TW201113486A - Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof - Google Patents

Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof Download PDF

Info

Publication number
TW201113486A
TW201113486A TW98134086A TW98134086A TW201113486A TW 201113486 A TW201113486 A TW 201113486A TW 98134086 A TW98134086 A TW 98134086A TW 98134086 A TW98134086 A TW 98134086A TW 201113486 A TW201113486 A TW 201113486A
Authority
TW
Taiwan
Prior art keywords
absorbing film
solar
film
titanium
selective
Prior art date
Application number
TW98134086A
Other languages
Chinese (zh)
Other versions
TWI375000B (en
Inventor
Rei-Cheng Juang
Yung-Chin Yeh
Chao-Yang Huang
Bing-Hung Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98134086A priority Critical patent/TWI375000B/en
Publication of TW201113486A publication Critical patent/TW201113486A/en
Application granted granted Critical
Publication of TWI375000B publication Critical patent/TWI375000B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof are presented. The solar thermal absorptive layer includes nitride stainless steel with titanium uniformly doped therein. Moreover, the high temperature solar thermal absorptive layer structure includes a substrate and a solar thermal absorptive layer disposed on the substrate, wherein the solar thermal absorptive layer includes nitride stainless steel with titanium uniformly doped therein.

Description

201113486 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種太陽能吸收獏組成材及其製造方 法,特別有關於一種高溫太陽能選擇性吸收膜結構及其製 造方法。 【先前技術】 在1990年開始建立太1%能選擇性吸收膜的雙陶究合 金層結構,即金屬-氮化鋁(M-A1N)和金屬-氧化鋁 (Μ-Al2〇3),此為使用一種新型的雙乾材直流電磁控管電聚 濺鍍技術(Novel two-target DC magnetron plasma sputtering technology)來製備太陽能選擇性吸收膜可得到非常高的光 熱轉換效率。傳統之吸收膜製程大部份均為產生複合 膜’例如不鐵鋼與㈣雙㈣製程,可製作陶曼金屬膜 =:=為選擇性吸收膜。^ #的金屬喊複合膜厚度與 反射上可《形成:陽::=紅外線 利用=21公開的單不鏽崎材之製程技術,主要是 吸收膜。不鏽又鋼化二錄鋼之太陽能選擇性 氧化不易與其他物質發生反具化:惰性,抗 不鏽鋼材料做為㉟材特,、空祕製程中,將 擊出不鏽鋼中减功率即可使電漿轟 產生反應,並沉積彳出之原子在與通入之反應氣體 、;土板上形成不鏽鋼/氮化不鏽鋼吸收 201113486 膜。此不鏽鋼靶材的真空濺鍍製程幾乎無靶材毒化問題, 不須投入防毒化設備,可確保長時間濺鍍操作,並增加製 程上的穩定性,降低真空濺鍍製程的操作與硬體設置成本。 【發明内容】 本發明之實施例提供一種太陽能吸收膜組成材,包括 一氮化不銹鋼具有鈇成分均勻摻雜於其中。 本發明另一實施例提供一種太陽能吸收膜組成材的製 • 造方法,包括藉由真空濺鍍法形成一氮化不銹鋼,使其具 有鈦成分均勻摻雜於其中。 本發明之實施例另提供一種高溫太陽能選擇性吸收膜 結構,包括:一基材;以及一太陽能吸收膜設置於該基材 上;其中該太陽能吸收膜包括一氮化不銹鋼具有鈦成分均 勻摻雜於其中。 本發明另一實施例提供一種高溫太陽能選擇性吸收膜 結構的製造方法,包括:提供一基材;以及藉由真空濺鍍 * 法形成一太陽能吸收膜於該基材上;其中該太陽能吸收膜 包括一氮化不銹鋼具有鈦成分均勻摻雜於其中。 為使本發明能更明顯易懂,下文特舉實施例,並配合 所附圖式,作詳細說明如下: .【實施方式】 以下以各實施例詳細說明並伴隨著圖式說明之範例, 201113486 做為本發明之參考依據。在圖式或說明書描述中,相似或 相同之部分皆使用相同之圖號。且在圖式中,實施例之形 狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式 中各元件之部分將以分別描述說明之,值得注意的是,圖 中未繪示或描述之元件,為所屬技術領域中具有通常知識 者所知的形式’另外’特定之實施例僅為揭示本發明使用 之特定方式,其並非用以限定本發明。 本發明之實施例提出一種高溫太陽能選擇性吸收膜結 構’其必須同時具備對可見光與近紅外光波段(3〇〇〜18〇〇 nm)高吸收,對遠紅外光波段(>18〇〇nm)高反射之光學特性 外。同時,必須具備能忍受高溫環境下(5〇〇〇c〜8〇〇dc)的操 作穩定性。 於一具體實施例中,以不鏽鋼靶(SUS321)和鈦(Ti)雙金 屬靶材,利用真利用真空濺鍍法製作太陽能選擇性吸收 膜。在真空濺鍍製程中,以SUS321材質為靶材,調整特 定反應氮氣(NO及功率即可使電漿轟擊出SUS32i金屬原 子(Fe,Ni,Cr,Ti)薄膜,被擊出之金屬原子與通入之反應氣 體(氮氣)產生反應,生成氮化不鏽鋼薄膜(SS_N)。同時^二 另-鈦把材之原子錢擊程度,使鈦金屬摻雜於氮化不^鋼 薄膜中,同在不同濺擊功率與特定Κ條件下,產生不同鈦 金屬摻雜量與氮化程度,沉積於基板上形成金屬·陶曼複合 膜,即陶金膜(Cermet Film)。且此不鏽鋼陶金膜對太陽光 有很好的吸收效果,並依據不鏽鋼材質特性估計耐㈤程产 達500°C以上。同時為了在高溫的操作環境下使用,薄膜 在1500 nm以上波長需具有高反射特性,降低操作元件之 201113486 放射丨生於一貫施例中,同時利用Ti靶與SUS321同時在 沁下濺鍍,所製備的Ti/SS-N陶金膜有較廣之光學參數可 調控,即折射率⑻與消光係數(k)。本專利的高溫太陽能選 3吸收膜製作方法,利用耐高溫之氮化不鏽鋼薄膜與鈦 金屬摻雜,經光學薄膜設計,可對15〇〇nm波長以上的光 開始具有高反射之特性,即降低元件在高溫操作下的熱損 失,可提升集熱效果。同時為氮化不鏽鋼之材質,可使元 件在高溫的環境下操作使用。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar absorption enthalpy composition and a method of manufacturing the same, and more particularly to a high temperature solar selective absorption film structure and a method of fabricating the same. [Prior Art] In 1990, the double-ceramic alloy layer structure of too 1% selective absorption film was established, namely metal-aluminum nitride (M-A1N) and metal-alumina (Μ-Al2〇3). In order to prepare a solar selective absorbing film using a novel double-strand DC magnetron plasma sputtering technology, a very high photothermal conversion efficiency can be obtained. Most of the conventional absorption film processes produce composite films, such as non-ferrous steel and (four) double (four) processes, which can be used to make Tauman metal films =:= is a selective absorption film. ^ # The metal shouts the thickness of the composite film and the reflection can be "formed: yang::=infrared. The process technology of the single rust-free material disclosed by the use of 21 is mainly the absorption film. The solar selective oxidation of stainless steel and tempered steel is not easy to be reversed with other substances: inert, anti-stainless steel material is 35-special, and in the air secret process, it will hit the stainless steel and reduce the power to make electricity. The slurry bombardment produces a reaction, and the deposited atoms are deposited in a reaction gas with the inlet; the stainless steel/nitrided stainless steel is formed on the soil plate to absorb the 201113486 film. The vacuum sputtering process of this stainless steel target has almost no target poisoning problem, and it does not need to be put into anti-virus equipment, which can ensure long-time sputtering operation, increase process stability, and reduce operation and hardware setting of vacuum sputtering process. cost. SUMMARY OF THE INVENTION Embodiments of the present invention provide a solar absorbing film composition comprising a nitriding stainless steel having a cerium component uniformly doped therein. Another embodiment of the present invention provides a method of fabricating a solar absorbing film composition comprising forming a nitriding stainless steel by vacuum sputtering to uniformly dope a titanium component therein. An embodiment of the present invention further provides a high temperature solar selective absorbing film structure, comprising: a substrate; and a solar absorbing film disposed on the substrate; wherein the solar absorbing film comprises a nitrided stainless steel having a uniform doping of titanium In it. Another embodiment of the present invention provides a method for fabricating a high temperature solar selective absorbing film structure, comprising: providing a substrate; and forming a solar absorbing film on the substrate by a vacuum sputtering method; wherein the solar absorbing film A nitrided stainless steel is included having a titanium component uniformly doped therein. The present invention will be described in detail below with reference to the accompanying drawings, in which: FIG. It is used as a reference for the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. Further, portions of the various elements in the drawings will be described separately, and it is noted that elements not shown or described in the drawings are intended to be 'other' specific to those of ordinary skill in the art. The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention. Embodiments of the present invention provide a high-temperature solar selective absorbing film structure that must simultaneously have high absorption in the visible and near-infrared wavelength bands (3 〇〇 to 18 〇〇 nm), and in the far-infrared band (> Nm) outside the optical properties of high reflection. At the same time, it must be able to withstand the operational stability of high temperature environments (5〇〇〇c~8〇〇dc). In one embodiment, a solar selective absorbing film is formed by vacuum sputtering using a stainless steel target (SUS321) and a titanium (Ti) double metal target. In the vacuum sputtering process, SUS321 is used as the target to adjust the specific reaction nitrogen (NO and power can make the plasma bombard the SUS32i metal atom (Fe, Ni, Cr, Ti) film, the metal atoms that are struck out and The reaction gas (nitrogen) is reacted to form a nitriding stainless steel film (SS_N). At the same time, the atomic weight of the titanium-titanium material is so that the titanium metal is doped into the nitriding steel film. Under different sputtering powers and specific enthalpy conditions, different titanium metal doping amount and nitriding degree are generated, and deposited on the substrate to form a metal·Taowman composite film, ie, Cermet Film, and the stainless steel ceramic film pair The sunlight has a good absorption effect, and it is estimated that the resistance is up to 500 °C according to the characteristics of the stainless steel material. At the same time, in order to use it in a high-temperature operating environment, the film needs to have high reflection characteristics at a wavelength above 1500 nm, and the operating element is lowered. 201113486 Radiation is produced in a consistent application. At the same time, Ti target and SUS321 are simultaneously sputtered under the armpit. The prepared Ti/SS-N ceramic film has a wide range of optical parameters, namely refractive index (8) and extinction. Coefficient (k). Patented high-temperature solar energy selection 3 absorption film production method, using high temperature resistant nitriding stainless steel film and titanium metal doping, optical film design, can start high reflection characteristics of light above 15 〇〇nm wavelength, ie reduce components The heat loss under high temperature operation can improve the heat collecting effect. At the same time, it is made of nitriding stainless steel, which can make the components operate in high temperature environment.

本揭露之實施例提出以SUS321不鏽鋼靶和Ti鈀做為 濺,靶材來源,在氤反應氣氛下,利用真空濺鍍製作高溫 太陽能選擇性吸收臈。不鏽鋼靶材有優越的抗蝕性,表面 不易毋化並且依據不鑛鋼材質的特性,該薄膜可在高溫 不鏽鋼塊材雖具有優越的化學惰性,而在真空濺鍍 統中’ S以適當的功率所產生的電漿來轟擊不鏽鋼乾材 將可轟擊出不鏽鋼材質本身的金屬組成’如鐵(Fe)、 (Cr)、鎳(Ni)等金屬原子,或少量Ti原子。被擊出之金 原子可與通入之反應性氣體(例如氮氣A)反應鍵結,在 板上沉積形成氮化不鏽鋼薄膜。在本專利中同時使用 靶,提高摻雜Ti金屬的含量。作用是增加薄膜的光學參 可调性,達到可調整太陽光的截止波長位置之功能,使 膜可疋用於尚溫操作之元件。如第1圖所示,選擇性吸 膜反射特性關係圖。 、 於其他具體實施例中’利㈣高溫之氮化不鑛鋼薄 與鈦金屬摻雜’改變濺鍵功率時,可改變不鏽鋼中金屬 201113486 鈦金屬被濺射出來之速率,搭配調整不同反應氣氛(氮氣) 可製作出不同金屬分率的氮化不鏽鋼膜層,此膜層亦為陶 瓷金屬之膜層。經光學薄膜設計,可對1500nm波長以上 的光進行高反射,即降低元件在高溫操作下的熱損失,可 提升集熱效果,做為太陽能選擇性吸收膜。同時膜層材質 具氮化不鏽鋼之熱穩定特性,可使元件在高溫的環境下操 作使用。 第2圖係顯示根據本發明之一實施例的高溫太陽能選 擇性吸收膜結構的製造方法的流程示意圖。請參閱第2 圖,於步驟S21中,首先製備不同金屬分率之SS-N陶金 薄膜。於一實施例中,SS-N陶金薄膜可由激鍍:法形成,濺 鍍的製程參數如表1所示: 表1 濺鍍條件 靶材 不銹鋼(SUS321) 基材 玻璃 RF功率 150 W 濺鍍壓力 3 mTorr Ar氣體流率 40 seem N2氣體流率 0-10 seem 濺鍍時間 20 min 於步驟S22中,以橢圓儀分析SS-N陶金薄膜之光學 特性。接著,再選擇一最合適金屬分率之SS-N陶金薄膜, 並摻雜不同Ti金屬粒子製備Ti/SS-N陶金薄膜,如步驟S23 201113486 所示。於另一實施例中,摻雜不同Ti金屬粒子製備Ti/SS-N 陶金薄膜的製程參數如表2所示: 表2 濺鍍條件 靶材 不銹鋼(SUS321) Ti 玻璃 基封 RP功率(SS) 150 W DC功率(Ti) 5-75 W 濺鍍壓力 6 mTorr Ar氣體流率 40 seem 凡氣體流率 C series : 10 seem D series : 5 seem 濺鍍時間 20 min 於步驟S24中,以橢圓儀分析Ti/SS-N陶金薄膜之光 學特性。接著,進行Ti/SS-N選擇性吸收膜匹配模擬(步驟 S24)以及Ti/SS-N選擇性吸收膜實際試製(步驟S26)。 根據本發明之具體實施例,高溫太陽能選擇性吸收膜 結構的製造方法主要可分四大步驟:(1)鍍製單層SS-N陶 金薄膜;(2)鍍製單層Ti/SS-N陶金薄膜;(3)步驟三:多 層Ti/SS-N選擇性吸收膜匹配模擬;(4)多層Ti/SS-N選擇 性吸收膜實際試製。即首先製備不同氮化程度的單層SS-N 陶金薄膜,經橢圓儀分析之後選擇較合適SS-N陶金薄膜之 金屬分率。再以SS-N陶金膜層為基質摻雜Ti金屬粒子, 201113486 製備單層Ti/SS-N陶金薄膜。接著經橢圓儀分析單層陶金 膜之後,將其光學常數數據匯入光學薄膜匹配程式進行多 層膜匹配,模擬得到該組光學常數下之最佳選擇性吸收膜 效能。最後利用匹配後的單層膜組別,進行多層膜實際試 製。以下詳細敘述各主要步驟。 SS-N陶金薄膜顏色外觀隨著氮氣流量的增加而變 淺。表3為SS-N陶金薄膜之光學特性及膜厚之分析結果。 表3 樣品編號 A00 A02 A04 AOS A10 N2流率 0 seem 2 seem 4 seem 5 seem 10 seem MVF(%) 39 29 13 2 0 模型 D+2L D+3L T-L T-L T-L 表面粗链度 0 5.67 0 3.048 4.299 膜厚(nm) 120.6 85.3 98.4 61.536 62.998 MSE 2.929 7.08 10.75 6.271 5.253 註:D =Drude 振蘯子 ’ L = Lorentz 振盪子,T-L = Tauc-Lorentz 振盪子,MSE=平均平方誤差。 第3圖和第4圖分別顯示本發明實施例的SS-N陶金薄 膜之折射率及消光係數關係示意圖。根據實驗結果顯示, 當氮氣流量由〇 seem增加達10 seem時,薄膜性質已經由 金屬膜變為完全氮化之陶瓷膜,故以此層作為Ti/SS-N陶 201113486 金複合膜層之基質。 根據步驟一之實驗結果,遂擇在氮氣流量5和 10 seem 下之氮化不銹鋼陶瓷膜作為Ti/SS-N陶金薄膜之基質,再 藉由改變不同的鈦靶材功率來控制Ti金屬的摻雜量多寡。 在氮氣凌量5和10 seem下之Ti/SS-N陶金薄膜顏色外觀, Ik著欽乾材功率的增加,薄膜的顏色漸深。 第5圖和第6圖分別顯示單層Ti/SS-N陶金薄膜之折 射率和波長的關係及消光係數和波長的關係的示意圖。請 • f閱第5和6圖,在鈦靶材功率75W,氮氣流量5 _時 薄膜已呈現高金屬性,故以此層作為高金屬分率(HMVF) 之吸收層。低金屬分率(LMVF)吸收層則選用以鈦靶材濺鍍 功率1〇W ’氮氣流量10 sccm時之Ti/SS-N陶金薄膜。最 卜層之抗反射層(AR)為完全氮化之氮化不銹鋼陶竟膜於氮 氣流量1〇 sccm下鍍製。另外,在本專利中所使用不鏽鋼 靶與鈦靶所濺鍍之膜層其光學常數(例如:折射率)有較顯 癱 著的分佈,可為2.0〜3.3,並預期若提高丁丨功率將可提高 折射率。此寬廣的折射率分佈特性有利於進行薄膜匹配, 來達到可調整太陽光的截止波長位置之功能,使薄膜可適 用於高溫操作之元件。 多層膜各層膜之選擇依據橢圓儀分析之光學常數,高 金屬分率之吸收層選用D075,低金屬分率吸收層則選用 最外層之抗反射層為C000。經光學模擬之吸收率可 達0.8562。在波長接近1800 nm位置其反射率有開始上升 趨勢,此特性為選擇性吸收膜之特徵,即在紅外光區波段 有高反射率。目前因光學常數取得範圍為<18〇〇歷,因此 11 201113486 杈擬區間為<1800 nm。表4為多層Ti/SS_N選擇性吸收膜 匹配模擬結果,第-層高金屬分率之吸收層為謂5,厚度 70nm,第二層低金屬分率之吸收層為c〇1〇,厚度3〇nm ; 最外層的抗反射層為cooo,膜厚% 。 表4 樣品編號. Ti乾材功率 厚度(nm) 模擬as AR(C000) 0 W 70 LMVF(COIO) 10W 30 HMVF(D075) 75 W 70 Total 170 0.86 本實施例是利用典型的3層膜進行模擬匹配,在模擬 過程中’亦發現若用2層膜(HMVF與AR層)模擬,即可達 到相同吸收率達0.86之效果。並且若未來取得更多單層膜 之數據’則可獲得更高之吸收效能。 根據多層Ti/SS-N選擇性吸收膜之模擬結果做為參 考,實際進行濺鍍實驗,製備多層Ti/SS-N選擇性吸收膜。 多層Ti/SS-N選擇性吸收膜之各層濺鍍條件製備條件如表 5所列。 表5 樣品編號 金屬反射子 HMVF (D075) LMVF (CO 10) AR (C000) 12 201113486The embodiment of the present disclosure proposes a high-temperature solar selective absorption enthalpy by vacuum sputtering using a SUS321 stainless steel target and Ti-palladium as a sputtering source and a target source. The stainless steel target has excellent corrosion resistance, the surface is not easy to deuterate and according to the characteristics of the non-mineral steel material, the film can be superior in chemical inertness in the high-temperature stainless steel block, and in the vacuum sputtering system The plasma generated by the power to bombard the stainless steel dry material will bombard the metal composition of the stainless steel itself, such as metal atoms such as iron (Fe), (Cr), nickel (Ni), or a small amount of Ti atoms. The gold atoms that are struck are reactively bonded to the reactive gas (e.g., nitrogen gas A) that is introduced, and deposited on the plate to form a nitrided stainless steel film. The use of a target in this patent increases the content of doped Ti metal. The function is to increase the optical parameter tunability of the film to achieve the function of adjusting the cut-off wavelength position of the sunlight, so that the film can be used for components that are still operating at a temperature. As shown in Fig. 1, the selective absorption film reflection characteristic diagram. In other specific embodiments, when the thinning of the high-temperature nitriding non-mineral steel and the titanium metal doping 'change the sputtering power, the rate of the metal 201113486 titanium metal being sputtered can be changed, and the different reaction atmospheres can be adjusted. (Nitrogen) A nitrided stainless steel film layer of different metal fractions can be produced, and this film layer is also a ceramic metal film layer. The optical film design can reflect light above 1500nm wavelength, which reduces the heat loss of the component under high temperature operation, and can improve the heat collecting effect as a solar selective absorption film. At the same time, the material of the membrane is heat-stable with nitriding stainless steel, which allows the components to operate in high temperature environments. Fig. 2 is a flow chart showing a method of manufacturing a high-temperature solar selective absorbing film structure according to an embodiment of the present invention. Referring to Fig. 2, in step S21, SS-N ceramic gold films of different metal fractions are first prepared. In one embodiment, the SS-N ceramic film can be formed by a laser plating method, and the process parameters of the sputtering are as shown in Table 1: Table 1 Sputtering target target stainless steel (SUS321) substrate glass RF power 150 W sputtering Pressure 3 mTorr Ar gas flow rate 40 seem N2 gas flow rate 0-10 seem Sputtering time 20 min In step S22, the optical characteristics of the SS-N ceramic film were analyzed by an ellipsometer. Next, an SS-N ceramic film of the most suitable metal fraction is selected, and Ti/SS-N ceramic film is prepared by doping different Ti metal particles, as shown in step S23 201113486. In another embodiment, the process parameters for preparing a Ti/SS-N ceramic film by doping different Ti metal particles are shown in Table 2: Table 2 Sputtering conditions target stainless steel (SUS321) Ti glass-based RP power (SS 150 W DC power (Ti) 5-75 W Sputtering pressure 6 mTorr Ar gas flow rate 40 seem Where gas flow rate C series : 10 seem D series : 5 seem Sputtering time 20 min In step S24, ellipsometer The optical properties of the Ti/SS-N ceramic gold film were analyzed. Next, a Ti/SS-N selective absorption film matching simulation (step S24) and a preliminary trial production of the Ti/SS-N selective absorption film were carried out (step S26). According to a specific embodiment of the present invention, the manufacturing method of the high-temperature solar selective absorption film structure can be mainly divided into four steps: (1) plating a single-layer SS-N ceramic gold film; (2) plating a single layer Ti/SS- N pottery gold film; (3) Step 3: Multi-layer Ti/SS-N selective absorption film matching simulation; (4) Multi-layer Ti/SS-N selective absorption film actual trial production. That is, a single layer of SS-N ceramic gold film with different degrees of nitridation was first prepared, and the metal fraction of the suitable SS-N ceramic film was selected after analysis by ellipsometry. The Ti-metal particles were doped with the SS-N ceramic film as the matrix, and the single-layer Ti/SS-N ceramic film was prepared by 201113486. After analyzing the monolayer gold film by ellipsometry, the optical constant data was imported into the optical film matching program for multi-layer film matching, and the optimal selective absorption film efficiency under the optical constants was simulated. Finally, the actual trial of the multilayer film was carried out using the matched single layer film group. The main steps are described in detail below. The color appearance of the SS-N pottery gold film became lighter as the nitrogen flow rate increased. Table 3 shows the results of analysis of the optical properties and film thickness of the SS-N ceramic film. Table 3 Sample No. A00 A02 A04 AOS A10 N2 flow rate 0 seem 2 seem 4 seem 5 seem 10 seem MVF(%) 39 29 13 2 0 Model D+2L D+3L TL TL TL Surface thick chain 0 5.67 0 3.048 4.299 Film thickness (nm) 120.6 85.3 98.4 61.536 62.998 MSE 2.929 7.08 10.75 6.271 5.253 Note: D =Drude vibrator ' L = Lorentz oscillator, TL = Tauc-Lorentz oscillator, MSE = mean squared error. Fig. 3 and Fig. 4 are views showing the relationship between the refractive index and the extinction coefficient of the SS-N ceramic gold film of the embodiment of the present invention, respectively. According to the experimental results, when the nitrogen flow rate is increased from 〇seem by 10 seem, the film properties have changed from a metal film to a fully nitrided ceramic film, so this layer serves as a matrix for the Ti/SS-N ceramic 201113486 gold composite film layer. . According to the experimental results of step 1, the nitrided stainless steel ceramic membrane under the nitrogen flow rate of 5 and 10 seem is used as the matrix of the Ti/SS-N ceramic film, and the Ti metal is controlled by changing the power of different titanium targets. The amount of doping is small. The appearance of the Ti/SS-N ceramic film under the nitrogen flux of 5 and 10 seem, the power of the Ik is increased, and the color of the film is deeper. Fig. 5 and Fig. 6 respectively show the relationship between the refractive index and the wavelength of the single-layer Ti/SS-N ceramic film and the relationship between the extinction coefficient and the wavelength. Please read Figure 5 and Figure 6. The film has a high metality when the titanium target power is 75W and the nitrogen flow rate is 5 _. Therefore, this layer is used as the absorption layer of high metal fraction (HMVF). The low metal fraction (LMVF) absorber layer is a Ti/SS-N ceramic film with a titanium target sputtering power of 1 〇W 'nitrogen flow rate of 10 sccm. The anti-reflective layer (AR) of the outermost layer is a completely nitrided nitrided stainless steel ceramic film which is plated under a nitrogen gas flow rate of 1 〇 sccm. In addition, the optical layer (for example, refractive index) of the film layer sputtered by the stainless steel target and the titanium target used in this patent has a relatively obvious distribution, which may be 2.0 to 3.3, and it is expected that if the power of the butadiene is increased, The refractive index can be increased. This wide refractive index profile facilitates film matching to achieve the ability to adjust the cut-off wavelength position of sunlight, making the film suitable for high temperature operation of components. The film of each layer of the multilayer film is selected according to the optical constant of the ellipsometry. The absorption layer with high metal fraction is D075, and the low metal absorption layer is C000 for the outermost layer. The absorption rate through optical simulation can reach 0.8562. At a wavelength close to 1800 nm, its reflectivity begins to rise. This characteristic is characteristic of a selective absorption film, that is, it has a high reflectance in the infrared band. At present, the optical constant is obtained in the range of <18 calendar, so the 11 201113486 analog interval is <1800 nm. Table 4 shows the simulation results of multi-layer Ti/SS_N selective absorption film matching. The absorption layer of the first layer high metal fraction is 5, the thickness is 70 nm, and the absorption layer of the second layer low metal fraction is c〇1〇, thickness 3 〇nm ; The outermost anti-reflective layer is cooo, film thickness%. Table 4 Sample No. Ti dry material power thickness (nm) Simulation as AR(C000) 0 W 70 LMVF(COIO) 10W 30 HMVF(D075) 75 W 70 Total 170 0.86 This example is simulated using a typical 3-layer film Matching, during the simulation process, it was also found that if the two-layer film (HMVF and AR layer) was used for simulation, the same absorption rate of 0.86 could be achieved. And if more single-layer film data is obtained in the future, then higher absorption efficiency can be obtained. Based on the simulation results of the multilayer Ti/SS-N selective absorption film, a sputtering experiment was carried out to prepare a multilayer Ti/SS-N selective absorption film. The preparation conditions of the various layers of the multilayer Ti/SS-N selective absorbing film are as shown in Table 5. Table 5 Sample No. Metal Reflector HMVF (D075) LMVF (CO 10) AR (C000) 12 201113486

Ar 流率(seem) 40 40 40 40 N2 流率(seem) 0 5 10 10 SS靶材功率 (m 250 150 150 150 Ti靶材功率 (DC) 0 75 10 0 濺鍍時間 (min) 20 20 10 34.5 厚度(nm) 300 70 30 70 多層Ti/SS-N選擇性吸收膜之顏色外觀為藍紫色,實 際測量其吸收率為0.85,放射率為0.48,多層Ti/SS-N選 擇性吸收膜之模擬與實驗結果整理如表6。 表6 樣品編说 Ti靶材功率 厚度(nm) 模擬a s/實驗a: e AR(COOO) 0 w 70 LMVF(COIO) 10W 30 HMVF(D075) 75 W 70 Total 170 0.86/0.85 根據本發明之具體實施例,一種太陽能吸收膜組成 材,包括一氮化不銹鋼具有鈦成分均勻摻雜於其中。該太 陽能吸收膜組成材的折射率(η)範圍大抵介於2.0-3.3、消光 13 201113486 係數(k)的範圍大抵介於0-1.2。該太陽能吸收膜組成材的金 屬分率的範圍大抵介於0-45%,其中該不銹鋼為SUS321 不銹鋼。 第7A圖係顯示本發明之一實施例的高溫太陽能選擇 性吸收膜結構的剖面示意圖。於第7A圖中,高溫太陽能 選擇性吸收膜結構包括一太陽能吸收膜組成材110設置於 一基板100上。該太陽能吸收膜組成材,包括一氮化不銹 鋼具有鈦成分均勻摻雜於其中。 於另一實施例中,一種太陽能吸收膜組成材的製造方 · 法包括藉由雙乾材真空濺鑛法形成一氮化不錄鋼,使其具 有鈦成分均勻摻雜於其中。 第7B圖係顯示本發明另一實施例的高溫太陽能選擇 性吸收膜結構的剖面示意圖。於第7B圖中,高溫太陽能選 擇性吸收膜結構包括一第一吸收膜112設置於基板100 上,及一第二吸收膜114設置於第一吸收膜112上。第一 吸收膜112具有一第一鈦金屬分率且一第二吸收膜114具 有一第二鈦金屬分率,其中該第一鈦金屬分率大於該第二 鲁 鈦金屬分率。基板100的材質包括不銹鋼(SS)或鈦(Ti),做 為反射層。 高溫太陽能選擇性吸收膜結構更包括一第三吸收膜 116設置於第二吸收膜114上,及一第四吸收膜118(做為 抗反射層)設置於第三吸收膜118上。第三吸收膜116具有 一第一氮化鈦陶瓷分率及第四吸收膜118具有一第二氮化 鈦陶瓷分率,其中該第一氮化鈦陶瓷分率小於該第二氮化 鈦陶竞分率。 14 201113486 於另一實施例中,一種高溫太陽能選擇性吸收膜結構 的製造方法,包括提供一基材,以及藉由真空濺鍍法形成 一太陽能吸收膜於該基材上,其中該太陽能吸收膜包括一 氮化不銹鋼具有鈦成分均勻摻雜於其中。 應注意的是,本發明實施例之太陽能吸收膜組成材是 以氣化不錄鋼為基質’其面溫穩定性優越。並且’猎由T i 提供較廣之光學參數可調控,即折射率(η)與消光係數(k), 可有效地調控截止波長。 本發明雖以較佳實施例揭露如上,然其並非用以限定 本發明的範圍,任何所屬技術領域中具有通常知識者,在 不脫離本發明之精神和範圍内,當可做些許的更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 15 201113486 【圖式簡單說明】 圖 #回系』不選擇性吸收膜的反射特性的關係示意 弟2圖係顯示根據本發明之一實施例的高溫太陽能選 擇性,收麟構的方法職程示意圖。 第3圖和第4圖分別顯示本發明實施例# SS-Ν陶金薄 膜之折射率及消光係數關係示意圖。 ,第5圖和第6圖分別顯示單層Ti/SS-N陶金薄膜之折 射率和波長的_及消光係數和波長的_的示意圖。 第7A圖係顯示本發明之一實施例的高溫太陽能選擇 性吸收膜結構的剖面示意圖。 第7B圖係顯示本發明另—實施例的尚溫太陽能選擇 性吸收膜結構的剖面示意圖。 【主要元件符號說明】 S21-S26〜製程步驟; 100〜基板; 110〜太陽能吸收膜組成材; 112〜第一吸收膜; 114〜第二吸收膜; 116〜第三吸收膜; 118〜第四吸收膜。Ar Flow rate (seem) 40 40 40 40 N2 Flow rate (seem) 0 5 10 10 SS target power (m 250 150 150 150 Ti target power (DC) 0 75 10 0 Sputtering time (min) 20 20 10 34.5 Thickness (nm) 300 70 30 70 The color appearance of the multilayer Ti/SS-N selective absorbing film is blue-violet. The actual absorption is 0.85, the emissivity is 0.48, and the multilayer Ti/SS-N selective absorbing film is used. The simulation and experimental results are summarized in Table 6. Table 6 Sample Description Ti target power thickness (nm) Simulation as/Experiment a: e AR(COOO) 0 w 70 LMVF(COIO) 10W 30 HMVF(D075) 75 W 70 Total 170 0.86/0.85 According to a specific embodiment of the present invention, a solar absorbing film composition comprising a nitrided stainless steel having a titanium component uniformly doped therein. The refractive index (η) of the solar absorbing film composition is substantially in the range of 2.0 -3.3, extinction 13 201113486 The coefficient (k) range is mostly between 0-1.2. The metal fraction of the solar absorption film composition is generally in the range of 0-45%, wherein the stainless steel is SUS321 stainless steel. A cross section showing a structure of a high temperature solar selective absorbing film of an embodiment of the present invention In Fig. 7A, the high temperature solar selective absorbing film structure comprises a solar absorbing film composition material 110 disposed on a substrate 100. The solar absorbing film composition material comprises a nitriding stainless steel having a titanium component uniformly doped therein. In another embodiment, a method for fabricating a solar absorbing film composition comprises forming a nitriding steel by a double dry material vacuum sputtering method, and having a titanium component uniformly doped therein. The figure shows a schematic cross-sectional view of a high-temperature solar selective absorbing film structure according to another embodiment of the present invention. In FIG. 7B, the high-temperature solar selective absorbing film structure includes a first absorbing film 112 disposed on the substrate 100, and a first The second absorption film 114 is disposed on the first absorption film 112. The first absorption film 112 has a first titanium metal fraction and the second absorption film 114 has a second titanium metal fraction, wherein the first titanium metal fraction It is larger than the second titanium metal fraction. The material of the substrate 100 includes stainless steel (SS) or titanium (Ti) as a reflective layer. The high temperature solar selective absorption film structure further includes a third suction. The film 116 is disposed on the second absorption film 114, and a fourth absorption film 118 (as an anti-reflection layer) is disposed on the third absorption film 118. The third absorption film 116 has a first titanium nitride ceramic fraction and The fourth absorption film 118 has a second titanium nitride ceramic fraction, wherein the first titanium nitride ceramic fraction is smaller than the second titanium nitride ceramic competition rate. 14201113486 In another embodiment, a method of fabricating a high temperature solar selective absorbing film structure, comprising: providing a substrate, and forming a solar absorbing film on the substrate by vacuum sputtering, wherein the solar absorbing film A nitrided stainless steel is included having a titanium component uniformly doped therein. It should be noted that the solar absorbing film composition of the embodiment of the present invention is based on gasification and non-recording steel, and its surface temperature stability is superior. And the hunting is provided by T i to provide a wide range of optical parameters that can be adjusted, that is, the refractive index (η) and the extinction coefficient (k), which can effectively control the cutoff wavelength. The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. 15 201113486 [Simple description of the diagram] Fig. #回系" The relationship between the reflection characteristics of the non-selective absorption film is shown in Fig. 2 is a schematic diagram showing the method of high temperature solar energy selectivity according to an embodiment of the present invention. . Fig. 3 and Fig. 4 are views showing the relationship between the refractive index and the extinction coefficient of the #SS-Ν陶金膜 of the embodiment of the present invention, respectively. Fig. 5 and Fig. 6 are schematic views showing the refractive index and wavelength of the single-layer Ti/SS-N ceramic film, respectively, and the extinction coefficient and wavelength _. Fig. 7A is a schematic cross-sectional view showing the structure of a high-temperature solar selective absorbing film according to an embodiment of the present invention. Fig. 7B is a schematic cross-sectional view showing the structure of a solar energy selective absorbing film of another embodiment of the present invention. [Main component symbol description] S21-S26~ process steps; 100~ substrate; 110~ solar absorption film composition; 112~first absorption film; 114~ second absorption film; 116~third absorption film; Absorbing film.

Claims (1)

201113486 七、申請專利範圍: 1. 一種太陽能吸收膜組成材,包括: 一氮化不錄鋼具有鈦成分均勻摻雜於其中。 2. 如申請專利範圍第1項所述之太陽能吸收膜組成 材,其中該太1¼能吸收臈組成材的折射率(n)範圍大抵介於 2.0-3.3、消光係數(k)的範圍大抵介於〇_ι 2。 3. 如申請專利範圍第】項所述之太陽能吸收膜組成 材,其中邊太1%胃b吸收膜組成材的金屬分率的範圍大抵介 _ 於 0-45%。 4. 如申請專利範圍第1項所述之太陽能吸收膜組成 材,其中該不銹鋼為SUS321不銹鋼。 5. —種太陽能吸收膜組成材的製造方法,包括: 藉由真空錢鑛法形成-氮化不錄鋼,使其具有欽成分 均勻摻雜於其中。 ,6.如申明專利_第5項所述之太陽能吸收膜組成材 鲁的製造方法’其中該太陽能吸收膜組成材的折射率⑻範圍 大抵介於2.0-3.3、消光係數(k)的範圍大抵介於2。 7. 如申請專利範圍第5項所述之太陽能吸收膜組成材 的製造方法’其中該太陽能吸收膜組成材的金屬分率的範 圍大抵介於0-45%。 8. 如申請專利範圍第5項所述之太陽能吸收膜組成材 的製造方法,其中該不銹鋼為SUS321不銹鋼。 9. 一種高溫太陽能選擇性呀收膜結構,包括: 一基材;以及 17 201113486 一太陽能吸收膜設置於該基材上; 其中該太陽能吸收膜包括一氣化不鎮鋼具有鈦成分均 勻摻雜於其中。 10. 如申請專利範圍第9項所述之高溫太陽能選擇性吸 收膜結構,其中該太陽能吸收膜為一單層膜。 11. 如申請專利範圍第9項所述之高溫太陽能選擇性吸 收膜結構,其中該太陽能吸收膜組成材的折射率(η)範圍大 抵介於2.0-3.3、消光係數(k)的範圍大抵介於0-1.2。 12. 如申請專利範圍第9項所述之高溫太陽能選擇性吸 收膜結構,其中該鈦成分的金屬分率的範圍大抵介於0-45。 13. 如申請專利範圍第9項所述之高溫太陽能選擇性吸 收膜結構,其中該太陽能吸收膜包括一第一吸收膜具有一 第一鈦金屬分率及一第二吸收膜具有一第二鈦金屬分率, 其中該第一欽金屬分率大於該第二鈦金屬分率。 14. 如申請專利範圍第13項所述之高溫太陽能選擇性 吸收膜結構,其中該太陽能吸收膜更包括一第三吸收膜具 有一第一氮化鈦陶瓷分率及一第四吸收膜具有一第二氮化 鈦陶瓷分率,其中該第一氮化鈦陶瓷分率小於該第二氮化 鈦陶莞分率。 15. —種高溫太陽能選擇性吸收膜結構的製造方法,包 括: 提供一基材;以及 藉由真空濺鍍法形成一太陽能吸收膜於該基材上; 其中該太陽能吸收膜包括一氮化不銹鋼具有鈦成分均 勻摻雜於其中。 201113486 16.如申請專利範圍第15 吸收膜結構的势造方法,並中兮/s…皿太選擇性 稱的裊泣方法其中该太陽能吸收膜為一單 ㈣^士讀專利範圍第15項所述之高溫太陽能選擇性 的製造方法,其中該太陽能吸收膜組成材的折 〇射^_大抵介於2.〇_3.3、料雜_翻大抵介於 二Γ請專利範圍第15項所述之高溫太陽能選擇性 | i抵介造方法,其中該欽成分的金屬分率的範圍 吸收第^所述之高溫太陽能選擇性 吸收膜具有-第一鈦:屬=域能吸收膜包括-第- 金屬刀率及一弟二吸收膜具有一第二 I、’刀。其中該第-鈦金屬分率大於該第二鈦金屬 罕。 ;»收心士:月專利範圍第19項所述之高溫太陽能選擇性 吸收^構的製造方法,其中該太陽能吸收膜更包括一第 j收膜具有一第一氮化鈦陶£分率及一第四吸收膜具有 兮第-,1=陶曼分率’其中該第一氣化欽陶变分率小於 該弟一氮化欽陶曼分率。 19201113486 VII. Patent application scope: 1. A solar energy absorbing film composition material, comprising: a nitrided non-recorded steel having a titanium component uniformly doped therein. 2. The solar absorbing film composition according to claim 1, wherein the refractive index (n) of the absorbing material is substantially in the range of 2.0-3.3 and the extinction coefficient (k) is large. Yu Yu _ι 2. 3. For the solar absorbing film composition described in the scope of patent application, the metal fraction of the composition of the 1% gastric b absorbing film is too large to be 0-45%. 4. The solar absorbing film composition according to claim 1, wherein the stainless steel is SUS321 stainless steel. A method for producing a solar absorbing film composition, comprising: forming a nitriding non-recording steel by a vacuum ore method, and uniformly doping the absorbing component therein. 6. The method for producing a solar absorbing film composition material according to claim 5, wherein the refractive index (8) of the solar absorbing film composition is substantially in the range of 2.0-3.3 and the extinction coefficient (k). Between 2. 7. The method for producing a solar absorbing film composition according to claim 5, wherein the solar absorbing film composition has a metal fraction ranging from 0 to 45%. 8. The method for producing a solar energy absorbing film composition according to claim 5, wherein the stainless steel is SUS321 stainless steel. 9. A high temperature solar selective film structure comprising: a substrate; and 17 201113486 a solar absorption film disposed on the substrate; wherein the solar absorption film comprises a gasified stainless steel having a titanium component uniformly doped among them. 10. The high temperature solar selective absorbing film structure of claim 9, wherein the solar absorbing film is a single layer film. 11. The high-temperature solar selective absorbing film structure according to claim 9, wherein the refractive index (η) of the solar absorbing film composition is substantially in the range of 2.0-3.3 and the extinction coefficient (k). At 0-1.2. 12. The high temperature solar selective absorbing film structure of claim 9, wherein the titanium component has a metal fraction ranging from 0 to 45. 13. The high temperature solar selective absorbing film structure according to claim 9, wherein the solar absorbing film comprises a first absorbing film having a first titanium metal fraction and a second absorbing film having a second titanium a metal fraction, wherein the first metal fraction is greater than the second titanium fraction. 14. The high temperature solar selective absorbing film structure according to claim 13, wherein the solar absorbing film further comprises a third absorbing film having a first titanium nitride ceramic fraction and a fourth absorbing film having a The second titanium nitride ceramic fraction, wherein the first titanium nitride ceramic fraction is less than the second titanium nitride ceramic percentage. 15. A method of fabricating a high temperature solar selective absorbing film structure, comprising: providing a substrate; and forming a solar absorbing film on the substrate by vacuum sputtering; wherein the solar absorbing film comprises a nitrided stainless steel The titanium component is uniformly doped therein. 201113486 16. For example, the method for creating the structure of the absorbing membrane of the 15th patent, and the weeping method of the 兮/s... dish is too selective, wherein the solar absorbing film is a single (four) The high-temperature solar energy selective manufacturing method, wherein the solar absorbing film composition material has a folding ^ _ _ _ _ _ 3.3, 杂 _ 大 介于 介于 介于 介于 介于 介于 介于 介于 介于 介于 专利 专利 专利 专利High-temperature solar energy selective method, wherein the metal fraction of the composition of the chin component is absorbed by the high-temperature solar selective absorbing film having the first titanium: genus = domain energy absorbing film including - - metal The knife rate and the second absorption film have a second I, 'knife. Wherein the first titanium metal fraction is greater than the second titanium metal. The invention relates to a method for manufacturing a high-temperature solar selective absorption structure according to the invention of claim 19, wherein the solar absorption film further comprises a first film having a first titanium nitride ratio and A fourth absorbing film has a 兮-, 1=Taoman fraction' wherein the first gasification morphological variation rate is less than the cation-nitrification rate. 19
TW98134086A 2009-10-08 2009-10-08 Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof TWI375000B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134086A TWI375000B (en) 2009-10-08 2009-10-08 Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134086A TWI375000B (en) 2009-10-08 2009-10-08 Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof

Publications (2)

Publication Number Publication Date
TW201113486A true TW201113486A (en) 2011-04-16
TWI375000B TWI375000B (en) 2012-10-21

Family

ID=44909631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134086A TWI375000B (en) 2009-10-08 2009-10-08 Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof

Country Status (1)

Country Link
TW (1) TWI375000B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503512B (en) * 2012-12-10 2015-10-11 Univ Nat Cheng Kung High thermostable and high efficient solar energy absorbing film and manufacturing method thereof

Also Published As

Publication number Publication date
TWI375000B (en) 2012-10-21

Similar Documents

Publication Publication Date Title
CN101876490B (en) Solar energy medium-high temperature selective heat absorbing coating
CN201218622Y (en) Selective solar energy absorbing coating
US20140144426A1 (en) Covering that selectively absorbs visible and infrared radiation, and method for the production thereof
Zou et al. Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN–CrAlON based tandem absorber
Yin et al. Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications
WO2007098708A1 (en) Light selectively absorbing layers and method for making the same
EP1759031A1 (en) Spectrally selective surface coating of the receiver tube of a solar concentrator, and method for the manufacture thereof
Zhao et al. A novel TiC-TiN based spectrally selective absorbing coating: Structure, optical properties and thermal stability
CN107270564B (en) A kind of sunlight heat absorber coatings
CN101451773B (en) Solar selective absorption film and method for manufacturing same
WO2014065141A1 (en) Heat conversion member and heat conversion laminate
Al-Rjoub et al. W/AlSiTiNx/SiAlTiOyNx/SiAlOx multilayered solar thermal selective absorber coating
CN108726891A (en) Low radiation coated glass and preparation method thereof
US10302334B2 (en) Sunlight-to-heat converting member, sunlight-to-heat converting stack, sunlight-to-heat converting device, and solar power generating device
TW201139313A (en) Solar control single low-E series with low visible reflectance
CN104930735A (en) Solar absorbing film and preparation method thereof
Xu et al. Optical optimization and thermal stability of SiN/Ag/SiN based transparent heat reflecting coatings
He et al. Enhancing thermal robustness of a high-entropy nitride based solar selective absorber by the incorporation of Al element
US20180163995A1 (en) Selective Solar Absorbers with Tuned Oxygen Deficiency and Methods of Fabrication Thereof
CN106500374A (en) A kind of biphase composite solar absorber coatings and manufacture method
He et al. Efficient solar energy harvesting enabled by high-entropy ceramic nanofilms through a co-sputtering method
TW201113486A (en) Solar thermal absorptive layer and high temperature solar thermal absorptive layer structures and fabrication methods thereof
TWI697575B (en) Selective solar absorber coating for solar thermal energy and method of producing the same
CN108468033B (en) High-temperature-resistant solar selective absorption coating and preparation method thereof
CN114635105B (en) Preparation method of double-texture surface solar selective absorption coating and coating