 2015-03-20 2019-04-11 聯華電子股份有限公司 Method for removing photoresist layer
CN116759348A (en) * 2023-08-18 2023-09-15 合肥晶合集成电路股份有限公司 Make up H 2 O 2 Liquid control method, control device thereof and control system thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201960A (en) * 1991-02-04 1993-04-13 Applied Photonics Research, Inc. Method for removing photoresist and other adherent materials from substrates
US6524936B2 (en) * 2000-12-22 2003-02-25 Axcelis Technologies, Inc. Process for removal of photoresist after post ion implantation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656414B (en) * 2015-03-20 2019-04-11 聯華電子股份有限公司 Method for removing photoresist layer
CN116759348A (en) * 2023-08-18 2023-09-15 合肥晶合集成电路股份有限公司 Make up H 2 O 2 Liquid control method, control device thereof and control system thereof
CN116759348B (en) * 2023-08-18 2023-11-14 合肥晶合集成电路股份有限公司 Make up H 2 O 2 Liquid control method, control device thereof and control system thereof

Also Published As

Publication number Publication date
TWI456361B (en) 2014-10-11

Similar Documents

Publication Publication Date Title
US9805948B2 (en) Selective etching process of a mask disposed on a silicon substrate
US6171911B1 (en) Method for forming dual gate oxides on integrated circuits with advanced logic devices
TW201108323A (en) Substrate etching method and system
TW201110209A (en) Substrate treating method and method of manufacturing semiconductor device using the same
TW201137937A (en) Spin-on formulation and method for stripping an ion implanted photoresist
TW200425405A (en) Method of forming contact holes and electronic device formed thereby
US20070264836A1 (en) Method for forming a gate and etching a conductive layer
JP2005136198A (en) Method for manufacturing semiconductor device
TW201113651A (en) Method for removing photoresist
JP2003257883A (en) Method for manufacturing semiconductor device
JP5801676B2 (en) Manufacturing method of semiconductor device
TWI246121B (en) Novel multi-gate formation procedure for gate oxide quality improvement
US8252515B2 (en) Method for removing photoresist
US9831095B2 (en) Method for performing selective etching of a semiconductor material in solution
WO2004114413A1 (en) Semiconductor device and its manufacturing method
CN111952164A (en) Method for removing photoresist based on MOS tube bottom layer
JP2010141129A (en) Method of manufacturing semiconductor device
US6667243B1 (en) Etch damage repair with thermal annealing
KR100976667B1 (en) Method of manufacturing a semiconductor device
KR100913324B1 (en) Method for forming a silicide layer in a semiconductor device
JP2003017436A (en) Manufacturing method of semiconductor device
KR20050112858A (en) Strip method for resist on the wafer
KR20050106256A (en) A method of fabricating thin film transistor
JP2005044888A (en) Method of manufacturing semiconductor device
US7670936B1 (en) Nitridation of gate oxide by laser processing