201113410 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種彩色織物,且特別是有關於一種 具有金屬氧化物之彩色織物。 【先前技術】 織物在人類生活扮演重要的角色,例如人類生活中使 用的衣物、裝飾品,以及建築物使用的窗簾及飾品。由於 ® 織物具有裝飾的功能,因此需要具有顏色的彩色織物。 一般的彩色織物是利用染料(dye)染色而呈現出各種顏 色,或者是在纖維中加入顏料(pigment)使纖維本身具有顏 色。但是,在進行染色的過程中,所產生的染料廢水不易 處理,可能產生環保問題。 在先前技術中曾揭露一種不使用染料或顏料的彩色織 物,其是藉由在一織物上藏鐘一層金屬氮化物(例如氮化 鈦),而使一般織物呈現出金色的色澤。但金屬氮化物通常 ® 為黃色,所以此技術僅能形成黃色色調的顏色,很難形成 其他色調的顏色,也很難同時呈現出多種不同的色調。 【發明内容】 本發明係提供一種彩色織物,其包括一紡織物基材、 一鈦層以及一透明金屬氧化物層。鈦層配置在該紡織物基 - 材上,且該透明金屬氧化物層配置在該鈦層上,藉由調整 該透明金屬氧化物層的厚度而使該彩色織物表現出不同的 201113410 色調。 根據本發明一實施例,該透明金屬氧化物層為一氧化 銦錫層,厚度為約100 nm至約300 nm。在一實施例中, 該氧化銦錫層之厚度為約200 nm至約240 nm,藉此,在 一般環境光下’該彩色織物呈現藍色色調。在另一實施例 中’該氧化銦锡層之厚度為約220 nm至約260 nm,藉此, 在一般環境光下,該彩色織物呈現兩種色調,包括黃色色 調以及紫色色調。在又一實施例中,該氧化銦錫層之厚度 φ 為約250 nm至約290 nm,藉此,在一般環境光下,該彩 色織物呈現三種色調,包括黃色色調、紫色色調以及藍色 色調。 根據本發明另一實施例,該透明金屬氧化物層為一氧 化鋅層’厚度為約70 nm至約1000 nm。在一實施例中, 該氧化鋅層之厚度為約7〇 nm至約90 nm,藉此,在一般 環境光下’該彩色織物呈現藍色色調。在另一實施例中, 該氧化鋅層之厚度為約230 nm至約270 nm,藉此,在一 φ 般環境光下’該彩色織物呈現三種色調,包括藍色色調、 黃色色調以及紫色色調。在又一實施例中,該氧化鋅層之 厚度為約500 nm至約1〇〇〇 nm,藉此,在一般環境光下, 該彩色織物呈現五種色調,包括藍色色調、綠色色調、黃 色色調、紫色色調以及紅色色調。 根據本發明另一實施方式,更包括一透明高分子層配 置於該透明金屬氧化物層,用以保護該透明金屬氧化物層 以及欽層。在一實施例中,該透明高分子係選自由聚氨基 曱酸酯(PU)、聚對笨二甲酸乙二酯(PET)、聚乙烯(PE)以及 201113410 聚丙烯(pp)所組成之群組。 應用本發明,可使不具顏料或染料的纺織物基材呈現 *單-或多種色調,解料行紡織物染色所造㈣環境問 題。且,本發明一實施例之彩色織物可阻撞紫外線穿透。 【實施方式】 請參照第1圖’其繪示本發明—實施方式之彩色織物 100的剖面示意。彩色織物100包含纺織物基材11〇、欽層 # 120以及透明金屬氧化物層130。 纺織物基材110可為任何織造方式或任何斷面形狀的 紗線。例如,紡織物基材U〇可為梭織布(包括平紋、斜紋 或緞紋)、針織布或不織布,但不限於此。雖然在第】圖中 的紗線斷面繪示為圓形,但根據本發明之實施方式,紗線 的斷面形狀可為圓形、三角形或其他形狀。 鈦層120配置於紡織物基材11〇 i,用以反射一入射 光線。鈦層120的形成方式並無特殊限制,只要形成欽層 • 120的過程中不致損毁或侵餘紡織物基材11〇即可。例如, 可使用-般習知的物理沈積技術形成鈦層12〇。在一實施 例中’在氬氣的環境中,以1K _ 2K的直流電源(DC⑽臓) 進行賤鍍,而在紡織物基材上沈積鈦層120。在-實 施例中,鈦層12〇的厚度為約100nm至約3〇〇nm。 ^透明金屬氧化物層130配置於鈦層120上。透明金屬 氧化物層130可為氧化銦錫(ιτο)層、氧化鋅(Zn0)層或其 他透明金屬氧化物層。 氧化銦錫層形成的方式並無特殊限制,例如,可使用 201113410 習知的濺鍍製程在鈦層120上沈積氧化銦錫(ITO)層。氧化 銦錫層的厚度為約100 nm至約300 nm。 在一特定實施例中’氧化銦錫層的厚度為約200 nm至 約240 nm,在一般環境光的環境下,彩色織物100大致呈 現藍色色調。彩色織物100所呈現的顏色與氧化銦錫層的 厚度,以及觀察者與彩色織物100的相對位置有關。當氧 化銦錫層的厚度改變時,彩色織物1〇〇所呈現的藍色色調 略有不同。或者,觀察者以不同角度觀看彩色織物100時, Φ 彩色織物100所呈現的藍色色調也可能不同。但在氧化銦 錫層的厚度為約200 nm至約240 nm時,彩色織物100大 致上呈現藍色色調。在某些厚度下,所呈現出的藍色色調 包括藍紫色或藍綠色(cyan),但不限於此。再者,本發明中 所謂「一般環境光」是指存在於人類生活中的一般光線, 例如日光或發射出白光的室内照明光線(例如,日光燈)而 言 ° 在另一特定實施例中,氧化銦錫層的厚度為約220 nm Φ 至約260 nm,在一般環境光下,彩色織物100可呈現大致 兩種色調’包括黃色色調以及紫色色調。詳言之,彩色織 物100的一部分大致呈現黃色色調,而另一部分大致呈現 紫色色調。如上所述,彩色織物100所呈現的顏色與氧化 銦錫層的厚度’以及觀察者與彩色織物1〇〇的相對位置有 關。當觀察者與彩色織物1〇〇的相對位置改變,彩色織物 100所呈現出的顏色色調以及各種顏色之間的相對位置有 可能也隨著改變。在某些厚度下,所呈現出的紫色色調可 能包括紫藍色或紫紅色(cyan)。本文中所稱之各顏色Γ色調」 201113410 可能相互重疊’例如,當氧化銦錫層的厚度為約230nm ’ 彩色織物100可能呈現出紫藍色,此一顏色可歸類於紫色 色調,亦可歸頬於藍色色調。 在又一特定實施例中,氧化銦錫層的厚度為約250 nm 至約290 nm,在一般環境光下,彩色織物1 〇〇可呈現大致 三種色調’包括黃色色調、紫色色調以及藍色色調。亦即, 彩色織物100的一部分大致呈現黃色色調,另一部分大致 呈現紫色色調,又一部分大致呈現藍色色調。在一實施例 • 中’當觀察者垂直正視彩色織物1〇〇時,彩色織物100被 觀察者垂直正視的位置附近,大致呈現紫色色調。而在呈 現出紫色色調位置的外侧,則大致呈現藍色色調。藍色色 調的外側’大致呈現出黃色色調。但本發明不限於上述的 顏色排列方式’當觀察者與彩色織物100的相對位置改 變’衫色織物100所呈現出的顏色色調以及各種顏色之間 的相對位置有可能也隨著改變。 ,另一實施方式中,透明金屬氧化物層13〇為氧化鋅 層層形成的方式並無特殊限制。例如,氧化辞層 可在氬氣裱境中,以氧化鋅為靶材濺鍍形成。或者,以鋅 為把材在氧氣環境中濺鍍形成氧化鋅層。氧化銦錫層 度可例如為約70 nm至約1〇〇〇 nm。 在:特定實施例中,氧化鋅層的厚度為約7〇nm至約 Γ般環境光的環境τ ’彩色織物則大致呈現藍 色色-知色織物100呈現出的顏色與氧化辞層的厚 關’且4察者與彩色織物1GG的4 ς 辞層的厚度改變時,彩色織物丨。。所呈:L;:;b 201113410 不同。或者’觀察者以不同角度觀看彩色織物刚時,彩 色織物100所呈現的藍色色調也可能不同。 在另一特定實施例中,氧化辞層的厚度為約230 nm至 、’·勺270 nm在般環境光下,彩色織物1〇〇可呈現大致三 種色調’包括藍色色調、黃色色調以及紫色色調。彩色織 物謂的-部分大致呈現藍色色調,另一部分大致呈現黃 色色调’再一部分大致呈現紫色色調。如上所述,彩色織 物100所呈現的顏色與氧化鋅層的厚纟,以及觀察者與彩 癱色織物100的相對位置有關。當觀察者與彩色織物1〇〇的 相對位置改變,彩色織物100所呈現出的顏色色調以及各 種顏色之間的相對位置也可隨著改變。 在又一特定實施例中,氧化鋅層的厚度為約500 nm至 約1000 nm,在一般環境光下,彩色織物1〇〇可呈現大約 五種色調,包括藍色色調、綠色色調、黃色色調、紫色色 調以及紅色色調。亦即,彩色織物100的一部分大致呈現 藍色色調,一部分大致呈現綠色色調,另一部分大致呈現 • 黃色色調,再一部分大致呈現紫色色調,又一部分大致呈 現紅色色調。在本實施例中,彩色織物100呈現出多達5 種的顏色色調’所以在各種顏色色調之間可能可以觀察到 其他的顏色,例如橘色、藍綠色或粉紫色。當觀察者與彩 色織物100的相對位置改變,彩色織物100所呈現出的顏 色色調以及各種顏色之間的相對位置可能也隨著改變。 由以上敘述可知,透明金屬氧化物層130的材料種類 與厚度對彩色織物100所呈現的顏色有很大的影響。彩色 織物 〇 了呈現多種色彩的原因’可能是在外界環境光穿 201113410 透進入透明金屬氧化物層130,經鈦層120反射後,再穿 透金屬氧化物層130而回到外界環境的過程中,發生薄膜 干涉現象。使得某些波長的光線發生建設性干涉,而某些 波長的光線發生破壞性干涉,從而產生視覺上的色彩。 • 在上述的光學路徑中,鈦層120是作為反射環境光的 反射層。在本發明之一對照實驗中係採用一銀層取代鈦層 120為反射層。但是,經實驗證實,銀層與紡織物基材之 間的附著力不佳’容易由基材上脫落。 • 在本發明之另一對照實驗中係用金屬氮化物層(例如 氣化欽)取代金屬氧化物層130。但是,金屬氣化物層(例如 氮化鈦)本身呈現出黃色色澤。因此,很難呈現出多彩的顏 色變化。 此外,本發明一實施例之彩色織物1〇〇具有隔絕紫外 線之功能。表一為彩色織物100隔絕紫外線(UVB,UVA)的 實驗結果。一般的紡織物遮斷紫外線UVB、UVA的百分比 分別為88.7%及67.9%。本發明一實施例之彩色織物1〇〇, φ 當鈦層厚度大於100 nm時可遮斷99%的紫外線(包括UVB 及 UVA) 〇 表一 紡織物基材 ITO/Ti/紡織物基材 ZnO/Ti/紡織物基材 UVB 88.7 % 99.4 % 99.5 % UVA 67.9 % 99.0 % 99.1 % 請參照第2圖’其繪示本發明再一實施方式的剖面示 201113410 意圖。彩色織物200包括紡織物基材210、鈦層220、透明 金屬氧化物層230以及透明高分子層240。紡織物基材 210、鈦層220以及透明金屬氧化物層23〇之結構特徵及材 料與第1圖所示之彩色織物1〇〇相同。 • 透明高分子層240配置在透明金屬氧化物層230上, 用以避免因摩擦或外力而導致鈦層220及透明金屬氧化物 層230由紡織物基材21〇上脫落。在一實施例中,透明高 分子層240為聚氨基甲酸酯(PU)。在其他實施例中,透明 • 高分子層240可例如為聚對苯二曱酸乙二酯(PET)、聚乙烯 (PE)或聚丙烯(pp)。在一實施例中,透明高分子層24〇的厚 度可為約0.3em至約2/zm。若透明高分子層240的厚度 太薄’則不能發揮功能;若透明高分子層240的厚度太厚, 則會影響彩色織物200所呈現的色彩。在一特定的實施例 中’高分子層240的厚度為約〇.5//m至約1/zm。 在透明金屬氧化物層230上形成透明高分子層240, 可有效保護鈦層220以及透明金屬氧化物層230。例如, φ 在經過10次水洗測試實驗後,具有透明高分子層240保護 的彩色織物200仍然不會發生鈦層220或透明金屬氧化物 層230脫落的現象。但是在沒有透明高分子層240保護的 彩色織物200,在經過5次水洗測試後,就可能發生鈦層 220或透明金屬氧化物層230脫落的現象。因此證實透明 金屬氧化物層230上形成透明高分子層240,可更進一步 • 提升彩色織物200的耐用性及耐候性。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 201113410 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖係繪示本發明一實施方式的剖面示意圖。 第2圖係繪示本發明另一實施方式的剖面示意圖。 【主要元件符號說明】 100彩色織物 110紡織物基材 120鈦層 130透明金屬氧化物層 200彩色織物 210紡織物基材 220鈦層 230透明金屬氧化物層 240透明高分子層 11201113410 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a colored fabric, and more particularly to a colored fabric having a metal oxide. [Prior Art] Fabrics play an important role in human life, such as clothing and accessories used in human life, as well as curtains and ornaments used in buildings. Because of the decorative nature of ® fabrics, color fabrics with colours are required. A typical colored fabric is dyed with a dye to give a variety of colors, or a pigment is added to the fiber to give the fiber its own color. However, in the process of dyeing, the dye wastewater generated is not easy to handle and may cause environmental problems. A color fabric that does not use dyes or pigments has been disclosed in the prior art by depositing a layer of metal nitride (e.g., titanium nitride) on a fabric to give a general fabric a golden color. However, metal nitrides are usually yellow, so this technique can only form a yellow hue, it is difficult to form other shades of color, and it is difficult to present a variety of different shades at the same time. SUMMARY OF THE INVENTION The present invention provides a colored fabric comprising a textile substrate, a titanium layer, and a transparent metal oxide layer. A titanium layer is disposed on the textile substrate, and the transparent metal oxide layer is disposed on the titanium layer, and the colored fabric exhibits a different 201113410 hue by adjusting the thickness of the transparent metal oxide layer. According to an embodiment of the invention, the transparent metal oxide layer is an indium tin oxide layer having a thickness of from about 100 nm to about 300 nm. In one embodiment, the indium tin oxide layer has a thickness of from about 200 nm to about 240 nm whereby the colored fabric exhibits a blue hue under typical ambient light. In another embodiment, the indium tin oxide layer has a thickness of from about 220 nm to about 260 nm, whereby the colored fabric exhibits two shades, including yellow tones and purple tones, under normal ambient light. In yet another embodiment, the indium tin oxide layer has a thickness φ of from about 250 nm to about 290 nm, whereby the colored fabric exhibits three shades, including yellow, purple, and blue, under normal ambient light. . In accordance with another embodiment of the present invention, the transparent metal oxide layer is a zinc oxide layer having a thickness of from about 70 nm to about 1000 nm. In one embodiment, the zinc oxide layer has a thickness of from about 7 Å to about 90 nm, whereby the colored fabric exhibits a blue hue under normal ambient light. In another embodiment, the zinc oxide layer has a thickness of from about 230 nm to about 270 nm, whereby the color fabric exhibits three shades in a φ ambient light, including blue tones, yellow tones, and purple tones. . In yet another embodiment, the zinc oxide layer has a thickness of from about 500 nm to about 1 〇〇〇 nm, whereby the colored fabric exhibits five shades, including blue tones, green tones, under normal ambient light. Yellow tones, purple tones, and red tones. According to another embodiment of the present invention, a transparent polymer layer is further disposed on the transparent metal oxide layer for protecting the transparent metal oxide layer and the seed layer. In one embodiment, the transparent polymer is selected from the group consisting of polyaminophthalate (PU), polyethylene terephthalate (PET), polyethylene (PE), and 201113410 polypropylene (pp). group. By applying the present invention, a textile substrate having no pigment or dye can be rendered in a single- or multi-tone, and the fabric is dyed by the dyeing fabric (4) environmental problems. Moreover, the colored fabric of one embodiment of the present invention can block ultraviolet light penetration. [Embodiment] Please refer to Fig. 1 for a schematic cross-sectional view of a color woven fabric 100 according to an embodiment of the present invention. The colored fabric 100 comprises a woven substrate 11 钦, a layer # 120 and a transparent metal oxide layer 130. The textile substrate 110 can be any weave or yarn of any cross-sectional shape. For example, the textile substrate U can be a woven fabric (including plain weave, twill or satin), a knitted fabric or a non-woven fabric, but is not limited thereto. Although the cross section of the yarn in the drawing is shown as a circular shape, the cross-sectional shape of the yarn may be circular, triangular or the like according to an embodiment of the present invention. The titanium layer 120 is disposed on the textile substrate 11 〇 i for reflecting an incident ray. The manner of forming the titanium layer 120 is not particularly limited as long as it does not damage or invade the textile substrate 11 形成 during the formation of the layer 120. For example, the titanium layer 12 can be formed using a conventional physical deposition technique. In an embodiment, in a argon atmosphere, a 1 K _ 2 K DC power source (DC (10) 臓) is used for ruthenium plating, and a titanium layer 120 is deposited on the textile substrate. In an embodiment, the titanium layer 12 has a thickness of from about 100 nm to about 3 Å. The transparent metal oxide layer 130 is disposed on the titanium layer 120. The transparent metal oxide layer 130 may be an indium tin oxide (ITO) layer, a zinc oxide (Zn0) layer, or other transparent metal oxide layer. The manner in which the indium tin oxide layer is formed is not particularly limited. For example, an indium tin oxide (ITO) layer may be deposited on the titanium layer 120 using a conventional sputtering process of 201113410. The indium tin oxide layer has a thickness of from about 100 nm to about 300 nm. In a particular embodiment, the thickness of the indium tin oxide layer is from about 200 nm to about 240 nm, and in a typical ambient light environment, the colored fabric 100 has a substantially blue hue. The color of the colored fabric 100 is related to the thickness of the indium tin oxide layer and the relative position of the viewer to the colored fabric 100. When the thickness of the indium tin oxide layer is changed, the color tone of the colored fabric 1 略 is slightly different. Alternatively, when the viewer views the colored fabric 100 at different angles, the blue tint exhibited by the Φ colored fabric 100 may also be different. However, when the thickness of the indium tin oxide layer is from about 200 nm to about 240 nm, the colored fabric 100 is substantially blue in color. At some thicknesses, the blue hue exhibited includes blue-violet or cyan, but is not limited thereto. Furthermore, the term "general ambient light" as used in the present invention refers to general light that exists in human life, such as daylight or indoor illumination light that emits white light (e.g., fluorescent lamps). In another particular embodiment, oxidation The thickness of the indium tin layer is from about 220 nm Φ to about 260 nm, and under normal ambient light, the colored fabric 100 can exhibit approximately two shades 'including yellow tones and purple tones. In particular, a portion of the colored fabric 100 generally assumes a yellow hue while the other portion exhibits a substantially purple hue. As described above, the color exhibited by the colored fabric 100 is related to the thickness of the indium tin oxide layer and the relative position of the viewer to the colored fabric. When the relative position of the viewer to the colored fabric changes, the color hue exhibited by the colored fabric 100 and the relative position between the various colors may also change. At certain thicknesses, the purple hue exhibited may include purple blue or cyan. The color Γ 」 2011 2011 201110 referred to herein may overlap each other ' For example, when the thickness of the indium tin oxide layer is about 230 nm ' the color fabric 100 may exhibit a purple blue color, which may be classified into a purple hue, or may be Blamed in blue tones. In yet another particular embodiment, the indium tin oxide layer has a thickness of from about 250 nm to about 290 nm, and under normal ambient light, the colored fabric 1 〇〇 can exhibit approximately three shades 'including yellow, purple, and blue tones. . That is, a portion of the colored fabric 100 generally exhibits a yellow hue, another portion exhibits a substantially purple hue, and a portion of which exhibits a substantially blue hue. In an embodiment, when the viewer vertically faces the color fabric 1 ,, the colored fabric 100 is substantially purple-colored in the vicinity of the position where the viewer is vertically facing. On the outside of the position where the purple hue is present, the color is substantially blue. The outer side of the blue hue generally exhibits a yellow hue. However, the present invention is not limited to the color arrangement described above. When the relative position of the viewer to the color fabric 100 is changed, the color tone exhibited by the shirt color fabric 100 and the relative position between the colors may also vary. In another embodiment, the manner in which the transparent metal oxide layer 13 is formed of a zinc oxide layer is not particularly limited. For example, the oxidized layer can be formed by sputtering with zinc oxide as an target in an argon atmosphere. Alternatively, zinc is used as a material to be sputtered in an oxygen atmosphere to form a zinc oxide layer. The indium tin oxide layer may be, for example, from about 70 nm to about 1 〇〇〇 nm. In a particular embodiment, the thickness of the zinc oxide layer is from about 7 〇 nm to about Γ ambient light τ 'color fabrics are generally blue-colored - the color of the color fabric 100 and the thickness of the oxidized layer When the thickness of the 4 ς 者 与 and the color 1 1 GG layer of the color fabric is changed, the color fabric 丨. . Presented: L;:;b 201113410 is different. Alternatively, when the viewer views the colored fabric at different angles, the blue hue of the colored fabric 100 may also be different. In another particular embodiment, the thickness of the oxidized layer is about 230 nm to 270 nm. Under ambient light, the colored fabric can exhibit roughly three shades including blue, yellow, and purple. tone. The color woven fabric has a portion that exhibits a blue hue, and a portion that exhibits a yellow hue. The other portion has a substantially purple hue. As described above, the color of the colored fabric 100 is related to the thickness of the zinc oxide layer and the relative position of the viewer to the colored fabric 100. When the relative position of the viewer to the colored fabric changes, the color hue exhibited by the colored fabric 100 and the relative position between the various colors may also vary. In yet another particular embodiment, the thickness of the zinc oxide layer is from about 500 nm to about 1000 nm, and under normal ambient light, the colored fabric can exhibit about five shades, including blue tones, green tones, and yellow tones. Purple tones and red tones. That is, a portion of the colored fabric 100 generally exhibits a blue hue, a portion generally exhibits a green hue, and another portion exhibits a substantially yellow hue, and a portion of which is substantially in a purple hue and a portion which is substantially in a red hue. In the present embodiment, the colored fabric 100 exhibits up to five color hue' so other colors such as orange, cyan or pink may be observed between the various color tones. As the relative position of the viewer to the colored fabric 100 changes, the color hue exhibited by the colored fabric 100 and the relative position between the various colors may also vary. As apparent from the above description, the material type and thickness of the transparent metal oxide layer 130 have a large influence on the color exhibited by the colored fabric 100. The reason why the colored fabrics are presented in a variety of colors may be that the external environment light penetrates the transparent metal oxide layer 130 through the 201113410, reflects through the titanium layer 120, and then penetrates the metal oxide layer 130 and returns to the external environment. , film interference occurs. It causes constructive interference of light of certain wavelengths, and light of certain wavelengths destructively interferes, resulting in visual color. • In the optical path described above, the titanium layer 120 acts as a reflective layer that reflects ambient light. In a comparative experiment of the present invention, a silver layer was used in place of the titanium layer 120 as a reflective layer. However, it has been experimentally confirmed that the adhesion between the silver layer and the textile substrate is poor, and it is easy to fall off from the substrate. • In another control experiment of the invention, a metal nitride layer (e.g., gasification) is used in place of the metal oxide layer 130. However, the metal vapor layer (e.g., titanium nitride) itself exhibits a yellow hue. Therefore, it is difficult to present a colorful color change. Further, the colored fabric 1 of one embodiment of the present invention has a function of isolating ultraviolet rays. Table 1 shows the results of ultraviolet light (UVB, UVA) of the colored fabric 100. The percentage of UVB and UVA in general textiles was 88.7% and 67.9%, respectively. The color fabric 1 〇〇, φ according to an embodiment of the present invention can block 99% of ultraviolet rays (including UVB and UVA) when the thickness of the titanium layer is greater than 100 nm. 〇 A textile substrate ITO/Ti/textile substrate ZnO /Ti/Textile substrate UVB 88.7 % 99.4 % 99.5 % UVA 67.9 % 99.0 % 99.1 % Please refer to Fig. 2' for a schematic view of another embodiment of the invention. The colored fabric 200 includes a woven substrate 210, a titanium layer 220, a transparent metal oxide layer 230, and a transparent polymer layer 240. The structural features and materials of the textile substrate 210, the titanium layer 220, and the transparent metal oxide layer 23 are the same as those of the colored fabric shown in Fig. 1. • The transparent polymer layer 240 is disposed on the transparent metal oxide layer 230 to prevent the titanium layer 220 and the transparent metal oxide layer 230 from falling off the woven fabric substrate 21 due to friction or external force. In one embodiment, the transparent polymer layer 240 is a polyurethane (PU). In other embodiments, the transparent polymer layer 240 can be, for example, polyethylene terephthalate (PET), polyethylene (PE), or polypropylene (pp). In one embodiment, the transparent polymeric layer 24 can have a thickness of from about 0.3 em to about 2/zm. If the thickness of the transparent polymer layer 240 is too thin, it does not function; if the thickness of the transparent polymer layer 240 is too thick, the color exhibited by the colored fabric 200 is affected. In a particular embodiment, the thickness of the polymeric layer 240 is from about 0.5/m to about 1/zm. The transparent polymer layer 240 is formed on the transparent metal oxide layer 230, and the titanium layer 220 and the transparent metal oxide layer 230 can be effectively protected. For example, φ after 10 water washing test experiments, the colored fabric 200 protected by the transparent polymer layer 240 still does not fall off of the titanium layer 220 or the transparent metal oxide layer 230. However, in the colored fabric 200 which is not protected by the transparent polymer layer 240, the phenomenon that the titanium layer 220 or the transparent metal oxide layer 230 falls off may occur after five times of water washing test. Therefore, it was confirmed that the transparent polymer layer 240 was formed on the transparent metal oxide layer 230, and the durability and weather resistance of the color fabric 200 were further improved. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make various modifications and retouchings without departing from the spirit of the present invention and 201113410. The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; . Figure 2 is a schematic cross-sectional view showing another embodiment of the present invention. [Main component symbol description] 100 color fabric 110 textile substrate 120 titanium layer 130 transparent metal oxide layer 200 color fabric 210 textile substrate 220 titanium layer 230 transparent metal oxide layer 240 transparent polymer layer 11