TW201112490A - A multifilar antenna - Google Patents

A multifilar antenna Download PDF

Info

Publication number
TW201112490A
TW201112490A TW099122053A TW99122053A TW201112490A TW 201112490 A TW201112490 A TW 201112490A TW 099122053 A TW099122053 A TW 099122053A TW 99122053 A TW99122053 A TW 99122053A TW 201112490 A TW201112490 A TW 201112490A
Authority
TW
Taiwan
Prior art keywords
antenna
core
ring
feed
elements
Prior art date
Application number
TW099122053A
Other languages
Chinese (zh)
Inventor
Oliver Paul Leisten
Original Assignee
Sarantel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarantel Ltd filed Critical Sarantel Ltd
Publication of TW201112490A publication Critical patent/TW201112490A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

In a dielectrically-loaded multifilar helical antenna, a conductive phasing ring (16) is arranged between and couples together feed nodes and the helical radiating elements. The phasing ring comprises an annular conductive path having an electrical length equivalent to a full wavelength at the operating frequency so as to be resonant at that frequency. The helical elements are coupled to the outer periphery of the phasing ring at respective spaced apart coupling locations. The helical elements may comprise open-circuit or closed-circuit elongate conductive tracks, or a combination of both. In the case of the helical elements being closed-circuit tracks, these tracks are interconnected by a second resonant ring (60U), which is resonant at the same frequency as or a different frequency from the first resonant ring. The invention is applicable to both end-fire and back-fire helical antennas.

Description

201112490 六、發明說明: 【智^明戶斤屬支彳·»時々員】 本發明係有關用在循環極化輻射並具有超過200MHz 之一操作頻率的一多線天線,並且主要是但不專屬於介電 載入式多線螺旋天線。 【先前技術3 介電載入式多線天線於公開之國際專利申請案編號 W02006/136809、英國專利出版品編號2442998a '歐洲專 利出版品編號EP1147571A、英國專利出版品編號 2420230A、2444388A、2437998A以及2445478A中揭示。 該等專利出版品之所有揭示内容會合併於本應用中以供參 考。為了定位及導航目的’該類天線主要意欲用於從一全 球導航衛星系統(GNSS) ’例如’從該全球定位系統(GPS) 衛星群集之衛星來接收循環極化信號。該類天線可使用之 其他衛星式服務包括衛星電話服務,諸如該L-頻帶國際海 事通訊衛星服務 1626.5-1675.0MHz 以及 1518.0-l559.0MHz、該泰利史達(TerreStar)(註冊商標)S頻帶 服務、該ICO全球通訊S頻帶服務以及該SkyTerra服務。該 等s頻帶服務已配置從2000MHz至200MHz之頻帶範圍。 t發明内容 根據本發明之一第一觀點’其提供用在循環極化輻射 並具有超過200MHz之一操作頻率的一介電載入式多線天 線’其中該天線包含以具有一相對介電常數至少5之一固態 介電材料形成的一電氣絕緣基體、一對饋送節點、位於該 201112490 基體上,並且安排於該等饋送節點及該等輻射元件之間並 與其耦合一起之至少四個延長傳導輻射元件、於該操作頻 率共振之一閉迴路所形成之一定相環,該等輻射元件於個 別隔開之耦合位置耦合至該定相環。此方式中,該等輻射 元件經由該定相環饋送,其效應為於一相位進行中饋送該 等輻射元件、產出一循環極化特性。典型情況是該天線具 有一中央軸以及包含位於該基體並環繞該軸心之一傳導軌 跡的一定相環。該定相環可為一連續執跡或一間斷執跡。 後者情況中,該環包括與傳導軌跡部分串接之至少一對集 總電抗,典型為電容,該等部份連同該電抗形成上述閉迴 路。 較佳情況是,該定相環為圓形,但亦可使用其他組態, 包括一矩形或其他多邊形、以及一婉纟延圓形(亦即,下列以 一反覆方式脫離至一圓形之該内側及外側的一路徑)。 根據本發明之一特定較佳天線中,該基體為具有一圓 柱體側表面部分及近端與末端表面部分之一圓柱體本體。 該定相環較佳位於該近端表面部分使得該天線為一“端射” 天線,亦即,產生於該末端方向具有一最大值之一循環極 化輻射型樣。該等饋送節點最容易中央放置於該基體上或 該基體本身,或作為與承載該定相環之末端表面相關聯的 一連接組件之一部分。該較佳天線中,該等饋送節點由相 關該圓柱體軸心作放射狀延伸之個別饋送連接導體於實質 上完全相反位置耦合至該定相環。 該定相環較佳是由該基體介電載入並具有一單一波長 201112490 之電*1長度(亦即,360。)。該較佳天線中,該等輻射元件 具有#合至該定相環之第-端以及與該定相環隔開之第二 乂等第一端為開路。此情況中,該等輻射元件之每一 的°亥電氣長度於該操作頻率時,較佳是一四分之一波長 或其一奇數倍數。 於替代較佳實施例中,該天線具有一第二傳導環, 亦;忒私作頻率時共振,該傳導環鏈接該等輻射元件之該 等第—端,此實例中,每一輻射元件具有一半波長之一電 氣長度或其—整數倍數。 亦可建構根據本發明之一“回火,,天線’該定相環典型 ;彳之末端表面部分錢敷。於一不同頻率共振之一 第一傳導環,此情況中,可於其圓枉體側表面上環繞該核 〜。參照上述該先前專利出版品所述,該類傳導環可形成 為於该核心之一近端部份附近延伸的一傳導套筒之該環狀 邊緣,s玄套筒形成一整合平衡不平衡轉換器之一部分。某 些该等輕射元件可為開路、從該末端定相環延伸至與該第 一傳導環隔開之開路端,而其他韓射元件可為閉路、從該 末端定相環延伸至該第二環。此方式中,該天線可於兩個 分開的操作頻率達到共振,每一共振用於循環極化輻射。 根據本發明之一第二觀點,用在循環極化輻射並具有 超過200MHz之一操作頻率的一介電載入式多線天線包含 有·一電氣絕緣核心’其具有一相對介電常數大於5並佔據 6玄核心外側表面所定義之該内部容量的大部分之一固態材 料’多個饋送節點;以及—位於該核心、外側表面上或附近 201112490 之天線元件結構,其包含多個延長傳導天線元件,並且耦 合於該等延長天線元件及該等饋送節點之間、於該操作頻 率時共振之一環、以遠離該等饋送節點之一方向從該共振 環延伸之該等延長天線元件。 至於與該第一橫向延伸表面部分相關聯之該共振定相 環,該等延長傳導天線元件可於該側表面部分上從該環向 該第二橫向延伸表面部分延伸,每一該類元件為該核心之 一圓柱體側表面部分上的一螺旋軌跡。該等兩個饋送節點 較佳構成以接近該天線之一中央轴心的傳導襯墊表示之一 平衡饋送點,每一該類襯墊由個別的感應連接鏈接來連接 至該定相環,該天線更包含耦合於該等兩個饋送節點間之 一分流電容以達到匹配目的。 該共振定相環亦可包含鄰近該第一橫向延伸表面部分 之一位置上,該核心之該側表面部分上的一環狀傳導路 徑,該等延長傳導天線元件為螺旋狀並且於軸向擴張。 根據本發明之另一觀點,用在循環極化輻射並具有超 過200MHz之一操作頻率的一介電載入式多線天線包含 有:一電氣絕緣核心,其具有一相對介電常數大於5並佔據 該核心外側表面所定義之該内部容量的大部分之一固態材 料;一對饋送節點;以及一天線元件結構,其位於該核心 外側表面上或附近並包含連接至該等饋送節點之一定相 環,以及於該環之個別隔開點處耦合至該定相環之至少四 個延長傳導元件。 該天線可形成包含如上述之一天線並組合耦合至該等 201112490 饋送節點之一平衡不平衡轉換器的一天線組件之一部分。 而是,該組件可具有含耦合至該等饋送節點之一差動輸入 的一差動放大器。 本規格說明中,該術語“輻射”,應用於該天線之元件 時,可參照為輻射該天線從於該天線之該操作頻率操作之 一發射器來激磁的一電磁場之元件。應了解該天線耦合至 一接收器時,該類元件從周圍環境吸收電磁能,而該天線 之後以一交互方式來動作。接下來本文包含該術語“輻射” 之陳述及申請專利範圍包括於其一天線僅意欲與一接收器 使用以及作為用於發射之天線的範疇中。 圖式簡單說明 本發明現將藉由範例並參照該等圖式來說明,其中: 第1圖是一根據本發明之一第一天線,從一側及從一近 端檢視的立體圖; 第2圖是一承載一平衡不平衡轉換器及一前端射頻放 大器之一印刷電路板的立體圖,該電路板配適成安裝第1圖 之該天線; 第3A圖及第3B圖是該天線之等效電路圖; 第4A圖及第4B圖是形成根據本發明之一第二天線的 一部分之一天線單元的立體圖,第4A圖顯示從一側及一近 端檢視該單元,而第4B圖顯示從一側及一末端檢視該單元; 第5A圖是一根據本發明之一第三天線,從一側及從一 末端檢視的立體圖; 第5B圖是該第三天線之鍍敷導體以與第5A圖相同觀 201112490 點的一圖形表示法; 第6圖是一該第三天線之一饋送結構的軸向橫截面圖; 第6A圖是一第6圖所示之該饋送結構的細部圖,其顯示 從一傳輸線餽線部段之一末端部分拆離的一層板; 第7A圖及第7B圖是顯示該饋線結構之該層板的傳導 層之導體型樣的圖形; 第8圖是一等效電路圖; 第9圖是一繪示該第三天線之該插入耗損(SI 1)頻率響 應的圖形; 第10圖是一顯示該第三天線之一修改末端導體型樣的 圖形。 I:實施方式3 參照第1圖,根據本發明之一第一天線包含具有一圓柱 體介電核心12的一端射介電載入式12線天線10,該核心由 典型具有一相對介電常數36之一陶瓷材料組成。 於一圓柱體外側表面部分12上鍍敷為軸向共同擴張半 圈螺旋軌跡14,每一軌跡形成一延長傳導輻射元件,其置 中於該核心之該圓柱體側表面部分12S定義的該天線之一 中央軸(未顯示)上。該核心具有相關該天線軸及該側表面部 分12S作垂直延伸之一近端核心表面部分12P。此形成該天 線之一末端表面。該天線之另一端由該核心之一末端表面 部分12D來形成,其亦與該天線軸垂直延伸並形成另一末端 表面。 於該近端核心表面部分12P上鍍敷為一傳導環16。該等 201112490 螺旋輻射元件14之每一個於該核心之該近端核心表面部分 12P及該圓柱體側表面部分nS之相交處形成的邊緣上延 伸’以符合該近端核心表面部分12P上之該傳導環丨6的外側 圓周,該等螺旋元件14之個別連接均勻地分布於該環圓周 週圍。 鄰近該核心之近端12P,該等螺旋元件14於開路末端 14E終止。本發明之該較佳實施例中,該等螺旋元件14皆為 相同長度,每一元件於該天線之該操作頻率時具有一四分 之一波長的一電氣長度,該長度為該個別元件從其與該近 端傳導環16之連接至其開路端14E的長度。實際上,該等螺 旋元件14包含一陣列之可擴充單極螺旋元件。於一替代實 施例中,該等元件14可有利地為四分之一圈而非半圈的螺 旋。 從該傳導環16之内部圓周向内及輻射地延伸並電錄於 該近端核心表面部分12P的是於完全相反位置連接至該傳 導環16之兩個饋送連接導體18A、18B。該等饋送連接導體 之内部末端部分,亦即,其鄰近該天線之該中央軸的末端 部分’形成針對該天線共同組成一平衡饋送連接之饋送節 點°每一饋送連接導體18A、18B於該天線之該操作頻率時 形成一串接電感。橋接該等饋送連接導體18A、18B之該内 部末端部分組成的該等饋送節點的是一分流電容器20,其 與上述之該等串接電感共同形成一反應匹配網路。為了將 5亥天線連接至接收器及/或發射器電路,一對金屬彈簧連接 盗22可從靠近料饋送節點處延伸。 201112490 該傳導環16之該電氣長度於該天線之該操作頻率時為 一單一波長,亦即,360°。因此,其於該操作頻率時共振, 使得該操作頻率時從該等螺旋元件14(該天線用於接收信 號)或從該等饋送節點(該天線用於發送信號)之信號驅動 時,共振電流於該傳導環16中循環,由於該結果之相位於 該傳導環16附近以及該等螺旋元件14之近端附近進行,因 而使得該天線於一循環極化模式中共振。由於該等元件14 之電流大小及相位的分布,故此方式中該等螺旋元件14之 定相可有效綜合一旋轉雙極點而因此產出該所需之循環極 化特性。 因此,實際上,該傳導環16為一定相環,其於拓樸術 語上,介於該等饋送節點及該等輻射元件之間,該後者經 由該中間定相環從該等饋送節點驅動。(注意該等饋送節點 位於該傳導環16之内側,而該等輻射元件位於外側。) 本發明之該實施例中,該傳導環16為連續。然而,如 下文所述,典型其亦可具有兩個斷點,而以電容器橋接, 來形成一替代匹配網路之一部分。 如圖所示,較佳情況是該傳導環為圓形,但並非必要。 該實施例中,雖然有12個螺旋輻射元件,但亦可使用一較 少數量,例如,十個、八個、六個、或四個。然而,有一 共同特徵是該定相環形成於該操作頻率時共振之一封閉傳 導迴路。此方式中,儘管此範例中該等元件皆具有相同長 度及組態,但該環16仍可指出該等螺旋元件14之定相。此 方式中使用一共振環,特別是作為該核心12形成之該基體 10 201112490 上的鍍料體或導體部分來予以具體化時,可形成一特 別穩疋的^元件,相較於錢之定相網路其生產相當便 :,並可維持-良好的製造產出。該範例中,由於四分之 一波長螺旋元件14,於鱗饋送節點之該天線阻抗相當低 (典型為數歐姆)。如上所述,料饋送節點職-平衡饋送 點。如第2圖所示,該天線與-單—端接收器前端使用時, “天線可連接至安裝於—專屬平衡不平衡轉換$電路之一 P刷電路板。參照第2圖,一接收器前端電路板3〇具有印刷 執跡32以連接至該天線之該近職針项幻圖)。該等軌跡 32形成该天線及該平衡不平衡轉換器電路間之連接,其可 為從J〇hanson科技有限公司(美國卡馬里奥市CA90312)製 造之產品型號BL15中選擇的一平衡不平衡轉換器單元。該 平衡不平衡轉換器電路34提供亦安裝於該印刷電路板3〇上 之一射頻前端放大器36 —單一端輸出。 該天線之該輻射型樣類似習知介電載入式四線天線所 展現那般’其中其為心臟曲線外型,並具有一末端引導轴 向最大值而且方位上為實質全向。201112490 VI. Description of the invention: [Intelligent ^Ming 斤 属 彳 » » 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 Dielectrically loaded multi-wire helical antenna. [Prior Art 3 Dielectric-Loaded Multi-Wire Antennas, published in International Patent Application No. WO2006/136809, British Patent Publication No. 2442998a, 'European Patent Publication No. EP1147571A, British Patent Publication No. 2420230A, 2444388A, 2437998A, and 2445478A Revealed in. All disclosures of such patent publications are incorporated into this application for reference. For positioning and navigation purposes, such antennas are primarily intended for receiving cyclically polarized signals from a Global Navigation Satellite System (GNSS)', e.g., from a satellite of the Global Positioning System (GPS) satellite cluster. Other satellite services that can be used for such antennas include satellite telephony services such as the L-band International Maritime Communications Satellite Service 1626.5-1675.0 MHz and 1518.0-l559.0 MHz, the TerreStar (registered trademark) S-band service The ICO Global Communications S-Band service and the SkyTerra service. These s-band services have been configured from the 2000MHz to 200MHz band. According to a first aspect of the present invention, a dielectric-loaded multi-line antenna for circulating electromagnetic radiation having an operating frequency of more than 200 MHz is provided, wherein the antenna comprises a relative dielectric constant An electrically insulating substrate formed by at least one of the solid dielectric materials, a pair of feed nodes, at least four extended conductions disposed on the 201112490 substrate and disposed between and coupled to the feed nodes and the radiating elements A radiating element, a phase loop formed by a closed loop of the operating frequency resonance, the radiating elements being coupled to the phased loop at individually spaced coupling locations. In this manner, the radiating elements are fed via the phased loop with the effect of feeding the radiating elements in a phase to produce a cyclic polarization characteristic. Typically, the antenna has a central axis and a phase ring that includes a track on the substrate that surrounds one of the axes. The phased loop can be a continuous or a broken trace. In the latter case, the ring includes at least one pair of lumped reactances in series with the conductive track portions, typically capacitors, which together with the reactance form the closed circuit described above. Preferably, the phased loop is circular, but other configurations may be used, including a rectangular or other polygonal shape, and a rounded shape (ie, the following is detached from a circular shape in a repeating manner) a path between the inside and the outside). According to a particularly preferred antenna of the present invention, the substrate is a cylindrical body having a cylindrical side surface portion and a proximal end surface portion. Preferably, the phased loop is located at the proximal surface portion such that the antenna is an "endfire" antenna, i.e., has a one of the maximum values of the cyclically polarized radiation pattern in the direction of the end. The feed nodes are most easily centered on the substrate or the substrate itself, or as part of a connection assembly associated with the end surface carrying the phased ring. In the preferred antenna, the feed nodes are coupled to the phased ring in substantially opposite positions by individual feed connection conductors extending radially about the axis of the cylinder. The phased loop is preferably dielectrically loaded by the substrate and has a single wavelength of 201112490 (i.e., 360.). In the preferred antenna, the radiating elements have an open end that is connected to the first end of the phased loop and a second end that is spaced apart from the phased loop. In this case, the electrical length of each of the radiating elements is preferably one quarter wavelength or an odd multiple thereof at the operating frequency. In an alternative preferred embodiment, the antenna has a second conductive ring, also 忒 private frequency resonance, the conductive ring links the first ends of the radiating elements, in this example, each radiating element has One of the half wavelengths of electrical length or its integral multiple. It can also be constructed according to one of the inventions "tempering, antenna" which is typical of the phased loop; the end surface of the crucible is partially deposited. The first conducting loop is resonated at a different frequency, in which case it can be rounded. Surrounding the core on the body side surface. Referring to the above-mentioned prior patent publication, the conductive ring may be formed as the annular edge of a conductive sleeve extending near a proximal end portion of the core, s The sleeve forms part of an integrated balun. Some of the light-emitting elements may be open, extending from the end phased loop to an open end spaced from the first conductive ring, and other Korean components may For closed circuit, extending from the end phased loop to the second loop. In this manner, the antenna can resonate at two separate operating frequencies, each resonant for circulating polarized radiation. A dielectric-loaded multi-wire antenna for cyclically polarized radiation having an operating frequency of more than 200 MHz comprises an electrically insulating core having a relative dielectric constant greater than 5 and occupying 6 outer core surfaces Defined a solid material of a majority of the internal capacity 'a plurality of feed nodes; and an antenna element structure located on or near the core, outer surface, 201112490, comprising a plurality of elongated conductive antenna elements coupled to the extended antenna elements And an extension of the antenna element between the feed nodes at the operating frequency, extending from the resonant ring in a direction away from one of the feed nodes. As for the first laterally extending surface portion The resonant phasing ring, the extended conductive antenna element may extend from the ring to the second laterally extending surface portion on the side surface portion, each of the components being a one of the cylindrical side surface portions of the core Spiral trajectory. The two feed nodes are preferably formed as a balanced feed point in the form of a conductive pad adjacent to a central axis of the antenna, each of the pads being connected to the phasing by an individual inductive connection link a ring, the antenna further comprising a shunt capacitor coupled between the two feeding nodes for matching purposes. The resonant phase-locking ring may also include Near the position of one of the first laterally extending surface portions, an annular conductive path on the side surface portion of the core, the elongated conductive antenna elements are helical and axially expanded. According to another aspect of the present invention A dielectrically loaded multi-wire antenna for use in cyclically polarized radiation and having an operating frequency in excess of 200 MHz comprises: an electrically insulating core having a relative dielectric constant greater than 5 and occupying the outer surface of the core a solid material of a majority of the internal capacity; a pair of feed nodes; and an antenna element structure located on or near the outer surface of the core and including a phase ring connected to the feed nodes, and At least one extended conductive element coupled to the phased loop at an individual spaced point. The antenna can form an antenna assembly including one of the antennas described above and coupled to one of the 201112490 feed nodes. portion. Rather, the component can have a differential amplifier having a differential input coupled to one of the feed nodes. In this specification, the term "radiation", when applied to a component of the antenna, may refer to an element of an electromagnetic field that is excited to radiate the antenna from an emitter operating at the operating frequency of the antenna. It will be appreciated that when the antenna is coupled to a receiver, the components absorb electromagnetic energy from the surrounding environment and the antenna then operates in an interactive manner. The following description of the term "radiation" and the scope of the patent application are included in the context in which an antenna is intended only to be used with a receiver and as an antenna for transmission. BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described by way of example and with reference to the drawings, wherein: FIG. 1 is a perspective view of a first antenna according to the invention, viewed from one side and from a proximal end; 2 is a perspective view of a printed circuit board carrying a balun and a front-end RF amplifier, the board being adapted to mount the antenna of FIG. 1; FIGS. 3A and 3B are the antennas, etc. FIG. 4A and FIG. 4B are perspective views of an antenna unit forming part of a second antenna according to the present invention, and FIG. 4A shows the unit viewed from one side and a near end, and FIG. 4B shows Viewing the unit from one side and one end; FIG. 5A is a perspective view of a third antenna according to the present invention, viewed from one side and from the end; FIG. 5B is a plating conductor of the third antenna 5A is a schematic representation of a point of view of 201112490; FIG. 6 is an axial cross-sectional view of a feed structure of one of the third antennas; FIG. 6A is a detailed view of the feed structure shown in FIG. It is shown from one end of a transmission line feeder section a layer of the separated layer; FIGS. 7A and 7B are diagrams showing the conductor pattern of the conductive layer of the layer of the feeder structure; FIG. 8 is an equivalent circuit diagram; FIG. 9 is a diagram showing A graph of the insertion loss (SI 1) frequency response of the third antenna; Fig. 10 is a diagram showing the modified end conductor pattern of one of the third antennas. I: Embodiment 3 Referring to FIG. 1, a first antenna according to the present invention includes an end-fired, electrically-loaded 12-wire antenna 10 having a cylindrical dielectric core 12, which typically has a relative dielectric. The constant 36 is composed of one ceramic material. Plated on a cylindrical outer surface portion 12 is an axially coextensive half-turn spiral track 14, each track forming an elongated conductive radiating element centered on the cylindrical side surface portion 12S of the core. One of the central axes (not shown). The core has a proximal core surface portion 12P associated with the antenna shaft and the side surface portion 12S for vertical extension. This forms one of the end surfaces of the antenna. The other end of the antenna is formed by one end surface portion 12D of the core, which also extends perpendicularly to the antenna shaft and forms the other end surface. A conductive ring 16 is plated on the proximal core surface portion 12P. Each of the 201112490 spiral radiating elements 14 extends 'on an edge formed at the intersection of the proximal core surface portion 12P of the core and the cylindrical side surface portion nS to conform to the proximal core surface portion 12P The outer circumference of the conductive ring 6 is such that the individual connections of the helical elements 14 are evenly distributed around the circumference of the ring. Adjacent to the proximal end 12P of the core, the helical elements 14 terminate at an open end 14E. In the preferred embodiment of the present invention, the spiral elements 14 are all of the same length, and each element has an electrical length of one quarter wavelength at the operating frequency of the antenna, the length being the individual component It is connected to the length of the proximal conductive ring 16 to its open end 14E. In effect, the spiral elements 14 comprise an array of expandable monopole helical elements. In an alternate embodiment, the elements 14 may advantageously be a quarter turn rather than a half turn. Inwardly and radially from the inner circumference of the conducting ring 16, and electrically recorded to the proximal core surface portion 12P are two feed connecting conductors 18A, 18B connected to the conducting ring 16 at exactly opposite positions. The inner end portions of the feed connection conductors, that is, the end portions thereof adjacent to the central axis of the antenna, form a feed node for the antenna to form a balanced feed connection. Each feed connection conductor 18A, 18B is at the antenna. At the operating frequency, a series inductance is formed. The feed nodes that bridge the inner end portions of the feed connection conductors 18A, 18B are a shunt capacitor 20 that together with the series inductances described above form a reactive matching network. To connect the 5 hai antenna to the receiver and/or transmitter circuit, a pair of metal spring ties 22 can extend from the feed feed node. 201112490 The electrical length of the conducting ring 16 is a single wavelength, i.e., 360°, at the operating frequency of the antenna. Therefore, it resonates at the operating frequency such that the operating frequency is driven from the spiral elements 14 (the antenna is used to receive signals) or from the signals of the feed nodes (the antennas are used to transmit signals). Circulating in the conducting ring 16 causes the antenna to resonate in a cyclic polarization mode since the resulting phase is located adjacent the conductive ring 16 and near the proximal end of the helical elements 14. Due to the current magnitude and phase distribution of the elements 14, the phasing of the helical elements 14 in this manner effectively integrates a rotating dipole and thus produces the desired cyclic polarization characteristics. Thus, in practice, the conductive ring 16 is a phase loop between the feed nodes and the radiating elements in the topological terms, the latter being driven from the feed nodes via the intermediate phased loop. (Note that the feed nodes are located inside the conductive ring 16 and the radiating elements are located outside.) In this embodiment of the invention, the conductive ring 16 is continuous. However, as described below, typically it can also have two breakpoints that are bridged by capacitors to form a portion of an alternate matching network. As shown, it is preferred that the conducting ring be circular, but not necessarily. In this embodiment, although there are 12 spiral radiating elements, a smaller number, for example, ten, eight, six, or four, may be used. However, a common feature is that the phased loop forms a closed-loop conduction loop at the operating frequency. In this manner, although the elements have the same length and configuration in this example, the ring 16 can still indicate the phasing of the helical elements 14. In this manner, a resonant ring is used, in particular, as a material or a conductor portion of the substrate 10 201112490 formed by the core 12, a particularly stable component can be formed, compared to the money. The phase network is quite easy to produce: and can maintain - good manufacturing output. In this example, due to the quarter-wave helical element 14, the impedance of the antenna at the scale feed node is relatively low (typically a few ohms). As mentioned above, the feed node is a job-balance feed point. As shown in Figure 2, when the antenna is used with the - single-ended receiver front end, "the antenna can be connected to a P-switch board mounted on one of the exclusive balanced unbalanced conversion circuits. See Figure 2, a receiver. The front end circuit board 3 has a print trace 32 to connect to the near field pin phantom of the antenna. The tracks 32 form a connection between the antenna and the balun circuit, which may be from J〇 A balun unit selected from the product model BL15 manufactured by Hanson Technology Co., Ltd. (CA90312, Camarillo, USA). The balun circuit 34 provides a radio frequency that is also mounted on the printed circuit board 3 Front-end amplifier 36 - single-ended output. The radiation pattern of the antenna is similar to that exhibited by conventional dielectric-loaded four-wire antennas, where it is a curve of the heart curve and has an end guiding axial maximum and orientation. It is essentially omnidirectional.

如第3A圖及第3B圖之該等等效電路所繪示,第1圖之 β天線的網路為串接電感分流電容賴型。第3A圖顯 不及傳導%16作為—迴路,每一饋送連接導體18八(第丄圖) 以電感L來表不,該電容器20(第1圖)作為該等饋送節點F 以參照第3b圖該定相環及相關聯螺旋 兀件可由電阻或多個電阻r來表示。第3b圖之該等效電 路顯7F為—平衡安排°典型情況是,於該等饋送節點F測量 201112490 時,由該天線及該匹配網路表示之該來源阻抗為50歐姆。 參照第4A圖及第4B圖,根據本發明之一第二天線具有 兩個定相環來用於額外的定相穩定性。為了簡化說明,第 4A圖之近端檢視中,其顯示該核心之該近端表面部分12P 的該鍍敷導體而無連接插針及一分流匹配電容器。實際 上,該天線包括如上述參照第1圖之該等構件。該近端表面 部分12P之該原圖與上述參照第1圖之該第一天線實質上相 同。然而,該範例中,如第4B圖所示,該等螺旋元件14之 每一個於該核心12附近實質上執行一整圈,並於該圓柱體 側表面部分12S及該末端表面部分12D之相交處形成的邊緣 上延伸至該末端表面部分12D上鍍敷之一第二傳導環40。於 一替代實施例中,該等螺旋元件為半圈元件。 該實施例中之每一螺旋元件14的該電氣長度於該天線 之操作頻率時為一半個波長。該天線之變化型態中,該等 螺旋元件可具有一全波長或一半波長的更高整數倍之一電 氣長度。如上述參照第1圖之該第一天線中,該近端傳導環 16之該電氣長度為一全波長,亦即,360°。該天線中,該 末端傳導環40為相同維度。然而,亦可針對該等兩傳導環 之電氣長度安排為不同以便展開其共振頻率而增加該天線 之頻帶。 針對一給定的核心材料及核心直徑,雖然該第二天線 之該核心12比該第一天線的長且重,但該第二定相環提供 更多的定相穩定性。 參照第5A圖及第5B圖,根據本發明之一第三天線為一 12 201112490 十線螺旋天線,其具有包含由兩組該類天線組成之10個延 長天線元件的一天線元件結構,一組包含多個閉路螺旋傳 導軌跡50A、50B、50C、50D、50E、50F,而另一組包含 多個開路傳導執跡51A、51B、51C、51D,該等軌跡於一固 態圓柱體核心5 2之該圓柱體外側表面部分5 2 C上皆為鍍敷 或以不同方式來金屬化。第5B圖中,為了清晰解說而省略 該核心及其他構件。 該核心由一陶瓷材料組成。該實例中其為該區域中具 有一相對介電常數36之一鈦酸鹽材料。該實施例中,期待 於該 GPS L1 及 GPS L2 頻帶(1575.42MHz 及 1227.6MHz)中操 作,該核心具有一 14mm之直徑。該核心之長度,17.75mm, 大於該直徑,但其他實施例中其可小於。 該第三天線為一回火螺旋天線,其具有容裝於一軸向 孔(未顯示)之一同轴傳輸線饋線,並從一末端表面52D通過 該核心至該核心之一近端表面52P。兩末端表面52D、52P 為平面並與該核心之中央軸垂直。其相對引導,本發明之 該實施例中其中之一為末端引導而另一為近端引導。該同 軸傳輸線為一堅固的同軸饋線,其以與該核心之外牆隔開 的外部屏蔽導體來中央容裝於該孔中,使得會有一介電層 有效位於該屏蔽導體及該核心52材料之間。參照第6圖,該 同軸傳輸線饋線具有一傳導管狀外側屏蔽56、一第一管狀 空隙或絕緣層57、以及自賴緣層57與該屏蔽 長内部導體58。該屏蔽56具有向賴似_形成之彈菁 帶5 6 T或將該屏蔽及該孔之外牆隔開之間隔片。一第二管狀 13 201112490 空隙存在於該屏蔽56及該孔之外牆之間。而該絕緣層57可 形成作為一塑膠套筒,可為該屏蔽56及該孔之外牆間的層 次。如上述W02006/136809中所說明,該饋線之較低、近 端處,該内部導體58由一絕緣墊圈(未顯示)而中央位於該屏 蔽56中。 該屏蔽56、内部導體58以及絕緣層57之組合組成預定 特性阻抗,在此為50歐姆之一傳輪線,其通過一軸向孔(未 顯示)之該天線核心52以便將該等螺旋軌跡50A-50F、 51A-51D之末端耦合至該天線欲連接之設備的射頻(RF)電 路。該等天線元件50A-50F、51A-51D及該饋線間之耦合可 經由與該等螺旋軌跡50A-50F、51A-51D相關聯之傳導連接 部分來完成,該等連接部分形成來作為短的輻射狀軌跡 50AR、50BR、50CR、50DR、50ER、50FR、51AR、51BR、 51CR、51DR,於該核心52之該末端表面52D上鍍敷。每一 連接部分從該個別螺旋軌跡之一末端延伸至一末端傳導定 相環16之該外側邊緣,該環於鄰近該核心中之該軸向孔末 端的該核心末端表面52D上鍍敷。如從第5B圖中所見,該 定相環16比較其至該天線之中央軸以及該軸向傳輪線饋線 部段(上述參照第6圖),其更接近該核心之末端表面仙的 圓周以及該等螺旋軌跡5GA_5GF、51A_51D之末端。本發明 之該實施例中,於該GPSL1頻率,1575 42MHz之一第一操 作頻率時,该定相環16具有一平均直徑nmm以及等於一全 波長,亦即,360。之一電氣長度。該等開路螺旋執跡5ia_5id 亦於該天線之該第一操作頻率,1575 42MHz時共振,並如 201112490 第5B圖中所不,在由其個別連接部分51AR-51DR具角度隔 開之位置來連接至該末端定相環16。雖然其無法確實均勻 地分布於該定相環16附近,但即使針對該等四個待定相之 開路兀件而言該分布已足夠,以便於該天線之該第一共振 模式中產生一循環極化響應。 代表一第二群組輻射元件之該等閉路螺旋軌跡 50A-50F,於代表該天線之一第二共振模式之一第二、較低 操作頻率,該GPS L2頻率,1227.60MHz時共振。其亦在由 其個別連接部分50AR-50FR具角度隔開之位置來連接至該 末端定相環16,將於下文中說明。 該末端定相環16可由於保護該核心末端表面52D之一 層板59中的導體,經由一匹配網路來耦合至該轴向傳輸線 部段之该屏蔽及内部導體16、18,亦將於下文中說明。該 同軸傳輸線饋線部段及該層板59組裝至該核心52之前共同 包含一單一饋送結構,而其相互關係可藉由比較第5八圖及 第6圖來檢視。 该定相環16之该電氣長度亦由包括其實體路徑長度' 該核心材料之該相對介電常數、以及該層板59之組態、放 置及材料的因數來決定。 再次參照第6圖,該傳輸線饋線之該内部導體%具有從 該核心52之該近端表面52P投射作為一插針之一近端部分 58P以便連接至該設備電路。同樣地,該屏蔽56之該近端上 的整合凸緣(未顯示)於該核心近端表面52P上方投射以便使 與該儀器電路之一連接接地。 15 201112490 该第一群組之該等六個閉路螺旋執跡5〇A_5〇F的該等 近端由一共同虛擬接地導體60來互連。該實施例中,該共 同導體為一第二環狀定相環,並且為環繞該核心52之一近 端部分的一鍍敷套筒之型式。該套筒60依次連接至該饋線 之該屏蔽導體56,而其可由該核心52之該近端表面52P的一 鑛敷傳導覆蓋層62從該核心近端顯露。 该第一群組之該等六個閉路螺旋軌跡50a_50F為不同 長度’每一組中之三個元件50A_5〇C、50D-50F由於該套筒 之s玄邊緣60U形成具有稍微不同長度之元件,一般而言,其 與該核心之該近端表面52P之距離會改變。該等最短元件 50A、50D連接至該套筒6〇時,該邊緣20U會比該等最長元 件50C、50F連接至該套筒60時更遠離該近端表面52P。該元 件於該天線對循環極化信號很靈敏,此情況為該GPS L2頻 率’ 1227.60MHz時之該第二共振模式中操作時,包含該等 閉路螺旋軌跡50A-50F之該等傳導路徑的不同長度會造成 每一組之三個元件50A-50C、50D-50F中的元件電流間之相 位差。該模式中’ 一方面,電流於該核心52之一側連接至 該末端定相環16的該等元件50D、50E、50F之間流經該套 筒60之該邊緣60U附近,另一方面,電流於該核心52之該相 對側連接至該末端定相環16的該等組合之其他元件50A、 50B、50C之間流經該套筒60之該邊緣60U附近。 該傳導套筒60、該近端表面52P之該鍍敷62、以及該饋 送線56、58之該外侧屏蔽56共同形成一四分之一波形的平 衡不平衡轉換,其提供該天線元件結構與該天線安裝時連 16 201112490 接之該設備的共同模式隔離。該平衡不平衡轉換器將該饋 送線56、58之該近端處的單一端電流轉換為於該核心52之 5亥末端表面部分52D上顯洛的該末端處之平衡電流^ 該套筒60之該邊緣60U具有—電氣長度&2,為該天 線之該第二共振模式的頻率時通過該邊緣6〇u附近之電流 的導引波長’使得該邊緣於該頻率展現一環共振。作為一 共振元件之該套茼邊緣60U的操作於該上述Epii47571A中 更詳細討論。 本發明之該實施例中的該套筒6 〇及該鍍敷6 2是有優點 的’其提供一平衡不平衡轉換功能以及一環共振兩者,一 環共振亦可藉由將該第二群組之該等螺旋軌跡5〇八_5〇1?連 接至圍繞該核心52之一環狀導體來單獨提供,並且如上述 參照第4A圖及第4B圖之實施例中,於該核心之該外側表面 部分上具有近端及末端邊緣兩者,而非如本發明中,以連 接至a亥饋線屏蔽導體56以形成一開路孔洞之一套筒的型 式。該類導體可相當窄,此範圍中其可組成一環狀轨跡, 其寬度類似形成該等螺旋執跡50A-50F、51A-51D之傳導軌 跡的寬度,而假設其具有符合該天線之一操作頻率時的該 引導波長之一電氣長度時,仍產生一環共振以增強與該等 閉路螺旋軌跡50A-50F及其互連提供之該等迴路相關聯的 该共振模式。 應了解該套筒60之該邊緣60U用來作為一第二、近端定 相5哀以增強該較低操作頻率,亦即,l227 6〇MHz時之該循 環極化共振。而如上所述,該套筒邊緣6〇u位於該核心52 17 201112490 之该外側圓柱體表面部分52C,另—變化型態中,該平衡不 平衡轉換器於该核心52之該近端表面52p上可僅包含〆硪 型導體,而該第一群組之該等螺旋軌跡5〇八_5〇1?於該核心52 之該近端表面部分52P上延伸,以便形成位於該整個近端表 面部分52P上之一定相環。 該套筒60及近端表面鍍敷62用來作為一收集器,以防 止電流從該等閉路螺旋轨跡5〇A_5〇F流至該核心之該近踹 表面52P的饋送線之該屏蔽56。應注意該等閉路螺旋執跡 50A-50F可視為由s玄末端相位環16互連之三個螺旋軌跡的 兩個子集合,使得每一閉路螺旋軌跡子集合典型具有一長 軌跡50C,50F、一中間長度軌跡5犯;5〇E以及一短軌跡 50A ; 50D。 該等二種傳導迴路於該定相環16之該等相對側間運 作’個別由⑻該等最短閉_旋軌跡5〇a、獅及該套筒邊 ,.彖60U、(b)6《等中間閉路螺旋轨跡5()B、通及該套筒邊緣 6〇U以及(c)該等最長閉路螺旋軌跡5〇c、及該套筒邊 緣60U來形成,每一組具有幾乎等於、2之一有效電氣長 度’其為該第二共振模式之該頻率時沿該等迴路的該引導 波長轉_射%件為半圈元件並於該核心、之該圓柱體外 側表面。卩刀52C上共同擴張。該等閉路螺旋軌跡5GA 5〇F之 ,·且心及其互連使得其操作類似__簡單介電載人式六線螺旋 天線’其操作於該上述GB2445478A中更詳細討論。 對…、》亥等閉路螺旋軌跡5〇A 5〇F,如第5A圖及第5B圖 中所不’其他螺旋導體軌跡51A_51D於該核心之該末端表面 201112490 部分52D及該套筒邊緣6〇u間的位置上,於該核心圓柱體表 面部分52C具有開路近端。該等開路螺旋軌跡之安排使得其 亦均勻分布於該核心附近,於該等閉路螺旋軌跡5〇八_5(^ 之間交錯,每一開路軌跡51 a - 51D於該核心之軸心附近執行 幾乎一半圈操作。由於均勻分布於該核心附近,該等開路 螺旋軌跡51A-51D—般包含正交放置軌跡對51A、51C ; 51B、51D。每一開路軌跡51A-51D組合該核心末端表面部 分52D上之其個別的輻射連接元件51AR-51DR以形成一四 分之三波長單極點,此意義為該實施例中,尤其由該開路 元件之該波長決定的該天線之一第一循環極化共振模式的 頻率時,每一軌跡之該電氣長度幾乎等於沿該等轨跡之該 引導波長λ8ΐ的四分之三。該實施例中,該第一循環極化共 振模式之頻率為該GPSL1頻率,1575.42MHz。 就該等閉路螺旋導體執跡50A-50F而言,該等開路軌跡 51A-51D亦展現實體及電氣長度上之少許差異。因此,該等 開路軌跡包括比一第二對完全相反軌跡51B、51D還長之— 第一對完全相反軌跡51A、51C。該等長度上細小變動會相 位超前及相位阻滯其個別的各自共振以便該第一循環極化 共振模式之該頻率時協助綜合一旋轉雙極點。 應注意本發明之實施例中’該第一共振模式之該頻率 比該第二共振模式之頻率高。其他實施例中,該相反情況 亦可適用。該等輻射元件之基本或諧波共振亦可被使用, 雖然一般而言,該等閉路元件具有一平均電氣長度ηλε2/2而 該等開路元件具有一平均電氣長度(2ηι-1)λ§1/4,其中11與01 19 201112490 為正整數。 因為由該等開路螺旋執跡51A-51D及其個別輻射軌跡 51AR- 51DR形成之單極點元件的系統與該套筒邊緣60U無As shown in the equivalent circuits of FIGS. 3A and 3B, the network of the β antenna of FIG. 1 is a series-connected inductor shunt capacitor. Figure 3A shows that the conduction %16 is a loop, and each feed connection conductor 18 (the first diagram) is represented by the inductance L. The capacitor 20 (Fig. 1) serves as the feed node F to refer to the 3b diagram. The phased loop and associated helical element can be represented by a resistor or a plurality of resistors r. The equivalent circuit 7F of Fig. 3b is a balanced arrangement. Typically, when the feed node F measures 201112490, the source impedance represented by the antenna and the matching network is 50 ohms. Referring to Figures 4A and 4B, a second antenna according to the invention has two phased loops for additional phasing stability. To simplify the description, in the near end view of Fig. 4A, the plated conductor of the proximal surface portion 12P of the core is shown without a connection pin and a shunt matching capacitor. In practice, the antenna includes such components as described above with reference to Figure 1. The original image of the proximal surface portion 12P is substantially the same as the first antenna described above with reference to Fig. 1. However, in this example, as shown in FIG. 4B, each of the spiral elements 14 substantially performs a full turn in the vicinity of the core 12, and intersects the cylindrical side surface portion 12S and the end surface portion 12D. A second conductive ring 40 is plated on the edge formed at the edge to the end surface portion 12D. In an alternate embodiment, the helical elements are half-turn elements. The electrical length of each of the helical elements 14 in this embodiment is half the wavelength at the operating frequency of the antenna. In variations of the antenna, the helical elements may have a full-wavelength or a higher integer multiple of one-half the electrical length. In the first antenna as described above with reference to Figure 1, the electrical length of the proximal conducting ring 16 is a full wavelength, i.e., 360°. In the antenna, the end conducting rings 40 are of the same dimension. However, it is also possible to increase the frequency band of the antenna by arranging the electrical lengths of the two conductive rings differently in order to expand their resonant frequencies. For a given core material and core diameter, although the core 12 of the second antenna is longer and heavier than the first antenna, the second phased loop provides more phasing stability. Referring to Figures 5A and 5B, a third antenna according to the present invention is a 12 201112490 ten-wire helical antenna having an antenna element structure comprising ten extended antenna elements consisting of two sets of such antennas, a group A plurality of closed-circuit spiral conductive tracks 50A, 50B, 50C, 50D, 50E, 50F are included, and the other group includes a plurality of open-circuit conductive traces 51A, 51B, 51C, 51D, which are in a solid cylindrical core 5 2 The outer surface portion 5 2 C of the cylinder is plated or metallized in different ways. In Fig. 5B, the core and other components are omitted for clarity of explanation. The core consists of a ceramic material. In this example it is a titanate material having a relative dielectric constant 36 in the region. In this embodiment, it is expected to operate in the GPS L1 and GPS L2 bands (1575.42 MHz and 1227.6 MHz) having a diameter of 14 mm. The length of the core, 17.75 mm, is greater than the diameter, but it may be less than in other embodiments. The third antenna is a tempered helical antenna having a coaxial transmission line feed line received in an axial bore (not shown) and passing from the end surface 52D through the core to a proximal end surface 52P of the core. The two end surfaces 52D, 52P are planar and perpendicular to the central axis of the core. Relatively directed, one of the embodiments of the present invention is end-guided and the other is proximally guided. The coaxial transmission line is a solid coaxial feed line that is centrally received in the hole by an external shield conductor spaced from the outer wall of the core such that a dielectric layer is effectively located between the shield conductor and the core 52 material. between. Referring to Figure 6, the coaxial transmission line feeder has a conductive tubular outer shield 56, a first tubular void or insulating layer 57, and a self-retaining layer 57 and the shielded long inner conductor 58. The shield 56 has a spacer that is detached to form an elastic cyanine strip 5 6 T or that separates the shield from the outer wall of the aperture. A second tubular 13 201112490 void exists between the shield 56 and the outer wall of the bore. The insulating layer 57 can be formed as a plastic sleeve, which can be the layer between the shield 56 and the wall outside the hole. As illustrated in WO2006/136809, the inner conductor 58 is centrally located in the shield 56 by an insulating gasket (not shown) at the lower, proximal end of the feed line. The combination of the shield 56, the inner conductor 58 and the insulating layer 57 constitutes a predetermined characteristic impedance, here a 50 ohm pass line, which passes through an axial bore (not shown) of the antenna core 52 for the spiral track The ends of the 50A-50F, 51A-51D are coupled to a radio frequency (RF) circuit of the device to which the antenna is to be connected. The coupling between the antenna elements 50A-50F, 51A-51D and the feed line can be accomplished via conductive connection portions associated with the spiral tracks 50A-50F, 51A-51D, which are formed as short radiation The trajectories 50AR, 50BR, 50CR, 50DR, 50ER, 50FR, 51AR, 51BR, 51CR, 51DR are plated on the end surface 52D of the core 52. Each of the connecting portions extends from one end of the individual spiral track to the outer edge of a terminal conductive phased ring 16, which is plated on the core end surface 52D adjacent the end of the axial hole in the core. As seen in Fig. 5B, the phased loop 16 compares its central axis to the antenna and the axial transfer line feed section (refer to Figure 6 above), which is closer to the circumference of the end surface of the core. And the ends of the spiral tracks 5GA_5GF, 51A_51D. In this embodiment of the invention, at a first operating frequency of the GPS L1 frequency, 1575 42 MHz, the phased loop 16 has an average diameter nmm and is equal to a full wavelength, i.e., 360. One of the electrical lengths. The open-circuit spiral traces 5ia_5id also resonate at the first operating frequency of the antenna, at 1575 42 MHz, and are connected at angularly spaced apart by their individual connecting portions 51AR-51DR as shown in Figure 12B, Figure 5B. To the end phased loop 16. Although it is not uniformly distributed in the vicinity of the phased loop 16, even for the four open phases of the four phases to be phased, the distribution is sufficient to generate a circulating pole in the first resonant mode of the antenna. Response. The closed-circuit spiral trajectories 50A-50F representing a second group of radiating elements represent a second, lower operating frequency of one of the second resonant modes of the antenna, and the GPS L2 frequency resonates at 1227.60 MHz. It is also connected to the end phased loop 16 at a position angularly separated by its individual connecting portions 50AR-50FR, as will be explained below. The end phased loop 16 can be coupled to the shield and inner conductors 16, 18 of the axial transmission line section via a matching network by protecting the conductors in the laminate 59 of the core end surface 52D. The text explains. The coaxial transmission line feeder section and the laminate 59 together comprise a single feed structure prior to assembly to the core 52, and the correlation can be viewed by comparing Figures 5 and 6. The electrical length of the phased loop 16 is also determined by the relative dielectric constant of the core material including its physical path length, and the factor of configuration, placement, and material of the laminate 59. Referring again to Figure 6, the inner conductor % of the transmission line feed has a proximal portion 58P projected from the proximal surface 52P of the core 52 as a pin for connection to the device circuitry. Similarly, an integral flange (not shown) on the proximal end of the shield 56 projects over the core proximal surface 52P for connection to one of the instrument circuits. 15 201112490 The proximal ends of the six closed-circuit spiral traces 5〇A_5〇F of the first group are interconnected by a common virtual ground conductor 60. In this embodiment, the common conductor is a second annular phased ring and is of a plated sleeve surrounding a proximal portion of the core 52. The sleeve 60 is in turn coupled to the shield conductor 56 of the feed line and is exposed from a proximal end of the core by a mineral conductive cover layer 62 of the proximal surface 52P of the core 52. The six closed-circuit spiral tracks 50a_50F of the first group are of different lengths. The three elements 50A_5〇C, 50D-50F in each group form elements having slightly different lengths due to the s-edge 60U of the sleeve. In general, its distance from the proximal surface 52P of the core will vary. When the shortest members 50A, 50D are coupled to the sleeve 6A, the edge 20U will be further from the proximal surface 52P than when the longest members 50C, 50F are coupled to the sleeve 60. The component is sensitive to the cyclically polarized signal at the antenna, which is the difference in the conduction paths of the closed-circuit spiral trajectories 50A-50F when operating in the second resonant mode at the GPS L2 frequency '1227.60 MHz. The length will cause a phase difference between the component currents of the three components 50A-50C, 50D-50F of each group. In this mode, on the one hand, current flows between the elements 50D, 50E, 50F connected to the end phased loop 16 on one side of the core 52 through the edge 60U of the sleeve 60, on the other hand, Current flows between the other elements 50A, 50B, 50C of the combination of the ends of the core 52 that are connected to the end of the sleeve 60 through the edge 60U of the sleeve 60. The conductive sleeve 60, the plating 62 of the proximal surface 52P, and the outer shield 56 of the feed lines 56, 58 together form a quarter-waveform balanced unbalanced transition that provides the antenna element structure and When the antenna is installed, the 16 201112490 is connected to the common mode isolation of the device. The balun converts the single-ended current at the proximal end of the feed lines 56, 58 to a balanced current at the end of the 5' end surface portion 52D of the core 52. The edge 60U has an electrical length & 2, the guiding wavelength of the current passing through the edge 6〇u when the frequency of the second resonant mode of the antenna is such that the edge exhibits a ring resonance at the frequency. The operation of the rim edge 60U as a resonant element is discussed in more detail in the aforementioned Epii 47571A. The sleeve 6 〇 and the plating 6 2 in this embodiment of the invention are advantageous in that they provide a balance unbalance conversion function and a ring resonance, and a ring resonance can also be performed by the second group. The spiral trajectories 5 〇 _ 〇 ? ? 连接 连接 连接 连接 连接 连接 连接 连接 连接 连接 连接 ? ? ? ? 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋 螺旋The surface portion has both a proximal end and an end edge, rather than in the present invention, to connect to the a-feeder shield conductor 56 to form a sleeve of one of the open-holes. Such conductors can be relatively narrow, in this range they can form a circular trajectory having a width similar to the width of the conductive trajectory forming the spiral traces 50A-50F, 51A-51D, assuming that it has one of the antennas At one of the electrical wavelengths of the pilot wavelength at the operating frequency, a loop resonance is still generated to enhance the resonant mode associated with the loops provided by the closed spiral traces 50A-50F and their interconnections. It will be appreciated that the edge 60U of the sleeve 60 is used as a second, proximal phasing 5 to enhance the lower operating frequency, i.e., the cyclic polarization resonance at 1227 MHz. As described above, the sleeve edge 6〇u is located on the outer cylindrical surface portion 52C of the core 52 17 201112490. In another variation, the balanced unbalance converter is on the proximal surface 52p of the core 52. The first type of helical track 5 〇 _5 〇 1 may extend over the proximal surface portion 52P of the core 52 to form the entire proximal surface A certain phase loop on portion 52P. The sleeve 60 and the proximal surface plating 62 serve as a collector to prevent current from flowing from the closed spiral track 5A_5〇F to the shield 56 of the feed line of the proximal surface 52P of the core. . It should be noted that the closed-circuit spiral traces 50A-50F can be regarded as two subsets of three spiral trajectories interconnected by the s-terminal end phase loop 16, such that each closed-circuit spiral track sub-set typically has a long trajectory 50C, 50F, An intermediate length trajectory 5 is committed; 5 〇 E and a short trajectory 50A; 50D. The two conduction loops operate between the opposite sides of the phased loop 16 'individually by (8) the shortest closed-turn trajectories 5〇a, the lion and the sleeve side, 彖60U, (b) 6 And the intermediate closed-circuit spiral track 5 () B, the pass and the sleeve edge 6 〇 U and (c) the longest closed-circuit spiral track 5 〇 c, and the sleeve edge 60 U are formed, each group has almost equal, 2 an effective electrical length 'when the frequency of the second resonant mode is taken along the guiding wavelength of the circuits, the % element is a half-turn element and is on the outer surface of the core of the core. The file 52C is coextensive. The closed-circuit spiral trajectories 5GA 5 〇F, and the cores and their interconnections make their operation similar to the __ simple dielectric manned six-wire helical antenna' which operates in more detail in the above-mentioned GB2445478A. For closed loop spirals such as ..., Hai, etc. 5〇A 5〇F, as in Figures 5A and 5B, the other spiral conductor tracks 51A_51D are on the end surface 201112490 portion 52D of the core and the sleeve edge 6〇 In the position between u, the core cylindrical surface portion 52C has an open proximal end. The open spiral trajectories are arranged such that they are evenly distributed near the core, and the closed spiral trajectories are interleaved between 5 and 8 (^, and each open track 51 a - 51D is executed near the core of the core Almost half of the operation. Because of the uniform distribution around the core, the open spiral tracks 51A-51D generally comprise orthogonal placement track pairs 51A, 51C; 51B, 51D. Each open track 51A-51D combines the core end surface portion The individual radiating connection elements 51AR-51DR on the 52D form a three-quarter wavelength single pole, which is the first cyclic polarization of the antenna, in particular in this embodiment, determined by the wavelength of the open circuit element. In the frequency of the resonant mode, the electrical length of each track is almost equal to three quarters of the guiding wavelength λ8ΐ along the tracks. In this embodiment, the frequency of the first cyclic polarization mode is the GPSL1 frequency. , 1575.42 MHz. For the closed-circuit spiral conductors 50A-50F, the open traces 51A-51D also exhibit a slight difference in physical and electrical length. Therefore, the open traces include a second The pair of completely opposite trajectories 51B, 51D are also long - the first pair of completely opposite trajectories 51A, 51C. The small variations in the lengths will lead the phase and the phase blocks their respective respective resonances for the first cyclic polarization mode of resonance. The frequency assists in integrating a rotating dipole. It should be noted that in the embodiment of the invention, the frequency of the first resonant mode is higher than the frequency of the second resonant mode. In other embodiments, the opposite may also apply. Basic or harmonic resonances of the radiating elements can also be used, although in general these closed-circuit elements have an average electrical length ηλε2/2 and the open-circuit elements have an average electrical length (2ηι-1) λ § 1/4 , where 11 and 01 19 201112490 are positive integers. Because the system of single pole elements formed by the open circuit spiral traces 51A-51D and their individual radiation traces 51AR-51DR and the sleeve edge 60U are absent

連接,故決定該第一循環極化共振模式與該套筒邊緣60U 之該環共振無關。然而’該末端定相環丨6及該套筒60、該 饋線56、58及其與該核心之該近端表面部分up的該鍍敷層 62之互連形成的該平衡不平衡轉換器(其可降低該屏蔽導 體56之該固有電容的效應)可改善該等四線單極點51八、51£) 之匹配,因而於該第一共振模式中產生一穩定的循環極化 輻射型樣。此外,結果是該等單極點長度之容差度較不重 要。 忒規格說明令,該術語“輻射”及“輻射中,,應廣義地來 解釋,其意義為施用於該天線之特性或元件時,當其與一 發射益使料其參照為該天線與能量輻__之特性或 元件或者D亥天線與一接收器使用時其與以一交互方式從 週遭環境吸收能量相關聯。 關連接至該末端㈣環16之料S組五個螺旋軌跡 5〇A、51A、5〇B、51B、實;50D、51C、50E ' 51D、50F, 個别於雜、'附近之該等閉路軌跡舰、、撕;娜、 = ' MB ; 5ic、5m的序列會使 =針^目對—中央線CL1 ; CL2對稱(參見第2圖)。換言 之針對每―饋送輕合節點,該序列大約於該個別中央線 =送:::是,該等螺旋軌跡之安排使得有關連接至每 貝达合節點之螺旋轨跡元件,其包含成對相鄰的天線 20 201112490 元件,每對包含一閉路天線元件及一開路天線元件,而於 該核心附近之一給定方向中,該天線元件序列使得一開路 天線之前的一閉路元件成對數量等於該相同方向中該閉路 天線之前的該開路元件成對數量 應記住,本文中每一該 類“成對”元件可包括亦為另一該類成對元件之一元件的至 少一個元件,耦合至該末端定相環16之一側的該等天線元 件包含四對50A、51A ; 51A、50B ; 50B、51B ;以及51B、 50C。該等四對中,以一反時鐘方向從該天線上方檢視該序 列(亦即,從位於該末端核心表面部分52D末端之一位置), 會有該閉路元件超前該開路元件之兩對50A、51A ; 51A、 50B,以及該開路元件超前該閉路元件之兩對51A、50B ; 51B、50C,因而如上所指明可滿足相同成對數量之情況。 此同樣適用於連接至該定相環16之另一側的該等天線元 件。因此,會有該閉路元件超前該開路元件之兩對50D、 51C ; 50E、51D,以及該開路元件超前該閉路元件之兩對 51C、50E ; 51D、50F。相較於不符合該情況之一天線,可 找出該等閉路及開路元件之序列以產生一優勢的輻射型 樣。 以僅具有四個閉路元件及四個開路元件之一天線即可 符合該情況。然而,因為可取得每群組之該等元件 50A-50F ; 51A-51D的一更均勻間隔,故一種六個元件以及 另一種四個元件的組合,亦即,此情況中,六個閉路元件 及四個開路元件是較佳的。於是,若考慮該天線元件之完 整組合50A-50F ; 51A-51D均勻分布於該核心附近,於與該 21 201112490 7轴正交之任何給定平面巾’該等閉路螺、旋軌跡篇娜 具有具角度的間隔72。(有關四對軌跡)及36。(有關兩對執 跡)。來自該最佳間隔6〇。之該最大偏差為24。。有關該等四個 累旋軌跡51A-51D ’該元件間之角度間隔為72。及1〇8。, 亦即,從90。最佳化中僅產出一 18。偏差。 i如第1圖所示,阻抗匹配可由於面對面安裝於該核心之 /末端表面β卩分52D上的_層板印刷電路板(pCB)組件%中 具體化之一匹配網路來執行。 如第6圖所示,合併該饋送線%%之該組件%形 成—饋送結構的一部分。 4饋送線56、58除了僅為具有—特性阻抗5()歐姆以傳 ^返該以元件結構之信號的-線路外亦執行某些功 此。首先’如上所述,該屏蔽56組合該套筒60動作來於該 饋运結構至該天線元件結構之連接點上提供共同模式隔 離"於⑷雜心之g近端表面52p上與該鍵敷⑺連接以及 ⑻與j PCB組件59上之導體的連接間之該屏蔽導體的長 度’連同(該饋線傳輸線料之)該軸向孔的維度以及填入該 屏敝56及該孔之外牆的空間之該材料的介電常數,會使得 遠天線之該等兩個所需共振模式的頻率之每一個時 ,該屏 蔽56外表面之該電氣長度㈣—四分之—波長使得該傳 導套筒6G、該職财!轉蔽56之組合於㈣送結構至該 天線元件結構之連接上產生平衡電流。 S玄較佳天線中’存有園繞該饋送結構之該屏蔽56的一 絕緣層。該層之介電常數比該核心52之該介電常數低,並 22 201112490 且於該較佳天線中,為—空氣層,其可縮減_心52對該 屏蔽56之該電氣長度的效應,以及因此與該祕%之外側 相關聯的任何縱向共振。㈣與料以操作解相關聯 之该等共減式特徵在㈣直徑方向,_,橫向該圓枉 體核心軸心延伸之電壓雙極點,由於至少於該較佳實施例 中’該套筒厚度明顯小於該㈣之厚度,故該所需共振模 式時該低介電常數套筒之效應會相當小。因此,即可使與 該屏蔽5 6相_之料性共減认該需要的共振模式中 解耗合。 如上所述,該天線具有由該等螺旋天線元件50A-50F、 51A-51D之該等有效電氣長度決定的共振頻率。針對一給定 之共振頻率,該等元件之電氣長度亦根據該核心材料之該 相對介電常數,有關_空氣核,㈣線天線,該天線之維度 可實質縮小。由於該等定相環於該核心材料上鍍敷,故有 關全波長空氣環,其維度亦可實質縮小。 根據本發明之天線特別適用於約1G Η Z以上之雙頻衛 星通訊。該情況中,該第二群組之該等螺旋天線元件 50A-50F具有一平均縱向範圍(亦即,與該中央軸平形)約 16mm,而該第—群組之該等51A-51D具有一平均縱向範圍 約15.5mm。該傳導套筒60之長度典塑為1.75mm範圍。此於 接近該等兩個操作頻帶之頻率時會產出一四分之一波長的 平衡不平衡轉換。該維度並不重.要。實際上,許多情況中 於該等兩個中央頻率或介於其間之任何頻率時,該套筒長 度可根據該等中央頻率間的間隔來設定為產出一 四分之一 23 201112490 波長的平衡不平衡轉換動作。一般而言期待該套筒於該 中央頻率之平均值時形成一四分之一波長的平衡不平衡轉 換。 s亥等天線元件50A-50F及51A-51D之精確維度可藉由 進行經驗上最佳化並以嚐試及錯誤為基礎於該設計階段中 决又’直到取得該要求之相位差為止。該核心之該軸向孔 中的同軸傳輸線之直徑為2mm範圍。 現將說明該饋送結構之其他細節。如第6圖所示,該饋 送結構包含該同軸5〇歐姆饋送線56、57、58以及連接至該 線之一末端的該平面層板組件59之組合。該PCB組件59是 位於以面對面接觸靠著該核心52之該末端表面52D的平面 之—多層印刷電路板。如第1圖所示,該PCB組件59之該最 大維度小於該核心52之維度,使得該PCB組件59完全位於 該核心52之該末端表面52D的圓周申。 該實施例中,該PCB組件59可以是中央放置於核心之 該末端表面52D的一碟形型式。其直徑使得其圓周位於鍍敷 於該核心末端表面部分52D上之該末端定向環16上。如第 6A圖之分解圖中所示,該組件59具有接收該同軸饋線傳輸 線之該内部導體58的一實質中央孔72。該偏心孔74接收該 屏蔽56之末端凸緣56G。該等凸緣56G彎曲或“跳動,,以協助 將該PCB組件59有關該同軸饋線結構來定位。所有四個孔 32、34皆鑛敷穿透。此外,該組件59A、59PB之該圓周的 部分59P鍍敷,該鍍敷於該層板之近端及末端表面上延伸。 該PCB組件59具有一層板,其具有一絕緣層及三個型 24 201112490 樣傳導層。本發明之替代實施例中亦可使用額外的絕緣及 傳導層。如第6A圖中所示,該實施例中,存有兩個外側傳 導層包含由該等絕緣層80A、80B分開之一末端層76及一近 端層78。該等絕緣層80A、80B由FR-4增強玻璃環氧板所組 成。該等絕緣層80A、80B之間為一中間導體層81。個別如 第7A圖及第7B圖所示,該等末端及近端導體層之每一個以 一個別的導體型樣來蝕刻。該導體型樣延伸至該層板之該 等週邊部分59PA、59PB以及延伸至該等鍍敷穿透孔72、 74,該等不同層中之個別導體個別由該邊緣鍍敷及該孔鍍 敷來互連。從顯示該等導體層76、78之該等導體型樣的圖 形中可看出,該末端傳導層76具有一延長導體轨跡36L1、 36L2,其將容裝於該層板之該中央孔72時的該内部饋送線 導體58 ’經由一低電感向外閃光第一扇形電流分布導體86A 來連接至一第一週邊鑛敷邊緣部份59PA。於其外側極限 中,以該第一週邊鍍敷邊緣部份59PA來形成,該扇形導體 86A於該核心軸對向一角度90°。該内部饋送導體58及該扇 形導體86A間之該延長軌跡由於其相當窄的延長外形故位 於兩個部分76L1、76L2中,於該天線之操作頻率時構成電 感。由於該第一週邊邊緣部份59PA於該核心之該末端部分The connection determines that the first cyclic polarization resonance mode is independent of the ring resonance of the sleeve edge 60U. However, the end-balanced loop 6 and the sleeve 60, the feed lines 56, 58 and their interconnection with the plating layer 62 of the proximal surface portion up of the core are formed by the balun ( It reduces the effect of the inherent capacitance of the shield conductor 56. It improves the matching of the four-wire single poles 51, 51, and thus produces a stable cyclically polarized radiation pattern in the first resonant mode. In addition, the result is that the tolerance of these single pole lengths is less important.忒 Specification, the terms “radiation” and “radiation, shall be interpreted broadly, meaning that when applied to the characteristics or components of the antenna, when it is referenced to the antenna and energy The characteristic or component of the radiant__ or the D-hai antenna is associated with the absorption of energy from the surrounding environment in an interactive manner when used with a receiver. Close to the end (four) ring 16 material S group five spiral trajectories 5〇A , 51A, 5〇B, 51B, real; 50D, 51C, 50E '51D, 50F, individually in the miscellaneous, 'closed track ship, 'Tear; Na, = 'MB; 5ic, 5m sequence will Make = pin ^ eye pair - center line CL1; CL2 symmetry (see Figure 2). In other words, for each "feeding light joint node", the sequence is about the individual central line = send::: yes, the arrangement of the spiral tracks Having a spiral track element connected to each Beida joint node, comprising a pair of adjacent antennas 20 201112490 elements, each pair comprising a closed-circuit antenna element and an open-circuit antenna element, in a given direction near one of the cores The antenna element sequence makes an open antenna The number of pairs of closed components in pairs equal to the number of pairs of open components before the closed antenna in the same direction should be remembered that each such "paired" component herein may also comprise another pair of such components. At least one element of an element, the antenna elements coupled to one side of the end phased loop 16 comprise four pairs 50A, 51A; 51A, 50B; 50B, 51B; and 51B, 50C. Detecting the sequence from above the antenna in a counterclockwise direction (i.e., from a position at the end of the end core surface portion 52D), the closed circuit element has two pairs of 50A, 51A; 51A, 50B leading the open circuit component; And the open circuit element leads the two pairs 51A, 50B; 51B, 50C of the closed circuit element, and thus the same number of pairs can be satisfied as indicated above. The same applies to the connection to the other side of the phased ring 16 The antenna element. Therefore, there are two pairs of 50D, 51C; 50E, 51D of the open circuit element ahead of the open circuit element, and the open circuit element leads the two pairs 51C, 50E; 51D, 50F of the closed circuit element. One of the circumstances A sequence of such closed-circuit and open-circuit elements can be found to produce an advantageous radiation pattern. This can be achieved with only one antenna with four closed-circuit components and four open-circuit components. However, since each group can be obtained The components 50A-50F; 51A-51D are more evenly spaced, so a combination of six components and another four components, that is, in this case, six closed circuit components and four open circuit components are preferred. Therefore, if considering the complete combination of the antenna elements 50A-50F; 51A-51D is evenly distributed near the core, in any given plane towel orthogonal to the 21 201112490 7 axis 'the closed loop snail, the trajectory article Na has an angular interval of 72. (about four pairs of tracks) and 36. (about two pairs of executions). From the optimal interval 6〇. The maximum deviation is 24. . The angular separation between the elements of the four trajectories 51A-51D' is 72. And 1〇8. , that is, from 90. Only 18 is produced in the optimization. deviation. i As shown in Fig. 1, the impedance matching can be performed by arranging one of the matching network in the _layer printed circuit board (pCB) component % mounted on the core/end surface β 卩 52D of the core. As shown in Fig. 6, the component % merging the feed line %% forms a part of the feed structure. The 4 feed lines 56, 58 perform some functions in addition to only the line having a characteristic impedance of 5 () ohms to pass back the signal of the element structure. First, as described above, the shield 56 combines the sleeve 60 to provide a common mode isolation at the connection point of the feed structure to the antenna element structure " on the (4) miscellaneous g proximal surface 52p and the key The length of the shield conductor between the (7) connection and (8) the connection to the conductor on the j PCB assembly 59 together with the dimension of the axial bore (of the feed line of the feed line) and the wall of the screen 56 and the hole The dielectric constant of the material of the space, such that each of the two desired resonant modes of the far antenna, the electrical length (four) - quarter-wavelength of the outer surface of the shield 56 causes the conductive sleeve The combination of the cartridge 6G, the job, and the relay 56 generates a balancing current on the connection of the (four) delivery structure to the antenna element structure. The S-preferred antenna has an insulating layer surrounding the shield 56 of the feed structure. The dielectric constant of the layer is lower than the dielectric constant of the core 52, and 22 201112490, and in the preferred antenna, is an air layer that reduces the effect of the core 52 on the electrical length of the shield 56. And thus any longitudinal resonance associated with the outside of the %. (d) the common diminishing features associated with the operational solution in the (iv) diametrical direction, _, transverse to the voltage bipolar point of the core of the circular body, since at least in the preferred embodiment, the thickness of the sleeve Significantly less than the thickness of the (iv), the effect of the low dielectric constant sleeve in the desired resonant mode can be quite small. Therefore, it is possible to decompose the resonance mode in the desired resonance mode with the material of the shield. As described above, the antenna has a resonant frequency determined by the effective electrical lengths of the helical antenna elements 50A-50F, 51A-51D. For a given resonant frequency, the electrical length of the components is also based on the relative dielectric constant of the core material, and the dimensions of the antenna can be substantially reduced in relation to the _air core, (four) line antenna. Since the phased rings are plated on the core material, the full-wavelength air ring can be substantially reduced in size. The antenna according to the present invention is particularly suitable for dual-frequency satellite communication of about 1 G Η Z or more. In this case, the helical antenna elements 50A-50F of the second group have an average longitudinal extent (i.e., flat with the central axis) of about 16 mm, and the 51A-51D of the first group has a The average longitudinal extent is approximately 15.5 mm. The length of the conductive sleeve 60 is typically in the range of 1.75 mm. This produces a quarter-wavelength balanced unbalanced transition near the frequencies of the two operating bands. This dimension is not heavy. In fact, in many cases, at these two central frequencies or any frequency in between, the length of the sleeve can be set to produce a quarter of 23 according to the spacing between the central frequencies. 23 201112490 wavelength balance Unbalanced conversion action. In general, the sleeve is expected to form a quarter-wavelength balanced unbalanced transition at the average of the center frequency. The precise dimensions of antenna elements 50A-50F and 51A-51D, such as shai, can be empirically optimized and based on trial and error based on the design phase and until the phase difference is achieved. The coaxial transmission line in the axial bore of the core has a diameter in the range of 2 mm. Additional details of the feed structure will now be described. As shown in Figure 6, the feed structure includes a combination of the coaxial 5 ohm ohmic feed lines 56, 57, 58 and the planar laminate assembly 59 attached to one end of the line. The PCB assembly 59 is a multi-layer printed circuit board located in a plane facing the end surface 52D of the core 52 in face-to-face contact. As shown in FIG. 1, the maximum dimension of the PCB assembly 59 is less than the dimension of the core 52 such that the PCB assembly 59 is completely located on the circumference of the end surface 52D of the core 52. In this embodiment, the PCB assembly 59 can be a dish-shaped version that is centrally placed on the end surface 52D of the core. Its diameter is such that its circumference is located on the end oriented ring 16 plated on the core end surface portion 52D. As shown in the exploded view of Fig. 6A, the assembly 59 has a substantially central aperture 72 for receiving the inner conductor 58 of the coaxial feed line. The eccentric bore 74 receives the end flange 56G of the shield 56. The flanges 56G are bent or "bounced" to assist in positioning the PCB assembly 59 with respect to the coaxial feed structure. All four holes 32, 34 are mineralized. Further, the circumference of the assembly 59A, 59PB A portion 59P is plated and extends over the proximal and distal surfaces of the laminate. The PCB assembly 59 has a layer of insulation having an insulating layer and three types of 24 201112490-like conductive layers. Alternative embodiments of the present invention Additional insulating and conductive layers may also be used. As shown in Figure 6A, in this embodiment, there are two outer conductive layers comprising an end layer 76 separated by the insulating layers 80A, 80B and a proximal end. Layer 78. The insulating layers 80A, 80B are composed of FR-4 reinforced glass epoxy board. The insulating layers 80A, 80B are an intermediate conductor layer 81. As shown in Figures 7A and 7B, Each of the end and proximal conductor layers is etched in a different conductor pattern. The conductor pattern extends to the peripheral portions 59PA, 59PB of the laminate and to the plated through holes 72, 74. Individual conductors of the different layers are individually plated by the edge and the hole Interconnected. As can be seen from the pattern showing the conductor patterns of the conductor layers 76, 78, the end conductive layer 76 has an elongated conductor track 36L1, 36L2 that will be received in the layer. The inner feed line conductor 58' of the central aperture 72 is coupled to a first peripheral mineralized edge portion 59PA via a low inductance outward flashing first sector shaped current distribution conductor 86A. In its outer limit, The first peripheral plating edge portion 59PA is formed, and the sector conductor 86A is opposed to the core axis by an angle of 90. The extended track between the inner feed conductor 58 and the sector conductor 86A is due to its relatively narrow elongated shape. Located in the two portions 76L1, 76L2, forming an inductance at the operating frequency of the antenna. Since the first peripheral edge portion 59PA is at the end portion of the core

52D上的該等輻射導體50DR、50ER、50FR、51CR、51DR 之一半的區域中連接至該末端環16(第5A圖),故該等電感 串接於該内部饋送線導體18及該個別螺旋天線元件,亦 即,每一群組50A-50F ; 51A-51D的其中兩個之間。 該饋送線屏蔽56容裝於該層板之孔74時,由一第二向 25 201112490 外閃光扇形電流分布導體86B來直接連接至該板之該相對 週邊鍍敷邊緣部分59PB,而由於其相#大的區域故亦具有 低電感。因此,該屏蔽可於其他輻射導體1〇AR、5〇BR、 50CR、51AR、51BR之區域中有效直接連接至該定相環16。 5玄第一扇形導體86B沿著該感應延長軌跡36U、36L2朝該 第一扇形導體86A延伸,以提供分開的分流電容襯墊。於 是’該實施例中,該第二扇形導體86B具有平行該等感應執 跡76L1、76L2於其相對側運作之兩個延伸部分76FA、 76FB。每一延伸部分76FA、76FB形成來作為一軌跡,相較 於3玄中央感應軌跡其相當寬而,因此,忽略電感。該等延 伸部分76FA的其中之一提供襯墊至連接至與該中央孔72相 關連之該鍍敷的一第一晶片電容器,以及連接至該等 兩個感應軌跡76L1、76L2間之該界面的一第二晶片電容器 82-8A。另一延伸部分76FB提供襯墊至亦連接至該等兩個感 應軌跡部分76L1、76L2間之該界面的一第三晶片電容器 82-2B。本發明之該實施例中,該等電容器821、82 8A、 82-2B為0201大小之晶片電容器(例如,村田GJM)。應注意 該層板59之該末端表面上,該等扇形導體恥人、86B與該核 心之該末端表面52p隔開,而因此不會由該核心之介電材料 實質載入。 上述組合組成如第8圖示意所示之一2極點反應匹配網 路。該網路於(a)個別代表該等閉路螺旋元件50A-50F及相關 部分組成之該來源、以及該等開路螺旋元件51A 51D及相關 部分組成之該來源的子電路1〇〇、1〇1、以及(b)_5〇歐姆負 26 201112490 載102之間提供—雙頻帶匹配。 、贡匹配。該範例中,該饋送線56-58(第 5 0 歐姻· [51 44» 46 Arr. A - 6圖及第6A圖)為一The end of the radiation conductors 50DR, 50ER, 50FR, 51CR, 51DR on the 52D is connected to the end ring 16 (Fig. 5A), so the inductances are connected in series to the inner feed line conductor 18 and the individual spiral Antenna elements, that is, between each of the groups 50A-50F; 51A-51D. When the feed line shield 56 is received in the hole 74 of the laminate, it is directly connected to the opposite peripheral plating edge portion 59PB of the board by a second direction 25 201112490 outer flash sector current distribution conductor 86B, and due to its phase The #large area also has low inductance. Therefore, the shield can be effectively connected directly to the phased loop 16 in the regions of the other radiating conductors 1A, 5B, 50CR, 51AR, 51BR. A first fan-shaped conductor 86B extends along the inductive extension track 36U, 36L2 toward the first sector conductor 86A to provide a separate shunt capacitor pad. Thus, in this embodiment, the second sector conductor 86B has two extensions 76FA, 76FB that operate parallel to the opposite sides of the inductive tracks 76L1, 76L2. Each of the extension portions 76FA, 76FB is formed as a trajectory which is relatively wide compared to the sinusoidal central trajectory, and therefore, the inductance is ignored. One of the extensions 76FA provides a pad to a first wafer capacitor connected to the plating associated with the central aperture 72, and to the interface between the two sensing traces 76L1, 76L2 A second wafer capacitor 82-8A. The other extension portion 76FB provides a pad to a third wafer capacitor 82-2B that is also coupled to the interface between the two inductive track portions 76L1, 76L2. In this embodiment of the invention, the capacitors 821, 82 8A, 82-2B are 0201 size wafer capacitors (e.g., Murata GJM). It should be noted that on the end surface of the layer 59, the sector conductors, 86B, are spaced from the end surface 52p of the core and thus are not substantially loaded by the dielectric material of the core. The above combination constitutes a 2-pole reaction matching network as schematically shown in Fig. 8. The network is (a) the source of the closed-circuit spiral elements 50A-50F and related parts, and the sub-circuits 1〇〇, 1〇1 of the source composed of the open-circuit spiral elements 51A 51D and related parts. And (b) _5 〇 ohm negative 26 201112490 between 102 provides - dual band matching. Matches. In this example, the feed line 56-58 (the 50th marriage [51 44» 46 Arr. A-6 and 6A) is one

容值並降低電阻耗損。 »亥中間傳導層81之該導體型樣是與該週邊邊緣導體 59PA、59PB以及由該等錄孔72、74表示之孔徑隔開之一 簡早環的型式。該環或塾圈可抑制與該定相環⑹目關聯之 電磁場,因而降低其共振頻率至該第一操作頻率。 該饋送線56、58、該pCB組件59以及該核心之該末端 表面52D上的該等傳導軌跡間的連接可藉由以傳導黏膠銲 接或黏合來完成。該内部導體58之該末端銲接於該層板之 該孔徑72、以及該個別的偏心孔徑74之該屏蔽凸緣56G時, 該饋送線56-58及該組件59共同形成一單一饋線結構。該饋 送線56-58及該PCB 59共同形成具有一整合匹配網路之一 單一饋送結構。 該傳輸線區段之該近端連接至射頻電路時,該等串接 電感LI、L2以及該等分流電容ci、C2構成之該網路於該天 線之該輻射天線元件結構與一 5〇歐姆終端設備之間形成一 匹配網路,其操作頻率時該5〇歐姆負載阻抗與該天線元件 結構之阻抗匹配。該匹配網路代表之該分流阻抗亦具有許 27 201112490 可該等單極點天線元件51A-51D具有較寬的容差度之益 處,以及一改善的個別輻射型樣。 如上所述,該饋送結構插入該天線核心52之前組合為 一單元,該組件19之該層板固定於該同軸線16-18。該第三 天線之隨後的製造步驟於上述W02006/136809中說明。 使用上述結構,即可建立一雙頻帶循環極化頻率響 應,該天線之該插入耗損對頻率圖一般如第9圖所示。該天 線具有中心於一上共振頻率/,之一第一頻帶以及中心於一 下共振頻率/2之一第二頻帶。該天線中,該等兩中心頻率之 頻率分隔/r /ι約為該平均頻率+ /2)之百分之25。其具有 關於兩側中之右側循環極化波形之一主導向上引導輻射型 樣。 應體認根據本發明之一天線可配適成左側循環極化波 形。使用左側循環極化波形之一種服務為該環球星 (GlobalStar)語音及數據通訊衛星系統,其具有用於從手機 傳輸至衛星、中心頻率約為1616MHz之一頻帶以及用於從 衛星傳輸至手機、中心頻率約為2942MHz之另一頻帶。 參照上述為該定相環16可為非連續,其具有由電容器 橋接之斷點。該類變化形態於一給定空間中選擇該定相環 之共振頻率上提供較多彈性。此外,該等電容可形成一替 代阻抗匹配網路之一部分。而該類變化形態繪示於第1〇 圖,其為以由個別電容器120橋接之兩個斷點來鍍敷於一定 相環16的一圓柱體核心52之一末端表面的一平面圖。該變 化形態中,s亥定相環使用如上述參照第5A圖及第5B圖之短 28 201112490 輻射連接部分而於其外側圓周連接至ίο個螺旋輻射元件。 第10圖中無顯示饋送結構。實際上,可使用具有與上述相 同的一般實體組態之一PCB匹配網路。或者,向内延伸輻 射饋送連接導體18A、18B將該定相環16直接耦合至一軸向 放置傳輸線饋線,或對於一端射天線而言,耦合至諸如上 述參照第2圖之一軸向放置電路板。 C圖式簡單說明3 第1圖是一根據本發明之一第一天線,從一側及從一近 端檢視的立體圖; 第2圖是一承載一平衡不平衡轉換器及一前端射頻放 大器之一印刷電路板的立體圖,該電路板配適成安裝第1圖 之該天線; 第3A圖及第3B圖是該天線之等效電路圖; 第4A圖及第4B圖是形成根據本發明之一第二天線的 一部分之一天線單元的立體圖,第4A圖顯示從一側及一近 端檢視該單元,而第4B圖顯示從一側及一末端檢視該單元; 第5A圖是一根據本發明之一第三天線,從一側及從一 末端檢視的立體圖; 第5B圖是該第三天線之鍍敷導體以與第5A圖相同觀 點的一圖形表示法; 第6圖是一該第三天線之一饋送結構的軸向橫截面圖; 第6A圖是一第6圖所示之該饋送結構的細部圖,其顯示 從一傳輸線餽線部段之一末端部分拆離的一層板; 第7A圖及第7B圖是顯示該饋線結構之該層板的傳導 29 201112490 層之導體型樣的圖形; 第8圖是一等效電路圖; 第9圖是一繪示該第三天線之該插入耗損(S11)頻率響 應的圖形; 第10圖是一顯示該第三天線之一修改末端導體型樣的 圖形。 【主要元件符號說明】 10...端射介電載入式12線天線 30·.·接收器前端電路板 10AR,50AR,50BR,50CR,50DR 32…印刷軌跡 ,50ER,50FR,51 AR,51BR,51CR 34…平衡不平衡轉換器電路 ,:51DR...輻射狀執跡 36…射頻前端放大器 12··.圓柱形介電核心 36L1 ' 36L2…感應延長軌跡 12D···末端表面部分 40…第二傳導環 12P.··近端核心表面部分 50A、50B、50C、50D、50E、 12S.··圓柱形側表面部分 50F…閉路螺旋傳導軌跡 14...螺旋輻射元件 14E...開路蠕 51A、51B、51C、51D··.開路 傳導軌跡 16...傳導環 52·.·固態圓柱體核心 16-18…同轴線 52C…圓柱體外側表面部分 18A、18B...饋送連接導體 52D· ♦•末端表面 19··.組件 52P…近端表面 20···分流電容器 56…傳導管狀外側屏蔽 20U、60U...邊緣 56G…末端凸緣 22…金屬彈簧連接器 56T…彈簧帶 30 201112490 57.. .第一管狀空隙或絕緣層 58.. .延長内部導體 58P...近端部分 59.. .層板 59PA、59PB...週邊邊緣導體 部分 60.. .共同虛擬接地導體、套筒 62.. .鍍敷傳導覆蓋層 72.. .中央孔 74.. .偏心孔 76.. .末端層 76FA、76FB...延伸部分 76L1、76L2...感應執跡 78.. .近端層 80A、80B...絕緣層 81.. .中間導體層 82-1…第一晶片電容器 82-2A、120...電容器 82-2B...第三晶片電容器 82-8A...第二晶片電容器 86A...低電感向外閃光第一扇 形電流分布導體 86B...第二扇形導體 100、101...子電路 102…負載 104.. .同軸線部段 L、]L:l、L2·.·電感器 c、a、C2···分流電容 F...饋送節點 R...電阻 31Capacitance and reduce resistance loss. The conductor pattern of the intermediate conductive layer 81 is a pattern that is spaced apart from the peripheral edge conductors 59PA, 59PB and the apertures indicated by the apertures 72, 74. The ring or loop can suppress the electromagnetic field associated with the phased loop (6), thereby reducing its resonant frequency to the first operating frequency. The connection between the feed lines 56, 58, the pCB assembly 59 and the conductive tracks on the end surface 52D of the core can be accomplished by soldering or bonding with conductive adhesive. When the end of the inner conductor 58 is soldered to the aperture 72 of the laminate and the shield flange 56G of the individual eccentric aperture 74, the feed line 56-58 and the assembly 59 together form a single feeder structure. The feed lines 56-58 and the PCB 59 together form a single feed structure having an integrated matching network. When the proximal end of the transmission line segment is connected to the radio frequency circuit, the series inductances LI, L2 and the shunt capacitors ci, C2 form the radiation antenna element structure of the network at the antenna and a 5 〇 ohm terminal A matching network is formed between the devices, and the 5 〇 ohm load impedance matches the impedance of the antenna element structure at the operating frequency. The shunt impedance represented by the matching network also has the benefit of having a wider tolerance for the single pole antenna elements 51A-51D and an improved individual radiation pattern. As described above, the feed structure is combined into a unit before being inserted into the antenna core 52, and the laminate of the assembly 19 is fixed to the coaxial line 16-18. Subsequent manufacturing steps of the third antenna are described in the above mentioned WO2006/136809. Using the above structure, a dual band cyclic polarization frequency response can be established, and the insertion loss versus frequency map of the antenna is generally as shown in Fig. 9. The antenna has a second frequency band centered at an upper resonance frequency /, one of the first frequency bands and one of the center at a lower resonance frequency /. In the antenna, the frequency separation of the two center frequencies /r / i is about 25 percent of the average frequency + /2). It has one of the right circular polarization waveforms on both sides to dominate the upward directed radiation pattern. It should be appreciated that an antenna according to the present invention can be adapted to form a left circularly polarized waveform. One service using the left-hand circularly polarized waveform is the GlobalStar voice and data communication satellite system, which has a frequency band for transmission from a mobile phone to a satellite, a center frequency of approximately 1616 MHz, and is used for transmission from a satellite to a mobile phone, The center frequency is about another band of 2942 MHz. Referring to the above, the phased loop 16 can be discontinuous with a breakpoint bridged by a capacitor. This type of variation provides more flexibility in selecting the resonant frequency of the phased loop in a given space. In addition, the capacitors can form part of an alternative impedance matching network. Such variations are illustrated in Figure 1 which is a plan view of one end surface of a cylindrical core 52 plated to a phased loop 16 with two breakpoints bridged by individual capacitors 120. In this variant, the sigma phase-locking loop is connected to the λο spiral radiating elements on its outer circumference by using the short-circuited joints of the short-circuits 2011-11490 as described above with reference to Figs. 5A and 5B. There is no display feed structure in Figure 10. In fact, a PCB matching network having the same general physical configuration as described above can be used. Alternatively, the inwardly extending radiation feed connection conductors 18A, 18B couple the phased loop 16 directly to an axially placed transmission line feed line or, for an end antenna, to an axially placed circuit such as the one described above with reference to FIG. board. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a first antenna according to the present invention, viewed from one side and from a near end; FIG. 2 is a load-bearing balun and a front-end RF amplifier a perspective view of a printed circuit board, the circuit board being adapted to mount the antenna of FIG. 1; FIGS. 3A and 3B are equivalent circuit diagrams of the antenna; FIGS. 4A and 4B are formed according to the present invention A perspective view of an antenna unit of a portion of a second antenna, FIG. 4A shows the unit viewed from one side and a proximal end, and FIG. 4B shows the unit viewed from one side and one end; FIG. 5A is a view A third antenna of the present invention is a perspective view from one side and from the other end; FIG. 5B is a graphical representation of the plated conductor of the third antenna in the same manner as FIG. 5A; FIG. 6 is a view An axial cross-sectional view of one of the third antenna feed structures; FIG. 6A is a detailed view of the feed structure shown in FIG. 6 showing a layer detached from one end portion of a transmission line feed section; Figures 7A and 7B show the layer of the feeder structure Conduction 29 201112490 layer conductor pattern; Figure 8 is an equivalent circuit diagram; Figure 9 is a graph showing the insertion loss (S11) frequency response of the third antenna; Figure 10 is a display One of the third antennas modifies the pattern of the end conductor pattern. [Major component symbol description] 10...Terminal dielectric loadable 12-wire antenna 30·. Receiver front-end circuit board 10AR, 50AR, 50BR, 50CR, 50DR 32... Print track, 50ER, 50FR, 51 AR, 51BR, 51CR 34...Balanced unbalanced converter circuit,: 51DR...radiation-like trace 36...RF front-end amplifier 12·..Cylindrical dielectric core 36L1 '36L2...inductive extended track 12D···end surface part 40 ...the second conductive ring 12P.··the proximal core surface portion 50A, 50B, 50C, 50D, 50E, 12S.....the cylindrical side surface portion 50F...the closed-circuit spiral conductive track 14...the helical radiating element 14E... Open circuit creep 51A, 51B, 51C, 51D · Open circuit trajectory 16... Conductive ring 52 · · Solid cylindrical core 16-18... Coaxial line 52C... Cylindrical outer surface portion 18A, 18B... Feed Connecting conductor 52D· ♦•End surface 19·.Component 52P...proximal surface 20···shunt capacitor 56...conducting tubular outer shield 20U, 60U...edge 56G...end flange 22...metal spring connector 56T... Spring band 30 201112490 57.. .The first tubular gap or insulation layer 58.. Inner conductor 58P... proximal end portion 59.. laminate 59PA, 59PB... peripheral edge conductor portion 60.. common virtual ground conductor, sleeve 62.. plated conductive cover 72.. central Hole 74.. eccentric hole 76.. end layer 76FA, 76FB... extension portion 76L1, 76L2... induction track 78.. proximal layer 80A, 80B... insulation layer 81.. Conductor layer 82-1...first wafer capacitor 82-2A, 120...capacitor 82-2B...third wafer capacitor 82-8A...second wafer capacitor 86A...low inductance outward flash first Sector-shaped current distribution conductor 86B...Second sector conductor 100, 101...sub-circuit 102...load 104.. . coaxial line section L,]L:l, L2·.·inductors c, a, C2· · Shunt capacitor F...feed node R...resistor 31

Claims (1)

201112490 七、申請專利範圍: h —種用在循環極化輻射並具有超過2〇〇MHz之一操作頻 率的多線天線,其中該天線包含: —電氣絕緣基體; 一對饋送節點; 至少四個延長傳導輻射元件,其位於該基體上並安 排於該等饋送節點及該等輻射元件之間而且與其耦合 ―起; 一於該操作頻率共振之一閉迴路所形成之定相 環,該等輕射元件於個別隔開之輕合位置搞合至該定相 jSS. 立衣。 2·如申請專利範圍第丨項之天線,其中該天線具有一中央 轴而該定相環包含—位於該基體並環繞職心之傳導 軌跡。 0· 如 甲Μ專利乾圍第1項或第2項之天線,其中該定相 含一連續環狀導體。 4.如申請專利範圍第i項或第2項之天線,其中 括與傳導執跡部分串接之至少1魏電抗,該等部: 連同該電抗形成於該操作頻率共振之上述閉迴路。 如申响專利圍第丨項之天線’其中該基體為具有一相 對’丨電常數至少5之-固態介電材料所形成的圓柱體本 體’該圓柱體本體具有—陳體絲面部分及近端與末 端表面部分’其中該核心之該固態材料佔據該核心相 表面所定義之該内部容量的大部分,而其中該定相環位 32 2〇111249〇 於該等末端表面其中之―,該等饋送節點位於中央並由 該圓柱體軸心作實質上放射狀延伸之個別饋送連接導 體於貫貝上元全相反位置搞合至該定相環。 6.如申請專利範圍第之天線,其中該定相環為圓形。 7·如申請專利範圍第旧、第2項及第5項之任何一項的天 其中該基體為具有―圓柱體側表面部分及近端與末 端表面部分之-圓柱體本體’而其中該定相環位於該等 末端表面部分其中之―’該等饋送節點位於中央並由容 裝-對通常與該定相環完全相反連接之一反應匹配網 路耗合至該定相環。 8. 如申請專利範圍第7項之天線,其中該等連接包含扇形 導體,每—導體具有沿著對向關柱體本體之該軸心至 乂 45度的-弧線連接至該定相環之—外側部分。 9. 如申請專利範圍第1項、第2項、第5項、第6項及第8項 之任何-項的天線’其中該等幅射元件具_合至該定 相環之第一端以及與該定相環隔開之第二端。 1〇‘如申請專利範圍第9項之天線,其中該等第二端之至少 某些為開路。 U·如申請專職圍第9項之天線,於該基體上具有一第二 傳導環,其中第二環將該等歸元件之該等第二端的至 少某些鏈接一起。 12.如申請專利範圍第7項之天線,其中於該圓柱體側表面 部分上該等n射元料含乡侧純射科,每一元件 具有輕合至該定相環之第—端以及與該定相環隔開之 33 201112490 第二端,其中於該圓柱體本體之該等末端表面部分的另 一表面上或與其鄰近處,該天線更包含一第二傳導環, 而第二傳導環於該天線之一第二操作頻率時共振,而其 中該等螺旋輻射元件包含具有與該第二環隔開之開路 第二端的第一輻射元件,以及第二、閉路輻射元件,其 第二端將該等第二輻射元件連接至該第二環。 13. 如申請專利範圍第12項之天線,其中該第一輻射元件之 該電氣長度為(2m-l)Xgi/4 ’而該第二輪射元件之該電氣 長度為ηλ§2/2,其中m及η為非零正整數而λ§1及λβ2個別為 該天線之該等第一及第二操作頻率的導引波長。 14. 如申請專利範圍第12項之天線,其具有包含從該近端表 面部分通過該核心至該末端表面部分之一傳輸線部段 的一饋線結構,該等饋送節點形成該傳輸線部段之該末 端,其中該反應匹配網路於該末端表面部分包含一雙埠 網路。 15. —種用在循環極化輻射並具有超過200MHz之一操作頻 率的介電載入式多線天線,其中該天線包含: 一電氣絕緣核心,其具有一相對介電常數大於5並 佔據該核心外側表面所界定之該内部容量的大部分之 一固態材料; 多個饋送節點;以及 一天線元件結構,其位於該核心外側表面上或附近 並包含多個延長傳導天線元件,並且耦合於該等延長天 線元件及該等饋送節點之間、於該操作頻率時共振之一 34 201112490 環、以遠離該等饋送節點之一方向從該共振環延伸之該 等延長天線元件。 16. 如申請專利範圍第15項之天線,其中該等延長傳導天線 元件具有開路末端。 17. 如申請專利範圍第15項或第16項之天線,其中該核心具 有一中央軸,而該核心外側表面具有相對該軸心橫向延 伸之第一及第二相對引導的表面部分,以及該等橫向延 伸表面部分間之一侧表面部分,而其中該等饋送節點及 該共振環與該第一橫向延伸表面部分相關聯,而該等延 長傳導天線元件於該側表面部分上從該環朝向該第二 橫向延伸表面部分延伸。 18. 如申請專利範圍第17項之天線I其具有於相對位於該環 之個別連接點連接至該環的兩個饋送節點。 19. 如申請專利範圍第15項或第16項之天線,其具有由個別 的感應連接鏈接來連接至該環之兩個饋送節點,該天線 更包含耦合於該等兩個饋送節點間之一分流電容。 20. 如申請專利範圍第17項之天線,其中該核心為圓柱體, 該共振環包含於該第一橫向延伸表面部分上之一環狀 傳導路徑,而該等延長傳導天線單元為螺旋狀並且於軸 向共同擴張。 21. 如申請專利範圍第17項之天線,其中該核心為圓柱體, 該共振環包含於鄰近該第一橫向延伸表面部分之該側 表面部分上的一環狀傳導路徑,而該等延長傳導天線單 元為螺旋狀並且於軸向擴張。 35 201112490 22.如申請專利範圍第15項或第16項之天線,其中該共振環 包括至少一個串接電容。 2 3.如申請專利範圍第16項之天線,其中該等延長傳導天線 單元於該操作頻率時為四分之一波長或四分之三波長 的元件。 24. 如申請專利範圍第15項或第16項之天線,其具有對該共 振環組成一平衡的饋送連接之一對饋送節點。 25. —種用在循環極化輻射並具有超過200MHz之一操作頻 率的介電載入式多線天線,其中該天線包含: 一電氣絕緣核心,其具有一相對介電常數大於5並 佔據該核心外側表面所界定之該内部容量的大部分之 一固態材料, 一對饋送節點;以及 一天線元件結構,其位於該核心外側表面上或附近 並包含連接至該等饋送節點之一定相環;以及 至少四個於該環之個別隔開點耦合至該定相環的 延長傳導元件。 26. 如申請專利範圍第25項之天線,其中該等至少四個延長 傳導元件之每一個的該電氣長度於該操作頻率時是一 四分之一波長的一奇數(1、3、5·.·)倍數。 27. —種天線組件包含如申請專利範圍第1項、第15項及第 25項之任何一項的天線,以及耦合至該等饋送節點之一 平衡不平衡轉換器。 28. —種天線組件包含如申請專利範圍第1項、第15項及第 36 201112490 25項之任何一項的天線,以及具有耦合至該等饋送節點 之一差動輸入的一差動放大器。 37201112490 VII. Patent application scope: h - a multi-line antenna used in circulating polarized radiation and having an operating frequency exceeding 2 〇〇 MHz, wherein the antenna comprises: - an electrically insulating substrate; a pair of feeding nodes; at least four Extending a conductive radiating element on the substrate and arranged between and coupled to the feeding nodes and the radiating elements; a phased loop formed by a closed loop of the operating frequency resonance, the light The projecting elements are engaged to the phasing jSS. 2. The antenna of claim </ RTI> wherein the antenna has a central axis and the phasing ring includes a conductive track located on the substrate and surrounding the heart. 0· For example, the antenna of the first or second item of the patent of the armor, wherein the phase comprises a continuous loop conductor. 4. An antenna according to item i or item 2 of the patent application, comprising at least 1 Wei reactance in series with the conductive trace portion, the portion: together with the reactance forming the closed loop resonating at the operating frequency. For example, the antenna of the patent circumstance [wherein the substrate is a cylindrical body formed by a solid dielectric material having a relative electric constant of at least 5]. The cylindrical body has a filament portion and a proximal portion The end surface portion 'where the solid material of the core occupies a majority of the internal capacity defined by the surface of the core phase, and wherein the phased loop 32 2 〇 111249 lie on the end surfaces thereof, the feeds The individual feed connection conductors, which are centrally located and extend substantially radially from the axis of the cylinder, engage the phasing ring at the opposite position of the upper element. 6. The antenna of claim 1, wherein the phased loop is circular. 7. The day of the patent application, any of the items of the second, the second and the fifth, wherein the substrate is a cylindrical body portion having a cylindrical side surface portion and a proximal end surface portion and the The phase loops are located in the end surface portions of the "the feed nodes are centrally located and are accommodated by the containment - a pair of reaction matching networks that are normally oppositely connected to the phased loop to the phased loop. 8. The antenna of claim 7, wherein the connections comprise sector conductors, each conductor having an arc connected to the axis of the opposing cylinder body to 45 degrees to the phased loop - the outer part. 9. An antenna as claimed in any of claims 1 to 2, 5, 6, and 8 wherein the radiating elements are coupled to the first end of the phased loop And a second end spaced from the phased loop. 1〇 'As claimed in claim 9, the antenna of the ninth aspect, wherein at least some of the second ends are open circuits. U. If the antenna of claim 9 is applied, there is a second conductive ring on the substrate, wherein the second ring is associated with at least some of the links of the second ends of the component. 12. The antenna of claim 7, wherein the n-ray elements on the side surface portion of the cylinder comprise a township side, each element having a light junction to the first end of the phase ring and 33 201112490 second end spaced apart from the phased ring, wherein on or adjacent to the other surface of the end surface portions of the cylindrical body, the antenna further includes a second conductive ring and a second conduction Looping at a second operating frequency of the antenna, wherein the spiral radiating elements comprise a first radiating element having an open second end spaced from the second loop, and a second, closed loop radiating element, second The second radiating element is coupled to the second ring. 13. The antenna of claim 12, wherein the electrical length of the first radiating element is (2m-1)Xgi/4' and the electrical length of the second radiating element is ηλ§2/2, Where m and η are non-zero positive integers and λ§1 and λβ2 are individually the guiding wavelengths of the first and second operating frequencies of the antenna. 14. The antenna of claim 12, having a feeder structure comprising a transmission line segment from the proximal surface portion through the core to the end surface portion, the feed nodes forming the transmission line segment An end, wherein the reaction matching network comprises a pair of helium networks at the end surface portion. 15. A dielectric-loaded multi-wire antenna for use in circulating polarized radiation and having an operating frequency in excess of 200 MHz, wherein the antenna comprises: an electrically insulating core having a relative dielectric constant greater than 5 and occupying a solid material of a majority of the internal capacity defined by the outer side surface of the core; a plurality of feed nodes; and an antenna element structure located on or near the outer side surface of the core and including a plurality of elongated conductive antenna elements coupled to the And elongating the antenna element and the one of the feed nodes at the operating frequency, the resonant antenna element extending from the resonant ring in a direction away from one of the feed nodes. 16. The antenna of claim 15 wherein the elongated conductive antenna elements have open ends. 17. The antenna of claim 15 or 16, wherein the core has a central axis, and the outer side surface of the core has first and second oppositely guided surface portions extending transversely relative to the axis, and And laterally extending a side surface portion between the surface portions, wherein the feed nodes and the resonant ring are associated with the first laterally extending surface portion, and the elongated conductive antenna elements are oriented from the ring on the side surface portion The second laterally extending surface portion extends. 18. Antenna I as claimed in claim 17 which has two feed nodes connected to the ring at respective points of attachment relative to the ring. 19. The antenna of claim 15 or 16, wherein the antenna has two feed nodes connected to the ring by an individual inductive connection link, the antenna further comprising one of the two feed nodes coupled Shunt capacitor. 20. The antenna of claim 17 wherein the core is a cylinder, the resonant ring comprising an annular conductive path on the first laterally extending surface portion, and the elongated conductive antenna elements are helical and Coextensive in the axial direction. 21. The antenna of claim 17, wherein the core is a cylinder, the resonant ring comprising an annular conduction path adjacent to the side surface portion of the first laterally extending surface portion, and the elongated conduction The antenna unit is helical and expands in the axial direction. The antenna of claim 15 or 16, wherein the resonant ring comprises at least one series capacitor. 2 3. The antenna of claim 16, wherein the extended conducting antenna unit is a quarter wavelength or a three quarter wavelength element at the operating frequency. 24. An antenna as claimed in claim 15 or claim 16 having a pair of feed connections that form a balanced feed connection to the resonance ring. 25. A dielectric-loaded multi-wire antenna for use in circulating polarized radiation having an operating frequency in excess of 200 MHz, wherein the antenna comprises: an electrically insulating core having a relative dielectric constant greater than 5 and occupying a solid material of a majority of the internal capacity defined by the outer side surface of the core, a pair of feed nodes; and an antenna element structure located on or near the outer side surface of the core and including a phase ring connected to the feed nodes; And at least four elongated conductive elements coupled to the phased loop at respective spaced apart points of the loop. 26. The antenna of claim 25, wherein the electrical length of each of the at least four elongated conductive elements is an odd number of one quarter wavelength at the operating frequency (1, 3, 5· .·)multiple. 27. An antenna assembly comprising an antenna according to any one of claims 1, 15, and 25, and a balun coupled to one of the feed nodes. 28. An antenna assembly comprising an antenna according to any one of claims 1 and 15 and 36 201112490 25, and a differential amplifier having a differential input coupled to one of the feed nodes. 37
TW099122053A 2009-07-03 2010-07-05 A multifilar antenna TW201112490A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0911635.1A GB0911635D0 (en) 2009-07-03 2009-07-03 A dielectrically-loaded antenna

Publications (1)

Publication Number Publication Date
TW201112490A true TW201112490A (en) 2011-04-01

Family

ID=41008748

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099122053A TW201112490A (en) 2009-07-03 2010-07-05 A multifilar antenna

Country Status (7)

Country Link
JP (1) JP2012532518A (en)
KR (1) KR20120042858A (en)
CN (1) CN102474014A (en)
BR (1) BR112012000087A2 (en)
GB (2) GB0911635D0 (en)
TW (1) TW201112490A (en)
WO (1) WO2011001153A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201012923D0 (en) * 2010-07-30 2010-09-15 Sarantel Ltd An antenna
CN104094289B (en) * 2012-10-26 2019-02-19 富士通先端科技株式会社 Tag access device
GB2508638B (en) * 2012-12-06 2016-03-16 Harris Corp A dielectrically loaded multifilar antenna with a phasing ring feed
CN108091995B (en) * 2018-01-25 2023-09-22 电信科学技术第一研究所有限公司 Eight-arm spiral circular polarization dual-frequency antenna suitable for laser direct structuring technology
CN109473770B (en) * 2018-12-10 2024-01-05 广东工业大学 Spiral antenna based on parallel plate capacitor loading
CN111740215B (en) * 2020-07-28 2023-08-18 福州大学 Self-phase-shift feed miniaturized coupled multi-band helical antenna

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU693616B2 (en) * 1994-12-06 1998-07-02 Andrew Llc A helical antenna
US5572172A (en) * 1995-08-09 1996-11-05 Qualcomm Incorporated 180° power divider for a helix antenna
FR2746547B1 (en) * 1996-03-19 1998-06-19 France Telecom PROPELLER ANTENNA WITH INTEGRATED BROADBAND SUPPLY, AND MANUFACTURING METHODS THEREOF
SE511450C2 (en) * 1997-12-30 1999-10-04 Allgon Ab Antenna system for circularly polarized radio waves including antenna device and interface network
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
CA2358875A1 (en) * 1999-12-15 2001-06-21 Mitsubishi Denki Kabushiki Kaisha Antenna device
GB0027128D0 (en) * 2000-11-04 2000-12-20 Univ Bradford Multi-band antenna
US6788272B2 (en) * 2002-09-23 2004-09-07 Andrew Corp. Feed network
GB2420230B (en) 2004-11-11 2009-06-03 Sarantel Ltd A dielectrically-loaded antenna
GB0512652D0 (en) * 2005-06-21 2005-07-27 Sarantel Ltd An antenna and an antenna feed structure
TWI413297B (en) 2005-06-21 2013-10-21 Sarantel Ltd An antenna and an antenna feed structure
GB2437998B (en) 2006-05-12 2009-11-11 Sarantel Ltd An antenna system
GB2442998B (en) 2006-10-20 2010-01-06 Sarantel Ltd A dielectrically-loaded antenna
GB0623774D0 (en) 2006-11-28 2007-01-10 Sarantel Ltd An Antenna Assembly Including a Dielectrically Loaded Antenna
US7999755B2 (en) * 2006-12-08 2011-08-16 Maxtena LLC Method and apparatus for quadrifilar antenna with open circuit element terminations
GB0700276D0 (en) 2007-01-08 2007-02-14 Sarantel Ltd A dielectrically-loaded antenna
US20080316138A1 (en) * 2007-10-26 2008-12-25 X-Ether, Inc. Balance-fed helical antenna

Also Published As

Publication number Publication date
GB0911635D0 (en) 2009-08-12
WO2011001153A1 (en) 2011-01-06
GB2471578A (en) 2011-01-05
JP2012532518A (en) 2012-12-13
GB2471578B (en) 2013-04-17
KR20120042858A (en) 2012-05-03
CN102474014A (en) 2012-05-23
GB201011226D0 (en) 2010-08-18
BR112012000087A2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
US7903044B2 (en) Dielectrically-loaded antenna
JP4469011B2 (en) Mobile communication device and antenna assembly therefor
US8456375B2 (en) Multifilar antenna
US7002530B1 (en) Antenna
TWI508369B (en) A dielectrically loaded antenna
TW201301654A (en) A dielectrically loaded antenna
TW201112490A (en) A multifilar antenna
EP1196963A1 (en) Loop antenna with at least two resonant frequencies
US8436783B2 (en) Dielectrically-loaded antenna
KR20090096467A (en) An antenna arrangement
GB2508638A (en) A dielectrically loaded multifilar antenna with a phasing ring feed
US5233362A (en) Maypole antenna