TW201112650A - Amplifier and receiver for a wireless communication system - Google Patents

Amplifier and receiver for a wireless communication system Download PDF

Info

Publication number
TW201112650A
TW201112650A TW099129875A TW99129875A TW201112650A TW 201112650 A TW201112650 A TW 201112650A TW 099129875 A TW099129875 A TW 099129875A TW 99129875 A TW99129875 A TW 99129875A TW 201112650 A TW201112650 A TW 201112650A
Authority
TW
Taiwan
Prior art keywords
amplifier
input
signal
bias
block
Prior art date
Application number
TW099129875A
Other languages
Chinese (zh)
Inventor
Siu-Chuang Ivan Lu
George Chien
Yen-Horng Chen
Chi-Yao Yu
Lan-Chou Cho
Chih-Chun Tang
Original Assignee
Mediatek Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/612,683 external-priority patent/US8929848B2/en
Priority claimed from US12/835,720 external-priority patent/US20100279641A1/en
Application filed by Mediatek Singapore Pte Ltd filed Critical Mediatek Singapore Pte Ltd
Publication of TW201112650A publication Critical patent/TW201112650A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45386Indexing scheme relating to differential amplifiers the AAC comprising one or more coils in the source circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7236Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers by (a ) switch(es)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

One exemplary receiver for a wireless communication system includes a plurality of signal processing components arranged to generate a receiver output according to a radio frequency (RF) signal. The signal processing components include amplifiers having a class-AB biased amplifier included therein. The signal processing components are disposed in a chip, and the class-AB biased amplifier is an amplifier which processes a signal corresponding to the RF signal before any other amplifier included in the chip. Another exemplary receiver for a wireless communication system includes an RF signal processor and a frequency conversion interface. The RF signal processor is to generate an RF signal, and has a class-AB biased amplifier arranged to apply amplification upon the RF signal. The frequency conversion interface is coupled to the RF signal processor, and used for receiving the RF signal generated from the RF signal processor and generating a down-converted result of the RF signal.

Description

201112650 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種無線通訊系統接收器’尤指一種可抑制 雜訊(interference-robust)的接收器’可為無線通訊系統提供高 線性基頻訊號並且具有高動態範圍和改善的功率效率。 【先前技術】 設計無線通訊系統的射頻(radio frequency,RF)接收器時, 一個重要的考量是在面對強烈頻外(〇ut-of-band)干擾下,能夠 偵測微弱的頻内(in-band)訊號。若接收器的線性度不足,頻外 訊號干擾會讓接收器呈現飽和(saturate),而且會阻擔頻内訊 號,因此一般會在接收器之前級設置一表面聲波(surface acoustic wave,SAW)濾波器以改善此種問題。SAW濾波器是一 種具高品質因素(quality factor,Q)之帶通(band-pass)濾波器,因 此能對頻外訊號提供通常大於20dB的高抑制比(rejecti〇n ratio),以滿足接收器的線性度需求。 第1圖為先刚技術應用於無線通訊系統中的接收器1 〇〇的 功能方塊圖。接收器1〇〇包含SAW濾波器1〇2、RF訊號處理 器110、頻率轉換介面12〇,以及類比訊號處理器13〇。saw 濾波器102為頻率選擇裝置,能傳送尺!?訊號之頻内部分並衰 減RF訊號之頻外部分。RF訊號處理器11〇包含匹配網路 201112650 气(matching network)112 和低雜訊放大器(low noise amplifier, LNA)114,匹配網路112能提供功率或雜訊匹配,而低雜訊放 大器114能增強訊號強度。先前技術之頻率轉換介面12〇包含 混頻器(mixer)126 ’其依據本地振盈(iocai 〇sciiiat〇r,l〇)訊號來 運作。經過訊號過濾和訊號增強後,混頻器126會將RF訊號 降頻至中間頻率訊號,以提供給後級(例如類比訊號處理器13〇) 運作所需之訊號。201112650 VI. Description of the Invention: [Technical Field] The present invention relates to a wireless communication system receiver, particularly a receiver capable of suppressing interference-robust, which can provide a high linear fundamental frequency for a wireless communication system. Signals and have high dynamic range and improved power efficiency. [Prior Art] When designing a radio frequency (RF) receiver for a wireless communication system, an important consideration is to be able to detect weak frequencies in the face of strong 〇ut-of-band interference ( In-band) signal. If the linearity of the receiver is insufficient, the extra-frequency signal interference will saturate the receiver and will block the intra-frequency signal. Therefore, a surface acoustic wave (SAW) filter is usually set in the receiver stage. To improve this problem. The SAW filter is a band-pass filter with a high quality factor (Q), so it can provide a high rejection ratio (rejecti〇n ratio) of usually more than 20dB for the out-of-band signal to meet the reception. Linearity requirements of the device. Figure 1 is a functional block diagram of the first application of the first application to the receiver 1 in a wireless communication system. The receiver 1A includes a SAW filter 1A2, an RF signal processor 110, a frequency conversion interface 12A, and an analog signal processor 13A. The saw filter 102 is a frequency selection device capable of transmitting a ruler!? The intra-frequency portion of the signal is also attenuated by the extra-frequency portion of the RF signal. The RF signal processor 11 includes a matching network 201112650 matching network 112 and a low noise amplifier (LNA) 114, the matching network 112 can provide power or noise matching, and the low noise amplifier 114 can Enhance signal strength. The prior art frequency conversion interface 12A includes a mixer 126' which operates in accordance with a local vibration (iocai 〇sciiiat〇r, l〇) signal. After signal filtering and signal enhancement, the mixer 126 downconverts the RF signal to an intermediate frequency signal to provide the signals needed for operation of the subsequent stage (e.g., the analog signal processor 13A).

籲 先前技術之接收器1〇0有許多缺點:首先,SAW濾波器的 頻内訊號的衰減會降低訊號偵測能力,因此先前技術在SAW 濾波器之後需使用更敏感的接收器1〇〇 ;更重要的是,在現今 常見的採用石夕(silicon)技術或石夕錯(silic〇nger_ium)技 術之互補金屬氧化物半導體(CM0S)製程或雙載子互補金屬氧 化物半導體⑼CMOS)製程中,目前尚無任何符合經濟效益之 方法能在同-製程内製作SAW濾波器和其後級之主動電路。 因此’ 滤波器會在通訊裝置内佔據極大的電路空間,且 b曰加生產成本w應用在多頻無線通訊系統時前述問題更為 顯著。並且,低雜訊放大器114運作於A類(d齡A)模式中, 需要較大的功率消耗。 【發明内容】 . 冑鑑於此’本發明提供-種無線通訊系統接收器以及放大 器以解決上述問題。 201112650 本發明提供一種無線通訊系統接收器,包含:多個訊號處 理元件’用來根據一射頻訊號產生一接收器輪出,所述多個訊 號處理元件包括放大器,其中所述放大器中包含一 AB類偏壓 放大器;其中所述多個訊號處理元件設置於—晶片上,且所述 AB類偏壓放大器在所述晶片包含的其他放大器之前處理對應 於所述射頻訊號的一訊號。 本發明另提供一種無線通訊系統接收器,包含:一射頻訊 號處理器,用來提供一射頻訊號,包括一 AB類偏壓放大器, 以對所述射頻訊號進行放大;以及一頻率轉換介面,耦接所述 射頻訊號處理器’從所述射頻訊號處理器接收所述射頻訊號, 產生所述射頻訊號的一降頻轉換結果。 本發明另提供一種放大器,包含:一第一放大器區塊,耗 接戶斤述放大器的一輸入璋和一輸出璋,用於對一輸入訊號放 大,所述第一放大器區塊具有一輸入級,用以在所述放大器的 所述輸入埠接收所述輸入訊號;一第二放大器區塊,耦接所述 的所述輸入埠和所述輸出埠,用於放大所述輸入訊號, 所述苐一放大器區塊包含:一第一輸入級,用以 的所述輪入埠接收所述輸入訊號;以及一第一切換單元'耦接盗 所述第一輸入級,所述第一切換單元將所述第〜.1 ’ 出郎點選擇性_接輯述放A||的所述輸出&者一參考兩 電壓;一偏壓電路’輕接所述第—放大器區塊和所述第二放大 = = 用以對所述第—放大器區塊和所述第二敌大器一區塊提 供,以及一切換控制器,用以控制至少所述第一切換單元 201112650 ,的運作,其中當所述放大器進入一第一增益模式時,所述偏壓 電路應用A類偏壓至所述第_放大器區塊中的所述輸入級 以及所述第一放大器區塊中的所述第一輸入級,所述切換控制 0控制所述第-i刀換單元,以將所述第—輸人級的所述輸出節 點耗接至所述參考電壓。 本發明另提供一種放大器,包含:一第一放大器區塊,耦 接所述放大器的-輸人蟑和_輸出槔,用於對一輸入訊號放 _大’所述第-放大器區塊具有一輸入級,用以在所述放大器的 所迚輸入埠接收所述輸入訊號;一第二放大器區塊,耦接所述 放大器的所述輸入埠和所述輸出埠,用於放大所述輸入訊號, 所述第二放大器區塊包含:多個輸入級,所述多個輸入級中每 一個用以在所述放大器的所述輸入埠接收所述輸入訊號;以及 夕個切換單元,分別麵接至所述多個輸入級,其中所述多個切 換單元中之母一個用以控制一對應輸入級的一輸出節點的連 接,偏壓電路,辆接所述第一放大器區塊和所述第二放大器 _區塊,用以對所述第一放大器區塊和所述第二放大器區塊提供 偏壓;以及一切換控制器,用以控制所述多個切換單元的運作; 其中當所述輸入訊號的輸入功率超過一預定位準時,所述偏壓 電路應用一 A類偏壓至所述第一放大器區塊中的所述輸入級 和所述第一放大器區塊中的所述多個輸入級,所述切換控制器 控制所述多個切換單元,以斷開所述第二放大器區塊中所述多 . 個輸入級的輸出節點與所述放大器的所述輸出埠的連接,並且 在所述第'一放大區塊中至少一個輸入級被由所述切換控制 201112650 器控制的至少一個切換單元所禁能。 本發明所提供之無線通訊系統接收器以及放大器,能夠抑 制雜訊且具有改善的動態範圍和功率效率,並且可減少產生一 次諸波。 【實施方式】 在說明書及後續的申請專利範圍當中使用了某些詞彙來 指稱特定的組件。所屬領域中具有通常知識者應可理解,硬體 製造商可能會用不同的名詞來稱呼同—個組件。本說明書及後 續的申請專利範圍並不以名稱的差異來作為區分組件的方 式,而是以組件在功能上的差異來作為區分的準則。在通篇說 明書及後續的請求項當中所提及的「包含」係為—開放式的用 3吾,故應解釋成「包含但不限定於」。以外,「耗接」一詞在此 係包含任何直接及間接的電性連接手段,因此,若文中描述一 第一裝置耦接於一第二裝置,則代表該第一裝置可直接電性連 接於5玄第一裝置’或透過其他裝置或連接手段間接地電性連接 至該第二裝置。 第2A和2B圖為本發明實施例中無線通訊系統之可抑制雜The prior art receiver 1〇0 has a number of disadvantages: first, the attenuation of the intra-frequency signal of the SAW filter reduces the signal detection capability, so the prior art requires the use of a more sensitive receiver 1 after the SAW filter; More importantly, in today's common complementary metal oxide semiconductor (CMOS) process or dual-carrier complementary metal oxide semiconductor (9) CMOS process using silicon technology or silic〇nger_ium technology, At present, there is no economical way to make SAW filters and active circuits in the subsequent stages in the same process. Therefore, the filter will occupy a large circuit space in the communication device, and the above problem is more significant when the production cost is applied to the multi-frequency wireless communication system. Also, the low noise amplifier 114 operates in the Class A (D-A) mode and requires a large power consumption. SUMMARY OF THE INVENTION The present invention provides a wireless communication system receiver and an amplifier to solve the above problems. 201112650 The present invention provides a wireless communication system receiver, comprising: a plurality of signal processing components 'for generating a receiver wheel according to an RF signal, the plurality of signal processing components including an amplifier, wherein the amplifier includes an AB A bias-like amplifier; wherein the plurality of signal processing components are disposed on a wafer, and the class AB bias amplifier processes a signal corresponding to the RF signal prior to other amplifiers included in the wafer. The present invention further provides a wireless communication system receiver, comprising: an RF signal processor for providing an RF signal, comprising a Class AB bias amplifier for amplifying the RF signal; and a frequency conversion interface, coupled Receiving, by the RF signal processor, the RF signal from the RF signal processor to generate a down conversion result of the RF signal. The present invention further provides an amplifier comprising: a first amplifier block consuming an input 璋 and an output 璋 of the amplifier for amplifying an input signal, the first amplifier block having an input stage For receiving the input signal at the input port of the amplifier; a second amplifier block coupled to the input port and the output port for amplifying the input signal, The first amplifier unit includes: a first input stage for receiving the input signal; and a first switching unit coupled to the first input stage, the first switching unit The output of the first ~.1 'outlet point selectivity_ 接接A|| is referenced to two voltages; a bias circuit 'lights up the first-amplifier block and the The second amplification == is provided for the first amplifier block and the second enemy unit, and a switching controller is configured to control the operation of at least the first switching unit 201112650, Wherein when the amplifier enters a first gain mode, The bias circuit applies a class A bias to the input stage in the ___ amplifier block and the first input stage in the first amp block, the switching control 0 controls the a -i knife changing unit to consume the output node of the first input stage to the reference voltage. The present invention further provides an amplifier comprising: a first amplifier block coupled to the input and output ports of the amplifier for placing an input signal to the first amplifier block An input stage for receiving the input signal at a predetermined input port of the amplifier; a second amplifier block coupled to the input port and the output port of the amplifier for amplifying the input signal The second amplifier block includes: a plurality of input stages, each of the plurality of input stages is configured to receive the input signal at the input port of the amplifier; and the switching unit is respectively connected And the plurality of input stages, wherein one of the plurality of switching units is for controlling a connection of an output node of a corresponding input stage, a bias circuit is coupled to the first amplifier block, and the a second amplifier_block for biasing the first amplifier block and the second amplifier block; and a switching controller for controlling operation of the plurality of switching units; Input signal input When the power exceeds a predetermined level, the bias circuit applies a class A bias to the input stage in the first amplifier block and the plurality of input stages in the first amplifier block, The switching controller controls the plurality of switching units to disconnect a connection of an output node of the plurality of input stages in the second amplifier block to the output port of the amplifier, and in the At least one input stage of the first amplification block is disabled by at least one switching unit controlled by the switching control 201112650. The wireless communication system receiver and amplifier provided by the present invention are capable of suppressing noise and having improved dynamic range and power efficiency, and can reduce generation of waves. [Embodiment] Certain terms are used throughout the specification and subsequent claims to refer to a particular component. Those of ordinary skill in the art should understand that hardware manufacturers may refer to the same component by different nouns. The scope of this specification and subsequent patent applications does not use the difference in name as a means of distinguishing components, but rather as a criterion for distinguishing between functional differences of components. The "contains" mentioned in the general statement and subsequent claims are open-type and should be interpreted as "including but not limited to". In addition, the term "depletion" is used herein to include any direct and indirect electrical connection means. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected. The fifth device is electrically connected to the second device indirectly via other devices or connection means. 2A and 2B are diagrams for suppressing miscellaneous in a wireless communication system according to an embodiment of the present invention;

訊(interference-robust)接收器200的功能方塊圖。第2A和2B 圖所示之接收器200皆包含RF訊號處理器210、頻率轉換介 面220和類比訊號處理器230,可接收寬頻rf訊號並將其降 頻至一特定中間頻率。第2B圖所示之接收器200另包含直流 201112650 隔絕電路(blocking circuit)240,用來在RF訊號處理器210和 頻率轉換介面220之間提供直流隔絕(DC isolation)。RF訊號 處理器210可採用不同設計,例如利用匹配網路212和低雜訊 放大器214來提供RF訊號至頻率轉換介面220。依據不同應 用或電路設計之系統需求,匹配網路212能提供功率或雜訊匹 配以改善功率增益或雜訊指數(n〇ise figure)。低雜訊放大器214 能放大RF訊號’進而提升驅動頻率轉換介面220之能力。在 本發明之實施例中’低雜訊放大器214可為仿差動低雜訊放大 器(pseudo-differential LNA)、單端低雜訊放大器(Singie_en(ied LNA)、全差動低雜訊放大器(fuiiy differential LNA),或是其它 類型之低雜訊放大器。匹配網路212亦可提供訊號轉換,例如 當低雜訊放大器214採用差動輸入時,匹配網路212可將單端 RF訊號轉換為差動rf訊號。 頻率轉換介面220包含被動式混頻器(passive mixer) 206 和渡波器216。被動式混頻器206依據LO訊號來運作,能將 # RF訊號處理器210所提供之RF訊號降頻至預定中間頻率,進 而提供一相對應之中間頻率訊號。此外,射頻訊號之頻内部分 和頻外部分會分別被降頻至濾波器216之通頻帶(passband) 和拒頻帶(stopband)。在一實施例中,濾波器216之通頻帶可 設計在以LO訊號為中心之特定頻率範圍;在其它實施例中, RF訊號之頻内部分亦可設計在遠離l〇訊號之特定頻率範 “ 圍。換而言之’依據不同設計,RF訊號之頻内部分可被包含 在或不包含在以LO訊號為中心之特定頻率範圍,此特徵並不 t S) 9 201112650 限定本發明之範疇。 同時’滤波器216能提供訊號抑制:當輸入訊號之頻率在 濾波器216之通頻帶内時’濾波器216會傳送輸入訊號;當輸 入訊號之頻率在濾波器216之拒頻帶内時,濾波器216會阻擋 輸入訊號。由於被動式混頻器206將RF訊號之頻内部分和頻 外部分分別降頻至濾波器216之通頻帶和拒頻帶,類比訊號處 理器230實質上僅會接收到在通頻帶内之中間頻率訊號,因此 能避免類比訊號處理器230因不需要的雜訊中間頻率訊號(即 被降頻至拒頻帶之RF訊號)而呈現飽和。換言之,頻率轉換 介面220可作為RF訊號處理器210之一電流驅動介面,以處 理RF訊號之頻外部分。 另一方面’濾波器216會抑制雜訊中間頻率訊號在其輸入 端的電壓擺動(voltage swing)。由於被動元件的特性,被動式 混頻器206亦會將在濾波器216之輸入端形成的電壓升頻。因 此’隨著濾波器216抑制其輸入端形成的電壓,被動式混頻器 206之輸入端形成的電壓也會被抑制,進而避免因rf訊號的 頻外部分而讓RF訊號處理器210呈現飽和。RF訊號處理器 210可為任一種類之放大器,例如轉導放大器(transc〇nductance amplifier) ’作用在於提供RF訊號至頻率轉換介面22〇。在本 發明=實施例中,濾波器216可為全部使用被動元件之被動式 渡波器’或是同時使用主動和被動元件之被動式滤波器。 第3A 3B、4和5圖為本發明第圖所示之實施例的接 收器200的電路示意圖。在第3A圖所示本發明第一實施例之 201112650 _ 接收器200a中,被動式混頻器206包含4組開關SW1〜SW4; 濾波器216為電阻-電容式(RC)電流輸入/電流輸出之低通 (low-pass)濾波器,其包含電容C1和兩電阻Rl、R2 ;直流隔 絕電路240a包含兩電容CD1* CD2。在第3B圖所示本發明第 一實施例之接收器200b中,被動式混頻器206包含4組開關 SW1〜SW4;濾波器216為RC式電流輸入/電流輸出之低通濾 波器,其包含電容C1和兩電阻Rl、R2 ;直流隔絕電路240b 鲁包含變壓器(transformer)。被動式混頻器206接收RF訊號(由 流入第一輸入節點N1和流出第二輸入節點N2之電流IRF來表 不),並輸出中間頻率訊號(由流出第一輸出節點N3和流入第 一輸出節點N4之電流IMIXER BB來表示)。在直流隔絕電路24〇a 中’電容CD1設置於RF訊號處理器21〇和第一輸入節點Nl 之間,而電容CD2設置於RF訊號處理器21〇和第二輸入節點 N2之間,用於進行隔絕;直流隔絕電路%⑽則利用變壓 為來提供DC隔絕。開關SW1〜SW4依據差動本地振盪訊號對 [〇+和L〇_來運作’其中正差動本地振盪訊號LO+和負差動本 振盪汛號乙之間的相位差為WO度。開關SW1依據正差 動本地振^銳LO+來選擇性地導通/斷開第一輸入節點犯和 第輸出即點N3之間的訊號傳送路徑,開關SW2依據負差動 本地振盪几歲L〇_來選擇性地導通/斷開第-輸入節點N1和第 輸出節點N4之_訊號傳送路#,開關SW3依據負差動本 •地振I afL號L來選擇性地導通/斷開第二輸入節點N2和第一 .輸出痛·點N3 <間的訊號傳送路經,而開關sw4依據正差動本 201112650 地振盪訊號L〇+來選擇性地導通/斷開第二輸入節點N2和第二 輸出節點N4之間的訊號傳送路徑。因此,開關SW1〜SW4對 差動本地振盪訊號對LO+和LO-和RF訊號1”進行混頻 (mix)。舉例來說,頻率為(ίίο+Δί)之RF訊號IRF可由被動式混 頻器206降頻至頻率為从之中間頻率訊號Imixer bb。因此, RF訊號之頻内部分其頻率可從(ίίο+Afi)降至,而RF訊號 之頻外部分其頻率可從(fL0+M2)降至降頻後RF訊號之頻 内部为和頻外部分分別由IBB和I』AMMER BB來表示。 當Δίι <Δί*2時,低通遽波器之轉角頻率(corner frequency ) 之值(IMttR^)需介於和Af2之間,如此降頻後RF訊號之 頻内部分Ibb會在低通濾、波器216之通頻帶内,而降頻後RF 訊號之頻外部分I】ammer_bb則會在低通濾波器216之拒頻帶 内,因此IBB會透過電阻R1和R2傳送至類比訊號處理器230, 而Immmer_bb則會被電容C1阻擋,進而避免類比訊號處理器 230因雜訊中間頻率訊號Ijammer_bb而呈現飽和0 同時,第一輸出節點N3和第二輸出節點N4之間不可避免 地會形成一中間頻率電壓擺動△ Vmixer_bb。由於被動元件的特 性,被動式混頻器206同時亦會將中間頻率電壓擺動 △Vmixer_bb升頻至第一輸入節點N1和第二輸入節點N2之間 的RF電壓AVrf。若低通濾波器216之轉角頻率其值遠小於 (例如超過10倍),中間頻率電壓擺動AVmixer_bb在頻率Af2 時其值約等於hAMMELBB /27tAf2C丨。因此’通過增加濾波器216 内電容C丨之值,可抑制因RF訊號之頻外部分而在第一輸出節 201112650 . 點N3和第二輸出節點N4之間所形成之中間頻率電壓擺動 △ Vmixer bb,而在第一輸入節點N1和第二輸入節點N2之間所 形成之RF電壓^乂”亦會以同樣比率被抑制,進而避免RF訊 號處理器210因RF訊號之頻外部分造成之RF電壓Αν”而呈 現飽和。 在第4圖所示本發明第二實施例之接收器200c中,濾波器 216為RC式電流輸入/電流輸出之高通(high-pass)濾波器,其 鲁包含電阻R1和兩電容Cl、C2。在此實施例中△& >△&,因此 高通濾波器216之轉角頻率(1/TrRiC!)和(I/ttR/O其值需介於 △匕和之間,如此降頻後RF訊號之頻内部分IBB會在高通 濾波器216之通頻帶内,而降頻後RF訊號之頻外部分 Lammer—bb則會在高通滤波器216之拒頻帶内,因此IBB會透過 電容C1和C2傳送至類比訊號處理器230,而I】AMMER BB則會 被電阻R1過濾,進而避免類比訊號處理器230因雜訊中間頻 率訊號I】AMMER_BB而呈現飽和。 ® 右南通渡波器216之轉角頻率其值遠大於△&(例如超過1 〇 倍)’中間頻率電壓擺動△VMIxER BB在頻率Af^時其值約等於為 Lammer—bb^Ri。因此’透過減少濾波器216内電阻心之值可抑 制因RF讯5虎之頻外部分而在第一輸出節點N 3和第二輸出節 點N4之間所形成之中間頻率電壓擺動ΔνΜ丨XERBB,而在第一 輸入郎點N1和弟·一輸入郎點N2之間所形成之rf電壓△ Vrf -·亦會以同樣比率被抑制’進而避免RF訊號處理器210因rf . 訊號之頻外部分所造成的RF電壓AVrf而呈現飽和。另一方 13 201112650 面,接收器200c亦可使用如第3B圖所示之直流隔絕電路240b。 在第5圖所示本發明第三實施例之接收器200d中,濾波器 216為RC式電流輸入/電壓輸出之低通濾波器,其包含電容C1 和電阻R1。在此實施例中Δίι <Δί2 ’因此低通滤·波益216之轉 角頻率(1/27^/,)其值需介於和Af2之間,如此降頻後RF 訊號之頻内部分Ibb會在低通濾波器216之通頻帶内。因此, 在第一輸出節點N3和第二輸出節點N4之間所形成且輸出至 類比訊號處理器230之頻内中間頻率電壓擺動ΔνΒΒ其值約等 於為IBB*R丨。另一方面,降頻後RF訊號之頻外部分IjAMMER ΒΒ 會在低通濾波器216之拒頻帶内,因此在第一輸出節點Ν3和 第二輸出節點Ν4之間所形成之雜訊中間頻率電壓擺動 △VMIXER_BB其值約等於為I_IAMMER_BB ΟπΔίΆ!。因此,通過增 加濾波器216内電容Ci之值可抑制因RF訊號之頻外部分而在 第一輸出節點N3和第二輸出節點N4之間所形成之中間頻率 電壓擺動ΔνΜΙΧΕ1ι_ΒΒ。在此實施例中,透過抑制中間頻率電壓 擺動 △VmIXER_BB 在頻率Δί*2時之值可避免類比訊號處理器230 呈現飽和。如前所述’在第一輸入節點Ν1和第二輸入節點Ν2 之間所形成之RF電壓擺動亦會以同樣比率被抑制,進而 避免RF訊號處理器21 〇因RF訊號之頻外部分造成之RF電壓 擺動AVRF而呈現飽和。同時,接收器2〇〇(1亦町使用如第3Β 圖所示之直流隔絕電路240b。 第6A和6B圖為本發明實施例之頻率轉換介面220運作時 之示意圖’第6A圖顯示了被動式混頻器2〇6之輸入阻抗 201112650 • (lmPedance) ’而第6B圖顯示了濾波器216之頻率響應圖。曲 線M1和M1’代表了當濾波器216之等效電阻為l〇〇〇hm而等 效電容為400pF時的結果,而曲線m2和M2,代表了當濾波器 216之等效電阻為100〇hm而等效電容為8〇〇pF時的結果。如 第6A和6B圖所示,頻外抑制比率(亦即抑制頻外電壓擺動 的能力)可由適當地選擇濾波器216的電阻值和電容值來決定。 第7圖為本發明如第2B圖中接收器200之第五實施例的 鲁電路圖。在第7圖所示本發明第五實施例之接收器2〇〇e中, 被動式混頻器206包含8組開關SW1〜SW8,直流隔絕電路 240a包含兩電容(:01和CD2。被動式混頻器206於第一輸入節 點N1和第二輸入節點N2,以及於第三輸入節點N5和第四輸 入節點N6接收RF訊號(由流入和流出被動式混頻器2〇6之 電流IRF來表示),並於第一輸出節點N3和第二輸出節點N4, 以及於第三輸出節點N7和第四輸出節點N8輸出中間頻率訊 _ 號。電容CD1能在RF訊號處理器210和第一輸入節點N1之 間提供DC隔絕’以及在rf訊號處理器210和第三輸入節點 N5之間提供DC隔絕;電容CD2能在RF訊號處理器210和第 二輸入節點N2之間提供DC隔絕,以及在RF訊號處理器210 和第四輸入節點N6之間提供DC隔絕。接收器200e亦可使用 如第3B圖所示之直流隔絕電路240b。開關SW1〜SW4依據 差動本地振盪訊號對LOI+和LOI-來運作,而開關SW5〜SW8 - 則依據差動本地振盪訊號對LOQ+和LOQ-來運作。換而言之, . 開關SW1〜SW8依據對應之本地振盪訊號來選擇性地導通/斷 15 201112650 開相對應輸入端和相對應輸出端之間的訊號傳送路徑,因此開 關SW1〜SW4可對差動本地振盪訊號對LOI+和LOI-與RF訊 號Irf進行混頻,而開關SW5〜SW8可對差動本地振盪訊號射 LOQ+和LOQ-與RF訊號IRF進行混頻。 在接收器200e中,混頻器206依據正交(quadrature)本地 振盪訊號來運作,其中差動本地振盪訊號LOI+和差動本地振 盪訊號LOI-之間的相位差為180度,差動本地振盪訊號 和差動本地振盪訊號LOQ+之間的相位差為90度,而差動本 地振盪訊號LOI+和差動本地振盪訊號LOQ-之間的相位差為 270度。如第7圖所示,濾波器216可包含兩RC濾波器’每 一 RC濾波器包含電容C1和兩電阻Rl、R2 ;或是採用如第4 圖和第5圖所示的其它架構之渡波器。頻外抑制比率 (out-of-band rejection ratio)可由適當地選擇遽波器216的電阻 值和電容值來決定。 第8A和8B圖為本發明實施例中類比訊號處理器230的電 路圖。如第8A圖所示,針對第3A、3B和4圖所示之RC式 電流輸入/電流輸出濾波器,類比訊號處理器230可為轉導 (transimpedance)放大器,其包括具有rc回饋的運算放大器。 如第8B圖所示,針對第5圖所示之RC式電流輸入/電壓輸出 RC濾波器,類比訊號處理器230可為電壓放大器。本發明之 實施例依據不同無線通訊系統的需求亦可使用其它架構之RC 濾波器來提供低通、帶通或是高通頻率響應,或是使用其它類 型的類比訊號處理器。第3A圖至第5圖,以及第8A和8B圖 201112650 僅為本發明之實施例’並不限定本發明之範嘴。 本發明之實施例能為無線通訊系缽提供一種可抑制雜訊 的無線通机系統接收器’而不需使用面積魔大且昂貴的sAW 濾、波器或其他類似元件。透過被動式>見頻器和設計合適之遽波 器’本發明實施例之頻率轉換介面能抑制RF訊號之頻外部分 在其輸入端所形成之RF電壓擺動’以及抑制在其輸出端所形 成之頻外中間頻率電壓擺動。因此’分別設置於頻率轉換介面 鲁之前和後級之RF訊號處理器和類比訊號處理器皆不會因為RF 訊號之頻外部分而呈現飽和。由於RF訊號處理器和類比訊號 處理器皆能在強烈頻外雜訊訊號的干擾下正常運作,本發明之 接收器能夠偵測微弱的頻内訊號以提供後續運作所需。 如第2 A和2 B圖所不,RF ^虎處理器21 〇中包含訊號增 強放大器(例如低雜訊放大器214),其中低雜訊放大器214可 由A類(Class-A)放大器實現。因此,如第9A圖所示,對A類 ^ 放大器之金屬氧化物半導體(MOS)電晶體偏壓(biased),以使其 運作於A類模式’且應當正確設置偏壓電流(bias current) Idc~a,即平均電流’使其大於頻内訊號峰值位準Isig_peak。即第 圖為被偏壓而運作於A類模式下得MOS電晶體得運作示意 圖。舉例而言,當特定的轉導為120 mA/V以及+ 1 dBm的頻外 5號^即頻外抖動/隔絕/干擾)時,需要偏壓電流IDC_A大於 發% 而如此會導致大量的功率消耗。為降低功率消耗,本 一之示範實施例採用AB類(class-AB)放大器。如第9B圖 所示,AB 4替 . 揭式下的偏壓電流IDC_AB小於A模式下的偏壓電流(interference-robust) a functional block diagram of the receiver 200. The receivers 200 shown in Figures 2A and 2B each include an RF signal processor 210, a frequency conversion interface 220, and an analog signal processor 230 that can receive the wide frequency rf signal and down-convert it to a specific intermediate frequency. The receiver 200 shown in Fig. 2B further includes a DC 201112650 blocking circuit 240 for providing DC isolation between the RF signal processor 210 and the frequency conversion interface 220. The RF signal processor 210 can be implemented in a variety of designs, such as the matching network 212 and the low noise amplifier 214 to provide the RF signal to the frequency conversion interface 220. Depending on the system requirements for different applications or circuit designs, matching network 212 can provide power or noise matching to improve power gain or noise figure. The low noise amplifier 214 is capable of amplifying the RF signal' and thereby improving the ability to drive the frequency conversion interface 220. In the embodiment of the present invention, the low noise amplifier 214 can be a pseudo-differential LNA, a single-ended low noise amplifier (Singie_en (ied LNA), a fully differential low noise amplifier ( Fuiiy differential LNA), or other types of low noise amplifiers. The matching network 212 can also provide signal conversion. For example, when the low noise amplifier 214 uses a differential input, the matching network 212 can convert the single-ended RF signal into The frequency conversion interface 220 includes a passive mixer 206 and a wave 216. The passive mixer 206 operates according to the LO signal and can down-convert the RF signal provided by the #RF signal processor 210. A predetermined intermediate frequency is provided to provide a corresponding intermediate frequency signal. Further, the intra-frequency portion and the extra-frequency portion of the RF signal are respectively down-converted to a passband and a stopband of the filter 216. In an embodiment, the passband of the filter 216 can be designed in a specific frequency range centered on the LO signal; in other embodiments, the intra-frequency portion of the RF signal can also be designed to be far away from the signal. The specific frequency range is "in other words." According to different designs, the intra-frequency portion of the RF signal can be included or not included in a specific frequency range centered on the LO signal. This feature is not t S) 9 201112650 The scope of the invention. At the same time, the 'filter 216 can provide signal suppression: when the frequency of the input signal is within the passband of the filter 216, the filter 216 transmits the input signal; when the frequency of the input signal is in the rejection band of the filter 216 In the meantime, the filter 216 blocks the input signal. Since the passive mixer 206 down-converts the intra-frequency portion and the out-of-frequency portion of the RF signal to the passband and reject bands of the filter 216, the analog signal processor 230 is substantially only The intermediate frequency signal in the passband is received, so that the analog signal processor 230 can be prevented from being saturated by the unwanted intermediate frequency signal (ie, the RF signal that is down-converted to the reject band). In other words, the frequency conversion interface The 220 can be used as a current driving interface of the RF signal processor 210 to process the extra-frequency portion of the RF signal. On the other hand, the filter 216 suppresses the noise intermediate frequency signal. The voltage swing at its input. Due to the nature of the passive components, the passive mixer 206 also up-converts the voltage developed at the input of the filter 216. Thus 'as the filter 216 suppresses its input formation The voltage formed by the input of the passive mixer 206 is also suppressed, thereby avoiding saturation of the RF signal processor 210 due to the extra-frequency portion of the rf signal. The RF signal processor 210 can be any type of amplifier. For example, a transc〇nductance amplifier' acts to provide an RF signal to the frequency conversion interface 22〇. In the present invention = embodiment, the filter 216 may be a passive ferrite that uses all passive components or a passive filter that uses both active and passive components. 3A, 3B, 4 and 5 are circuit diagrams of the receiver 200 of the embodiment shown in the first embodiment of the present invention. In the 201112650_receiver 200a of the first embodiment of the present invention shown in FIG. 3A, the passive mixer 206 includes four sets of switches SW1 SWSW4; and the filter 216 is a resistor-capacitor (RC) current input/current output. A low-pass filter comprising a capacitor C1 and two resistors R1, R2; the DC isolation circuit 240a comprises two capacitors CD1*CD2. In the receiver 200b of the first embodiment of the present invention shown in FIG. 3B, the passive mixer 206 includes four sets of switches SW1 SWSW4; the filter 216 is a low pass filter of the RC type current input/current output, which includes Capacitor C1 and two resistors R1, R2; DC isolation circuit 240b includes a transformer. The passive mixer 206 receives the RF signal (not indicated by the current IRF flowing into the first input node N1 and the second input node N2), and outputs an intermediate frequency signal (from the first output node N3 and the first output node) The current of N4 is represented by IMIXX BB). In the DC isolation circuit 24A, a capacitor CD1 is disposed between the RF signal processor 21A and the first input node N1, and a capacitor CD2 is disposed between the RF signal processor 21A and the second input node N2 for Isolation; DC isolation circuit % (10) uses voltage transformation to provide DC isolation. The switches SW1 to SW4 operate according to the differential local oscillation signal pair [〇+ and L〇_] where the phase difference between the positive differential local oscillation signal LO+ and the negative differential oscillation oscillation signal B is WO degrees. The switch SW1 selectively turns on/off the signal transmission path between the first input node and the first output point N3 according to the positive differential local vibration LO+, and the switch SW2 is oscillating according to the negative differential local oscillation L〇_ To selectively turn on/off the _ signal transmission path # of the first input node N1 and the output node N4, the switch SW3 selectively turns on/off the second input according to the negative differential local ground vibration I afL number L The signal transmission path between the node N2 and the first output pain point N3 < and the switch sw4 selectively turns on/off the second input node N2 and the first according to the positive differential 201112650 ground oscillation signal L〇+ The signal transmission path between the two output nodes N4. Therefore, the switches SW1 SWSW4 mix the differential local oscillation signals LO+ and LO- and the RF signal 1". For example, the RF signal IRF having the frequency (ίίο+Δί) can be used by the passive mixer 206. The frequency is down to the intermediate frequency signal Imixer bb. Therefore, the frequency of the RF signal can be reduced from (ίίο+Afi), and the frequency of the RF signal can be reduced from (fL0+M2). After the down-conversion, the internal and extra-frequency portions of the RF signal are represented by IBB and I』AMMER BB. When Δίι <Δί*2, the value of the corner frequency of the low-pass chopper (IMttR) ^) It needs to be between Af2 and Af2. After this frequency reduction, the intra-frequency part Ibb of the RF signal will be in the passband of the low-pass filter and the waver 216, and the extra-frequency part of the RF signal after the down-conversion I]ammer_bb will In the rejection band of the low pass filter 216, the IBB is transmitted to the analog signal processor 230 through the resistors R1 and R2, and the Immmer_bb is blocked by the capacitor C1, thereby preventing the analog signal processor 230 from interfering with the intermediate frequency signal Ijammer_bb. While presenting saturation 0, the first output node N3 and the second output node N4 Inevitably, an intermediate frequency voltage swing ΔVmixer_bb is formed. Due to the characteristics of the passive component, the passive mixer 206 also upconverts the intermediate frequency voltage swing ΔVmixer_bb to the first input node N1 and the second input node N2. The RF voltage AVRf. If the corner frequency of the low-pass filter 216 is much smaller (for example, more than 10 times), the intermediate frequency voltage swing AVmixer_bb has a value approximately equal to hAMMELBB /27tAf2C丨 at the frequency Af2. The value of the internal capacitor C丨 of 216 can suppress the intermediate frequency voltage swing ΔVmixer bb formed between the first output section 201112650 and the point N3 and the second output node N4 due to the extra-frequency portion of the RF signal, and at the first The RF voltage formed between the input node N1 and the second input node N2 is also suppressed at the same ratio, thereby preventing the RF signal processor 210 from being saturated due to the RF voltage Αν" caused by the extra-frequency portion of the RF signal. In the receiver 200c of the second embodiment of the present invention shown in FIG. 4, the filter 216 is a high-pass filter of the RC type current input/current output, which is a package. Resistor R1 and two capacitors C1, C2. In this embodiment, Δ &> Δ &, therefore, the corner frequency of the high-pass filter 216 (1/TrRiC!) and (I/ttR/O value needs to be between Δ Between the sum and the frequency, the intra-frequency portion IBB of the RF signal is in the passband of the high-pass filter 216, and the out-of-band portion of the RF signal Lammer-bb after the down-conversion is in the reject band of the high-pass filter 216. Therefore, the IBB is transmitted to the analog signal processor 230 through the capacitors C1 and C2, and the IAMMER BB is filtered by the resistor R1, thereby preventing the analog signal processor 230 from being saturated due to the noise intermediate frequency signal I]AMMER_BB. The angle of the corner of the right south passer 216 is much larger than Δ& (for example, more than 1 〇). The intermediate frequency voltage swing ΔVMIxER BB is approximately equal to Lammer-bb^Ri at the frequency Af^. Therefore, by reducing the value of the resistor core in the filter 216, the intermediate frequency voltage swing ΔνΜ丨XERBB formed between the first output node N 3 and the second output node N4 due to the extra-frequency portion of the RF signal can be suppressed. The rf voltage ΔVrf -· formed between the first input angstrom point N1 and the younger input angstrom point N2 is also suppressed by the same ratio', thereby avoiding the RF signal processor 210 due to the extra frequency portion of the rf. The resulting RF voltage AVRf is saturated. The other side 13 201112650, the receiver 200c can also use the DC isolation circuit 240b as shown in FIG. 3B. In the receiver 200d of the third embodiment of the present invention shown in Fig. 5, the filter 216 is a low-pass filter of an RC type current input/voltage output, which includes a capacitor C1 and a resistor R1. In this embodiment, Δίι <Δί2 'so the corner frequency of the low-pass filter Boeing 216 (1/27^/,) needs to be between Af2 and the frequency range of the RF signal. Will be within the passband of low pass filter 216. Therefore, the intra-frequency intermediate frequency voltage swing Δν formed between the first output node N3 and the second output node N4 and outputted to the analog signal processor 230 is approximately equal to IBB*R丨. On the other hand, the out-of-frequency portion IjAMMER RF of the down-converted RF signal is within the rejection band of the low-pass filter 216, so the intermediate frequency voltage of the noise formed between the first output node Ν3 and the second output node Ν4 The value of the wobble ΔVMIXER_BB is approximately equal to I_IAMMER_BB ΟπΔίΆ!. Therefore, by increasing the value of the capacitance Ci in the filter 216, the intermediate frequency voltage swing ΔνΜΙΧΕ1ι_ΒΒ formed between the first output node N3 and the second output node N4 due to the extra-frequency portion of the RF signal can be suppressed. In this embodiment, the analog signal processor 230 is prevented from being saturated by suppressing the value of the intermediate frequency voltage swing ΔVmIXER_BB at the frequency Δί*2. As described above, the RF voltage swing formed between the first input node Ν1 and the second input node Ν2 is also suppressed at the same rate, thereby preventing the RF signal processor 21 from being caused by the extra-frequency portion of the RF signal. The RF voltage swings AVRF and appears saturated. At the same time, the receiver 2〇〇 (1) uses the DC isolation circuit 240b as shown in Fig. 3. The 6A and 6B are schematic diagrams of the operation of the frequency conversion interface 220 according to the embodiment of the present invention. FIG. 6A shows the passive type. The input impedance of the mixer 2〇6 is 201112650 • (lmPedance) ' and the 6B is a frequency response diagram of the filter 216. The curves M1 and M1' represent the equivalent resistance of the filter 216 to l〇〇〇hm The equivalent capacitance is the result at 400 pF, and the curves m2 and M2 represent the results when the equivalent resistance of the filter 216 is 100 〇hm and the equivalent capacitance is 8 〇〇pF. As shown in Figures 6A and 6B It is shown that the out-of-frequency rejection ratio (i.e., the ability to suppress the out-of-frequency voltage swing) can be determined by appropriately selecting the resistance value and the capacitance value of the filter 216. Figure 7 is the fifth of the receiver 200 of the present invention as in Figure 2B. The circuit diagram of the embodiment. In the receiver 2〇〇e of the fifth embodiment of the present invention shown in Fig. 7, the passive mixer 206 includes eight sets of switches SW1 SWSW8, and the DC isolation circuit 240a includes two capacitors (: 01). And CD2. Passive mixer 206 is at the first input node N1 and the second input Node N2, and third input node N5 and fourth input node N6 receive RF signals (represented by current IRF flowing into and out of passive mixer 2〇6), and at first output node N3 and second output node N4, and outputting an intermediate frequency signal at the third output node N7 and the fourth output node N8. The capacitor CD1 can provide DC isolation between the RF signal processor 210 and the first input node N1 and the rf signal processor 210 DC isolation is provided between the third input node N5 and the third input node N5; the capacitor CD2 can provide DC isolation between the RF signal processor 210 and the second input node N2, and provide DC between the RF signal processor 210 and the fourth input node N6. The receiver 200e can also use the DC isolation circuit 240b as shown in FIG. 3B. The switches SW1 SWSW4 operate according to the differential local oscillation signal for LOI+ and LOI-, and the switches SW5 SWSW8 - are based on differential local oscillation. The signal operates on LOQ+ and LOQ-. In other words, the switches SW1 to SW8 are selectively turned on/off according to the corresponding local oscillation signal. 201112650 The signal transmission path between the corresponding input terminal and the corresponding output terminal is opened. Therefore, the switches SW1 SWSW4 can mix the differential local oscillation signal pair LOI+ and LOI- with the RF signal Irf, and the switches SW5 SWSW8 can mix the differential local oscillation signal LOQ+ and LOQ- with the RF signal IRF. In the receiver 200e, the mixer 206 operates according to a quadrature local oscillation signal, wherein the phase difference between the differential local oscillation signal LOI+ and the differential local oscillation signal LOI- is 180 degrees, and differential local oscillation The phase difference between the signal and the differential local oscillation signal LOQ+ is 90 degrees, and the phase difference between the differential local oscillation signal LOI+ and the differential local oscillation signal LOQ- is 270 degrees. As shown in FIG. 7, the filter 216 may include two RC filters 'each RC filter including a capacitor C1 and two resistors R1, R2; or other waveforms as shown in FIGS. 4 and 5 Device. The out-of-band rejection ratio can be determined by appropriately selecting the resistance value and capacitance value of the chopper 216. 8A and 8B are circuit diagrams of the analog signal processor 230 in the embodiment of the present invention. As shown in FIG. 8A, for the RC type current input/current output filter shown in FIGS. 3A, 3B, and 4, the analog signal processor 230 can be a transimpedance amplifier including an operational amplifier having rc feedback. . As shown in FIG. 8B, for the RC type current input/voltage output RC filter shown in FIG. 5, the analog signal processor 230 can be a voltage amplifier. Embodiments of the present invention may also use other architecture RC filters to provide low pass, band pass or high pass frequency response, or other types of analog signal processors, depending on the requirements of different wireless communication systems. 3A to 5, and 8A and 8B, 201112650, are merely examples of the present invention, and do not limit the scope of the present invention. Embodiments of the present invention provide a wireless communication system receiver for wireless communication systems that can suppress noise' without the use of large and expensive sAW filters, filters or the like. The passive frequency converter and the appropriately designed chopper [the frequency conversion interface of the embodiment of the invention can suppress the RF voltage swing formed at the input end of the extra-frequency portion of the RF signal and suppress the formation at the output end thereof. The frequency of the intermediate frequency swings. Therefore, the RF signal processor and the analog signal processor respectively set before and after the frequency conversion interface are not saturated due to the extra frequency portion of the RF signal. Since both the RF signal processor and the analog signal processor can operate normally under the interference of strong extra-frequency noise signals, the receiver of the present invention can detect weak intra-frequency signals to provide subsequent operations. As shown in Figures 2A and 2B, the RF ^ Tiger Processor 21 includes a signal booster amplifier (e.g., low noise amplifier 214), wherein the low noise amplifier 214 can be implemented by a Class-A amplifier. Therefore, as shown in Fig. 9A, the metal oxide semiconductor (MOS) transistor of the class A amplifier is biased so that it operates in the class A mode and the bias current should be correctly set. Idc~a, the average current 'is greater than the peak value of the intra-frequency signal Isig_peak. That is, the figure is a schematic diagram of the operation of the MOS transistor which is biased to operate in the Class A mode. For example, when a specific transduction is 120 mA/V and +1 dBm of extra-frequency 5, ie, extra-frequency jitter/isolation/interference, the bias current IDC_A is required to be greater than the % of transmission and this results in a large amount of power. Consumption. To reduce power consumption, the exemplary embodiment of the present invention employs a class-AB amplifier. As shown in Figure 9B, the bias current IDC_AB of the AB 4 is smaller than the bias current of the A mode.

[SJ 17 201112650[SJ 17 201112650

Idc_a ’其中第9B圖為被偏壓而運作於AB類模式下得M〇s 電晶體得運作示意圖。 根據如上所述,本發明也可在無線通信接收器中採用AB 類放大器。第10圖為採用AB類放大器的無線通信接收器的 方塊示意圖。無線通信系統的接收器1〇〇〇包含多個訊號處理 元件 1002一1、1002_2·..1002_Ν,依據 RF 訊號 RF_IN 產生接 收器輸出訊號S一OUT ’其中訊號處理元件i 〇〇2_1、 1002一2... 1002一N中包含的放大器可為ab類偏壓放大器 (biased amplifier)。在該實施例中(本發明並非僅限於此),訊號 處理元件1002_2和1〇〇2_Ν-1為放大器,其中訊號處理元件 1002一2為AB類偏壓放大器。如第1〇圖中所示,訊號處理元 件1002_1...1〇〇2_Ν設置於晶片1〇〇1上,AB類偏壓放大器(例 如訊號處理元件1〇〇2_2)於晶片1〇〇1上的其他放大器(例如訊 號處理元件1002_N-1)之前處理RF訊號RF_IN。依據對訊號 處理元件1002_1...1〇〇2_N的實際設計,接收器輸出訊號 S—OUT可以為由處理RF訊號RF_IN得到任何訊號。舉例而 言,接收器輸出訊號S_OUT為基頻輸出,訊號處理元件1002_2 為低雜訊放大器,訊號處理元件1〇〇2_Ν-1為可程式增益放大 器(programmable gain amplifier,PGA)。由於 AB 類放大器是用 於處理從RF訊號得到的訊號的第一個放大器,由AB類放大 器實現的接收器效能改善可以達到最優。 第11圖為採用AB類放大器的另一個無線通信接收器的方 塊示意圖。無線通信系統的接收器1100包括RF訊號處理器 201112650 • 1102和頻率轉換介面1104,頻率轉換介面1104耦接於RF訊 號處理器1102,其中rf訊號處理器1102對RF訊號RF_IN 處理後傳送至頻率轉換介面1104,頻率轉換介面1104對從RF 说號處理器1102接收的RF訊號降頻產生降頻訊號SD_OUT。 如第Π圖所示,RF訊號處理器11〇2包括AB類偏壓放大器 Π08以對RF訊號rf—in放大,此外rf訊號處理器11〇2也 可包括其他電路1106,以處理輸入的RF訊號RF—IN。舉例而 φ έ ’其他電路1106可包含匹配網路。由於在頻率轉換介面1104 對RF訊號執行降頻之前,ΑΒ類偏壓放大器11〇8對RF訊號 進行處理’ΑΒ類偏壓放大器帶來的接收器效能改善達到最優。 如第10和11圖所示的接收器架構可抑制雜訊,且具有改 善的動態範圍/功率效率。第12Α和12Β圖為根據本發明實施 例的無線通信系統另一個接收器1200的功能示意圖。接收器 1200與第2Α和2Β圖中的接收器2〇〇類似,主要區別在於RF 訊號處理器1210中的低雜訊放大器1214是AB類偏壓放大 _器。第12A和12B Η中的直流隔絕電路24〇、頻率轉換介面 220和類比訊號處理器23〇,也可根據前述的第3α、3β、4、5、 7 8Α和8Β ϋ中所不的電路實現。除ΑΒ類低雜訊放大器1214 外,通過上面描述本領域的習知技藝者可得出其他元件的運作 和功能,此處不再贅述。 在一個例子中,當採用第1〇圖所示的接收器架構時,RF < «Λ號處理If 1210、步員率轉換介面22〇考口類比訊號處理器2⑽ .设置於相同晶片上;或者RF訊號處理器121〇、直流隔絕電路 19 201112650 240、頻率轉換介面220和類比訊號處理器230設置於相同晶 片上’其中AB類低雜訊放大器1214為AB類偏壓放大器,於 相同晶片上其他的放大器(例如包含在類比訊號處理器230中 的PGA)之前處理RF訊號。在另一個例子中,當採用第η圖 所示的接收器架構時,明顯地,在頻率轉換介面220中之被動 式混頻器206對RF訊號執行降頻處理之前,AB類低雜訊放 大器1214(AB類低雜訊放大器1214也為偏壓放大器)對rF訊 號處理。簡言之,由於設置於被動式混頻器之後的新穎的濾波 器和設置於被動式混頻器之前的新穎的AB類低雜訊放大器, 實現了可抑制雜訊且具有改善的動態範圍/功率效率的接收 器。以下為AB類低雜訊放大器1214的詳細描述。 第13圖為根據本發明實施例的AB類偏壓放大器的方塊示 意圖。AB類偏壓放大器13〇〇包括第一放大器區塊13〇2、第 二放大器區塊1304和偏壓電路1306,但本發明並不僅限於 此。第一放大器區塊1302耦接AB類偏壓放大器13〇〇的輸入 埠N—IN,並且在輸入槔N_IN處接收輸入訊號81。偏壓電路 1306耦接第一放大器區塊13〇2,用於對第一放大器區塊13〇2 板供偏壓以運作在AB類模式。舉例而言,第一放大器區塊1 go] 包括至少一個電晶體1308作為輸入電晶體,電晶體13〇8具有 控制端NC耦接偏壓電路1306,由偏壓電路1306提供偏壓用 於AB類模式運作。更具體的,當訊號為頻外訊號時確保電 晶體1308運作於AB類模式。請注意,通過簡單設置電晶體 的偏壓點可實現第一放大器區塊13〇2的AB類模式運作。 20 201112650 .此,AB類偏壓放大器1300不同於AB類推挽放大器(push_pu】】 amplifier)。第二放大器區塊13〇4耦接第一放大器區塊ι3〇2和 AB類偏壓放大器1300的輸出埠Ν_ΟϋΤ,並依據第一放大器 區塊1302的輸出在輸出埠Ν_〇υΤ處產生輸出訊號s2。 為了簡化’在第13圖中僅顯示了一個電晶體,然而,第 一放大器區塊1302中用於接收輸入訊號si的電晶體數量是可 調整的,取決於實際的設計考量和應用需求。例如,當前述 _ ΑΒ類低雜訊放大器1214由ΑΒ類偏壓放大器13〇〇實現時, ΑΒ類低雜訊放大器1214可為仿差動低雜訊放大器、單端低雜 訊放大器或全差動低雜訊放大器。 此外’為降低功率消耗且不影響增益壓縮(gain compression)效能’電晶體1308的電流電壓呈指數特性,可使 增盈擴展以實現更高的動態範圍。更具體的,由於當控制端 NC處的控制電壓線性變化時’流經電晶體丨308的電流呈指數 變化’流經電晶體1308的偏壓電流(即平均電流)會根據輸入功 ® 率位準的改變而自動改變,而無需任何偵測和回饋電路。因 此,AB類低雜訊放大器1214的電流消耗會隨著rf輸入功率 的不同而不同’因此在並非總存在強烈頻外訊號的實際操作條 件下,可節省大量的功率。Idc_a '' is a schematic diagram of the operation of the M〇s transistor operating in the class AB mode when biased. According to the above, the present invention can also employ a class AB amplifier in a wireless communication receiver. Figure 10 is a block diagram of a wireless communication receiver employing a Class AB amplifier. The receiver 1 of the wireless communication system includes a plurality of signal processing components 1002, 1, 2, 2, 2, ..., 1002_Ν, and generates a receiver output signal S_OUT according to the RF signal RF_IN, wherein the signal processing components i 〇〇 2_1, 1002 2... The amplifier included in 1002-N can be an ab type biased amplifier. In this embodiment (the invention is not limited thereto), the signal processing elements 1002_2 and 1〇〇2_Ν-1 are amplifiers, wherein the signal processing elements 1002-2 are class AB bias amplifiers. As shown in the first diagram, the signal processing elements 1002_1...1〇〇2_Ν are disposed on the wafer 1〇〇1, and the class AB bias amplifier (eg, the signal processing element 1〇〇2_2) is on the wafer 1〇〇1. The other amplifiers above (e.g., signal processing component 1002_N-1) previously process RF signal RF_IN. According to the actual design of the signal processing components 1002_1...1〇〇2_N, the receiver output signal S_OUT can be obtained by processing the RF signal RF_IN. For example, the receiver output signal S_OUT is the base frequency output, the signal processing component 1002_2 is a low noise amplifier, and the signal processing component 1〇〇2_Ν-1 is a programmable gain amplifier (PGA). Since the Class AB amplifier is the first amplifier used to process the signal from the RF signal, the receiver performance improvement achieved by the Class AB amplifier can be optimized. Figure 11 is a block diagram of another wireless communication receiver using a Class AB amplifier. The receiver 1100 of the wireless communication system includes an RF signal processor 201112650 • 1102 and a frequency conversion interface 1104. The frequency conversion interface 1104 is coupled to the RF signal processor 1102. The rf signal processor 1102 processes the RF signal RF_IN and transmits it to the frequency conversion. The interface 1104, the frequency conversion interface 1104, down-converts the RF signal received from the RF processor 1102 to generate a down-converted signal SD_OUT. As shown in the figure, the RF signal processor 11〇2 includes a class AB bias amplifier Π08 for amplifying the RF signal rf—in, and the rf signal processor 11〇2 may also include other circuits 1106 to process the input RF. Signal RF-IN. For example, φ έ 'other circuits 1106 may include a matching network. Since the frequency conversion interface 1104 performs frequency reduction on the RF signal, the 偏压 class bias amplifier 11 〇 8 processes the RF signal. The receiver performance improvement by the 偏压 type bias amplifier is optimized. The receiver architecture shown in Figures 10 and 11 suppresses noise and has improved dynamic range/power efficiency. 12 and 12 are functional diagrams of another receiver 1200 of the wireless communication system according to an embodiment of the present invention. Receiver 1200 is similar to Receiver 2A in Figures 2 and 2, with the main difference being that low noise amplifier 1214 in RF signal processor 1210 is a Class AB bias amplifier. The DC isolation circuit 24A, the frequency conversion interface 220, and the analog signal processor 23A of the 12A and 12B can also be implemented according to the circuits of the 3rd, 3β, 4, 5, 7 8 and 8 ϋ 前述 described above. . Except for the 低-type low noise amplifier 1214, the operation and function of other components can be derived by those skilled in the art from the above description, and will not be described herein. In an example, when the receiver architecture shown in FIG. 1 is used, the RF < apostrophe processing If 1210, the step rate conversion interface 22 is similar to the signal processor 2 (10). Or the RF signal processor 121, the DC isolation circuit 19 201112650 240, the frequency conversion interface 220, and the analog signal processor 230 are disposed on the same wafer. The Class AB low noise amplifier 1214 is a Class AB bias amplifier on the same wafer. The other amplifiers (e.g., PGAs included in the analog signal processor 230) process the RF signals. In another example, when the receiver architecture shown in Figure η is employed, it is apparent that the passive mixer 206 in the frequency conversion interface 220 performs a down-conversion process on the RF signal before class AB low noise amplifier 1214. (Class AB low noise amplifier 1214 is also a bias amplifier) for rF signal processing. In short, noise suppression and improved dynamic range/power efficiency due to the novel filters placed behind the passive mixer and the novel Class AB low noise amplifiers placed before the passive mixer Receiver. The following is a detailed description of the class AB low noise amplifier 1214. Figure 13 is a block diagram of a class AB bias amplifier in accordance with an embodiment of the present invention. The class AB bias amplifier 13A includes a first amplifier block 13A2, a second amplifier block 1304, and a bias circuit 1306, but the present invention is not limited thereto. The first amplifier block 1302 is coupled to the input 埠N-IN of the class AB bias amplifier 13A and receives the input signal 81 at the input 槔N_IN. The bias circuit 1306 is coupled to the first amplifier block 13〇2 for biasing the first amplifier block 13〇2 to operate in the class AB mode. For example, the first amplifier block 1 go] includes at least one transistor 1308 as an input transistor, and the transistor 13〇8 has a control terminal NC coupled to the bias circuit 1306, which is biased by the bias circuit 1306. Operates in Class AB mode. More specifically, the transistor 1308 is guaranteed to operate in class AB mode when the signal is an out-of-band signal. Note that the Class AB mode operation of the first amplifier block 13〇2 can be achieved by simply setting the bias point of the transistor. 20 201112650 . Here, the class AB bias amplifier 1300 is different from the class AB push-pull amplifier (push_pu) amplifier). The second amplifier block 13〇4 is coupled to the first amplifier block ι3〇2 and the output 埠Ν_ΟϋΤ of the class AB bias amplifier 1300, and generates an output at the output 埠Ν_〇υΤ according to the output of the first amplifier block 1302. Signal s2. For simplicity, only one transistor is shown in Figure 13, however, the number of transistors used to receive the input signal si in the first amplifier block 1302 is adjustable, depending on actual design considerations and application requirements. For example, when the aforementioned _ 低 low noise amplifier 1214 is implemented by a 偏压 type bias amplifier 13 ,, the 低 type low noise amplifier 1214 can be a differential low noise amplifier, a single-ended low noise amplifier, or a total difference. Dynamic low noise amplifier. In addition, to reduce power consumption without affecting gain compression performance, the current voltage of transistor 1308 is exponential, allowing for gain expansion to achieve a higher dynamic range. More specifically, since the current flowing through the transistor 308 changes exponentially when the control voltage at the control terminal NC changes linearly, the bias current (ie, the average current) flowing through the transistor 1308 is based on the input power rate. The change is automatically changed without any detection and feedback circuits. Therefore, the current consumption of class AB low noise amplifier 1214 will vary with the input power of rf', so a large amount of power can be saved under actual operating conditions that do not always have strong out-of-band signals.

在一示範實施例中,電晶體1308為雙極結型電晶體 (bipolar junction transistor,BJT)。並且,由於工作在弱反轉區 ^ (weak inversion region)的MOS電晶體具有呈指數的電流電壓 特性,電晶體1308可以是由偏壓電路1306提供偏壓的MOS 201112650 電晶體,且工作在弱反轉區。例如,呈指數的電流電壓特性可 ^os 簡化的表示為々* e〜,其中Id表示流經工作在弱反轉區的MOS 電晶體的電流,V〇s表不閘_源電壓’ Vt表示門權·電壓。 第14圖為AB類偏壓放大器1300的一種示範電路示意 圖。AB類偏壓放大器1300為仿差動轉導放大器,輸出電流訊 號。由於頻率轉換介面220作為RF訊號處理器1210的電流驅 動介面以輸入RF訊號的頻外部分,AB類偏壓放大器13〇〇可 用於實現第12A和12B圖所示的AB類低雜訊放大器1214。 如第14圖所示,AB類偏壓放大器13〇〇的輸入端包括輸入節 點N1和N2接收差動輪入訊號對RFin+和队-,AB類偏壓放 大器1300的輸出^包括輪出節點N3寿口 N4輸出差動輸出訊號 子RFout+寺RFout偏壓電路丄撕產生偏壓% (例如45〇mV) 至 MOS 電晶體 Ml 和 . ... π M2 ’以使其工作在弱反轉區,其中偏壓 曰曰 B由偏壓電流1B和二極體形式(diode-C〇nnected)的M〇s電 體M3決定。舉例來句 說,可通過選擇二極體形式的MOS電日-日 體M3的大小,以僅借括 在弱反轉區。如此壓能夠讓腦電晶體M1和M2工作 偏壓電路测可林㈣之職1本發明, 休用此夠產生應用至M〇s電晶體 的所需偏壓的任何方孓 “曰體Ml和M2 上 去0與MOS電晶體Ml和M2 了你户aIn an exemplary embodiment, transistor 1308 is a bipolar junction transistor (BJT). Also, since the MOS transistor operating in the weak inversion region has an exponential current-voltage characteristic, the transistor 1308 may be a MOS 201112650 transistor biased by the bias circuit 1306, and operates in Weak reversal zone. For example, the exponential current-voltage characteristic can be simplified as 々*e~, where Id represents the current flowing through the MOS transistor operating in the weak reversal zone, and V〇s is not gated. The source voltage 'Vt indicates Gate right voltage. Figure 14 is a schematic circuit diagram of a class AB bias amplifier 1300. The class AB bias amplifier 1300 is a differential differential transconductance amplifier that outputs a current signal. Since the frequency conversion interface 220 serves as the current driving interface of the RF signal processor 1210 to input the extra-frequency portion of the RF signal, the class AB bias amplifier 13 can be used to implement the class AB low noise amplifier 1214 shown in FIGS. 12A and 12B. . As shown in Fig. 14, the input terminal of the class AB bias amplifier 13A includes the input nodes N1 and N2 receiving the differential wheeling signal pair RFin+ and the team-, and the output of the class AB bias amplifier 1300 includes the wheel-out node N3 Port N4 output differential output signal sub-RFout+ Temple RFout bias circuit torn to generate bias % (eg 45〇mV) to MOS transistors Ml and . . . π M2 'to make it work in the weak reversal zone, The bias 曰曰B is determined by the bias current 1B and the diode-shaped M3 s electric body M3. For example, the size of the MOS electric-day-body M3 in the form of a diode can be selected to be only included in the weak reversal zone. Such a pressure can make the brain M1 and M2 work bias circuits measure the work of the forest (4). The invention can be used to generate any square of the required bias voltage applied to the M〇s transistor. And M2 goes up to 0 with MOS transistors Ml and M2.

類模式中的情形指比 彳M2工作在A 電晶體m和M2星“類模式中作在弱反轉區的廳 因此會改善功率效率/的偏壓電流(即更低的平均電流), 楚電 為18mA,但AB類模式下每個 22 201112650 .MOS電晶體的偏壓電流可降低至4mA。第二放大器區塊1304 中,採用電感負載(inductive load)Lload使主動裝置的動態範圍 (headroom)最大;此外,低壓降(l〇w dropout, LDO)調整器 1402 提供例如為2.7V的供應電壓。2.7V的供應電壓以及可抑制頻 外訊號的濾波器216所提供的低阻抗可避免輸出被限幅並能夠 抑制輸出畸變。第14圖所述的電路僅為說明之用’本發明並 非僅限於此。遵循本發明精神的任何放大器架構均可用於實現 籲AB類偏壓放大器13〇〇或者AB類低雜訊放大器1214,其他替 代的放大器設計均屬於本發明保護範圍。 如上所述,訊號增強放大器(例如低雜訊放大器214)可由 AB類偏壓放大n實現,以達職低的功率消耗。然而,當接 收的RF訊號之頻内部分的輸入功率較大時(例如-15dBm),AB 類偏I放大器的—次諸波較為顯著而無法忽略。例如,被動混 頻器206所品的本地振盪訊號可由例如壓控振盪器所產生的振 盪訊號生成。Αβ類偏壓放大器的二次諧波可能會洩漏至壓控 振盪器,導致不期望的突波雜訊(spur)。因此,不期望的突波 雜訊將接收的RF訊號之頻内部分降頻至期望的基頻,並損壞 基頻況號之期望的頻内部分。由於預測AB類偏壓放大器之二 次言皆波的冑際茂漏對其他電路元件的影響較為困難,因此難以 滤除ΑΒ類偏壓放Α||之二讀波的實㈣漏。因此,對於消 除AB類偏壓放大器之二次諧波汽漏導致的干擾,可能的解決 •方法是減少AB類偏壓放大器的二次諧波。據此,提出了可降 .低諧波的多種示範放大器。更具體的,當輸入訊號的輸入功率 [S3 23 201112650 超過預疋位準時’即思味著二次譜波不可忽略,所提出的放大 器將離開-種增益模式而進入另一種增益模式,以減少二次諧 波。下面進行詳細福述。 第15圖為根據本發明實施例支持不同增益模式的放大器 不思圖。放大器1500包括第一放大器區塊15〇2、第二放大器 區塊1504、偏壓電路1506和切換控制器15〇8,但本發明並不 僅限於此。第一放大器區塊15〇2和第二放大器區塊15〇4均耦 接至放大器1500的輸入埠n_IN,和輸出埠n_〇UT,。第一放大 器區塊1502放大輸入訊號S1’(例如RF訊號),且包括輸入級籲 1510和可選擇的切換單元1512,其中輸入級丨51〇在輸入埠 n_in接收輸入訊號si’,切換單元丨512耦接輸入級151〇並且 控制輸入級1510的輸出節點N11的連接。第二放大器區塊 15〇4包括輸入級i5i4和切換單元1516,其中輸入級1514在 輸入埠N_IN,接收輸入訊號S1,,切換單元1516耦接輸入級 1514並且控制輸入級1514的輸出節點N12的連接。在此示範 實施例中,輸入級1510和1514為轉導級,且分別由作為輸入· 電BB體的MOS電晶體Mil和Ml 2實現;切換單元1512由MOS 電aa體M21實現,切換單元1516由MOS電晶體M22實現。 明注思,MOS電晶體M12的轉導大小大於M〇s電晶體M11 的轉導大小。偏壓電路1506耦接第一放大器區塊15〇2和第二 放大器區塊1504,用於對第一放大器區塊15〇2和第二放大器 區塊1504提供偏壓,使其工作在AB類模式。更具體的,偏 · 壓電路1506輕接MOS電晶體Mil和]U12,並產生偏壓VBab 24 201112650 . 使MOS電晶體Mil和M12工作在AB模式。因此,可通過簡 單的設定MOS電晶體Ml 1和Ml2的偏壓點,即可實現第一放 大器區塊1502和第二放大器區塊15〇4的AB類運作。舉例而 s,偏壓電路1506可採用第14圖所示偏壓電路1306的電路 實現,但本發明並不僅限於此。切換控制器15〇8控制切換單 元1512和1516的運作。例如,切換控制器15〇8產生切換控 制訊號S21和S22,分別控制M0S電晶體M21和M22的開/ 關狀態。 當輸入訊號sr的輸入功率較低時,放大器15〇〇進入第一 增盈模式,對輸入A號S1 ’採用第一增益,在輸出埠n out, 產生輸出訊號S2’。當放大器15〇〇運作在第一增益模式時,切 換控制器1508設定切換控制訊號S2i和S22以導通電晶體 M21以及M22。據此,由於偏壓電路15〇6應用AB類偏壓至 第一放大器區塊1502和第二放大器區塊15〇4的每個輸入級, 輸出節點Nil和N12通過切換控制器控制的切換單元1512和 • 1516耦接輸出埠N_〇UT’,放大器15〇〇在第一增益模式下, 對輸入訊號S1’以尚增益值的第一增益進行放大。 然而,當輸入訊號S1’的輸入功率增加並且超過預定位準 時,放大器1500進入第二增益模式,第二增益模式中第二增 益的增益值小於前述的第一增益的增益值。此外,為減少放大 為增盈以及不期望的二次諧波,切換控制器15〇8設定切換控 •制訊號S21和S22,以導通MOS電晶體M21和關斷M〇s電 •晶體M22。儘管偏壓電路15〇6應用偏壓VBab至電晶體題, 25 201112650 由於切換控制器1508使電晶體M22處於關斷狀態,電晶體 M12斷開與輸出埠Ν-〇υτ’的連接。換言之,第二放大器區塊 1504中輸入級1514被切換控制器1508控制的切換單元1516 所禁月b °由於第二增益模式下主動輸人級(例如主動轉導級)的 數目小於第一增益模式下主動輸入級的數目,因此可減少放大 器1500中產生的不期望的二次譜波。請注意,第一增益模式 下偏屋vbab的電s位準和第二增益模式下偏壓u電塵 位準可以相同也可以不同。 第16圖為根據本發明另一實施例支持不同增益模式的放 大器的示意圖。放大器1600包括如第15圖所示的第一放大器 區塊1502、第二放大器區塊16〇4、偏壓電路祕和切換控制 器1608,但本發明並不僅限於此。第二放大器區塊測和觀 的區別在於第二放大器區塊16〇4包含採用兩個M〇s電晶體 M22和M23實現的切換單元1616.由第16圖可知切換單元 1616將輸入級1514的輸出節點N12選擇性的耦接至參考電壓 (例如供應電壓v_或者放大n _的輸出^Ν_〇υτ,。此 外,偏壓電路1606耦接至第一放大器區塊15〇2和第二放大器 區塊1604,選擇性地為第一放大器區塊15〇2和第二放大器區 塊1604提供偏壓,使其運作在ΑΒ類模式或者Α類模式。更 具體的,偏壓電路1606耦接MOS電晶體M11和Μ12,此外, 偏壓電路1606對MOS電晶體Mil和Μ12提供偏壓VBab,以 便使其運作在AB類模式申,以及為m〇S電晶體M11和M12 提供偏壓VBa,以便使其運作在A類模式中,其中VBa> 26 201112650The situation in the class mode refers to the bias current (ie, the lower average current) that is better than the 彳M2 operating in the A transistor m and the M2 star "mode in the weak reversal zone", thus improving the power efficiency / The power is 18mA, but the bias current of each 22 201112650 .MOS transistor in class AB mode can be reduced to 4mA. In the second amplifier block 1304, the inductive load Lload is used to make the dynamic range of the active device (headroom) In addition, a low dropout (LDO) regulator 1402 provides a supply voltage of, for example, 2.7V. The supply voltage of 2.7V and the low impedance provided by the filter 216 that suppresses the out-of-band signal can avoid output. It is limited and can suppress output distortion. The circuit described in Fig. 14 is for illustrative purposes only. The present invention is not limited thereto. Any amplifier architecture that follows the spirit of the present invention can be used to implement a class AB bias amplifier 13〇〇 Or class AB low noise amplifier 1214, other alternative amplifier designs are within the scope of the present invention. As described above, the signal boost amplifier (such as low noise amplifier 214) can be realized by class AB bias amplification n In order to achieve low power consumption. However, when the input power of the frequency portion of the received RF signal is large (for example, -15dBm), the secondary waves of the class AB bias I amplifier are more significant and cannot be ignored. For example, passive The local oscillation signal of the mixer 206 can be generated by an oscillation signal generated by, for example, a voltage controlled oscillator. The second harmonic of the Αβ-type bias amplifier may leak to the voltage controlled oscillator, resulting in undesired glitch noise. (spur) Therefore, undesired glitch noise down-converts the intra-frequency portion of the received RF signal to the desired fundamental frequency and corrupts the desired intra-frequency portion of the fundamental-frequency condition number. It is difficult to influence the influence of other circuit components on the second wave of the wave, so it is difficult to filter out the real (four) leakage of the second read wave of the 偏压 bias bias || The interference caused by the second harmonic leakage is possible. The method is to reduce the second harmonic of the class AB bias amplifier. Based on this, various exemplary amplifiers for lowering and lower harmonics are proposed. More specifically, when Input power of input signal [S3 23 201112650 More than the pre-clamping on time', that is, the secondary spectrum wave can not be ignored, the proposed amplifier will leave the gain mode and enter another gain mode to reduce the second harmonic. The details are described below. The figure shows an amplifier that supports different gain modes in accordance with an embodiment of the present invention. The amplifier 1500 includes a first amplifier block 15A2, a second amplifier block 1504, a bias circuit 1506, and a switching controller 15A8, but The present invention is not limited thereto. The first amplifier block 15〇2 and the second amplifier block 15〇4 are both coupled to the input 埠n_IN of the amplifier 1500, and the output 埠n_〇UT. The first amplifier block 1502 amplifies the input signal S1' (for example, an RF signal), and includes an input stage 1510 and an optional switching unit 1512, wherein the input stage 丨51〇 receives the input signal si' at the input 埠n_in, and the switching unit 丨512 is coupled to input stage 151 and controls the connection of output node N11 of input stage 1510. The second amplifier block 15〇4 includes an input stage i5i4 and a switching unit 1516, wherein the input stage 1514 receives the input signal S1 at the input 埠N_IN, the switching unit 1516 is coupled to the input stage 1514 and controls the output node N12 of the input stage 1514. connection. In the exemplary embodiment, the input stages 1510 and 1514 are transduction stages, and are implemented by MOS transistors Mil and Ml 2 as input/electric BB bodies, respectively; the switching unit 1512 is implemented by the MOS electric aa body M21, and the switching unit 1516 It is realized by the MOS transistor M22. It is obvious that the transduction size of the MOS transistor M12 is larger than the transduction size of the M〇s transistor M11. The bias circuit 1506 is coupled to the first amplifier block 15〇2 and the second amplifier block 1504 for biasing the first amplifier block 15〇2 and the second amplifier block 1504 to operate in the AB Class mode. More specifically, the bias voltage circuit 1506 is connected to the MOS transistors Mil and U12, and generates a bias voltage VBab 24 201112650. The MOS transistors Mil and M12 are operated in the AB mode. Therefore, the AB operation of the first amplifier block 1502 and the second amplifier block 15〇4 can be realized by simply setting the bias points of the MOS transistors M1 1 and M12. For example, the bias circuit 1506 can be implemented by the circuit of the bias circuit 1306 shown in Fig. 14, but the invention is not limited thereto. The switching controller 15〇8 controls the operation of the switching units 1512 and 1516. For example, the switching controller 15A generates switching control signals S21 and S22 to control the on/off states of the MOS transistors M21 and M22, respectively. When the input power of the input signal sr is low, the amplifier 15 〇〇 enters the first gain mode, the first gain is applied to the input A number S1 ', and the output signal S2' is generated at the output 埠n out. When the amplifier 15 is operating in the first gain mode, the switching controller 1508 sets the switching control signals S2i and S22 to conduct the transistors M21 and M22. Accordingly, since the bias circuit 15〇6 applies the class AB bias to each input stage of the first amplifier block 1502 and the second amplifier block 15〇4, the output nodes Nil and N12 are switched by the switching controller control. The units 1512 and 1516 are coupled to the output 埠N_〇UT', and the amplifier 15 is amplified in the first gain mode by the first gain of the input signal S1' with the gain value. However, when the input power of the input signal S1' increases and exceeds the predetermined level, the amplifier 1500 enters the second gain mode, and the gain value of the second gain in the second gain mode is smaller than the gain value of the aforementioned first gain. Further, in order to reduce the amplification to the gain and the undesired second harmonic, the switching controller 15A8 sets the switching control signals S21 and S22 to turn on the MOS transistor M21 and turn off the M?s electric crystal M22. Although the bias circuit 15 〇 6 applies the bias voltage VBab to the transistor title, 25 201112650, since the switching controller 1508 causes the transistor M22 to be in the off state, the transistor M12 is disconnected from the output 埠Ν-〇υτ'. In other words, the input stage 1514 in the second amplifier block 1504 is disabled by the switching unit 1516 controlled by the switching controller 1508. Since the number of active input stages (eg, active transduction stages) in the second gain mode is less than the first gain. The number of active input stages in the mode, thus reducing the undesirable secondary spectral waves generated in amplifier 1500. Please note that the electric s level of the partial vbab in the first gain mode and the bias u electric dust level in the second gain mode may be the same or different. Figure 16 is a schematic diagram of an amplifier supporting different gain modes in accordance with another embodiment of the present invention. The amplifier 1600 includes a first amplifier block 1502, a second amplifier block 16〇4, a bias circuit secret and a switching controller 1608 as shown in Fig. 15, but the present invention is not limited thereto. The difference between the second amplifier block and the second amplifier block 16〇4 includes a switching unit 1616 implemented by two M〇s transistors M22 and M23. It can be seen from FIG. 16 that the switching unit 1616 will input the input stage 1514. The output node N12 is selectively coupled to the reference voltage (eg, the supply voltage v_ or the output of the amplification n__Ν_〇υτ. Further, the bias circuit 1606 is coupled to the first amplifier block 15〇2 and the The second amplifier block 1604 selectively biases the first amplifier block 15〇2 and the second amplifier block 1604 to operate in a 模式 mode or a 模式 mode. More specifically, the bias circuit 1606 The MOS transistors M11 and Μ12 are coupled. Further, the bias circuit 1606 provides a bias voltage VBab to the MOS transistors Mil and Μ12 to operate in the class AB mode and to bias the m〇S transistors M11 and M12. Press VBa to make it operate in Class A mode, where VBa> 26 201112650

.VBab。並且切換控制器1608控制如从„D , 剩切換單元1512和1616。例 如,切換控制器1608產生切換柝制^ 換控制矾號S21、S22和S23,分 别控Γ於0s電曰曰體M21、M22和M23的開/關狀態。 ^入,81’的輸入功率較低時,放大器腿進入第一 杧盃模式,對在輸入埠N IN,接收 咕^輸入訊號S1,(例如RF訊 號)採用第一增益’在輸出埠N 〇UT,* —產生輸入訊號S2,。當放 大器1600運作在第一增益模式時 沉 田狡 _ _ ^ 切換控制器1608設定切換 控制訊號S21、S22和S23以導通Mnc a M〇s電晶體M21和M22並 關斷MOS電晶體M23。據此,由於偽 々、鳩壓電路1606應用AB類 偏壓至第一放大器區塊1502和第-姑丄 一攻大器區塊1604的每個輸 入級,輸出節點Nil和N12通過切趑^ 換控制器1608控制的切換 單元1512和1616耦接輸出埠N 〇ut,, 、 〜U1 ’放大器1600在第一 增益模式下,對輸入訊號S1’以高增X伯^ & 義值的第一增益進行放大。 然而,當輸入訊號S1’的輸入功垄秘丄2 々平增加並且超過預定位準 時,放大器1600進入第二增益模式, 第一增益模式中第二增 益的增益值小於前述的第一增益的增只 9幾值。此外,為減少放大 器脚中的放大器增益以及不期望的二次譜波,切換控制号 !6〇8設定切換控制訊號S21、S22和S23,以導通M〇s電晶體 M2i和M23 ’並關斷MOS電晶體M22。偏壓電路祕對輸 入級1510和1514採用A類偏壓代替ab類偏壓。儘管偏壓電 路1606應用偏壓VBA至電晶體M12’由於輸出節點N12通過 導電(electrically conductive)MOS電晶體M23耗接參考電壓(例 如供應電壓VDD),流經電晶體M12的電流被旁路(bypass)。 m 27 201112650 與AB類偏壓放大器相比,A類偏壓放大器產生的不期望的二 次諸波較少。因此,通過偏置MOS電晶體Μ11和Ml2使其運 作在A類模式下,可減輕放大器1600的二次諧波。 如第2A和2B圖所示,匹配網路212設置在低雜訊放大器 214之前。當用如第15圖所示的放大器1500實現低雜訊放大 器214時,由已禁能輸入級1514導致的輸入阻抗的變化會使 得第二增益的增益值受匹配網路212的匹配增益劇烈影響,而 這對於接收器設計是不希望的。在另一種情況下,當低雜訊放 大器214由第16圖所示的放大器1600實現時,由於A類偏壓 ® VBA比AB類偏壓VBab高’將A類偏壓代替AB類偏壓會增 加DC電流。因此,在低增益(即A類)模式中,抑制不期望的 二次諧波會增加DC電流。然而,當輸入功率較為適中時(例如 -40dBm至-22dBm),需要低增益的低雜訊放大器,且不期望的 一次猎波仍然足夠小可被忽略。此情形下,放大器需切換至低 増益模式但仍在AB類偏壓模式下以節省功率。因此,本發明 進一步提出了改進的放大器設計,下面進行詳細描述。 φ 第Π圖為根據本發明另一個示範實施例支持不同增益模 式的放大器示意圖。放大器17〇〇包括如第一放大器區塊 1702 '第二放大器區塊1704、偏壓電路17〇6和切換控制器 1708,但本發明並不僅限於此。第一放大器區塊17〇2和第二 放大器區塊1704耦接放大器1700的輸入槔N〜IN,和輸出璋 n〜out’。第一放大器區塊1702放大輸入訊號S1,(例如尺卩訊 號)’且包括輸入級1710和可選擇的切換單元1712,其中輸入 28 201112650 • 級1710在輸入埠N_IN,接收輸入訊號SI,,切換單元1712耦 接輸入級1710並且控制輸入級171〇的輸出節點Nil,的連接。 第二放大器區塊1704包括多個輸入級1714、1718和1722以 及多個切換單元1716、172〇和1724,其中每個輸入級1710、 1714、1718和1722在輸入埠N_IN,接收輸入訊號S1,,每個切 換單元1712、1716、1720和1724控制輸入級 1710/1714/1718/1722 的對應輸出節點 Nil,/N12’N13V N14’的 I連接。更具體的’如第17圖所示,切換單元Π16將輸入級1714 的輸出節點N12’選擇性的耦接至參考電壓(例如供應電壓 VDD)或者放大器ποο的輸出埠N—out,,切換單元1720將輸 入級1718的輸出節點N13,選擇性的耦接至參考電壓或者輸 出埠N_OUT’ ’切換單元1724將輸入級1722的輸出節點N14, 選擇性的耦接至參考電壓或者輸出槔N_〇UT’。 在此示範實施例中,輸入級1710、1714、1718和1722為 轉導級,且分別由作為輸入電晶體的MOS電晶體Mil,、 • M12’、M13’和M14’實現;切換單元πΐ2由MOS電晶體M21, 實現,切換單元Π16由MOS電晶體M22,和M23’實現,切換 單元1720由MOS電晶體M24,和M25,實現,切換單元1724 由MOS電晶體M26’和M27’實現。此外,MOS電晶體M13, 和M14’的轉導大小均大於MOS電晶體Mil,和M12,的轉導大 小。舉例而言’ MOS電晶體Mil’、M12,、M13,和M14’的轉 導大小比率可為0.5:0.5:10:10。 偏壓電路Π06耦接第一放大器區塊Π02和第二放大器區 29 201112650 塊1704’用於對第一放大器區塊17〇2和第二放大器區塊⑺* 提供偏Μ ’使其工作在AB類模式或者A類模式。舉例而言, 偏壓電路1706耦接^1〇8電晶體^111,、^112,、肘13,和1^4,, 產生偏壓¥丑心使]^〇8電晶體]^11,、]^12,、]^13,和]^14,工 作在AB模式,或者產生偏壓▽8八使M〇s電晶體mu,、mi2,、 Μ13’和Μ14’中的一個或多個運作在a模式。切換控制器17〇8 控制切換單元1712、1716、1720和1724的運作,例如,切換 控制器1708產生切換控制訊號S21,-s27,分別控制M〇s電晶 體M21 -M27的開/關狀態。 不範放大器1700支持不同增益模式,包括高增益模式(例 如高增益AB類模式)和兩種低增益模式(例如低增益AB類模 式和低增益A類模式)。當輸入訊號sl,的輸入功率較低時,放 大器1700進入高增益ab類模式,在輸入埠N_IN’對輸入訊號 S1採用第一增益,並在輸出槔n OUT’產生輸出訊號S2’。當 放大器1700進入高增益ab類模式,偏壓電路17〇6產生偏歷 VBab至每個輸入級17丨〇、丨7丨4、j 718和1722 ’切換控制器 1708設定切換控制訊號S21,_S27’以導通M〇S電晶體Μ21、 M22’、M24’和M26,以及關斷]V10S電晶體M23’、M25’和 M27’。據此,由於偏壓電路17〇6採用AB類偏壓至每個輸入 級1710、1714、1718和1722,輸出節點Ν11,·Ν14,通過切換 控制器1708控制的切換單元m2、1716、1720和1724均麵 接至輸出埠N-OUT,,放大器17〇〇在高增益ΑΒ類模式下可對 輸入訊號S1’以具有高增益值的第一增益進行放大。 201112650 當輸入訊號si’的輸入功率增加,但並未超過預定位準 時,放大器1700進入低增益AB類模式,採用第二增益,其 中第二增益的增益值比前述的第一增益的增益值低。當放大器 1700進入低增益AB類模式,偏壓電路1706產生偏壓VBab 至每個輸入級1710、1714、1718和1722,切換控制器Π08 設定切換控制訊號S2T-S27’以導通MOS電晶體M21’、M22,、 M25’和M27’以及關斷MOS電晶體M23’、M24’和M26,。儘 管偏壓電路1706應用AB類至輸入級1718和1722,由於輸出 ® 節點N13’和N14’通過導電MOS電晶體M25,和M27’耦接參考 電壓(例如供應電壓VDD),流經電晶體M13’和M14’的電流被 旁路(bypass)。據此,在低增益AB類模式下的放大器1700可 對輸入訊號S1’以具有低增益值的第二增益進行放大。在高增 益AB類模式下偏壓乂8^的電壓位準和在低增益AB類模式 下偏壓VBab的電壓位準可以相同也可以不同。 當輸入號S1’的輸入功率進一步增加,超過預定位準 籲時,放大器1700進入低增益A類模式,採用第三增益,其中 弟二增ϋ的增益值實質上等於或者小於前述的第二增益的增 益值。當放大器1700進入低增益a類模式,偏壓電路17〇6 產生偏壓VBA至每個輸入級ΠΙΟ、1714、1718和1722,即偏 壓電路1706應用A類偏壓至第一放大器區塊17〇2和第二放大 器區塊1704。如上所述,當放大器17〇〇運作在低增益ab類 • 模式下時,控制切換單元1712和1716使輸出節點Nil’和N12, 耦接輸出埠N一OUT’;並且,以A類偏壓VBA代替AB類偏壓 201112650 vbab可增加放大器增益。為了使第三增益的增益值實質上等 . 於或者小於前述的第二增益的增益值,切換控制器17〇8設定 切換控制訊號S21’-S23’以導通M〇s電晶體M21,和Μ23,以及 關斷MOS電晶體Μ22’。雖然M〇s電晶體Μη,和Μ12,經過 偏壓而運作在Α類模式,但]vi〇s電晶體Μ12,斷開與放大器 1700輸出埠N_OUT’的連接。藉此,由於將a類偏壓應用至 MOS電晶體Mil’導致的放大器增益增加,以及斷開M〇s電 晶體M12’與放大器1700輸出埠Ν_〇υτ,的連接所導致的放大 器增益減少,在低增益Α類模式下第三增益的增益值可實質上籲 等於低增益AB類模式下第二增益的增益值。並且,由於偏壓 電路1706輸出A類偏壓VBA代替ab類偏壓VBab,可有效 減少不期望的二次諧波。 此外’當放大器1700運作在低增益a類模式下,切換控 制器1708進一步設定切換控制訊號S24,-S27,以導通MOS電 晶體M25’以及關斷MOS電晶體M24,、M26,和M27,。因此, 由於MOS電晶體M26’和M27,被切換控制器1708關斷,MOS 春 電晶體M14’斷開與輸出埠NJDUT,的連接。簡言之,切換控制 器1708控制切換單元1716、1720和1724,以斷開輸出節點 N12’-N14’與放大器1700的輸出,N_OUT’的連接,其中至少 一個輸入級(例如輸入級1722)被由切換控制器1708控制的至 少一個切換單元(例如切換單元1724)所禁能。由於在低增益a 類模式下主動(active)輸入級的數目(例如主動轉導級)小於在 低增益AB類模式/高增益AB類模式下主動輸入級的數目,放 32 201112650 、 大器1700的不期望的·一次譜波得以有效減少。如上所述,關 斯輸入級MOS電晶體將改變放大器的輸入阻抗。因此,在此 示範實施例中’低增益A類模式下並非第二放大器區塊17〇4 中所有的輸入級被禁能。例如,至少輸入級1718保持主動以 避免匹配增益變化過於劇烈。 當MOS電晶體Ml2’的轉導大小小於MOS電晶體Ml3, 的轉導大小時,由於由已禁能的輸入級1714導致的匹配增益 鲁變化可忽略,在低增益A類模式下MOS電晶體M12,可關斷。 參考第18至20圖,第18圖為在低增益模式下低雜訊放 大器增益和偏壓電流之間關係的示意圖,第19圖為在低增益 ^式下匹配增益和偏壓電流之間關係的示意圖,第2〇圖為在 模式下一次S皆波電流和偏壓電流之間關係的示意圖。其 令點Case-Ι代表在低增益模式下接收器的低雜訊放大器由不 具有諧波削弱技術的放大器實現;點Case-2代表的情形:在低 _ 4曰盈模式下,接收器的低雜訊放大器(例如放大器15〇〇)使用 AB類偏壓,且在第一放大器區塊使能輸入級,在第二放大器 區塊禁能每個輸入級;點Case-3代表的情形:在低增益模式 ’接收器的低雜訊放大器(例如放大器1600)使用A類偏壓, 且在第一放大器區塊和第二放大器區塊使能所有輸入級;點 Case-4代表的情形:在低增益模式下,接收器的低雜訊放大器 (例如放大器Π〇〇)使用A類偏壓,且在第一放大器區塊使能輸 • 入級’在第二放大器區塊禁能部分輸入級。與放大器1500和 . 16〇〇相比,第17圖所示的放大器1700能夠減少放大器產生的.VBab. And the switching controller 1608 controls the switching units 1512 and 1616 from the "D". For example, the switching controller 1608 generates the switching control signals S21, S22, and S23, respectively, which are controlled by the 0s electric body M21, On/off status of M22 and M23. ^Input, when the input power of 81' is low, the amplifier leg enters the first cup mode, and at the input 埠N IN, the input signal S1 (for example, RF signal) is used. The first gain 'generates the input signal S2 at the output 埠N 〇UT,*. When the amplifier 1600 operates in the first gain mode, the sinking __^ switching controller 1608 sets the switching control signals S21, S22, and S23 to be turned on. Mnc a M〇s transistors M21 and M22 and turn off the MOS transistor M23. Accordingly, since the pseudo-twisting circuit 1606 applies the class AB bias to the first amplifier block 1502 and the first-a-bit For each input stage of the block 1604, the output nodes Nil and N12 are coupled to the output 埠N 〇 ut, by the switching units 1512 and 1616 controlled by the switching controller 1608, and the U1 'amplifier 1600 is in the first gain mode. Next, the first increase in the value of the input signal S1' is increased by X & Amplifying. However, when the input power of the input signal S1' is increased and exceeds the predetermined level, the amplifier 1600 enters a second gain mode, and the gain of the second gain in the first gain mode is smaller than the first The gain is increased by only a few 9. In addition, to reduce the amplifier gain in the amplifier pin and the undesired secondary spectrum, the switching control number !6〇8 sets the switching control signals S21, S22 and S23 to turn on the M〇s The crystals M2i and M23' turn off the MOS transistor M22. The bias circuit secretly applies a class A bias to the input stage 1510 and 1514 instead of the ab bias. Although the bias circuit 1606 applies a bias voltage VBA to the transistor M12' Since the output node N12 consumes a reference voltage (e.g., supply voltage VDD) through an electrically conductive MOS transistor M23, the current flowing through the transistor M12 is bypassed. m 27 201112650 Compared with a class AB bias amplifier The class A bias amplifier produces less unwanted secondary waves. Therefore, by biasing the MOS transistors Μ11 and M12 to operate in the Class A mode, the second harmonic of the amplifier 1600 can be mitigated. 2A and 2B As shown, the matching network 212 is placed before the low noise amplifier 214. When the low noise amplifier 214 is implemented with the amplifier 1500 as shown in Fig. 15, the change in the input impedance caused by the disabled input stage 1514 causes The gain value of the second gain is drastically affected by the matching gain of the matching network 212, which is undesirable for receiver design. In another case, when the low noise amplifier 214 is implemented by the amplifier 1600 shown in FIG. 16, since the class A bias voltage VBA is higher than the class AB bias voltage VBab, the class A bias voltage is substituted for the class AB bias. Increase the DC current. Therefore, in the low gain (i.e., class A) mode, suppressing the unwanted second harmonic increases the DC current. However, when the input power is moderate (e.g., -40dBm to -22dBm), a low gain low noise amplifier is required, and the undesired primary hunting wave is still small enough to be ignored. In this case, the amplifier needs to switch to the low gain mode but still in class AB bias mode to save power. Accordingly, the present invention further proposes an improved amplifier design, which is described in detail below. φ is a schematic diagram of an amplifier supporting different gain modes in accordance with another exemplary embodiment of the present invention. The amplifier 17A includes, for example, a first amplifier block 1702 'second amplifier block 1704, a bias circuit 17〇6, and a switching controller 1708, but the present invention is not limited thereto. The first amplifier block 17〇2 and the second amplifier block 1704 are coupled to the inputs 槔N~IN of the amplifier 1700, and the outputs 璋n~out'. The first amplifier block 1702 amplifies the input signal S1 (eg, a ruler signal) and includes an input stage 1710 and an optional switching unit 1712, wherein the input 28 201112650 • the stage 1710 receives the input signal SI, at the input 埠N_IN, and switches Unit 1712 is coupled to input stage 1710 and controls the connection of output node Nil of input stage 171A. The second amplifier block 1704 includes a plurality of input stages 1714, 1718, and 1722 and a plurality of switching units 1716, 172, and 1724, wherein each of the input stages 1710, 1714, 1718, and 1722 receives an input signal S1 at an input 埠N_IN, Each switching unit 1712, 1716, 1720, and 1724 controls the I connection of the corresponding output node Nil, /N12'N13V N14' of the input stage 171017/714/1718/1722. More specifically, as shown in FIG. 17, the switching unit Π16 selectively couples the output node N12' of the input stage 1714 to a reference voltage (eg, supply voltage VDD) or an output 埠N_out of the amplifier ποο, the switching unit 1720 selectively couples output node N13 of input stage 1718 to a reference voltage or output 埠N_OUT'' switching unit 1724 to selectively couple output node N14 of input stage 1722 to a reference voltage or output 槔N_〇 UT'. In this exemplary embodiment, input stages 1710, 1714, 1718, and 1722 are transducing stages, and are implemented by MOS transistors Mil, M12', M13', and M14', respectively, as input transistors; switching elements πΐ2 are The MOS transistor M21, realized, the switching unit Π16 is realized by the MOS transistors M22, and M23', the switching unit 1720 is realized by the MOS transistors M24, and M25, and the switching unit 1724 is realized by the MOS transistors M26' and M27'. Further, the transduction sizes of the MOS transistors M13, and M14' are larger than those of the MOS transistors Mil, and M12. For example, the ratio of the transmissive size of the 'MOS transistors Mil', M12, M13, and M14' may be 0.5:0.5:10:10. The bias circuit Π06 is coupled to the first amplifier block Π02 and the second amplifier region 29 201112650. The block 1704' is used to provide a bias to the first amplifier block 17〇2 and the second amplifier block (7)* to operate Class AB mode or Class A mode. For example, the bias circuit 1706 is coupled to the ^1〇8 transistor ^111, ^112, elbow 13, and 1^4, to generate a bias voltage 丑 心 使 ] 〇 电 电 电 电 电 电 电 电 电 电 电 电,,]^12,,]^13, and ]^14, working in AB mode, or generating bias ▽8-8 to make one or more of M〇s transistors mu, mi2, Μ13', and Μ14' One works in a mode. The switching controller 17〇8 controls the operations of the switching units 1712, 1716, 1720, and 1724. For example, the switching controller 1708 generates switching control signals S21, -s27 for controlling the on/off states of the M〇s electric crystals M21-M27, respectively. The Amplifier 1700 supports different gain modes, including high gain modes (such as high gain class AB mode) and two low gain modes (such as low gain class AB mode and low gain class A mode). When the input power of the input signal sl is low, the amplifier 1700 enters the high gain ab mode, the first gain is applied to the input signal S1 at the input 埠N_IN', and the output signal S2' is generated at the output 槔n OUT'. When the amplifier 1700 enters the high gain ab mode, the bias circuit 17〇6 generates a bias VBab to each input stage 17丨〇, 丨7丨4, j 718, and 1722 'the switching controller 1708 sets the switching control signal S21, _S27' to turn on M〇S transistors Μ21, M22', M24', and M26, and turn off] V10S transistors M23', M25', and M27'. Accordingly, since the bias circuit 17〇6 is biased to each of the input stages 1710, 1714, 1718, and 1722 by the class AB, the output nodes Ν11, ·14, the switching units m2, 1716, 1720 controlled by the switching controller 1708. The 1724 is evenly connected to the output 埠N-OUT, and the amplifier 17 放大 can amplify the input signal S1' with a first gain having a high gain value in the high gain ΑΒ mode. 201112650 When the input power of the input signal si' increases, but does not exceed the predetermined level, the amplifier 1700 enters the low gain class AB mode, using the second gain, wherein the gain value of the second gain is lower than the gain value of the first gain described above. . When the amplifier 1700 enters the low gain class AB mode, the bias circuit 1706 generates a bias voltage VBab to each of the input stages 1710, 1714, 1718, and 1722, and the switching controller Π08 sets the switching control signals S2T-S27' to turn on the MOS transistor M21. ', M22, M25' and M27' and turn off MOS transistors M23', M24' and M26. Although the bias circuit 1706 applies the class AB to the input stages 1718 and 1722, since the output ® nodes N13' and N14' are coupled to the reference voltage (eg, supply voltage VDD) through the conductive MOS transistor M25, and M27', the transistor flows through the transistor. The currents of M13' and M14' are bypassed. Accordingly, the amplifier 1700 in the low gain class AB mode can amplify the input signal S1' with a second gain having a low gain value. The voltage level of the bias voltage 乂8^ in the high-enhanced class AB mode and the voltage level of the bias voltage VBab in the low-gain class AB mode may be the same or different. When the input power of the input number S1' is further increased, exceeding the predetermined level, the amplifier 1700 enters the low gain class A mode, adopting a third gain, wherein the gain value of the second boost is substantially equal to or smaller than the aforementioned second gain. Gain value. When amplifier 1700 enters the low gain class a mode, bias circuit 17〇6 generates a bias voltage VBA to each of input stages 17, 1714, 1718, and 1722, i.e., bias circuit 1706 applies a type A bias to the first amplifier region. Block 17〇2 and second amplifier block 1704. As described above, when the amplifier 17 is operating in the low gain ab mode, the control switching units 1712 and 1716 couple the output nodes Nil' and N12 to the output 埠N_OUT'; and, with the class A bias VBA replaces class AB bias 201112650 vbab to increase amplifier gain. In order to make the gain value of the third gain substantially equal to or smaller than the gain value of the second gain described above, the switching controller 17〇8 sets the switching control signals S21'-S23' to turn on the M〇s transistors M21, and Μ23. , and turn off the MOS transistor Μ 22'. Although the M〇s transistors Μη, and Μ12 are biased to operate in the Α mode, the ]vi〇s transistor Μ12 disconnects the output 埠N_OUT' of the amplifier 1700. Thereby, the gain of the amplifier is increased due to the application of the type a bias voltage to the MOS transistor Mil', and the amplifier gain is reduced due to the connection of the M 〇s transistor M12' and the output 埠Ν_〇υτ of the amplifier 1700. The gain value of the third gain in the low gain Α mode may be substantially equal to the gain value of the second gain in the low gain class AB mode. Also, since the bias circuit 1706 outputs the class A bias voltage VBA instead of the ab type bias voltage VBab, the undesired second harmonic can be effectively reduced. Further, when the amplifier 1700 operates in the low gain class a mode, the switching controller 1708 further sets the switching control signals S24, -S27 to turn on the MOS transistor M25' and turn off the MOS transistors M24, M26, and M27. Therefore, since the MOS transistors M26' and M27 are turned off by the switching controller 1708, the MOS transistor M14' is disconnected from the output 埠NJDUT. Briefly, switching controller 1708 controls switching units 1716, 1720, and 1724 to disconnect the output nodes N12'-N14' from the output of amplifier 1700, N_OUT', at least one of which is (eg, input stage 1722) At least one switching unit (e.g., switching unit 1724) controlled by the switching controller 1708 is disabled. Since the number of active input stages (eg, active transduction stage) is lower than the number of active input stages in low gain class AB mode/high gain class AB mode in low gain class a mode, put 32 201112650, bulk 1700 The undesired one-time spectral wave is effectively reduced. As mentioned above, the Guans input stage MOS transistor will change the input impedance of the amplifier. Therefore, in the exemplary embodiment, in the low gain class A mode, not all of the input stages in the second amplifier block 17〇4 are disabled. For example, at least input stage 1718 remains active to avoid too much matching gain variation. When the transducing size of the MOS transistor M12' is smaller than the transducing size of the MOS transistor M13, the matching gain due to the disabled input stage 1714 is negligible, and the MOS transistor is in the low gain class A mode. M12, can be turned off. Referring to Figures 18 to 20, Figure 18 is a diagram showing the relationship between the gain of the low noise amplifier and the bias current in the low gain mode, and Fig. 19 is the relationship between the matching gain and the bias current in the low gain mode. The schematic diagram of the second diagram is a schematic diagram of the relationship between the current and the bias current in the S-mode current mode. The point Case-Ι represents that the low noise amplifier of the receiver in low gain mode is implemented by an amplifier without harmonic attenuation technology; the point Case-2 represents the case: in the low _ 4 margin mode, the receiver A low noise amplifier (such as amplifier 15 〇〇) uses a class AB bias and enables the input stage in the first amplifier block and disables each input stage in the second amplifier block; the point Case-3 represents the case: In the low gain mode, the receiver's low noise amplifier (eg, amplifier 1600) uses a Class A bias and enables all input stages in the first amplifier block and the second amplifier block; point Case-4 represents the situation: In low gain mode, the receiver's low noise amplifier (such as amplifier Π〇〇) uses a Class A bias, and in the first amplifier block enables the input stage 'in the second amplifier block disable section input level. Compared with amplifiers 1500 and .16, the amplifier 1700 shown in Figure 17 can reduce the amplifier's

E SI 33 201112650 不期望的二次諸波’且不會劇烈增加功率消耗以及改變匹配增 益。 如上所述,第17圖所示的放大器1700支持三種增益模式 (即高增益AB類模式’低增益AB類模式以及低增益a類模式) 並採用多種諧波削弱技術(例如採用A類偏壓,禁能輸入級 1722以及斷開輸入級1714與輸出埠N_OUT,的連接)。如此只 為說明本發明’並非用於限制本發明。包含本發明一種或者多 種技術特徵的任何放大器設計均屬於本發明的保護範圍。為清 楚起見,下面描述第17圖中的放大器1700的替代設計。 鲁 關於第一種替代設計’可修改第17圖中的放大器1700, 省略輸入級1722和對應的切換單元1724;修改後的放大器 Π00依然可支持上述的高增益AB類模式、低增益AB類模式 以及低增益A類模式。當修改後的放大器17〇〇進入高增益AB 類模式時,]^108電晶體1\111’-]^13’偏壓在八6類模式,^[〇8 電晶體M21’、M22’和M24’導通,MOS電晶體M23’和M25, 關斷。當修改後的放大器1700進入低增益AB類模式時,MOS 籲 電晶體Mll’-M13’仍然偏壓在AB類模式,]y[〇S電晶體M21,、 M22’和M25’導通,M0S電晶體M23’和M24,關斷。當修改後 的放大器1700進入低增益A類模式時,M0S電晶體Mil,-Μ13, 偏壓在A類模式,MOS電晶體Μ2Γ、Μ23,和M25,導通,MOS 電晶體M22’和M24’關斷。 關於第二種替代設計,可修改第17圖中的放大器1700, 省略輸入級1714和對應的切換單元1716;修改後的放大器 34 201112650 .1700僅僅可支持上述的高增益ab類模式以及低增益a類模 式。當修改後的放大器1700進入高增益AB類模式時,MOS 電晶體Mil’、M13,和M14’偏壓在AB類模式,MOS電晶體 Μ2Γ、M24’和M26’導通’ MOS電晶體M25,和M27’關斷。當 修改後的放大器Π〇〇進入低增益A類模式時,MOS電晶體 Μ1Γ和]VI13’偏壓在A類模式,MOS電晶體M21,和M25’導 通’ MOS電晶體M24,、M26,和M27’關斷。 φ 關於第三種替代設計,可修改第17圖中的放大器1700, 省略輸入級1714和1722以及對應的切換單元1716和1724;修 改後的放大器1700僅僅可支持上述的高增益AB類模式以及 低增益A類模式。當修改後的放大器17〇〇進入高增益AB類 模式時,MOS電晶體Mil,和M13’偏壓在AB類模式,M0S 電晶體Μ2Γ和M24’導通,MOS電晶體M25’關斷。當修改後 的放大态1700進入低增益A類模式時,MOS電晶體Mil,和 3偏壓在A類模式,MOS電晶體M21,和M25,導通,MOS 電晶體M24’關斷。 基於上述的技術特徵,本領域習知技藝者可以理解,放大 器1500、1600、1700以及放大器17〇〇相關替代設計中的每一 者’均可通過正確設計而具有單端放大器配置或者差動放大器 配置’取決於實際的設計需求,此,當接收器的低雜訊放大 為(例如低雜訊放大器214)由放大器15〇〇、_、17〇〇以及放 •大器Π00相關替代設計實現時,低雜訊放大器可以為仿差動 .低雜訊放大器、單端低雜訊放Α||、全差動低雜訊放大器。 t S ) 35 201112650 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為先前技術用於無線通訊系統中的接收器的功能方塊 圖。 第2A和2B圖為本發明實施例中無線通訊系統之可抑制雜訊 接收器的功能方塊圖。 籲 第3A、3B、4和5圖為本發明如第2B圖所示之實施例的接收 器的電路圖》 第6A和6B圖為本發明實施例之頻率轉換介面運作時之示意 圖。 第7圖為本發明如第2B圖所示之實施例中接收器的電路圖。 第8A和8B圖為本發明實施例中類比訊號處理器的電路圖。 第9A圖為被偏壓而運作於A類模式下得M〇s電晶體得運作 籲 不意圖。 第9B圖為被偏壓而運作於AB類模式下得M〇s電晶體得運作 不意圖。 第10圖為採用AB類放大器的無線通信接收器的方塊示意圖。 第11圖為採用AB類放大器的另一個無線通信接收器的方塊 示意圖。 第12A和12B圖為根據本發明實施例的無線通信系統另一個 36 201112650 •接收器的功能示意圖。 第13圖為根據本發明實施例的AB類偏壓放大器的方塊示意 圖。 第14圖為AB類偏壓放大器的一種示範電路示意圖。 第15圖為根據本發明實施例支持不同增益模式的放大器示意 圖。 第16圖為根據本發明另一實施例支持不同增益模式的放大器 的不意圖。 第17圖為根據本發明另一個示範實施例支持不同增益模式的 放大器示意圖。 第18圖為在低增益模式下低雜訊放大器增益和偏壓電流之間 關係的示意圖。 第19圖為在低增益模式下匹配增益和偏壓電流之間關係的示 意圖。 第20圖為在低增益模式下二次諧波電流和偏壓電流之間關係 鲁的不意圖。 【主要元件符號說明】 100、200、200a、200b、200c、200d、200e 接收器 102 SAW濾波器 112、212匹配網路E SI 33 201112650 Undesired secondary waves' does not drastically increase power consumption and change matching gain. As mentioned above, the amplifier 1700 shown in Figure 17 supports three gain modes (ie, high gain class AB mode 'low gain class AB mode and low gain class a mode) and employs multiple harmonic attenuation techniques (eg, using class A bias) , the input stage 1722 is disabled and the connection between the input stage 1714 and the output 埠N_OUT is disconnected). This is to be construed as merely illustrative of the invention. Any amplifier design incorporating one or more of the technical features of the present invention is within the scope of the present invention. For the sake of clarity, an alternative design of amplifier 1700 in Figure 17 is described below. Regarding the first alternative design, the amplifier 1700 in Fig. 17 can be modified, the input stage 1722 and the corresponding switching unit 1724 are omitted; the modified amplifier Π00 can still support the above-mentioned high gain class AB mode, low gain class AB mode. And low gain class A mode. When the modified amplifier 17〇〇 enters the high gain class AB mode, ^108 transistor 1\111'-]^13' is biased in the eight-class mode, ^[〇8 transistors M21', M22' and M24' turns on, MOS transistors M23' and M25, turn off. When the modified amplifier 1700 enters the low gain class AB mode, the MOS call transistors M11'-M13' are still biased in the class AB mode,]y[〇S transistors M21, M22' and M25' are turned on, M0S The crystals M23' and M24 are turned off. When the modified amplifier 1700 enters the low gain class A mode, the M0S transistors Mil, -13, bias in the class A mode, the MOS transistors Μ2Γ, Μ23, and M25, turn on, the MOS transistors M22' and M24' off Broken. Regarding the second alternative design, the amplifier 1700 in Fig. 17 can be modified, the input stage 1714 and the corresponding switching unit 1716 are omitted; the modified amplifier 34 201112650 .1700 can only support the above-mentioned high gain ab mode and low gain a Class mode. When the modified amplifier 1700 enters the high gain class AB mode, the MOS transistors Mil', M13, and M14' are biased in the class AB mode, and the MOS transistors Μ2, M24', and M26' are turned on the MOS transistor M25, and M27' is turned off. When the modified amplifier Π〇〇 enters the low gain class A mode, the MOS transistor Μ1Γ and ]VI13' are biased in the class A mode, the MOS transistor M21, and the M25' turn-on MOS transistor M24, M26, and M27' is turned off. φ Regarding the third alternative design, the amplifier 1700 in Fig. 17 can be modified, the input stages 1714 and 1722 and the corresponding switching units 1716 and 1724 are omitted; the modified amplifier 1700 can only support the high gain class AB mode described above and low. Gain class A mode. When the modified amplifier 17 〇〇 enters the high gain class AB mode, the MOS transistors Mil, and M13' are biased in the class AB mode, the MOS transistors Μ2 Γ and M24' are turned on, and the MOS transistor M25' is turned off. When the modified amplified state 1700 enters the low gain class A mode, the MOS transistors Mil, and 3 are biased in the class A mode, the MOS transistors M21, and M25 are turned on, and the MOS transistor M24' is turned off. Based on the above-described technical features, those skilled in the art will appreciate that each of the amplifiers 1500, 1600, 1700 and amplifiers 17 associated alternative designs can be properly designed to have a single-ended amplifier configuration or a differential amplifier. The configuration 'depends on the actual design requirements, when the low noise amplification of the receiver (eg low noise amplifier 214) is implemented by the amplifiers 15 〇〇, _, 17 〇〇 and the amplifier Π 00 related alternative design The low noise amplifier can be a differential differential. Low noise amplifier, single-ended low noise amplifier ||, fully differential low noise amplifier. The above description is only the preferred embodiment of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a functional block diagram of a prior art for a receiver in a wireless communication system. 2A and 2B are block diagrams showing the function of the noise suppressing receiver of the wireless communication system in the embodiment of the present invention. 3A, 3B, 4 and 5 are circuit diagrams of the receiver of the embodiment of the present invention as shown in Fig. 2B. Figs. 6A and 6B are diagrams showing the operation of the frequency conversion interface in accordance with an embodiment of the present invention. Fig. 7 is a circuit diagram of a receiver in the embodiment shown in Fig. 2B of the present invention. 8A and 8B are circuit diagrams of an analog signal processor in an embodiment of the present invention. Figure 9A shows the operation of the M〇s transistor that is biased and operates in the Class A mode. Figure 9B shows the operation of the M〇s transistor operating in the Class AB mode without bias. Figure 10 is a block diagram of a wireless communication receiver employing a Class AB amplifier. Figure 11 is a block diagram of another wireless communication receiver employing a Class AB amplifier. 12A and 12B are diagrams showing the function of another receiver of the wireless communication system according to an embodiment of the present invention. Figure 13 is a block diagram showing a class AB bias amplifier in accordance with an embodiment of the present invention. Figure 14 is a schematic circuit diagram of a class AB bias amplifier. Figure 15 is a schematic diagram of an amplifier supporting different gain modes in accordance with an embodiment of the present invention. Figure 16 is a schematic diagram of an amplifier supporting different gain modes in accordance with another embodiment of the present invention. Figure 17 is a diagram showing an amplifier supporting different gain modes in accordance with another exemplary embodiment of the present invention. Figure 18 is a diagram showing the relationship between low noise amplifier gain and bias current in low gain mode. Figure 19 is a diagram showing the relationship between matching gain and bias current in low gain mode. Figure 20 shows the relationship between the second harmonic current and the bias current in the low gain mode. [Main component symbol description] 100, 200, 200a, 200b, 200c, 200d, 200e Receiver 102 SAW filter 112, 212 matching network

126 混頻器 114、214 LNA 110、210 RF訊號處理器 120、220頻率轉換介面 [S] 37 201112650 130、230類比訊號處理器 216濾波器 206被動式混頻器 240、240a、240b直流隔絕電路 1000接收器 1001晶片 1002 1〜1002 N訊號處理元件 1100接收器 1102 RF訊號處理器 1106其他電路 1200接收器 1210 RF訊號處理器 1300 AB類偏壓放大器 1302第一放大器區塊 1308電晶體 1500放大器 1502第一放大器區塊 1506偏壓電路 1510、1514輸入級 1600放大器 1604第二放大器區塊 1608切換控制器 1700放大器 1702第一放大器區塊 1706偏壓電路 1104頻率轉換介面 1108 AB類偏壓放大器 1214低雜訊放大器 1306偏壓電路 1304第二放大器區塊 1402 LDO調整器 1504第二放大器區塊 1508切換控制器 1512、1516切換單元 1606偏壓電路 1616切換單元 1704第二放大器區塊 1708切換控制器126 Mixer 114, 214 LNA 110, 210 RF signal processor 120, 220 frequency conversion interface [S] 37 201112650 130, 230 analog signal processor 216 filter 206 passive mixer 240, 240a, 240b DC isolation circuit 1000 Receiver 1001 chip 1002 1~1002 N signal processing component 1100 receiver 1102 RF signal processor 1106 other circuit 1200 receiver 1210 RF signal processor 1300 class AB bias amplifier 1302 first amplifier block 1308 transistor 1500 amplifier 1502 An amplifier block 1506 bias circuit 1510, 1514 input stage 1600 amplifier 1604 second amplifier block 1608 switching controller 1700 amplifier 1702 first amplifier block 1706 bias circuit 1104 frequency conversion interface 1108 class AB bias amplifier 1214 Low noise amplifier 1306 bias circuit 1304 second amplifier block 1402 LDO adjuster 1504 second amplifier block 1508 switching controller 1512, 1516 switching unit 1606 bias circuit 1616 switching unit 1704 second amplifier block 1708 switching Controller

1710、1714、1718、1722 輸入級 38 201112650 1712、1716、1720、1724 切換單元1710, 1714, 1718, 1722 input stage 38 201112650 1712, 1716, 1720, 1724 switching unit

3939

Claims (1)

201112650 七、申請專利範圍: 1. 一種無線通訊系統接收器,包含: 多個訊號處理元件,用來根據一射頻訊號產生一接收器輸 出,所述多個訊號處理元件包括放大器,其中所述放大器中包 含一 AB類偏壓放大器; 其中所述多個訊號處理元件設置於一晶片上,且所述AB 類偏壓放大器在所述晶片包含的其他放大器之前處理對應於 所述射頻訊號的一訊號。 2. 如申請專利範圍第1項所述之無線通訊系統接收器,所述 AB類偏壓放大器包含一輸入埠和一輸出埠,且包含: 一第一放大器區塊,耦接所述輸入埠,用以在所述輸入埠 接收一輸入訊號; 一偏壓電路,搞接所述第一放大器區塊,用以使所述第一 放大器區塊偏壓在一 AB類模式運作中;以及 一第二放大器區塊,耦接所述第一放大器區塊和所述輸出 埠,用以在所述輸出埠產生一輸出訊號; 其中所述第一放大器區塊包括至少一電晶體,所述偏壓電 路耦接所述電晶體的一控制端並提供偏壓;並且所述電晶體具 有一指數電流電壓特性。 3. 如申請專利範圍第1項所述之無線通訊系統接收器,所述 AB類偏壓放大器包含一輸入埠和一輸出埠,且包含: 一第一放大器區塊,耦接所述輸入埠,用以在所述輸入埠 接收一輸入訊號; 201112650 , 一偏壓電路,耦接所述第一放大器區塊,用以使所述第一 放大器區塊偏壓在一 AB類模式運作中;以及 一第一放大器區塊,耦接所述第一放大器區塊和所述輸出 埠,用以在所述輸出埠產生一輸出訊號; 其中所述第一放大器區塊包括至少一電晶體,所述偏壓電 路雜接所述電晶體的-控制端並提供偏壓;並且流經所述電晶 體的-偏壓電流因應於一輸入功率位準變化而自動改變,無需 _ 任何偵測和回饋電路。 4·如申明專利範圍第2或3項所述之無線通訊系統接收器, 其中所述電晶體是-金屬氧化物半導體電晶體,由所述偏壓電 路提供偏壓以運作在一弱反轉區。 5’如申叫專利範圍第2或3項所述之無線通訊系統接收器, 其中所述電晶體是一雙極結型電晶體。 6. 如申呀專利範圍第1項所述之無線通訊系統接收器,其中 所述夕個汛號處理元件包含一射頻訊號處理器和一頻率轉換 &gt;介面,所述射頻訊號處理器產生所述射頻訊號且包含所述ΑΒ 類偏壓放大器用於對所述射頻訊號放大,所述頻率轉換介面輕 接所述射頻訊號處理器,用以從所述射頻訊號處理器接收所述 射頻訊號,並且產生所述射頻訊號的一降頻轉換結果。 7. 如申味專利範圍第6項所述之無線通訊系統接收器,其中 所述ΑΒ類偏壓放大器是一轉導放大器,所述頻率轉換介面作 為所述射頻訊號處理器的一電流驅動介面,以處理所述射頻訊 號的頻外部分。 201112650 8.如申請專利範圍第7項所述之無線通訊系統 所述頻率轉換介面用來降低所述射頻訊號的頻 &amp;器,其中 壓擺動’進而避免所述射頻訊號處揮^分的 壓擺動,進而避免所述射頻訊號處理器因所述 的〜電 部分而呈現飽和。 L類訊說的頻外 9.如申請專利範圍第6項所述之無線 含一直流隔絕電路,耗接於所述射頻訊號處理錢收器,另包 換介面之間’所述直流祕電路用來奸所迷類 隔絕。 射頻訊鱿提鉗丄 10· —種無線通訊系統接收器,包含, 一射頻訊m處理器,用來提供 偏壓放大器’以對所述射頻,號,包括 一頻率轉換介面,_所迷=放^及 、 訊號處理器接收所述射頻訊號,理器,從所 換結果。 返射頻訊號的-降頻轉 11.如申請專利範圍第1〇項所述之盔 述AB類偏壓放大器包含—輸-線通訊系統接收器,所 一第一放大器區塊,接所顿=出埠,且包含: 接收一輸入訊號; ’旱’用以在所述輸入蟑 一偏壓電路,耦接所述第一放 放大器區塊偏壓在—AB類模式運,器區塊,用以使所述第一 一第二放大器區塊中二乂及 埠,用以在所述輪出痒產生—輪出^放大器區塊和所述輸出 其中所述第-放大器區c電晶體,所述偏摩電 42 201112650 路耦接所述電晶體的一控制端並提供偏壓;並且所述電晶體具 有一指數電流電壓特性。 12. 如申請專利範圍第10項所述之無線通訊系統接收器,所 述AB類偏壓放大器包含一輸入埠和一輸出埠,且包含: 一第一放大器區塊,耦接所述輸入埠,用以在所述輸入埠 接收一輸入訊號; 一偏壓電路,耦接所述第一放大器區塊,用以使所述第一 放大器區塊偏壓在一 AB類模式運作中;以及 ® 一第二放大器區塊,耦接所述第一放大器區塊和所述輸出 琿,用以在所述輸出埠產生一輸出訊號; 其中所述第一放大器區塊包括至少一電晶體,所述偏壓電 路耦接所述電晶體的一控制端並提供偏壓;並且流經所述電晶 體的一偏壓電流因應於一輸入功率位準變化而自動改變,無需 任何偵測和回饋電路。 13. 如申請專利範圍第11或12項所述之無線通訊系統接收 • 器,其中所述電晶體是一金屬氧化物半導體電晶體,由所述偏 壓電路提供偏壓以運作在一弱反轉區。 14. 如申請專利範圍第11或12項所述之無線通訊系統接收 器,其中所述電晶體是一雙極結型電晶體。 15. 如申請專利範圍第10項所述之無線通訊系統接收器,其 中所述AB類偏壓放大器是一轉導放大器,所述頻率轉換介面 作為所述射頻訊號處理器的一電流驅動介面,以處理所述射頻 訊號的頻外部分。 43 201112650 16·如申請專利範圍第15項所述之無線通訊系統接收器,其 中所述頻率轉換介面用來降低所述射頻訊號的頻外部分的一 電壓擺動,進而避免所述射頻訊號處理器因所述射頻訊號的頻 外部分而呈現飽和。 17. 如申請專利範圍第10項所述之無線通訊系統接收器’另 包含一直流隔絕電路,耦接於所述射頻訊號處理器和所述頻率 轉換介面之間,所述直流隔絕電路用來對所述射頻訊號提供直 流隔絕。 18. —種放大器,包含: 一第一放大器區塊,耦接所述放大器的一輸入埠和一輸出 埠,用於對一輸入訊號放大,所述第一放大器區塊具有一輸入 級,用以在所述放大器的所述輸入埠接收所述輸入訊號; 一第二放大器區塊,耦接所述放大器的所述輸入埠和所述 輸出埠,用於放大所述輸入訊號,所述第二放大器區塊包含: 一第一輸入級,用以在所述放大器的所述輸入埠接收 所述輸入訊號;以及 一第一切換單元,耦接所述第一輸入級,所述第一切 換單元將所述第一輸入級的一輸出節點選擇性的耦接至所述 放大器的所述輸出埠或者一參考電壓; 一偏壓電路,耦接所述第一放大器區塊和所述第二放大器 區塊,用以對所述第一放大器區塊和所述第二放大器區塊提供 偏壓;以及 一切換控制器,用以控制至少所述第一切換單元的運作; 44 201112650 . 其中當所述放大器進入一第一增益模式時,所述偏壓電路 應用一 A類偏壓至所述第一放大器區塊中的所述輸入級以及 所述第二放大器區塊中的所述第一輸入級,所述切換控制器控 制所述第一切換單元,以將所述第一輸入級的所述輸出節點耦 接至所述參考電壓。 19·如申請專利範圍第18項所述之放大器,其十所述第二放 大器區塊進一步包含: φ 一第二輸入級,用以在所述放大器的所述輸入埠接收所述 輸入訊號;以及 一第二切換單元,耦接所述第二輸入級,用於將所述第二 輸入級的一輸出節點選擇性的耦接至所述放大器的所述輸出 皡或者所述參考電壓; “其中,當所述放大器進入所述第一增益模式時,所述偏壓 電路進-步應用所豸A類偏壓至所述第二輸入級,所述切換控 制器進-步控制所述第二切換單元,以將所述第二輸入級的所 ’述輸出節‘_接至所述參考電壓;#所述放A||進人—第二增 益模式時,所述偏壓電路應用一 AB類偏壓至所述第一放大曰器 區塊中的所述輸入級以及所述第二放大器區塊中的所述第一 ° 入級和所述第二輸人級’所述丨刀換控㈣控制所述第一切換 單几以將所述[輸人級的所述輸出節點輕接至所述參考電 f,並控制所述第二切換單心將所述第二輸人級的所述輸出 節點耦接至所述放大器的所述輸出埠。 20.如申請專利範圍帛19項所述之放大器,其中所述第二放 45 201112650 大器區塊進一步包含: 一第三輸入級,用以在所述放大器的所述輸入埠接收所述 輸入訊號;以及 一第三切換單元,耦接所述第三輸入級,用於將所述第三 輸入級的一輸出節點選擇性的耦接至所述放大器的所述輸出 埠或者所述參考電壓; 其中,當所述放大器進入所述第一增益模式時,所述切換 控制器進一步控制所述第三切換單元,以斷開所述第三輸入級 的所述輸出節點與所述參考電壓和所述放大器的所述輸出埠 的連接;當所述放大器進入所述第二增益模式時,所述偏壓電 路進一步應用所述AB類偏壓至所述第三輸入級,所述切換控 制器進一步控制所述第三切換單元,以將所述第三輸入級的所 述輸出節點耦接至所述參考電壓。 21.如申請專利範圍第20項所述之放大器,其中當所述放大 器進入一第三增益模式時,所述偏壓電路應用所述AB類偏壓 至所述第一放大器區塊中的所述輸入級以及所述第二放大器 區塊中的所述第一輸入級、所述第二輸入級和所述第三輸入 級,所述切換控制器控制所述第一切換單元以將所述第一輸入 級的所述輸出節點耦接至所述放大器的所述輸出埠,並控制所 述第二切換單元以將所述第二輸入級的所述輸出節點耦接至 所述放大器的所述輸出埠,以及控制所述第三切換單元以將所 述第三輸入級的所述輸出節點耦接至所述放大器的所述輸出 淳。 46 201112650 , 22.如申請專利範圍第19項所述之放大器,其中當所述放大 器進入一第三增益模式時,所述偏壓電路應用所述AB類偏壓 至所述第一放大器區塊中的所述輸入級以及所述第二放大器 區塊中的所述第一輸入級和所述第二輸入級,所述切換控制器 控制所述第一切換單元以將所述第一輸入級的所述輸出節點 耦接至所述放大器的所述輸出埠,並控制所述第二切換單元以 將所述第二輸入級的所述輸出節點耦接至所述放大器的所述 輸出槔。 ® 23.如申請專利範圍第18項所述之放大器,其中當所述放大 器進入一第二增益模式時,所述偏壓電路應用一 AB類偏壓至 所述第一放大器區塊中的所述輸入級以及所述第二放大器區 塊中的所述第一輸入級,所述切換控制器控制所述第一切換單 元以將所述第一輸入級的所述輸出節點耦接至所述放大器的 所述輸出埠。 24.如申請專利範圍第23項所述之放大器,其中所述第二放 • 大器區塊進一步包含: 一第二輸入級,用以在所述放大器的所述輸入埠接收所述 輸入訊號;以及 一第二切換單元,耦接所述第二輸入級,用於將所述第二 輸入級的一輸出節點選擇性的耦接至所述放大器的所述輸出 埠或者所述參考電壓; 其中,當所述放大器進入所述第一增益模式時,所述切換 控制器進一步控制所述第二切換單元,以斷開所述第二輸入級 m [S.] 47 201112650 的所述輸出節點與所述參考電壓和所述放大 的連接;當所述放大器進入所述第二增益模式時=輸厂車 路進-步制所述AB類偏壓至所述第j ’所述偏磨電 ^輸八級’所述切換控 制益進-步控制所述第二切換單元,以將 述輪屮《Ή® E « J· ^ ^ 一輸入級的所 W出即點耦接至所述放大器的所述輸出埠。 25· 一種放大器,包含: 放大器區塊,耦接所述放大器的一輸入埠和 第 埠,田认M ^ 一爾入垾和一輸出 =用於對-輸入訊號放大,所述第一放大 級,用以在所述放大器的所述輸入淳接收所述輸入訊號; 二第二放大器區塊,Μ接所述放大器的所述輸人埠和所述 車,用於放大所述輸人訊號,所述第二放大器區塊包含: 乡個輸人級,所述多個輸人級中每-個用以在所述放 大益的所述輸入埠接收所述輸入訊號;以及 多個切換單元,分_接至料多個輸人級,其中所 ^多個切換單元中之每-個用以控制一對應輸入級的一輸出 郎點的連接; 一偏壓電路,耦接所述第一放大器區塊和所述第二放大器 區塊,用以對所述第一放大器區塊和所述第二放大器區塊提供 偏壓;以及 一切換控制器,用以控制所述多個切換單元的運作; 其中當所述輸入訊號的輸入功率超過一預定位準時,所述 偏壓電路應用一 Α類偏壓至所述第一放大器區塊中的所述輸 入、、及和所述第二放大器區塊中的所述多個輸入級,所述切換控 48 201112650 制器控制所述多個切換單元,以斷開所述第二放大器區塊中所 4 述多個輸入級的輸出節點與所述放大器的所述輸出埠的連 接,並且在所述第二放大器區塊中至少一個輸入級被由所述切 換控制器控制的至少一個切換單元所禁能。 26. —種放大器,包含: 一第一放大器區塊,耦接所述放大器的一輸入埠和一輸出 埠,用於對一輸入訊號放大,所述第一放大器區塊具有一第一 輸入級,用以在所述放大器的所述輸入埠接收所述輸入訊號; ^ 一第二放大器區塊,耦接所述放大器的所述輸入埠和所述 輸出埠,所述第二放大器區塊包含: 一第二輸入級,用以在所述放大器的所述輸入埠接收 所述輸入訊號;以及 一切換單元,耦接至所述第二輸入級,用於控制所述 第二輸入級的一輸出節點的連接; 一偏壓電路,耦接所述第一放大器區塊和所述第二放大器 • 區塊,用以對所述第一放大器區塊和所述第二放大器區塊提供 偏壓;以及 一切換控制器,用以控制所述切換單元的運作; 其中當所述輸入訊號的輸入功率超過一預定位準時,所述 偏壓電路應用一 AB類偏壓至所述第一輸入級和所述第二輸入 級,所述第二輸入級被由所述切換控制器控制的所述切換單元201112650 VII. Patent application scope: 1. A wireless communication system receiver, comprising: a plurality of signal processing components for generating a receiver output according to an RF signal, wherein the plurality of signal processing components comprise an amplifier, wherein the amplifier A class AB bias amplifier is included; wherein the plurality of signal processing components are disposed on a wafer, and the class AB bias amplifier processes a signal corresponding to the RF signal before other amplifiers included in the chip . 2. The wireless communication system receiver of claim 1, wherein the class AB bias amplifier comprises an input port and an output port, and includes: a first amplifier block coupled to the input port Receiving an input signal at the input port; a bias circuit for engaging the first amplifier block for biasing the first amplifier block in an AB mode operation; a second amplifier block coupled to the first amplifier block and the output port for generating an output signal at the output port; wherein the first amplifier block includes at least one transistor, A bias circuit is coupled to a control terminal of the transistor and provides a bias voltage; and the transistor has an exponential current voltage characteristic. 3. The wireless communication system receiver of claim 1, wherein the class AB bias amplifier comprises an input port and an output port, and includes: a first amplifier block coupled to the input port Receiving an input signal at the input port; 201112650, a bias circuit coupled to the first amplifier block for biasing the first amplifier block in an AB mode operation And a first amplifier block coupled to the first amplifier block and the output port for generating an output signal at the output port; wherein the first amplifier block includes at least one transistor The bias circuit is hybridized to the - control terminal of the transistor and provides a bias voltage; and the bias current flowing through the transistor is automatically changed in response to an input power level change, without _ any detection And feedback circuit. 4. The wireless communication system receiver according to claim 2, wherein the transistor is a metal oxide semiconductor transistor, and the bias circuit provides a bias voltage to operate in a weak reverse Transfer zone. 5' The wireless communication system receiver of claim 2, wherein the transistor is a bipolar junction transistor. 6. The wireless communication system receiver of claim 1, wherein the epoch processing component comprises an RF signal processor and a frequency conversion &gt; interface, the RF signal processor generating And the RF signal is used to amplify the RF signal, and the frequency conversion interface is lightly connected to the RF signal processor for receiving the RF signal from the RF signal processor. And generating a down conversion result of the RF signal. 7. The wireless communication system receiver according to claim 6, wherein the 偏压-type bias amplifier is a transconductance amplifier, and the frequency conversion interface is used as a current driving interface of the RF signal processor. To process the extra-frequency portion of the RF signal. 201112650 8. The wireless communication system of claim 7, wherein the frequency conversion interface is used to reduce the frequency of the RF signal, wherein the voltage swings to avoid the voltage of the RF signal. Swinging, thereby preventing the RF signal processor from being saturated due to the electrical portion. The frequency of the L-type communication is 9. The wireless-containing DC-isolated circuit described in claim 6 of the patent application is consumed by the RF signal processing device, and the switching interface is between the DC circuit. Used to rape and hide. RF signal 丄 丄 10 · A wireless communication system receiver, comprising, an RF signal m processor, used to provide a bias amplifier 'to the RF, number, including a frequency conversion interface, _ And the signal processor receives the RF signal, and the processor changes the result. Returning to the RF signal - Down frequency conversion 11. As described in the scope of claim 1 of the scope of the helmet type AB bias amplifier includes - the transmission line communication system receiver, a first amplifier block, connected to the station = And receiving: receiving an input signal; 'dry' is used in the input first bias circuit, and the first amplifier block is coupled to the -AB type mode, the block is </ RTI> for making the first and second amplifier blocks two 乂 and 埠 for generating an iteration in the wheel - the output of the amplifier block and the output of the first amplifier region c transistor, The biasing circuit 42 201112650 is coupled to a control terminal of the transistor and provides a bias voltage; and the transistor has an exponential current voltage characteristic. 12. The wireless communication system receiver of claim 10, wherein the class AB bias amplifier comprises an input 埠 and an output 埠, and comprises: a first amplifier block coupled to the input 埠For receiving an input signal at the input port; a bias circuit coupled to the first amplifier block for biasing the first amplifier block in an AB mode operation; a second amplifier block coupled to the first amplifier block and the output port for generating an output signal at the output port; wherein the first amplifier block includes at least one transistor, The bias circuit is coupled to a control terminal of the transistor and provides a bias voltage; and a bias current flowing through the transistor is automatically changed according to an input power level change, without any detection and feedback Circuit. 13. The wireless communication system receiver according to claim 11 or 12, wherein the transistor is a metal oxide semiconductor transistor, and the bias circuit provides a bias voltage to operate in a weak Reverse zone. 14. The wireless communication system receiver of claim 11 or 12, wherein the transistor is a bipolar junction transistor. 15. The wireless communication system receiver of claim 10, wherein the class AB bias amplifier is a transconductance amplifier, and the frequency conversion interface is a current driving interface of the radio frequency signal processor. To process the extra-frequency portion of the RF signal. The wireless communication system receiver of claim 15, wherein the frequency conversion interface is configured to reduce a voltage swing of the extra-frequency portion of the RF signal, thereby avoiding the RF signal processor. Saturated due to the extra-frequency portion of the RF signal. 17. The wireless communication system receiver of claim 10, further comprising a DC isolation circuit coupled between the RF signal processor and the frequency conversion interface, wherein the DC isolation circuit is used Providing DC isolation to the RF signal. 18. An amplifier comprising: a first amplifier block coupled to an input port and an output port of the amplifier for amplifying an input signal, the first amplifier block having an input stage for Receiving the input signal at the input port of the amplifier; a second amplifier block coupled to the input port and the output port of the amplifier for amplifying the input signal, the The second amplifier block includes: a first input stage for receiving the input signal at the input port of the amplifier; and a first switching unit coupled to the first input stage, the first switch The unit selectively couples an output node of the first input stage to the output port or a reference voltage of the amplifier; a bias circuit coupled to the first amplifier block and the first a second amplifier block for biasing the first amplifier block and the second amplifier block; and a switching controller for controlling operation of at least the first switching unit; 44 201112650. The bias circuit applies a class A bias to the input stage in the first amplifier block and the second amplifier block when the amplifier enters a first gain mode a first input stage, the switching controller controlling the first switching unit to couple the output node of the first input stage to the reference voltage. The amplifier of claim 18, wherein the second amplifier block further comprises: φ a second input stage for receiving the input signal at the input port of the amplifier; And a second switching unit coupled to the second input stage for selectively coupling an output node of the second input stage to the output port or the reference voltage of the amplifier; Wherein, when the amplifier enters the first gain mode, the bias circuit further applies a type A bias to the second input stage, and the switching controller further controls the a second switching unit, configured to connect the output section of the second input stage to the reference voltage; and when the A-|input-second gain mode is performed, the bias circuit Applying a class AB bias to the input stage in the first amplifier block and the first stage and the second input stage in the second amplifier block The sickle change control (4) controls the first switch list to the said output of the input level The node is lightly connected to the reference power f, and controls the second switching unit to couple the output node of the second input stage to the output port of the amplifier. The amplifier of claim 19, wherein the second block 45 201112650 block further comprises: a third input stage for receiving the input signal at the input port of the amplifier; and a third a switching unit coupled to the third input stage for selectively coupling an output node of the third input stage to the output port or the reference voltage of the amplifier; wherein, when The switching controller further controls the third switching unit to disconnect the output node of the third input stage from the reference voltage and the amplifier when the amplifier enters the first gain mode Outputting a connection of 埠; the bias circuit further applying the class AB bias to the third input stage when the amplifier enters the second gain mode, the switching controller further controlling the a switching unit to couple the output node of the third input stage to the reference voltage. 21. The amplifier of claim 20, wherein when the amplifier enters a third gain mode The bias circuit applies the class AB bias to the input stage in the first amplifier block and the first input stage, the second input in the second amplifier block And the third input stage, the switching controller controlling the first switching unit to couple the output node of the first input stage to the output port of the amplifier and to control the a second switching unit to couple the output node of the second input stage to the output port of the amplifier, and to control the third switching unit to output the output node of the third input stage The output port coupled to the amplifier. The amplifier of claim 19, wherein the bias circuit applies the class AB bias to the first amplifier region when the amplifier enters a third gain mode The input stage in the block and the first input stage and the second input stage in the second amplifier block, the switching controller controlling the first switching unit to convert the first input The output node of the stage is coupled to the output port of the amplifier and controls the second switching unit to couple the output node of the second input stage to the output of the amplifier . The amplifier of claim 18, wherein the bias circuit applies a class AB bias to the first amplifier block when the amplifier enters a second gain mode The input stage and the first input stage of the second amplifier block, the switching controller controls the first switching unit to couple the output node of the first input stage to Said output of the amplifier. 24. The amplifier of claim 23, wherein the second amplifier block further comprises: a second input stage for receiving the input signal at the input port of the amplifier And a second switching unit coupled to the second input stage for selectively coupling an output node of the second input stage to the output port or the reference voltage of the amplifier; Wherein, when the amplifier enters the first gain mode, the switching controller further controls the second switching unit to disconnect the output node of the second input stage m [S.] 47 201112650 a connection with the reference voltage and the amplification; when the amplifier enters the second gain mode = the factory circuit step-by-steps the class AB bias to the jth 'the eccentricity The input switching control step-by-step controls the second switching unit to couple the point of the input of the rim "Ή® E « J· ^ ^ an input stage to the amplifier The output is 埠. An amplifier comprising: an amplifier block coupled to an input 埠 and a second of the amplifier, a field M 一 垾 and an output = for a pair-input signal amplification, the first amplification stage For receiving the input signal at the input port of the amplifier; and a second amplifier block, connecting the input port of the amplifier and the vehicle for amplifying the input signal, The second amplifier block includes: a rural input level, each of the plurality of input levels for receiving the input signal at the input port of the amplification; and a plurality of switching units, a plurality of input stages, wherein each of the plurality of switching units is used to control a connection of an output point of a corresponding input stage; a bias circuit coupled to the first An amplifier block and the second amplifier block for biasing the first amplifier block and the second amplifier block; and a switching controller for controlling the plurality of switching units Operation; wherein when the input power of the input signal exceeds a biasing circuit applying a bias to the input in the first amplifier block, and to the plurality of input stages in the second amplifier block, The switching control 48 201112650 controls the plurality of switching units to disconnect the output nodes of the plurality of input stages of the second amplifier block from the output port of the amplifier, and At least one input stage in the second amplifier block is disabled by at least one switching unit controlled by the switching controller. 26. An amplifier comprising: a first amplifier block coupled to an input port and an output port of the amplifier for amplifying an input signal, the first amplifier block having a first input stage For receiving the input signal at the input port of the amplifier; ^ a second amplifier block coupled to the input port and the output port of the amplifier, the second amplifier block comprising a second input stage for receiving the input signal at the input port of the amplifier; and a switching unit coupled to the second input stage for controlling one of the second input stages a connection of the output node; a bias circuit coupled to the first amplifier block and the second amplifier block to provide a bias to the first amplifier block and the second amplifier block And a switching controller for controlling operation of the switching unit; wherein when the input power of the input signal exceeds a predetermined level, the bias circuit applies a class AB bias to the first Input level and Said second input stage, the second stage is input by the switching controller controls the switching unit
TW099129875A 2009-09-18 2010-09-03 Amplifier and receiver for a wireless communication system TW201112650A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24360209P 2009-09-18 2009-09-18
US12/612,683 US8929848B2 (en) 2008-12-31 2009-11-05 Interference-robust receiver for a wireless communication system
US31884010P 2010-03-30 2010-03-30
US12/835,720 US20100279641A1 (en) 2008-12-31 2010-07-13 Receiver for wireless communication system

Publications (1)

Publication Number Publication Date
TW201112650A true TW201112650A (en) 2011-04-01

Family

ID=43866284

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099129875A TW201112650A (en) 2009-09-18 2010-09-03 Amplifier and receiver for a wireless communication system

Country Status (2)

Country Link
CN (2) CN107276543B (en)
TW (1) TW201112650A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250195B2 (en) * 2016-11-18 2019-04-02 Samsung Electronics Co., Ltd. Receiver receiving wideband radio frequency signal, wireless communication device including the same, and method of operating the wireless communication device
EP3726730B1 (en) * 2019-04-17 2021-08-25 Goodix Technology (HK) Company Limited Peak current limiter
US11515953B1 (en) * 2021-08-05 2022-11-29 Qualcomm Incorporated Low noise amplifier saturation mitigation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094239B2 (en) * 2001-02-19 2008-06-04 富士通株式会社 amplifier
US6961552B2 (en) * 2002-03-25 2005-11-01 Broadcom Corporation LNA gain adjustment for intermodulation interference reduction
US6995613B2 (en) * 2003-07-30 2006-02-07 Tropian, Inc. Power distribution and biasing in RF switch-mode power amplifiers
US7236055B2 (en) * 2005-01-10 2007-06-26 Texas Instruments Incorporated Differential amplifier circuit and method for reducing thermally induced offsets caused by large differential signals
KR100758854B1 (en) * 2005-03-29 2007-09-19 인티그런트 테크놀로지즈(주) Low noise amplifier and differential amplifier with variable gain mode
CN100517988C (en) * 2005-07-11 2009-07-22 络达科技股份有限公司 Radio-frequency receiver and receiving method
KR100726785B1 (en) * 2005-08-17 2007-06-11 인티그런트 테크놀로지즈(주) Terrestrial-Digital Multimedia Broadcasting and Digital Audio Broadcasting Low-IF Receiver.
US7345547B2 (en) * 2005-10-17 2008-03-18 Wj Communications, Inc. Bias circuit for BJT amplifier
GB2434494B (en) * 2006-01-24 2008-02-06 Toumaz Technology Ltd Low noise amplifier
CN201039094Y (en) * 2007-05-21 2008-03-19 杭州中科微电子有限公司 A high-gain RF low-noise amplifier

Also Published As

Publication number Publication date
CN102025331B (en) 2017-05-17
CN107276543B (en) 2020-11-20
CN107276543A (en) 2017-10-20
CN102025331A (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US7746169B2 (en) LNA having a post-distortion mode and a high-gain mode
JP5461742B2 (en) Noise canceling for differential amplifiers that do not require external matching
EP1875605B1 (en) Differential inductor based low noise amplifier
US8301101B2 (en) Frequency translated filter
US8106710B2 (en) Apparatus and method for variable gain transconductance
US8145176B2 (en) Front end and high frequency receiver having quadrature low noise amplifier
US8610495B2 (en) Adaptive filtering of blocker signals in demodulators
JP2013504963A (en) Mixer circuit, integrated circuit device and radio frequency communication unit
Kim et al. A highly linear SAW-less CMOS receiver using a mixer with embedded Tx filtering for CDMA
US9048921B2 (en) Receiver for wireless communication system
US20150162940A1 (en) Tia-to-adc interface with low-noise and a wide-range of passive gain control
EP2204912B1 (en) Interference-robust receiver for a wireless communication system
Kumar et al. A 4 GHz 60 dB variable gain amplifier with tunable DC offset cancellation in 65 nm CMOS
KR100574470B1 (en) Linear mixer containing current amplifiers
TW201112650A (en) Amplifier and receiver for a wireless communication system
Chen et al. A 0.06 mm2 6 dBm IB1db wideband CMOS class-AB LNTA for SAW-less applications
KR100689614B1 (en) Ultra-wideband front-end receiver apparatus and method for transforming signals by using it
Vidojkovic et al. A 1.2 V receiver front-end for multi-standard wireless applications in 65 nm CMOS LP
Khan et al. Highly linear wideband CMOS RF power amplifier with active feedback in 130 nm CMOS technology
CN113890551A (en) Broadband radio frequency front end receiving circuit
Han et al. A 2.5 mW 900MHz receiver employing multiband feedback with bias current reuse
Han et al. A 3.5 mW 900MHz Down-converter with Multiband Feedback and Device Transconductance Reuse