TW201112684A - Communication methods and apparatus relating to cooperative and non-cooperative modes of operation - Google Patents

Communication methods and apparatus relating to cooperative and non-cooperative modes of operation Download PDF

Info

Publication number
TW201112684A
TW201112684A TW099134473A TW99134473A TW201112684A TW 201112684 A TW201112684 A TW 201112684A TW 099134473 A TW099134473 A TW 099134473A TW 99134473 A TW99134473 A TW 99134473A TW 201112684 A TW201112684 A TW 201112684A
Authority
TW
Taiwan
Prior art keywords
beacon
signal
information
wireless terminal
mode
Prior art date
Application number
TW099134473A
Other languages
Chinese (zh)
Other versions
TWI532342B (en
Inventor
Mathew Scott Corson
jun-yi Li
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201112684A publication Critical patent/TW201112684A/en
Application granted granted Critical
Publication of TWI532342B publication Critical patent/TWI532342B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus for selecting and switching between cooperative and non-cooperative modes of communications device operation are described. Switching between modes maybe, e.g., in response to a signal received form another device or in response to another device leaving the area. In cooperative mode operation the communications device acts in a manner that takes into consideration the effect of signal transmissions on other devices, e.g., the device may respond to interference control signaling, resource allocation signals and/or implement other interference management techniques. In the non-cooperative mode the device seeks to optimize its own communications performance without regard to the effect on one or more communications devices which may be in the area, e.g., devices with which it is not communicating. In the non-cooperative mode the device may ignore interference management control signals or transmit signals intended to cause another devices to reduce their transmissions or power output.

Description

201112684 六、發明說明: 【發明所屬之技術領域】 各種實施例係針對無線通信之方法及設備。 【先前技術】 現7系見之兩種類型之網路為特用網路㈤加咖叫 及蜂巢式,㈤路。在免授權之頻譜開放以由公眾使用之情況 下,特用網路相對較常見。在此等網路之情況下,區域中 之無線通信裝置可在無須依賴於基礎架構基地台及/或其 他裝置之情況下在並Μ诸W „ 八Π建立一網路以控制通信資源的配 置自利用之觀點,在免授權之頻譜中,個別通信裝置通 常自由地將其對免授權之頻譜之使用最大化,而不考慮其 他裝置T幸地,由通仏裝置採取的措施可相反地負面影 響相鄰裝置之通信,例如,肖由表現為對該相鄰裝置之干 擾。 在通常特許之頻f普之蜂里4 & 巢式情形下,頻譜之特許的擁有 者通常具有對將頻譜之使用最大化感興趣。通常理解,鱼 設法使自身之輸送量最佳化而無關於對其他裝置之影塑^ 裝置相比,以合作方式一刼T从以2 曰々 式&工作的通信裝置可通常使用仏 定量的通信資源(諸如,頻譜)來 文用、'° 艰Μ)來達成較兩的整體資料 量。以合作方式作用可包括下 迗 帝馆诸如’回應干捧 制信號,例如,傳輸功率位準控制信號、資源 “ 或用於以對於個別通信裝置祛沾 k唬及/ 置造成的對其他裝置之干由該裂 其他類型的信號。通常指::方巢=無線通信傳輪之 果式糸統中之裝置以合作方 151133.doc 201112684 式操作。 雖然當自整體系統觀點來看時 有益的’但自個別無線通信裳置之觀二::操作可能镑 事實上’當在免授權的頻譜"„你: 並不有盈。 方式操作之裝置之存在下V: 及/或當在以非合作 作之通俨f 呆作時,相對於以非合作方式操 作之通4裝置可達成的輸送 信能力中之頻著缺% h 4乍方式操作可導致通 顯者缺點。在免授權之 婪通信裝置可具有優於合作障况了貝源貞 緣πν2 h M F疋貝/原體貼裝置之獨特優點。 …他應瞭解,存在對提供就無線通信裝置相 =;:τ操作(例如,…或非合作方式)方* 之“性的…若開發允許關於裝置是否 作方式操作之裝置靈活性之 < 口 5 ° ΛΑ ^ . 法及/或設備,則將為理想 的。右具有以合作或非合 Ψ ^ Α ^ 方式知作之靈活性的裝置可作 出如何基於關於相鄰裝詈处 之此力及/或操作之資訊來以合 理的方式操作之決策,則將亦為理想的。 【發明内容】 描述了可用以有助 、及/或貫鈿特用網路及/或用於非異 質通信系統中的各種方法及設備。雖然描述了可一起使用 之各種通L協疋及/或方法,但應瞭解,可相互獨立地或 組合地使用本文中所描述之許多特徵及方法。因此,下文 之概述並不思欲用於暗示需要將下文所討論之所有或多數 特徵用於單一實施例中。事實上,許多實施例可包括以下 概述中所4 _的特徵、元件、方法或步驟中之僅一者或若 干0 151133.doc 201112684 在包括複數個無線通信裝置之通信系統中支援無線通信 方法及設備。在該系統中,裝置支援使用一或多個信標信 號之低位元速率通信。信標信號包括信標信號叢發,信標 k號叢發包括相對較高功率之符號。雖然信標符號之相對 較高之功率使其易於偵測,但其具有隨時間平均而言之相 對較低之發生率及/或佔據很少量之使用之頻寬。假設信 標信號極少使用可用之頻寬,高功率信標信號在充當對其 他通信之干擾的同時產生對支援相對較高之位元速率通信 之其他通信協定(例如,諸如CDMA、藍芽、琛斤丨等之通信 協定)的容許量之干擾。此外,雖然信標符號係以與用以 傳輸資料符號之平均每符號功率相比之高功率下傳輸,作 假設相對不頻繁地傳輸信標符號’高功率信標符號不造成 對無線通信裝置之功率的過度消耗。 〜在亡種實施例中,信標傳信用作基本通信方法及/或協 疋糟以無線通信裝置將裝置能力及/或其他基本資訊傳 遞至其他裝置’同時亦通知其存在之區中之其他裝置。因 信標信號叢發可用以傳遞諸如裝置識別符、裝置能力 貝。fi之事物及/或傳遞/協商基本裝置組態,作為盘另一裝 f建立通信㈣之部分。可發送及触㈣錢之無線通 ^括例如’諸如無線手機之行動通信裝置以及 诸如固定位置基地台之固定裝置。 藉由使用信標發射器/接 疋之裝置可使用可由廣範圍 速率信標傳信來交換資訊。 收器,支援不同高位元速率協 之裝置容易地支援之更基本低 因此’可將信標信號用作用以 151133.doc 201112684 交換裝置及會期資訊之基本協定’而其他較高速率協定用 於使用者資料之實際通信’例如,作為在經由使用信標傳 信之裝置設定資訊之初始通信及/或交換後建立的通信會 期之部分。在各種實施例中’信標信號通信主要依賴於信 號時序及/或说頻率而傳遞育訊。因此,由於許多接收 器包括辨別不同頻率及不同接收時間之能力,所以信標傳 信良好適合於OFDM 'CDMA及/或其他通信應用。 頻率及傳信時序(例如’在重複之叢發及/或信標符號傳 ^ 輸之間的時序)之使用使信標符號偵測及資訊恢復相對容 易且便宜以根據與許多現有接收器設計組合之硬體而實 施。因此,可以相對較低之成本實施信標信號接收器及資 訊回復模組。此外,即使在不可經設計用於較高位元速率 通信協定之接收器之間共用一些接收器電路的情況下,信 標接收器之過於簡單化的性質亦允許低成本信標接收器/ 發射器設計,可在很小的額外成本下與當前接收器/發射 • 器(諸如,現有之0FDM、C,A及其他類型之接收器/發射 器)組合而使用該等設計。 在許多但未必所有實施例巾,當使用信標信號時,信標 符號之相位並非用於傳遞資訊。與(例如)cdma、1汗丨及^ 或「他類型之接收器(其依賴於相位之使用而傳遞至少一 些資訊且藉此達成相對較高的資料傳輸率)相比,此大大 降低了接收器之成本及複雜性。與使用相位來傳遞資訊之 傳信技術相比,不使用相位來傳送資訊之信標信號之資^ 輸送量相對較低。因此,雖然信標信號之使用具有容易伯 151I33.doc 201112684 測及低成本硬體實施之優點,但在使用者資料會期之通作 的很多情況下(例如,在可能需要在相對較短之時間量内 交換大量語音及/或文字資訊之情況下)並不實際。 藉由將信標符號發射器及接收器併入支援其他通信協定 之裝置中,+可另外相I通信之裝置可交換基本組態及裝 置能力資訊。 在一些實施例中,信標傳信用作基本通信方法,藉以裝 置發現其他裝置之存在以及其能力。裝置可接著選擇一組 態(例如,協定堆疊),該組態適用於使用一或多個較高層 級協定與可自其經由信標信號之使用而獲得資訊的裝置‘ 信。 由於信標傳信之低位元速率性質,複數個不同集合之裝 置能力組合(例如,Μ堆疊可能性)可由—裝置能:程^ 碼預定義及識別。舉例而言,程式物用以指示能夠支 援CDMA、WiFi及會期起始協定傳信之裝置。程式碼:可 用以指示能夠錢CDMA及會期起始協㈣信(而非醫〇 =裝置。程式碼3可用以指示能夠支援刪及會期起始協 疋(而非WiFi)之裝置。可預定義用以指示支援特定協定套 件之哪些版本或子版本等之能力程式碼。舉例而言,程式 2指示各種組合及版本的咖、鞭及鏈路層協定而非 僅傳信WiFi之支援。以此方式,藉由使用低位元速率傳作 來傳遞-簡單程式碼,可傳遞大量的裝置能力資訊。 錯:發送指示用於一通信會期之較佳裝置組態之信標信 號’接收信標信號之裝置可作出回應。接收信標信號之裝 151133.doc 201112684 =可回應地將其組態更改為所建議之組態及/或藉由建議 心运展置更改其組態或使用不同的裝置組態/協定堆疊而 .作出回應。以此方式,裝置可交換設定資訊並更改其組 • ‘態’使得兩個裝置可接著使用不同之通信協定(例/,'使 用相位之車父南層級協定,諸如CDMA、WiFi、GSM或某— 其他〇職協定)來進行通信會期,以交換使用者資料(例 ^ ’文字、語音或影像資料),作為無線通信會期之部 刀。裝置可確認及/或指示組態建議資訊之接受,作為信 標信號交換之部分。 雖然信標信號交換可用以協商裝置設定,但裝置可僅自 另一裝置接收信標信號中之資訊,基於所接枚之信號調整 其組怨且接著與自其接收信標信號之裝置或另一裝置通 信。 在至少一些裝置支援不同能力及/或多個通信方法之網 路中,尨標傳信之使用允許一區域中之裝置瞭解一區中之 φ 其他裝置及其裝置能力。在三個或三個以上之裝置位於同 地理區中之系統中,不支援同一較高層級通信協定之第 一及第二裝置可經由支援多個較高層級通信協定之第三裝 置建立一通信會期’多個較高層級通信協定中之至少—者 由第一裝置支援’且其中之另一者由第二裝置支援。信標 傳信允許第一及第三裝置關於裝置能力及/或組態資訊而 相互通信並建立通信會期,且亦允許第二及第三裝置關於 裝置旎力及/或組態資訊而相互通信並建立通信會期’此 全部使得第一與第二裝置可將第三通信裝置甩作通信中間 151133.doc 201112684 物來建立通信會期。因此,經由信標傳信之使用,可在裝 置之間建立特用網路,且未使用信標傳輸之裝置通常將不 忐夠互動而能夠建立通信會期及允許在區上及裝置能力及 協定可廣泛地變化之區域中的通信之特用網路。 舉例而5,在第—裝置支援信標傳信及WiFi、第二裴置 支援信標傳信及CDMA及藍芽以及第三裝置支援信標傳 信、WiFi及CDMA之區域中,第一及第二裝置可建立一通 信會期,第一及第二裝置各自已個別地使用信標傳信與第 三裝置通信,以建立較高層通信鏈路,因此使第三裝置能 夠充當第一與第二裝置之間的通信中間物。信標信號之使 用允許第三裝置知曉第一及第二裝置及其能力,使得其可 在第二裝置之間建立適當的較高層通信鏈路,使得在第一 與第一裝置之間,端對端通信會期係可能的。因此,其允 許在該等裝置之間存在充分的通信以建立一通信會期,藉 以第一裝置使用WiFi來傳遞使用者資料,作為第一與第三 裝置之間的通信會期之部分,且第二裝置使用CDMA在第 二與第三裝置之間通信,其中,第三裝置充當第一與第二 裝置之間的通信會期之通信中間物。信標傳信之使用允許 在特用之基礎上建立此等網路。 相同或不同的頻帶可與第一、第二及第三協定中之每一 者一起使用。舉例而言’信標傳信可發生於第一頻帶中, 而OFDM及CDMA可分別發生於第二及第三頻帶中。在其 他實施例中,信標傳信執行於與用於第二及/或第三通信 協定之頻帶相同的頻帶中。 151133.doc -10· 201112684 …各種θ施例巾,裝置支援合作操作模式及非合作操作 Μ式。在合作操作模式之情況下,個別裝置以可導致該個 、之&低通t效此但通常傾向於增加系統中之整體通 ㈣能的方式來操作。在非合作操作模式之情況下,裝置 取佳化其通信效能,而不考慮對其未與之通信的其他裝置 =響(例如,就干擾而言)。可以各種各樣方式指定通信 $見方式為根據整體資料輸送量。因此,在一些 =施,中’當處於非合作模式時,通信裝置最大化其資料 =送量’而不考慮對其他裝置之影響。延時有時亦用作效 lb之指:符°在—些實施例中,當在非合作模式下操作 裝置操作以最小化其延時,而不考慮對其他裝置 衫曰。最小化延時而不考慮其他裝置可涉及:例如,在 二^輸可努由另一裝置進行之預期的傳輸一致的情況下 ^可此快地傳輸而非延遲傳輸直至另一裝置完成其傳輸為 合作模式操作可涉及功率控制及其他干擾管理技術,且 在一些情況下’可涉及回應資源配置指令(例如,來自美 地台或其他控制器)。當在蜂巢式操作模式下操^ =施例中使用合作模式操作。當在一些實施, 二=權之頻譜中及/或當在存在對應於另—載波或服 者之通信裝置下操作時’使用非合作模式。在一此 貫細中,當第—裝置使用第一通信協定 作且債測到亦設法使用該第一通信協定通信=式2 日守’㈣一裝置切換至第二通信裝置不支援但可使用與該 151133.doc • 11 - 201112684 第二通信裝置設法使用之頻帶相同的頻帶之通信協定。因 此’第一通信之裝置的信號成為對第二通信裝置之干擾, 而該第一通信裝置將不回應來自該第二通信裝置之對應於 該第一通信協定之干擾控制信號,因為第一通信裝置已有 意地切換至第二通信協定。當第二裝置離開該區時,該第 一通信裝置可切換回第一通信協定。在一些實施例中,第 一及第二通信協定為WiFi及藍芽。 在一些貫施例中,裝置基於一區域中之裝置經識別為對 應於同一通信載波還是不同通信載波而判定以合作方式還籲 是以非合作方式操作。以合作或非合作方式操作之決策亦 可基於該區域中之裝置是否對應於同—服務提供者、擁有 者或群組或者試圖共用頻譜之經偵測之裝置是否對應於不 同的服務提供者、擁有者或群組。 在非合作操作模式之情況下,以非合作操作模式操作的 裝置可傳輸意欲使㈣中之丨他裝置降低傳輸及/或功率 位準之信號。此可涉及傳輸意欲誘發其他裝置降低其傳輸 位準之控制信號,及/或傳輸並不意欲傳遞資訊但表現為鲁 對區域中之其他裝置之干擾(使其他裝置降低或更改其傳 輸而釋放用於傳輸該等信號之裝置的頻譜)的信號。 例在以下[實施方式]中討論眾多額外特徵、益處及/或實施 【實施方式】 圖1說明根據各種實施例實施的例示性特 1〇〇 叮用逋k網路 。兩個例示性無線終端機(即,第一無線终端機1〇2及 151133.doc •12- 201112684 第二無線終端機1〇4)存在於地理區ι〇6中。為了通信之目 的,一些頻帶可用於由兩個無線終端機使用。該兩個無線 終端機使用可用的頻帶以建立相互之間的點對點通信鏈 路。 由於特用網路可能不具有網路基礎架構,所以無線終端 機可能不具有通用時序或頻率參考。此導致特用網路中之 一些挑我。為了闡述,考慮終端機中之任一者如何偵測另 一者之存在的問題。 為了描述之簡單起見,在下文中假設,在一給定時間, 無線終鳊機可傳輸或接收,但不能既傳輸又接收。應理 解,一般熟習此項技術者可將相同的原理應用至終端機同 時傳輸且接收之情況。 圖2包括用以描述兩個無線終端機可用來發現彼此之一 可旎機制的圖式2〇〇。第一終端機在時間間隔2〇2中傳輸某 信號,且在時間間隔2〇4中接收信號。同時,第二終端機 • 在時間間隔206中傳輸某信號,且在時間間隔208中接收信 旒。注意’若第一無線終端機可同時傳輸且接收,則時間 間隔202與204可相互重疊。 注意,由於兩個無線終端機並不具有通用時序參考,所 以其TX(傳輸)及RX(接收)時序並未同步化。詳言之,圖2 展示時間間隔204與206不重疊。當第一無線終端機收聽 時,第二無線終端機不傳輸,及當第二無線終端機傳輸 時’第-無線終端機不收聽。因此,第一無線終端機未偵 测到第二無線終端機之存在。類似地,時間間隔2〇2與2⑽ J51133.doc 201112684 不重疊。因此,第二無線 機之存在》 亦未偵測到第一無線終端 存在克服以上誤谓測問題之方式 端機可隨機化執行τχ及如序 ,而言,—無線終 間,兩個無線終端機將機率性地/丨間間㉟,使得隨著時 . 旱眭地偵測到彼此。缺而,代價 為延遲及相應.、、、而 Ά RXis & φ ^ λ ^ 耗此外,功率消耗亦由ΤΧ 及RX程序中之功率.要求爽 — 疋。舉例而言,與偵測一形 式之k说相比,可要求較少 平乂 /的處理功率來偵測另一形式之 信號。 各種實施例之優點在於,新 研的心唬TX及RX程序經實施 並使用以減少偵測另_線嫂地 〜&機之存在的延遲及相關聯之功 率消耗。 根據各種貫%例’一無線終端機傳輸一特殊信號(被稱 作仏私k唬)’其佔據可用的空中鏈路通信資源之總量的 J刀率(例如,在一些實施例中,不超過0.1 %)。在一些 貝訑例中,根據最小或基本傳輸單位(例如,OFDM系統中 之OFDM載頻調符號)來量測空中鏈路通信資源。在一些實 施例中,可根據自由度來量測空中鏈路通信資源,其中自 由度為可用於通信之資源的最小單位。舉例而言,在 CDMA系統中’自由度可為擴展碼、對應於一符號週期之 時間° 一般而言’給定系統中之自由度相互正交。 考慮分頻多工系統(例如,OFDM系統)之一例示性實施 例。在此系統中,以逐個符號之方式來傳輸資訊。在—符 號傳輸週期内’全部可用頻寬被分為許多載頻調’其中之 151133.doc 201112684 每一者可用以載運資訊。 圖3包括展示例示性0Fdm系統中之可用資源之圖式 3 00。水平軸3〇1表示時間,且垂直軸3〇2表示頻率。垂直 行表示給定符號週期中之每一載頻調。每一小框3〇4表示 一載頻調符號,其為單一傳輸符號週期内的單一載頻調之 二中鏈路貧源。OFDM符號中之最小傳輸單位為載頻調符 號。 括怿信號包括 其隨著時間而順序地被傳輸。一信標信號叢發包括少數信 標符號。在此實例中,每一信標符號叢發(308、310、312) 包括一信標符號及19個空值(null)。在此實例中每一信 標1號為一傳輸週期内之單一載頻調。在一些實施例中, 信標信號叢發包括少數傳輸符號週期(例如,—或兩個符 號週期)内之相同載頻調之信標符號β圖3展示三個小黑 j ’其中之每-者(306)表示信標符號。在此情況下,信桿 符號使用一載頻調符號之空中鏈路資源,亦即,一信枳: 號傳輸單位為一 〇FDM $ 戰頻調付诡。在另一實施例中,作 包含—在兩個連續符號週期内傳輸之載頻調,且信 ^ ^傳料位包含兩個鄰近㉛職載頻調符號。 =信號佔據全部最小傳輸單位之叫、部分。 關頻譜之載頻調 不目 如,〜戈兩J 何相當長的時間間隔(例 傳輸單Γ 假設符號週期之數目為τ。既而,最小 由:心:數為Ν*τ。根據各種實施例,在時間間隔中 W據之載頻調符號的數目顯著小於ν*τ,2 151133.doc -15· 201112684 在一些實施例中不超過N*T之0.1 %。 在些貫施例中,信標信號叢發中之信標符號之載頻調 自叢發變化(跳頻)至另一叢發。根據各種實施例,信標 符號之載頻調跳頻樣式為無線終端機之功能,且可能為且 有時用作該終端機之識別或該終端機所屬類型之識別。一 般而3,藉由判定哪些最小傳輸單位傳送信標符號,可解 碼信標信號中之資訊。舉例而言,除了載頻調跳頻序列 外資訊可包括於給定信標信號叢發中之信標符號之載頻 凋的頻率、給定叢發中之信標符號的數目、信標信號叢發 之持續時間及/或叢發間之間隔内。 自傳輸功率觀點,亦可特徵化信標信號。根據各種實施 例,每最小傳輸單位之信標信號的傳輸功率遠高於當終端 機發射器處於-普通資料會期中時每自由度之資料及控制 信號的平均傳輸功率(例如,在—些實施例中高於其至少 10 dB)。根據―些實施例,每最小傳輸單位之信標信號的 傳輸功率比當終端機發射器處於—普通資料會期中時每自 由度之資料及控制信號的平均傳輸功率高至少16 dB。舉 例而言’圖4之圖式400繪製了在相#長的㈣間隔(例 如,-或兩秒)中在載頻調符號中之每一者中所使用的傳 輸功率,纟中無線終端機處於資料會期中,亦即,終端機 使用相關之頻譜而發送資料及控制資訊。& 了此討論,此 等載頻調符號之次序(由水平軸4〇1表示)並不重要❶較小垂 直矩形404表示傳送使用者資料及/或控制資訊的個別載頻 調符號之功率。作為比較’亦包括一較高黑矩形4〇6以展 151133.doc -16 - 201112684 不^標栽頻調符號之功率。 在另一實施例中’信標信號包括以間歇時間週期傳輪的 一序列之信標信號叢發。一信標信號叢發包括一或多個 (v數)吩域脈衝。時域脈衝信號為在某一相關頻譜頻寬上 报少傳輪持續時間之特殊信號。舉例而言,:可用頻 見‘”、30 kHz之通信系統中,在一較短持續時間内,時 衝信號佔據30他頻寬之顯著部分。在任何相當長的時門义 如’若干秒)中,時域脈衝之總持續時間為總持續 二間的—小部分(例如’在-些實施射不超過Qi%)。此 二輸脈:信號之時間間隔中的每自由度傳輸功率顯 门;田發射器處於普通資料會期中時每 =(例如’在一些實靖高於其二= W在傳輸脈衝信號之時間間隔中 比當發射器處於普通資料會.期中時每自由度之=二率 率高至少16dB。 田度之千均傳輸功 圖4展示—载頻調符號與另一载 不同。Pavg表示每载頻調符號之 Y傳輸功率可 各種實施例,信標信號之每載頻調=率(彻)。根據 (例如,高於其至少dB)。在輸功率遠高於 號之每載頻調符號傳輸功率比p t 。貧施例中,信標信 性實施例,,信標信號之每二至少16 dB。在-例示 20 dB。 裁頻謂符號傳輸功率比Pavg高 在一實施例中,對於_ 調符號傳輸功率係恆定=疋終端機,信標信號之每載頻 。亦即,功率不隨時間或隨载頻 I51133.doc 201112684 調而變化。在另一實施例中, 網路中之终端機中之每一者), 傳輸功率係相同的。 對於多個終端機(或者甚至 信標信號之每載頻調符號 圖5之圖式500說明傳輸信標信號叢發之-實施例。益線201112684 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] Various embodiments are directed to a method and apparatus for wireless communication. [Prior Art] The two types of networks seen in the 7 series are special networks (5) plus coffee and honeycomb, (5). Special-purpose networks are relatively common when the unlicensed spectrum is open for public use. In the case of such networks, the wireless communication device in the area can establish a network to control the configuration of communication resources without having to rely on the infrastructure base station and/or other devices. From the point of view of utilization, in the spectrum of unlicensed, individual communication devices are generally free to maximize their use of the unlicensed spectrum, regardless of other devices. Fortunately, the measures taken by the wanted device can adversely adversely affect The communication of adjacent devices, for example, is represented by interference to the neighboring device. In the case of the commonly licensed frequency of the 4th & nested case, the owner of the spectrum license usually has the spectrum The use of maximizing interest. It is generally understood that the fish manage to optimize their own delivery volume without regard to the imaging of other devices compared to the device, in a cooperative manner, from the communication of 2 && The device can usually use a quantitative communication resource (such as the spectrum) for the text, and the '° is difficult to achieve a larger amount of the overall data. The cooperative function can include the Xia Emperor Pavilion such as 'response Holding a signal system, e.g., transmission power level control signal, the resource "or other means to dry the cracking of other types of signals by the communication apparatus to remove the individual to stick to the fool and k / opposite result. Usually refers to:: Fangchao = the device of the wireless communication transmission system is operated by the partner 151133.doc 201112684. Although it is beneficial from the point of view of the overall system, 'the view from the individual wireless communication is two: the operation may be pounds in fact 'when the spectrum is exempted from authorization', you are not profitable. In the presence of V: and / or when in the non-cooperative mode, the frequency of the transmission can be achieved in relation to the transmission of the device in a non-cooperative manner. It can lead to the shortcomings of the passer-by. In the case of unauthorized authorization, the communication device can have the unique advantage of being superior to the cooperation barrier. The source is πν2 h MF mussel/original body-applied device. ... He should understand that there is wireless communication for the supply. Device phase =;: τ operation (for example, ... or non-cooperative mode) side * "Sexual... If developing a device that allows flexibility regarding the device operation mode" 5 ° ΛΑ ^ . Method and / or device , it will be ideal. A device having flexibility in the form of cooperation or non-conformity ^ Α ^ can make decisions on how to operate in a reasonable manner based on information about the force and/or operation of adjacent installations. Ideal. SUMMARY OF THE INVENTION Various methods and apparatus are described that are useful in facilitating, and/or communicating with, and/or in non-heterogeneous communication systems. Although various combinations and/or methods are described that may be used together, it should be understood that many of the features and methods described herein can be used independently or in combination. Therefore, the following summary is not intended to suggest that all or a plurality of features discussed below are required to be used in a single embodiment. In fact, many embodiments may include only one or several of the features, elements, methods, or steps of the following description. 151133.doc 201112684 Supporting wireless communication methods in a communication system including a plurality of wireless communication devices device. In this system, the device supports low bit rate communication using one or more beacon signals. The beacon signal includes a beacon signal burst, and the beacon k burst includes a relatively high power symbol. Although the relatively high power of the beacon symbol makes it easy to detect, it has a relatively low incidence over time and/or a very small amount of bandwidth. Assuming that the beacon signal rarely uses the available bandwidth, the high power beacon signal, while acting as interference to other communications, produces other communication protocols that support relatively high bit rate communications (eg, such as CDMA, Bluetooth, 琛) Interference with the tolerance of the communication agreement. Furthermore, although the beacon symbol is transmitted at a high power compared to the average per symbol power used to transmit the data symbols, it is assumed that the relatively low frequency transmission of the beacon symbol 'high power beacon symbol does not cause interference to the wireless communication device. Excessive consumption of power. ~ In the case of the dead species, the beacon transmission is used as a basic communication method and/or the other means of transmitting the device capabilities and/or other basic information to other devices by the wireless communication device while also notifying the other areas thereof Device. The beacon signal burst can be used to convey such device identifiers and device capabilities. The fi device and/or the transfer/negotiation of the basic device configuration, as part of the disk setup communication (4). A wireless communication device that can transmit and touch (iv) money includes, for example, a mobile communication device such as a wireless mobile phone and a fixed device such as a fixed location base station. Information can be exchanged by a wide range of rate beacons by using a beacon transmitter/interface device. The receiver, which supports different high bit rate devices, is more easily supported by the device. Therefore, the beacon signal can be used as the basic protocol for the 151133.doc 201112684 switching device and the duration information. Other higher rate protocols are used. The actual communication of the user data 'is, for example, part of the communication session established after the initial communication and/or exchange of information via the device using the beacon. In various embodiments, beacon signal communication relies primarily on signal timing and/or frequency to communicate the message. Therefore, since many receivers include the ability to distinguish between different frequencies and different reception times, beacon transmission is well suited for OFDM 'CDMA and/or other communication applications. The use of frequency and signaling timing (such as 'time between repeated bursts and/or beacon symbol transmissions') makes beacon symbol detection and information recovery relatively easy and inexpensive to design with many existing receivers. It is implemented by combining hardware. Therefore, the beacon signal receiver and the information reply module can be implemented at a relatively low cost. In addition, the oversimplified nature of beacon receivers allows for low cost beacon receivers/transmitters, even in the case of some receiver circuits that are not shared between receivers designed for higher bit rate communication protocols. Designed to use these designs in combination with current receiver/transmitters (such as existing 0FDM, C, A, and other types of receivers/transmitters) at a small additional cost. In many, but not necessarily all, embodiments, when a beacon signal is used, the phase of the beacon symbol is not used to convey information. This greatly reduces reception compared to, for example, cdma, 1 Sweat and ^ or "other types of receivers that rely on phase usage to pass at least some information and thereby achieve a relatively high data transfer rate" Cost and complexity of the device. Compared with the signaling technology that uses phase to transmit information, the amount of the beacon signal that does not use the phase to transmit information is relatively low. Therefore, although the use of the beacon signal is easy to use. 151I33.doc 201112684 measures the advantages of low-cost hardware implementation, but in many cases where user data is available (for example, it may be necessary to exchange a large amount of voice and/or text information in a relatively short amount of time) In this case, it is not practical. By incorporating the beacon symbol transmitter and receiver into a device that supports other communication protocols, the device that can communicate with another I can exchange basic configuration and device capability information. In the example, the beacon transmission is used as a basic communication method whereby the device discovers the existence of other devices and their capabilities. The device can then select a configuration (eg, a protocol stack), The configuration is applicable to devices that use one or more higher level agreements and information that can be obtained from their use via beacon signals. Due to the low bit rate nature of beacon signaling, a combination of multiple different sets of device capabilities ( For example, the stacking possibility can be predefined and identified by the device. For example, the program is used to indicate a device capable of supporting CDMA, WiFi, and session initiation protocol signaling. Code: can be used to indicate Ability to CDMA and the initiating start (4) letter (not the doctor's = device. Program code 3 can be used to indicate that it can support the deletion of the session start agreement (not WiFi). Can be predefined to indicate support Capability codes for which versions or sub-versions of a particular contract suite, etc. For example, program 2 indicates support for various combinations and versions of coffee, whip, and link layer protocols rather than just signaling WiFi. Use low bit rate transfer to pass - simple code, can transfer a large amount of device capability information. Error: send beacon signal indicating the preferred device configuration for a communication session 'receive beacon signal The device can respond. Receive beacon signal 151133.doc 201112684=Responsively change its configuration to the proposed configuration and/or change its configuration or use a different device by suggesting a heartbeat The configuration/contract stacks respond. In this way, the device can exchange the set information and change its group • 'state' so that the two devices can then use different communication protocols (eg /, 'Use phase of the car south level Agreements, such as CDMA, WiFi, GSM, or some other misconduct agreement, are used to communicate the user's data (eg, 'text, voice, or video material') as part of the wireless communication session. Acknowledge and/or indicate the acceptance of the configuration suggestion information as part of the beacon handshake. Although the beacon handshake can be used to negotiate device settings, the device can only receive information from the beacon signal from another device, based on the received The signal of the tuner adjusts its grievances and then communicates with the device or another device from which the beacon signal was received. In networks where at least some devices support different capabilities and/or multiple communication methods, the use of tagged signaling allows devices in a region to understand the other devices and their device capabilities in a region. In systems where three or more devices are located in the same geographical area, the first and second devices that do not support the same higher level communication protocol can establish a communication via a third device that supports multiple higher level communication protocols. At least one of the plurality of higher level communication protocols is supported by the first device and the other of the plurality is supported by the second device. Beacon signaling allows the first and third devices to communicate with each other regarding device capabilities and/or configuration information and establish a communication session, and also allows the second and third devices to interact with each other regarding device power and/or configuration information. Communicating and establishing a communication session 'This all causes the first and second devices to associate the third communication device with a communication intermediate to establish a communication session. Thus, via the use of beacon messaging, a special network can be established between devices, and devices that do not use beacon transmissions will generally be able to establish communication sessions and allow for on-premises and device capabilities and agreements without interaction. A special network of communications in a widely variable area. For example, in the area where the first device supports beacon transmission and WiFi, the second device supports beacon transmission, the CDMA and Bluetooth, and the third device supports beacon transmission, WiFi, and CDMA, the first The second device can establish a communication session, each of the first and second devices individually communicating with the third device using the beacon transmission to establish a higher layer communication link, thereby enabling the third device to act as the first and the second A communication intermediate between two devices. The use of the beacon signal allows the third device to know the first and second devices and their capabilities such that they can establish an appropriate higher layer communication link between the second devices such that between the first and first devices The peer communication session is possible. Thus, it allows for sufficient communication between the devices to establish a communication session whereby the first device uses WiFi to communicate user data as part of the communication session between the first and third devices, and The second device communicates between the second and third devices using CDMA, wherein the third device acts as a communication intermediate for the communication session between the first and second devices. The use of beacons allows the establishment of such networks on a special basis. The same or different frequency bands can be used with each of the first, second and third protocols. For example, 'beacon transmission can occur in the first frequency band, and OFDM and CDMA can occur in the second and third frequency bands, respectively. In other embodiments, the beacon transmission is performed in the same frequency band as the frequency band used for the second and/or third communication protocol. 151133.doc -10· 201112684 ... a variety of θ application towels, the device supports cooperative operation mode and non-cooperative operation. In the case of a cooperative mode of operation, the individual devices operate in a manner that would result in that & low pass, but generally tends to increase the overall passability of the system. In the case of a non-cooperative mode of operation, the device takes advantage of its communication performance regardless of the other devices it is not communicating with (eg, in terms of interference). Communication can be specified in a variety of ways. See the way based on overall data throughput. Therefore, in some of the modes, when in the non-cooperative mode, the communication device maximizes its data = throughput without considering the impact on other devices. The delay is sometimes also used as an indicator of efficiency: in some embodiments, the device operates in a non-cooperative mode to minimize its delay, regardless of the other devices. Minimizing the delay without regard to other devices may involve, for example, in the case where the expected transmission by another device is consistent, the transmission may be performed quickly rather than delayed until another device completes its transmission as Cooperative mode operations may involve power control and other interference management techniques, and in some cases may involve responding to resource configuration instructions (eg, from a US platform or other controller). When operating in the cellular mode, the cooperative mode operation is used in the example. The non-cooperative mode is used when in some implementations, the spectrum of the two = right and/or when operating in the presence of a communication device corresponding to another carrier or server. In one detail, when the first device uses the first communication protocol and the debt is measured and tries to use the first communication protocol, the communication is switched to the second communication device, but the device is not supported but can be used. A communication protocol with the same frequency band as the frequency band that the second communication device tries to use with the 151133.doc • 11 - 201112684. Therefore, the signal of the first communication device becomes interference with the second communication device, and the first communication device will not respond to the interference control signal corresponding to the first communication protocol from the second communication device because the first communication The device has intentionally switched to the second communication protocol. The first communication device can switch back to the first communication protocol when the second device leaves the zone. In some embodiments, the first and second communication protocols are WiFi and Bluetooth. In some embodiments, the device determines whether to cooperate in a cooperative manner in a non-cooperative manner based on whether the devices in a region are identified as being corresponding to the same communication carrier or different communication carriers. The decision to operate in a cooperative or non-cooperative manner may also be based on whether the devices in the area correspond to the same-service provider, owner or group, or whether the detected device attempting to share the spectrum corresponds to a different service provider, Owner or group. In the case of a non-cooperative mode of operation, a device operating in a non-cooperative mode of operation may transmit a signal intended to reduce the transmission and/or power level of the device in (4). This may involve transmitting control signals intended to induce other devices to reduce their transmission levels, and/or transmissions that are not intended to convey information but appear to interfere with other devices in the area (to cause other devices to reduce or modify their transmission for release) The signal of the spectrum of the device transmitting the signals. EXAMPLES Numerous additional features, benefits, and/or implementations are discussed in the following [Embodiment]. [Embodiment] FIG. 1 illustrates an exemplary 逋k network implemented in accordance with various embodiments. Two exemplary wireless terminals (i.e., first wireless terminals 1〇2 and 151133.doc •12-201112684 second wireless terminal units 1〇4) are present in the geographic area ι6. For communication purposes, some frequency bands are available for use by two wireless terminals. The two wireless terminals use the available frequency bands to establish a point-to-point communication link between each other. Since a particular network may not have a network infrastructure, the wireless terminal may not have a common timing or frequency reference. This leads to some of the special networks that pick me up. To illustrate, consider how any of the terminals can detect the presence of another. For simplicity of description, it is assumed hereinafter that at a given time, the wireless terminal can transmit or receive, but not both transmit and receive. It should be understood that those skilled in the art can apply the same principle to the case where the terminal transmits and receives at the same time. Figure 2 includes a diagram 2B depicting a mechanism by which two wireless terminals can be used to discover each other. The first terminal transmits a signal in time interval 2〇2 and receives the signal in time interval 2〇4. At the same time, the second terminal machine • transmits a signal in time interval 206 and receives the signal in time interval 208. Note that if the first wireless terminal can transmit and receive simultaneously, the time intervals 202 and 204 can overlap each other. Note that since the two wireless terminals do not have a general timing reference, their TX (transmission) and RX (reception) timings are not synchronized. In particular, Figure 2 shows that time intervals 204 and 206 do not overlap. When the first wireless terminal is listening, the second wireless terminal does not transmit, and when the second wireless terminal transmits, the first wireless terminal does not listen. Therefore, the first wireless terminal does not detect the presence of the second wireless terminal. Similarly, the time interval 2〇2 does not overlap with 2(10) J51133.doc 201112684. Therefore, the existence of the second wireless device does not detect that the first wireless terminal has a way to overcome the above-mentioned misunderstanding problem. The terminal can randomly perform τχ and in order, for example, the wireless terminal, two wireless terminals The machine will be probabilistically/intermediately 35, so that as time goes by. Missing, the cost is delay and corresponding.,,, and Ά RXis & φ ^ λ ^ In addition, the power consumption is also due to the power in the RX program. Requires cool - 疋. For example, less processing power can be required to detect another form of signal than to detect a form of k. An advantage of various embodiments is that the newly developed Heartbeat TX and RX programs are implemented and used to reduce the delay in detecting the presence of the other & and the associated power consumption. According to various examples, a wireless terminal transmits a special signal (referred to as a private signal) that occupies the J-knife rate of the total amount of available air link communication resources (for example, in some embodiments, More than 0.1%). In some example, air link communication resources are measured in terms of minimum or basic transmission units (e.g., OFDM carrier tone symbols in an OFDM system). In some embodiments, airlink communication resources may be measured in terms of degrees of freedom, where the degree of freedom is the smallest unit of resources available for communication. For example, in a CDMA system, the degree of freedom can be a spreading code, corresponding to a time period of a symbol period. Generally, the degrees of freedom in a given system are orthogonal to each other. An illustrative embodiment of a frequency division multiplexing system (e.g., an OFDM system) is contemplated. In this system, information is transmitted symbol by symbol. During the - symbol transmission period, 'all available bandwidths are divided into a number of carrier frequencies' 151133.doc 201112684 Each can be used to carry information. Figure 3 includes a drawing 300 showing the available resources in an exemplary OFDM system. The horizontal axis 3〇1 represents time, and the vertical axis 3〇2 represents frequency. Vertical lines represent each carrier tone in a given symbol period. Each small box 3〇4 represents a carrier tone symbol, which is a link poor source of a single carrier frequency in a single transmission symbol period. The minimum transmission unit in an OFDM symbol is a carrier tone symbol. The bracket signals include which are transmitted sequentially over time. A beacon signal burst includes a small number of beacon symbols. In this example, each beacon symbol burst (308, 310, 312) includes a beacon symbol and 19 nulls. In this example, each beacon number 1 is a single carrier tone within a transmission period. In some embodiments, the beacon signal burst includes the same carrier tone beacon symbol within a few transmission symbol periods (eg, or two symbol periods). Figure 3 shows three small black j' each of which - (306) represents a beacon symbol. In this case, the beacon symbol uses the air link resource of a carrier tone symbol, that is, a letter: transmission unit is a 〇FDM $ TF. In another embodiment, the carrier tone is transmitted in two consecutive symbol periods, and the signal transmission bit contains two adjacent 31 carrier tone symbols. The = signal occupies the call and part of all the minimum transmission units. The carrier frequency of the spectrum is not as good as that of the long time interval (example transmission unit 假设 assumes that the number of symbol periods is τ. Thus, the minimum is: the heart: the number is Ν * τ. According to various embodiments The number of carrier frequency symbols in the time interval is significantly less than ν*τ, 2 151133.doc -15· 201112684 in some embodiments does not exceed 0.1% of N*T. In some embodiments, the letter The carrier frequency of the beacon symbol in the signal burst is modulated from the burst change (frequency hopping) to another burst. According to various embodiments, the carrier frequency hopping pattern of the beacon symbol is a function of the wireless terminal, and It may be and sometimes used as an identification of the terminal or an identification of the type of the terminal. Generally, 3, by determining which minimum transmission unit transmits the beacon symbol, the information in the beacon signal can be decoded. For example, In addition to the carrier frequency hopping sequence, the information may include the frequency of the carrier frequency of the beacon symbol in a given beacon signal burst, the number of beacon symbols in a given burst, and the duration of the beacon signal burst. And/or within the interval between bursts. From the perspective of transmission power, The beacon signal can also be characterized. According to various embodiments, the transmission power of the beacon signal per minimum transmission unit is much higher than the average transmission of the data and control signals per degree of freedom when the terminal transmitter is in the normal data session. Power (e.g., at least 10 dB above it in some embodiments). According to some embodiments, the transmission power of the beacon signal per minimum transmission unit is greater than the degree of freedom of the terminal transmitter when it is in the normal data session. The average transmission power of the data and control signals is at least 16 dB high. For example, the graph 400 of Figure 4 plots each of the carrier frequency symbols in the phase (long) interval (eg, - or two seconds). The transmission power used in one, in which the wireless terminal is in the data session, that is, the terminal uses the relevant spectrum to transmit data and control information. & This discussion, the order of these carrier symbols ( Not indicated by the horizontal axis 4〇1) The smaller vertical rectangle 404 represents the power of the individual carrier tone symbols for transmitting user data and/or control information. The rectangle 4〇6 extends 151133.doc -16 - 201112684 does not standardize the power of the tone symbol. In another embodiment, the 'beacon signal includes a sequence of beacon signals that are transmitted in intermittent time periods. A beacon signal burst includes one or more (v-number) hop field pulses. The time domain pulse signal is a special signal that reports a small number of transmission durations over a certain spectral bandwidth. For example, the available frequency sees ' In a 30 kHz communication system, the time-honored signal occupies a significant portion of 30 bandwidths for a short duration. In any fairly long time interval, such as 'several seconds, the total duration of the time domain pulse The time is always - a small part of the last two (for example, 'in some implementations does not exceed Qi%). The two veins: the transmission power of each degree of freedom in the time interval of the signal; the field transmitter is in the general information meeting Each time in the middle of the period (for example, 'in some realities is higher than the second = W in the time interval of transmitting the pulse signal than when the transmitter is in the normal data. The degree of each degree of freedom = two rate rate is at least 16 dB. The average transmission of the Tiandu Figure 4 shows that the carrier tone symbol is different from the other. Pavg indicates the Y transmission power per carrier tone symbol. In various embodiments, the carrier signal has a carrier frequency = rate (total). According to (for example, above its dB). The transmission power ratio is higher than the transmission power ratio p t per carrier frequency. In the poor case, the beacon signal embodiment, the beacon signal is at least 16 dB every two. In - instantiated 20 dB. The trimming symbol transmission power is higher than Pavg. In one embodiment, the transmission power is constant for the _ tone symbol = 疋 terminal, per carrier frequency of the beacon signal. That is, the power does not change with time or with the carrier frequency I51133.doc 201112684. In another embodiment, each of the terminals in the network) has the same transmission power. For a plurality of terminals (or even a beacon signal per carrier tone symbol, Figure 5 of the diagram 500 illustrates the transmission of beacon signals - an embodiment.

終端機t續傳輸信標信號叢發(例如,信標信號叢發A 502、心軚仏號叢發 B 5〇 、^ 1〇知彳。唬叢發C 506等),即使 ==端機判定附近不存在其他終端機或者即使該終端 機已侦測到其他終端機且甚至可能已與其建立通信鏈路。 終端機以間歇(亦即,非連續)方式傳輸信標信號叢發, 使W連續信標信號叢發之間存在許多符號週期。- 般而…言標信號叢發之持續時間遠短於在兩個連續信標 ^虎叢發之間的該數目之符號週期(例如,在―些實施例 中短於其至少50倍),符號週期被表示為l 5〇5。在一實施 例中,L之值係固定且怪定的,在該情況下,信標信號係 週期性的。在一4b實絲你丨中,誓+认& 一 I她例〒,對於終端機中之每一者,[ 之值係相同且已知的。在另一眚 隹另貫施例中,L之值隨時間而 變化’例如,根據狀或爲隨機樣式。舉例而t,該數目 可為分佈於常數Lg#Li之間的數目,例如,隨機數目。 圖6之圖式600說明接收信標信號叢發可在一些指定之時 間間隔期間發生而在其他時間接收器關閉以省電的一例示 性實施例。無線終端機收聽相關之頻譜且試圖偵測一可由 一不同終端機發送之信標㈣。無線终端機可在若干符號 週期之時間間隔内連續地處於收聽模式,該時間間隔被稱: 為接通時間。接通時間602之後為關閉時間6〇6,在關閉時 151133.doc -18- 201112684 間606期間,該無線終 祙* — 喝電拉式且不接收任何俨 號。在该關閉時間中,在一些實施例 =邮 .== 當關閉時間6°6結束時,終端機回復至 .接=_又開始侦測信標信號。重複以上程序。 較佳地,接通時間間隔之長 招。* 一者 比關閉b間間隔之長度 1 ^ 了小於關閉時間間隔之 在實施例中,接通時間間隔中之每一 相同的,且關閉時間間隔中 、長又係 • I 一处- 之母—者的長度亦係相同的。 卜^ 弟一無線終端機實際上存在於第一 無線終端機之附近,則關f1 # 、 ⑴關閉時間間隔之長度視第一 梅測到另一(第二)無 ::第無線終 、?而機之存在的延時要求而 疋。接通時間間隔之長度經判 ^ A _ ^ * 使仔第一無線終端機具 有在该接通時間間隔中偵 -^ v h唬叢發之較大 機率。在一貫施例中 叢私夕禮於杜綠 接通時間間隔之長度為一信標信號 〗、、’’時間與連續信標信號叢發之間的持續時間 至^—者的函數。舉例而言,接通時間間隔之長度至 /'為一 k標信號叢發之值W 4士 β + 知之傳輪持績時間與連續信標信號叢發 之間的持續時間之總和。 —圖7之圖式說明當兩個終端機使用根據各種實施例所 貫施之信標信號傳輸及接收程序時,終端機如何㈣第二 終端機之存在。 山尺平軸701表不時間。第一無線終端機在第二無線終 端機7 2 4出現之前石丨;杳m 達特用網路。第一無線終端機720使用 發射器722開始傳輸信標信號(其包括一序列之信標信號叢 151133.doc •19· 201112684 發710 712、714等)。第二無線終端機724在第—無線終 端機720已傳輪叢發71〇之後出%。假設第二無線終端機 ”他括接收器726)開始接通時間間隔7〇2。注意接通時 間間^足夠大以涵蓋信標信號叢發712之傳輸持續時間及 叢發712與714之間的持續時間。因&,第二無線終端機 724可在接通時間間隔7〇2 _偵測到標信號叢發71 2之存 在P使第—與第二無線終端機(720、724)不具有通用時 序參考。 圖兒月根據各種實施例實施於無線終端機中之例示性 狀態圖800的—實施例。 當無線終端機開機時,該無線終端機進人狀態802,其 中’該終端機判定待傳輸之下—信標信號叢發之開始時 間。此外,該無線終端機判定接收器之下一接通時間間隔 碣始時間。5亥無線終端機可能且在一些實施例中確實使 用-發射器計時器及一接收器計時器以管理該等開始時 間無線終端機等待,直至任一計時器期滿為止。注意, 任一計時器可能瞬間期滿,&意謂,在開機之後,該無線 終端機即將傳輸或偵測信標信號叢發。 十時器之期滿之後’該終端機即進入狀態,。該 ‘”:線、而機判定包括將由叢發使用之頻調的叢發之信號形 式且傳輪該>(5才示仏號叢發。一旦進行了該傳輸,該終端 機即返回至狀態8〇2。 十蛉器之期滿之後,該無線終端機即進入狀態 _。該無線終端機處於收聽模式且搜尋信標信號叢發。 151133.doc .20- 201112684 若當接通時間間隔結束時’無線終端機尚未發現信標信號 叢發,則該無線終端機返回至狀請2。在無線終端機偵 測到-新的無線終端機之信標信號叢發的情況下,若該無 線終端機t欲與新⑽端機㈣,則職料端機進行至 狀態808。在狀態808中,無線終端機自偵測之信標信號择 得新的無線終端機之時序及/或頻率,且接著使其自身^ 時序及/或頻率與該新的無線終端機同步。舉例而言,無 線終端機可在時間及/或在頻率上使㈣標位置,作為^ 計新的無線終端機之時序相位及/或頻率的基礎。此資訊 可用以使兩個無線終端機同步。 -旦完成同步’無線終端機即可將額外的信號發送至新 的終端機(81G)且建立—通信鏈路。該無線終端機及新的益 線終端射接著蚊-輯㈣信會期。#減終端機已 與=一終端機建立通信鏈路時,該終端機應繼續間歇地傳 輸信標信號,使得其他終端機(例如,新的無線終端機)可The terminal machine continues to transmit the beacon signal burst (for example, the beacon signal burst A 502, the heartbeat burst B 5 〇, ^ 1 〇 know 彳. 唬 发 C C 506, etc.), even == terminal It is determined that there are no other terminals nearby or even if the terminal has detected other terminals and may even have established a communication link with it. The terminal transmits the beacon signal bursts in an intermittent (i.e., non-continuous) manner such that there are many symbol periods between the bursts of consecutive beacon signals. - generally, the duration of the speech signal burst is much shorter than the symbol period of the number between two consecutive beacons (eg, in some embodiments less than at least 50 times), The symbol period is expressed as l 5〇5. In one embodiment, the value of L is fixed and ambiguous, in which case the beacon signal is periodic. In a 4b silk thread, you swear + recognize & I I, for example, for each of the terminals, [the values are the same and known. In another embodiment, the value of L varies over time', e.g., depending on the shape or in a random pattern. By way of example, t, the number may be a number distributed between constants Lg#Li, for example, a random number. Figure 600 of Figure 6 illustrates an exemplary embodiment in which received beacon signal bursts may occur during some specified time interval and at other times the receiver is turned off to save power. The wireless terminal listens to the associated spectrum and attempts to detect a beacon (4) that can be transmitted by a different terminal. The wireless terminal can be continuously in the listening mode for a time interval of several symbol periods, which is referred to as: the on time. The turn-on time 602 is followed by a turn-off time of 6〇6, and during a turn-off of 151133.doc -18-201112684 between 606, the wireless terminal* — is electrically pulled and does not receive any apostrophes. In this off time, in some embodiments = mail. == When the closing time 6 ° 6 ends, the terminal reverts to . . . = again starts detecting the beacon signal. Repeat the above procedure. Preferably, the on time interval is long. * One is shorter than the length of the interval between b and is less than the closing time interval. In the embodiment, each of the on-time intervals is the same, and the closing interval is long and the length is one. - The length of the person is also the same. Bu ^ a wireless terminal actually exists in the vicinity of the first wireless terminal, then off f1 #, (1) the length of the closing time interval depends on the first Mei measured another (second) no :: wireless end, ? The delay of the existence of the machine is ambiguous. The length of the on-time interval is judged by ^ A _ ^ * to cause the first wireless terminal device to have a large probability of detecting -^ v h bursts in the on-time interval. In a consistent example, the length of the interval between the green and the green is a function of the duration between a beacon signal 〗 〖, ’’ time and the continuous beacon signal burst to ^. For example, the length of the on-time interval to /' is the sum of the value of the k-signal burst value W 4 ± β + the duration between the known pass and the continuous beacon signal burst. - Figure 7 is a diagram illustrating how the terminal (4) the second terminal exists when the two terminals use the beacon signal transmission and reception procedures according to various embodiments. The mountain ruler axis 701 does not show time. The first wireless terminal device is in front of the second wireless terminal unit 724; The first wireless terminal 720 uses the transmitter 722 to begin transmitting beacon signals (which include a sequence of beacon signal bundles 151133.doc • 19· 201112684 710 712, 714, etc.). The second wireless terminal 724 outputs % after the first wireless terminal 720 has transmitted 71 丛. It is assumed that the second wireless terminal "the receiver 726" begins to turn on the time interval 7〇2. Note that the on-time is sufficiently large to cover the transmission duration of the beacon signal burst 712 and between the bursts 712 and 714. The duration of the second wireless terminal 724 can be detected by the second wireless terminal 724 at the on-time interval 〇 2 _ the presence of the signal burst 71 2 to make the first and second wireless terminals (720, 724) There is no general timing reference. The embodiment of the exemplary state diagram 800 implemented in a wireless terminal is implemented in accordance with various embodiments. When the wireless terminal is powered on, the wireless terminal enters state 802, where the terminal The machine determines the start time of the beacon signal burst under transmission. In addition, the wireless terminal determines the start time of the next on time interval of the receiver. The 5H wireless terminal may and in some embodiments does use - a transmitter timer and a receiver timer to manage the start time of the wireless terminal waiting until any timer expires. Note that any timer may expire instantaneously, & meaning that after powering up , The wireless terminal will transmit or detect the beacon signal bursting. After the expiration of the ten-hour device, the terminal will enter the state. The '': line, and the machine decides to include the tone of the tone that will be used by the burst. The signal form and the transmission of the > (5 shows the nickname burst. Once the transmission is made, the terminal returns to the state 8 〇 2. After the expiration of the scorpion, the wireless terminal enters the state. _. The wireless terminal is in listening mode and searches for beacon signal bursts. 151133.doc .20- 201112684 If the wireless terminal has not found the beacon signal burst when the connection time interval ends, the wireless terminal returns In the case of the wireless terminal detecting the new beacon signal of the wireless terminal, if the wireless terminal t wants to cooperate with the new (10) terminal (4), the service terminal goes to the state. 808. In state 808, the wireless terminal selects the timing and/or frequency of the new wireless terminal from the detected beacon signal, and then synchronizes its own timing and/or frequency with the new wireless terminal. For example, wireless terminals can be used in time and / or the (four) target position on the frequency, as the basis for the timing phase and / or frequency of the new wireless terminal. This information can be used to synchronize the two wireless terminals. - Once the synchronization is completed, the wireless terminal can be used. The additional signal is sent to the new terminal (81G) and the communication link is established. The wireless terminal and the new benefit line terminal are followed by the mosquito-series (four) letter period. #减终端机 has ==terminal When establishing a communication link, the terminal should continue to transmit beacon signals intermittently, so that other terminals (for example, new wireless terminals) can

4貞測該無線終端機。此外 A 微此外在—些實施例中,該無線終端 機繼續週期性地進人接通時間間隔則貞測新的無線終端 機。 •提供根據各種實施例而實施的例示性無線終端機 匕(例如’攜帶型仃動節點)之詳細說明。圖9中描繪之例 示性無線終端機900為可用作圖4描繪之終端機1〇2及ι〇4 中之任-者之設備的詳細圖示。纟圖9實施例中,終端機 9〇:包括由匯流排906耗接於—起之一處理器9〇4、一無線 I面板組930、使用者輪入/輸出介面940及記憶體 15I133.doc 201112684 910。因此,經由匯流排90ό,終端機900之各種組件可交 換貧訊、信號及資料。終端機9〇〇之組件9〇4、9〇6、91〇、 930、940位於外殼9〇2内部。 無線通信介面模組93〇提供無線終端機900之内部組件可 用以將信號發送至外部裝置及另一無線終端機/自外部裝 置及另一無線終端機接收信號的機構。無線通信介面模組 930包括(例如)與雙工器938連接之接收器模組932及發射器 模組934,雙工器938具有一用於(例如)經由無線通信通道 將無線終端機9〇〇耦接至其他終端機的天線% 6。 例不性無線終端機9〇〇亦包括一使用者輸入裝置942(例 如,小鍵盤)及一使用者輸出裝置944(例如,顯示器),使 用者輸入裝置942及使用者輸出裝置944經由使用者輸入/ 輪出介面940而耦接至匯流排9〇6。因此,使用者輸入/輸 裝置942 944可經由使用者輸入/輸出介面94〇及匯流排 與該終端機9〇〇之其他組件交換資訊、信號及資料。使 用者輸入/輸出介面940及相關聯之裝置942、944提供使用 者可用以操作無線终端機9〇〇以完成各種任務的機構。詳 έ之,使用者輸入裝置942及使用者輸出裝置9料提供允許 使用者控制無線終端機9 〇 〇及在無線終端機9 〇 〇之記憶體 910中執行的應用程式(例如,模組、程式 '常式及/或函 式)之功能性。 在包括於記憶體910中之各種模組(例如,常式)之控制下 的處理器904控制無線終端機900之操作,以執行各種傳信 及處理。當啟動時或當由其他模組呼叫時,執行包括於記 15H33.d〇c -22- 201112684 :、10中之拉組。當執行時,模組可交換資料、資訊及 ^ W執灯時,模組亦可共用資料及資訊。在圖9之實 • ' 例示丨生無線終端機900之記憶體910包括傳信/控 制模組912及傳信/控制資料914。 專L /控制模組犯控制與接收及發送信號(例如,訊息) 相關之處理,以用於管理狀態資訊儲存 '操取及處理。傳 信/控制資料叫包括狀態資訊,例如,參數 '狀態及/或與 籲 4端機之操作相關的其他資訊。詳言之’傳信/控制資料 914包括信標信號組態資訊916(例如,符號週期,1中將 傳輸信標信號叢發且將使用包括頻率載頻調之信標信號叢 發的信號形式)及接收器接通時間及關閉時間組態資訊 918(例如,接通時間間隔之開始及結束時間)。模組912可 心及/或修改資料914,例如’更新組態資訊…及川。 換’.且912亦包括用於產生及傳輸信標信號叢發之模組9"、 用於偵測信標信號叢發之模組913及用於判定及/或實施時 隊彳及/或頻率同步資訊作為接收之信標信號資訊之功能之 同步模組915。 圖1〇為根據各種實施例的操作—攜帶型無線終端機之例 不性方法之流程圖麵的圖式。例示性方法之操作開始於 步驟1〇02,其中,無線終端機經開機並被初始化且進行至 步驟刪。在步驟麵中,無線終端機經操作以在第一時 間間隔期間傳輸-信標信號及使用者資料。步驟ι〇〇4包括 子步驟1006及子步驟1〇〇8。 在子步驟咖中,無線終端機經操作以傳輸n序 151133.doc •23· 201112684 列之信標信號叢發之信標信號,每— 或多個信標符號,每-信標符骑:標信號叢發包括一 位,在I r 、,佔據—信標符號傳輸單 位,在母一化私付旒叢發期間傳 ^ 各種實施例中,用於傳輸信標信號之傳==標符號°在 符號伯據可用信標符號傳輸單位不之核目之信標 +足百分之10。在一也奮 施例中,在該序列之信標信號 一 Φ ^ ^ ^ π . 赞中傳輸的信標信號叢發 中之母一者具有相同週期。 施例中,在該序列之 遽叢發中傳輸的信標信號叢發中之至少—此 同長度的週期。 二/、有不 子步驟1006包括子步驟101η . ^ ^ ,,^ .. ^ 〇。在子步驟1〇1〇中,無線終 知機經刼作而間或地傳輸該等 知1°唬叢發,其中在該序 列之信標信號叢發中之兩個 ™ ^ 巩七铩彳5唬叢發之間的時間 週期為§亥兩個鄰近信棒作妹 5 “ W鍵發中之任-者之持續時間的 至夕5倍。在一些實施例中, __ Τ在第一時間週期期間發生之 ^仏信號叢發之間的時間間 丁]間距心者在第一時間週期期間以 週期性方式發生的信標信職發隸定的。在-些此等實 中。亥第時間週期期間的信標信號叢發之持續時間 係恆定的。在—此眘_ 、 —中,根據一預定樣式,在第—時 間週期期間發生之信標信號叢發之間的時間間距隨著在該 第6時間週期期間發生之信標信號叢發而變化。在一些此 等只施例中’該第一時間週期期間的信標信號叢發之持續 時間係怪疋的。在一些實施例中,預定樣式視執行傳輪步 驟之無線終端機而變化。在各種實施例中,對於系統中之 J5ll33.doc -24· 201112684 所有無線終端機,預定樣式係相同的。在一些實施例中, 該樣式為偽隨機樣式。 在子步驟1008中,無線終端機經操作以在第一時間間隔 期間傳輸使用者資料,該使用者資料使用以一平均每符號 功率位準傳輸的資料符號而傳輸,該平均每符號功率位準 比在第一時間間隔期間傳輸之信標符號之平均每信標符號 功率位準低至少百分之5 〇。在一些實施例中,每一信標符 5虎之平均每符號傳輸功率位準比用於在第一時間週期期間 傳輸資料之符號的平均每符號傳輸功率位準高至少 dB。在—些實施财,# 一信標符號之平均每符號傳輸功 f位準比用於在第一時間週期期間傳輸資料之符號的平均 每符號傳輸功率位準高至少丨6 dB。 。在各種實施例中,使用〇FDM載頻調符號來傳輸信標符 號,該等信標符號在包括多個信標符號叢發之時間週^期 間佔據由該無線終端機使用之傳輸資源之載頻 ::1。在-些此等實施例中,在包括-信標信號:: :連:信標信號叢發之間的一間隔之該時間週期的—部分 ,信標符號佔據載頻調符號不足百分之〇 ι。 刀 在子步驟刪中,在一些實施例中 以在哕坌…、深〜鳊機經操作 在該第-時間週期期間在由該無線終端機使用之 ::之載頻調符號的至少百分之1〇上傳輸使用者資料。:二 二此等實施例中,在該第一時間週 俨- 發時間调如沾杜这+ 生之4彳示k號叢 ' '寺、戈時間比在該第一時間週里 信桿作缺堂4 4間兩個連續 “唬叢發之間發生的時間週期短至少5〇倍。 貝 I51133.doc -25- 201112684 在一些實施例中’㈣型無線終端機包括傳輸該信標信 號之〇職發射器,且使用為頻率與時間之組合的資源來 傳遞信標信號。在-些實施例中,攜帶型無線終端機包括 傳輸该信標信號之⑶MA發射器,且使用為程式碼與時間 之組合的資源來傳遞信標信號。 圖1 1為根據各種貫施例的择你 4S »«: π梯作一攜帶型無線終端機(例 如’電池供電的行動節點)之例示性方法之流程圖1100的 圖式。操作開始於步驟1102,其中攜帶型無線終端機經開 機並被初始化。操作自開始步驟⑽進行至步驟1104,在 步驟蘭中,攜帶型無線終端機經操作以傳輸一包括一序 列之信標信號叢發之信標信號,每一信標符號叢發包括一 或多個信標符號,每一信標符號佔據一信標符號傳輸單 位,在每-叢發期間傳輸一或多個信標符號。在一此此等 =:二’使用0FDM載頻調符號來傳輸信標符號,且該 ·# 4標符號在包括多個传辨業I + i B, 無線終端機使用之傳輸次5 L B ’ fs㈣㈣佔據由該 得輸貝源之裁頻調符號不足百分之J。 操作自步驟U04進行至步驟11〇6。 在步驟1106中,攜帶型盔缓 … 機知作以在包括多個 時間週_間在由該無線终端機使用之载頻調 符相至少百分之〗〇上傳輸使用者資料。在一也 施 例中,在該時間週期令發生之俨浐疒骑蓄務沾姓接 在該時間週期期間兩個诘嬙#描 戶、砰間比 週期短至少50倍。續W信號叢發之間發生的時間 圖12為根據各種會 貧細例的刼作一攜帶型無線終端機(例 Ϊ51133.doc -26 · 201112684 如,電池供電的行動節點)之例示性方法之流程圖12〇〇的 圖式。操作開始於步驟1201,其中無、線終端機經開機並被 彳°化操作自開始步驟1201進行至步驟丨202,在步驟 1202中,無線終端機檢查該無線終端機是否將傳輸信標信 號右在步驟㈣2中判定無線終端機將傳輸信標信號,例 如’無線終端機處於無線終端機將傳輸信標信號之操作模 式或操作狀態,則操作自步驟12〇2進行至步驟12〇4 ;否4 Measure the wireless terminal. In addition, in some embodiments, the wireless terminal continues to periodically enter a time interval to detect a new wireless terminal. • A detailed description of an exemplary wireless terminal device (e.g., 'portable sway node) implemented in accordance with various embodiments is provided. The exemplary wireless terminal 900 depicted in Figure 9 is a detailed illustration of a device that can be used as any of the terminals 1〇2 and ι4 depicted in Figure 4 . In the embodiment of FIG. 9, the terminal device 9 includes: a processor 〇4, a wireless I panel group 930, a user wheel input/output interface 940, and a memory 15I133. Doc 201112684 910. Thus, via the busbar 90, various components of the terminal 900 can exchange for poor traffic, signals, and data. The components 9〇4, 9〇6, 91〇, 930, 940 of the terminal 9 are located inside the casing 9〇2. The wireless communication interface module 93 provides a mechanism by which internal components of the wireless terminal 900 can transmit signals to and from the external device and to another wireless terminal. The wireless communication interface module 930 includes, for example, a receiver module 932 coupled to the duplexer 938 and a transmitter module 934 having a wireless terminal 9 for example, via a wireless communication channel. 〇 is connected to the antenna %6 of other terminals. The exemplary wireless terminal unit 9 also includes a user input device 942 (eg, a keypad) and a user output device 944 (eg, a display), and the user input device 942 and the user output device 944 are provided to the user. The input/rounding interface 940 is coupled to the busbar 9〇6. Thus, user input/output device 942 944 can exchange information, signals, and data with other components of the terminal device via user input/output interface 94 and bus. The user input/output interface 940 and associated devices 942, 944 provide a mechanism by which the user can operate the wireless terminal 9 to perform various tasks. In detail, the user input device 942 and the user output device 9 provide an application (eg, a module, a module, that allows the user to control the wireless terminal 9 and execute in the memory 910 of the wireless terminal 9 The functionality of the program 'normals and/or functions'. The processor 904 under the control of various modules (e.g., conventional) included in the memory 910 controls the operation of the wireless terminal 900 to perform various signaling and processing. The pull group included in 15H33.d〇c-22-201112684:, 10 is executed when starting up or when calling by other modules. When executed, modules can exchange data, information and when the lights are on, the modules can also share information and information. In Fig. 9, the memory 910 of the exemplary wireless terminal 900 includes a signaling/control module 912 and a signaling/control data 914. The dedicated L/control module arbitrarily controls the processing associated with receiving and transmitting signals (eg, messages) for managing status information storage 'operations and processing. The communication/control data is called status information, for example, the parameter 'status and/or other information related to the operation of the terminal. In detail, the 'message/control data 914 includes beacon signal configuration information 916 (eg, symbol period, 1 will transmit beacon signals bursting and will use a signal form that includes a frequency carrier tone modulated beacon signal burst) And the receiver on time and off time configuration information 918 (eg, the start and end times of the on time interval). The module 912 can modify and/or modify the data 914, such as 'update configuration information... and Sichuan. And 912 also includes a module 9" for generating and transmitting beacon signal bursts, a module 913 for detecting beacon signal bursts, and for judging and/or implementing the team and/or The frequency synchronization information is used as a synchronization module 915 for receiving the function of the beacon signal information. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow diagram of an example of an operational-portable wireless terminal in accordance with various embodiments. The operation of the exemplary method begins in step 1 〇 02, in which the wireless terminal is powered on and initialized and proceeds to step delete. In the step, the wireless terminal is operative to transmit the beacon signal and the user profile during the first time interval. Step ι 4 includes sub-step 1006 and sub-steps 1 〇〇 8. In the sub-step coffee, the wireless terminal is operated to transmit the beacon signal of the beacon signal clustered in n sequence 151133.doc • 23· 201112684, and each- or more beacon symbols, each-beacon ride: The standard signal burst includes one bit, in Ir, the occupation-beacon symbol transmission unit, and is transmitted during the mother-in-one private payment. In various embodiments, the transmission of the beacon signal is transmitted == symbol ° In the symbolic data available, the beacon symbol transmission unit does not have a nuclear beacon + 10 percent. In an example, the parent of the beacon signal transmitted in the sequence of the beacon signal Φ ^ ^ ^ π. has the same period. In the embodiment, at least the same length of the beacon signal burst transmitted in the burst of the sequence. The second/, sub-step 1006 includes sub-steps 101n. ^ ^ , , ^ .. ^ 〇. In sub-step 1〇1〇, the wireless terminal computer transmits the known 1° 唬 bursts, or two of the beacon signals in the sequence of the beacon signals. The time period between the 5 唬 bursts is 5 times that of the duration of the two adjacent letters of the singer 5 of the sisters of the “W-keys. In some embodiments, __ Τ is the first time During the period of time, the time between the bursts of signal bursts occurs in a periodically occurring beacon letter during the first time period. In some of these realities. The duration of the beacon signal burst during the time period is constant. In this case, according to a predetermined pattern, the time interval between the beacon signal bursts occurring during the first time period is The beacon signal that occurs during the sixth time period is bursty and varies. In some such embodiments, the duration of the beacon signal burst during the first time period is quirky. In some embodiments Medium, the predetermined style varies depending on the wireless terminal that performs the transmission step. For example, for all wireless terminals in the system, the predetermined pattern is the same. In some embodiments, the pattern is a pseudo-random pattern. In sub-step 1008, the wireless terminal is operated Transmitting user data during a first time interval, the user data being transmitted using data symbols transmitted at an average power level per symbol, the average power level per symbol being greater than the beacon symbol transmitted during the first time interval The average per-beacon symbol power level is at least 5 percent lower. In some embodiments, each beacon 5 tiger average per-symbol transmission power level is used to transmit data during the first time period. The average symbol-to-symbol transmission power level of the symbol is at least dB. In the case of some implementations, the average per-symbol transmission power of a beacon symbol is greater than the average symbol per symbol used to transmit data during the first time period. The transmission power level is at least dB6 dB. In various embodiments, the 〇FDM carrier tone symbols are used to transmit beacon symbols, the beacon symbols comprising a plurality of beacon symbols The carrier frequency of the transmission resource used by the wireless terminal during the time period of the burst is: 1. In some of these embodiments, the beacon signal is included::: even: the beacon signal bursts The interval between the intervals of the interval, the beacon symbol occupies less than 5% of the carrier frequency modulation symbol. The knife is deleted in the sub-step, in some embodiments, in the 哕坌..., deep ~ 鳊 machine The operation transmits user data over at least 1% of the carrier tone symbols used by the wireless terminal during the first time period.: In the second embodiment, at the first time Zhou Wei - The time is adjusted like Zhan Du + This is the 4th of the birth of the K-cluster' 'Temple, Ge time than in the first time of the week, the letter is for the lack of 4 4 consecutive "between" The time period of occurrence is at least 5 times shorter. In some embodiments the 'fourth type wireless terminal' includes a transmitter transmitting the beacon signal and using a resource of a combination of frequency and time to deliver the beacon signal. In some embodiments, the portable wireless terminal includes a CD transmitter that transmits the beacon signal and uses a resource that is a combination of code and time to deliver the beacon signal. Figure 11 is a flow diagram 1100 of an exemplary method of selecting a 4S » «: π ladder as a portable wireless terminal (e.g., a "battery-powered mobile node") in accordance with various embodiments. Operation begins in step 1102, where the portable wireless terminal is turned on and initialized. Operation proceeds from start step (10) to step 1104, in which the portable wireless terminal is operative to transmit a beacon signal comprising a sequence of beacon signal bursts, each beacon symbol burst comprising one or more Each beacon symbol, each beacon symbol occupies a beacon symbol transmission unit, and transmits one or more beacon symbols during each burst. In this case, the ==2' uses the 0FDM carrier tone symbol to transmit the beacon symbol, and the #4 tag symbol includes multiple transmission industries I + i B, and the wireless terminal uses the transmission time 5 LB ' Fs (four) (4) occupies less than J percent of the grading symbols of the source. The operation proceeds from step U04 to step 11〇6. In step 1106, the portable helmet is configured to transmit user data at least a percentage of the carrier frequency modifier used by the wireless terminal during a plurality of time periods. In an example, the time period of the cycle is such that the two cycles are at least 50 times shorter during the time period. Continuation of the time between the W signal bursts. Figure 12 is an exemplary method for a portable wireless terminal (eg, 51133.doc -26 · 201112684, for example, a battery-powered mobile node). Flowchart of Figure 12〇〇. The operation begins in step 1201, wherein the no-line terminal is powered on and is throttled from the start step 1201 to step 202. In step 1202, the wireless terminal checks whether the wireless terminal will transmit the beacon signal to the right. Determining in step (4) 2 that the wireless terminal device will transmit a beacon signal, for example, 'the wireless terminal device is in an operation mode or an operation state in which the wireless terminal device transmits the beacon signal, then the operation proceeds from step 12〇2 to step 12〇4;

則’操作返回進行至步驟12()2之輸人,以進行是否將傳輸 心仏"ί§ ^虎之另一檢查。 在ν驟1204中,無線終端機檢查是否到了傳輸信標信號 叢發之時間。若在步驟職中判定到了傳輸信標信號叢發 之時間’則操作進行至步㈣〇6,在步驟咖中,該無線 ㈣機傳輸-包括-或多個信標符號之信標信號叢發,每 -信標符號佔據-信標符號傳輸單位。操作自步驟⑽進 行至步驟1202。 若在步驟副中判定尚未到傳輸信標信號叢發之時間, 則操作進行至步驟12〇8’在步驟謂中,無線終端機判定 是否到了潛在的使用者資料傳給夕拉門 竹1寻鞠之時間。若在步驟1208中 判定到了經配置用於潛在的使用去咨 J使用者貧枓傳輸之時間,則操 作自步驟1208進行至步驟121〇,不曰4口 &丄 ' 輝否則知作自步驟1208進行 至步驟1202。 、一外π愐微定舍 輸使用者資料。若該無線終端播胳德仏m ^ 、响機將傳輸使用者資料,| 作自步驟1210進行至步驟1212,在 在步驟1212中,無線矣 151133.doc -27- 201112684 機使用以-平均每符號功率位準傳輸的資料符號而傳輸使 用者育料’該平均每符號功率位準比由該無線終端機傳輸 之信標符號之平土句每信標符號功率位準低至少百分之5〇。 若在步驟1210中判定無線終端機在此時將不傳輸使用者資 料,例如’無線終端機未儲備等待被傳輸之使用者資料及/ 或無線終端機欲發送資料至其之對等節點未準備好接收使 用者資料,則操作返回進行至步驟12〇2。 圖13為根據各種實施例的操作__攜帶型無線終端機(例 如,電池供電的行動節點)之例示性方法之流程圖13〇〇的 圖式。操作開始於步驟1302,其中使無線終端機經開機並 被初始化。操作自開始步驟13G2進行至步驟i綱、飾、 1308、連接節點A 131()及連接節點b 13仏在以前進為基 礎而執行之步驟1304令,無線終端機追蹤時序,輸出當前 時間資訊13 14。當箭bS· pq次, 〇 夺3貝訊13 1 4識別(例如)由該無線終 端機使用之循環時序結構中之索引值。 、 在步驟306巾,無線終端機判定該無線終端機是否將傳 輸號。無線終端機使用模式及/或狀態資訊1316及/ 或優先權資13 18以判定無線終端機是否將傳輸信標信 〜#在步驟13G6中無線終端機決定該無線終端機將傳輸 仏W號’則操作進行至步驟132〇,在步驟13财,該無 線終端機設定信標作用旗標1324。然而,若在步驟13咐 無線終端機決定該無線終端機不將傳輸信標信號,則操作 進行至步驟1322,A™ 在步騾1322 t,該無線終端機清除信標 作用旗知1324。操作自步驟1320或步驟1322返回進行至步 151133.doc -28· 201112684 驟1306,在步驟13〇6中,該無線終端機再次測試是否將傳 輸一信標信號》 在v驟13G8中,無線終端機判定是否清除該無線终端機 而用於資料傳輸。無線終端機使用模式及/或狀態資訊 ㈣、優先權資訊1328及/或對等節點資訊⑴q(例如,指 不對等無線終端機可接收且能夠接收使用者資料之資 訊),以判定是否清除無線終端機而用於資料傳輸。若在 步驟1308中無線終端機決定該無線終端機經清除以傳輸使 用者資料’則操作進行至步驟1332,在步驟1332中,該無 線終端機較資料傳輸旗標1336。然而,若在步驟刪中 無線終端機決定不清除該無線終端機而用於使用者資料傳 輸,則操作進行至步驟1334,在步驟⑴4中,該無線終端 機/月除資料傳輸旗標1336。操作自步驟1332或步驟⑶斗返 回進行至步驟13G8,其中线終端機再次測試是否清除該 無線終端機而用於資料傳輸。 / 返回至連接節點A 1310,操作自連接節點八131〇進行至 步驟1338。在步驟1338中,無線終端機檢查當前時間資訊 13 14疋否指不關於時間結構資訊134〇之信標叢發間隔,及 是否歧信標作用旗標1324。若時間指示其為信標^發間 隔且設定信標作用旗標,則操作自步驟1338進行至步驟 1342 ;否則操作返回進行至步驟1338之輸人以進行條件的 另一測試。 ” > 在步驟1342中’無線終端機產生信標信號叢發該信標 信號叢發包括-或多個信標符號,每—信標符號佔據―: 151133.doc -29- 201112684 標符號傳輸單位。無線終端機利用當前時間資訊1314及儲 存之信標信號定義資訊1344以產生信標信號叢發。信標信 號定義資訊U44包括(例如)叢發信號定義f訊及/或樣式資 訊。在-些實施例中,信標信號叢發資訊包括在可用於載 運信標符號之潛在_載頻調符號集合内識別用於傳送 對應於用於無線終端機之所產生之信標叢發信號的信標符 號之OFDM載頻調符號子集的資訊。在—些實施例中,一 信標信號叢發之載頻調子集可能且有時與在同一信標信號 内自一 k標信號叢發至下一信標信號叢發而不同,例如, 根據預定跳頻樣式。在—些實施例中,信標信號資訊包括 識別將由所產生之信標叢發信號之信標載頻調符號傳送的 調變符號值之資訊。在—些實施例中,—序列之信標信號 叢發用以定義一(例如、斜庙# {LJ〇 U.. U夕如)對愿於一特定無線終端機之信標信 號。在一些實施例中,作碑过 T彳°钻付唬之樣式用以定義信標信 唬,例如,在信標叢發信號内之特定樣式。 操作自步驟U42進行至步驟1346,在步驟1346中,無線 、、端機傳輸所產生之信標叢發信號。無線終端機使用儲存 之信標符號功率位準資訊1348以判定所傳輸之信標叢發信 號内的信標符號之傳輸功率位準。操作接著自步驟ΐ3_ 行至步驟1338。 返回至連接節點Β 1312,操作自連接節點Β 1312進行至 步驟1350。在步㈣5G中,無線終端機檢查當前時間資訊 1314是否指示關於時間結構資訊134〇之資料傳輸間隔是 否叹疋貝料傳輸旗標1336,及無線終端機是否具有如使用 151133.doc -30- 201112684 者儲備貧訊1352所指示而傳輸之資料。若指示為其係資料 傳輸間隔、設定資料傳輸旗標1336且無線終端機具有等待 被傳輸之資料,則操作自步驟135〇進行至步驟1354;否^ 操作返回進行至步驟1350之輸入以進行條件之另一測試。 在步驟1354中,無線終端機產生包括使用者資料Η%之 信號。使用者資料1356包括(例如)意欲用於無線終端機之 對等物的音訊、影像、檔案及/或文字資料/資訊。 操作自步驟1354進行至步驟1358 ,在步驟ϊ358中,無線 終端機傳輪包括使用者資料之產生之信號。無線終端機使 用儲存之使用者資料符號功率位準資訊136〇以判定待傳輸 之使用者資料符5虎之傳輸功率位準。操作自步驟⑴8進行 至步驟1350,在步驟135()中,無線終端機執行與使用者資 料傳輸相關之檢查。 在☆貝施例中,信標信號叢發内之該數目之信標符號 佔據可用《信標符號傳輸單位不足百分之1〇…在各種實 。彳中以平均每符號功率位準來傳輸使用者資料符 “平均每符號功率位帛比所傳輸之信標符號之平均每 信標符號功率位準低至少百分之5 〇。 θ匕括根據例示性實施例說明自一攜帶髮無線終端 ^之例示性信標傳信的圖式剛,在該實施例中,在非信 =發間隔之間重複相同信標叢發信號(信標叢發每一 ϋ =叢發包括一或多個信標符號,每—信標符號佔據 '夺號傳輸單位’在每一信標信號 輸一或 多個作;^ 1 t 不+ ^。’貝率(例如,〇FDM載頻調)繪製於垂直軸[ 151133,doc •31 · 201112684 1402上’而時間繪製於水平軸1404上。在圖式1400中說明 以下序列:包括信標叢發1信號丨4〇6之信標叢發1信號間 隔、非叢發間隔14〇8、包括信標叢發i信號141〇之信標叢 發1信號間隔、非叢發間隔M12、包括信標叢發1信號丨414 之信標叢發Hs號間隔、非叢發間隔丨4丨6、包括信標叢發1 信號1418之信標叢發1信號間隔、非叢發間隔丨42〇。在此 實例中’每一信標叢發信號(14 0 6、141 0、141 4、141 8)對 應於一信標信號(1422、1424、1426、1428)。此外,在此 實例中,每一信標叢發信號(1422、1424、1426、1428)係 _ 相同的;每一信標叢發信號包括相同的信標符號。 圖14亦包括說明自一攜帶型無線終端機之例示性信標傳 信的圖式1450,其中信標信號係包括一序列之信標叢發信 號之複合信號。每一信標信號叢發包括一或多個信標符 號,每一信標符號佔據一信標符號傳輸單位,在每一信標 信號叢發期間傳輸一或多個信標符號。頻率(例如,OFDM 載頻調)繪製於垂直軸1452上,而時間繪製於水平軸1454 上。在圖式1450中說明以下序列:包括信標叢發1信號 籲 1456之信標叢發1信號間隔、非叢發間隔1458、包括信標 叢發2信號1460之信標叢發2信號間隔、非叢發間隔1462、 包括信標叢發3信號1464之信標叢發3信號間隔、非叢發間 隔1466、包括信標叢發1信號1468之信標叢發1信號間隔、 非叢發間隔1470。在此實例中,信標信號1472為包括信標 叢發1信號1456、信標叢發2信號1460及信標叢發3信號 1464之複合信號。此外,在此實例中,每一信標叢發信號 151133.doc -32- 201112684 (信標叢發1信號M56、信標叢發2信號1460、信標叢發3作 號1464)係不同的;例如’每一信標叢發信號包括不與對 應於另兩個信標叢發信號之任一集合匹配的信標符號之集 合。 在一些實施例中,信標符號佔據包括一信標信號叢發及 一在連續信標信號叢發之間的間隔之無線電資源不足百分 之0_3。在一些此等實施例中,信標符號佔據包括—信桿Then the operation returns to the input of step 12 () 2 to determine whether the transmission will be heart-to-hearted. In step 1204, the wireless terminal checks if it is time to transmit the beacon signal burst. If it is determined in the step job that the time of transmitting the beacon signal burst is sent, then the operation proceeds to step (4) 〇 6, in the step coffee, the wireless (four) machine transmits - the beacon signal including - or a plurality of beacon symbols , per-beacon symbol occupies - beacon symbol transmission unit. Operation proceeds from step (10) to step 1202. If it is determined in the step pair that the time for transmitting the beacon signal has not been transmitted, the operation proceeds to step 12〇8'. In the step, the wireless terminal determines whether the potential user data has been transmitted to the 夕拉门竹1 Time is embarrassing. If it is determined in step 1208 that the time is configured for potential use, the user is inferior to the transmission, then the operation proceeds from step 1208 to step 121, and no more than 4 mouth & 1208 proceeds to step 1202.一 一 愐 愐 愐 愐 愐 愐 愐 愐 使用者 使用者 使用者 使用者If the wireless terminal broadcasts the user data, the speaker transmits the user profile, and the process proceeds from step 1210 to step 1212. In step 1212, the wireless device 151133.doc -27-201112684 uses - average The symbolic power level transmits the data symbol and transmits the user's education. The average per-symbol power level is at least 5 percent lower than the beacon symbol power level of the beacon symbol transmitted by the wireless terminal. Hey. If it is determined in step 1210 that the wireless terminal will not transmit the user data at this time, for example, 'the wireless terminal does not reserve the user data waiting to be transmitted and/or the peer node to which the wireless terminal wants to send the data is not prepared. To receive the user data, the operation returns to step 12〇2. 13 is a flow diagram of an exemplary method of operating a portable wireless terminal (e.g., a battery powered mobile node) in accordance with various embodiments. Operation begins in step 1302 where the wireless terminal is powered on and initialized. The operation proceeds from the start step 13G2 to the step i, the decoration, the 1308, the connection node A 131 (), and the connection node b 13 仏. The step 1304 is executed on the basis of the advancement, the wireless terminal tracks the timing, and outputs the current time information 13 14. When the arrow bS·pq times, the 贝3B 13 13 identifies the index value in the cyclic timing structure used by the wireless terminal, for example. At step 306, the wireless terminal determines whether the wireless terminal will transmit a number. The wireless terminal uses the mode and/or status information 1316 and/or the priority information 13 18 to determine whether the wireless terminal will transmit the beacon letter ~# in step 13G6 the wireless terminal determines that the wireless terminal will transmit the 仏W number' Then the operation proceeds to step 132, where the wireless terminal sets the beacon action flag 1324. However, if the wireless terminal determines in step 13 that the wireless terminal will not transmit the beacon signal, then operation proceeds to step 1322, where the ATM clears the beacon flag 1324 at step 1322 t. The operation returns from step 1320 or step 1322 to step 151133.doc -28· 201112684 step 1306. In step 13〇6, the wireless terminal again tests whether a beacon signal will be transmitted. In v13G8, the wireless terminal The machine determines whether to clear the wireless terminal for data transmission. The wireless terminal uses mode and/or status information (4), priority information 1328, and/or peer node information (1) q (for example, information that the wireless terminal can receive and can receive user data) to determine whether to clear the wireless The terminal is used for data transmission. If the wireless terminal determines in step 1308 that the wireless terminal is cleared to transmit the user profile, then operation proceeds to step 1332, in which the wireless terminal transmits a flag 1336. However, if the wireless terminal decides not to clear the wireless terminal for user data transmission in the step of deleting, the operation proceeds to step 1334, in which the wireless terminal/month divides the data transmission flag 1336. The operation returns from step 1332 or step (3) to step 13G8, wherein the line terminal again tests whether the wireless terminal is cleared for data transmission. / Return to connection node A 1310, operation proceeds from connection node VIII 131 to step 1338. In step 1338, the wireless terminal checks the current time information 13 14 疋 whether the beacon burst interval is not related to the time structure information 134, and whether the beacon target flag 1324 is not present. If the time indicates that it is the beacon interval and the beacon action flag is set, then operation proceeds from step 1338 to step 1342; otherwise the operation returns to the test of step 1338 to perform another test of the condition. >> In step 1342, the 'wireless terminal machine generates a beacon signal bursting the beacon signal burst including - or a plurality of beacon symbols, each - beacon symbol occupying -: 151133.doc -29- 201112684 symbol transmission The wireless terminal uses the current time information 1314 and the stored beacon signal definition information 1344 to generate a beacon signal burst. The beacon signal definition information U44 includes, for example, a burst signal definition f and/or style information. In some embodiments, the beacon signal bursting information includes identifying, within a set of potential _carrier tone symbols that can be used to carry the beacon symbol, for transmitting a beacon burst signal corresponding to the generated signal for the wireless terminal. Information on a subset of OFDM-carrier symbols of a beacon symbol. In some embodiments, a carrier-tone subset of a beacon signal burst may and sometimes from a k-signal in the same beacon signal Up to the next beacon signal burst, for example, according to a predetermined frequency hopping pattern. In some embodiments, the beacon signal information includes identifying a beacon carrier tone symbol to be transmitted by the generated beacon burst signal. Modulator Information on values. In some embodiments, the sequence of beacon signals is used to define a beacon (for example, 斜寺# {LJ〇U.. U 夕如) for a particular wireless terminal. Signal. In some embodiments, the pattern is used to define a beacon signal, for example, a particular pattern within the beacon burst signal. Operation proceeds from step U42 to step 1346, at In step 1346, the wireless terminal transmits the generated beacon burst signal. The wireless terminal uses the stored beacon symbol power level information 1348 to determine the transmission of the beacon symbol in the transmitted beacon burst signal. The power level is then passed from step ΐ3_ to step 1338. Returning to the connection node Β 1312, the operation proceeds from the connection node Β 1312 to step 1350. In step (4) 5G, the wireless terminal checks whether the current time information 1314 indicates the time structure. Information 134 〇 资料 资料 资料 是否 是否 是否 是否 疋 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 For data transmission interval, setting data transmission flag 1336 and the wireless terminal has data waiting to be transmitted, the operation proceeds from step 135 to step 1354; otherwise, the operation returns to the input of step 1350 to perform another test of the condition. In step 1354, the wireless terminal generates a signal including user data %. The user profile 1356 includes, for example, audio, video, file and/or text data/information intended for the peer of the wireless terminal. Operation proceeds from step 1354 to step 1358, in which the wireless terminal transmission includes signals indicative of the generation of user data. The wireless terminal uses the stored user data symbol power level information 136 to determine the transmission power level of the user data to be transmitted. Operation proceeds from step (1) 8 to step 1350, in which the wireless terminal performs a check associated with user data transfer. In the ☆ Beishi example, the number of beacons within the beacon signal bursts occupies less than 1% of the available beacon symbol transmission units... in various realities. The user data symbol is transmitted at an average power per symbol level. "The average power per symbol is at least 5 percent lower than the average power per beacon symbol of the transmitted beacon symbol. θ is based on The illustrative embodiment illustrates a diagram of an exemplary beacon transmission from a portable wireless terminal, in this embodiment, repeating the same beacon burst signal (beacon burst) between non-lettering intervals Each ϋ = burst includes one or more beacon symbols, each - beacon symbol occupies the 'receipt transmission unit' in one or more of each beacon signal; ^ 1 t not + ^. (For example, 〇FDM carrier frequency modulation) is plotted on the vertical axis [151133, doc • 31 · 201112684 1402] and the time is plotted on the horizontal axis 1404. The following sequence is illustrated in the diagram 1400: including the beacon burst 1 signal 丨4〇6 beacon burst 1 signal interval, non-cluster interval 14〇8, including beacon cluster i signal 141〇 beacon burst 1 signal interval, non-cluster interval M12, including beacon burst 1 Signal 丨414 beacon burst Hs interval, non-cluster interval 丨4丨6, including beacon burst 1 signal 1 The beacon of 418 sends 1 signal interval and non-cluster interval 〇 42 〇. In this example, 'each beacon burst signal (14 0 6,141 0,141 4,141 8) corresponds to a beacon signal (1422, 1424, 1426, 1428). Further, in this example, each beacon burst signal (1422, 1424, 1426, 1428) is _ the same; each beacon burst signal includes the same beacon Figure 14 also includes a diagram 1450 illustrating an exemplary beacon transmission from a portable wireless terminal, wherein the beacon signal includes a composite signal of a sequence of beacon burst signals. The transmitter includes one or more beacon symbols, each beacon symbol occupies a beacon symbol transmission unit, and transmits one or more beacon symbols during each beacon signal burst. Frequency (eg, OFDM carrier tone) Draw on vertical axis 1452, and time is plotted on horizontal axis 1454. The following sequence is illustrated in Figure 1450: Beacon burst 1 signal call 1456 beacon burst 1 signal interval, non-cluster interval 1458, including Beacon burst 2 signal 1460 beacon burst 2 signal interval, non-cluster interval 1462 Including the beacon burst 3 signal 1464 beacon burst 3 signal interval, non-cluster interval 1466, beacon burst 1 signal 1468 beacon burst 1 signal interval, non-cluster interval 1470. In this example The beacon signal 1472 is a composite signal including a beacon burst 1 signal 1456, a beacon burst 2 signal 1460, and a beacon burst 3 signal 1464. Further, in this example, each beacon burst signal 151133. Doc -32- 201112684 (beacon beacon 1 signal M56, beacon burst 2 signal 1460, beacon burst 3 number 1464) are different; for example, 'each beacon burst signal does not correspond to the other A set of beacon symbols that match any of the two beacon bursts. In some embodiments, the beacon symbol occupies 0-3 of a percentage of radio resources including a beacon signal burst and an interval between successive beacon signal bursts. In some such embodiments, the beacon symbol occupies the -beacon

信號叢發及一在連續信標信號叢發之間的間隔之無線電資 源不足百分之0· 1。在一些實施例中,無線電資源包括對 應於一預疋時間間隔之載頻調集合的〇FDm載頻調符號集 合0 圖15說明在一些實施例中,不同的無線終端機傳輸包括 不同的信標叢發信號之不同的信標信號。自無線終端機傳 輸之不同信標信號可能且有時用於無線終端機識別。舉例 而言,考慮圖式1500包括與無線終端機A相關聯之信標叢 發信號的圖示,而圖式155〇包括與無線終端機⑽關聯之 信標叢發信號的圖示。圖例對應於圖式15〇〇,而圖例 1552對應於圖式155〇。 m vv 1 _ ^ «丨口肌,份綠 1510表示—信標符號傳輸單位,而大寫字母B 1512表示 一信標傳輸單位傳送的信標符號。在圖式15〇〇中,垂直 [S] 表示頻率(例如,〇FDM載頻調索引),而水平軸P 表不信標叢發信號内之信標傳輸單位時間索引。竭 仏號测包括_個信標符號傳輸單位151〇。此等信標 151133.doc •33· 201112684 號傳輸單位令夕& + 兩者載運一信標符號B 1 5 12。第一信標符 ~、有頻率索引__3及時間索引;第二信標符號具有頻率The signal burst and a radio resource between the bursts of continuous beacon signals are less than 0.1%. In some embodiments, the radio resource includes a set of 〇 m m m 载 载 对应 对应 对应 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Different beacon signals of the burst signal. Different beacon signals transmitted from the wireless terminal may and sometimes are used for wireless terminal identification. For example, consider a diagram 1500 that includes an illustration of a beacon burst signal associated with wireless terminal set A, and Figure 155A includes an illustration of a beacon burst signal associated with the wireless terminal set (10). The legend corresponds to Figure 15〇〇, and the legend 1552 corresponds to Figure 155〇. m vv 1 _ ^ «Mouth muscle, part green 1510 denotes a beacon symbol transmission unit, and uppercase letter B 1512 denotes a beacon symbol transmitted by a beacon transmission unit. In Figure 15〇〇, vertical [S] represents the frequency (for example, 〇FDM carrier frequency index), and horizontal axis P represents the beacon transmission unit time index in the beacon burst signal. Exhaustion 仏 includes _ _ a beacon symbol transmission unit 151 〇. These beacons 151133.doc • 33· 201112684 Transmission Units & + Both carry a beacon symbol B 1 5 12 . First beacon ~, frequency index __3 and time index; second beacon symbol has frequency

索引=9及時問会21 , L ''弓丨=6。未使用其他信標符號傳輸單位。因 ^ 1ί此實例中’使用信標叢發之傳輸資源的2%來傳送 才下符號在-些實施例中,信標符號佔據信標叢發之傳 輸資源不足1〇〇/。。 圖例1552指示:關於WT Β之信標叢發信號,格線框 151^0表不一信標符號傳輸單位,而大寫字母b be表示由 U傳輸單位傳送的信標符號。在圖式1 550中,垂直軸 .1504表示頻率(例如,〇FDM載頻調索引),而水平軸^% 八L钛叢發L號内之信標傳輸單位時間索引。信標叢發 k號1558包括100個信標符號傳輸單位151〇。此等信標符 5虎傳輸單位中之兩者載運一信標符號B 15丨2〇第一信標符 號具有頻率索引=3及時間索引=2 ;第二信標符號具有頻率 索引-7及時間索引=6。未使用其他信標符號傳輸單位。因 此,在此實例中,使用信標叢發之傳輸資源的2%來傳送 "is標符號。 圖16為說明一些實施例之特徵的圖式16〇〇及對應圖例 1602,其中k標符號傳輸單位包括複數個OFDM符號傳輸 單位。在此貫例中,一信標符號傳輸單位佔據兩個鄰近 OFDM符號傳輸單位。在其他實施例中,一信標符號傳輸 單位佔據不同數目之OFDM傳輸單位(例如,3或4個)。例 如)在無線終端機之間的精確時序及/或頻率同步可能不存 在的情況下,將多個OFDM傳輸單位用於信標符號傳輸單 15.1133.doc 201112684 位之此特徵可有助於信標信號之容易的偵測。在一些實施 例中,信標符號包括一初始信標符號部分,接著為擴展信 標符號部分。舉例而言,初始信標符號部分包括循環前置 項部分,接著為本體部分,且擴展信標符號部分為本體部 分之延續。 圖例1602說明:對於例示性信標叢發信號161〇,〇fdm 傳輸單位由正方形框1612表示,而信標符號傳輸單位由具 有粗邊界之矩形框1614表示。大寫字母Bs 1616表示由信 標傳輸單位傳送之信標符號。 在圖式1600中,垂直軸1604表示頻率(例如,〇fdm載頻 調索引)’巾水平轴1606表示信標叢發信號内之信標傳輸 單位時間索引’且水平軸1608表示信標叢發信號内之 〇醜符號時間間隔索引。信標叢發信號咖包括刚個 OFDM符號傳輸單位1612及5()個信標符號傳輸單位⑹4。 此等信標符號傳輸單位中之兩者载運一信標符號抑 ⑽。第一信標符號具有頻率索引=3 ’信標傳輸單位時間 索引=〇,及_時間索引;第二信標符號具有頻率索 引=9’信標傳輸單位時間索引=3 ’及〇FDM時間索引卜卜 歧用其他信標符號傳輸單位。因此,在此實例中,使用 信標叢發之傳輸資源的4%來傳送信標符號。在一些實施 例中4標符號佔據信標叢發之傳輸資源不足。 圖”為用以說明包含一序列之信標叢發信號之例示性俨 標信號並說明-些實施例之時序關係的圖式m“圖: 1700包括表示頻率(例如’ 0FDM载頻調索引)的垂直軸 [S3 151133.doc •35- 201112684 1702,而水平軸1704表示時間。圖式17〇〇之例示性信標信 旒包括信標叢發1信號1706、信標叢發2信號1708及信標叢 發3信號1710 »圖式17〇〇之例示性信標信號為(例如)圖14之 圖式1450的複合信標信號1472。 信標叢發信號1706包括兩個信標符號17〇7 ;信標叢發2 k號1708包括兩個信標符號17〇9 ;信標叢發3信號171〇包 括兩個信標符號1711。在此實例中,每一叢發中之信標符 號發生於時間/頻率格線中之不同信標傳輸單位位置中。 此外,在此實例中,位置的改變係根據預定載頻調跳頻序 列。 沿著時間軸1 704 ’存在對應於信標叢發1信號丨7〇6之信 才示叢發1 #號時間間隔τΒ1 1712,接著為叢發之間的時間間 隔TBBm 1718,接著為對應於信標叢發2信號17〇8之信標叢 發2彳§號時間間隔τΒ2 1714,接著為叢發之間的時間間隔 Tbbw 1720 ’接著為對應於信標叢發3信號171〇之信標叢發 3信號時間間隔TBS 171 6。在此實例中,信標叢發之間的時 間比鄰近之叢發的時間大至少5倍。舉例而言,TbbwM Tbi 且 Tbb1/2>5 tB2 ; TBB2/3>5 TB2 且 ΤΒΒ2/325 τΒ3。在此實例 中,信標叢發(1706、1708、1710)中之每一者具有相同持 續時間,例如,ΤΒ1=ΤΒ2=ΤΒ3。 圖18為用以說明包含一序列之信標叢發信號之例示性信 標信號並說明一些實施例之時序關係的圖式丨8〇〇 ^圖式 1800包括表示頻率(例如,〇FDM載頻調索引)的垂直軸 1802,而水平軸1804表示時間。圖式18〇〇之例示性信標信 151133.doc •36- 201112684 號包括信標叢發1信號1806、信標叢發2信號1808及信標叢 發3信號1810。圖式1800之例示性信標信號為(例如)圖14之 圖式1450的複合信標信號1472。 信標叢發信號1806包括兩個信標符號1807 ;信標叢發信 號1808包括兩個信標符號18〇9 ;信標叢發信號1810包括兩 個信標符號1811。在此實例中,每一叢發中之信標符號發 生於時間/頻率格線中之不同信標傳輸單位位置中。此 外’在此實例中,位置的改變係根據預定載頻調跳頻序 列。 沿著時間軸丨8〇4,存在對應於信標叢發!信號i 8〇6之信 標叢發1信號時間間隔Tbi丨812,接著為叢發之間的時間間 隔TBBm 1818 ’接著為對應於信標叢發2信號1808之信標叢 發2信號時間間隔τΒ2 ι814,接著為叢發之間的時間間隔Index = 9 in time to ask 21, L '' bow = 6. No other beacon symbol transmission units are used. In this example, the transmitted symbol is transmitted using 2% of the transmission resource of the beacon burst. In some embodiments, the beacon symbol occupies less than 1 〇〇 of the transmission resource of the beacon burst. . The legend 1552 indicates that with respect to the WT 信 beacon burst signal, the grid box 151^0 indicates not one beacon symbol transmission unit, and the uppercase letter b be indicates the beacon symbol transmitted by the U transmission unit. In Equation 1 550, the vertical axis .1504 represents the frequency (eg, 〇FDM carrier frequency index), while the horizontal axis ^% 八 L 钛 丛 发 信 信 信 信 信 信 。 。 。 。 。 。 。 。 。 。. Beacon C# 1558 includes 100 beacon transmission units of 151〇. Each of the beacons 5 tiger transmission units carries a beacon symbol B 15丨2, the first beacon symbol has a frequency index=3 and a time index=2; the second beacon symbol has a frequency index-7 and Time index = 6. No other beacon symbol transmission units are used. Therefore, in this example, the "is symbol is transmitted using 2% of the transmission resource of the beacon burst. Figure 16 is a diagram 16A and a corresponding legend 1602 illustrating features of some embodiments, wherein the k-symbol transmission unit includes a plurality of OFDM symbol transmission units. In this example, a beacon symbol transmission unit occupies two adjacent OFDM symbol transmission units. In other embodiments, a beacon symbol transmission unit occupies a different number of OFDM transmission units (e.g., 3 or 4). For example, if the precise timing and/or frequency synchronization between the wireless terminals may not exist, using multiple OFDM transmission units for the beacon symbol transmission. This feature of the 15.12133.doc 201112684 bit may be helpful to the beacon. Easy detection of signals. In some embodiments, the beacon symbol includes an initial beacon symbol portion followed by an extended beacon symbol portion. For example, the initial beacon symbol portion includes a loop preamble portion followed by a body portion, and the extended beacon symbol portion is a continuation of the body portion. The legend 1602 illustrates that for the exemplary beacon burst signal 161, the 〇fdm transmission unit is represented by a square frame 1612, and the beacon symbol transmission unit is represented by a rectangular frame 1614 having a thick boundary. The capital letter Bs 1616 represents the beacon symbol transmitted by the beacon transmission unit. In the equation 1600, the vertical axis 1604 represents the frequency (eg, 〇fdm carrier frequency index). The towel horizontal axis 1606 represents the beacon transmission unit time index 'in the beacon burst signal and the horizontal axis 1608 represents the beacon burst. The time interval index of the ugly symbol within the signal. The beacon burst signal coffee includes just one OFDM symbol transmission unit 1612 and 5 () beacon symbol transmission units (6) 4. Two of these beacon transmission units carry a beacon symbol (10). The first beacon symbol has frequency index = 3 'beacon transmission unit time index = 〇, and _ time index; second beacon symbol has frequency index = 9' beacon transmission unit time index = 3 ' and 〇 FDM time index Bubzi uses other beacon symbols to transmit units. Thus, in this example, 45% of the transmission resources of the beacon burst are used to transmit the beacon symbols. In some embodiments, the four-symbol symbol occupies insufficient transmission resources for the beacon burst. The figure is a diagram for explaining an exemplary target signal including a sequence of beacon burst signals and illustrating the timing relationship of some embodiments. FIG. 1700 includes a representation frequency (eg, '0FDM carrier frequency index). The vertical axis [S3 151133.doc • 35- 201112684 1702, while the horizontal axis 1704 represents time. The exemplary beacon signal of Figure 17A includes the beacon burst 1 signal 1706, the beacon burst 2 signal 1708, and the beacon burst 3 signal 1710. The exemplary beacon signal of Figure 17 is ( For example, the composite beacon signal 1472 of the pattern 1450 of FIG. The beacon burst signal 1706 includes two beacon symbols 17〇7; the beacon burst 2k number 1708 includes two beacon symbols 17〇9; the beacon burst 3 signal 171〇 includes two beacon symbols 1711. In this example, the beacon symbols in each burst occur in different beacon transmission unit locations in the time/frequency grid. Moreover, in this example, the change in position is based on a predetermined carrier frequency hopping sequence. Along the time axis 1 704 'there is a letter corresponding to the beacon burst 1 signal 丨7〇6, showing the burst time 1 #号 time interval τΒ1 1712, followed by the time interval TBBm 1718 between bursts, followed by Beacon burst 2 signal 17〇8 beacon bundle 2 § § time interval τΒ2 1714, followed by time interval between bursts Tbbw 1720 'then beacon corresponding to beacon burst 3 signal 171〇 Crowd 3 signal time interval TBS 171 6. In this example, the time between beacon bursts is at least 5 times greater than the time of adjacent bursts. For example, TbbwM Tbi and Tbb1/2>5 tB2; TBB2/3>5 TB2 and ΤΒΒ2/325 τΒ3. In this example, each of the beacon bursts (1706, 1708, 1710) has the same duration, for example, ΤΒ1 = ΤΒ2 = ΤΒ3. 18 is a diagram for illustrating an exemplary beacon signal including a sequence of beacon burst signals and illustrating timing relationships for some embodiments. FIG. 1800 includes representation of frequencies (eg, 〇FDM carrier frequency). The vertical axis 1802 of the index is indexed, while the horizontal axis 1804 represents time. The exemplary beacon letter of Figure 18 151133.doc • 36-201112684 includes beacon burst 1 signal 1806, beacon burst 2 signal 1808, and beacon burst 3 signal 1810. The exemplary beacon signal of diagram 1800 is, for example, the composite beacon signal 1472 of diagram 1450 of FIG. The beacon burst signal 1806 includes two beacon symbols 1807; the beacon burst signal 1808 includes two beacon symbols 18〇9; the beacon burst signal 1810 includes two beacon symbols 1811. In this example, the beacon symbols in each burst occur in different beacon transmission unit positions in the time/frequency grid. In addition, in this example, the change in position is based on a predetermined carrier frequency hopping sequence. Along the time axis 丨8〇4, there is a corresponding bundle of beacons! The signal i 8 〇 6 beacon burst 1 signal time interval Tbi 丨 812, followed by the time interval between bursts TBBm 1818 ' followed by the beacon burst 2 signal interval corresponding to the beacon burst 2 signal 1808 Β2 ι814, followed by the time interval between bursts

Tbw/3 1820,接著為對應於信標叢發3信號181〇之信標叢發 3信號時間間隔Τβ3 1816。在此實例中,信標叢發之間的時 間比鄰近之叢發的時間大至少5倍。舉例而言,τββι/2>5Tbw/3 1820, followed by a beacon burst corresponding to the beacon burst 3 signal 181 3 3 signal time interval Τβ3 1816. In this example, the time between beacon bursts is at least 5 times greater than the time of adjacent bursts. For example, τββι/2>5

Bi 且 TBB 丨/2>5 τΒ2,τΒΒ2/3>5 τΒ2 且 TBB2/3^:5 TB3。在此實例 中’信標叢發(1806、1808、1810)中之每一者具有不同持 續時間’例如’ TB#TB2式TB#TB1。在一些實施例中,在複 合信標信號中之信標叢發信號中之至少兩者具有不同持續 時間。 、 圖19為說明在無線終端機傳輸一信標信號之操作模式下 由無線終端機分割的例示性空中鏈路資源之圖式19〇〇。垂 直軸1902表示頻率(例如,〇FD載頻調),而水平軸丨列斗表 151133.doc -37- 201112684 示時間。在此實例中,存在信標傳輪資源19〇6、接著為盆 他使用資源1908、接著為信標傳輸資源19〇6,、接著為其2 ^資源讀、接著為信標傳輸資源19⑽,、接著為以 使用資源1908"、接著為信標傳輸資源19〇6",、接著為其他 使用資源19〇8",。圖19之信標傳輸資源對應於(例如)圖Μ 之信標叢發,而圖Ϊ9之其他使用資源對應於(例如)圖 非叢發間隔。 圖20對於無線終端機之例示性操作模式(例如,作用中 操作模式)而描述例示性其他使用資源(例如資源_) 在該模式下無線終端機傳輸一信標信號且可接收及 ==料使1資源2_出現於非叢發間_ 广/ ‘監視貢源2004、使用者資料傳輸/接收 貝及靜寂或未使用資源·。信標監視資源聽表 不工中鏈路貧源(例如,頻率與時間之組合),其中益線炊 為機(例如)自其他無線終端機及/或固定位 發:=測其他信標信號之存在。使用者資料資;=: 不工中鏈路貧源(例如,頻率與時間之組旬 端機可傳輸使用者資料及/或接收使用:、二 Π資源_表示未使用之空中鏈路資源(例如I;: ::端機既不接收亦不傳輸)。在靜寂資源期間: 耗降低以節Γ能量時處於睡眠狀態,在該狀態下,功率消 圖21詞無線終端機傳輸信標 示性操作模式,例如,非作用中模泉广機兩種例 戸乍用中模式及作用中模式。圖式 151133.doc -38- 201112684 而圖式2150對應於 2100對應於例示性非作用中操作模式 作用中操作模式。 在例示性非作用中操作模式下,無線終端機不傳輸或接 收使用者資料在圖式2丨⑽中,由無線終端機使用之空中 鏈路資源佔據N個载頻調21〇8。在—些實施例中,汉大於 或等於_ Hi 中,存在具有對應持續時間Bi and TBB 丨/2>5 τΒ2, τΒΒ2/3>5 τΒ2 and TBB2/3^: 5 TB3. In this example, each of the 'beacon bursts (1806, 1808, 1810) has a different duration 'e.g., TB#TB2 equation TB#TB1. In some embodiments, at least two of the beacon bursts in the composite beacon signal have different durations. Figure 19 is a diagram showing an exemplary air link resource segmented by a wireless terminal in an operational mode in which a wireless terminal transmits a beacon signal. The vertical axis 1902 represents the frequency (e.g., 〇 FD carrier frequency modulation), while the horizontal axis 斗 斗 斗 151133.doc -37- 201112684 shows the time. In this example, there is a beacon transit resource 19〇6, followed by a resource 1908 for the pot, then a resource 19〇6 for the beacon, followed by a 2^ resource read followed by a beacon transmission resource 19(10), Then, in order to use the resource 1908", then the beacon transmission resource 19〇6", and then the other use resource 19〇8". The beacon transmission resource of Figure 19 corresponds to, for example, the beacon burst of Figure ,, while the other usage resources of Figure 9 correspond to, for example, the non-cluster interval. 20 depicts an exemplary other usage resource (eg, resource_) for an exemplary mode of operation of a wireless terminal (eg, an active mode of operation) in which the wireless terminal transmits a beacon signal and can receive and == Make 1 resource 2_ appear in non-cluster room _ wide / 'monitor Gongyuan 2004, user data transmission / receiving shell and silence or unused resources. The beacon monitoring resource listens to the lack of link in the middle of the link (for example, the combination of frequency and time), wherein the benefit line is machine (for example) from other wireless terminals and/or fixed bits: = other beacon signals are measured Existence. User data; =: Inappropriate link lean source (for example, the frequency and time group can transmit user data and / or receive use:, the second resource _ indicates unused air link resources ( For example, I;: :: the terminal does not receive or transmit.) During the quiet resource: the consumption is reduced to save the energy when the energy is saved. In this state, the power consumption map 21 wireless terminal transmits the signal identifier. The mode of operation, for example, the inactive mode and the mode in action, the pattern 151133.doc -38- 201112684 and the pattern 2150 corresponds to the 2100 corresponding to the exemplary inactive mode of operation In operation mode. In the exemplary inactive mode of operation, the wireless terminal does not transmit or receive user data. In Figure 2 (10), the air link resources used by the wireless terminal occupy N carrier frequencies. 〇 8. In some embodiments, where Han is greater than or equal to _ Hi, there is a corresponding duration

Tlina=ve 2110之信標傳輸叢發資源21〇2,接著為具有對應Tlina=ve 2110 beacon transmission burst resource 21〇2, followed by corresponding

持續時間T2inaetive 2 i! 2之監視及接收信標資訊資源21 , 接著為具有對應持續時心2114的靜寂f源Μ%。 在各種實施例t ’ τ丨—<T2丨η^<Τ3__。在-些實施 例中,T2inactiVG4T丨inactive。在一些實施例中, 1 1 3 inactive 匕i〇T2inactive。舉例而言,在一例示性實施例中,n>i⑻(例 如,113),Tlinactive=50個OFDM符號傳輸時間間隔, T2inactive=200個OFDM符號傳輸時間間隔,且T3inactive=2〇⑼ 個OFDM符號傳輸時間間隔。在此實施例中,若允許信標 符號佔據叢發㈣信號資源之至多㈣,職標符號佔據 總資源的大約至多0.22%。 在例示性作时操作模式下,無線終端機可傳輸並接收 使用者資料。在圖式21 50中,由無線終端機使用之空中鏈 路資源佔據N個載頻調2108。在一些實施例中,n大於或 等於⑽。在圖式215〇中,存在具有對應持續時間丁旧^ 2162之信標傳輸叢發資源2152 ’接著為具有對應持續時間 丁2似^2164之監視及接收信標資訊資源2154,接著為具有 對應持續時間T3active 2166之使用者資料傳輸/接收資源 151133.doc 39· 201112684 2156 ’接著為具有對應持續時間τ—2ΐ68的靜寂資源 2—158。在各種實施例巾,T丨咖<T2咖<T3active。在一些 實訑例中,T2active4Tlactive。在一些實施例中,(I㈣M + T4active)U〇T2inactive。在各種實施例中,τ—=τ 在一些實施例中,在不同類型之時間間隔中之至少一些之 間存在保護間隔。 圖22為說明在一包括兩個信標叢發之例示性第—時間間 隔2209期間之例示性無線終端機空中鏈路資源利用的圖式 2200及對應圖例2202。圖例2202指示:一正方形2204指示 一 OFDM載頻調符號(空中鏈路資源的基本傳輸單位ρ圖 例2202亦指不:⑴信標符號由有陰影之正方形22〇6指示且 以平均傳輸功率位準PB而傳輸,(ii)使用者資料符號由字 母D 2 2 0 8指示且資料符號經傳輸以具有平均傳輸功率位準 PD,及(iii)PB22PD 〇 在此實例中’信標傳輸資源221〇包括2〇個〇FDM載頻調 符號;信標監視資源2212包括40個OFDM載頻調符號;使 用者資料傳輸/接收資源2214包括100個OFDM載頻調符 號;且信標傳輸資源2216包括20個OFDM載頻調符號。 信標傳输資源2210及2216各自載運一信標符號2206。此 表示經配置用於信標叢發傳信之傳輸資源的5%。使用者 資料TX/RX資源22 14之1〇〇個OFDM符號中的四十八(48)個 載運由無線終端機傳輸之使用者資料符號。此表示在第一 時間間隔2209期間由無線終端機使用的48/1 80之OFDM符 號。假設WT在使用者資料部分之第6個OFDM符號傳輸時 151133.doc -40. 201112684 間間隔内自τχ切換至接收,則在第一 仕弟時間間隔期間在由 無線終端機用於傳輸之48/90之_載頻調符號上傳輸使 用者資料符號。在一些實施例中,當盔線 扣 田…深、冬知機傳輸使用 者資料時’無線終端機在包括多個信標 知就叢發之時間週 期期間在由無線終端機使用的傳輪眘、·盾 吁铷貝源之至少1〇%上傳輸 使用者資料。The monitoring and receiving beacon information resource 21 of the duration T2inaetive 2 i! 2 is followed by the silence f source % with the corresponding duration heart 2114. In various embodiments t ' τ 丨 - < T2 丨 η ^ < Τ 3__. In some embodiments, T2inactiVG4T is inactive. In some embodiments, 1 1 3 inactive 匕i〇T2inactive. For example, in an exemplary embodiment, n>i(8) (eg, 113), Tlinactive=50 OFDM symbol transmission time intervals, T2inactive=200 OFDM symbol transmission time intervals, and T3inactive=2〇(9) OFDM symbols Transmission time interval. In this embodiment, if the beacon symbol is allowed to occupy at most (four) of the burst (four) signal resources, the job symbol occupies approximately 0.22% of the total resource. In the exemplary operational mode, the wireless terminal can transmit and receive user data. In Figure 21 50, the air link resources used by the wireless terminal occupy N carrier frequency 2108. In some embodiments, n is greater than or equal to (10). In the figure 215〇, there is a beacon transmission burst resource 2152 having a corresponding duration 22162, followed by a monitoring and receiving beacon information resource 2154 having a corresponding duration □2^2164, followed by a corresponding The user data transmission/reception resource of the duration T3active 2166 151133.doc 39· 201112684 2156 'Next is the quiet resource 2 - 158 with the corresponding duration τ - 2 ΐ 68. In various embodiments, T丨 coffee & T2 coffee < T3active. In some implementations, T2active4Tlactive. In some embodiments, (I(tetra)M+T4active)U〇T2inactive. In various embodiments, τ - = τ In some embodiments, there is a guard interval between at least some of the different types of time intervals. Figure 22 is a diagram 2200 and corresponding legend 2202 illustrating exemplary wireless terminal air link resource utilization during an exemplary first time interval 2209 including two beacon bursts. The legend 2202 indicates that a square 2204 indicates an OFDM carrier tone symbol (the basic transmission unit of the air link resource ρ. The legend 2202 also refers to: (1) the beacon symbol is indicated by the shaded square 22〇6 and averaged by the transmission power level. PB is transmitted, (ii) the user data symbol is indicated by the letter D 2 2 0 8 and the data symbol is transmitted to have an average transmission power level PD, and (iii) PB22PD 〇 in this example 'beacon transmission resource 221 〇 2 〇 FDM carrier tone symbols are included; beacon monitoring resource 2212 includes 40 OFDM carrier tone symbols; user data transmission/reception resource 2214 includes 100 OFDM carrier tone symbols; and beacon transmission resource 2216 includes 20 OFDM carrier tone symbols. Beacon transmission resources 2210 and 2216 each carry a beacon symbol 2206. This represents 5% of the transmission resources configured for beacon burst transmission. User Profile TX/RX Resources 22 14 Forty-eight (48) of the 1 OFDM symbols carry the user profile symbols transmitted by the wireless terminal. This represents the 48/180 OFDM symbols used by the wireless terminal during the first time interval 2209. WT When the 6th OFDM symbol of the user data part is transmitted, 151133.doc -40. During the interval between 201112684, it is switched from τχ to receiving, and then used in the 48/90 transmission by the wireless terminal during the first time interval. The user data symbol is transmitted on the carrier tone symbol. In some embodiments, when the helmet line buckles the field... the depth and the winter knowledge machine transmit the user data, the time when the wireless terminal includes multiple beacons is known. During the period, the user data is transmitted on at least 1% of the source of the transmission, which is used by the wireless terminal.

在-些實施例中’在不同時間,使料資料傳輸/接收 資源可能且有時被不同地使用’例如,#門地用於包括使 用者資料之傳輸、專門地用於包括使用者資料之接收、分 配於接收與傳輸之間(例如,在時間共用之基礎上)。 圖23為說明在一包括兩個信標叢發之例示性第_時間間 隔2 3 1 5期間之例示性無線終端機空中鏈路資源利用的圖式 2300及對應圖例2302。圖例2302指示:一正方形23〇4指示 一 OFDM載頻調符號(空中鏈路資源的基本傳輸單位)。圖 例2302亦指示:⑴信標符號由大垂直箭頭23〇6指示且以平 均傳輸功率位準PB來傳輸,(ii)使用者資料符號由小箭頭 2308 23 10、23 12、23 14指示,其分別對應於不同相位 (θ!、θ2、θ3、θ4)(例如,對應於QPSK),且資料符號經傳 輸以具有平均傳輸功率位準PD,及(iii)PB^2PD。 在此實例中’信標傳輸資源2316包括2(H@〇Fdm載頻調 符號’信標監視資源2318包括40個OFDM載頻調符號;使 用者資料傳輸/接收資源232〇包括1〇〇個〇FDM載頻調符 號,及信標傳輸資源2322包括20個OFDM載頻調符號。 信標傳輸資源2316及2322各自載運一信標符號2306。在 151133.doc -41 · 201112684 此貝例中,k標符號具有相同振幅及相位。此信標符號量 表示經配置用於信標叢發傳信之傳輸資源的5%。使用者 貝料TX/RX資源23 20之1〇〇個〇FDM符號中的四十八㈠”個 載運使用者貢料符號。在此實例中,不同資料符號可能且 有時確貫具有不同相位。在一些實施例中,不同資料符號 可能且有時確實具有不同振幅。此資料符號量表示在第一 時間間隔2315期間由無線終端機使用的48/18〇之〇1?1)厘符 號。假设wt在使用者資料部分之第6個〇FDM符號傳輸時 間間隔内自TX切換至接收,則在第一時間間隔期間在由 # 無線終端機用於傳輸之48/90之OFDM載頻調符號上傳輸使 用者資料符號。在一些實施例中,當無線終端機傳輸使用 者貪料時,無線終端機在包括多個信標信號叢發之時間週 期期間在由無線終端機使用的傳輸資源之至少1〇%上傳輸 使用者資料。 在一些實施例中,在不同時間’使用者資料傳輸/接收 資源可能且有時被不同地使用,例如,專門地用於包括使 用者資料之傳輸、專門地用於包括使用者資料之接收、分籲 配於接收與傳輸之間(例如,在時間共用之基礎上)。 圖24說明關於信標信號之替代性的描述性圖示。圖式 2400及相關聯之圖例2402用以描述根據各種實施例之例示 性信標信號。垂直軸2412表示頻率(例如,〇fdm载頻調索 引)’而水平軸2414表示信標資源時間索引。圖例24〇2識 別’彳5彳力彳§號叢發由粗線矩形2404識別,信標符號傳輸單 位由正方形框2406識別’且信標符號由粗體字母b 2416表 151133.doc •42·In some embodiments, 'at different times, the material data transmission/reception resources may be and sometimes used differently', for example, for the transmission of user data, specifically for the reception of user data. , allocated between reception and transmission (for example, on the basis of time sharing). Figure 23 is a diagram 2300 and a corresponding legend 2302 illustrating exemplary wireless terminal air link resource utilization during an exemplary _time interval 2 3 1 5 including two beacon bursts. The legend 2302 indicates that a square 23〇4 indicates an OFDM carrier tone symbol (the basic transmission unit of the air link resource). The legend 2302 also indicates that: (1) the beacon symbol is indicated by the large vertical arrow 23〇6 and transmitted at the average transmission power level PB, and (ii) the user data symbol is indicated by the small arrows 2308 23 10, 23 12, 23 14 Corresponding to different phases (θ!, θ2, θ3, θ4) respectively (eg, corresponding to QPSK), and the data symbols are transmitted to have an average transmission power level PD, and (iii) PB^2PD. In this example, the 'beacon transmission resource 2316 includes 2 (H@〇Fdm carrier tone symbol' beacon monitoring resource 2318 includes 40 OFDM carrier tone symbols; user data transmission/reception resources 232〇 includes 1〇〇 〇 FDM carrier tone symbols, and beacon transmission resources 2322 include 20 OFDM carrier tone symbols. Beacon transmission resources 2316 and 2322 each carry a beacon symbol 2306. In this example, 151133.doc -41 · 201112684 The k-symbols have the same amplitude and phase. This beacon symbol indicates 5% of the transmission resources configured for beacon burst transmission. The user's bedding TX/RX resources 23 20 of 1 〇 FDM symbols Forty-eight (one)" load user tribute symbols. In this example, different data symbols may and sometimes do have different phases. In some embodiments, different data symbols may and sometimes do have different amplitudes. The symbolic quantity represents the 48/18 〇1?1) PCT symbol used by the wireless terminal during the first time interval 2315. It is assumed that wt is switched from TX during the sixth 〇FDM symbol transmission time interval of the user data portion. To receive, then in the first The user data symbols are transmitted over a 48/90 OFDM carrier tone symbol used by the # wireless terminal for transmission during a time interval. In some embodiments, when the wireless terminal transmits user cravings, the wireless terminal User data is transmitted over at least 1% of the transmission resources used by the wireless terminal during a time period including a plurality of beacon signal bursts. In some embodiments, the user data transmission/reception resources are at different times May be used and sometimes used differently, for example, specifically for the transmission of user data, specifically for the reception of user data, and for the distribution between reception and transmission (for example, on the basis of time sharing) Figure 24 illustrates a descriptive illustration of an alternative to a beacon signal. Figure 2400 and associated legend 2402 are used to describe an exemplary beacon signal in accordance with various embodiments. Vertical axis 2412 represents frequency (e.g., 〇fdm carrier frequency index)' and horizontal axis 2414 indicates beacon resource time index. Figure 24〇2 identifies '彳5彳力彳§号 burst is identified by thick line rectangle 2404, beacon No. 2406 transmission units identified by square boxes' and the beacon symbols in bold letters b 2416 151133.doc • 42 · Table

201112684 不。信標信號資源2410包括loo個信標符號傳輸單位 2406。展示對應於時間索引值、4及8之三個信標叢發信 號2404。一信標符號2416出現於每一信標叢發信號中,且 信標符號之位置在信標信號内(例如)根據預定樣式及/或等 式自一叢發仏號至下一叢發信號而改變。在此實例中,信 標符號位置具有一斜度。在此實例中,以信標叢發之持續 時間的二倍使彳g標叢發相互分離。在各種實施例中,以信 標符號之持續時間的至少兩倍使信標叢發相互分離。在一 些貝鉍例中,信標叢發可佔據兩個或兩個以上連續信標資 源時間間隔,例如,相同載頻調用於多個連續信標時間索 引。在一些實施例中,信標叢發包括多個信標符號。在一 些此等實施例中,信標符號佔據信標信號資源的丨〇%或更 少〇 圖25為根據各種實施例之例示性攜帶型無線終端機 2500(例如,行動節點)之圖式。例示性攜帶型無線終端機 2 5 00可為圖1之無線終端機中的任一者。 例示性無線終端機2500包括經由匯流排2514耦接於一起 之一接收器模組2502、一傳輸模組25〇4、一雙工模組 2503、一處理器2506、使用者I/O裝置2508、一電源模組 25 1〇及记憶體2512,各種元件在該匯流排2514上可互換資 料及資訊。 接收器模組2502(例如,OFDM接收器)自其他無線終端 機及或固疋位置k標發射器接收信號(例如,信標信號及/ 或使用者資料信號)。 151133.doc -43· 201112684 傳輸模組2504(例如,OFDM發射器)將信號傳輸至其他 無線終端機,該等傳輸之信號包括信標信號及使用者資料 k號。信標信號包括一序列之信標信號叢發,每—信標作 號叢發包括一或多個信標符號,且每一信標符號佔據一信 標符號傳輸單位。對於每一傳輸之信標信號叢發,由傳輸 模組2504傳輸一或多個信標符號。 在各種實施例中,傳輸模組25〇4為傳輸信標信號之 OFDM發射器且信標信號係使用為頻率與時間之組合的資 源來傳遞。在各種其他實施例中,傳輸模組25〇4為傳輸信 標信號之CDMA發射器且信標信號係使用為程式碼與時間 之組合的資源來傳遞。 雙工模組2503經控制以切換在接收器模組25〇2與傳輸模 組2504之間的天線2505,作為分時雙工(TDD)頻譜系統實 施之部分。雙工模組2503耦接至天線25〇5,無線終端機 2500經由該天線2505接收信號2582並傳輸信號2588。雙工 模組2503經由鏈路2501耦接至接收器模組25〇2,在該鏈路 25〇2上傳送接收之化旒2584。在一些實施例中,信號2584 為信號2582之經篩選的表示。在一些實施例中,信號25討 與信號2582相同,例如,模組25〇3充當無篩選之穿透式裝 置。雙工模組2503經由鏈路25〇7耦接至傳輸模組25〇4,在 該鏈路2507上傳送傳輸信號2586。在一些實施例中,信號 2588為信號2586之經篩選的表示。在一些實施例中,信號 2588與信號2586相同,例如,雙工模組25〇3充當無篩選之 穿透式裝置。 151133.doc 44- 201112684 使用者1/0裳置测包括(例如)麥克風、鍵盤、小鍵盤、 父換器 '相機、揚聲器、顯示器等等。使用者m綱允 枝用者輸人資料/資訊、存取輸出資料/資訊並控制無線 終&機之至少―些操作’例如,起始開機序列、試圖建立 通信會期、終止通信會期。201112684 No. Beacon signal resource 2410 includes loo beacon symbol transmission units 2406. Three beacon bursts 2404 corresponding to the time index values, 4 and 8, are shown. A beacon symbol 2416 is present in each beacon burst signal, and the position of the beacon symbol is within the beacon signal (eg, from a burst to the next burst according to a predetermined pattern and/or equation) And change. In this example, the beacon position has a slope. In this example, the 彳g standard bursts are separated from each other by twice the duration of the beacon burst. In various embodiments, the beacon bursts are separated from each other by at least twice the duration of the beacon symbols. In some cases, beacon bursts may occupy two or more consecutive beacon resource time intervals, e.g., the same carrier frequency tone is used for multiple consecutive beacon time indices. In some embodiments, the beacon burst includes a plurality of beacon symbols. In some such embodiments, the beacon symbol occupies 丨〇% or less of the beacon signal resource. Figure 25 is a diagram of an exemplary portable wireless terminal 2500 (e.g., a mobile node) in accordance with various embodiments. An exemplary portable wireless terminal 2 500 can be any of the wireless terminals of FIG. The exemplary wireless terminal 2500 includes a receiver module 2502, a transmission module 25〇4, a duplex module 2503, a processor 2506, and a user I/O device 2508 coupled via a bus bar 2514. A power module 25 1〇 and a memory 2512 are provided, and various components exchange data and information on the bus bar 2514. Receiver module 2502 (e.g., an OFDM receiver) receives signals (e.g., beacon signals and/or user profile signals) from other wireless terminals and or fixed location k-target transmitters. 151133.doc -43· 201112684 The transmission module 2504 (for example, an OFDM transmitter) transmits signals to other wireless terminals, and the transmitted signals include a beacon signal and a user data k number. The beacon signal includes a sequence of beacon signal bursts, each beacon burst consisting of one or more beacon symbols, and each beacon symbol occupies a beacon transmission unit. One or more beacon symbols are transmitted by transmission module 2504 for each transmitted beacon signal burst. In various embodiments, transmission module 25〇4 is an OFDM transmitter that transmits a beacon signal and the beacon signal is transmitted using resources that are a combination of frequency and time. In various other embodiments, transmission module 25〇4 is a CDMA transmitter that transmits beacon signals and the beacon signals are transmitted using resources that are a combination of code and time. The duplex module 2503 is controlled to switch the antenna 2505 between the receiver module 25A2 and the transmission module 2504 as part of a time division duplex (TDD) spectrum system implementation. The duplex module 2503 is coupled to the antenna 25〇5, and the wireless terminal 2500 receives the signal 2582 via the antenna 2505 and transmits the signal 2588. The duplex module 2503 is coupled to the receiver module 25〇2 via the link 2501, and transmits the received UI 2584 on the link 25〇2. In some embodiments, signal 2584 is a filtered representation of signal 2582. In some embodiments, signal 25 is the same as signal 2582, for example, module 25〇3 acts as a non-screening transmissive device. Duplex module 2503 is coupled to transmission module 25〇4 via link 25〇7, on which transmission signal 2586 is transmitted. In some embodiments, signal 2588 is a filtered representation of signal 2586. In some embodiments, signal 2588 is the same as signal 2586, for example, duplex module 25〇3 acts as a non-screening transmissive device. 151133.doc 44- 201112684 User 1/0 skirts include (for example) microphone, keyboard, keypad, parent converter 'camera, speaker, display, etc. The user m allows the user to input data/information, access the output data/information, and control at least some operations of the wireless terminal & the initial boot sequence, attempt to establish a communication session, and terminate the communication session. .

電源模組2510包括用作攜帶型無線終端機電源之電池 2511。電源模組2510之輸出經由電源匯流排25〇9耦接至各 種組件(2502、2503、25〇4、25〇6、25〇8 及 2512)以提供功 率。因此,傳輸模組2504使用電池功率來傳輪信標信號。 記憶體2512包括常式25 16及資料/資訊2518。處理器 2506(例如,CPU)執行常式2516且使用記憶體2512中之資 料/資訊25 1 8以控制無線終端機25〇〇的操作並實施方法。 常式2516包括信標信號產生模組252〇、使用者資料信號產 生模組2522、傳輸功率控制模組2524、信標信號傳輸控制 模組2526 '模式控制模組2528及雙工控制模組253〇。 信標信號產生模組2520使用記憶體25 12中之包括儲存之 信標信號特徵資訊2532的資料資訊2518以產生信標信號, 信標信號包括一序列之信標信號叢發,每一信標信號叢發 包括一或多個信標符號。 使用者資料信號產生模組2522使用包括使用者資料特徵 資訊2534及使用者資料2547的資料/資訊2518以產生使用 者資料信號,該使用者資料信號包括使用者資料符號。舉 例而言’將表示使用者資料2547之資訊位元映射至資料符 號之集合’例如’根據群集資訊2564的OFDM資料調變符 I51133.doc -45- 201112684 :用:輸功率控制模技2524使用包括信標功率資訊 功率資訊2566的資料/資咖以控制信標符 號及貧料付號的傳輸功率 時間週期期Η _ 貫施例中,在第一 Μ間’傳輸功率控制模組2524控制資料符號以便 二均每符號功率位準來傳輸,該平均每符號功率位準 比傳輪之信標符號之平均每信標符號功率位準低至少百分 5〇°在一些實施财’傳輸功率控制模組2524控制在第 位=1週期期間傳輸之每一信標符號的平均每符號傳輸功 W準以比用於在第一時間週期期間傳輸使用者資料之符 號的平均每符號傳輸功率位準高至少1〇 dB。在一些實施 =中:傳輸功率控制模組2524控制在第一時間週期期間傳 輸之母-信標符號的平均每符號傳輸功率位準以比用於在 ㈣期間傳輸使用者資料之符號的平均每符號傳 :功率位準高至少16仙。在-些實施例中,信標符號功 率位準與-或多個資料符號功率位準關於由無線終端機使 用之參考而相互關聯’且該參考可能且有時確實改變。在 -些此等實施例中’第一時間週期為參考位準不改變的時 間間隔。 信標信號傳輸控制模組2526使用包括時序結構資⑽刊 之資料/資訊2518以控制傳輪模組25〇4來間或地傳輸作把 信號叢發。在-些實施例中,在—序列之信標信號叢^ 之兩個鄰近信標信號叢發之間的時間週期經控制為該兩個 鄰近信標信號叢發中之任-者的持續時間的至少5倍。在 各種實施例中,至少-些不同的信標信號叢發具有=同長 151133.doc -46 - 201112684 度之週期。 模式控制模組2528以由模式f訊識狀當前操作模 式來控制無線終端機的操作模式。在一些實施例中,各種 操作模式包括OFF模式 '僅接收模式、非作用中模式及作 用中模式。在非作用中模式下,無線終端機可發送並接收 信標信號但不被准許傳輸使用者資料。在作用中模式下, 除ϋ L號之外’無線終端機可發送並接收使用者資料作 力。在非作用中模式下,無線終端機處於低功率消耗之靜 攀寂(例如,睡眠)狀態之時間比在作用中操作模式下處於靜 寂狀態之時間長。 又工控制权組2530控制雙工模組25〇3以回應於丁〇〇系統 時序資成及/或使用者需要而切換在接收器模組與傳 輸模組2504之間的天線連接。舉例而言,在一些實施例 中’時序結構中之使用者資料間隔可用於接收或傳輸,該 選擇為無線終端機需要的功能。在各種實施例中,雙工控 _ 制模組253G亦操作以關閉接收器模組測及/或傳輸模組 2504中之至少一些電路(當未使用時會省電)。 資料/資訊2518包括健存之信標信號特徵資訊^^、使 用者貝料特徵資訊2534、時序結構資訊2536、空中鏈路資 原資訊2538、模式資訊254〇、產生之信標信號資訊2 產生之資料信號資訊2544、雙工控制信號資訊25^及使用 者資料2547 °儲存之信標信號特徵資訊2532包括信標叢發 資。ίΐ之或夕個集合(信標叢發1資訊2548、......、信標叢 發Ν資訊2550)、信標符號資訊256〇及功率資訊2562。 151133.doc •47- 201112684 信標叢發1資訊2548包括識別載運信標符號之信標傳輸 單位的資訊2556及信標叢發持續時間資訊2558。識別載運 k私付號之k標傳輸單位的資訊2556由信標信號產生模組 2520使用以識別信標信號叢發中之哪些信標傳輸單位被信 標符號佔用。在各種實施例中,將信標叢發之其他信標傳 輸單位設定為空值,例如,相對於此等其他信標傳輪單位 未施加傳輸功率。在一些實施例中,信標信號叢發中之該 數目之信標符號佔據可用信標符號傳輸單位不足百分之 1〇。在一些實施例中,信標信號叢發中之該許多信標符號 佔據可用之彳§標符號傳輸單位的不足百分之1〇或等於百分 之10。信標信號叢發持續時間資訊2558包括界定信標叢發 1之持續時間的資訊。在一些實施例中,信標叢發中之每 一者具有相同持續時間,而在其他實施例中,同—複合信 標信號中之不同信標叢發可能且有時確實具有不同持續時 間。在一些實施例中’ 一序列之信標叢發中之一信標叢發 具有不同持續時間,且此可能適用於同步目的。 信標符號資訊2560包括定義信標符號之資訊,例如,信 標符號之調變值及/或特徵。在各種實施例中,相同的信 標符號值用於識別之位置中的每一者以載運資訊2556中的 信標符號,例如,信標符號具有相同振幅及相位。在各種 實施例中’不同信標符號值可能且有時用於識別之位置中 的至少一些以載運資訊2556中的信標符號,例如,信標符 號值具有相同振幅但可具有兩個潛在相位中之—者,因此 有助於經由信標信號之額外資訊的傳遞。功率資訊2562包 151133.doc -48- 201112684 之功率增益比例因子資 括(例如)關於信標符號傳輸而使用 訊。 使用者資料特徵資訊2534包括群集f訊2564及功率資訊 2566。群集資訊2564識別(例如)QpsK、qam μ、 ,或QAM 256等,及與群集相關聯之調變符號值。功率 資訊2566包括(例如)詩請符號傳輸而使用之功率 比例因子資訊。 曰The power module 2510 includes a battery 2511 that functions as a power source for the portable wireless terminal. The output of the power module 2510 is coupled to various components (2502, 2503, 25〇4, 25〇6, 25〇8, and 2512) via power bus bars 25〇9 to provide power. Therefore, the transmission module 2504 uses the battery power to transmit the beacon signal. Memory 2512 includes routine 25 16 and data/information 2518. The processor 2506 (e.g., CPU) executes routine 2516 and uses the information/information 25 1 8 in the memory 2512 to control the operation of the wireless terminal 25 and implement the method. The routine 2516 includes a beacon signal generating module 252, a user data signal generating module 2522, a transmission power control module 2524, a beacon signal transmission control module 2526, a mode control module 2528, and a duplex control module 253. Hey. The beacon signal generating module 2520 uses the data information 2518 including the stored beacon signal feature information 2532 in the memory 25 12 to generate a beacon signal, the beacon signal including a sequence of beacon signal bursts, each beacon The signal burst includes one or more beacon symbols. The user profile signal generation module 2522 uses the profile/information 2518 including the user profile information 2534 and the user profile 2547 to generate a user profile signal including user profile symbols. For example, 'map the information bits representing the user data 2547 to the set of data symbols', for example 'OFDM data modulator I51133.doc -45-201112684 according to cluster information 2564: with: power control mode 2524 Including the data of the beacon power information power information 2566 / controlling the transmission time period of the beacon symbol and the poor payment number Η _ In the example, the transmission power control module 2524 controls the data in the first time The symbol is transmitted for each symbol power level, and the average per-symbol power level is at least 5 〇 lower than the average per-beacon power level of the beacon symbol of the transmitting wheel. The module 2524 controls the average per-symbol transmission power of each beacon symbol transmitted during the bit = 1 period to be averaged per symbol transmission power level for the symbol used to transmit the user data during the first time period. At least 1 dB higher. In some implementations: the transmission power control module 2524 controls the average per-symbol transmission power level of the mother-beacon symbol transmitted during the first time period to be averaged over the symbol used to transmit the user data during the (IV) period. Symbol transmission: The power level is at least 16 sen. In some embodiments, the beacon symbol power level and/or the plurality of data symbol power levels are correlated with respect to a reference used by the wireless terminal' and the reference may and sometimes does change. In some of these embodiments, the first time period is the time interval in which the reference level does not change. The beacon signal transmission control module 2526 uses the data/information 2518 including the timing structure (10) to control the transmission module 25 to transmit or transmit signals. In some embodiments, the time period between two adjacent beacon signal bursts of the beacon signal bundle of the sequence is controlled to the duration of any of the two adjacent beacon signal bursts At least 5 times. In various embodiments, at least some of the different beacon signal bursts have a period of = 151133.doc -46 - 201112684 degrees. The mode control module 2528 controls the mode of operation of the wireless terminal by the current mode of operation of the mode f. In some embodiments, various modes of operation include the OFF mode 'receive only mode, inactive mode, and active mode. In the inactive mode, the wireless terminal can transmit and receive beacon signals but is not permitted to transmit user data. In the active mode, the wireless terminal can send and receive user data efforts in addition to the L number. In the inactive mode, the wireless terminal is in a quiet (e.g., sleep) state with low power consumption for a longer period of time than in the active mode of operation. The work control group 2530 controls the duplex module 25〇3 to switch the antenna connection between the receiver module and the transmission module 2504 in response to the Ding Hao system timing component and/or user needs. For example, in some embodiments the user profile interval in the 'timing structure' can be used for receiving or transmitting, which is a function required by the wireless terminal. In various embodiments, duplex control module 253G is also operative to turn off at least some of the receiver module measurement and/or transmission module 2504 (which saves power when not in use). Data/information 2518 includes the beacon signal feature information of the memory, the user's beaker feature information 2534, the time series structure information 2536, the air link resource information 2538, the mode information 254〇, the generated beacon signal information 2 generated The information signal information 2544, the duplex control signal information 25^ and the user data 2547 ° stored beacon signal characteristic information 2532 include beacon bundles. ΐ ΐ or 夕 collection (beacons 1 send information 2548, ..., beacon bundles Ν information 2550), beacon symbol information 256 〇 and power information 2562. 151133.doc •47- 201112684 Beacons 1 Information 2548 includes information 2556 for identifying beacon transmission units and beacon duration information 2558 for carrying beacon symbols. The information 2556 identifying the k-standard transmission unit carrying the k-Purchase number is used by the beacon signal generation module 2520 to identify which beacon transmission units in the beacon signal burst are occupied by the beacon symbol. In various embodiments, other beacon transmission units of the beacon burst are set to null values, e.g., no transmission power is applied relative to other beacon transmission units. In some embodiments, the number of beacon symbols in the beacon signal burst occupies less than one percent of the available beacon symbol transmission units. In some embodiments, the plurality of beacon symbols in the beacon signal burst occupy less than one percent or more than ten percent of the available transmission units of the symbol. The beacon signal burst duration information 2558 includes information defining the duration of the beacon burst 1 . In some embodiments, each of the beacon bursts has the same duration, while in other embodiments, different beacon bursts in the same-complex beacon signal may and sometimes do have different durations. In some embodiments, one of the beacon bursts in a sequence has different durations, and this may be suitable for synchronization purposes. Beacon symbol information 2560 includes information defining beacon symbols, such as modulation values and/or features of the beacon symbols. In various embodiments, the same beacon symbol value is used to identify each of the locations to carry the beacon symbols in information 2556, e.g., the beacon symbols have the same amplitude and phase. In various embodiments, at least some of the different beacon symbol values may and sometimes are used to identify the beacon symbols in the information 2556, eg, the beacon symbol values have the same amplitude but may have two potential phases Of all, thus contributing to the transmission of additional information via the beacon signal. Power Information 2562 Packets 151133.doc -48- 201112684 The power gain scaling factor includes, for example, the use of beacon symbols for transmission. User profile information 2534 includes clustered message 2564 and power information 2566. Cluster information 2564 identifies, for example, QpsK, qam μ, , or QAM 256, etc., and the modulation symbol values associated with the cluster. Power Information 2566 includes, for example, power scale factor information used for poetry symbol transmission.曰

時序心構貝訊2536包括識別與各種操作相關聯之間隔 ^如’信標傳輸時間間隔、用於監視來自其他無線終端 ,及/或固疋位置信標發射器之信標信號的間隔、使用者 f料間^、靜寂(例如’睡眠)間隔等)的資訊。時序結構資 2572勺:t傳輪時序結構資訊2572,該傳輸時序結構資訊 257: J標叢發持續時間資訊2574、信標叢發間距資訊 、樣式貧訊2578及資料信號傳輸資訊258〇。 在—些實施例中,伊 ,a _ 15仏叢發持續時間資訊2574識別:信 才市叢發之持續時間係 ° 乐匳疋的,例如,100個連續〇FT)M傳輪 呀間間隔。在—此电n , %幻 二Λ施例中’信標叢發持續時間資訊2574 識別:信標叢菸 Η . Χ 寺、,只時間(例如)根據由樣式資訊2578指 疋之預定樣式而變彳卜—* 故娃搶^ 匕。在各種實施例中,預定樣式為無線 終%機識別符之功At ^ 右I〇 此。在其他實施例中,對於系統中之所 有無線終端機,預 、払式係相同的。在一些實施例中,該 預疋樣式為偽隨機樣式。 在—些實施例中 ^ ρβ _ _ 1〇 ^叢發持續時間資訊2574及信標叢 發間距賁訊257 _ .上 取 a不.信標叢發之持續時間比自信標叢發 151133.doc 201112684 之結束至下一作i#豐·拉 φ 之開始的時間間隔短至少50倍。在 一些貫把例尹,信椤堂 _訊2576指示:信標叢發之 間的間距隨者在—賠門 轉孫防1 ’曰週心間以週期性方式發生之信標 叢發係恆疋的,在哕拄 °'時間週』中,無線終端機傳輸信標信 號。在一些貫施例中 ^ 4 #叢發間距賢訊2576指示:無論 無線終端機處於非作用中 …、 _ f用中杈式還疋作用中模式,皆以相同 間隔間距來傳輪作·辦紫·欢 龙七 口 ‘叢發。在其他實施例中,信標叢發間 M 6扎不.(例如)無論無線終端機處於非作用令模 式還疋作用中模式’皆使用不同間隔間距來傳輸信標叢 發,作為無線終端機操作模式之功能。 空中鏈路資源資訊2538包括信標傳輸資源資訊2568及其 他使用資源資訊2570。在一些實施例中,根據頻率時間格 線中之OFDM載頻調符號來定義空中鏈路資源,例如,作 為諸如TDD系統之無線通信系統的部分。信標傳輸資源資 訊测包括識別配置給w τ 2 5 〇 〇的用於信標信號之空中鏈 路資源之資訊’例如,用以傳輸包括至少一信標符號之信 才不叢發的OFDM載頻調符號之區塊。信標傳輸資源資訊 2568亦包括識別信標傳輸單位之資訊。在—些實施例中, 信標傳輪單位為單一 〇FDM载頻調符號。在一些實施例 中,信標傳輸單位為OFDM傳輸單位之集合,例如,連續 〇FDM載頻調符號之集合。其他使用資源資訊2570包括識 別為其他目的(諸如,信標信號監視、接收/傳輸使用者資 料)而將由WT 2500使用之空中鏈路資源的資訊。例如,對 應於省電之靜寂狀態(例如,睡眠狀態),可能且有時故音 151133.doc -50· 201112684 不使透過空令鏈路資源中之—些 OFDM載頻調符號 :。—些實施例中,使用 士 a 中鍵路貧源來傳輪作;P爲味 一時間週期期間,传椤忽哚几 乎軋仡軚付旎,且在 輸資源的載頻調符號不足百八 …、線n知機使用之傳 信標信號叢發及至少刀之1 ’該時間週期包括多個 中,信標信號在-時間週期之二5號。在各種實施例 足百分之0.3,該時間週期,”刀中佔據載頻調符號不 及連續信標信號叢發之間的_間… 二“唬叢發 標信號在一日4 n 在各種實施例中,信 之〇 1 ^ ni pg 中佔據载頻調符號不足百分 之〇. 1,該日可間週期之該部分 匕括一彳§標信號叢發及連嬙 偟軚信號叢發之間的一間 ·、 、 間^在各種實施例中,在至少一 二操作模式(例如,作用Φ_上 二乍模式)期間,傳輸模組2504 二專:使用者資料’且當無線終端機傳輸使用者資料時, ㈣間週期期間在由該無線終端機使用之傳輸資源的裁 勺夺號之至少百分之1〇上傳輸使用者資料,該時間週期 匕括使用者㈣信料輸及兩個鄰近信標信號叢發。 產生之信標信號2542為信標信號產生模組期之輸出, 而產生之資料信號2544為使用者資料信號產生模組2522之 輸出。產生之信號(2542、2544)被引導至傳輸模組25〇4。 使用者資料2547包括(例如)用作使用者資料信號產生模組 之輸入的音汛、語音、影像、文字及/或檔案資料/資 衹。雙工控制信號2546表示雙工控制模組253〇之輸出,且 輸出信號2546被引導至雙工模組25〇3以控制天線切換及/ 或至接收斋模組2502或發射器模組25〇4以關閉至少一些電— Γ 151133.d〇i -51 . 201112684 路並省電》 圖26為根據各種實施例的操作一通信裝置(例如,電池 供電的無線終端機)之例示性方法之流程圖2600的圖式。 操作開始於步驟2602,其中通信裝置經開機並被初始化。 操作自開始步驟2602進行至步驟2604及步驟2606。 在以削進為基礎之步驟2604中,通信裝置維持時間資 訊。時間資訊2605自步驟2604輸出且在步驟2606中使用。 在步驟2606中,通信裝置判定一時間週期係信標接收時間 週期、信標傳輸時間週期還是靜寂時間週期,且視該判定 _ 而不同地繼續進行。若時間週期為信標接收時間週期,則 操作自步驟2606進行至步驟2610,在步驟2610中,通信裝 置執行一信標信號偵測操作。 若時間週期為信標傳輸時間週期,則操作自步驟2 6 6進 行至步驟2620,在步驟262〇中,通信裝置傳輸信標信號之 至少一部分,該傳輸之部分包括至少一信標符號。 右時間週期為靜寂時間週期,則操作自步驟26〇6進行至 v驟2622,在步驟2622中,通信裝置避免傳輸且避免操作籲 以偵測k標信號。在一些實施例中,通信裝置在步驟Μ。 中進入靜寂(例如,睡眠)模式且節省電池功率。 返回步驟2610,操作自步驟2610進行至步驟2612。在步 驟612巾通裝置判定是否已债測到信標。若已债測到 一信標’則操作自步驟2612進行至步驟2614。然而,若未 貞、彳到彳。払,則操作自步驟26丨2經由連接節點A % 13進行 至步驟2606。在步驟2614中,通信裝置基於接收之信號之 151133.doc -52- 201112684 經偵測的部分而調整通信裝置傳輸時間。在步驟26〇4中, 自步驟2614獲得之調整資訊2615用於維持用於通信裝置之 時間貢訊中。在一些實施例中’時序調整調整信標信號傳 輸時間週期而在—已知為由傳輸接收之信標信號部分的裝 置使用之時間週期期間發生以接收信標信號。操作自步驟 2614進行至步驟2616,其中通信裝置根據調整之通信裝置The timing heartbeat 2536 includes identifying intervals associated with various operations, such as 'beacon transmission time intervals, intervals for monitoring beacon signals from other wireless terminals, and/or fixed position beacon transmitters, using Information between the materials, the silence (such as the 'sleep' interval, etc.). Timing structure 2572 scoop: t transmission wheel timing structure information 2572, the transmission timing structure information 257: J standard burst duration information 2574, beacon burst spacing information, style poor news 2578 and data signal transmission information 258 〇. In some embodiments, the y, a _ 15 仏 burst duration information 2574 identifies: the duration of the genius of the genius is ° °, for example, 100 consecutive 〇 FT) M transmission round interval . In the case of this electric n, % illusion Λ ' 'beacon spread duration information 2574 recognition: beacon cluster smoke Η Χ temple, only time (for example) according to the predetermined style indicated by style information 2578 Change the — Bu—* The baby is robbed ^ 匕. In various embodiments, the predetermined pattern is the work of the wireless terminal % identifier, At ^ right. In other embodiments, the pre- and 払 are the same for all wireless terminals in the system. In some embodiments, the preview style is a pseudo-random pattern. In some embodiments, ^ ρβ _ _ 1 〇 ^ burst duration information 2574 and beacon cluster spacing 贲 257 _ . on a not. The duration of beacon bursts is more than confidence 151133.doc The time interval from the end of 201112684 to the start of the next i#feng·la φ is at least 50 times shorter. In some cases, Yin, Xinyitang_Xun 2576 indicates that the spacing between the beacons and the bursts is in the same way as the ones that are in the periodic way. Awkward, in the time period, the wireless terminal transmits a beacon signal. In some implementations, ^ 4 #cluster spacing, 2576 indicates: no matter whether the wireless terminal is inactive..., _f uses the middle mode and the active mode, all of which are transmitted at the same interval. · Huanlong seven mouths - Congfa. In other embodiments, the beacon bursts are not connected. For example, the wireless terminal is in the inactive mode and the active mode uses different spacings to transmit the beacon bursts as a wireless terminal. The function of the operating mode. The air link resource information 2538 includes beacon transmission resource information 2568 and other resource usage information 2570. In some embodiments, the air link resources are defined in accordance with OFDM carrier tone symbols in the frequency time grid, e.g., as part of a wireless communication system such as a TDD system. The beacon transmission resource information measurement includes identifying information of an air link resource for a beacon signal configured to w τ 2 5 ' 'for example, an OFDM transmission for transmitting a signal including at least one beacon symbol The block of the tone symbol. Beacon transmission resource information 2568 also includes information identifying the beacon transmission unit. In some embodiments, the beacon transmission unit is a single 〇FDM carrier tone symbol. In some embodiments, the beacon transmission unit is a set of OFDM transmission units, e.g., a set of consecutive 〇FDM carrier tone symbols. Other usage resource information 2570 includes information identifying airlink resources to be used by the WT 2500 for other purposes, such as beacon signal monitoring, receiving/transmitting user data. For example, depending on the quiet state of power saving (e.g., sleep state), it is possible and sometimes the tone 151133.doc -50· 201112684 does not pass some of the OFDM carrier tone symbols in the null link resource. In some embodiments, the use of the weak source of the key in the a is used to transmit the rotation; P is the period of the taste period, the transmission is almost repeated, and the carrier frequency of the transmission resource is less than one hundred... , the line n knows the use of the beacon signal burst and at least the knife 1 'the time period includes a plurality of beacon signals in the - time period of the second 5th. In various embodiments, 0.3 percent, during the time period, "the knives occupy the carrier frequency modulation symbol less than the _ between the continuous beacon signal bursts... The two "cluster burst signal" in the day 4 n in various embodiments In the letter, 1 ^ ni pg occupies less than 5% of the carrier frequency sign. 1. This part of the inter-day cycle includes a 彳 mark signal burst and a burst signal burst In various embodiments, during at least one mode of operation (eg, Φ_upper mode), the transmission module 2504 is dedicated to: user data 'and when the wireless terminal transmits and uses In the case of the data, the user data is transmitted on at least 1% of the transmission source of the transmission resource used by the wireless terminal during the (IV) period, the time period includes the user (4) the information input and the two Proximity to the beacon signal. The generated beacon signal 2542 is the output of the beacon signal generation module period, and the generated data signal 2544 is the output of the user profile signal generation module 2522. The generated signals (2542, 2544) are directed to the transmission module 25〇4. User profile 2547 includes, for example, audio, voice, video, text, and/or archival material/resources used as input to the user profile signal generation module. The duplex control signal 2546 represents the output of the duplex control module 253, and the output signal 2546 is directed to the duplex module 25〇3 to control antenna switching and/or to the receiving module 2502 or the transmitter module 25〇. 4 to turn off at least some of the electricity - 151 151133.d〇i - 51 . 201112684 Road and save power" Figure 26 is a flow diagram of an exemplary method of operating a communication device (e.g., a battery powered wireless terminal) in accordance with various embodiments. Figure 2600 is a diagram. Operation begins in step 2602 where the communication device is powered on and initialized. Operation proceeds from start step 2602 to step 2604 and step 2606. In step 2604 based on the cut-in, the communication device maintains the time information. Time information 2605 is output from step 2604 and used in step 2606. In step 2606, the communication device determines whether a time period is a beacon reception time period, a beacon transmission time period, or a dead time period, and proceeds differently depending on the determination. If the time period is the beacon reception time period, then operation proceeds from step 2606 to step 2610, in which the communication device performs a beacon signal detection operation. If the time period is a beacon transmission time period, then operation proceeds from step 266 to step 2620, in which the communication device transmits at least a portion of the beacon signal, the portion of the transmission including at least one beacon symbol. The right time period is the dead time period, then operation proceeds from step 26〇6 to v2262, in which the communication device avoids transmission and avoids operation to detect the k-mark signal. In some embodiments, the communication device is at step Μ. Enter a silent (eg sleep) mode and save battery power. Returning to step 2610, operation proceeds from step 2610 to step 2612. At step 612, the toweling device determines if the beacon has been tested. If a beacon has been measured, then operation proceeds from step 2612 to step 2614. However, if you are not stunned, you will find it. Otherwise, the operation proceeds from step 26丨2 via connection node A % 13 to step 2606. In step 2614, the communication device adjusts the communication device transmission time based on the detected portion of the received signal 151133.doc -52 - 201112684. In step 26〇4, the adjustment information 2615 obtained from step 2614 is used to maintain the time stamp for the communication device. In some embodiments, the timing adjustment adjusts the beacon signal transmission time period to occur during a time period known to be used by the device transmitting the received beacon signal portion to receive the beacon signal. Operation proceeds from step 2614 to step 2616, wherein the communication device is in accordance with the adjusted communication device

傳輸時序而傳輸信號(例如’信標信號)。接著,μ娜 2618中,通信裝置與自其接收信標信號之偵測之部分的裝 置建立通‘會期。操作自步驟2618、之㈣或之⑵中之任一 者、,玉由連接節點A 2613進行至步驟2606。 在一些實施例中,步驟26〇4包括子步驟26〇8及26〇9中之 者在子步驟26〇8中,通信裝置偽隨機地調整循環 序列之此等時間週期中的一信標傳輸時間週期及一信標接 收時間週期’之至少一者的開始。舉例而t,在一些實施 :中,在特定時間(例如,在開機或進人新的區域之後), -通信裝置可能未與任何其他通”置同步, 步驟⑽-或多次,以在循環時間結構 丁: _時間間隔之同時偵測到來“…有有限以 梦置^此’子步驟細可有效地移位在兩個對等通传 裝置之間的相料序。在子步驟2_巾 : 標接收及傳輸時間週期以便以週期性為基礎而^ 期二Γ接收時間週期比信標傳輸時間週 疊的二收及傳輪時間週期係非重 ^接收時間週期為信標傳輸時間週期的至小= I51133.doc •53- 201112684 倍。在-些實施例令,靜寂時間週期在信 輸時間週期之間發生。在各種實施例中,^與信標傳 傳輸時間週期及信標接收時間週期中之—者叔週期為信標 丄圖27.為根據各種實施例之例示性通信裝置的兩倍 化裝置係攜帶型無線終端機2700(例如,行 二°亥通 二攜帶i無線終端機2700可為圖丨之無線終端機中的任一 者。例不性無線終端機2700為(例如)一通信裝置装 杈仃動節點之間的點對點直接通信之分時雙工(TDD)正六 ^頻多工(◦聰)無線通㈣統之部分。例示性無線= 機靡可傳輸並接㈣標㈣。例稀线終端助嶋 於债測之信標信號(例如,|自傳輸信標信號之對等無線 終端機及/或來自固定信標發射器)而執行時序調整,以建 立時序同步。 例示性無線終端機2700包括經由匯流排2714耦接於一起 之一接收器模組27〇2、一傳輸模組27〇4、一雙工模組 2703、一處理器2706、使用者I/O裝置27〇8、一電源模組 2710及記憶體2712 ’各種元件在該匯流排2714上可互換資 料及資訊。 接收器模組2702(例如,OFDM接收器)自其他無線終端 機及/或固定位置信標發射器接收信號(例如,信標信號及/ 或使用者資料信號^ 傳輸模組2704(例如,OFDM發射器)將信號傳輸至其他 無線終端機,該等傳輸之信號包括信標信號及使用者資料 信號。信標信號包括一序列之信標信號叢發,每一信標信 151133.doc -54- 201112684 儿叢發包括一或多個信且 標符號傳鈐留仏 铩付諕佔據—信 ^ μ早位。對於每一傳輸之信標信號叢發,— 固Μ票符號由傳輸模組·傳輸。傳輸模組2取在 傳輪時間週期期間傳輸-信標信號(例如 广 ^ . l私叢發信 " ^ —部分,該傳輸之部分包括至少一信標符號, 例如’相對於使用者資料符號之功率位準的相對較功 之載頻調。 力率The signal is transmitted while transmitting the timing (e.g., 'beacon signal'). Next, in the μ Na 2618, the communication device establishes a 'session' with the device from which it detects the portion of the beacon signal detected. Operation from either step 2618, (4) or (2), jade is performed by connection node A 2613 to step 2606. In some embodiments, step 26〇4 includes sub-steps 26〇8 and 26〇9 in sub-step 26〇8, the communication device pseudo-randomly adjusting a beacon transmission in the time periods of the cyclic sequence The beginning of at least one of the time period and a beacon reception time period. By way of example, in some implementations, at a particular time (eg, after powering on or entering a new area), the communication device may not be synchronized with any other pass, step (10) - or multiple times, in a loop Time structure D: _ The time interval is detected at the same time. "There are limited to dreams. This sub-step can effectively shift the phase sequence between the two peer-to-peer devices. In the sub-step 2_ towel: the standard receiving and transmitting time period so as to be based on the periodicity, the receiving time period is longer than the beacon transmission time, and the non-receiving time period is The beacon transmission time period is as small as = I51133.doc •53- 201112684 times. In some embodiments, the dead time period occurs between signal time periods. In various embodiments, the unsymbol period in the beacon transmission time period and the beacon reception time period is a beacon. FIG. 27. is a dual-device device carrying an exemplary communication device in accordance with various embodiments. The type wireless terminal 2700 (for example, the mobile wireless terminal 2700 can be any one of the wireless terminals of the figure. The exemplary wireless terminal 2700 is configured, for example, by a communication device. A part-time duplex (TDD) positive six-frequency multiplex (Tong Cong) wireless communication (four) part of the point-to-point direct communication between the nodes. The exemplary wireless = machine can transmit and connect (four) standard (four). The terminal assists in the measurement of the beacon signal (eg, | peer-to-peer wireless terminal transmitting the beacon signal and/or from the fixed beacon transmitter) to perform timing adjustment to establish timing synchronization. Exemplary wireless terminal The 2700 includes a receiver module 27 耦 2, a transmission module 27 〇 4, a duplex module 2703, a processor 2706, and a user I/O device 27 〇 8 coupled via the bus bar 2714. A power module 2710 and memory 2712 'various components are in The data and information are interchangeable on the bus 2714. The receiver module 2702 (eg, an OFDM receiver) receives signals (eg, beacon signals and/or user data from other wireless terminals and/or fixed location beacon transmitters). The signal transmission module 2704 (for example, an OFDM transmitter) transmits signals to other wireless terminals, and the transmitted signals include a beacon signal and a user profile signal. The beacon signal includes a sequence of beacon signal bursts. Each beacon letter 151133.doc -54- 201112684 The children's hair bundles include one or more letters and the symbolic symbols are transmitted to the 諕 諕 信 信 信 信 信 信 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 – the fixed ticket symbol is transmitted by the transmission module. The transmission module 2 takes the transmission-beacon signal during the transmission time period (for example, the transmission of the private bundle " ^ - part, the part of the transmission includes at least one letter The symbol, such as the relative power of the power level relative to the user's data symbol.

在各種實施例中,傳輸模組讓為傳輸信標信號之 OFDM發射器且信標信號係使用為頻率與時間之組合的資 源來傳遞。在各種其他實施例中,傳輸模組27〇4為傳輪= 標信號之CDMA發射器且信標信號係使用$程式碼與時^ 之組合的資源來傳遞。 β 雙工模組2703經控制以切換在接收器模組2702與傳輸模 組2704之間的天線2705,作為分時雙工(TDD)實施」= 分。雙工模組2703耦接至天線2705 ,無線終端機27〇〇經由 該天線2705接收信號2778並傳輸信號2780。雙工模組27〇3 經由鏈路2701耦接至接收器模組27〇2,在該鏈路27〇1上傳 送接收之信號2782。在一些實施例中,信號2782為信號 2778之經篩選的表示。在一些實施例中,信號2782與信號 2778相同’例如,在雙工模組2703充當無篩選之穿透式裝 置之情況下。雙工模組2703經由鏈路27〇7耦接至傳輸模組 2704,在該鏈路2707上傳送傳輸信號2784。在一些實施例 中,信號2780為信號2784之經篩選的表示。在一些實施例 中’信5虎2 7 8 0與# 5虎2 7 8 4相同’例如,在雙工模組2 7 〇 3充 151133.doc -55- 201112684 當無筛選之穿透式裝置之情況下。 使用者1/0裝置2708包括(例如)麥克風、鍵盤、小鍵盤、 二換器、相機、揚聲器、顯示器等等。使用者裝置27〇8允 许使用者輸人資料/資訊、存取輸㈣詞訊並控制無線 ’-、端機之至少—些操作,例如’起始開機序列、試圖建立 通信會期、終止通信會期。 電源模組2710包括用制帶型無線終端機電源之電池 27U電源杈組27 10之輸出經由電源匯流排2709耦接至各 種組件(2702、27G3、27G4、27G6、2及 2712)以提供功 率。因此,傳輸模組2704使用電池功率來傳輸信標信號。 。己U體2712包括常式27 1 6及資料/資訊27丨8。處理器 2706(例如,CPU)執行常式2716且使用記憶體2712中之資 料/資訊2718以控制無線終端機27〇〇的操作並實施方法。 常式2716包括信標信號偵測模組272〇、靜寂狀態控制模組 2722、傳輸時間調整模組2724、傳輸控制模組2726、通信 會期起始模組2728、信標偵測控制模組273〇、時序調整模 組2732、模式控制模組2734、信標信號產生模組27刊、使 用者資料信號產生模組2738、使用者資料恢復模組274〇及 雙工控制模組2742。 信標信號偵測模組2720在一信標接收時間週期期間執行 信標信號偵測操作以偵測一信標信號之至少一部分的接 收。此外,回應於偵測之信標信號部分,信標信號偵測模 組2720設定指示一信標信號部分之接收的偵測之信標旗標 2750。债測之信標信號部分2754為信標信號偵測模組272〇 151133.doc -56- 201112684 之輸出。此外’回應於偵測之信標信號部分,信標信號偵 測模組2720設定指示一信標信號部分之接收的偵測之信栌 旗標2750。在一些實施例中,信標信號偵測模組272〇執行 偵測,作為能級比較之功能。在一些實施例中,(例如)在 對應於信標叢發之監視之空中鏈路資源中,信標信號偵阀 杈組2720執行偵測,作為偵測之信標符號樣式資訊之功 旎。在一些實施例中,信標信號偵測模組272〇自偵測之俨 標信號部分恢復資訊,例如,識別傳輸信標信號之來^ (二如’無線終端機)的資訊。舉例而言,不同無線終端機 可能且有時確實具有不同信標叢發樣式及/或簽章。 靜2狀態控制模組2722在(例如)發生於信標接收與信桿 、;寸門週』之間的靜寂週期期間控制無線終端機操作, 以既不傳輸亦不操作而偵測信標信號。 ”, 傳輪時間調整模 会日 A ” Α Λ ΛΑ 1 * *In various embodiments, the transmission module causes the OFDM transmitter to transmit the beacon signal and the beacon signal is transmitted using resources that are a combination of frequency and time. In various other embodiments, the transmission module 27〇4 is a CDMA transmitter that transmits a wheel=marker signal and the beacon signal is transmitted using a resource of a combination of code and time. The beta duplex module 2703 is controlled to switch the antenna 2705 between the receiver module 2702 and the transmission module 2704 as a time division duplex (TDD) implementation. The duplex module 2703 is coupled to the antenna 2705, via which the wireless terminal 27 receives the signal 2778 and transmits the signal 2780. The duplex module 27〇3 is coupled to the receiver module 27〇2 via the link 2701, and the received signal 2782 is transmitted and received on the link 27〇1. In some embodiments, signal 2782 is a filtered representation of signal 2778. In some embodiments, signal 2782 is the same as signal 2778', for example, where duplex module 2703 acts as a non-screening transmissive device. Duplex module 2703 is coupled to transmission module 2704 via link 27A7, on which transmission signal 2784 is transmitted. In some embodiments, signal 2780 is a filtered representation of signal 2784. In some embodiments, 'Letter 5 Tiger 2 7 8 0 is the same as # 5 Tiger 2 7 8 4', for example, in the duplex module 2 7 〇 3 charge 151133.doc -55- 201112684 when there is no screening penetration In the case of a device. User 1/0 device 2708 includes, for example, a microphone, a keyboard, a keypad, a transducer, a camera, a speaker, a display, and the like. The user device 27〇8 allows the user to input data/information, access (4) word messages, and control at least some operations of the wireless terminal, such as 'starting the power-on sequence, attempting to establish a communication session, terminating the communication. Session. The power module 2710 includes a battery with a tape type wireless terminal power supply. The output of the 27U power supply unit 27 10 is coupled to various components (2702, 27G3, 27G4, 27G6, 2, and 2712) via a power bus 2709 to provide power. Therefore, the transmission module 2704 uses battery power to transmit the beacon signal. . The U body 2712 includes the usual formula 27 1 6 and the information/information 27丨8. The processor 2706 (e.g., CPU) executes routine 2716 and uses the information/information 2718 in the memory 2712 to control the operation of the wireless terminal 27 and implement the method. The routine 2716 includes a beacon signal detection module 272, a silence state control module 2722, a transmission time adjustment module 2724, a transmission control module 2726, a communication session start module 2728, and a beacon detection control mode. The group 273, the timing adjustment module 2732, the mode control module 2734, the beacon signal generation module 27, the user data signal generation module 2738, the user data recovery module 274, and the duplex control module 2742. The beacon signal detection module 2720 performs a beacon signal detection operation during a beacon reception time period to detect reception of at least a portion of a beacon signal. In addition, in response to the detected beacon signal portion, beacon signal detection module 2720 sets a detected beacon flag 2750 indicating the receipt of a beacon signal portion. The beacon signal portion 2754 of the debt measurement is the output of the beacon signal detecting module 272 151133.doc -56- 201112684. Further, in response to the detected beacon signal portion, the beacon signal detection module 2720 sets a detected signal flag 2750 indicating the reception of a beacon signal portion. In some embodiments, the beacon signal detection module 272 performs detection as a function of level comparison. In some embodiments, beacon signal detection group 2720 performs detection, for example, in the air link resource corresponding to the surveillance of the beacon burst, as a function of the detected beacon symbol style information. In some embodiments, the beacon signal detection module 272 recovers information from the detected target portion of the signal, for example, to identify information transmitted by the beacon signal (eg, 'wireless terminal'). For example, different wireless terminals may and sometimes do have different beacon burst styles and/or signatures. The static 2 state control module 2722 controls the operation of the wireless terminal during a silent period between, for example, beacon reception and the signal bar, and the door is closed, and detects the beacon without transmitting or operating. signal. ", the transfer time adjustment mode meeting day A" Α Λ ΛΑ 1 * *

且接收之信標信號部分係來自 刀而調整通仏裝置的傳輸時間。 # 為(例如)特用網路,且接收之信And the part of the received beacon signal is from the knife to adjust the transmission time of the overnight device. #为(example) special network, and received letter

步。在包括固定位置信標及盔 *»·、 151133.doc 稞信號之對 線终端機信 •57· 201112684 ‘之一些實施例中,使用固定 粗水準的系統同步,且 ku可用時)來達成 之間的較高水準之同步。基;;線終端機信標來達成對等物 的時序偏移2756為傳輸時^ ^貞測之信標信號部分之该測 在各㈣& 調整模組2724之輸出。 ^種霄施例中’傳輪時間調整模 傳輸時間週期以在— m口“说 如,其他無線終端機)使用之傳輸接收之部分的裝置(例 標信號。因此,傳幹時…間週期期間發生以接收信 傳輸時間調整模组2724設定 Γ的信標’使料撞料物_制信標㈣窗係預期 傳=::=通信裝"輸時序來控制 得輸1。旒,例如’信標信號。當儲 雨 二會=狀態資訊2758指示建立之會期正在進行時, 疋之會期作用旗標2760,傳輪 °又 2704 mm 傳輪控制核組27%控制傳輸模組 乂重稷“信號部分傳輸操作。在一些實施例 輸控制模組2726控制無線終端機以便以無線終端機非作用 中操作模式及作心操作模絲重複㈣信號部分傳輪操 作。 术 通信會期起始模組2728用以控制操作以與自其接收信標 信號的另一無線終端機建立通信會期。舉 4叩5,在信標 信號摘測之後(其中信標信號源自另一無線终端機),若無 線終端機2700需要與該另一無線終端機建 … 心正逋化會期,則 模組2728經啟動以開始起始通信會期,例如,根據預〜 定產生並處理交握信號。 151133.doc -58- 201112684 #標偵測控制模組控制信標信號相模組勘操 作。舉例而言,當儲存之通信會期狀態資訊咖指示建立 之會期正在進行時,經由設定之會期作用旗標 谓测控制模組2730控制信標信㈣測模組272()以重複_ 在"'些實施例中,信標偵測控制模組2730控制無線 4機以便以無線終端機非作用中操作模式及作用令操作 模式來重複信標偵測操作。step. In some embodiments including a fixed position beacon and a helmet*», 151133.doc 稞 signal to the terminal terminal letter 57. 201112684 ', using a fixed coarse level system synchronization, and when ku is available) A higher level of synchronization between the two. The line terminal beacon is used to achieve the timing offset of the peer 2756 as the output of the beacon signal portion of the transmission (4) & adjustment module 2724. In the case of the 霄 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' During the period, the beacon of the received message transmission time adjustment module 2724 is set to enable the beacon to make the beacon (four) window system expected transmission =:: = communication device " transmission timing to control the input 1 . 'Beacon signal. When the storage of the second meeting = status information 2758 indicates that the establishment of the session is in progress, the meeting period flag 2760, the transmission wheel and 2704 mm transmission control group 27% control transmission module乂The "signal partial transmission operation" is repeated. In some embodiments, the transmission control module 2726 controls the wireless terminal to operate the mode in the inactive mode of the wireless terminal and to operate the die repeating (4) signal partial transmission operation. The start module 2728 is configured to control operation to establish a communication session with another wireless terminal from which the beacon signal is received. 4, 5, after the beacon signal is extracted (where the beacon signal originates from another wireless terminal) Machine), if wireless end The machine 2700 needs to be synchronized with the other wireless terminal, and the module 2728 is started to start the communication session, for example, generating and processing the handshake signal according to the pre-determination. 151133.doc - 58- 201112684 #标检测控制模块Controls the beacon signal phase module survey operation. For example, when the stored communication session status information coffee indicates that the establishment period is in progress, the set session flag is set. The pre-test control module 2730 controls the beacon letter (four) test module 272 () to repeat _ in some embodiments, the beacon detection control module 2730 controls the wireless device to operate indirectly in the wireless terminal The mode and function cause the operation mode to repeat the beacon detection operation.

時序調整漁2732偽隨機地調整彳㈣序狀此等時間週 期中的-信標傳輸時間週期及—信標接收時間週期中之至 少一者的開始。基於⑽機之時序偏移加為時序調整模 組爪2之輸出。在-些實施例中,時序調整模組加用以 相對^其他無線終端機移位該無線終端機之時序結構(獨 立地知作)’讀增加無線終端機及對等物在限制信標傳 輸及/或信標偵測時間間隔之同時能夠細目互之存在的 可能性》 模式控制模組2 7 3 4控制通信裝置在不同時間期間以第一 ^作模式及第二操作模式來操作,其中通信裝置傳輸信標 L號舉例而5 ’第-操作模式為非作用中模式,其中通 信裝置傳輸信標信號1測信標信號,但被限制傳輸使用 者資料;第二操作模式為作用中模式,其中通信裝置傳輸 信標㈣、㈣㈣信號,域准許傳輸制者資料。在 一些貫施例中’另-操作模式(模式控制模組2734在盆中 可控制通信裝线作)為錢終錢搜尋信標㈣衫被 准許傳輸的搜尋模式。 151133.doc -59- 201112684 信標信號產生模組2736產生信標信號部分2748(例如, 包括至少一信標符號之信標叢發),該等信標信號部分 2748由傳輸模組27〇4傳輸。使用者資料信號產生模組"π 產生使用者資料信號2774(例如,傳送諸如語音資料、其 他音訊資料、影像資料、文字資料、檔案資料等之使用者 貝料的經編碼之區塊的信號)。當無線終端機處於作用中 模式時使用者資料信號產生模組2738係作用中的且在經保 留用於使用者資料傳輸/接收信號之時間間隔期間經由傳 輸模組2704傳輸該產生之使用者資料信號2774。使用者資 料恢復楔組2740自接收之使用者資料信號2776恢復使用者 資料,該等使用者資料信號2776係接收自與無線終端機 2700進行通k會期的對等物。接收之使用者資料信號η% 係經由接收器模組2702而接收,而無線終端機在經保留用 於使用者資料傳輸/接收信號之時間間隔期間處於作用中 操作模式。 雙工控制模組2742控制雙工模組27〇3之操作,例如,控 制天線2705耦接至用於接收時間間隔(例如,信標監視時 間間隔及用於接收使用者資料之間隔)的接收器模組 2702,及耦接至用於傳輸時間間隔(例如,信標傳輸時間 間隔及用於傳輸使用者資料之間隔)的傳輸模組27〇4。雙 工控制模組2742亦控制接收器模組27〇2及傳輸模組27〇4中 之至少一者中的至少一些電路以在一些時間間隔期間斷 電’藉此節省電池功率。 資料/資訊2718包括當前模式資訊2744、當前時間資訊 151133.doc 201112684 2746、產生之信標信號部分2748、偵測之信標旗標測、 基於偽隨機之時序偏移2752、偵測之信標信號部分㈣、 基於制之信標信號部分的判定之時序偏移⑽、通信會 期狀態資訊2758、時序結構資訊2764 '模式資訊'產 生:使用者資料信號2774及接收之使用者資料信號27?6。 當別模式資訊2744包括識別無線終端機之當前操作模 =子料及/或操作狀態的#訊,例如,無線終端機是 地於其接收但不傳輸之模式下,無線終端機是否處於包 括化標信號傳輸但不允許使用者資料傳輸之非作用中模式 二或無線終端機是否處於包括信標信號傳輸且准許使用 者貧料傳輸的作用中模式下。 當前時間資訊2746包括相對於無線終端機時間在^線 =機維持之循環時序結構内的位置而識別無線終端機時 如(^,在該結構内之編人索引之〇聰符號傳輸時間週 ,貝讯。當前時間資訊2746亦包括相對於(例如,另一 端機或固定位置信標發射器之)另一時序結構而識 別…、線終端機之時間的資訊。 點===資包括會期作用旗標及對等節 作用中ΓΓ 標2760指示會期是否仍然為 點斷♦^言,與WT27GG進行通信會期之對等節 生y ·、、、線終端機2700停止债測對等物之信標信號,且 ::::::各種實施例中,至少部分地經由信標信號= 1寻达對寻即點ID資訊。 151133.doc 201112684 時序結構資訊編包括定義各種間隔(諸如,信標傳輸 間隔、信標偵測間隔、使用者資料傳信間隔及靜寂間隔) 之持續時間、排序及間距的資訊。時序結構資訊·包括 間隔之時序關係資訊觸。間隔之時序闕係資訊2鳩包括 ^如則以下内容之資訊:⑴信標接收時間週期比信標 傳料間週期長,·(π)信標接收及信標傳輸時間週期係非 重邊的’你標接收時間週期在持續時間上為信標傳輸 時間週期的至少兩倍;(iv)靜寂週期為信標傳輸時間週期 及信標接收時間週期中之一者的至少兩倍。 模式資訊2768包括初始搜尋模式資訊2769、非作用中模 式資訊期及作用中模式資訊2772。初始搜尋模式資訊 包括定義信標信號之初始延伸持續時間搜尋模式的資 说。在-些實施例中,初始搜尋之持續時間超過了藉由盆 他無線終端機進行之連續信標叢發傳輸之間^,、 該等無線終端機傳輸若干序列之信標叢發信號。在一此實 =中’初始搜尋模式資訊2769用於在開機後即執行初始 =此外,(例如)若在處於非作用中模式時未债測到其 他信標信號及/或若無線終端機欲執行比使用非作用中模 =達成之搜尋快及/或徹底之信標搜尋,則無線終端機 /作用中g式偶然地進人初始搜尋模心非作用中模 貝訊2770定義包括信標信號間隔、信標監視間隔及靜寂間 隔之無線終端機操作的非❹中模式4仙中模 :模式無線終端機在靜寂模式下節省能量.,、然而能 -糟由仏4示k號指不其存在且能夠以有限之持續時間信標 151133.doc •62· 201112684 =隔維持其他無線終端機之存在的情境意 模式mm定義包括信標信號傳 :用中 隔、使用者資料7 “監視間 的作用中模式。 靜叔間隔之無線終端機操作 圖28為關於特用網路中之兩個無線終端機說明 時間線、事件序列及操作的圖式勒,該等終端心= :之存在且經由使用無線終端機信標信號而達^ 步。水平軸280丨表示時間線。在時間28〇2 開機且開始對信標信號之初始監視,如區塊购所^^ 監視繼續直至a# p弓9sna , ,- , 9 ^ 只直至時間2806,如區塊28〇8所說明,此故 端機完成其初始搜尋,έ士果夫备 ··、、、、·、’·; 菩益一 、,,。果未發現其他無線終端機,·接 者,‘,.、線^機以人包括信標傳輸間隔(其中無線 1傳輸信標信號叢發)、作樟Bt葙 而械 HUM/ 線終端機監視 幻及靜寂間隔(其中無線終端機既不傳輸亦不接 因此省電)之重複的非作用中操作模式。 接著,在時間測,無線終端機2開機且開始初奸標 監視,如區塊㈣所指示。接著,在時間2814,如心 加5所指示,無線終端機2偵測來自無線終端機匕信標信 號,決定其設法與無線終端機丨建立通信會期,且判 間偏移,使得無線終端機將在無線終端機i信標監視間隔 期間自無線終端機2接收信標信號叢發。 阳 在時間2816,如區塊所指示,無線終端機2已進入 包括以下内容之重複的作用中模式:信標傳輸間隔、信標 監視間隔及使用者資料間隔’且在時間2816,無線終端^ r 151133.doc -63· 201112684 2根據步驟2815之判定的時間偏移而傳輸信標信號。接 著’如/塊282G所指示,無線終端機1_來自無線终端 機2之標信號且切換至作用中模式。 在時間間隔2816與期之間,如區塊助所指示, 終端機1與無線終端機2交換資料以建立通信會期且接著參 與交換使用者資料之會期。此外,在此時間間隔_ 4 會期期間接收之信標信號用以更新時序且維持同步。 終端機i及無線終端機2可能且有時為可在通信會期期間移 動的行動節點。 在時間2824 ’無線終端機】斷電’如區塊聰所指干 接著,在時間助,無線終端機2判定信號已自無線終端 機1丢失,且無線終端機過渡至非作用中模式,如區 2830所指示。信號亦可能且有時歸因於其他條件(例如, 無線終端機!及2移動為相互離得足夠遠,使得通道條 足以維持會期)而丟失。 箭頭序列2832說明無線終端機丨信標信號叢發,而 序列2834說明無線終端機2信標信號叢發。應觀察,在兩 個無線終端機之間的時序已同步,作為來自無線終端機【 之所接收之信標信號的功能’使得無線終端機旧夠在其The timing adjustment fish 2732 pseudo-randomly adjusts the start of at least one of the beacon transmission time period and the beacon reception time period in these time periods. The output of the module jaw 2 is adjusted based on the timing offset of the (10) machine. In some embodiments, the timing adjustment module is configured to shift the timing structure of the wireless terminal relative to other wireless terminals (independently known as 'reading to increase the wireless terminal and the peer to limit the beacon transmission) And/or the possibility that the beacon detection interval can be mutually different at the same time. The mode control module 2 7 3 4 controls the communication device to operate in the first mode and the second mode during different time periods, wherein The communication device transmits the beacon L number as an example and the 5 'the first operation mode is the inactive mode, wherein the communication device transmits the beacon signal 1 to measure the beacon signal but is restricted to transmit the user data; the second operation mode is the active mode Wherein the communication device transmits beacon (4), (4) (4) signals, and the domain permits transmission of the maker data. In some embodiments, the 'other-operation mode (the mode control module 2734 can control the communication line in the basin) is a search mode in which the money end search for the beacon (four) shirt is permitted to be transmitted. 151133.doc -59- 201112684 Beacon signal generation module 2736 generates a beacon signal portion 2748 (eg, a beacon burst including at least one beacon symbol), and the beacon signal portion 2748 is transmitted by the transmission module 27〇4 transmission. The user profile signal generation module "π generates a user profile signal 2774 (eg, transmits a signal of a coded block of user material such as voice data, other audio data, video data, text data, file data, etc.) ). When the wireless terminal is in the active mode, the user profile generation module 2738 is active and transmits the generated user profile via the transmission module 2704 during the time interval reserved for the user data transmission/reception signal. Signal 2774. The user data recovery wedge set 2740 recovers the user data from the received user profile signal 2776, which is received from the peer with the wireless terminal set 2700. The received user profile signal η% is received via the receiver module 2702, and the wireless terminal is in an active mode of operation during the time interval that is reserved for user data transmission/reception signals. The duplex control module 2742 controls the operation of the duplex module 27〇3, for example, the control antenna 2705 is coupled to receive for receiving a time interval (eg, a beacon monitoring time interval and an interval for receiving user data). The module 2702 is coupled to the transmission module 27〇4 for transmitting time intervals (eg, beacon transmission time intervals and intervals for transmitting user data). The duplex control module 2742 also controls at least some of the at least one of the receiver module 27〇2 and the transmission module 27〇4 to be powered down during some time intervals to thereby conserve battery power. The data/information 2718 includes current mode information 2744, current time information 151133.doc 201112684 2746, generated beacon signal portion 2748, detected beacon flag mapping, pseudo-random based timing offset 2752, detected beacon The signal portion (4), the timing offset (10) of the decision based on the beacon signal portion, the communication session status information 2758, and the timing structure information 2764 'mode information' are generated: user data signal 2774 and received user data signal 27? 6. When the mode information 2744 includes the current operation mode = sub-material and/or operation status of the wireless terminal, for example, the wireless terminal is in the mode of receiving but not transmitting, whether the wireless terminal is in the inclusion standard The signal transmission does not allow the user to transmit the non-active mode 2 or whether the wireless terminal is in the active mode including the beacon signal transmission and permitting the user to transmit the poor material. The current time information 2746 includes when the wireless terminal is identified with respect to the position of the wireless terminal time in the cyclic timing structure maintained by the machine, such as (^, the symbolic transmission time of the coded index in the structure, The current time information 2746 also includes information identifying the time of the line terminal relative to another timing structure (eg, another terminal or a fixed position beacon transmitter). Point === capital includes the duration The role flag and the peer-to-peer effect mark 2760 indicate whether the session is still a point break, and the WT27GG communicates with the peer-to-peer y ·, ,, line terminal 2700 to stop the debt test equivalent. Beacon signal, and :::::: In various embodiments, the seek point ID information is found at least in part via the beacon signal = 1. 151133.doc 201112684 The timing structure information includes defining various intervals (such as a letter) Information on the duration, ordering, and spacing of the standard transmission interval, beacon detection interval, user data transmission interval, and silence interval. Timing structure information, including the timing relationship information of the interval. 2鸠Including the following information: (1) Beacon reception time period is longer than beacon transmission period, · (π) beacon reception and beacon transmission time period is non-heavy edge 'your target reception time period The duration is at least twice the time period of the beacon transmission; (iv) the silence period is at least twice the one of the beacon transmission time period and the beacon reception time period. The mode information 2768 includes the initial search mode information. 2769, inactive mode information period and active mode information 2772. The initial search mode information includes a description of the initial extended duration search mode defining the beacon signal. In some embodiments, the duration of the initial search exceeds the borrowing The continuous beacon burst transmission between the wireless terminal and the wireless terminal transmits a number of sequences of beacon burst signals. In this case, the initial search mode information 2769 is used for booting. After the initial execution = in addition, for example, if in the inactive mode, the other beacon signals are not tested and/or if the wireless terminal wants to perform more than the use of the non-active mode = For fast and/or thorough beacon search, the wireless terminal/active g-type accidentally enters the initial search mode. The non-active mode is 2770. The definition includes beacon signal interval, beacon monitoring interval and silence. The wireless terminal operation of the interval is not in the middle mode. 4 mode: the mode wireless terminal saves energy in the silent mode. However, it can be said that the k number does not exist and can be sustained in a limited manner. Time beacon 151133.doc •62· 201112684=Scenario mode to maintain the existence of other wireless terminals. mm definition includes beacon signal transmission: use of septum, user data 7 “interaction mode between surveillances. WIRELESS TERMINAL OPERATION Figure 28 is a diagram illustrating timeline, event sequence, and operation for two wireless terminals in a particular network, where the terminal heart =: exists and uses a wireless terminal beacon signal And up to ^ step. The horizontal axis 280 丨 represents the time line. Start at time 28〇2 and start the initial monitoring of the beacon signal, such as the block purchase ^^ monitoring continues until a# p bow 9sna, , -, 9 ^ only until time 2806, as explained in block 28〇8, This end machine completes its initial search, and the gentleman prepares ···,,,··,··; Bo Yiyi,,,. If other wireless terminals are not found, the receivers, ',., and the machine include the beacon transmission interval (where the wireless 1 transmits the beacon signal burst), and the HBt葙 and the weapon HUM/line terminal monitor A repetitive, inactive mode of operation in which the illusion and silence intervals (where the wireless terminal is neither transmitted nor powered). Next, in the time measurement, the wireless terminal 2 is turned on and the initial flagging monitoring is started, as indicated by block (4). Then, at time 2814, as indicated by heart 5, the wireless terminal 2 detects the beacon signal from the wireless terminal, determines that it tries to establish a communication session with the wireless terminal, and intervenes to make the wireless terminal The machine will receive a beacon signal burst from the wireless terminal 2 during the wireless terminal i beacon monitoring interval. At time 2816, as indicated by the block, the wireless terminal 2 has entered a repeating active mode that includes the following: beacon transmission interval, beacon monitoring interval, and user profile interval' and at time 2816, the wireless terminal ^ r 151133.doc -63· 201112684 2 The beacon signal is transmitted according to the time offset determined in step 2815. Next, as indicated by block / block 282G, the wireless terminal 1_ is from the signal of the wireless terminal 2 and switches to the active mode. Between the time interval 2816 and the period, as indicated by the block assistance, the terminal 1 exchanges data with the wireless terminal 2 to establish a communication session and then participates in the exchange of user data. In addition, the beacon signals received during this time interval _ 4 session are used to update the timing and maintain synchronization. Terminals i and wireless terminals 2 may and sometimes are mobile nodes that can be moved during the communication session. At time 2824 'wireless terminal' power off' as indicated by the block Cong, then, at the time of assistance, the wireless terminal 2 determines that the signal has been lost from the wireless terminal 1, and the wireless terminal transitions to the inactive mode, such as Indicated by area 2830. Signals may also and sometimes are lost due to other conditions (e.g., wireless terminals! and 2 moving far enough apart from each other to make the channel strips sufficient to sustain the session). The arrow sequence 2832 illustrates the wireless terminal machine beacon signal burst, and the sequence 2834 illustrates the wireless terminal 2 beacon signal burst. It should be observed that the timing between the two wireless terminals has been synchronized, as the function of the received beacon signal from the wireless terminal makes the wireless terminal old enough

信標信號監視間隔期間偵測來自無線終端機2的信號 叢發。 ° I 在此實例中,已開機之無線終端機在初始信標監視週期 期間執行監視’直至偵測到信標或直至初始信標監視週期 期滿(無論哪一者在先)。初始信標監視週期為(例如)—延 15ll33.doc -64 - 201112684 伸的持續時間監視週期,其具有超過—包括 隔之送代的持續時間。在此實例中,在進入傳二標傳輸間 之模式之前執行初始信標監視週期。在一::::信號 =作用中模式(該非作用中模式包括信心輸二:,處 ;監視間隔及靜寂間隔)之無線終端 :之信標監視間隔,例如,以涵蓋兩個無線終端=: 夺啟動的極端情況條件。 同 在-些其他實施例中,無線終端機進人非作用中 ::作用中模式包括在開機後之信標傳輸間隔及有限二 =信,間隔,而第一者不具有延伸之信標監視間 二此等實施例中,無線終端機可能且有時確實執 盯偽隨機時間移位同時搜尋其他信標信號以有助於苴自身 的信標監視間隔與其他無線終端機信標傳輸間隔之間 準0 β圖29之圖式2900說明根據-例示性實施例的基於信標信 φ 號之兩個無線終端機之間的例示性同步時序。圖式2902說 明關於無線終端機!之時序結構資訊,而圖式簡包括關 於無線終端機2之時序結構資訊。在無線終端機已時序同 步(例如,基於偵測來自無線終端機丨之信標信號的無線終 食而機2)之後,圖式29〇〇可對應於圖28。圖式29〇2包括無線 終埏機1彳§標傳輸間隔2906 '無線終端機i信標接收間隔 2908、無線終端機丨使用者資料丁又/^間隔”切及胃邊 寂間隔2912 °圖式2904包括無線終端機2信標傳輸間隔 2914、無線終端機2信標接收間隔2916、無線終端機2使用 15ll33.doc -65- 201112684 者資料TX/RX間隔2918及霤丁 2靜寂間隔292〇。應觀察,無 線終端機2已調整其時序,使得當其在WT 2信標傳輸間隔 2914期間傳輸信標信號叢發時,WT i將在其信標接收間隔 2908期間接收信標信號叢發❶亦應觀察,存在可用於使用 者資料傳信之使用者資料TX/RX區域的重疊部分2922。此 方法對於不同無線終端機維持相同的基本時序結構且使 用無線终端狀時序中之-者的判定之時序移位而達成同 步〇 圖30之圖式3000說明根據另一例示性實施例的基於信標 _ 信號之兩個無線終端機之間的例示性同步時序。圖式3〇〇2 包括關於無線終端機1之時序結構資訊,而圖式3〇〇4包括 關於無線終端機2之時序結構資訊。在無線终端機已時序 同步(例如,基於偵測來自無線終端機丨之信標信號的無線 終端機2)之後,圖式3〇〇〇可對應於圖28。圖式3〇〇2包括無 線終端機1信標接收間隔3〇〇6、無線終端機i信標傳輸間隔 3 0 0 8、無線終知機1 #標接收時間間隔3 〇 1 〇、無線終端機1 使用者資料TX/RX間隔3012及WT 1靜寂間隔3014。圖式鲁 3 0 0 4包括無線終4機2彳吕標接收間隔3 〇 16、無線終端機2作 標傳輸間隔301 8、無線終端機2信標接收時間間隔3〇2〇、 無線終端機2使用者資料tx/rx間隔3022及wt 2靜寂間隔 3 024。應觀察,無線終端機2已調整其時序,使得當其在 WT 2信標傳輸間隔3018期間傳輸信標信號叢發時,WT 1 將在其信標接收間隔3010期間接收信標信號叢發。亦可觀 察,在此實施例中,在無線終端機2之時序調整之後,無 15J133.doc •66- 201112684 .:^機2在其信標接收間隔3〇16期間接收由無線終端機1 …、線終端機1信標傳輸間隔3008期間傳輸的信標叢發。 亦應觀察’存在可用於使用者資料傳信之使用者資料 έ X區域的重疊部分3026。此方法對於不同無線終端機 ’准持相同的基本時序結構’域帛無線終端叙時序中之 处 /疋之時序移位而達成同步,且兩個無線終端機皆 &夠在同步之後在前進之基礎上相互接收信標信號叢發。 Q 之圖式3100說明根據另一例示性實施例的基於信標 佗5虎之兩個無線終端機之間的例示性同步時序。圖式3 i 02 包括關於無線終端機丨之時序結構資訊,而圖式3104包括 i :…線、、冬鈿機2之時序結構資訊。在無線終端機已時序 7步(例如,基於偵測自無線終端機丨之信標信號的無線終 端機2)之後,圖式31〇〇可對應於圖28。圖式31〇2包括無線 終端機1½標傳輸間隔31〇6、無線終端機丨信標接收時間間 隔3 108、無線終端機1使用者資料TX/RX時間間隔3 11 〇及 WT 1靜寂間隔3112。圖式31〇4包括無線終端機2信標傳輸 間隔3114、無線終端機2信標接收時間間隔3116、無線終 端機2使用者資料TX/RX間隔3118及WT 2靜寂間隔312〇。 應觀祭,無線終端機2已調整其時序,使得當其在wt 2信 標傳輸時間間隔3116期間傳輸信標信號叢發時,WT 1將在 其信標接收間隔3 108期間接收信標信號叢發。亦可觀察, 在此實施例中,在無線終端機2之時序調整之後,無線终 端機2在其信標接收間隔3 114期間接收由無線終端機1在無 線終端機1信標傳輸間隔3 106期間傳輸的信標叢發。亦應 151133.doc -67- 201112684 觀察,使用者資料TX/RX時間間隔3110、3118重疊。此方 法對兩個無線終端機(例如,執行另一信標之第一偵測且 調整其内部時序的無線終端機)使用不同時序結構,例 如,WT 2使用圖式3 104之間隔排序。在一些此等情況下, 在無線終端機2結束通信會期且進入包括信標信號傳輸之 非作用中狀態之後,無線終端機2即進行至由圖式31〇2表 示的經排序之時序序列。 圖32說明形成於在第一、第二與第三無線終端機(分別 為3201、3202與3203)之間的通信區域32〇〇中之例示性特 用網路。無線終端機3201、3202、3203中之每一者支援第 一通信協定,例如,裝置可用來廣播裝置能力資訊之低位 元,率協^。在-些實施例中’第_通信協定為信標信號 協定。在一此實施例令,無線終端機32〇1、32〇2、32〇3傳 輸使用各種形式之虛線展示的信號322〇以傳遞裝置能力資 〇fL在些實施中,第一協定未使用信號相位來傳遞資 汛。此允許使用第一協定之接收相對簡單地來實施,且因 此成本低’因為其可使用能量债測技術結合可用以恢復傳 遞之資訊的頻率及/或時間偵測來實施。因此,由於恢復 使用第一協定所傳遞之資訊所需的模組之簡單性質,對第 一通信協定之硬體及/或軟體支援可以極少或無額外成本 (與不包括對第_通信協定之支援的裝置相比)併入許多類 型之通信袭置中。此外,可以支㈣_通信協^方^ 和夕或額外成本來實施包括發射器的裝置。因此,在具 有才’、月b力之眾多裝置(例如,CDMA ' OFDM、GSM及苴 151133.doc 201112684 他類型之裝置)中包括對第一通信協定(例如,基於信標信 號之協定)之支援為相對低廉的。 雖然展示到達區域3200中之所有裝置,但是信號可能不 能到達該區域中的所有裝置,但對於相鄰的裝置判定哪一 協定、哪些協定及/或何裝置組態應用於通信目的係有用 的。Signal bursts from the wireless terminal 2 are detected during the beacon signal monitoring interval. ° I In this example, the powered-on wireless terminal performs monitoring during the initial beacon monitoring period until the beacon is detected or until the initial beacon monitoring period expires (whichever is the first). The initial beacon monitoring period is, for example, a duration monitoring period that extends beyond - including the duration of the delivery. In this example, the initial beacon monitoring period is performed prior to entering the mode of the transmission between the two transmissions. In a:::: signal = active mode (the non-active mode includes confidence input 2:, at; monitoring interval and silence interval) of the wireless terminal: the beacon monitoring interval, for example, to cover two wireless terminals = : The extreme conditions of the start. In other embodiments, the wireless terminal enters the inactive mode: the active mode includes the beacon transmission interval after the power on and the finite two = letter, interval, and the first party does not have extended beacon monitoring. In these embodiments, the wireless terminal may, and sometimes does, stare at the pseudo-random time shift while searching for other beacon signals to facilitate the beacon monitoring interval of the 苴 itself and other wireless terminal beacon transmission intervals. Schematic 2900 of FIG. 29 illustrates an exemplary synchronization sequence between two wireless terminals based on a beacon signal φ number in accordance with an exemplary embodiment. Figure 2902 illustrates the wireless terminal! The timing structure information, and the schema includes information about the timing structure of the wireless terminal 2. After the wireless terminal has synchronized in time (e.g., based on detecting a wireless feast 2 from the wireless terminal's beacon signal), Figure 29A may correspond to Figure 28. Figure 29〇2 includes the wireless terminal machine 1 彳 mark transmission interval 2906 'wireless terminal i beacon reception interval 2908, wireless terminal machine 丨 user data Ding / ^ interval" cut and stomach edge interval 2912 ° Equation 2904 includes wireless terminal 2 beacon transmission interval 2914, wireless terminal 2 beacon reception interval 2916, wireless terminal 2 uses 15ll33.doc -65-201112684 data TX/RX interval 2918 and sleeper 2 silence interval 292 It should be observed that the wireless terminal 2 has adjusted its timing such that when it transmits a beacon signal burst during the WT 2 beacon transmission interval 2914, the WT i will receive the beacon signal bundle during its beacon reception interval 2908. It should also be observed that there is an overlap 2922 of the user data TX/RX area available for user data transmission. This method maintains the same basic timing structure for different wireless terminals and uses wireless terminal timing. Scheduling the timing shift of the decision Figure 3000 illustrates an exemplary synchronization timing between two wireless terminals based on a beacon_signal in accordance with another exemplary embodiment. Figure 3〇〇2 includes turn off The timing structure information of the wireless terminal device 1 and the schema 3〇〇4 includes information about the timing structure of the wireless terminal device 2. The wireless terminal device has been synchronized in timing (for example, based on detecting a beacon signal from the wireless terminal device) After the wireless terminal 2), FIG. 3A can correspond to FIG. 28. The figure 3〇〇2 includes the wireless terminal 1 beacon receiving interval 3〇〇6, and the wireless terminal i beacon transmission interval 3 0 0 8. Wireless terminal computer 1 #标 receiving time interval 3 〇1 〇, wireless terminal 1 User data TX/RX interval 3012 and WT 1 silence interval 3014. Graphic Lu 3 0 0 4 including wireless terminal 4 2彳Lübiao receiving interval 3 〇16, wireless terminal 2 marking transmission interval 301 8. Wireless terminal 2 beacon receiving time interval 3〇2〇, wireless terminal 2 user data tx/rx interval 3022 and wt 2 The silence interval is 3 024. It should be observed that the wireless terminal 2 has adjusted its timing such that when it transmits a beacon signal burst during the WT 2 beacon transmission interval 3018, the WT 1 will receive during its beacon reception interval 3010. Beacon signal bursts. It can also be observed that in this embodiment, in the wireless terminal After the timing adjustment of 2, there is no 15J133.doc • 66- 201112684 . : 2 machine 2 receives the signal transmitted by the wireless terminal 1 ..., the line terminal 1 beacon transmission interval 3008 during its beacon reception interval 3〇16 It should also be observed that there is an overlap part 3026 of the user data έ X area that can be used for user data transmission. This method is used to hold the same basic timing structure for different wireless terminals. Synchronization is achieved by the timing shift of the place/疋, and both wireless terminals are able to receive the beacon signal bursts on the basis of the advancement after the synchronization. Diagram 3100 of Q illustrates an exemplary synchronization sequence between two wireless terminals based on beacons 5 in accordance with another illustrative embodiment. The figure 3 i 02 includes information on the timing structure of the wireless terminal unit, and the drawing 3104 includes the timing structure information of the i:... line and the winter machine 2. After the wireless terminal has been sequenced 7 (e.g., based on the wireless terminal 2 detected from the wireless terminal's beacon signal), Figure 31A may correspond to Figure 28. Figure 31〇2 includes the wireless terminal 11⁄2 standard transmission interval 31〇6, the wireless terminal machine beacon reception time interval 3 108, the wireless terminal 1 user data TX/RX time interval 3 11 〇 and the WT 1 silence interval 3112. Figure 31〇4 includes a wireless terminal set 2 beacon transmission interval 3114, a wireless terminal set 2 beacon reception time interval 3116, a wireless terminal set 2 user profile TX/RX interval 3118, and a WT 2 silence interval 312. It should be noted that the wireless terminal 2 has adjusted its timing such that when it transmits a beacon signal burst during the wt 2 beacon transmission time interval 3116, the WT 1 will receive the beacon signal during its beacon reception interval 3 108 Congfa. It can also be observed that in this embodiment, after the timing adjustment of the wireless terminal 2, the wireless terminal 2 receives the beacon transmission interval 3 of the wireless terminal 1 at the wireless terminal 1 during its beacon reception interval 3 114. The beacons transmitted during the period are bursts. It should also be observed 151133.doc -67- 201112684 observation, user data TX / RX time interval 3110, 3118 overlap. This method uses different timing structures for two wireless terminals (e.g., wireless terminals that perform the first detection of another beacon and adjust its internal timing), for example, WT 2 uses the interval ordering of Figure 3 104. In some of these cases, after the wireless terminal 2 ends the communication session and enters the inactive state including the beacon signal transmission, the wireless terminal 2 proceeds to the ordered timing sequence represented by the pattern 31〇2. . Figure 32 illustrates an exemplary special network formed in the communication area 32A between the first, second, and third wireless terminals (3201, 3202, and 3203, respectively). Each of the wireless terminals 3201, 3202, 3203 supports a first communication protocol, e.g., the lower bits of the device capability information that can be used by the device. In some embodiments, the '__ communication protocol is a beacon signal agreement. In one embodiment, the wireless terminals 32〇1, 32〇2, 32〇3 transmit signals 322 using various forms of dashed lines to convey device capability 〇fL. In some implementations, the first protocol unused signal Phase to pass the money. This allows for the implementation of the first protocol to be relatively simple to implement, and therefore low cost' because it can be implemented using energy debt measurement techniques in conjunction with frequency and/or time detection that can be used to recover the transmitted information. Therefore, due to the simple nature of the modules required to restore the information transmitted using the first agreement, there may be little or no additional cost to the hardware and/or software support of the first communication agreement (and not including the first communication protocol). Compared to supported devices, it is incorporated into many types of communication attacks. In addition, the device including the transmitter can be implemented by means of a (four) communication protocol and an additional cost. Therefore, the first communication protocol (for example, a protocol based on a beacon signal) is included in a plurality of devices having a capability of the month (for example, CDMA 'OFDM, GSM, and 苴151133.doc 201112684). Support is relatively inexpensive. While all of the devices in the region 3200 are shown, the signals may not reach all of the devices in the region, but it is useful for neighboring devices to determine which protocol, which protocols, and/or device configuration to apply to the communication destination.

+在圖32之例示性系統中,該等裝置各自支援第一通信協 定但亦支援至少一額外協定。假設第—協定之低位元速率 性質,預期在各種實施例中’其將非用於交換使用者資料 (例如,文字、影像資料及/或音訊資料)。因此,在圖32中 斤示之系.统中’除第-㉟定之外,每_無線終端機支援至 少-額外協定’例如’適合於交換使用者資料之較高位元 速率協定。在一些實施例中,除第一協定之外,第一無線 終端機3201支援CDMA協定。在一個此實施例中,第二無 線終端機支援第一協定及第二(例如,gsm或〇fdm)協 定。在同-實施例中’除第一通信協定之外,第三無線終 端機支援多個實體層協定,例如,CDMA及〇隨。如下 文所討論,m施射,支援多種通信協定之無線終 端機可與第—及第二裝置建立通信鏈路且接著作為通信中 間物而操作。雖妙;第=诵位含々士立 ,,、、弟一 仏即點充當通信中間物,但是第 -及第二通信節點可經由較高層級通信協定(例如,諸如 由第-、第二及第三裝置中之每—者支援的網路層協定之 弟四協來交換❹者資料。因此,舉例而t,第-益 線終端機可使用c麵信號321〇與第三無線終端機32〇3通 I5ll33.doc ,69· 201112684 信,該CDMA信號321〇用以傳遞卩封包,其中該等卩封包 經由OFDM信號3212來經由第三無線終端機32〇3而中繼。 以此方式,不支援同一實體層或交換使用者資料所需之其 他較低層協定的襞置可經由具有多協定支援之合適中間物 的幫助而互動,其中涉及對基礎架構基地台的需要。 雖“、、:在圖3 2中所示之特用網路可使用複數個行動無線終 端機(例如,攜帶型掌上型通信裝置)來實施,但是亦可使 用基地台替代行動無線通信終端機3201、3203、3202中之 一者來實施該系統。 如下文所討論,除使用自(例如)信標信號獲得之裝置能 力貧訊來判定適當肢、協定堆疊或裝置組態之外,在— 些實鈿例中,一或多個無線終端機3201、3203、3202能夠 在合作操作模式與非合作操作模式之間選擇。在一些實施 例中’基於自另-裝置(例如,#出決定之無線終端機斑 之不進行通信會期的裝置)接收之信號來進行合作操作模 式與非合作操作模式之間的選擇。將參看下文之各圖來討 論相關於合作操作模式與非合作操作模式之間的切換之各 種特徵。 圖33說明根據本發明操作第一通信裝置之例示性方法 测的步驟。第-通信裝置可為圖32中所示之特用網路的 無線終端機中之一者。 方法5000開始於步驟5〇〇2且進行至步驟5〇〇4,在步驟 5〇〇4中,第一通信裝置監視來自其他裝置之廣播信號(例 如’ H信號),該等信號係根據第—通信協定而傳輸 J51133.doc 201112684 的。操作自步驟5004進行至步驟5006。在步驟5〇〇6中第 一通信裝置透過空中自第二通信裝置接收至少一些裝置能 力資訊。可以信標信號之形式接收裝置能力資訊。操作自 步驟5006進行至步驟5〇〇8,步驟5〇〇8係與第二裝置建立通 信會期的步冑’自該第二裝置接收裝置資訊。裝置能力資 訊可包括由第二通信裝置支援的複數種通信協定。在—歧 情況下,裝置能力資訊指示由第二通信裝置支援之至少二 通信協定的複數種不同版本。 在步驟5008内,執行各種其他步驟,作為通信建立程序 之部分。在步驟5010中,第一通信裝置選擇將使用之第二 通信協定’例如,用於與第二通信裝置通信。或者,如將 在下文中關於其他圖而討論,可考慮第二裝置可能對第一 裝置之影響通信而進行選擇,在該情況下,並非為與第二 裝置通信之目的而是為在存在來自第二裝置之信號的情況 下有助於通信之目的來執行選擇步驟,該等信號可能干擾 第一裝置。在一些但未必所有實施例甲,第二通信協定使 用信號相位來傳遞資料(例如,使用者資料),而第一協定 不使用信號相位來傳遞資訊。 在一些實施例中,第二通信協定為GSM、cDMA及 OFDM協定中之-者。在各種實施例巾,第-協定為基於 k標仏號之協定。在一些但未必所有實施中,第一協定為 低位元速率協定,例如,域小於由第:通信協定支援之 最大位元速率的1/100之最大位元速率的協定。在一些實 施例中,第一協定為支援小於3〇〇位元/秒之最大位元速率 151133.doc 201112684 且在一些實施中支援小於100位元/秒之最大位元速率的基 於信標之信號協定。在此等實施之一些中,第二通信協定 支援大於1000位元/秒的傳輸位元速率。 該方法可涉及接收由第二通信裝置根據第二通信協定傳 輸之使用者資料符號。在一些此等實施例中,接收根據第 一通信協定傳遞之至少一些裝置能力資訊包括接收由該第 二通信裝置以一平均每信標符號傳輸功率位準傳輸之信標 符號’該平均每信標符號傳輸功率位準為(例如)在第一與 第二装置之間的通信會期期間第二裝置傳輸使用者資料符 號所用之平均每符號功率位準的至少1 〇〇倍。因此,在一 些實施例中,使用者信標符號可自第二通信裝置以一平均 每信標符號功率位準被接收,該平均每信標符號功率位準 平均為自傳遞使用纟資料之第二通信裝置接收的符號之平 均功率位準的至少100倍。 在-些實施例中,第一通信協定准許在給定符號傳輸時 間週期期間在小於可用於信標符號傳輸之載頻調之⑽( ㈣頻調上傳輸信標符號。在相同或其他實施例中,第一 L協疋准許在小於可傳輸使用者資料之傳輸時間週期之 1/100的時間週期期間傳輸信標符號。 在步驟5010之一實施你丨中,1止„ 社$ 例中如步驟5012所示,第一通信 :置支援之最高位元速率協定,接收 援。…“資訊指示該最高位元速率協定亦由第二裝置支 除選擇第 協定之外或作為步驟5G1G之協S選擇的 151133.doc -72. 201112684 替代,第一通信裝置選擇支援第二通信協定之裝置組態。 此可涉及在步驟5016中選擇將使用的協定堆疊’該協定堆 疊支援與第二通信協定組合而使用的至少一較低層級通信 協定。 在步驟5010及/或5014中進行選擇之後,裝置經組態以 使用選定之組態來操作。此可涉及使裝置使用選定之協定 堆疊的軟體及/或硬體操作。 雖然第一裝置可僅使用選定之協定堆疊且繼續建立與第 二通信裝置之較高層(例如,IP)通信會期,但是在一些實 施例中’使用第一通信協定可發生使用之協定及/或裝置 組態之協商。然而’此否定係可選的。因此,以虛線來展 示步驟5020、5022及5024,因為在許多實施例中未執行該 等步驟。 在步驟5020中,當使用時,第一通信裝置藉由傳輸一信 號(例如’包括一信標信號叢發之信標信號)來回應接收之 裝置能力資訊’以將建議之裝置組態傳遞至第二通信裝 置。此建議之組態可傳遞選定之第二通信協定、選定之第 一裝置組恕及/或可對應於第一裝置建議第二裝置使用之 特定協定堆疊之建議的裝置組態。 操作進行至在一些實施例中使用之步驟5〇22。在步驟 5022中,第一無線通信裝置監視對建議之裝置組態資訊的 回應。在一些但未必所有實施例中,此涉及監視由第二通 信裝置傳輸的信標符號。在回應於所傳輸之建議之裝置組 態貢訊而接收到建議不同於選定之組態之第〆裝置組態的 151133.doc -73- 201112684 回應的情況下,第—裝置將其組態自選定之組態改變為另 一組態。例如,回應於來自第二通信裝置之額外資訊或建 議之組態係不可接受的指示,此組態可為由第二通信裝置 建議之組態或由第一無線通信裝置選擇的另一組態。 操作自步驟5024進行至步驟5026(當執行該步驟時)。在 其他實施例中,操作可直接自步驟5〇18進行至步驟5〇26。 :步驟5026中’第—通信裝置自第二通信裝置接收使用者 資料及/或將使用者資料轉移至第二通信裝置,例如,作 為建立之龍會期的料。與在步驟觸巾執行之接收及/ 或傳輸使用者資料並行’第一通信裝置根據第一通信協定 傳輸信號以傳遞至少一些第一通信裝置能力資訊。傳輸之 信號可包括用以傳遞農置能力資訊之信標信號叢發。以此 方式,甚至當參與建立之通信會期時,第—裝置繼續廣播 其裝置能力資訊。 ,操作最終停止於步驟蕭,例如,#第—無線終端機斷 電時。應瞭解’根據第一通信協定之裝置能力資訊的傳輸 可(例如)根據預定傳輸排程而繼續發生,而不管通信會期 是正在進行還是已終止。 °' 圖Μ說明可用於圖32中所示之制網路中且可㈣圖^ 中所不之方法的無線終端機。 圖34為根據各種實施例的例示性無線終端機3_㈠ 如’行動節點)之圖式。例示性無線終端機34〇〇包括經E 匯流排3412耦接在一起的一接收器模組34〇2、一發射吳术 組_、-處理器则、使用者1/〇裝置34〇8及記㈣ J51I33.doc -74- 201112684 3410,各種元件在該匯流排3412上可互換資料及資訊。記 憶體34 1 〇包括常式34 14及資料/資訊34 1 6。處理器3406(例 如,CPU)執行常式3414且使用記憶體3410中之資料/資訊 3416以控制無線終端機3400的操作並實施方法。 接收窃模組3402(例如,接收器)耦接至接收天線34〇3, 無線終端機經由該接收天線3 4 〇 3自其他無線通信裝置接收 仏號。接收益模組3402使用第一通信協定透過空中自第二 通k裝置接收至少一些裝置能力資訊,該第一通信協定使 用信號頻率及時間中之至少一者來傳遞資訊,但不使用信 號相位。在一些實施例中,第一協定為基於信標信號之通 信協定。 發射器模組3404(例如,發射器)耦接至傳輸天線34〇5, 無線終端機經由該傳輸天線3405將信號傳輸至其他通信裝 置。傳輸之信號包括用以傳遞裝置能力資訊(例如,待傳 輸之裝置能力資訊3452)的信標信號(例如,產生之信標信 號3454) 〇 使用者I/O裝置3408包括(例如)麥克風、鍵盤、小鍵盤、 父換态、相機、顯示器、揚聲器等。使用者I/C)裝置 允§午無線終端機3400之使用者輸入資料/資訊、存取輸出 資料資訊並控制無線終端機34〇〇之至少一些功能。 常式3414包括一第二通信協定選擇模組3418、一裝置組 態模組3420、一使用者資料恢復模組3422、一信標符號偵 測杈組3424、一信標信號資訊恢復模組3426及一信標信號 產生板組3428 ^資料/資訊3416包括接收之裝置能力資訊 151133.doc •75· 201112684 3430、第一協定資訊(例如’基於信標信號之協定資 訊)3432、識別選定之第二通信協定之資訊3434、指示選 定之裝置組態的資訊3436、指示由第二裝置支援之通信協 定的資訊3438、GSM協定資訊3440、CDMA協定資訊3442 及OFDM協定資訊3444。資料/資訊3416亦包括偵測之信標 符號3448、信標符號能級偵測標準345〇、恢復之使用者資 料3446、待傳輸之裴置能力資訊、產生之信標信號3454及 信標信號資訊編碼/解碼資訊3456。 第二通信協定選擇模組3418基於接收之裝置能力資訊 3430選擇將在通信期間使用的第二通信協定3434,該第二 通信協定因下列至少一項而不同於第一通信協定:調變機 制、傳輸時序、編碼及支援的位元速率。在一些實施例 中’第二通信協定使用信號相位來傳遞使用者資料。在一 些實施例中’第二通信協定為GSM、CDMA及OFDM協定 中之一者。在各種實施例中,第一通信協定(例如,基於 信標之協定)為支援小於由第二通信協定支援之最大位元 速率的1/100之最大位元速率的通信協定。在一些實施例 中’接收之裝置能力資訊3430包括由第二裝置支援的複數 種通信協定。在一些實施例中,接收之裝置能力資訊指示 由第二通信裝置支援之至少一通信協定的複數種不同版 本。 裝置組態模組3420選擇支援第二通信協定之裝置組態, 該裝置組態選擇包括協定堆疊元素之選擇,該等協定堆疊 元素包括由該通信裝置結合該第二通信協定使用之至少一 151133.doc •76· 201112684 較低層級通信協定。選定之裝置組態3436為模組3420的輸 出。 使用者資料恢復模組3422自使用第二通信協定傳遞之通 信信號來恢復使用者資料。恢復之使用者資料3446為模組 3422的輸出。 信標符號偵測模組3424偵測接收之信號中的信標符號, 該信標符號偵測模組3424使用接收之信號能量來區別信標 符號與使用者資料符號’該等信標符號係以平均與自信標 符號相同之裝置接收之使用者資料符號相差至少1〇 dB的 功率來接收的。信標符號偵測模組3424使用信標符號能級 賴測標準資訊3450且輸出偵測之信標符號之資訊3448。 仏標彳§號資訊恢復模組3426使用包括偵測之信標符號之 貢訊3448及信標信號資訊編碼/解碼資訊3456之資料/資訊 3416以恢復由識別之接收之信標符號的時間及頻率中之至 少一者傳遞的資訊。 信標信號產生模組3428產生傳遞資訊(例如,裝置能力 資汛3452)之信標信號3454,該產生之信標信號包括至少 一问功率信標符號及複數個故意的空值。在一些實施例 中,k標信號中之至少一者為包括至少一信標信號叢發的 OFDM信標信號,該信標信號叢發包括至少一信標符號。 圖3 9說明可用於圖32中所示之特用網路中且可實施圖 中所示之方法的無線終端機。 圖39為根據各種貫施例的例示性無線終端機4丨〇〇(例 如,仃動節點)之圖式。例示性無線終端機41〇〇包括經由 151133.doc -77- 201112684 匯流排4112_接在一起的一接收器模組4丨〇2、一發射器模 組41〇4、一處理器41〇6、使用者1/〇裝置41〇8及記憶體 4110,各種兀件在該匯流排4112上可互換資料及資訊。記 憶體411〇包括常式4114及資料/資訊4116。處理器41〇6(例 如’ CPU)執行常式4 11 4且使用記憶體4 11 〇中之資料/資訊 4116以控制無線終端機41〇〇的操作並實施方法。 接收器模組4102(例如,接收器)耦接至接收天線41〇3, 無線終端機經由該接收天線4丨〇 3自其他無線通信裝置接收 信號。接收器模組4102使用第一通信協定自第二行動通信 裝置接收包括至少一些裝置能力資訊的信號,第—通信協 定使用信標信號叢發來傳遞裝置能力資訊。接收之第二裝 置k標彳§號資訊4118包括對應於此接收之信號的資訊。 發射盗模組4104(例如,發射器)耦接至傳輸天線4丨〇5, 無線終端機經由該傳輸天線41 05將信號傳輸至其他通信裝 置。傳輸之信號包括用以傳遞裝置能力資訊(例如,待傳 輸之裝置能力資訊3452)的信標信號(例如,產生之信標信 號3454)。發射器模組4104根據選定之第二協定將信號傳 輸至第二行動通信裝置。 , 使用者I/O裝置4108包括(例如)麥克風、鍵盤、小鍵盤、 交換器、相機、顯示器 '揚聲器等。使用者1/〇裝置41〇8 允許無線終端機4100之使用者輸入資料/資訊、存取輸出 資料資訊並控制無線終端機4100之至少一些功能。 常式4114包括一裝置組態選擇模組4118、一組態控制模 組4120、一第二通信協定處理模組4122及一裝置能力資訊 I51133.doc -78- 201112684 恢復模組4124。資料/資訊4116包括接收之第二裝置信標 尨號資訊4118、選定之裝置組態資訊4124、選定之通彳古協 定識別資訊4126、待處理之接收信號4128、處理之信號 413 0、信標信號傳輸協定資訊4丨3 2、複數個值集合及對應 的裝置能力資訊集合(值1 4134及對應的襞置能力資訊集合+ In the exemplary system of Figure 32, the devices each support a first communication protocol but also support at least one additional protocol. It is assumed that the low bit rate nature of the first protocol is expected to be used in various embodiments to exchange user data (e.g., text, video material, and/or audio material). Therefore, in Fig. 32, in addition to the -35th, each _wireless terminal supports at least - an additional agreement, such as 'a higher bit rate agreement suitable for exchanging user data. In some embodiments, in addition to the first agreement, the first wireless terminal 3201 supports the CDMA protocol. In one such embodiment, the second wireless terminal supports the first agreement and the second (e.g., gsm or 〇fdm) agreement. In the same embodiment, in addition to the first communication protocol, the third wireless terminal supports multiple physical layer protocols, such as CDMA and CDMA. As discussed below, a wireless terminal that supports multiple communication protocols can establish a communication link with the first and second devices and operate as a communication intermediate. Although the first = 诵 々 々 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , And the third party of the network device protocol supported by each of the third devices exchanges the data of the latter. Therefore, for example, the first-line terminal can use the c-plane signal 321〇 and the third wireless terminal. 32〇3通 I5ll33.doc, 69·201112684, the CDMA signal 321〇 is used to transmit a packet, wherein the packet is relayed via the OFDM signal 3212 via the third wireless terminal 32〇3. The placement of other lower-level agreements that do not support the same physical layer or exchange user data can be interacted with by the help of appropriate intermediates with multi-agree support, which involves the need for an infrastructure base station. The special network shown in Figure 32 can be implemented using a plurality of mobile wireless terminals (e.g., portable handheld communication devices), but base station can also be used instead of mobile wireless communication terminals 3201, 3203. One of the 3202 Applying the system. As discussed below, in addition to using device capability information obtained from, for example, beacon signals to determine proper limbs, protocol stacks, or device configurations, in one or more instances, one or more The wireless terminals 3201, 3203, 3202 can be selected between a cooperative mode of operation and a non-cooperative mode of operation. In some embodiments, 'based on the other device (eg, the wireless terminal spot determined by the # is not communicated) The device receives a signal to select between a cooperative mode of operation and a non-cooperative mode of operation. Various features relating to switching between a cooperative mode of operation and a non-cooperative mode of operation will be discussed with reference to the following figures. The steps of the exemplary method of operating the first communication device in accordance with the present invention. The first communication device can be one of the wireless terminals of the particular network shown in Figure 32. The method 5000 begins in step 5〇〇2 And proceeding to step 5〇〇4, in step 5〇〇4, the first communication device monitors broadcast signals (eg, 'H signals) from other devices, and the signals are according to the first communication protocol. The operation of J51133.doc 201112684 is performed. The operation proceeds from step 5004 to step 5006. In step 5〇〇6, the first communication device receives at least some device capability information from the second communication device in the air. The signal can be received in the form of a beacon signal. Device capability information. Operation proceeds from step 5006 to step 5〇〇8, and step 5〇〇8 is to establish a communication session with the second device to receive device information from the second device. The device capability information may include A plurality of communication protocols supported by the second communication device. In the case of a difference, the device capability information indicates a plurality of different versions of at least two communication protocols supported by the second communication device. In step 5008, various other steps are performed as communication establishment. Part of the program. In step 5010, the first communication device selects a second communication protocol to be used', e.g., for communicating with the second communication device. Alternatively, as will be discussed below with respect to other figures, it may be considered that the second device may select for the communication of the first device, in which case it is not for the purpose of communicating with the second device but for the presence of The signal of the two devices facilitates the purpose of communication to perform the selection step, which may interfere with the first device. In some but not necessarily all embodiments A, the second communication protocol uses signal phase to convey data (e.g., user data), while the first protocol does not use signal phase to convey information. In some embodiments, the second communication protocol is one of the GSM, cDMA, and OFDM protocols. In various embodiments, the first-agreement is an agreement based on the k-mark. In some but not necessarily all implementations, the first protocol is a low bit rate protocol, e.g., a domain that is less than the maximum bit rate of 1/100 of the maximum bit rate supported by the:communication protocol. In some embodiments, the first agreement is a beacon-based support that supports a maximum bit rate of less than 3 bits per second 151133.doc 201112684 and in some implementations supports a maximum bit rate of less than 100 bits per second. Signal agreement. In some of these implementations, the second communication protocol supports a transmission bit rate greater than 1000 bits per second. The method can involve receiving a user profile symbol transmitted by the second communication device in accordance with the second communication protocol. In some such embodiments, receiving at least some of the device capability information communicated according to the first communication protocol includes receiving a beacon symbol transmitted by the second communication device at an average per-beacon symbol transmission power level. The symbol transmission power level is, for example, at least 1 〇〇 times the average per-symbol power level used by the second device to transmit the user data symbols during the communication session between the first and second devices. Therefore, in some embodiments, the user beacon symbol can be received from the second communication device at an average per-beacon symbol power level, the average per-beacon symbol power level average being the first self-transferred data. The communication device receives at least 100 times the average power level of the symbols. In some embodiments, the first communication protocol permits transmission of beacon symbols over a given symbol transmission time period that is less than (10) ((4) tones of carrier frequency modulation available for beacon symbol transmission. In the same or other embodiments The first L protocol permits transmission of the beacon symbol during a time period less than 1/100 of the transmission time period during which the user data can be transmitted. In one of the steps 5010, you execute one of the following: Step 5012, the first communication: the highest bit rate agreement of the support, receiving the aid.... "The information indicates that the highest bit rate agreement is also removed by the second device to select the agreement or as the association of the step 5G1G. 151133.doc -72. 201112684 Alternatively, the first communication device selects a device configuration that supports the second communication protocol. This may involve selecting the protocol stack to be used in step 5016 'the protocol stack support and the second communication protocol combination At least one lower level communication protocol is used. After selection in steps 5010 and/or 5014, the device is configured to operate using the selected configuration. This may involve using the device for selection. Software and/or hardware operation of the agreed stack. Although the first device may only use the selected protocol stack and continue to establish a higher layer (e.g., IP) communication session with the second communication device, in some embodiments ' Negotiation of the protocol and/or device configuration used may occur using the first communication protocol. However, this negation is optional. Thus, steps 5020, 5022, and 5024 are shown in dashed lines because this is not performed in many embodiments. In step 5020, when in use, the first communication device responds to the received device capability information by transmitting a signal (eg, 'a beacon signal including a beacon signal burst') to suggest the device group The state is communicated to the second communication device. The proposed configuration may communicate the selected second communication protocol, the selected first device group, and/or may correspond to the recommendation of the first device to recommend the specific protocol stack used by the second device. Device configuration. Operation proceeds to step 5〇22, which is used in some embodiments. In step 5022, the first wireless communication device monitors responses to suggested device configuration information. In some but not necessarily all embodiments, this involves monitoring the beacon symbols transmitted by the second communication device. The configuration received in response to the transmitted device configuration receives a recommendation different from the selected configuration. In the case of a device configuration, 151133.doc -73- 201112684 In response, the first device changes its configuration from the selected configuration to another configuration. For example, in response to additional information or advice from the second communication device The configuration is an unacceptable indication that the configuration may be a configuration suggested by the second communication device or another configuration selected by the first wireless communication device. Operation proceeds from step 5024 to step 5026 (when the step is performed) In other embodiments, the operation can proceed directly from step 5〇18 to step 5〇26. In step 5026, the 'the first communication device receives the user data from the second communication device and/or transfers the user data to the second communication device, for example, as a material for the establishment of the dragon session. In parallel with receiving and/or transmitting user data performed at the step of the towel, the first communication device transmits a signal in accordance with the first communication protocol to communicate at least some of the first communication device capability information. The transmitted signal may include a beacon signal burst to communicate the farm capacity information. In this way, even when participating in the established communication session, the first device continues to broadcast its device capability information. The operation finally stops at step Xiao, for example, when the #第 wireless terminal is powered off. It should be appreciated that the transmission of device capability information in accordance with the first communication protocol may continue to occur, for example, according to a predetermined transmission schedule, regardless of whether the communication session is ongoing or terminated. The figure shows a wireless terminal that can be used in the network shown in Fig. 32 and which can be used in the method of (4). Figure 34 is a drawing of an exemplary wireless terminal set 3 - (e) such as a 'action node', in accordance with various embodiments. The exemplary wireless terminal device 34 includes a receiver module 34 〇 2 coupled via an E bus bar 3412, a transmitting gang group _, a processor, and a user 1/〇 device 34 〇 8 and (4) J51I33.doc -74- 201112684 3410, various components are interchangeable with information and information on the busbar 3412. Memory 34 1 常 includes routine 34 14 and information/information 34 1 6. Processor 3406 (e.g., CPU) executes routine 3414 and uses data/information 3416 in memory 3410 to control the operation of wireless terminal 3400 and implement the method. The receiving module 3402 (e.g., the receiver) is coupled to the receiving antenna 34〇3, and the wireless terminal receives an apostrophe from the other wireless communication device via the receiving antenna 3 4 〇 3 . The receiving benefit module 3402 receives at least some device capability information over the air from the second pass device using the first communication protocol, the first communication protocol transmitting information using at least one of the signal frequency and time, but not using the signal phase. In some embodiments, the first agreement is a beacon signal based communication protocol. A transmitter module 3404 (e.g., a transmitter) is coupled to the transmit antenna 34A5 via which the wireless terminal transmits signals to other communication devices. The transmitted signal includes a beacon signal (eg, generated beacon signal 3454) for transmitting device capability information (eg, device capability information 3452 to be transmitted). User I/O device 3408 includes, for example, a microphone, a keyboard. , keypad, parent transition, camera, monitor, speaker, etc. The user I/C) device allows the user of the wireless terminal 3400 to input data/information, access the output data information, and control at least some functions of the wireless terminal unit 34. The routine 3414 includes a second communication protocol selection module 3418, a device configuration module 3420, a user data recovery module 3422, a beacon symbol detection group 3424, and a beacon signal information recovery module 3426. And a beacon signal generating board group 3428 ^ data / information 3416 includes the received device capability information 151133.doc • 75 · 201112684 3430, the first agreement information (such as 'based on beacon signal agreement information) 3432, identify the selected The second communication protocol information 3434, the information 3436 indicating the selected device configuration, the information 3438 indicating the communication protocol supported by the second device, the GSM protocol information 3440, the CDMA protocol information 3442, and the OFDM protocol information 3444. The data/information 3416 also includes the detected beacon symbol 3448, the beacon symbol level detection standard 345, the restored user data 3446, the device capability information to be transmitted, the generated beacon signal 3454, and the beacon signal. Information encoding/decoding information 3456. The second communication protocol selection module 3418 selects a second communication protocol 3434 to be used during communication based on the received device capability information 3430, the second communication protocol being different from the first communication protocol by at least one of: a modulation mechanism, Transmit timing, encoding, and supported bit rate. In some embodiments the 'second communication protocol uses the signal phase to convey user data. In some embodiments, the second communication protocol is one of the GSM, CDMA, and OFDM protocols. In various embodiments, the first communication protocol (e.g., a beacon-based protocol) is a communication protocol that supports a maximum bit rate that is less than 1/100 of the maximum bit rate supported by the second communication protocol. In some embodiments, the received device capability information 3430 includes a plurality of communication protocols supported by the second device. In some embodiments, the received device capability information indicates a plurality of different versions of at least one communication protocol supported by the second communication device. The device configuration module 3420 selects a device configuration that supports a second communication protocol, the device configuration selection including a selection of protocol stack elements including at least one 151133 used by the communication device in conjunction with the second communication protocol .doc •76· 201112684 Lower level communication protocol. The selected device configuration 3436 is the output of the module 3420. The user data recovery module 3422 recovers the user profile from the communication signal transmitted using the second communication protocol. The restored user profile 3446 is the output of the module 3422. The beacon symbol detection module 3424 detects the beacon symbol in the received signal, and the beacon symbol detection module 3424 uses the received signal energy to distinguish the beacon symbol from the user data symbol 'the beacon symbol system The user data symbols received by the device with the same average and confidence symbol are received by a power difference of at least 1 dB. The beacon symbol detection module 3424 uses the beacon symbol level to measure the standard information 3450 and outputs the detected beacon symbol information 3448. The information recovery module 3426 uses the information/information 3416 including the detected beacon symbol and the beacon signal information encoding/decoding information 3456 to recover the time of the recognized beacon symbol and Information passed by at least one of the frequencies. The beacon signal generation module 3428 generates a beacon signal 3454 that conveys information (e.g., device capability 3452) that includes at least one of the power beacon symbols and a plurality of intentional null values. In some embodiments, at least one of the k-signal signals is an OFDM beacon signal comprising at least one beacon signal burst, the beacon signal burst comprising at least one beacon symbol. Figure 39 illustrates a wireless terminal that can be used in the special network shown in Figure 32 and that implements the method shown in the figures. Figure 39 is a diagram of an exemplary wireless terminal unit 4 (e.g., a swivel node) in accordance with various embodiments. The exemplary wireless terminal unit 41 includes a receiver module 4丨〇2, a transmitter module 41〇4, and a processor 41〇6 connected via a 151133.doc-77-201112684 bus bar 4112_. The user 1/〇 device 41〇8 and the memory 4110 can exchange data and information on the bus bar 4112. The memory 411 includes the routine 4114 and the information/information 4116. The processor 41〇6 (e.g., the 'CPU) executes the routine 4 11 4 and uses the data/information 4116 in the memory 4 11 to control the operation of the wireless terminal unit 41 and implement the method. A receiver module 4102 (e.g., a receiver) is coupled to the receive antenna 41〇3 via which the wireless terminal receives signals from other wireless communication devices. The receiver module 4102 receives signals including at least some device capability information from the second mobile communication device using the first communication protocol, the first communication protocol transmitting the device capability information using the beacon signal bursts. The received second device k mark § § information 4118 includes information corresponding to the received signal. A launch module 4104 (e.g., a transmitter) is coupled to the transmit antenna 4丨〇5, via which the wireless terminal transmits signals to other communication devices. The transmitted signal includes a beacon signal (e.g., generated beacon signal 3454) for communicating device capability information (e.g., device capability information 3452 to be transmitted). Transmitter module 4104 transmits the signal to the second mobile communication device in accordance with the selected second protocol. User I/O device 4108 includes, for example, a microphone, a keyboard, a keypad, a switch, a camera, a display 'speaker, and the like. User 1/〇 device 41〇8 allows the user of wireless terminal device 4100 to enter data/information, access output data information, and control at least some functions of wireless terminal device 4100. The routine 4114 includes a device configuration selection module 4118, a configuration control module 4120, a second communication protocol processing module 4122, and a device capability information I51133.doc -78-201112684 recovery module 4124. The data/information 4116 includes the received second device beacon nickname information 4118, the selected device configuration information 4124, the selected overnight protocol identification information 4126, the pending received signal 4128, the processed signal 413 0, the beacon Signal transmission protocol information 4丨3 2, a plurality of value sets and corresponding device capability information sets (value 1 4134 and corresponding set of capability information sets)

4136、……、值N 4138及對應的裝置能力資訊集合4140)。 資料/資訊4116亦包括第二裝置能力資訊4丨2〇,例如,傳 遞之值及恢復之第二裝置能力資訊4122。資料/資訊4ii6 亦包括對應於替代之第二通信協定之協定資訊4142(類型丄 OFDM協定資訊4144、類型n 〇FDM協定資訊4146、類型丄 CDMA資訊4148、類型N CDMA協定資訊415〇、類型ι GSM協定資訊4152、類型N GSM^定資訊4154)。 裝置組態選擇模組4118基於接收之裝置能力資訊在複數 個可能之|置組態之間選擇將在與第二通信裝置通信時由 無線終端機4100使用之第一行動通信裝置組態,第二通信 協定由第-行動通信裝置組態選擇,t亥第二通信協定不同 於第一通信協定。選定之裝置組態資訊4124及選定之第二 通信協定識別資訊4126作為選擇模組4118的輸出。 組態控制模組4120组態無線終端機以根據由選定之裝置 組態資訊4124識別之選定的裝置組態來操作。第二通^協 定處理模組4122處理根㈣:通信協定自第二通信裝置傳 遞至無線終端機之接收之信號。第二通信協定處理模組 4122根據由資訊4126識別之協定而處理純之信號*⑶以 獲得處理之信號4130 由選定之第二通信協定識別資訊 151133.doc -79. 201112684 4126識別的協定為包括於對應於替代之第二龄之協定資 訊4142中的複數個協定中之一者。 裝置能力資訊恢復模組4〗2 4藉由判定對應於自接收之信 標信號獲得之值的|置能力資訊之集合來恢復傳遞之裝置 能力資tfl。信標信號傳送一對應於一裝置能力資訊集合的 值。自接收之第二裝置信標信號資訊4丨丨8,獲得指示第二 裝置能力的傳遞之值4120。裝置資訊恢復模組4124將該值 用於裝置能力映射資訊((4134、4136)、......、(4138、 4140))以恢復第一裝置能力資訊4 122。舉例而言,若由作 標信號傳送之值為值N 4138,則恢復之第二裝置能力資訊 4122為資訊4140。 在此例示性實施例中,第一通信協定為基於信標之協 定,且儲存之信標傳信協定資訊4132用於根據此協定來傳 k ’例如’包括使用此協定的產生及恢復。在一些實施例 中’第一通信協定未使用信號相位來傳遞資訊。舉例而 言’由信標信號傳遞之值由信標符號之載頻調及傳輸信標 載頻調的時間來傳遞。在各種實施例中,第一通信協定支 援比第二通信協定低的最大資料傳輸率。 包含圖35A-35B之組合的圖35說明操作支援合作操作模 式及非合作操作模式之第一通信裝置以及模式之間的切換 之例示性方法6000。方法6000開始於步驟6002且進行至可 並行發生之步驟6005及6003。在步驟6005中,第一通信裝 置自另一通信裝置(例如’第二通信裝置)接收信號。操作 自步驟6005進行至步驟6006,其中偵測接收之信號。在步 151133.doc 201112684 驟6006中,第一通信裝置判定接收之信號是否來自未與第 通L裝置進行通信會期的通信裝置,例如,來自可對第 一通信裝置造成干擾或經受來自第一通信裝置之干擾而未 必參與到與第一裝置之通信會期的裝置。若自其接收信號 之裝置未與第一通信裝置進行通信會期,則操作進行至步 驟6008,在步驟6008中,第一裝置自接收之信號判定自其 接收信號之裝置相對於第一通信裝置以合作還是非合作模 式來操作。4136, ..., value N 4138 and corresponding device capability information set 4140). The data/information 4116 also includes second device capability information, for example, the value of the delivery and the recovered second device capability information 4122. The information/information 4ii6 also includes agreement information 4142 corresponding to the alternative second communication protocol (type OFDM agreement information 4144, type n 〇 FDM agreement information 4146, type 丄 CDMA information 4148, type N CDMA protocol information 415 〇, type ι GSM agreement information 4152, type N GSM ^ information 4154). The device configuration selection module 4118 selects, between the plurality of possible configurations based on the received device capability information, a first mobile communication device configuration to be used by the wireless terminal device 4100 when communicating with the second communication device, The second communication protocol is selected by the first mobile communication device configuration, and the second communication protocol is different from the first communication protocol. The selected device configuration information 4124 and the selected second communication protocol identification information 4126 are selected as outputs of the selection module 4118. The configuration control module 4120 configures the wireless terminal to operate in accordance with the selected device configuration identified by the selected device configuration information 4124. The second communication processing module 4122 processes the root (four): the communication protocol transmits the received signal from the second communication device to the wireless terminal. The second communication protocol processing module 4122 processes the pure signal*(3) according to the protocol identified by the information 4126 to obtain the processed signal 4130. The agreement identified by the selected second communication protocol identification information 151133.doc-79. 201112684 4126 includes One of a plurality of agreements in the agreement information 4142 corresponding to the second age of the replacement. The device capability information recovery module 4 224 restores the transmitted device capability tfl by determining a set of capabilities information corresponding to the value obtained from the received beacon signal. The beacon signal transmits a value corresponding to a set of device capability information. From the received second device beacon signal information 4丨丨8, a value 4120 indicating the transfer of the second device capability is obtained. The device information recovery module 4124 uses the value for the device capability mapping information ((4134, 4136), ..., (4138, 4140)) to restore the first device capability information 4 122. For example, if the value transmitted by the calibration signal is the value N 4138, the restored second device capability information 4122 is the information 4140. In this exemplary embodiment, the first communication protocol is a beacon-based agreement, and the stored beacon messaging protocol information 4132 is used to communicate k', e.g., including the use of the generation and recovery of the protocol. In some embodiments, the first communication protocol does not use signal phase to convey information. For example, the value transmitted by the beacon signal is transmitted by the carrier frequency of the beacon symbol and the time at which the beacon is transmitted. In various embodiments, the first communication protocol supports a lower maximum data transfer rate than the second communication protocol. Figure 35, which includes the combination of Figures 35A-35B, illustrates an exemplary method 6000 of operating a cooperative mode of operation and a first communication device in a non-cooperative mode of operation and switching between modes. The method 6000 begins at step 6002 and proceeds to steps 6005 and 6003 which may occur in parallel. In step 6005, the first communication device receives a signal from another communication device (e.g., the 'second communication device'). Operation proceeds from step 6005 to step 6006, where the received signal is detected. In step 151133.doc 201112684, step 6006, the first communication device determines whether the received signal is from a communication device that is not in communication with the first L device, for example, from interference with the first communication device or from the first The interference of the communication device does not necessarily participate in the communication period with the first device. If the device from which the signal is received does not communicate with the first communication device, the operation proceeds to step 6008, in which the first device determines, from the received signal, the device from which the signal was received relative to the first communication device. Operate in a cooperative or non-cooperative mode.

步驟6008可視自接收之信號獲得何種資訊而以複數種方 式來實施。子步驟6〇1〇、6〇12及6〇14 合作操作模式作用的替代方式且可視接收 用。在—些實施例中,僅支援子步驟6〇1〇、6〇12、6〇14中 之一者或一些。 當使用子步驟6008時,判定6010,第一裝置自在接收之 信號中之裝置資訊判定傳輸信號之裝置是否處於蜂巢式操 作模式或㈣模心蜂巢式操作模式可解釋為指示合作模 式,而特用模式可能且在一些情況下解釋為指示非合作操 作核式1而,在其他實施例中,特用操作未必暗示非合 模式。在子步驟6〇12中,傳輸裝置所對應之通信網 糸心料其㈣於第-驗Μ是否以合作還是非合 =::。若傳輸接收之信號的裝置對應於與第一裳置 _2路’則判定其以合作方式操作。當使用子步 判定二判定對應於另一網路’自其接收信號之裝置經 為以非合作方式操[當服務提供者及/或使用麵 151133.doc •81· 201112684 組資訊用以判定裝置是否以合作還是非合作模式操作時, 使用子步驟6014。在步驟6014中,第一通信裝置判定傳輸 接收之彳s號之裝置對應於與第一通信裝置相同還是不同的 服務提供者或使用者群組。此可藉由比較指示第一裝置之 服務提供者及/或使用者群組的儲存之服務提供者及/或使 用者群組資訊與對應於傳輸接收之信號之裝置的判定之服 務提供者或使用者群組來完成。若傳輸接收之信號之裝置 對應於同一服務提供者或使用者群組,則判定其以合作模 式操作。否則’判定其以非合作模式操作。判定發送信號 之裝置的其他方式包括比較傳輸裝置服務提供者或使用者 群,,且與已知以非合作方式操作之一清單之服務提供者及/ 或使用者群組1於—些實施例中的判定傳輸接收之信號 之裝置的又一方式為判定信號的類型及/或用以傳遞,號 之協定,且接著自此資訊判定裝置是否使用指示非合作摔 作模式之信號或協I舉例而言,偵測到對應於不支援功 率控制及/或干擾控制傳信之技術或通信協定的信號可被 視為偵測到非合作操作模式。 操作自步驟_8進行至步驟嶋,其中(例如)基於步驟 刪中關於另-裝置之操作模式進行的判定 通信裝置之操作模式。*& 乐 諸如接收之信號的強/::’亦可考慮其他因素, 如由自其接收信號之;^接用收的之信號的持續時間及/或諸 ^ ^ Α . π . '"置使用的通信協定之其他因素等, 於判定或估計歸因於另-通信裝置存在 而導致第一通信裝置可經受之干擾的量。在至少一些 151133.doc -S2- 201112684 °午夕““列中’在多數情況下,,假設第-通信裝置未與 之通信之其他裝置不處於第一裝置之通信區域中,當自其 接收信號之裝置經判^為處於非合作模式時,第—通信裝 置將選擇非合作模式,^•當自其接收信號之裝置處於合作 操作板式時’第—通信裝置將選擇合作模式。 在已在步驟6016中進行合作操作模式與非合作操作模式 之間的3^擇的情況下,操作經由連接節點6⑽進行至步驟 6040在步驟6〇4〇中第一通信裝置選擇將用於與一或多 個其他裝置(例如,第三裝置)通信之裝置組態,同時在選 疋之刼作杈式下操作。在一些實施例中,在子步驟_ 中,若已選擇非合作操作模式且第一通信裝置處於與支援 第一及第二通信協定之第三通信裝置的通信會期中(第二 裝置不支援第二協定)’則第-通信裝置將選擇使用 未由第通仏裝置支援但由第三通信裝置(該第一裝置與 該第二通信裝置通信)支援之通信協定的組態。在一些實 她例中裝置在之間切換之第一及第二協定為WiFi及藍 芽。由於第二裝置不支援已選擇之協定之事實,第二裝置 將不能夠使用對應於選定之協定的干擾控制傳信來控制或 影響第一與第三裝置之間的通信。 操作自步驟6040進行至步驟6044,在步驟6044中,進行 判定以檢查第一通信裝置是否以選定之操作模式操作且是 否使用k疋之裝置組態及/或協定。若使用中之當前操作 模式、組態及協定與進行之選擇匹配,則不需要裝置操作 的改變且操作進行至步驟6046,在步驟6046中,第一裝置 151133.doc •83· 201112684 繼續在當前操作模式τ操作。然而, 裝置之當前操作狀態匹配,則操作自一進L:: =在步驟_中,操作模式及/或裝置組態經改;: 與步驟嶋及6040中進行之選擇匹配。 文又為 中操Γ::Γ6及_進行至步_°。在步_ …I: 選定之操作模式(例如,非合作操作 實:二Τ 。若模式為非合作模式,則在-些 能而不管對另:步驟6〇52中’第一裝置操作以最大化其效 的旦,塑S此裳置(例如’自其接收信號之裝置)之通信 的办響。此可涉及操作以最大化資料輸送量,例如,藉由 輸功率位準及/或最小化傳輸延時(例如,藉由曰迅 速地傳輸信號’而不管當前傳輸與先前傳輸之間對另一裝 置之通信的影響)。在合作操作模式下,在—些實施例 :、’第一通信裝置實施子步驟6〇54 ’在該步驟㈣中,第 一通信裝置回應於干擾控制信號及/或另外考慮其傳輸對 其未與之通信之裝置的影響,作為通信會期之部分。 在步驟6〇06中,若判定偵測之信號係接收自涉及與第一 通信裝置進行通信會期之通信裝置,則操作進行至步驟 6021。視操作模式而定,在處於通信會期中時,第一裝置 可依合作操作模式或非合作操作模式操作。在步驟_ 中’進盯接收之信號是否為干擾控制信f虎的判$。若信號 並非干擾控制信號,則操作進行至步驟6〇2〇,在步驟⑼汕 中’處理接收之信號(例如,恢復使用者資料),且在適當 時發送一回應(例如,回應於接收之信號,可發送確認信 151133.doc • 84 - 201112684 號及/或提供使用者資料)。 若在步驟6〇21中,判定接收之信號為干擾控制_,^ 操作進行至步驟6022,在步驟6〇22中進行檢查以判定第— 裝置以合作操作模式或非合作操作模式操作<^第一裝置 以非合作操作模式操作,則操作進行至步驟6〇24,在步驟 6024中,忽略可為功率傳輸控制信號的干擾控制信號。 然而,若在步驟6020令判定第一通信裝置以合作操作模 式刼作,則操作自步驟6022進行至步驟6〇26,在步驟的% 中,第-通信裝置回應於接收之信號而實施干擾控制操 作。干擾控制操作可為(例如)傳輸功率位準控制操作,諸 如降低用以傳輸使用者資料之裝置的傳輸功率位準。在除 使用者資料之外,信標信號由第一裝置傳輸的情況下,當 降低用以傳輸使用者符號之傳輸功率位準時,可不改變信 標符號之平均傳輸功率位準。 再次參看圖35A之步驟6003,該步驟可與剛才描述之處 理並行發生。在步驟6003中,第一通信裝置監視以偵測裝 置自疋位第一通信裝置之通信區域的脫離。可藉由判定不 再自先前傳輸信號之裝置接收信號(例如’通信信號及/或 用以通知其他裝置一裝置之存在及/或能力的信標信號)而 偵測脫離。當偵測到裝置之脫離時,操作自步驟6〇〇3經由 連接節點6004進行至圖35C中所示的步驟6060。 在步驟6060中’第一通信裝置判定其是否以一模式操作 或使用歸因於來自通信裝置之通信信號之存在或接收而選 擇的組態’該通信裝置經偵測為已脫離對應於第一通信裝 151133.doc -85- 201112684 置之通信區域。若模式並非歸因於脫離之裝置,則操作進 行^驟6_且第-通信裝置繼續以其在開始步_嶋時 所处之操作模式而操作。然而,若操作模式係歸因於第二 裝置之存在或來自第二裝置之信號,則操作 6062 。 ^ 在步驟中,第一通信裝置基於其當前條件(例如, 在第一通信裝置之區中之以合作或非合作方式操作之其他 通k裝置的存在或不存在)而在合作操作模式與非合作操 作模式之間選擇。一旦已進行了合作操作模式與非合作操 作模式之間的選擇’則在步驟編中,當以選定之操作模 式操作時,裝置選擇-用於與一或多個其他裝置(例如, 第三裝置)通信之組態。 在步驟6062中,在實施於一此音 貝她孓二貫轭例中之子步驟6〇66 中,裝置可切換至在第二通信裝置進入區域中之前所使用 的第-通信協定。因此’若第一通信裝置(例如)回應於自 第二通信裝置接收之信號而自第一協定切換至第二通信裝 置不支援的第二通信協定’則當第二褒置離開該區時,第 一通信裝置可切換回第-通信協定。在無來自第二裝置之 干擾的情況下’第-通信協定可提供較高資料傳輸率但 田第裝置存在來自第二裝置之干擾時提供比藉由使用第 二通信裝置不支援之第二協定所達成之資料傳輸率低的資Step 6008 can be implemented in a plurality of ways, depending on what information is obtained from the received signal. Sub-steps 6〇1〇, 6〇12, and 6〇14 are alternative ways of cooperative operation mode and are visible for reception. In some embodiments, only one or some of the sub-steps 6〇1〇, 6〇12, 6〇14 are supported. When sub-step 6008 is used, decision 6010, the first device determines whether the device transmitting the signal is in the cellular mode of operation from the device information in the received signal or (4) the die-centered mode of operation can be interpreted as indicating the cooperation mode, and the special device is used. The mode may and in some cases be interpreted as indicating a non-cooperative operation of Equation 1, in other embodiments, the special operation does not necessarily imply a non-combination mode. In sub-step 6〇12, the communication network corresponding to the transmission device is conscious of whether (4) whether the first-test is cooperative or non-consistent =::. If the device transmitting the received signal corresponds to the first skirt _2, it is determined that it operates in a cooperative manner. When sub-step decision 2 is used, it is determined that the device corresponding to another network 'from which the signal is received is operated in a non-cooperative manner [When the service provider and/or the use surface 151133.doc •81·201112684 group information is used to determine the device When operating in a cooperative or non-cooperative mode, use sub-step 6014. In step 6014, the first communication device determines whether the device transmitting the received s s number corresponds to the same or different service provider or group of users as the first communication device. This can be done by comparing the service provider and/or user group information indicating the storage of the service provider and/or user group of the first device with the service provider corresponding to the determination of the device transmitting the received signal or User group to complete. If the device transmitting the received signal corresponds to the same service provider or group of users, it is determined to operate in cooperative mode. Otherwise, it is determined that it operates in a non-cooperative mode. Other ways of determining the means for transmitting a signal include comparing the transmission device service provider or user group with a service provider and/or user group 1 that is known to operate a list in a non-cooperative manner. Yet another way of determining the means for transmitting the received signal is to determine the type of signal and/or the protocol used to communicate, and then determine from the information whether the device uses a signal indicating a non-cooperative mode or an association I. In other words, detecting a signal corresponding to a technology or communication protocol that does not support power control and/or interference control signaling can be considered to detect a non-cooperative mode of operation. Operation proceeds from step _8 to step 嶋, wherein the mode of operation of the communication device is determined, for example, based on the step of deleting the mode of operation of the other device. *& music such as strong /::' of the received signal may also consider other factors, such as the signal received from it; ^ the duration of the signal received and / or ^ ^ Α . π . '&quot The other factors of the communication protocol used, etc., determine or estimate the amount of interference that the first communication device can experience due to the presence of another communication device. In at least some 151133.doc -S2- 201112684 ° "in the column" in most cases, assuming that the other device that the first communication device is not communicating with is not in the communication area of the first device, when receiving from it When the device of the signal is judged to be in the non-cooperative mode, the first communication device will select the non-cooperative mode, and the first communication device will select the cooperation mode when the device receiving the signal is in the cooperative operation mode. In the case where the cooperation between the cooperative operation mode and the non-cooperative operation mode has been performed in step 6016, the operation proceeds to the step 6040 via the connection node 6 (10). In step 6〇4, the first communication device selection is used for A device configuration in which one or more other devices (e.g., a third device) communicate, while operating in an optional mode. In some embodiments, in the sub-step _, if the non-cooperative mode of operation has been selected and the first communication device is in a communication session with the third communication device supporting the first and second communication protocols (the second device does not support the The second protocol) 'The first communication device will select the configuration of the communication protocol that is not supported by the first communication device but supported by the third communication device (the first device communicates with the second communication device). In some examples, the first and second protocols for switching between devices are WiFi and Bluetooth. Due to the fact that the second device does not support the selected protocol, the second device will not be able to control or influence the communication between the first and third devices using the interference control signaling corresponding to the selected protocol. Operation proceeds from step 6040 to step 6044, where a determination is made to check if the first communication device is operating in the selected mode of operation and if the device configuration and/or protocol is used. If the current mode of operation, configuration, and agreement in use match the selection made, no change in device operation is required and operation proceeds to step 6046, in which the first device 151133.doc • 83· 201112684 continues at the current Operation mode τ operation. However, if the current operating state of the device matches, then the operation is from L:: = In step _, the operating mode and/or device configuration is changed;: The selections made in steps 60 and 6040 are matched. The text is also in the middle of the operation: Γ 6 and _ to the step _ °. In step _ ... I: selected operating mode (for example, non-cooperative operation: two. If the mode is non-cooperative mode, then some can be used regardless of the other: step 6 〇 52 'first device operation to maximum The effect of the communication, such as the operation of the device from which the signal is received, may involve operations to maximize data throughput, for example, by power level and/or minimum. Transmission delay (eg, by rapidly transmitting a signal 'without the impact of communication between the current transmission and the previous transmission to another device). In cooperative operation mode, in some embodiments: 'First communication Apparatus Implementation Sub-step 6〇54 'In this step (4), the first communication device responds to the interference control signal and/or additionally considers the impact of its transmission on the device with which it is not communicating, as part of the communication session. 6〇06, if it is determined that the detected signal is received from a communication device that is in communication with the first communication device, the operation proceeds to step 6021. Depending on the operation mode, when in the communication session, the first Device can Cooperative operation mode or non-cooperative operation mode operation. In step _, the signal received by the receiver is the interference control signal. If the signal is not the interference control signal, the operation proceeds to step 6〇2〇, in the step. (9) 汕 'Processing received signals (eg, restoring user data) and sending a response when appropriate (eg, in response to a received signal, may send a confirmation letter 151133.doc • 84 - 201112684 and/or provide for use If it is determined in step 6〇21 that the received signal is the interference control_, the operation proceeds to step 6022, and a check is made in step 6〇22 to determine whether the first device is in the cooperative operation mode or the non-cooperative operation mode. Operation <^ The first device operates in a non-cooperative mode of operation, the operation proceeds to step 6〇24, in which the interference control signal, which may be a power transfer control signal, is ignored. However, if the first decision is made in step 6020 The communication device operates in a cooperative operation mode, and the operation proceeds from step 6022 to step 6〇26. In the % of the step, the first communication device responds to the received signal. Interference control operation. The interference control operation may be, for example, a transmission power level control operation, such as reducing a transmission power level of a device for transmitting user data. In addition to user data, the beacon signal is used by the first device. In the case of transmission, the average transmission power level of the beacon symbol may not be changed when the transmission power level for transmitting the user symbol is lowered. Referring again to step 6003 of Figure 35A, this step may occur in parallel with the processing just described. In step 6003, the first communication device monitors the detachment of the communication area of the first communication device by detecting the device. The signal can be received (eg, 'communication signal and/or used' by the device that previously transmitted the signal. The detachment is detected by a beacon signal that informs other devices of the presence and/or capabilities of a device. When the disengagement of the device is detected, operation proceeds from step 6〇〇3 via connection node 6004 to step 6060 shown in Figure 35C. In step 6060, 'the first communication device determines whether it operates in a mode or uses a configuration selected due to the presence or reception of a communication signal from the communication device' that the communication device is detected as having detached corresponding to the first Communication equipment 151133.doc -85- 201112684 set the communication area. If the mode is not due to the disengaged device, then operation is performed 6_ and the first communication device continues to operate in the mode of operation in which it was started. However, if the mode of operation is due to the presence of a second device or a signal from the second device, then operation 6062 is performed. ^ In the step, the first communication device is in cooperative operation mode based on its current conditions (eg, the presence or absence of other k devices operating in a cooperative or non-cooperative manner in the region of the first communication device) Choose between cooperative operating modes. Once the selection between the cooperative mode of operation and the non-cooperative mode of operation has been performed, then in the step-by-step, when operating in the selected mode of operation, the device is selected - for use with one or more other devices (eg, the third device) ) Configuration of the communication. In step 6062, in sub-steps 6〇66 of the embodiment of the second yoke, the device can switch to the first communication protocol used before the second communication device enters the area. Thus, 'if the first communication device switches from the first protocol to the second communication protocol that the second communication device does not support in response to the signal received from the second communication device, then when the second device leaves the region, The first communication device can switch back to the first communication protocol. In the absence of interference from the second device, the 'first-communication protocol can provide a higher data transmission rate. When the field device has interference from the second device, it provides a second agreement that is not supported by the use of the second communication device. The information achieved by the data transmission rate is low

料傳輸率1 —及第二協定可為諸如醫i及藍芽的0FDM 協定。或者,其可為諸如Γςιν/ΓΑ 〜Λ 喵如CSMA協定及OFDM協定之極不 相同的協定。 151133.doc •86· 201112684 在於步驟_中已進行裝置組態選擇的情況下,操作進 行至步驟議,在步驟_8中,進行關於第―心裝置是 否已以選定之模式操作且具有選定之裝置”的^。若 第-通信裝置已根據選定之模式及組態來操作,則操作進 行至步驟6G7G,其中操作模式保持未改變。㈣,若第一 通信裝置尚未處於選定之模式及㈣,㈣作進行至步驟 _在步驟6072中’第一通信裝置切換為選定之模式及/ 或裝置組態。The material transmission rate 1 - and the second agreement may be an 0FDM agreement such as medical i and Bluetooth. Alternatively, it may be a very different agreement such as Γςιν/ΓΑ~Λ such as the CSMA protocol and the OFDM protocol. 151133.doc •86· 201112684 In the case where the device configuration selection has been made in step _, the operation proceeds to the step, in step _8, whether the first-heart device has been operated in the selected mode and has a selected If the first communication device has been operated according to the selected mode and configuration, the operation proceeds to step 6G7G, wherein the operation mode remains unchanged. (4) If the first communication device is not already in the selected mode and (4), (d) proceeding to step _ in step 6072, the first communication device switches to the selected mode and/or device configuration.

操作自步驟6070及6072進行至步驟6〇〇〇,在步驟6〇〇〇 中裝置以選定之操作模式(例如,如先前關於步驟 描述之合作操作模式6〇76或非合作操作模式6〇78)操作。 圖36為根據各種實施例的例示性無線終端機%⑼(例 如,行動節點)之圖式。例示性無線終端機36〇〇包括經由 匯流排3612耦接在一起的一接收器模組36〇2、一發射器模 組3604、一處理器3606、使用者I/O裝置36〇8及記憶體 3610,各種元件在該匯流排3612上可互換資料及資訊。記 隐體3610包括常式3614及資料/資訊3616。處理器3606(例 如,CPU)執行常式3 614且使用記憶體3 61 〇中之資料/資訊 3616以控制無線終端機3600的操作並實施方法。 接收器模組3602(例如,接收器)耦接至接收天線36〇3, 無線終端機經由該接收天線3603自其他無線通信裝置接收 仏號。接收器模組3602經由空中鏈路自第二通信裝置接收 信號。 發射益模組3604(例如’發射器)耦接至傳輸天線3 605, 151133.doc •87· 201112684 無線終端機經由該傳輸天線3605將信號傳輸至其他通信裝 置。舉例而言,無線終端機可將信號傳輸至第三通信裝 置’作為通信會期之部分0 " 使用者I/O裝置3608包括(例如)麥克風、鍵盤、小鍵盤、 交換器、相機、顯示器、揚聲器等。使用者I/O裝置3608 允許無線終端機3600之使用者輸入資料/資訊、存取輸出 資料資訊並控制無線終端機36〇〇之至少一些功能。 常式3614包括一模式判定模組3618 '一模式選擇模組 3620、一通信模組3622、一資料輸送量最大化模組“Μ及 一干擾控制模組3626。資料/資訊3616包括接收之第二裝 置信號資訊3634、相對於第二裝置之判定關係資訊 3636(例如,合作或非合作關係)、判定之第二裝置操作模 式3638(例如,蜂巢式或特用的)、判定之第二裝置服務提 供者資訊3640及判定之第二裝置使用者群組資訊3642。 育料/資訊3616亦包括指示選定之操作模式(例如,合作 通信模式或非合作通信模式)的資訊、接收之干擾控制信 號3644及第三裝置識別資訊3648。資料/資訊3616亦包括 WT 3600服務提供者資訊3652、WT 36〇〇使用者群組資訊 3654、wt 36〇〇非合作服務提供者資訊π%及WT 3.0〇〇非 合作使用者群組資訊3658。服務提供者資訊3652包括識別 WT 3600之服務提供者的資訊及識別其他合夥服務提供者 (其可被視為合作的)的資訊。使用者群組資訊3654識別WT 3600視為合作的使用者群組。非合作服務提供者資訊 包括識別被視為與WT 3600成非合作關係的%7 3600之服 151133.doc -88 - 201112684 務提供者之資訊。制者群組f訊3654識別资则視為 具有非合作關係之使用者群組。在_些實施例中,不包括 包 關 貧訊3656及/或3658且缺少對服務提供者資訊“Μ之 括,及/或使用者群組資訊3654足以分類為具有非合作 係0Operation proceeds from steps 6070 and 6072 to step 6, where the device is in a selected mode of operation (eg, cooperative operating mode 6〇76 or non-cooperative mode 6 〇78 as described previously with respect to the steps). )operating. Figure 36 is a drawing of an exemplary wireless terminal unit % (9) (e.g., a mobile node) in accordance with various embodiments. The exemplary wireless terminal unit 36 includes a receiver module 36〇2 coupled to the busbar 3612, a transmitter module 3604, a processor 3606, a user I/O device 36〇8, and a memory. Body 3610, the various components are interchangeable with information and information on the busbar 3612. The hidden body 3610 includes the routine 3614 and the information/information 3616. The processor 3606 (e.g., CPU) executes routine 3 614 and uses the data/information 3616 in the memory 3 61 to control the operation of the wireless terminal 3600 and implement the method. Receiver module 3602 (e.g., receiver) is coupled to receive antenna 36〇3 via which the wireless terminal receives an nickname from other wireless communication devices. Receiver module 3602 receives signals from the second communication device over the air link. The transmit benefit module 3604 (e.g., 'transmitter) is coupled to the transmit antenna 3 605, 151133.doc • 87· 201112684 via the transmit antenna 3605 to transmit signals to other communication devices. For example, the wireless terminal can transmit a signal to the third communication device 'as part of the communication session 0 " User I/O device 3608 includes, for example, a microphone, a keyboard, a keypad, a switch, a camera, a display , speakers, etc. User I/O device 3608 allows a user of wireless terminal device 3600 to enter data/information, access output data information, and control at least some of the functions of wireless terminal device 36. The routine 3614 includes a mode determination module 3618 'a mode selection module 3620, a communication module 3622, a data throughput maximization module "and an interference control module 3626. The data / information 3616 includes the receiving Two device signal information 3634, determination relationship information 3636 (eg, cooperative or non-cooperative relationship) with respect to the second device, a determined second device operation mode 3638 (eg, cellular or special), a second device for determination Service provider information 3640 and determined second device user group information 3642. Feeder/information 3616 also includes information indicating the selected mode of operation (eg, cooperative communication mode or non-cooperative communication mode), received interference control signals 3644 and third device identification information 3648. Information/information 3616 also includes WT 3600 service provider information 3652, WT 36〇〇 user group information 3654, wt 36〇〇 non-cooperative service provider information π% and WT 3.0〇 Non-cooperative user group information 3658. Service provider information 3652 includes information identifying the service provider of WT 3600 and identifying other partnership service providers (which can be viewed Information for collaboration. User group information 3654 identifies the user group that the WT 3600 considers to be a collaboration. Non-cooperative service provider information includes identifying the %7 3600 service 151133 that is considered to be a non-cooperative relationship with the WT 3600. .doc -88 - 201112684 Information from the provider. The producer group is not considered to be a non-cooperative user group. In some embodiments, it does not include the poverty alleviation 3656 and / Or 3658 and lack of information about the service provider, and/or user group information 3654 is sufficient to classify as having a non-cooperative system.

模式判定模組3618自接收之信號(例如,自接收之第二 裝置信號資訊3634)判定第二通信裳置與無線終端機處於 合作通信關係還是非合作通信關係。識別合作關係及非合 作關係中之一者的相對於第二裝置之判定關係資訊3636為 模式判定模組蘭的輸出。在一些實施例中,當該第二通 信襄置操作以使最大化其自身的資料輸送量而不管第二通 信裝置之傳信對無線終端機3綱之影響時,該第二通信裳 置被視為以非合作操作模式操作。在一些實施例中,當第 二通信裝置之傳輸輸出功率回應於來自另一裝置之控制傳 k時,第二通信裝置被視為以合作關係操作。 在一些實施例中,自接收之信號判定第二通信裳置處於 合作關係還是非合作關係包括自接收之第二裝置資訊判定 第二通信裝置是否以蜂巢式操作模式(其中該通信裝置回 應於來自基地台之資源配置信號)操作還是以特用摔作模 式操作。判定之第二裝置操作模式(例如,特用之蜂巢 式)363 8為由模組361 8之此判定的輸出。 模式判定模組3618包括服務提供者子模組363〇及使用者 群組子模組3632,其❹來自第二通信裝置之接收信號以 用於判定。服務提供者子模組363〇判定與第二通信裝置相 151133.doc -89- [5】 201112684 關聯之服務提供者,且使用儲存之服務提供者資訊3652及/ 或3656來判定第二通信裝置使用同—服務提供者還是被視 為與WT 3600自身之服務提供者成合作關係之服務提供 者。育訊3640為子模組3630之輸出。使用者群組子模組 3632使用資訊3654判定第二通信裝置是否包括於WT 36〇〇 所屬之使用者群組中。使用者群組子模組3632使用資訊 3658以判定第二通信裝置是否包括於WT 36〇〇視為非合作 的使用者群組中。判定之第二使用者群組資訊3642為使用 者群組子模組3632之輸出。 模式選擇模組3620基於模組3618的判定而在合作通信操 作模式與非合作通信操作模式中之一者之間選擇。指示選 定之操作模式之資訊3644為模式選擇模組362〇的輸出。 當以通信之選定模式操作時,通信模組3622用於與第三 通L裝置通L。通信之選定模式由資訊3 644指示。第三裝 置識別資訊3648儲存於資料/資訊3616中。舉例而言,無 線終端機3600具有與第三通信裝置進行之通信會期,而第 一通信装置處於產生干擾之局部區令。 當選定之模式為合作操作模式時,資料輸送量最大化模 3 624最大化無線終端機與第三通信裝置之間的資料輸送 里而不官對第二裝置之通信的影響。當選定之操作模式 為非合作操作模式時,干擾控制模組3626回應於選定之操 作模式,該干擾控制模組3626忽略干擾控制信號(例如, 接收之干擾控制k號3 644)。在一些實施例中該干擾控 制仏唬為傳輸功率控制信號。在各種實施例中,當選定之 151133.doc 201112684 =式為合作操作模式時’干擾控制模組3626回應於干擾控 制信號。The mode decision module 3618 determines from the received signal (e.g., from the received second device signal information 3634) whether the second communication skirt is in a cooperative or non-cooperative communication relationship with the wireless terminal. The decision relationship information 3636 relative to the second device identifying one of the cooperative relationship and the non-cooperative relationship is the output of the mode decision module blue. In some embodiments, when the second communication device operates to maximize its own data throughput regardless of the effect of the second communication device's signaling on the wireless terminal device 3, the second communication device is It is considered to operate in a non-cooperative mode of operation. In some embodiments, when the transmission output power of the second communication device is responsive to a control pass from another device, the second communication device is considered to operate in a cooperative relationship. In some embodiments, determining, by the received signal, whether the second communication skirt is in a cooperative or non-cooperative relationship comprises determining from the received second device information whether the second communication device is in a cellular mode of operation (where the communication device is responsive to The base station's resource configuration signal) operation is still operated in the special fall mode. The determined second device mode of operation (e.g., the special hive type) 363 8 is the output determined by module 361 8 . The mode decision module 3618 includes a service provider sub-module 363 and a user group sub-module 3632 that receive signals from the second communication device for determination. The service provider sub-module 363 determines the service provider associated with the second communication device phase 151133.doc -89- [5] 201112684 and uses the stored service provider information 3652 and/or 3656 to determine the second communication device Use the same-service provider or a service provider that is considered to be a partner with the WT 3600's own service provider. Advice 3640 is the output of sub-module 3630. The user group sub-module 3632 uses the information 3654 to determine whether the second communication device is included in the user group to which the WT 36 is located. The user group sub-module 3632 uses the information 3658 to determine whether the second communication device is included in the WT 36, which is considered to be a non-cooperative user group. The determined second user group information 3642 is the output of the user group sub-module 3632. Mode selection module 3620 selects between one of a cooperative communication mode of operation and a non-cooperative communication mode of operation based on the determination of module 3618. The information 3644 indicating the selected mode of operation is the output of the mode selection module 362A. When operating in the selected mode of communication, the communication module 3622 is configured to communicate with the third pass L device. The selected mode of communication is indicated by information 3 644. The third device identification information 3648 is stored in the data/information 3616. For example, the wireless terminal 3600 has a communication session with the third communication device, and the first communication device is in a local zone that causes interference. When the selected mode is the cooperative operation mode, the data throughput maximization mode 624 maximizes the influence of the communication between the wireless terminal and the third communication device without communicating with the communication of the second device. When the selected mode of operation is the non-cooperative mode of operation, the interference control module 3626 responds to the selected mode of operation, and the interference control module 3626 ignores the interference control signal (e.g., the received interference control k number 3 644). In some embodiments the interference control is a transmission power control signal. In various embodiments, the interference control module 3626 is responsive to the interference control signal when the selected 151133.doc 201112684 = is the cooperative mode of operation.

見將參看圖37來描述操作—通信|置(例如,第三通信 裝置:以操作為用於第一及第二裝置的通信中間物之方 法°亥第及该第二裝置歸因於由第一及第二裝置支援之 協疋的差異而不具有相互直接交換使用者資料的能力。圖 3 7之方法良好適合用於諸如圖32之特用網路的系統中,其 中八有相異旎力之複數個裝置建立一特用網路。為了解釋 圖37之方法’假設第一、第二及第三裝置中之每一者支援 -可用以傳遞裝置能力資訊的第一協定。第一協定可為 (例如)由於低位元速率或傳遞使用者資料(例如文字、影像 資料或音訊資料)之其他原因而不合適的低位元速率協 定。在一些但未必所有實施例中,第一協定為基於信標信 唬之協定。除支援第一協定之外,第一裝置支援可用以交 換使用者資料的第二通信協定,例如,第二實體層協定, 諸如,GSM、CDMA或OFDM協定。除支援第一協定之 外’弟二裝置支援可用以交換使用者資料但不同於第二通 信協定的第三通信協定,例如’第三實體層協定,諸如, GSM、CDMA或OFDM協定。第一及第二裴置中之至少一 者確實支援第二及第三協定之事實使得難以或不可能在該 兩個裝置之間直接傳遞使用者資料。 在圖37之實例中,除第一通信協定之外,第三裝置支援 可用以交換使用者資料的第二及第三通信協定。因此,第 三通信裝置為能夠支援不支援直接互通性(例如,歸因於 151133.doc •91- 201112684 所使用之信號的實體差異及/或根據使用之協定編碼資訊 的方式)之通信協定的多協定裝置。在一些實施例中,第 一通4裝置及/或其他通信裝置為掌上型攜帶型通信裝 置。除第一、第二及第三協定之外,第一、第二及第三裝 置中之一或多者可支援一或多個較高層級協定,例如,可 為(例如)網路層協定之第四協定。在一些實施例中’第 第一及第三裝置支援同—網路層協定,然而,在缺少 來自第二通信裝置之辅助的情況下,歸因於較低層級協定 不相容性,第一及第二裝置不可互動。 現參看圖37,可看出,操作第三通信裝置之方法7〇〇〇開 始於步驟7002且進行至步驟7〇〇4。在步驟7〇〇4中,第三通 信裝置根據第一通信協定傳輸—信號(例如,信標信號之 一部分)’該信號用以傳遞包括第三裝置支援第二及第三 通信協定之指示的裝置能力資訊。接著,在步驟畐中, 第三通信裝置自第—無線通信裝置及第二無線通信裝置中 之至少-者接收使用第一通信協定傳遞之裝置能力資訊。 注意,步驟7〇〇6及7004之次序並不重要,且事實上,因為 不必使兩個裝置皆接收能力資訊來建立通信,所以通常; 必執行步驟7004、7006兩者。 在步驟7_中,第三通信裝置可在步驟簡中接收指1 該第-通信裝置能夠支援第二通信協定之信標信號的二 一部分。同樣,作為步驟7006之部分,第三通信裝置可= 步驟7_中接收指示該第二通信裝置能夠支援第三'通 定之信標信號的至少一部分。 151133.doc -92- 201112684 在已在步驟7006中接收裝置能力資訊後,第三通信裝置 進行步驟7015以使用第二通信協定與第一裝置建立通信鏈 絡。舉例而言’此可為(例如)CDMA鏈路。第三通信裝置 亦繼續進行以使用第三通信協定與第二通信裝置建立通信 鏈路。此可為(例如)〇FDM或GSM協定鏈路。在分別使用 第二及第三協定與第一及第二裝置建立通信鏈路的情況 下,第三通信裝置能夠操作為第一與第二裝置之間的通信 中間物。Referring to FIG. 37, an operation-communication|disconnection (for example, a third communication device: a method of operating as a communication intermediate for the first and second devices) and the second device are attributed to The difference between the support of the first device and the second device does not have the ability to directly exchange user data with each other. The method of Fig. 37 is well suited for use in a system such as the special network of Fig. 32, in which eight are different. A plurality of devices establish a special network. To explain the method of Figure 37, assuming that each of the first, second, and third devices supports - a first agreement that can be used to communicate device capability information. It may be, for example, a low bit rate agreement that is inappropriate due to low bit rate or other reasons for communicating user data (eg, text, video material, or audio material). In some but not necessarily all embodiments, the first agreement is based on Agreement for beacons. In addition to supporting the first agreement, the first device supports a second communication protocol that can be used to exchange user data, for example, a second physical layer agreement, such as a GSM, CDMA or OFDM protocol. In addition to supporting the first agreement, the second device supports a third communication protocol that can be exchanged for user data but different from the second communication protocol, such as a 'third physical layer agreement, such as GSM, CDMA or OFDM protocol. And the fact that at least one of the second devices does support the second and third agreements makes it difficult or impossible to directly transfer the user data between the two devices. In the example of Figure 37, in addition to the first communication protocol In addition, the third device supports the second and third communication protocols that can be used to exchange user data. Therefore, the third communication device is capable of supporting direct interoperability (eg, due to 151133.doc •91-201112684). Multi-protocol device of a communication protocol for the physical difference of the signals used and/or the manner in which the information is encoded according to the protocol used. In some embodiments, the first pass 4 device and/or other communication device is a palm-type portable communication device In addition to the first, second and third agreements, one or more of the first, second and third devices may support one or more higher level agreements, for example, a fourth agreement of the network layer protocol. In some embodiments, the first and third devices support the same-network layer protocol, however, in the absence of assistance from the second communication device, due to the The low level agreement incompatibility, the first and second devices are not interactive. Referring now to Figure 37, it can be seen that the method 7 of operating the third communication device begins in step 7002 and proceeds to step 7〇〇4. In step 7〇〇4, the third communication device transmits a signal (eg, a portion of the beacon signal) according to the first communication protocol to transmit the indication including the third device supporting the second and third communication protocols. Device capability information. Next, in step ,, the third communication device receives device capability information transmitted using the first communication protocol from at least one of the first wireless communication device and the second wireless communication device. Note that the order of steps 7〇〇6 and 7004 is not important, and in fact, since it is not necessary for both devices to receive capability information to establish communication, usually; both steps 7004, 7006 must be performed. In step 7_, the third communication device can receive, in the step simplification, the first part of the beacon signal that the first communication device can support the second communication protocol. Similarly, as part of step 7006, the third communication device can receive, in step 7_, at least a portion of the beacon signal indicating that the second communication device is capable of supporting the third 'pass. 151133.doc -92- 201112684 After having received the device capability information in step 7006, the third communication device proceeds to step 7015 to establish a communication link with the first device using the second communication protocol. For example, this can be, for example, a CDMA link. The third communication device also proceeds to establish a communication link with the second communication device using the third communication protocol. This can be, for example, a FDM or GSM protocol link. In the case where a communication link is established with the first and second devices using the second and third protocols, respectively, the third communication device is operable to operate as a communication intermediate between the first and second devices.

在一些實施例中,一旦建立與第一及第二裝置的鏈路, 第三裝置即發送路徑選擇更新信號(例如,如可選步驟 701 8中所示)至一或多個裝置,例如,特用網路中之路由 器及/或提供至少一些連接性資訊的第一及第二裝置,該 連接性資訊向系統中之其他裝置指示第三通信裝置現可用 作第-與第二通信裝置之間的通信中間物,例如,為了封 包轉遞及/或其他目的。在步驟7〇18中發送之路徑選擇更 新§fL息可能為且在一歧管始;你丨由& na ^ . 一貫鞑例中為用以傳遞更新之網路層 路徑選擇資訊的網路層路徑選擇更新訊息。 曰 猓忭目芡驟7018進行 通信裝置操作為第—與第二通信裝置之間的通信中間來 步驟70肩包括以下步驟中之_或多者:自第_通信$ 至第一通仏裝置及/或自第二通信裝置至第一通作裝眉 繼信號薦;提供網路連接性(❹嗜連接性 許第-與第二裂置經由第三通信裝置交換網路層, 7〇24;藉由在不同協定(例如,第二與第三協定)之間轉 151133.doc •93- 201112684 同時在第-與第二裝置之間轉遞信號而操作為通信間道器 7>026,及橋接與第_通信裝置建立之通信鏈路及與第二通 ^裝置建立之通信鏈路7028。 在第三通信裝置操作為第一與第二裝置之間的通信中間 物的週期之後及/或期間’亦可如步驟7〇3〇中所示根據第 一協定來傳輸裝置能力資訊。 在某點處,操作在步驟7032中停止,例如,由於第三通 信裝置斷電或其他裝置離開第三通信裝置操作之通信區。 藉由使用圖37中說明之方法,將埠連接通信裝置用作不 支援足以父換使用者資料之實體層連接性的裝置之間的通 信中間物,可達成網路層連接性。因此,雖然特用網路中 之裝置的小β卩分可支援多個協定(例如,在能夠支援使 用者資料之交換的實體層),但是根據本發明,此等多協 定裝置可用以建立相冑低廉之裝置可相互通信的特用網 路。 在一些實施例中,用作通信中間物之無線終端機保持追 縱其提供服務所至的裴置。例如,根據提供至中間裝置之 服務的減少之服務費或作為對獲得服務之益處的第一及第 二裝置的擁有者收取之補償,可接著將此資訊報告至—中 央帳務處理裝置或可對提供之服務補償服務及中間物。此 追蹤及貸記方法良好適合於在特許之頻譜中使用特用網路 的情況’其中即使基地台及/或其他基礎架構組件可能不 直接涉及於通信中,個別使用者亦可向頻譜獲許可人付費 以獲付在該頻譜中操作之權利。 151133.doc •94· 201112684 圖38為根據各種實施例的例示性無線終端機4〇〇〇(例 如’行動節點)之圖式。在一些實施例中,無線終端機 4000為行動手機。例示性無線終端機4000支援至少一第一 通k協定' 一第二通信協定及一第三通信協定,該第一、 第一及第三通信協定係不同的。例示性無線終端機4〇〇〇包 括經由匯流排4012耦接在一起的一接收器模組4002、一傳 輸模組4004、一處理器4006、使用者I/O裝置4008及記憶 體4010 ’各種元件在該匯流排4〇12上可互換資料及資訊。 5己憶體4010包括常式4014及資料/資訊4016。處理器 4006(例如,CPU)執行常式4〇14且使用記憶體4〇1〇中之資 料/資訊4016以控制無線終端機4〇〇〇的操作並實施方法。 接收器模組4002(例如,接收器)麵接至接收天線4〇〇3, 無線終端機經由該接收天線4003自其他無線通信裝置接收 信號。接收器模組4002自第一通信裝置及第二通信裝置中 之至少一者接收裝置能力資訊,該裝置能力資訊係使用第 一通信協定來傳遞。資訊4038對應於第一通信協定且對應 於第及第一裝置的接收之裝置能力資訊分別為資訊 (4034 、 4036)。 傳輸模組4004(例如,發射器)耦接至傳輸天線4〇〇5,無 線終端機經由該傳輸天線4〇〇5將信號傳輸至其他通信裝 置。傳輸模組4004用於將用以傳遞裝置能力資訊之信^信 號傳輸至其他通信裝置,該步署台t 士 -欠^ 成攻置此力貧訊指示無線終端機 4〇〇〇能夠支援第二及第三通信協定 L励疋。由傳輸模組4004來傳 輸傳送資訊4070之產生之信樟枰α 知彳5唬4〇72。傳輸模組4004亦 151133.doc •95· 201112684 將處理之信號4068(例如,協定轉換信號)傳輸至第一通信 裝置且將處理之信號4〇68(例如,協定轉換信號)傳輸至第 二通信裝置。 使用者I/O裝置4008包括(例如)麥克風、鍵盤、小鍵盤、 父換器、相機、顯示器、揚聲器等。使用者1/〇裝置4〇〇8 允許無線終端機4000之使用者輸入資料/資訊、存取輸出 資料資訊且控制無線終端機4〇〇〇之至少一些功能。 常式4014包括一通信轉遞模組4018 ' —網路層連接性模 組4020 ' 一第二通信協定模組4022、一第三通信協定模組 4024、一第一實體層通信協定模組4026、一第二實體層通 信協定模组4028、一第三實體層通信協定模組4〇3〇及一中 繼追蹤模組4032。 貧料/貧訊4016包括對應於裝置1的接收之裝置能力資訊 4034、對應於裝置2的接收之裝置能力資訊4〇36及對應於 WT 4000裝置能力之儲存的裝置能力資訊4〇7〇。資料/資訊 4016亦包括第一通信協定資訊4〇38、第二通信協定資訊及 第三通信協定資訊4041。在各種實施例中,第一通信協定 為基於信標之協定。第二通信協定資訊4039包括在WT 4000與第一通信裝置之間使用的資訊識別協定。第三通信 協定資訊4041包括在WT 4000與第二通信裝置之間使用的 資訊識別協定。資料/資訊4〇丨6亦包括用於支援不同mac 層協定之複數個資訊集合(MAC層協定1資訊4044、......、 MAC層協定η資訊)、支援不同網路層協定之複數個資訊集 合(網路層協定1資訊4048、......、網路層協定Μ資訊 151133.doc •96· 201112684 4050)、支援不同實體層協定之複數個層(實體層協定1資訊 4040、……、實體層協定m資訊4042)及用於支援較高層級 協定之複數個資訊集合(較高層級協定1資訊4052、......、 較高層級協定N資訊4054)。 資料/資訊4016亦包括識別由通信裝置i(當與無線終端機 4000通信時)使用的協定之裝置!協定使用資訊4〇56及識別 由通信裝置2(當與無線終端機4000通信時;)使用的協定之裝 置2協定使用資訊4058。資料/資訊4016包括裝置1/裝置2協 定轉換資訊4060、意欲用於裝置2的裝置1接收信號資訊 4062、意欲用於裝置2的處理之裝置1接收資訊4〇64、意欲 用於裝置1的裝置2接收信號資訊4066、意欲用於裝置1的 處理之裝置2接收資訊4068。資料/資訊4016亦包括傳送WT 400裝置能力資訊4070的產生之信標信號4072。累積量之 中繼服務提供之資訊4074亦包括於資料/資訊4016中。 通信轉遞模組40 1 8在第一與第二通信裝置之間中繼通 k ’第一通信裝置支援第一及第二通信協定,第二通信裝 置支极第一及第二通信協定。在一些實施例中,第一通信 協定為低位元速率協定,其支援小於由第一及第二通信協 定中之任一者支援之位元速率的1/1〇〇〇之最大位元速率。 在各種實施例中’第一通信協定為基於信標之通信協定。 在—些實施例中,對於一些第一及第二通信裝置,無線 終端機4000、第一通信裝置及第二通信裝置支援第四協 定’該第四協定對應於比該第二及該第三協定所對應之通 層两的較高層級通信層《在一些實施例中,在一些時 151133.doc -97- 201112684 間,第二及第三協定對應於同一通信層。 網路層連接性模組4020使用第一及第二通信鏈路在第一 與第二通信裝置之間提供網路層連接性以傳遞網路層信 號。 弟一通仏協定模組4022支援用以與第一通信裝置通信的 第一MAC層協定。第三通信協定模組4024支援用以與第二 通信裝置通信的第二MAC層協定,該第一與該第二MAC層 協定係不同的。 第一貫體層通信協定模組4026執行支援第一通信協定 (例如,基於信標之協定)的操作。第二實體層通信協定模 組4028係用於支援用以與第一通信裝置通信的第二實體層 協定。第三實體層通信協定模組4〇3〇係用於支援用以與第 二通信裝置通信的第三實體層協定。 中繼追蹤模組4032追蹤提供至其他無線通信裝置的通信In some embodiments, upon establishing a link with the first and second devices, the third device transmits a path selection update signal (eg, as shown in optional step 701 8) to one or more devices, for example, a router in the network and/or first and second devices providing at least some connectivity information indicating to the other devices in the system that the third communication device is now available as the first and second communication devices Communication intermediates, for example, for packet forwarding and/or other purposes. The path selection update sent in step 7〇18 may be and begins at the beginning of the manifold; you are always in the & na ^ . The consistent example is the network used to pass the updated network layer path selection information. The layer path selects the update message. The method 7018 performs the communication device operation as the communication between the first communication device and the second communication device. The step 70 includes the following one or more of the following steps: from the first communication to the first communication device and / or from the second communication device to the first through the installation of the eyebrows; provide network connectivity (❹ 许 许 - 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 - Operation as intercommunicator 7 > 026 by transferring 151133.doc • 93- 201112684 between different protocols (eg, second and third agreements) while transmitting signals between the first and second devices, and Bridging a communication link established with the first communication device and a communication link 7028 established with the second communication device. After the third communication device operates as a period of communication intermediate between the first and second devices and/or During the period, the device capability information may also be transmitted according to the first protocol as shown in step 7〇3〇. At some point, the operation is stopped in step 7032, for example, because the third communication device is powered off or the other device leaves the third Communication area in which the communication device operates. By using FIG. Illustrative method for using a connection communication device as a communication intermediate between devices that do not support physical layer connectivity sufficient for the parent to exchange user data, thereby achieving network layer connectivity. Therefore, although in a special network The small beta of the device can support multiple protocols (e.g., at a physical layer capable of supporting the exchange of user data), but in accordance with the present invention, such multi-protocol devices can be used to establish that relatively inexpensive devices can communicate with each other. The network is used. In some embodiments, the wireless terminal used as the communication intermediary keeps track of the device to which it provides the service. For example, based on a reduced service charge for the service provided to the intermediary device or as a service to the pair. The benefits received by the owner of the first and second devices may then be reported to the central accounting processing device or to the service compensation services and intermediates provided. This tracking and crediting method is well suited The use of special networks in the licensed spectrum' where even if the base station and/or other infrastructure components may not be directly involved in the communication, The spectrum licensee may also be charged to receive the right to operate in the spectrum. 151133.doc • 94· 201112684 FIG. 38 is an exemplary wireless terminal set 4 (eg, 'action node') in accordance with various embodiments. In some embodiments, the wireless terminal 4000 is a mobile handset. The exemplary wireless terminal 4000 supports at least one first communication protocol, a second communication protocol, and a third communication protocol, the first, The first and third communication protocols are different. The exemplary wireless terminal device 4 includes a receiver module 4002 coupled via a bus bar 4012, a transmission module 4004, a processor 4006, and a user I. /O device 4008 and memory 4010 'various components are interchangeable with data and information on the bus bar 4〇12. The 5th memory 4010 includes the routine 4014 and the information/information 4016. The processor 4006 (e.g., CPU) executes the routine 4〇14 and uses the information/information 4016 in the memory 4〇1 to control the operation of the wireless terminal unit 4 and implement the method. Receiver module 4002 (e.g., a receiver) is interfaced to receive antenna 4〇〇3 via which the wireless terminal receives signals from other wireless communication devices. The receiver module 4002 receives device capability information from at least one of the first communication device and the second communication device, the device capability information being communicated using the first communication protocol. The information 4038 corresponds to the first communication protocol and the device capability information corresponding to the reception of the first device and the first device is information (4034, 4036). A transmission module 4004 (e.g., a transmitter) is coupled to the transmission antenna 4〇〇5 via which the wireless terminal transmits signals to other communication devices. The transmission module 4004 is configured to transmit a signal for transmitting the capability information of the device to another communication device, and the step of the station is to perform the attack on the wireless terminal to support the wireless terminal. Second and third communication agreement L incentives. The signal generated by the transmission information 4070 is transmitted by the transmission module 4004, which is known as 5唬4〇72. The transmission module 4004 also 151133.doc • 95· 201112684 transmits the processed signal 4068 (eg, the protocol conversion signal) to the first communication device and transmits the processed signal 4〇68 (eg, the protocol conversion signal) to the second communication. Device. User I/O device 4008 includes, for example, a microphone, a keyboard, a keypad, a parent converter, a camera, a display, a speaker, and the like. User 1/〇 device 4〇〇8 allows the user of wireless terminal 4000 to enter data/information, access output data information, and control at least some functions of wireless terminal unit. The routine 4014 includes a communication delivery module 4018' - a network layer connectivity module 4020', a second communication protocol module 4022, a third communication protocol module 4024, and a first physical layer communication protocol module 4026. A second physical layer communication protocol module 4028, a third physical layer communication protocol module 4〇3〇, and a relay tracking module 4032. The poor/lean 4016 includes device capability information 4034 corresponding to the device 1 received, device capability information 4〇36 corresponding to the device 2, and device capability information 4储存7〇 corresponding to the storage capacity of the WT 4000 device. The data/information 4016 also includes first communication agreement information 4〇38, second communication agreement information, and third communication agreement information 4041. In various embodiments, the first communication protocol is a beacon based protocol. The second communication protocol information 4039 includes an information identification protocol used between the WT 4000 and the first communication device. The third communication protocol information 4041 includes an information identification protocol used between the WT 4000 and the second communication device. The data/information 4〇丨6 also includes a plurality of information sets (MAC layer protocol 1 information 4044, ..., MAC layer protocol η information) for supporting different mac layer protocols, and supports different network layer protocols. Multiple information sets (network layer protocol 1 information 4048, ..., network layer protocol Μ information 151133.doc • 96· 201112684 4050), support multiple layers of different physical layer agreements (physical layer agreement 1 Information 4040, ..., physical layer agreement m information 4042) and a plurality of information sets for supporting higher level agreements (higher level agreement 1 information 4052, ..., higher level agreement N information 4054) . The data/information 4016 also includes means for identifying the protocol used by the communication device i (when communicating with the wireless terminal 4000)! The protocol uses the information 4〇56 and identifies the device 458 for use by the device 2 of the protocol used by the communication device 2 (when communicating with the wireless terminal device 4000). The data/information 4016 includes device 1/device 2 protocol conversion information 4060, device 1 intended for device 2 receives signal information 4062, device 1 intended for processing of device 2 receives information 4〇64, intended for device 1 The device 2 receives the signal information 4066, and the device 2 intended for the processing of the device 1 receives the information 4068. The data/information 4016 also includes a beacon signal 4072 that transmits the generated WT 400 device capability information 4070. The cumulative amount of information provided by the relay service 4074 is also included in the information/information 4016. The communication transfer module 40 1 8 relays between the first and second communication devices. The first communication device supports the first and second communication protocols, and the second communication device supports the first and second communication protocols. In some embodiments, the first communication protocol is a low bit rate protocol that supports a maximum bit rate that is less than 1/1 of the bit rate supported by either of the first and second communication protocols. In various embodiments, the 'first communication protocol is a beacon-based communication protocol. In some embodiments, for some of the first and second communication devices, the wireless terminal 4000, the first communication device, and the second communication device support a fourth agreement 'the fourth agreement corresponds to the second and the third The higher level communication layer of the two layers corresponding to the agreement "In some embodiments, between some time 151133.doc -97 - 201112684, the second and third agreements correspond to the same communication layer. The network layer connectivity module 4020 provides network layer connectivity between the first and second communication devices to communicate network layer signals using the first and second communication links. The one-night protocol module 4022 supports a first MAC layer protocol for communicating with the first communication device. The third communication protocol module 4024 supports a second MAC layer protocol for communicating with the second communication device, the first and the second MAC layer protocol being different. The first consistent body layer protocol module 4026 performs operations that support the first communication protocol (e.g., beacon-based protocol). The second physical layer communication protocol module 4028 is for supporting a second physical layer protocol for communicating with the first communication device. The third physical layer communication protocol module 4 is used to support a third physical layer protocol for communicating with the second communication device. Relay tracking module 4032 tracks communications provided to other wireless communication devices

費減少、自 自由增強之特徵及/或下載等Reduced fees, self-improvement features and/or downloads, etc.

加以描述,但是各種實 非OFDM、許多非TDD 泛範圍之通信系統中。 雖然在OFDM TDD系統之情形中加 施例之方法及設備適用於包括許多非 系統及/或許多非蜂巢式系統的廣泛 151I33.doc 201112684 在各種實施例中,使用—或多個模組來實施本 ,節點以執行對應於一或多種方法的步驟,例如,產二: 標信號、傳輸信標信號、接收信標信號、監視信標信號: 自接收之信標信號恢復資訊、判定時序調整、實二:調 整、改變操作模式、起始通信會期等。在—些實施例中, 使用模組來實施各種特徵。可使用軟體、硬體或軟體與硬 體之組合來實施此等模組。以上描述之方法或方法步驟中 之'多可使用包括於諸如記憶體裝置(例如,軸、軟性 磁碟等)之機器可讀媒體中之機器可執行指令(諸如軟體)來 實施,以控制機器(例如,具有或不具有額外硬體之通用 電腦)來(例如)在一或多個節點中實施以上描述之方法的全 部或部分實施。因&,各種實施例係針對包括機器可執二 指令的機器可讀媒體,料指令用於使機器(例如,處理 器及相關聯之硬體)執行以上描述之方法的步驟中之一或 多者。 鑒於上文描述,熟習此項技術者將明瞭對上文描述之方 法及設備之眾多額外變化。此等變化被視為在範疇内。各 種貫施例之方法及設備可能且在各種實施例中與、 正交分頻多工(OFDM)及/或可用以在存取節點與行動節點 之間提供無線通信鏈路的各種其他類型之通信技術一起使 用β在一些實施例中,存取節點被實施為使用〇fdm及/或 CDMA與行動節點建立通信鏈路的基地台。在各種實施例 中,行動節點被實施為用於實施各種實施例之方法的筆記 型電腦、個人資料助理(PDA)或包括接收器/發射器電路及 151133.doc •99· 201112684 邏輯及/或常式的其他攜帶型裝置。 【圖式簡單說明】 圖1說明根據各種實施例實施的例示性特用通信網路。 圖2說明當不存在通用時序參考時,特用網路中之例示 性使用者誤偵測問題。 圖3說明用以傳遞包括三個例示性信標信號叢發之信標 信號的例示性空中鏈路資源,每一信標信號叢發包括—信 標符號。 圖4說明根據各種實施例的信標符號與資料/控制信號之 間的例示性相對傳輸功率位準。 圖5說明傳輸信標信號叢發之一例示性實施例。 圖6說明接收信標信號叢發可在一些指定之時間間隔期 間發生而在其他時間接收器關閉以省電的一例示性實施 例。 圖7用以描述如根據各種實施例所實施的、奋 田陶個終端 機傳輸及接收信標信號叢發時如何解決使用去 叩节疾偵測問 題。 圖8說明在終端機中實施之狀態圖之一例示性實施例 圖9說明根據各種實施例實施的例示性無線終端機之 細說明。 ^ 圖10為根據各種實施例的操作一攜帶型無線終端機之 示性方法之流程圖的圖式。 圖11為根據各種實施例的操作一攜帶型無線終端機之例 示性方法之流程圖的圖式。 151133.doc •100- 201112684 圖丨2為根據各種實施例的操作一攜帶型無線終端機(例 如’電池供電的行動節點)之例示性方法之流程圖的圖 式。 圖13為根據各種實施例的操作一搞帶型無線終端機(例 如’電池供電的行動節點)之例示性方法之流程圖的圖 式。 圔Μ包括說明根據各種實施例 之例示性信標傳信之圖式。 圖1 5說明不同無線終端機在一些實施例中傳輸包括不同 信標叢發信號之不同信標信號。 圖16為說明一些實施例之特徵的圖式及對應圖例,其中 信標符號傳輸單位包括複數個〇1?]〇河符號傳輸單位。、 圖17為用以說明包含一序列之信標叢發信號之例示師 標信號並說明一些實施例之時序關係的圖式。 ° 圖18為用以說明包含—序列之信標叢發信號之例示性俨 標信號並說m施例之時序關係的圖式。 σ 圖19為說明在無線終端機傳輸—信標信號 由無線終端機分割的例示性μ鏈路資源之圖式式下 圖2 0對於無線終端機之例示性 操作模式)而描述與除^ ·,作用中 例示性空中鏈路資源部分, 相關如之 ^ 4® ^ 〇. R 在該拉式下無線終端機傳鈐 且可接收及/或傳輸使用者資料。 歲傳輪- 圖21說明無線終端機 示性操作模式,例如,非作^以的無線終端機兩種 J如非作用令模式及作用中模式。 151133.doc • 101 · 201112684 圖22包括說明在包括兩個信標叢發之例示性第一時間間 隔期間之例示性無線終端機空中鏈路資源利用的圖式及對 應圖例。 圖23包括說明在包括兩個信標叢發之例示性第一時間間 隔期間之例示性無線終端機空中鏈路資源利用的圖式及對 應圖例。 圖24說明根據各種實施例的關於信標信號之替代性的描 述性圖示。 圖25為根據各種實施例的例示性攜帶型無線終端機(例 如,行動節點)之圖式。 圖26為根據各種實施例的操作通信裝置(例如,電池供 電的無線終端機)之例示性方法之流程圖的圖式。 圖27為根據各種實施例的例示性攜帶型無線終端機(例 如’行動節點)之圖式。 圖28為關於特用網路+之兩個無線終端機說明—例示性 時間線、事件序列及操作的圖式,該等終端機知曉彼此之 存在且經由使用無線終端機信標信號而達成時序同步。 圖29說明根據一例示性實施例的基於信標信號之兩個無 線終端機之間的例示性同步時序。 圖30說明根據另一例示性實施例的基於信標信號之兩個 無線終端機之間的例示性同步時序。 圖”說明根據另一例示性實施例的基於信標信號之兩個 無線終端機之間的例示性同步時序。 圖32說明包括形成特用網路之具有不同能力之複數個無 151133.doc -102- 201112684 線通信裝置之例示性通信系統。 圖33說明操作通信裝置以建立且參與與另一裝置之通信 會期的方法。 圖34說明可用作圖32中所示之系統的通信裝置中之一者 的例示性通信裝置。 包含圖35A、圖MB及圖35C之組合的圖35說明操作能夠 以合作操作模式及非合作操作模式來操作之通信裝置之方 法0It is described, but in various non-OFDM, many non-TDD wide-range communication systems. Although the method and apparatus of the embodiments in the context of an OFDM TDD system are applicable to a wide range of 151I33.doc 201112684 including many non-systematic and/or many non-cellular systems, in various embodiments, using - or multiple modules The node performs steps corresponding to one or more methods, for example, generating a signal, transmitting a beacon signal, receiving a beacon signal, monitoring a beacon signal: recovering information from the received beacon signal, determining timing adjustment, Real two: adjust, change the operating mode, start the communication session, and so on. In some embodiments, modules are used to implement various features. These modules can be implemented using software, hardware or a combination of software and hardware. The above described methods or method steps can be implemented using machine-executable instructions (such as software) included in a machine-readable medium such as a memory device (eg, a spindle, a floppy disk, etc.) to control the machine. (For example, a general purpose computer with or without additional hardware) to implement all or part of the methods described above, for example, in one or more nodes. By & various embodiments are directed to a machine-readable medium comprising machine-executable instructions for causing a machine (eg, a processor and associated hardware) to perform one of the steps of the methods described above or More. In view of the above description, many additional variations to the methods and apparatus described above will be apparent to those skilled in the art. These changes are considered to be within the scope. Various methods and apparatus may and in various embodiments, orthogonal frequency division multiplexing (OFDM), and/or various other types of wireless communication links that may be used to provide a wireless communication link between an access node and a mobile node. Communication Technology Uses Beta Together In some embodiments, an access node is implemented as a base station that establishes a communication link with a mobile node using 〇fdm and/or CDMA. In various embodiments, the action node is implemented as a notebook computer, a personal data assistant (PDA) or a receiver/transmitter circuit for implementing the methods of the various embodiments and/or 151133.doc •99· 201112684 logic and/or Other portable devices of the usual type. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates an exemplary utility communication network implemented in accordance with various embodiments. Figure 2 illustrates an exemplary user false detection problem in a particular network when there is no general timing reference. 3 illustrates an exemplary air link resource for transmitting a beacon signal including three exemplary beacon signal bursts, each beacon signal burst including a beacon symbol. 4 illustrates exemplary relative transmission power levels between beacon symbols and data/control signals in accordance with various embodiments. Figure 5 illustrates an exemplary embodiment of transmitting a beacon signal burst. Figure 6 illustrates an exemplary embodiment in which received beacon signal bursts may occur during some specified time interval and at other times the receiver is turned off to save power. Figure 7 is a diagram for describing how to solve the problem of using a decompression disorder when transmitting and receiving a beacon signal burst as described in accordance with various embodiments. Figure 8 illustrates an exemplary embodiment of a state diagram implemented in a terminal. Figure 9 illustrates a detailed description of an exemplary wireless terminal implemented in accordance with various embodiments. Figure 10 is a drawing of a flow diagram of an exemplary method of operating a portable wireless terminal in accordance with various embodiments. 11 is a diagram of a flowchart of an exemplary method of operating a portable wireless terminal in accordance with various embodiments. 151133.doc • 100- 201112684 Figure 2 is a diagram of a flowchart of an exemplary method of operating a portable wireless terminal, such as a 'battery powered mobile node, in accordance with various embodiments. 13 is a diagram of a flowchart of an exemplary method of operating a tape-type wireless terminal, such as a 'battery-powered mobile node, in accordance with various embodiments.圔Μ includes a diagram illustrating an exemplary beacon transmission in accordance with various embodiments. Figure 15 illustrates that different wireless terminals transmit different beacon signals including different beacon burst signals in some embodiments. Figure 16 is a diagram and corresponding legend illustrating features of some embodiments, wherein the beacon symbol transmission unit includes a plurality of 〇1?] 〇河 symbol transmission units. Figure 17 is a diagram for explaining an exemplary teacher signal including a sequence of beacon burst signals and illustrating timing relationships of some embodiments. Figure 18 is a diagram for explaining an exemplary target signal of a beacon burst signal including a sequence and a timing relationship of the m embodiment. σ Figure 19 is a diagram illustrating an exemplary μ link resource partitioned by a wireless terminal in a wireless terminal transmission. Figure 20 shows an exemplary operational mode of the wireless terminal. In the active air link resource portion of the action, the relevant information is as follows: The wireless terminal transmits and/or transmits the user data in the pull mode. The old-fashioned wheel - Figure 21 illustrates the wireless terminal's operational mode of operation, for example, a non-operating wireless terminal, such as a non-active mode and an active mode. 151133.doc • 101 · 201112684 FIG. 22 includes a diagram and corresponding illustrations illustrating exemplary wireless terminal air link resource utilization during an exemplary first time interval including two beacon bursts. Figure 23 includes a diagram and corresponding illustrations illustrating exemplary wireless terminal air link resource utilization during an exemplary first time interval including two beacon bursts. Figure 24 illustrates a descriptive illustration of an alternative to a beacon signal in accordance with various embodiments. Figure 25 is a drawing of an exemplary portable wireless terminal (e.g., a mobile node) in accordance with various embodiments. 26 is a diagram of a flowchart of an illustrative method of operating a communication device (e.g., a battery powered wireless terminal) in accordance with various embodiments. Figure 27 is a drawing of an exemplary portable wireless terminal (e.g., 'action node') in accordance with various embodiments. 28 is a diagram of two wireless terminal descriptions for a particular network + - an exemplary timeline, sequence of events, and operations, the terminals knowing each other and achieving timing by using a wireless terminal beacon signal Synchronize. Figure 29 illustrates an exemplary synchronization sequence between two wireless terminals based on beacon signals, in accordance with an illustrative embodiment. Figure 30 illustrates an exemplary synchronization sequence between two wireless terminals based on beacon signals, in accordance with another exemplary embodiment. The figure illustrates an exemplary synchronization sequence between two wireless terminals based on a beacon signal in accordance with another exemplary embodiment. Figure 32 illustrates a plurality of 151133.docs having different capabilities including forming a special network. 102- 201112684 An exemplary communication system for a line communication device. Figure 33 illustrates a method of operating a communication device to establish and participate in a communication session with another device. Figure 34 illustrates a communication device that can be used as the system shown in Figure 32. An exemplary communication device of one of the drawings. Figure 35, which includes a combination of Figure 35A, Figure MB, and Figure 35C, illustrates a method of operating a communication device capable of operating in a cooperative mode of operation and a non-cooperative mode of operation.

圖36說明可用作圖32中所示之例示性系統的通信裝置中 之一者的另一例示性通信裝置。 圖37說明操作可充當其他I置(例如,圖32中所示之特 用網路之第-及第二通信裝置)之通信中間物之 的方法。 1 圖38說明可用以實施圖37中 置。 厅不之方法的例示性通信裝Figure 36 illustrates another exemplary communication device that can be used as one of the communication devices of the exemplary system shown in Figure 32. Figure 37 illustrates a method of operation that can serve as a communication intermediate for other I-sets (e.g., the first and second communication devices of the particular network shown in Figure 32). 1 Figure 38 illustrates the arrangement that can be used to implement Figure 37. An exemplary communication device for the method of the hall

圖39說明可用作圖32中所 的例示性通信裝置。 示之系統的通信裝 置中之一者 【主要元件符號說明】 100 特用通信網路 102 第一無線終端機 104 第二無線終端機 106 地理區 200 圖式 202 時間間隔 151133.doc -103 - 201112684 204 時間間隔 206 時間間隔 208 時間間隔 300 圖式 301 水平軸 302 垂直軸 304 小框 306 小黑框 308 信標信號叢發/信標符號叢發 310 信標信號叢發/信標符號叢發 312 信標信號叢發/信標符號叢發 400 圖式 401 水平軸 404 垂直矩形 406 黑矩形 408 平均傳輸功率 500 圖式 502 信標信號叢發A 504 信標信號叢發B 505 符號週期 506 信標信號叢發C 600 圖式 602 接通時間 604 接通時間 151133.doc • 104· 201112684Figure 39 illustrates an exemplary communication device that can be used in Figure 32. One of the communication devices of the system shown [main component symbol description] 100 special communication network 102 first wireless terminal 104 second wireless terminal 106 geographical area 200 graphic 202 time interval 151133.doc -103 - 201112684 204 Time interval 206 Time interval 208 Time interval 300 Figure 301 Horizontal axis 302 Vertical axis 304 Small frame 306 Small black frame 308 Beacon signal burst/beacon symbol burst 310 Beacon signal burst/beacon symbol burst 312 Beacon signal burst/beacon symbol cluster 400 Figure 401 Horizontal axis 404 Vertical rectangle 406 Black rectangle 408 Average transmission power 500 Figure 502 Beacon signal burst A 504 Beacon signal burst B 505 Symbol period 506 Beacon Signal burst C 600 Figure 602 On time 604 On time 151133.doc • 104· 201112684

606 關閉時間 700 圖式 701 水平軸 702 接通時間間隔 710 信標信號叢發 712 信標信號叢發 714 信標信號叢發 720 第一無線終端機 722 發射器 724 第二無線終端機 726 接收器 800 狀態圖 802 狀態 804 狀態 806 狀態 808 狀態 900 無線終端機 902 外殼 904 處理器 906 匯流排 910 記憶體 911 信標信號叢發 912 傳信/控制模組 913 信標信號叢發 151133.doc •105- 201112684 914 傳信/控制資料 915 同步模組 916 信標信號組態資訊 918 關閉時間組態資訊 930 無線通信介面模組 932 接收器模組 934 發射器模組 936 天線 938 雙工器 940 使用者輸入/輸出介面 942 使用者輸入裝置 944 使用者輸出裝置 1000 流程圖 1100 流程圖 1200 流程圖 ί 1300 流程圖 1310 連接節點A 1312 連接節點B 1314 當前時間資訊 1316 模式及/或狀態資訊 1318 優先權資訊 1324 信標作用旗標 1326 模式及/或狀態資訊 1328 優先權資訊 151133.doc -106- 201112684 1330 對等節點資訊 1336 資料傳輸旗標 1340 時間結構貧訊 1344 信標信號定義資訊 1348 信標符號功率位準資訊 1352 使用者儲備資訊 1356 使用者資料 1360 使用者資料符號功率位準資訊 1400 圖式 1402 垂直軸 1404 水平軸 1406 信標叢發1信號 1408 非叢發時間間隔 1410 信標叢發1信號 1412 非叢發時間間隔 1414 信標叢發1信號 1416 非叢發時間間隔 1418 信標叢發1信號 1420 非叢發時間間隔 1422 信標叢發信號/信標信號 1424 信標叢發信號/信標信號 1426 信標叢發信號/信標信號 1428 信標叢發信號/信標信號 1450 圖式 151133.doc • 107- 201112684 1452 垂直軸 1454 水平轴 1456 信標叢發1信號 1458 非叢發時間間隔 1460 信標叢發2信號 1462 非叢發時間間隔 1464 信標叢發3信號 1466 非叢發時間間隔 1468 信標叢發1信號 1470 非叢發時間間隔 1472 複合信標信號 1500 圖式 1502 圖例 1504 垂直轴 1506 水平軸 1508 信標叢發信號 1510 格線框/信標符號傳輸單位 1512 大寫字母B/信標符號B 1550 圖式 1552 圖例 1556 水平軸 1558 信標叢發信號 1600 圖式 1602 圖例 151133.doc -108- 201112684 1604 垂直軸 1606 水平軸 1608 水平轴 1610 信標叢發信號 1612 OFDM符號傳輸單位/正方形框 1614 信標符號傳輸單位/矩形框 1616 信標符號BS/大寫字母BS 1700 圖式 1702 垂直軸 1704 水平轴 1706 信標叢發1信號 1707 信標符號 1708 信標叢發2信號 1709 信標符號 1710 信標叢發3信號 1711 信標符號 1712 信標叢發1信號時間間隔τΒ1 1714 信標叢發2信號時間間隔TB2 1716 信標叢發3信號時間間隔TB3 1718 叢發之間的時間間隔Tbb 1/2 1720 叢發之間的時間間隔Tbb2/3 1800 圖式 1802 垂直軸 1804 水平軸 151133.doc -109- 201112684 1806 信標叢發1信號 1807 信標符號 1808 信標叢發2信號 1809 信標符號 1810 信標叢發3信號 1811 信標符號 1812 信標叢發1信號時間間隔τΒ1 1814 信標叢發2信號時間間隔TB2 1816 信標叢發3信號時間間隔TB3 1818 叢發之間的時間間隔ΤβΒ 1/2 1820 叢發之間的時間間隔Tbb2/3 1900 圖式 1902 垂直軸 1904 水平軸 1906 信標傳輸資源 1906' 信標傳輸資源 1906丨丨 信標傳輸資源 1906'" 信標傳輸資源 1908 其他使用資源 1908' 其他使用資源 1908" 其他使用資源 1908", 其他使用資源 2000 其他使用資源 2002 非叢發時間間隔 151133.doc -110- 201112684 2004 信標監視資源 2006 使用者資料傳輸/接收資源 2008 靜寂資源/未使用資源 2100 圖式 2102 信標傳輸叢發資源 2104 監視及接收信標資訊資源 2106 靜寂資源 2108 載頻調 2110 持續時間T 1 i n a e t i v e 2112 持續時間T2inactive 2114 持續時間T3inactjve 2150 圖式 2152 信標傳輸叢發資源 2154 監視及接收信標資訊資源 2156 使用者資料傳輸/接收資源 2158 靜寂資源 2162 持續時間Tlactive 2164 持續時間T2aCtive 2166 持續時間T3active 2168 持續時間T4aetive 2200 圖式 2202 圖例 2204 正方形 2206 有陰影之正方形/信標符號 151133.doc -111 - 201112684 2208 字母D 2209 第一時間間隔 2210 信標傳輸資源 2212 信標監視資源 2214 使用者資料傳輸/接收資源 2216 信標傳輸資源 2300 圖式 2302 圖例 2304 正方形 2306 大垂直箭頭/信標符號 2308 小箭頭 2310 小箭頭 2312 小箭頭 2314 小箭頭 2315 第一時間間隔 23 16 信標傳輸資源 2318 信標監視資源 2320 使用者資料傳輸/接收資源 2322 信標傳輸資源 2400 圖式 2402 圖例 2404 粗線矩形/信標叢發信號 2406 正方形框/信標符號傳輸單位 2410 信標信號資源 151133.doc -112- 201112684 2412 垂直軸 2414 水平軸 2416 粗體字母B/信標信號 2500 攜帶型無線終端機 2501 鏈路 2502 接收器模組 2503 雙工模組 2504 傳輸模組 2505 天線 2506 處理器 2507 鏈路 2508 使用者I/O裝置 2509 電源匯流排 2510 電源核組 2511 電池 2512 記憶體 2514 匯流排 2516 常式 2518 資料/資訊 2520 信標信號產生模組 2522 使用者資料信號產生模組 2524 傳輸功率控制模組 2526 信標信號傳輸控制模組 2528 模式控制模組 151133.doc -113- 201112684 2530 雙工控制模組 2532 儲存之信標信號特徵資訊 2534 使用者資料特徵資訊 2536 時序結構資訊 2538 空中鏈路資源資訊 2540 模式資訊 2542 產生之信標信號資訊 2544 產生之資料信號資訊 2546 雙工控制信號資訊 2547 使用者資料 2548 信標叢發1資訊 2550 信標叢發N資訊 2556 識別載運信標符號之信標傳輸單位的資訊 2558 信標叢發持續時間資訊 2560 信標符號資訊 2562 功率資訊 2564 群集資訊 2566 使用者資料功率資訊 2568 信標傳輸資源資訊 2570 其他使用資源資訊 2572 傳輸時序結構資訊 2574 信標叢發持續時間資訊 2576 信標叢發間距資訊 2578 樣式資訊 151133.doc -114- 201112684606 Shutdown time 700 Figure 701 Horizontal axis 702 On time interval 710 Beacon signal burst 712 Beacon signal burst 714 Beacon signal burst 720 First wireless terminal 722 Transmitter 724 Second wireless terminal 726 Receiver 800 State Diagram 802 State 804 State 806 State 808 State 900 Wireless Terminal 902 Enclosure 904 Processor 906 Bus 910 Memory 911 Beacon Signal 912 Transmitter/Control Module 913 Beacon Signal 151133.doc • 105 - 201112684 914 Communication/Control Data 915 Synchronization Module 916 Beacon Signal Configuration Information 918 Shutdown Time Configuration Information 930 Wireless Communication Interface Module 932 Receiver Module 934 Transmitter Module 936 Antenna 938 Duplexer 940 User Input/Output Interface 942 User Input Device 944 User Output Device 1000 Flowchart 1100 Flowchart 1200 Flowchart 1300 Flowchart 1310 Connection Node A 1312 Connection Node B 1314 Current Time Information 1316 Mode and/or Status Information 1318 Priority Information 1324 Beacon role flag 1326 mode and / or status information 1328 Priority Information 151133.doc -106- 201112684 1330 Peer Node Information 1336 Data Transmission Flag 1340 Time Structure Information 1344 Beacon Signal Definition Information 1348 Beacon Symbol Power Level Information 1352 User Reserve Information 1356 User Profile 1360 User data symbol power level information 1400 Figure 1402 Vertical axis 1404 Horizontal axis 1406 Beacon burst 1 signal 1408 Non-cluster time interval 1410 Beacon burst 1 signal 1412 Non-cluster time interval 1414 Beacon burst 1 signal 1416 non-cluster time interval 1418 beacon burst 1 signal 1420 non-cluster time interval 1422 beacon burst signal / beacon signal 1424 beacon burst signal / beacon signal 1426 beacon burst signal / beacon signal 1428 Beacon burst signal/beacon signal 1450 Figure 151133.doc • 107- 201112684 1452 Vertical axis 1454 Horizontal axis 1456 Beacon burst 1 signal 1458 Non-cluster time interval 1460 Beacon burst 2 signal 1462 Non-cluster time Interval 1464 beacon burst 3 signal 1466 non-cluster interval 1468 beacon burst 1 signal 1470 non-cluster interval 1472 Beacon signal 1500 Figure 1502 Legend 1504 Vertical axis 1506 Horizontal axis 1508 Beacon burst signal 1510 Grid box / Beacon symbol transmission unit 1512 Capital letter B / Beacon symbol B 1550 Figure 1552 Legend 1556 Horizontal axis 1558 Beacon Cluster signal 1600 Figure 1602 Figure 151133.doc -108- 201112684 1604 Vertical axis 1606 Horizontal axis 1608 Horizontal axis 1610 Beacon burst signal 1612 OFDM symbol transmission unit / square box 1614 Beacon symbol transmission unit / rectangular frame 1616 Beacon Symbol BS/Capital letter BS 1700 Figure 1702 Vertical axis 1704 Horizontal axis 1706 Beacon burst 1 signal 1707 Beacon symbol 1708 Beacon burst 2 signal 1709 Beacon symbol 1710 Beacon burst 3 signal 1711 Beacon symbol 1712 Letter Standard cluster 1 signal interval τΒ1 1714 Beacon burst 2 signal interval TB2 1716 Beacon burst 3 signal interval TB3 1718 Interval between bursts Tbb 1/2 1720 Interval between bursts Tbb2/ 3 1800 Figure 1802 Vertical axis 1804 Horizontal axis 151133.doc -109- 201112684 1806 Beacon burst 1 signal 1807 Beacon symbol 1808 Beacon Crowd 2 signal 1809 Beacon symbol 1810 Beacon burst 3 signal 1811 Beacon symbol 1812 Beacon burst 1 signal time interval τΒ1 1814 Beacon burst 2 signal time interval TB2 1816 Beacon burst 3 signal time interval TB3 1818 Time interval between bursts ΤβΒ 1/2 1820 Time interval between bursts Tbb2/3 1900 Figure 1902 Vertical axis 1904 Horizontal axis 1906 Beacon transmission resource 1906' Beacon transmission resource 1906 丨丨 Beacon transmission resource 1906 '" Beacon transmission resource 1908 Other use resources 1908' Other use resources 1908" Other use resources 1908", Other use resources 2000 Other use resources 2002 Non-cluster time interval 151133.doc -110- 201112684 2004 Beacon monitoring resource 2006 User Data Transmission/Reception Resources 2008 Quiet Resource/Unused Resources 2100 Figure 2102 Beacon Transmission Cluster Resources 2104 Monitoring and Receiving Beacon Information Resources 2106 Quiet Resource 2108 Carrier Frequency 2110 Duration T 1 inaetive 2112 Duration T2inactive 2114 Duration T3inactjve 2150 Figure 2152 Beacon Transmission Crowd Resources 2154 Monitoring and Receiving Beacon Information Resources 2156 User Data Transmission/Reception Resources 2158 Quiet Resource 2162 Duration Tlactive 2164 Duration T2aCtive 2166 Duration T3active 2168 Duration T4aetive 2200 Figure 2202 Figure 2204 Square 2206 Shaded Square/Letter Symbol 151133.doc -111 - 201112684 2208 Letter D 2209 First time interval 2210 Beacon transmission resource 2212 Beacon monitoring resource 2214 User data transmission/reception resource 2216 Beacon transmission resource 2300 Figure 2302 Figure 2304 Square 2306 Large vertical Arrow/beacon symbol 2308 Small arrow 2310 Small arrow 2312 Small arrow 2314 Small arrow 2315 First time interval 23 16 Beacon transmission resource 2318 Beacon monitoring resource 2320 User data transmission/reception resource 2322 Beacon transmission resource 2400 Figure 2402 Legend 2404 Thick line rectangle/beacon burst signal 2406 Square box/beacon symbol transmission unit 2410 Beacon signal resource 151133.doc -112- 201112684 2412 Vertical axis 2414 Horizontal axis 2416 Bold letter B/beacon signal 2500 Portable Line Terminal 2501 Link 2502 Receiver Module 2503 Duplex Module 2504 Transmission Module 2505 Antenna 2506 Processor 2507 Link 2508 User I/O Device 2509 Power Bus 2510 Power Core Group 2511 Battery 2512 Memory 2514 Confluence Row 2516 Normal 2518 Information/Information 2520 Beacon Signal Generation Module 2522 User Profile Signal Generation Module 2524 Transmission Power Control Module 2526 Beacon Signal Transmission Control Module 2528 Mode Control Module 151133.doc -113- 201112684 2530 Duplex control module 2532 Stored beacon signal feature information 2534 User profile information 2536 Timing structure information 2538 Air link resource information 2540 Mode information 2542 Generated beacon signal information 2544 Generated data signal information 2546 Duplex control signal Information 2547 User Information 2548 Beacons 1 Information 2550 Beacons N Information 2556 Identification of beacon transmission unit information of carrier beacons 2558 Beacon burst duration information 2560 Beacon symbol information 2562 Power information 2564 Cluster Information 2566 User Data Power News beacon transmission resource information 2568 2570 2572 Other resources information transmission timing structure information 2574 beacon burst duration information 2576 beacon burst spacing information 2578 style information 151133.doc -114- 201112684

2580 資料信號傳輸資訊 2582 信號 2584 信號 2586 信號 2588 信號 2600 流程圖 2605 時間貢訊 2613 連接節點A 2615 調整資訊 2700 攜帶型無線終端機 2701 鍵路 2702 接收器模組 2703 雙工模組 2704 傳輸模組 2705 天線 2706 處理器 2707 鏈路 2708 使用者I/O裝置 2709 電源匯流排 2710 電源核組 2711 電池 2712 記憶體 2714 匯流排 2716 常式 151133.doc -115- 201112684 2718 資料/資訊 2720 信標信號偵測模組 2722 靜寂狀態控制模組 2724 傳輸時間調整模組 2726 傳輸控制模組 2728 通信會期起始模組 2730 信摞偵測控制模組 2732 時序調整模組 2734 模式控制學組 2736 信標信號產生模組 2738 使用者資料信號產生模組 2740 使用者資料恢復模組 2742 雙工控制模組 2744 當前模式資訊 2746 當前時間資訊 2748 產生之信標信號部分 2750 偵測之信標旗標 2752 基於偽隨機之時序偏移 2754 偵測之信標信號部分 2756 基於偵測之信標信號部分的判定之時序偏移 2758 通信會期狀態資訊 2760 會期作用旗標 2762 對等節點識別資訊 2764 時序結構資訊 151133.doc • 116- 201112684 2766 間隔之時序關係資訊 2768 模式資訊 2769 初始搜尋模式資訊 2770 非作用中模式資訊 2772 作用中模式資訊 2774 產生之使用者資料信號 2776 接收之使用者資料信號 2778 信號 2780 信號 2782 信號 2784 信號 2800 圖式 2801 水平軸 2802 時間 2804 區塊 2806 時間 2808 區塊 2810 時間 2812 區塊 2814 時間 2815 區塊 2816 時間 2818 區塊 2820 區塊 151133.doc -117- 201112684 2822 區塊 2824 時間 2826 區塊 2828 時間 2830 區塊 2832 箭頭序列 2834 箭頭序列 2900 圖式 2902 圖式 2904 圖式 2906 無線終端機1信標傳輸間隔 2908 無線終端機1信標接收時間間隔 2910 無線終端機1使用者資料TX/RX間隔 2912 WT 1靜寂間隔 2914 無線終端機2信標傳輸間隔 2916 無線終端機2信標接收時間間隔 2918 無線終端機2使用者資料TX/RX間隔 2920 WT 2靜寂間隔 2922 使用者資料TX/RX區域之重疊部分 3000 圖式 3002 圖式 3004 圖式 3006 無線終端機1信標接收間隔 3008 無線終端機1信標傳輸間隔 151133.doc -118- 2011126842580 data signal transmission information 2582 signal 2584 signal 2586 signal 2588 signal 2600 flow chart 2605 time Gongxun 2613 connection node A 2615 adjustment information 2700 portable wireless terminal 2701 key 2702 receiver module 2703 duplex module 2704 transmission module 2705 Antenna 2706 Processor 2707 Link 2708 User I/O Device 2709 Power Bus 2710 Power Core Group 2711 Battery 2712 Memory 2714 Bus Bar 2716 Normal 151133.doc -115- 201112684 2718 Information / Information 2720 Beacon Signal Detect Test module 2722 Quiet state control module 2724 Transmission time adjustment module 2726 Transmission control module 2728 Communication session start module 2730 Signal detection control module 2732 Timing adjustment module 2734 Mode control group 2736 Beacon Signal Generation Module 2738 User Data Signal Generation Module 2740 User Data Recovery Module 2742 Duplex Control Module 2744 Current Mode Information 2746 Current Time Information 2748 Generated Beacon Signal Part 2750 Detected Beacon Flag 2752 Based on Pseudo-random timing offset 2754 detection letter The signal portion 2756 is based on the timing offset of the decision of the detected beacon signal portion. 2758 Communication session status information 2760 Session flag 2762 Peer node identification information 2764 Timing structure information 151133.doc • 116- 201112684 2766 Interval timing Relationship Information 2768 Mode Information 2769 Initial Search Mode Information 2770 Inactive Mode Information 2772 Active Mode Information 2774 Generated User Profile Signal 2776 Received User Profile Signal 2778 Signal 2780 Signal 2782 Signal 2784 Signal 2800 Figure 2801 Horizontal Axis 2802 Time 2804 Block 2806 Time 2808 Block 2810 Time 2812 Block 2814 Time 2815 Block 2816 Time 2818 Block 2820 Block 151133.doc -117- 201112684 2822 Block 2824 Time 2826 Block 2828 Time 2830 Block 2832 Arrow Sequence 2834 arrow sequence 2900 schema 2902 schema 2904 schema 2906 wireless terminal 1 beacon transmission interval 2908 wireless terminal 1 beacon reception interval 2910 wireless terminal 1 user data TX/RX interval 2912 WT 1 silence interval 2914 no Line terminal 2 beacon transmission interval 2916 wireless terminal 2 beacon reception time interval 2918 wireless terminal 2 user data TX/RX interval 2920 WT 2 silence interval 2922 User data TX/RX area overlap portion 3000 3002 Figure 3004 Figure 3006 Wireless Terminal 1 Beacon Reception Interval 3008 Wireless Terminal 1 Beacon Transmission Interval 151133.doc -118- 201112684

3010 無線終端機1信標接收時間間隔 3012 無線終端機1使用者資料TX/RX間隔 3014 WT 1靜寂間隔 3016 無線終端機2信標接收間隔 3018 無線終端機2信標傳輸間隔 3020 無線終端機2信標接收時間間隔 3022 無線終端機2使用者資料τχ/RX間隔 3024 WT 2靜寂間隔 3026 使用者資料ΤΧ/RX區域之重疊部分 3100 圖式 3102 圖式 3104 圖式 3106 無線終端機1信標傳輸間隔 3108 無線終端機1信標接收時間間隔 3110 無線終端機1使用者資料τχ/RX間隔 3112 WT 1靜寂間隔 3114 無線終端機2信標傳輸間隔 3116 無線終端機2信標接收時間間隔 3118 無線終端機2使用者資料τχ/RX間隔 3120 WT 2靜寂間隔 3200 通化區域 3201 第一無線終端機 3202 第二無線終端機 3203 第三無線終端機 151133.doc •119- 201112684 3210 CDMA信號 3212 OFDM信號 3220 信號 3400 無線終端機 3402 接收器模組 3403 接收天線 3404 發射器模組 3405 傳輸天線 3406 處理器 3408 使用者I/O裝置 3410 記憶體 3412 匯流排 3414 常式 3416 資料/資訊 3418 第二通信協定選擇模組 3420 裝置組態模組 3422 使用者資料恢復模組 3424 信標符號偵測模組 3426 信標信號資訊恢復模組 3428 信標信號產生模組 3430 接收之裝置能力資訊 3432 第一協定資訊 3434 識別選定之第二通信協定之資訊 3436 指示選定之裝置組態之資訊 151133.doc -120- 201112684 3438 指示由第二裝置支援之通信協定之資訊 3440 GSM協定資訊 3442 CDMA協定育§il 3444 OFDM協定資訊 3446 恢復之使用者資料 3448 偵測之信標符號之資訊 3450 信標符號能級偵測標準資訊 3452 待傳輸之裝置能力資訊 Φ 3454 產生之信標信號 3456 信標信號資訊編碼/解碼資訊 3600 無線終端機 3602 接收器模組 3603 接收天線 3604 發射器模組 3605 傳輸天線 3606 處理器 ® 3608 使用者I/O裝置 3610 記憶體 3612 匯流排 3614 常式 3616 資料/資訊 3618 模式判定模組 3620 模式選擇模組 3622 通信模組 151133.doc -121 - 201112684 3624 3626 3630 3632 3634 3636 3638 3640 3642 3644 3648 3652 3654 3656 3658 4000 4002 4003 4004 4005 4006 4008 4010 資料輸送量最大化模組 干擾控制模組 服務提供者子模組 使用者群組子模組 接收之第二裝置信號資訊 相對於第二裝置之判定關係資訊 判定之第二裝置操作模式 判定之第二裝置服務提供者資訊 判定之第二裝置使用者群組資訊 指示選定之操作模式之資訊/接收之干擾控 制信號 第三裝置識別資訊 服務提供者資訊 使用者群組資訊 非合作服務提供者資訊 非合作使用者群組資訊 無線終端機 接收器模組 接收天線 傳輸模組 傳輸天線 處理器 使用者I/O裝置 記憶體 151133.doc -122- 201112684 4012 匯流排 4014 常式 4016 資料/資訊 4018 通信轉遞模組 4020 網路層連接性模組 4022 第二通信協定模組 4024 第三通信協定模組 4026 第一實體層通信協定模組 4028 第二實體層通信協定模組 4030 第三實體層通信協定模組 4032 中繼追蹤模組 4034 對應於裝置1的接收之裝置能力資訊 4036 對應於裝置2的接收之裝置能力資訊 4038 第一通信協定資訊 4039 第二通信協定資訊 4040 實體層協定1資訊 4041 第三通信協定資訊 4042 貫體層協定m育訊 4044 MAC層協定1資訊 4048 網路層協定1資訊 4050 網路層協定Μ資訊 4052 較高層級協定1資訊 4054 較而層級協定Ν資訊 4056 裝置1協定使用資訊 151133.doc -123 - 201112684 4058 4060 4062 4064 4066 4068 4070 4072 4074 4100 4102 4103 4104 4105 4106 4108 4110 4112 4114 4116 4118 4120 4122 裝置2協定使用資訊 裝置1/裴置2協定轉換資訊 用於裝置2的裝置1接收信號資訊 意欲用於裝置2的處理之裝置1接收資訊 ,欲用於裝置i的裝置2接收信號資訊 思钬用於裝置1的處理之裝置2接收資訊 裝置能力資訊 產生之信標信號 累積量之中繼服務提供之資訊 無線終端機 接收器模組 接收天線 發射器模組 傳輸天線 處理器 使用者I/O裝置 記憶體 匯流排 常式 資料/資訊 裝置組態選擇模組/接收之第二裝置信標信 號資訊 組態控制模組/第二裝置能力資訊 弟二通信協定處理模組/恢復之第二裝置能 151133.doc 201112684 力資訊 4124 裝置能力資訊恢復模組/選定之裝置組態資訊 4126 選定之第二通信協定識別資訊 4128 待處理之接收信號 4130 處理之信號 4132 信標傳信協定資訊 4134 值1 4136 裝置能力資訊集合 4138 值N 4140 裝置能力資訊集合 4142 替代之第二通信協定之協定資訊 4144 類型1 OFDM協定資訊 4146 類型n OFDM協定資訊 4148 類型1 CDMA資訊 4150 類型N CDMA協定資訊 4152 類型1 GSM協定資訊 4154 類型N GSM協定資訊 6004 連接節點 6018 連接節點 151133.doc • 125·3010 wireless terminal 1 beacon reception time interval 3012 wireless terminal 1 user data TX/RX interval 3014 WT 1 silence interval 3016 wireless terminal 2 beacon reception interval 3018 wireless terminal 2 beacon transmission interval 3020 wireless terminal 2 Beacon reception time interval 3022 Wireless terminal 2 User data τχ/RX interval 3024 WT 2 Quiet interval 3026 User data ΤΧ / RX area overlap 3100 Figure 3102 Figure 3104 Figure 3106 Wireless terminal 1 letter Standard transmission interval 3108 Wireless terminal 1 Beacon reception time interval 3110 Wireless terminal 1 User data τ χ / RX interval 3112 WT 1 Silent interval 3114 Wireless terminal 2 Beacon transmission interval 3116 Wireless terminal 2 Beacon reception interval 3118 Wireless Terminal 2 User Data τχ/RX Interval 3120 WT 2 Silence Interval 3200 Tonghua Area 3201 First Wireless Terminal 3202 Second Wireless Terminal 3203 Third Wireless Terminal 151133.doc • 119- 201112684 3210 CDMA Signal 3212 OFDM signal 3220 signal 3400 wireless terminal 3402 receiver module 3403 receiving antenna 3404 transmitter module 34 05 Transmission Antenna 3406 Processor 3408 User I/O Device 3410 Memory 3412 Bus 3414 Normal 3416 Information/Information 3418 Second Communication Protocol Selection Module 3420 Device Configuration Module 3422 User Data Recovery Module 3424 Beacon Symbol detection module 3426 Beacon signal information recovery module 3428 Beacon signal generation module 3430 Received device capability information 3432 First protocol information 3434 Identification of selected second communication protocol information 3436 Information indicating selected device configuration 151133.doc -120- 201112684 3438 Information indicating the communication protocol supported by the second device 3440 GSM Protocol Information 3442 CDMA Agreement §il 3444 OFDM Protocol Information 3446 Recovered User Data 3448 Information for Beacon Symbols Detected 3450 Letter Marker level detection standard information 3452 Device capability information to be transmitted Φ 3454 Generated beacon signal 3456 Beacon signal information encoding/decoding information 3600 Wireless terminal 3602 Receiver module 3603 Receiver antenna 3604 Transmitter module 3605 Transmission Antenna 3606 Processor® 3608 User I/O Device 3610 Recall 3612 Bus 3614 Normal 3616 Data / Information 3618 Mode Judgment Module 3620 Mode Selection Module 3622 Communication Module 151133.doc -121 - 201112684 3624 3626 3630 3632 3634 3636 3638 3640 3642 3644 3648 3652 3654 3656 3658 4000 4002 4003 4004 4005 4006 4008 4010 Data Transfer Maximization Module Interference Control Module Service Provider Sub-module User Group Sub-module Received Second Device Signal Information Relative to Second Device Decision Relationship Information Determination Second The second device service group information determined by the second device service provider information determined by the device operation mode indicates the information of the selected operation mode/interference interference control signal, the third device identification information service provider information user group information is not Cooperative Service Provider Information Non-Cooperative User Group Information Wireless Terminal Receiver Module Receive Antenna Transmission Module Transmission Antenna Processor User I/O Device Memory 151133.doc -122- 201112684 4012 Busbar 4014 Normal 4016 Information / Information 4018 Communication Transfer Module 4020 Network Layer Connectivity Group 4022 second communication protocol module 4024 third communication protocol module 4026 first physical layer communication protocol module 4028 second physical layer communication protocol module 4030 third physical layer communication protocol module 4032 relay tracking module 4034 corresponding The device capability information 4036 received at the device 1 corresponds to the device capability information 4038 received by the device 2. The first communication agreement information 4039 the second communication agreement information 4040 the physical layer agreement 1 information 4041 the third communication agreement information 4042 the cross-layer agreement m 4044 MAC layer protocol 1 information 4048 network layer agreement 1 information 4050 network layer agreement Μ information 4052 higher level agreement 1 information 4054 level agreement Ν information 4056 device 1 agreement usage information 151133.doc -123 - 201112684 4058 4060 4062 4064 4066 4068 4070 4072 4074 4100 4102 4103 4104 4105 4106 4108 4110 4112 4114 4116 4118 4120 4122 Device 2 protocol using information device 1 / device 2 protocol conversion information device 1 for device 2 receiving signal information intended for device 2 The processing device 1 receives the information, and the device 2 to be used for the device i receives the signal information装置 Device 2 for processing of device 1 receives information of the amount of beacon signal generated by information device capability information. The information provided by the relay service is provided by the wireless terminal receiver module receiving antenna transmitter module transmitting antenna processor user I/ O device memory bus routine data / information device configuration selection module / receiving second device beacon signal information configuration control module / second device capability information brother two communication protocol processing module / recovery second Device can 151133.doc 201112684 force information 4124 device capability information recovery module / selected device configuration information 4126 selected second communication agreement identification information 4128 pending reception signal 4130 processed signal 4132 beacon transmission agreement information 4134 value 1 4136 Device Capability Information Set 4138 Value N 4140 Device Capability Information Set 4142 Substitute Agreement for Second Communication Protocol 4144 Type 1 OFDM Protocol Information 4146 Type n OFDM Protocol Information 4148 Type 1 CDMA Information 4150 Type N CDMA Protocol Information 4152 Type 1 GSM Protocol Information 4154 Type N GSM Protocol Information 6004 Connection Node 6018 Connection node 151133.doc • 125·

Claims (1)

201112684 七、申請專利範圍: 1. 一種操作一第一無線通信裝置之方法,該方法包含: 歸因於一第二無線通信裝置在該第一無線通信裝置之 範圍内傳輸信號之存在,判定該第一無線通信裝置是否 以一由該第一無線通信裝置所選擇之操作模式操作;及 回應於偵測該第二無線通信裝置不再在該第一無線通 信裝置之範圍内傳輸信號,選擇一合作通信操作模式與 一非合作通信操作模式中之一者。 • 2.如請求項1之方法,其中該選擇包括: 從接收自一第三無線通信裝置之信號以判定該第三無 線通信裝置與該第一無線通信裝置為一合作通信關係或 一非合作通信關係;及 基於該經接收的信號之該判定,選擇該合作通信操作 模式與該非合作通信操作模式中之一者。 3.如請求項2之方法’其中該選擇進一步包括: 基於一經選擇之操作模式,當操作於該經選擇之操作 ® 模式來選擇一被用於與該第三無線通信裝置通信之裝置 組態。 4·如請求項3之方法,其中選擇該裝置組態包括: 若該第一無線通信裝置歸因於該第二無線通信裝置自 一使用一第一通信協定之裝置組態切換至一第二通彳§協 定,切換至一支援該第一通信協定之裝置組態;及 當與該第三無線通信裝置通信時,操作於該經選擇之 操作模式。 15U33.doc 201112684 5. 6. 7. 8. 如請求項4之方、土 , ,,八中該經選擇之操作模式勹紅 …作模式,該操作於一非合作操气非 操作以最大化該等第—與第三無線通"f驟包含 輸送量,而不管對任何其他通信裝置之—㈣間的倉料 如請求項4之方法’其中操作於_ ?摔; 忽略-自該第三無線通㈣松式包含 如請求項4之方法:苴中:婉、s 控制信號。 & m㈣擇之操作模式包括—合 作#作模式,該操作於—合作操作模式之步驟包含回^ 一接收自該第三無線通信裝置之干擾控制信號。 〜 種操作第一無線通仏裝置之設備,該設備包含: 用=歸因於-第二無線通信裝置在該第一無線通信裝 置之範圍内傳輸信號之存在’判定該第—無線通信裝置 是否以一由該第一無線通信裝置所選擇之操作模式操作 之構件;及 用於回應於偵測該第二無線通信裝置不再在該第一無 線通信裝置之範圍内傳輸信號,選擇一合作通信操作模 式與一非合作通信操作模式中之一者之構件。 9. 如請求項8之設備,其中該用於選擇之構件包括: 用於從接收自一第三無線通信裝置之信號以判定該第 三無線通信裝置與該第一無線通信裝置為一合作通信關 係或一非合作通信關係之構件;及 用於基於該經接收的信號之該判定,選擇該合作通信 操作模式與該非合作通信操作模式中之一者之構件。 10. 如請求項9之設備,其中該用於選擇之構件進一步包 151133.doc -2- 201112684 括: 用於基於ί選擇之操作模式,當操作於該經選擇之 操作模式來選擇-被用於與該第三無線通信裝置通信之 裝置組態之構件。 U.如請求項10之設備,其中用於選擇該裝置組態之構件包 括· 用於若該第一益繞ii传#里m …、 。裝置知因於該第二無線通信裴 置自-使用-第一通信協定之裝置組態切換至一第二通 :協定’切換至—支援㈣—通信協定之^組態之構 件;及 Θ 用於當與該第三無線通信裝 擇之操作模式之構件。裝置則,作於該經選 求項11之設備’其中該經選擇之操作模式包括—非 二作=作模式,操作於-非合作操_式之步驟包含摔 作以最大化該等第一與第三盔線 、 、笔旦 Λ ”、、踝逋彳5裝置之間的資料輸 送f,而不管對任何其他通信裝置之—影響 13.如請求項η之設備,其中用於操作 : 之構件包含用於忽略一自該第三無線 擾控制信號之構件。 置接收之干 14·=項11之設備,其中該經選擇之操作模式包括一 :操作模式,操作於-合作操作模式之步驟包含二 接收自該第三無線通信裝置之干擾控制信,虎 - 15· —種電腦可讀媒體,其包含若干指令儲於 等指令從該電腦可讀媒體讀取且藉由一處理=上丄1該 會造成該處理器實施請求項丨〜7之方法。益執仃時, 151133.doc201112684 VII. Patent Application Range: 1. A method of operating a first wireless communication device, the method comprising: determining that the second wireless communication device transmits a signal within a range of the first wireless communication device Whether the first wireless communication device operates in an operation mode selected by the first wireless communication device; and in response to detecting that the second wireless communication device is no longer transmitting signals within the range of the first wireless communication device, selecting one One of a cooperative communication mode of operation and a non-cooperative communication mode of operation. 2. The method of claim 1, wherein the selecting comprises: determining, by the signal received from a third wireless communication device, that the third wireless communication device is in a cooperative communication relationship with the first wireless communication device or a non-cooperation a communication relationship; and based on the determination of the received signal, selecting one of the cooperative communication mode of operation and the non-cooperative communication mode of operation. 3. The method of claim 2 wherein the selecting further comprises: selecting a device configuration for communicating with the third wireless communication device when operating in the selected operation mode based on the selected mode of operation . 4. The method of claim 3, wherein selecting the device configuration comprises: if the first wireless communication device switches to a second from a device configuration using a first communication protocol due to the second wireless communication device Switching to a device configuration supporting the first communication protocol; and operating in the selected mode of operation when communicating with the third wireless communication device. 15U33.doc 201112684 5. 6. 7. 8. If the selected operation mode is blush... as the mode, the operation is in a non-cooperative operation to maximize The first-to-third wireless communication"f includes the delivery amount, regardless of any other communication device-(four) the warehouse item, such as the method of claim 4, wherein the operation is in the _? fall; The three-wireless (four) loose type includes the method of claim 4: 苴: 婉, s control signal. The & m (d) mode of operation comprises a - cooperative mode, the step of operating in the cooperative mode of operation comprising receiving an interference control signal received from the third wireless communication device. a device for operating a first wireless communication device, the device comprising: determining whether the first wireless communication device is determined by using - attributed to - the second wireless communication device transmitting a signal within the range of the first wireless communication device a component operating in an operational mode selected by the first wireless communication device; and responsive to detecting that the second wireless communication device is no longer transmitting signals within the range of the first wireless communication device, selecting a cooperative communication A component of an operational mode and one of the non-cooperative communication modes of operation. 9. The device of claim 8, wherein the means for selecting comprises: means for receiving a signal from a third wireless communication device to determine that the third wireless communication device is in cooperative communication with the first wireless communication device a member of a relationship or a non-cooperative communication relationship; and means for selecting one of the cooperative communication mode of operation and the non-cooperative communication mode of operation based on the determination of the received signal. 10. The device of claim 9, wherein the means for selecting further comprises 151133.doc -2- 201112684: for operating mode based on ί selection, when operating in the selected mode of operation to select - is used A component of a device configuration in communication with the third wireless communication device. U. The device of claim 10, wherein the means for selecting the configuration of the device comprises: for the first benefit ii pass # in m ..., . The device is configured to switch from the device configuration of the second wireless communication device to the first communication protocol to a second communication: a component of the configuration of the 'switching to-supporting (four)-communication protocol; and A component of an operational mode that is selected for communication with the third wireless communication. The device, in the device of the selected item 11, wherein the selected mode of operation comprises a non-two operation mode, and the step of operating in the non-cooperation mode comprises a fall to maximize the first Data transfer between the third helmet line, the pen Λ 、, 踝逋彳 5 device, regardless of any other communication device - 13. The device of claim η, where for operation: The means includes means for ignoring a signal from the third radio disturbance control signal. The apparatus for receiving the data of the item 14 wherein the selected mode of operation comprises: an operation mode, the step of operating in the cooperative mode of operation Including two interference control signals received from the third wireless communication device, the computer readable medium containing a plurality of instructions stored in the computer readable medium and processed by a processing = uploading 1 This will cause the processor to implement the method of request item 丨~7. When it is implemented, 151133.doc
TW099134473A 2006-09-15 2007-01-11 Communication methods and apparatus relating to cooperative and non-cooperative modes of operation TWI532342B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US84505206P 2006-09-15 2006-09-15
US84505106P 2006-09-15 2006-09-15
US86330406P 2006-10-27 2006-10-27

Publications (2)

Publication Number Publication Date
TW201112684A true TW201112684A (en) 2011-04-01
TWI532342B TWI532342B (en) 2016-05-01

Family

ID=44909337

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099134473A TWI532342B (en) 2006-09-15 2007-01-11 Communication methods and apparatus relating to cooperative and non-cooperative modes of operation
TW99139642A TWI467964B (en) 2006-09-15 2007-01-11 Methods and apparatus for establishing communications between devices with differing capabilities

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW99139642A TWI467964B (en) 2006-09-15 2007-01-11 Methods and apparatus for establishing communications between devices with differing capabilities

Country Status (1)

Country Link
TW (2) TWI532342B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447546B (en) * 2011-08-17 2014-08-01 Ecolumina Technologies Inc Multi-protocol power switch control network
CN110602669B (en) 2012-05-09 2023-08-18 交互数字专利控股公司 Handling MTC long DRX cycle/sleep length
US20180091994A1 (en) * 2016-09-26 2018-03-29 Qualcomm Incorporated Techniques for wlan measurements for unlicensed spectrum communications
DE112016006755B4 (en) * 2016-11-14 2020-06-18 Mitsubishi Electric Corporation Network system and communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013145B1 (en) * 2000-08-22 2006-03-14 Cellco Partnership Methods and apparatus for utilizing radio frequency spectrum simultaneously and concurrently in the presence of co-channel and/or adjacent channel television signals by adjusting transmitter power or receiver sensitivity
US7103314B2 (en) * 2002-12-27 2006-09-05 Atheros Communications, Inc. System and method of conforming wireless devices to worldwide regulations
AU2005261328A1 (en) * 2004-07-09 2006-01-19 Koninklijke Philips Electronics, N.V. Enhanced site report in an IEEE 802.11 wireless network

Also Published As

Publication number Publication date
TWI467964B (en) 2015-01-01
TW201112685A (en) 2011-04-01
TWI532342B (en) 2016-05-01

Similar Documents

Publication Publication Date Title
TWI339042B (en) Communication methods and apparatus relating to cooperative and non-cooperative modes of operation
RU2693592C1 (en) Method, device and a computer program product for a service detection proxy session for wireless communication
JP5269898B2 (en) Paging execution in wireless peer-to-peer networks
US7984132B2 (en) Multi-rate peer discovery methods and apparatus
JP2008219358A (en) Radio communication system, radio communication equipment, radio communication method, and computer program
TW200920034A (en) Methods and apparatus related to peer to peer communications timing structure
JP2005101756A (en) Wireless communication system, wireless communication apparatus, wireless communications method, and computer program
TW201112684A (en) Communication methods and apparatus relating to cooperative and non-cooperative modes of operation
TW202345633A (en) Managing hopping target wake times for wireless networks