TW201111826A - Real-time tsunami warning method and system thereof - Google Patents

Real-time tsunami warning method and system thereof Download PDF

Info

Publication number
TW201111826A
TW201111826A TW098133172A TW98133172A TW201111826A TW 201111826 A TW201111826 A TW 201111826A TW 098133172 A TW098133172 A TW 098133172A TW 98133172 A TW98133172 A TW 98133172A TW 201111826 A TW201111826 A TW 201111826A
Authority
TW
Taiwan
Prior art keywords
tsunami
water level
wave
green
function
Prior art date
Application number
TW098133172A
Other languages
Chinese (zh)
Other versions
TWI408403B (en
Inventor
Guan-Yu Chen
Yang-Yih Chen
Chia-Hao Lin
Chin-Chu Liu
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW098133172A priority Critical patent/TWI408403B/en
Publication of TW201111826A publication Critical patent/TW201111826A/en
Application granted granted Critical
Publication of TWI408403B publication Critical patent/TWI408403B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

A real-time tsunami warning method and a system thereof are provided. The method includes steps of: providing related earthquake information parameters to an operational window interface by a remoter information capturing module or an operator in the early stage of an earthquake; processing the related earthquake information parameters by reciprocal Green' s function (RGF) via an offshore wave height calculation module to speedily obtain maximum tsunami wave height and tsunami approaching time at a specific offshore position, followed by showing results on the operational window interface; and processing the related earthquake information parameters by analytical Green' s function (AGF) via an inshore wave runup calculation module and executing a coordinate conversion to speedily obtain tsunami runup height and tsunami overflow range at a specific inshore position for automatically determining if the tsunami will flow out of a dike, followed by showing results on the operational window interface.

Description

201111826 六"發明說明: 【發明所屬之技術領域】 3本發明係關於-種海嘯即時預 警方法及其系統,特 別疋關於—種利用資料庫、互逆格林函數及視窗化介面 等來决速5十算重點區域各種海嘯災害評估項目之海嘯 即時預警方法及其系統。 【先前技術】 ^灣鄰近環太平洋地震帶,地震頻繁,且好發於陸 源及°灣東岸。東岸由於海底地形陡λ肖之故,即使地震 引發海哺,因為淺化作用不易產生,故產生海嘯災害之 機率不大。反觀台灣西部沿岸,地形遠較東岸平坦,且 根據歷史讀記載,北部的紐、南部的安平及高雄等 地區都曾有海嘯之案例發生。海嘯與地震雖皆屬重大天 然災害’但是相較之下,海嘯卻有足夠的預警時間可用 以疏散人群’降低災害之規模。此外,由於海嘯的發生 頻率相對較低,因而十分缺乏實際案例可供參考,故現 今海11之評估大多依靠數值模式方能進行。2〇〇4年南 亞海嘯之後’印度洋周邊國家繼太平洋周邊國家之後亦 建構自身之海嘯預警系統 。現行國内對於海嘯之 早期預警之建構尚處於剛起步階段,多半是接收鄰近國 家或區域之海嘯資訊再轉發給相關單位做預警之用,藉 此平估口灣遭受海嘯侵襲的可能性。然而,此種做法不 利於建立國内獨立之預警機制,也無法快速獲得相關災 201111826 * 情作為事前評估之用。 再者,現有海嘯計算模式通常需要假設斷層位址(即 必須先得知初始條件)’方可藉此計算可能之影響範 圍。也就是,現有海嘯計算模式係利用二維海嘯模式假 設單一震央點源後輸入必要之參數’以進行大規模之全 域反應平面運算,藉此得到任意點之海嘯資訊,此種計 算模式被稱之為單波源全接收點 ^ (〇ne-source-all-receiver)。然而,此種計算模式最大缺 點是計算效率低落,需耗費大量記憶體且需時甚久,對 於應用在即時預報及資料庫建立上會有困難。實務上, 通常並非全域位置皆為防災之重點區域,因此計算全區 域之反應並不切實際,反而是浪費許多系統資源在計算 不必要的位置上,以致於降低了計算效率。因此,現行 的模式運算效率就應用在即時防災上而言仍有相當大 之改善空間。 • 此外’在現有近岸波高溯上及溢淹範圍之評估方式 中’現行海嘯數值模式在水深大於50公尺之情況下係 採用線性系統運算;但在近岸演算時,地型非線性效應 強化使得波馬因淺化效應而升高。同時,也由於近岸地 區之網格相當細,使得進行全區域運算需要耗費系統大 量記憶空間及運算時間’故對於海嘯早期預警可說是缓 不濟急。 如上所述’财於國内未來建立獨立運作的海嘯防災 及預警系統必需注意下列待改進缺失: 201111826 (1) 、計算效率過於低落: 由於,現有海嘯計算模式通常進行大規模平面之計 算,所以計算所需之時間以及記憶空間極為冗長及龐 大,而對於災情之早期評估貢獻不大。即使利用高規格 之電腦設備,也甚難在有效的預警時間之内得到防災資 訊。以預警效率而言,如何在海嘯發生初期,即能「快 速」得出可能之災害預測結果(包含第一波之波高、到 達時間、溯上高度、溢淹範圍及是否越波),使相關單 位能做出相關決策將是首要考量重點。以防災之角度而 言,人口稠密區及重要設施才是防災之重點,其餘的點 位計算是可以被忽略的。就實用角度而言,如何快速得 到重點區域之可能災情才是重要的。 (2) 、電腦設備準備不易: 若要利用一般個人電腦對大區域範圍進行海嘯模 擬,不但需時甚久亦會耗費龐大的記憶空間。因此,若 要提昇運算效率,則必須增加相關附屬設備或是利用其 他高規格電腦進行演算,但其效率能否在海嘯侵襲前計 算完成亦屬未知。因此,現行做法不但需要高昂的電腦 設備成本,而且對提升整體效益助益也不大。 (3) 、海嘯預警之機制建立及資訊整合: 由於台灣極少有海嘯災情,因此並沒有引起主管單 位之注意。國内是由中央氣象局統一發布海嘯警報,但 是海嘯之資訊是取自其他太平洋或印度洋周邊國家,並 無建立自身之海嘯評估或預警之機制。同時,太平洋及 201111826 印度洋周邊國家只注意海咳會不會侵襲當地,此類遠域 之海嘯或許對台灣未必造成具體威脅,但是若近域海嘯 發生於台灣周邊’以目前機制而言,對於災情事前掌握 及預警效率將是缓不濟急。另外,如何將訊I統合成一 有效且便於明暸之資訊,以供相關單位做評估之用亦是 一個重點;若能將所有輸入及輸出結果以單一介面呈 現’對使用者或是一般民眾將是相當便捷的。 故,有必要提供一種海嘯即時預警方法及其系統, 以解決習知技術所存在的問題。 【發明内容】 本發明之主要目的在於提供一種海嘯即時預警方法 及其系統,其使用互逆格林函數等適當的計算理論,並 以資料庫之概念來計具海嘯發生時,特定重點區域可能 產生之最大波高、到達時間、溯上高度、溢淹範圍及是 • 否越波等海嘯災害評估項目,因此有利於大幅提升計算 效率及預警時效,以增加早期海嘯預警之可行性,並降 低海嘯災害造成的損失程度。 本發明之次要目的在於提供一種海嘯即時預警方法 及其系統,其係可廣泛應用於建構本土性之海嘯預警系 統,並可將系統整合為視窗化介面,且僅需個人電腦簡 單設備即可操作使用,因此有利於提高使用便利性及降 低預測成本與設備需求。 為達上述之目的,本發明提供一種海嘯即時預警方 201111826 法,其包含步驟:在地震發生初期’藉由—遠端資料掘 取模組自至少一遠端資訊來源擷取相關地震資訊參 數’或藉由操作人員手動自行輸入相關地震資訊參數, 其中該相關地震資訊參數輸入至一視窗操作介面;經由 一外海波高計算模組利用互逆格林函數(Reciprocal Green’s function ’ RGF)處理該相關地震資訊參數,以快 速計算出一特定外海點位置之水位時間序列資料,以判 斷海嘯最大波高及海嘯到達時間,並將結果顯示於該視 窗操作介面;以及,經由一近岸溯上計算模組利用解析 格林函數(Analytical Green’s function ’ AGF)處理該水位 時間序列資料,並經由座標轉換,以快速計算出一特定 近序點位置之海01溯上高度及海咳溢淹範圍,並自動判 斷海嘯是否越波,且將結果顯示於該視窗操作介面。 另一方面,本發明提供一種海嘯即時預警系統,其 包含:一遠端資料擷取模組,用以在地震發生初期,= 2由至少一遠端資訊來源擷取相關地震資訊參數;一視 窗操作介面,用以接收、顯示及編輯該遠端資料擷取模 組擷取之相關地震資訊參數,或供操作人員手動自行輸 入相關地震資訊參數;-外海波高計算模組,利用互逆 ^林函數處理該相關地震資訊參數,以快速計算出一特 定外海點位置之水位時間序列資料,以判斷海嘯最大波 高及海嘯到達時間’並將結果顯示於該視窗操作介面; 以及’-近岸紙計算模組,湘解析料函數處理該 水位時間序列資料,並經由座標轉換,以快速計算出」 201111826 特定近岸點位置之海嘯溯上高度及海嘯溢淹範圍,以自 動判斷海嘯是否越波,並將結果顯示於該視窗操作介 面。 在本發明之一實施例中,該遠端資訊來源為至少一 遠端網站或至少一遠端感測器。 在本發明之一實施例中,該相關地震資訊參數選自 斷層參數、地震矩規模、震源深度、滑移方向、傾斜角 度、滑移角度、震央緯度、震央經度或其組合。201111826 六"Invention: [Technical field of invention] 3 The invention relates to a tsunami instant warning method and its system, in particular, regarding the use of a database, a reciprocal Green's function and a windowing interface, etc. The tsunami immediate warning method and its system for various tsunami disaster assessment projects in key areas. [Prior Art] ^ The Bay is adjacent to the Pacific Rim seismic belt, with frequent earthquakes, and occurs well in the land source and the east bank of the Bay. Due to the steep terrain of the seabed on the east coast, even if the earthquake caused sea feeding, the shallowing effect is not easy to occur, so the probability of a tsunami disaster is small. On the other hand, the western coast of Taiwan is far more flat than the east coast. According to historical records, there have been tsunami cases in the northern New Zealand, southern Anping and Kaohsiung areas. Tsunami and earthquakes are both major natural disasters. But in contrast, the tsunami has enough warning time to evacuate people's scale. In addition, due to the relatively low frequency of tsunami occurrence, there is a lack of practical cases for reference. Therefore, most of the current assessments of the sea 11 rely on numerical models. After the 2nd year of the tsunami in South Asia, the countries surrounding the Indian Ocean also built their own tsunami warning system following the countries surrounding the Pacific. The current domestic construction of the early warning of the tsunami is still in its infancy, and most of the time it is to receive tsunami information from neighboring countries or regions and then forward it to relevant units for early warning purposes, so as to estimate the possibility of the tsunami attack in the Bay. However, this approach is not conducive to the establishment of a domestic independent early warning mechanism, nor can it quickly obtain relevant disasters. Furthermore, the existing tsunami calculation mode usually requires a hypothetical fault address (that is, the initial condition must be known) to calculate the possible range of influence. That is to say, the existing tsunami calculation mode uses the two-dimensional tsunami mode to assume a single epicenter source and then input the necessary parameters to perform a large-scale global response plane operation, thereby obtaining tsunami information at any point. This calculation mode is called For a single wave source, the full receiving point ^ (〇ne-source-all-receiver). However, the biggest shortcoming of this kind of calculation mode is that the computational efficiency is low, it takes a lot of memory and takes a long time, and it is difficult for the application to be built in real-time forecasting and database establishment. In practice, not all global locations are the key areas for disaster prevention. Therefore, it is impractical to calculate the response of the whole region. Instead, it wastes many system resources in calculating unnecessary positions, thus reducing the computational efficiency. Therefore, there is still considerable room for improvement in the current mode operation efficiency for immediate disaster prevention. • In addition, 'the current tsunami numerical model uses linear system calculations for water depths greater than 50 meters in the assessment of existing near-shore wave heights and flooding ranges; but in near-shore calculus, ground-type nonlinear effects The enhancement causes the wavema to rise due to the shallowing effect. At the same time, because the grid of the near-shore area is quite thin, it takes a lot of memory space and computing time to perform the whole-area calculations. Therefore, the early warning of tsunami can be said to be slow. As mentioned above, the tsunami disaster prevention and early warning system that establishes independent operation in the domestic future must pay attention to the following shortcomings to be improved: 201111826 (1), the calculation efficiency is too low: Because the existing tsunami calculation mode usually performs large-scale plane calculation, The time required for the calculation and the memory space are extremely lengthy and large, and contribute little to the early assessment of the disaster. Even with high-profile computer equipment, it is difficult to get disaster prevention information within an effective warning time. In terms of early warning efficiency, how to predict the possible disaster predictions (including the wave height of the first wave, the time of arrival, the height of the flood, the extent of the flooding, and whether the wave is over) in the early stage of the tsunami, so that the relevant units Being able to make relevant decisions will be the primary consideration. From the perspective of disaster prevention, densely populated areas and important facilities are the focus of disaster prevention, and the rest of the calculations can be ignored. From a practical point of view, it is important to quickly get the most out of the key areas. (2) It is not easy to prepare computer equipment: To use a general personal computer to simulate a large area, it will take a long time to consume huge memory space. Therefore, if you want to improve the efficiency of the calculation, you must increase the related auxiliary equipment or use other high-standard computers for calculation, but whether the efficiency can be calculated before the tsunami attack is unknown. Therefore, the current practice requires not only high computer equipment costs, but also little improvement in overall efficiency. (3) Establishment of tsunami warning mechanism and information integration: Since there is very little tsunami disaster in Taiwan, it has not attracted the attention of the competent authorities. In China, the Central Meteorological Administration issued a tsunami warning, but the information on the tsunami was taken from other countries in the Pacific or Indian Ocean, and there is no mechanism to establish its own tsunami assessment or early warning. At the same time, the Pacific Ocean and 201111826 countries around the Indian Ocean only pay attention to whether the sea cough will invade the local area. Such a tsunami in the distant region may not pose a specific threat to Taiwan, but if the near-region tsunami occurs around Taiwan, the current mechanism is for the disaster. Pre-emptive and early warning efficiency will be slow. In addition, how to synthesize an effective and easy-to-understand information for the relevant units to evaluate is also a key point; if all input and output results can be presented in a single interface, it will be for users or the general public. Quite convenient. Therefore, it is necessary to provide a tsunami instant warning method and system thereof to solve the problems existing in the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a tsunami instant warning method and system thereof, which use appropriate calculation theories such as reciprocal Green's function, and use the concept of a database to calculate the occurrence of a tsunami, and a specific key area may be generated. The maximum wave height, arrival time, altitude, flood coverage and tsunami disaster assessment projects such as the wave of waves are conducive to greatly improve the calculation efficiency and early warning time to increase the feasibility of early tsunami warning and reduce the tsunami disaster. The extent of the loss. The secondary object of the present invention is to provide a tsunami instant warning method and system thereof, which can be widely applied to construct a local tsunami warning system, and can integrate the system into a windowed interface, and only needs a simple device of a personal computer. Operational use is therefore beneficial to improve ease of use and reduce forecasting costs and equipment requirements. To achieve the above purpose, the present invention provides a tsunami instant pre-police 201111826 method, which comprises the steps of: extracting relevant seismic information parameters from at least one remote information source by means of a remote data mining module at the beginning of the earthquake. Or manually input relevant seismic information parameters by the operator, wherein the relevant seismic information parameters are input to a window operation interface; and the related seismic information is processed by an outer sea wave height calculation module using a Reciprocal Green's function 'RGF Parameters to quickly calculate the water level time series data of a specific outer sea point position to determine the maximum wave height and tsunami arrival time of the tsunami, and display the results in the window operation interface; and, through a nearshore tracing calculation module utilization analysis The Analytical Green's function 'AGF' processes the water level time series data and coordinates it to quickly calculate the height of the sea 01 and the sea cough overflow range of a specific near-sequence point position, and automatically judge whether the tsunami is overwhelming. And display the result in the window operation interface. In another aspect, the present invention provides a tsunami instant warning system, comprising: a remote data acquisition module for capturing relevant seismic information parameters from at least one remote information source in the initial stage of an earthquake; The operation interface is used for receiving, displaying and editing the relevant seismic information parameters captured by the remote data capture module, or for the operator to manually input relevant seismic information parameters; - the outer sea wave height calculation module, utilizing the reciprocal forest The function processes the relevant seismic information parameters to quickly calculate the water level time series data of a specific outer sea point position to determine the maximum wave height and tsunami arrival time of the tsunami and display the result in the window operation interface; and '- nearshore paper calculation The module and the analytic function function process the water level time series data and convert it via coordinates to quickly calculate the tsunami trace height and tsunami flooding range of the specific nearshore point of 201111826 to automatically determine whether the tsunami is overwhelming and The result is displayed in the window operation interface. In an embodiment of the invention, the remote information source is at least one remote website or at least one remote sensor. In an embodiment of the invention, the correlated seismic information parameter is selected from the group consisting of a fault parameter, a seismic moment scale, a source depth, a slip direction, a tilt angle, a slip angle, a center latitude, a epicenter longitude, or a combination thereof.

在本發明之一實施例中,該斷層參數包含斷層長 度、斷層寬度及滑移量。 在本發明之一實施例中,該遠端資料擷取模組或操 作人員提供該斷層參數,且該視窗操作介面依據該斷層 參數自動產生該地震矩規模。 在本發明之一實施例中,該遠端資料擷取模組或操 作人員提供該地震矩規模,且該視窗操作介面依據該地 震矩規模自動產生該斷層參數。 在本發明之一實施例中,該互逆格林函數包含公式 (1.1) 、 (1.2)及(1.3): gf/=接收點r之水位/波源s之初始水位............(1.1) (1.2) (1.3) GF;=GFsr.............. N ΜIn one embodiment of the invention, the fault parameter comprises a fault length, a fault width, and a slip amount. In an embodiment of the invention, the remote data capture module or operator provides the fault parameter, and the window operation interface automatically generates the seismic moment scale according to the fault parameter. In an embodiment of the invention, the remote data acquisition module or the operator provides the seismic moment scale, and the window operation interface automatically generates the fault parameter according to the magnitude of the earthquake moment. In an embodiment of the invention, the reciprocal Green's function comprises equations (1.1), (1.2), and (1.3): gf/= the initial water level of the water level/wave source s of the receiving point r........ ....(1.1) (1.2) (1.3) GF;=GFsr.............. N Μ

H,=YL(GFa*H,J r=l /=1 其中公式(1.3)的為波源s在時間t的水位高度; σΚ,,為各接收點r點在時間t的格林函數GF ; 為各接 201111826 收點Γ的初始水位高度;#為所有接收點Γ的總數;及 Μ為主震發生次數。 在本發明之一實施例中,該解析格林函數包含公式 (2.1): φ(σ,Λ) = 2[f〇y(b)G(b,a,A)db +J>(0)G/l (ό,σ,Λ)Μ] 其中G為解析格林函數(AGF); 為總能量;(σ,Α; 為新座標系統;為某一點位置之起始波形條件,等 於夕(0c, 〇 ;尸(¾)為某一點位置之起始流速;及6為 座標下之距離。 在本發明之一實施例中,該座標轉換係使用公式 (2.2): X — Ct — yjght Γ9 9 彳 其中;c即為每一時間軸所對應之距離;C為波速;ί 為時間序列水位資料之時間;Α為該點位置之水深;及 g為重力加速度。 在本發明之一實施例中,該座標轉換係使用公式 (2.3)及(2.4):H,=YL(GFa*H, J r=l /=1 where equation (1.3) is the water level height of wave source s at time t; σΚ, is the Green's function GF at time t of each receiving point; Each of the initial water level heights of 201111826; 为 is the total number of all receiving points Μ; and Μ the number of occurrences of the main shock. In one embodiment of the invention, the analytical Green's function contains the formula (2.1): φ(σ ,Λ) = 2[f〇y(b)G(b,a,A)db +J>(0)G/l (ό,σ,Λ)Μ] where G is the analytical Green's function (AGF); Total energy; (σ, Α; is the new coordinate system; the starting waveform condition for a certain point position is equal to eve (0c, 〇; corpse (3⁄4) is the starting velocity of a certain position; and 6 is the distance under the coordinate In an embodiment of the invention, the coordinate conversion system uses the formula (2.2): X - Ct - yjght Γ 9 9 彳 where; c is the distance corresponding to each time axis; C is the wave speed; ί is the time series The time of the water level data; Α is the water depth at the point; and g is the gravitational acceleration. In one embodiment of the invention, the coordinate conversion system uses equations (2.3) and (2.4):

(2.3) ax/2 xg η(χ) = η{ί)[——^— Χη,(2.3) ax/2 xg η(χ) = η{ί)[——^— Χη,

(2.4) 其中巧為外海波源之波高;//2為特定點位置之波高; 4及4分別為特定點位置及外海波源之對應水深;夕⑺ 201111826 為=海波源之水位時間序列資料;丨是水位記錄時間; α為坡度;a及〜分別為特定點位置及外海波源之離岸 距離乂為離岸距離〜處之水深;及夕㈨為經由公式(2.4) 轉換後的水位資料。 在本發明之一實施例中,該外海點位置為水深大於 50 Α尺之岸外海域位置。 在本發明之一實施例中,該海嘯最大波高係為海嘯 籲 第一波之波高。 【實施方式】 為了讓本發明之上述及其他目的、特徵、優點能更 肩易®,下文將特舉本發明較佳實施例,並配合所附 圖式’作詳細說明如下。 請參照第1圖所示,其揭示本發明較佳實施例之海 嘯P時預警方法及其系統的方塊示意圖,其中本發明之 • 海,即時預警系統主要包含—遠端資料齡模組1、一 視窗操作介面2、—外海波高計算模組3及-近岸溯上 計算模組4 ’上述模組與介面較佳以軟體方式安裝在一 電腦中來自動運作或供操作人員操作。在本發明中,該 遠端資料娜模組1用以在地震發生初期,立即由至^ ,遠端資訊來源(未繪示)類取相關地震資訊參數,其中 該遠端資訊來源可選自至少一遠端網站或至少一遠端 感測器’例如:國内氣象局的氣象局網站、與國内 肩有合作的其他印度洋或太平洋周邊國家的氣象局網 Γ c'· ^ 11 201111826 自器行震央位置-無線通訊 率且立即撻徂& 歎了用以加強計算效 算模組々=者=二=上計 ::r人一關地震資訊參數二: 窗操作介二1,手動自打輸入相關地震資訊參數至該視 擷取模^ 其中本發明僅需選擇藉由該遠端資料 =二的自動擷取模式或該由操作人員的手動 、、式的其中一種來提供相關地震資訊參數即可,但 時藉由兩種模式分職供—部分之㈣ Λ參照第1、2八及2B圖所示,本發明較佳實施例 之視窗操作介面2用以接收、顯示及編輯該遠端資料操 取模組1擷取之相關地震資訊參數,或供操作人員厂 手動自行輸入相關地震資訊參數,其中該相關地震資訊 參數選自斷層參數、地震矩規模、震源深度、滑移方向 (strike direction)、傾斜角度(dip angie)、滑移角度(sUp angle)、震央緯度、震央經度或其組合,其中該斷層參 數包含斷層長度、斷層寬度及滑移量等參數。在實際操 作上,該遠端資料擷取模組】或操作人員】’可以僅提供 該斷層參數,而由該視窗操作介面2依據該斷層參數自 動產生該地震矩規模;或者,該遠端資料擷取模組1或 操作人員Γ可以僅提供該地震矩規模,而由該視窗操作 介面2依據該地震矩規模自動產生該斷層參數。如第 12 201111826(2.4) Which is the wave height of the offshore wave source; //2 is the wave height of the specific point position; 4 and 4 are the specific point position and the corresponding water depth of the outer sea wave source respectively; Xi (7) 201111826 is the water time time series data of the sea wave source; It is the water level recording time; α is the slope; a and ~ are the specific point position and the offshore distance of the offshore wave source 乂 is the offshore distance ~ the water depth; and the evening (9) is the water level data converted by the formula (2.4). In an embodiment of the invention, the outer sea point is located at an offshore water location with a water depth greater than 50 feet. In one embodiment of the invention, the maximum wave height of the tsunami is the wave height of the first wave of the tsunami. [Embodiment] In order to make the above and other objects, features and advantages of the present invention more comprehensible, the preferred embodiments of the present invention will be described in the following. Please refer to FIG. 1 , which is a block diagram showing an early warning method and a system for tsunami P according to a preferred embodiment of the present invention. The sea and instant warning system of the present invention mainly includes a remote data age module. A window operation interface 2, an offshore wave height calculation module 3 and a near shore up calculation module 4' The above modules and interfaces are preferably installed in a computer in a software manner for automatic operation or for operation by an operator. In the present invention, the remote data module 1 is used to obtain relevant seismic information parameters from the remote information source (not shown) in the early stage of the earthquake, wherein the remote information source can be selected from At least one remote website or at least one remote sensor', for example: the Meteorological Bureau website of the Internal Weather Service, the meteorological bureau network of other Indian Ocean or Pacific countries that cooperate with the domestic shoulders c'· ^ 11 201111826 The location of the episode - wireless communication rate and immediately 挞徂 & sighed to strengthen the calculation of the efficiency of the module 者 = = = two = on the count:: r people off the earthquake information parameters two: window operation two 1, Manually inputting relevant seismic information parameters to the video capture module. The present invention only needs to select the automatic acquisition mode by the remote data=2 or the manual, one of the operators to provide the relevant earthquake. The information parameter can be used, but the two modes are divided into four parts. (IV) Referring to Figures 1, 2, and 2B, the window operation interface 2 of the preferred embodiment of the present invention is used for receiving, displaying, and editing. The remote data acquisition module 1 captures the phase Seismic information parameters, or for the operator to manually input relevant seismic information parameters, wherein the relevant seismic information parameters are selected from fault parameters, seismic moment scale, focal depth, strike direction, dip angie, The sUp angle, the tremor latitude, the epicenter longitude, or a combination thereof, wherein the fault parameter includes parameters such as fault length, fault width, and slip amount. In actual operation, the remote data capture module or operator may only provide the fault parameter, and the window operation interface 2 automatically generates the seismic moment scale according to the fault parameter; or the remote data The capture module 1 or the operator Γ can only provide the seismic moment scale, and the window operation interface 2 automatically generates the fault parameter according to the seismic moment scale. As the 12th 201111826

2A圖所不’該視窗操作介面2可接收、顯示及編輯相 關地震資齡數,並可供_:#赠賴式,例如 擇以斷層參數來自動產生地震矩規模(或以地震矩」 來自動產生斷層參數);以及,選擇預報地點位= 點位置)及其預報時m再者,該視窗操作介面2 亦可顯示由該外海波高計算模組3計算出的特定外海 點位置之水位/時間序列曲線圖以及由該近岸溯上計算 模組4計算出的地理水位分佈圖(以顏色深淺示意溯上 高度及溢淹範圍)。另外,如第2B圖所示,該視窗操作 介面2並可由另一視窗顯示由該近岸溯上計算模組4計 算出的特定近岸點位置之水位/時間序列曲線圖及其地 理水位分佈圖,其預報評估計算方式將於下文逐一詳細 說明。 請參照第1、2A、3A及3B圖所示,本發明較佳實 施例之外海波高計算模組3主要功能在於利用互逆格 林函數(Reciprocal Green’s function ’ RGF)在地震發生初 期處理該相關地震資訊參數,以快速計算出一特定外海 點位置之海嘯外海最大波高及海嘯到達時間,其中上述 所指之外海點位置為水深大於50公尺之岸外海域位 置’而最大波高較佳指的是第一波之波高。本發明使用 互逆格林函數的原因在於:如第3A及3B圖所示,其 分別揭示傳統格林函數及本發明互逆格林函數的波源 與接收點的示意圖。根據互逆格林函數,理論上由波源 位置(source,s)產生地震對接收點(或稱計算點; 13 201111826 receiver 9 r)之線性反應等於由接收點r逆向產生一波源 時對波源s所造成之反應。如第3Α圖所示,傳統格林 函數(Green’s Function,GF)是表現區域内各點對應波源 s所產生的反應’即單波源全接收點(one-source-all-receiver)的形式 ,傳統格林函數的 是由波 源s到接收點r;而如第3B圖所示,其逆向格林函數的 則代表以接收點r產生的波源振幅為單位,在波源s 所造成的逆向反應。格林函數在線性系統裡呈現對稱性 之特點,即是。如上所述,本發明僅欲針對重 點&域的特定點位置進行計算’ 一般而言’接收點r(即 計算點)是已知的點位置,但是實際上受限地震測報之 影響,無法預測確知下一次波源S位置,因此波源S位 置是數個未知波源點位si、S2、s3、s4...si。2A map does not 'the window operation interface 2 can receive, display and edit the relevant seismic age, and can be used for _: #赠赖, for example, to choose the fault parameter to automatically generate the seismic moment scale (or by seismic moment) Automatically generating the fault parameter); and, selecting the forecast location = the point position) and the forecast time m, the window operation interface 2 may also display the water level of the specific outer sea point position calculated by the outer sea wave height calculation module 3 / The time series graph and the geographical water level distribution map calculated by the nearshore up-and-down calculation module 4 (the height and the flooding range are indicated by the color depth). In addition, as shown in FIG. 2B, the window operation interface 2 can display the water level/time series curve of the specific nearshore point position calculated by the nearshore upside calculation module 4 and the geographical water level distribution thereof by another window. Figure, the forecast evaluation calculation method will be explained in detail below. Referring to Figures 1, 2A, 3A and 3B, in addition to the preferred embodiment of the present invention, the main function of the sea wave height calculation module 3 is to use the Reciprocal Green's function 'RGF' to process the relevant earthquake in the early stage of the earthquake. Information parameters to quickly calculate the maximum wave height and tsunami arrival time of the tsunami outer sea at a specific outer sea point position, where the above-mentioned outer sea point position is the offshore water position where the water depth is greater than 50 meters, and the maximum wave height preferably means The first wave of waves is high. The reason why the reciprocal Green's function is used in the present invention is that, as shown in Figs. 3A and 3B, the schematic diagrams of the wave source and the reception point of the conventional Green's function and the reciprocal Green's function of the present invention are respectively disclosed. According to the reciprocal Green's function, the linear response of the seismic source to the receiving point (or the calculated point; 13 201111826 receiver 9 r) is theoretically equal to the source of the wave source s when the source r is reversely generated by the receiving point r. The reaction caused. As shown in Figure 3, the traditional Green's Function (GF) is the response of the wave source s at each point in the performance region, ie the one-source-all-receiver form, traditional Green The function is from the wave source s to the receiving point r; as shown in Fig. 3B, the inverse Green's function represents the reverse reaction caused by the wave source s in units of the wave source amplitude generated by the receiving point r. The Green's function is characterized by symmetry in a linear system. As described above, the present invention only intends to calculate the specific point position of the focus & field. 'Generally, the receiving point r (ie, the calculation point) is a known point position, but actually the effect of the limited seismic measurement cannot be The prediction confirms the position of the next source S, so the position of the source S is a number of unknown source points si, S2, s3, s4...si.

GF — a作-外卿妖叭反延锊性可用从提鬲計算各點位】 的效率,只要計算波源8傳播後對所有接收點1 ^ GF,將等同於得知當任何接收點r出現波源時對波源 造成的反應。所以當海嘯發生時,僅需將各接收點r ^ 起始水位作簡單的乘積加總便可得知絲s的水位璧 化。再者’互逆格林函數另-個重要的應用是判斷接必 =應之最具威脅性之震源s及其影響範圍;互逆本 =:= 大絕對值代表可能有影響的海嘯發 ==度’並稱此互逆格林函數的最大絕 甚大格r數最大值(最大放大率GF - a - the external demon delay can be used to calculate the efficiency of each point, as long as the wave source 8 is transmitted to all receiving points 1 ^ GF, it will be equivalent to know when any receiving point r appears The response to the wave source when the wave source. Therefore, when a tsunami occurs, it is only necessary to add a total of the initial water level of each receiving point r ^ to the total water level to know the water level of the wire s. Furthermore, the other important application of the reciprocal Green's function is to judge the most threatening source s and its range of influence; reciprocal === large absolute value represents the tsunami that may have an impact == Degree 'and the maximum maximum number of large r-numbers of this reciprocal Green's function (maximum magnification)

田地發生的海嘯會嚴重影I 201111826 互逆格林函數的原點(即初始具單位水位高程的位置)。 實際上,本發明可用公式(1.1;)至(1 3)式來表示互逆 格林函數之概念· (1.1) 接收點r之水位/波源s之初始水位 N Μ …丨 .............................................(1.3)The tsunami in the field will seriously affect the origin of the I 201111826 reciprocal Green's function (ie, the initial position of the unit water level elevation). In fact, the present invention can express the concept of the reciprocal Green's function by the formulas (1.1;) to (1 3). (1.1) The water level of the receiving point r / the initial water level of the wave source s N Μ ... 丨 ... .......................................(1.3)

其中公式(1.3)的為波源s在時間t的水位高度; gf"為各接收點Γ點在時間t的格林函數; &為各接 收點r的初始水位高度;w為所有接收點r的總數;及 Μ為主震發生次數。 明參照第1、2Β、4及5圖所示,不同於該外海波 同计算模組3,本發明較佳實施例之近岸溯上計算模組 4係進一步利用解析格林函數(入仙如&丨 function,AGF)快速計算出特定點位置之近岸區域之海 嘯湖上兩度及海嘯溢淹範圍,並自動判斷是否海嘯可能 ^生越波。傳統計算近岸區域之溯上高度及溢淹範圍, =是進行全域計算,其缺點類似於上述傳統海嘯外海波 问,測之缺點,也就是無法在海嘯可能發生之初期快速 叶算出重點區域之點位置的海嘯波高及海嘯溢淹範 圍。再者,由於近岸區域有別於外海遠域區域之模擬, 近厗區域地型之非線性效應不可忽視,且必需以更小之 數值網格進行運算,因此較上述外海遠域範圍之計算更 為耗時及降低運算致率。是以,本發明之海嘯即時預罄 201111826 系統利用均勻坡度下之解析解(analytic solution) *以替 代現行之運算方式。 本發明之近岸溯上計算模組4的計算概念係利用下 列公式(2.1)表示: = 2[\y{b)G{b,a,X)db +\lP{b)Gx{b,a^)db\ .......(ϋ ) 其中G為解析格林函數(AGF); Μσ,Μ為總能量; 為新座標系統;尸㈨為某一點位置之起始波形條件,也 可表示為夕仏以;尸㈨為某一點位置之起始流速;及办 為座標下之距離。 由公式(2.1)可利用程式庫軟體或自行撰寫的特用程 气來執行運算,故僅需起始的波形條件及流速條件,配 合解析格林函數(AGF)進行數值積分、微分,最後利用 座標轉換得到海嘯溢淹範圍和溯上波高。如第4圖所 示二若有海岸堤防之頂部高度資料’則可根據海嘯溯上 波商與海岸堤防之頂部高度之比對關係來自動判斷海 嘯是否產生越波而越過堤防。 此外,本發明之近岸溯上計算模組4計算的是沿經 度之波型及流速分佈,也就是說是需要的初始數值條件 是一種「空間」之分佈。但是,由該外海波高計算模組 3計算所得點位置之水位資料是屬於「時間」之水位時 間序列資料,因此兩者必須加以適當之轉換。換句話 說,必須有適當之方式將時間序列資料轉換成空間上之 座標分佈。本發明之海嘯即時預警系統的近岸溯上計算 201111826 模組4可選擇採用下列兩種方式之任一種來進行轉 換,一種是利用該點位置之水深進行座標轉換;另一種 是利用格林函數進行座標轉換。茲將兩種座標轉換方式 簡介說明如下: 利用該點位置之水深進行座標轉換就是利用該點位 置之水深計算波速,波速乘以時間序列水位之橫軸值 (時間值)即可得到距離值,其係可利用下列公式(2.2)表 示: X — Ct — -\Jght 门 其中λ:即為每一時間軸所對應之距離;C為波速;ί 為時間序列水位資料之時間;為該點位置之水深;及 g為重力加速度。藉此,即能將時間序列水位資料轉換 成空間上之座標分佈數值,以得到海嘯溢淹範圍和溯上 波高的數值。Where formula (1.3) is the water level height of wave source s at time t; gf" is the Green's function at each receiving point 在 at time t; & is the initial water level height of each receiving point r; w is the total receiving point r The total number; and the number of occurrences of the main shock. Referring to Figures 1, 2, 4 and 5, unlike the outer sea wave computing module 3, the nearshore computing module 4 of the preferred embodiment of the present invention further utilizes the analytical Green's function (into the fairy &丨function, AGF) quickly calculates the extent of the tsunami on the tsunami lake at a specific point location and the extent of the tsunami overflow, and automatically determines whether the tsunami may be surging. The traditional calculation of the near-shore area's up-height and overflow range, = is a global calculation, its shortcomings are similar to the above-mentioned traditional tsunami offshore wave problem, the shortcomings of the measurement, that is, the rapid calculation of key areas in the early stage of the tsunami may occur The tsunami wave height at the point location and the tsunami overflow range. Furthermore, since the near-shore region is different from the simulation of the outer region of the outer sea, the nonlinear effect of the near-field region cannot be ignored, and it must be calculated with a smaller numerical grid, so the calculation of the far-field range of the above-mentioned outer sea is More time consuming and less computational efficiency. Therefore, the tsunami instant prediction of the present invention 201111826 system utilizes an analytic solution under a uniform gradient* to replace the current calculation method. The computational concept of the nearshore computing module 4 of the present invention is expressed by the following formula (2.1): = 2[\y{b)G{b,a,X)db +\lP{b)Gx{b, a^)db\ .......(ϋ ) where G is the analytical Green's function (AGF); Μσ, Μ is the total energy; is the new coordinate system; corpse (nine) is the starting waveform condition of a certain position, also It can be expressed as Xixi; the corpse (nine) is the initial flow velocity at a certain point; and the distance under the coordinates. Equation (2.1) can use the library software or the self-written special program gas to perform the calculation. Therefore, only the initial waveform condition and flow rate condition are needed, and the analytical Green's function (AGF) is used for numerical integration, differentiation, and finally the coordinates are used. The conversion yielded a tsunami flooding range and an up-going wave height. If there is a top height data of the coastal embankment as shown in Fig. 4, it can automatically judge whether the tsunami has crossed the embankment according to the relationship between the tsunami and the top height of the coastal levee. In addition, the nearshore computing module 4 of the present invention calculates the waveform along the longitude and the velocity distribution, that is, the initial numerical condition required is a "space" distribution. However, the water level data calculated by the offshore wave height calculation module 3 is the time series data of the "time", so the two must be appropriately converted. In other words, there must be an appropriate way to convert time series data into spatially distributed coordinates. The nearshore tracing calculation of the tsunami instant warning system of the present invention 201111826 The module 4 can be converted by using any of the following two methods, one is to use the water depth of the point position to perform coordinate conversion; the other is to use the Green's function Coordinate conversion. The two coordinate conversion methods are described as follows: The coordinate conversion using the water depth at the point position is to calculate the wave velocity by using the water depth at the point position, and the wave velocity is multiplied by the horizontal axis value (time value) of the time series water level to obtain the distance value. It can be expressed by the following formula (2.2): X — Ct — -\Jght Gate where λ: is the distance corresponding to each time axis; C is the wave velocity; ί is the time of the time series water level data; The depth of the water; and g is the acceleration of gravity. In this way, the time series water level data can be converted into spatial coordinate distribution values to obtain the values of the tsunami flooding range and the upstream wave height.

請參照第5圖所示,另一種方式是利用格林函數進 行座標轉換,考慮一海嘯長波沿斜坡(坡度為α)上之傳 遞,該轉換之主要目的是將該點位置之時間序列資料換 成外海的波形,其係可利用下列公式(2.3)、(2.4)表示: Τ2 1 .(2.3) ay.t xg η(χ) = η(ί)[- 4 _L 4_CC j 4 .(2.4) 其中尽為外海波源之波高;足為特定點位置之波高; 17 201111826 名及4分別為特定點位置及外海波源之對應水深;夕⑺ 為外海波源之水位時間序列資料;〖是水位記錄時間; α為坡度;:^及&分別為特定點位置及外海波源之離岸 距離;之為離岸距離Xm處之水深;及^ 為經由公式(2.4) 轉換後的水位資料。藉此,該近岸溯上計算模組4即可 計算出特定點位置(如茄萣、永安、彌陀…等其中之一) 之近岸區域之海嘯溯上高度及海嘯溢淹範圍等水位資 料,並自動判斷是否海嘯可能產生越波,如第2B圖所 示,上述結果將顯示於該視窗操作介面2。 簡言之,請參照第1、2A及2B圖所示,本發明較 佳實施例之海嘯即時預警方法即是包含下列主要步 驟:在地震發生初期,藉由一遠端資料擷取模組1自至 少一遠端資訊來源擷取相關地震資訊參數,或藉由操作 人員Γ手動自行輸入相關地震資訊參數,其中該相關地 震資訊參數輸入至一視窗操作介面2 ;經由一外海波高 計算模組3利用互逆格林函數(RGF)處理該相關地震資 訊參數,以快速計算出一特定點位置之水位時間序列資 料,以判斷海嘯最大波高及海嘯到達時間,並將結果顯 示於該視窗操作介面2 ;以及,經由一近岸溯上計算模 組4利用解析格林函數(AGF)處理該水位時間序列資 料,並經由座標轉換,以快速計算出成該點位置之海嘯 溯上高度及海嘯溢淹範圍,並自動判斷海嘯是否越波 (如模塊5所示),且將計算結果(如模塊6所示)呈現顯 示於該視窗操作介面。 201111826 如上所述,相較於習用海嘯計算模式通常進行大規 模平面之計算,以致於計算效率過於低落,且其電腦設 備成本過高而準備不易,同時存在無法用以建立自身之 海嘯評估或預警機制等缺點,第丨至5圖之本發明藉由 使用互逆格林函數等適當的計算理論,並以資料庫^概 念來計算海嘯發生時,特定重點區域可能產生之最大波 高、到達時間、溯上高度、溢淹範圍及是否越波等海嘯 # 災害評估項目,因此有利於大幅提升計算效率及預警時 效,以增加早期海嘯預警之可行性,並降低海嘯災害造 成的損失程度。同時,本發明可廣泛應用於建構本土性 之海嘯預警系統,並可將系統整合為視窗化介面,且僅 需個人電腦簡單設備即可操作使用,因此有利於提高使 用便利性及降低預測成本與設備需求。 雖然本發明已以較佳實施例揭露,然其並非用以限 制本發明,任何熟習此項技藝之人士,在*脫離本發明 暑 之精朴,當可作各種更_修飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖.本發明較佳實施例之海嘯即時預警方法及其系 統之方塊示意圖。 〃 第2A及2B圖:本發明較佳實施例之海嗜即時預馨系 統之視窗操作介面之示意圖。 ° 第3Α及3Β圖··傳統格林函數及本發明互逆格林函數 201111826 的波源與接收點的示意圖。 第4圖:本發明較佳實施例之外海波高計算模組自動判 斷海嘯是否產生越波之示意圖。 第5圖:本發明較佳實施例之近岸溯上計算模組4將時 序列水位資料轉換成空間座標分佈數值之示意圖。 主要元件符號說明 1 遠端資料擷取模組 Γ 操作人員 2 視窗操作介面 3 外海波高計算模組 4 近岸溯上計算模組 5 判斷是否越波 6 計算結果呈現 a 坡度 dx ' d2 水深 GF 格林函數 GF; 逆向格林函數 h 水深 尽、 h2 波南 ^ (x, t) 起始波形條件 r 接收點Please refer to Figure 5, another way is to use the Green's function for coordinate transformation, consider the transmission of a tsunami long wave along the slope (slope α), the main purpose of the conversion is to replace the time series data of the point position with The waveform of the outer sea can be expressed by the following formulas (2.3) and (2.4): Τ 2 1 . (2.3) ay.t xg η(χ) = η(ί)[- 4 _L 4_CC j 4 . (2.4) The wave height of the offshore wave source is sufficient; the wave height is the position of the specific point; 17 201111826 name and 4 are the specific point position and the corresponding water depth of the outer sea wave source; the evening (7) is the water time time series data of the outer sea wave source; 〖is the water level recording time; For the slope;:^ and & are the specific point location and the offshore distance of the offshore wave source; the water depth at the offshore distance Xm; and ^ is the water level data converted by the formula (2.4). Thereby, the nearshore computing module 4 can calculate the water level data such as the tsunami up-height and the tsunami overflow range of the near-shore area of a specific point position (such as one of the eggplant, Yongan, and Amitabha). And automatically determine whether the tsunami may generate more waves, as shown in Figure 2B, the above results will be displayed in the window operation interface 2. Briefly, referring to Figures 1, 2A and 2B, the tsunami instant warning method of the preferred embodiment of the present invention comprises the following main steps: in the early stage of the earthquake, a remote data acquisition module 1 is used. Obtain relevant seismic information parameters from at least one remote information source, or manually input relevant seismic information parameters by an operator, wherein the relevant seismic information parameters are input to a window operation interface 2; via an outer sea wave height calculation module 3 The reciprocal Green's function (RGF) is used to process the relevant seismic information parameters to quickly calculate the water level time series data of a specific point position to determine the maximum wave height and tsunami arrival time of the tsunami, and display the result in the window operation interface 2; And, through a nearshore computing module 4, the water level time series data is processed by an analytical Green's function (AGF), and coordinate conversion is performed to quickly calculate a tsunami trace height and a tsunami flooding range at the point position. And automatically determine whether the tsunami is overwhelming (as shown in module 5), and present the calculation result (as shown in module 6) to the window operation interface. surface. 201111826 As mentioned above, the calculation of large-scale planes is usually performed compared to the conventional tsunami calculation mode, so that the calculation efficiency is too low, and the cost of the computer equipment is too high to prepare, and there is a tsunami assessment or early warning machine that cannot be used to establish itself. Disadvantages, such as the system of Figures 丨 to 5, by using appropriate computational theories such as reciprocal Green's function, and using the database concept to calculate the maximum wave height, arrival time, and traceability that may occur in a particular key area when a tsunami occurs. The tsunami # disaster assessment project, such as the upper altitude, the flooding range and whether it is a wave, is conducive to greatly improving the calculation efficiency and early warning time to increase the feasibility of early tsunami warning and reduce the damage caused by the tsunami disaster. At the same time, the invention can be widely applied to construct a local tsunami warning system, and can integrate the system into a windowed interface, and can be operated only by a simple device of a personal computer, thereby facilitating the convenience of use and reducing the prediction cost. Equipment requirements. Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the present invention, and anyone skilled in the art can deviate from the simplicity of the invention, and can make various modifications. The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a tsunami instant warning method and a system thereof according to a preferred embodiment of the present invention. 〃 2A and 2B are schematic views of a window operation interface of the sea-like instant pre-supplement system of the preferred embodiment of the present invention. ° Fig. 3 and Fig. 3 · Schematic diagram of the wave source and the receiving point of the traditional Green's function and the reciprocal Green's function of the present invention 201111826. Figure 4: In addition to the preferred embodiment of the present invention, the Sea Wave Height Calculation Module automatically determines whether the tsunami produces a more frequent waveform. Fig. 5 is a schematic diagram showing the conversion of time-series water level data into spatial coordinate distribution values by the nearshore tracking module 4 of the preferred embodiment of the present invention. Main component symbol description 1 Remote data acquisition module Γ Operator 2 Window operation interface 3 Offshore wave height calculation module 4 Nearshore up calculation module 5 Determine whether the wave 6 calculation result presents a slope dx ' d2 water depth GF Green's function GF; inverse Green's function h water depth, h2 Bonan ^ (x, t) starting waveform condition r receiving point

si、s2、s3、s4...si 未知波源點位 Χι ' xm 離岸距離 20Si, s2, s3, s4...si unknown source point Χι ' xm offshore distance 20

Claims (1)

201111826 七、申請專利範圍: 1. 一種海嘯即時預警方法,其包含: 在地震發生初期,藉由一遠端資料擷取模組自至少一 遠端資訊來源擷取相關地震資訊參數,或藉由操作人 員手動自行輸入相關地震資訊參數,其中該相關地震 資訊參數輸入至一視窗操作介面; 經由一外海波高計算模組利用互逆格林函數處理該 相關地震資訊參數,以快速計算出一特定外海點位置 之水位時間序列資料,以判斷海嘯最大波高及海嘯到 達時間,並將結果顯示於該視窗操作介面;及 經由一近岸溯上計算模組利用解析格林函數處理該 水位時間序列資料,並經由座標轉換,以快速計算出 一特定近岸點位置之海嘯溯上高度及海嘯溢淹範 圍,並自動判斷海嘯是否越波,且將結果顯示於該視 窗操作介面。 2. 如申請專利範圍第1項所述之海嘯即時預警方法,其 中該遠端資訊來源為至少一遠端網站或至少一遠端 感測器。 3. 如申請專利範圍第1項所述之海嘯即時預警方法,其 中該相關地震資訊參數選自斷層參數、地震矩規模、 震源深度、滑移方向、傾斜角度、滑移角度、震央緯 度、震央經度或其組合。 4. 如申請專利範圍第3項所述之海嘯即時預警方法,其 中該斷層參數包含斷層長度、斷層寬度及滑移量。 21 201111826 5’如申喷專利範圍第i項所述之海嘯即時預警方法,其 中該遠端資料掏取模組或操作人員提供該斷層參 數’且該視窗操作介面依據該斷層參數自動產生該地 震矩規模。 6·如申明專利範圍第1項所述之海嘯即時預警方法,其 t該遠端資_取模組或操作人S提供該地震矩規 模,且該視窗操作介面依據該地震矩規模自動產生該 斷層參數。 7.201111826 VII. Patent application scope: 1. A tsunami instant warning method, which comprises: extracting relevant seismic information parameters from at least one remote information source by using a remote data extraction module at an early stage of an earthquake, or by The operator manually inputs relevant seismic information parameters, wherein the relevant seismic information parameters are input to a window operation interface; and the relevant seismic information parameters are processed by an external sea wave height calculation module using a reciprocal Green's function to quickly calculate a specific outer sea point. The water level time series data of the position is used to determine the maximum wave height of the tsunami and the arrival time of the tsunami, and the result is displayed in the window operation interface; and the water level time series data is processed by using a parsing Green's function through a nearshore tracing calculation module, and Coordinate conversion to quickly calculate the tsunami trace height and tsunami flooding range of a specific nearshore point location, and automatically determine whether the tsunami is overwhelming and display the results in the window operation interface. 2. The method of instant tsunami warning according to claim 1, wherein the remote source of information is at least one remote website or at least one remote sensor. 3. For example, the tsunami immediate warning method described in claim 1 is characterized in that the relevant seismic information parameters are selected from fault parameters, seismic moment scale, focal depth, slip direction, tilt angle, slip angle, epicenter latitude, and epicenter Longitude or a combination thereof. 4. The tsunami immediate warning method described in claim 3, wherein the fault parameter includes a fault length, a fault width, and a slip amount. 21 201111826 5 'The tsunami instant warning method as described in item ith of the patent application scope, wherein the remote data acquisition module or the operator provides the fault parameter' and the window operation interface automatically generates the earthquake according to the fault parameter Moment size. 6. The method for promptly detecting the tsunami according to claim 1 of the patent scope, wherein the remote resource acquisition module or the operator S provides the seismic moment scale, and the window operation interface automatically generates the earthquake moment scale according to the seismic moment scale Fault parameters. 7. 如申明專利範圍第1項所述之海嗔即時預警方法,其 中該互逆格林函數包含公式(1.1)、(1.2)及(1,3): 接收點r之水位/波源s之初始水位..... /1 1 ^ ….·(1.2) …..(1.3) GF;=GF;.............. Η^=ΣΣ(〇Κ.,*Ηγ1) r=l ΜFor example, the instant warning method of the sea otter described in claim 1 wherein the reciprocal Green's function includes formulas (1.1), (1.2), and (1, 3): the initial water level of the water level/wave source s of the receiving point r. .... /1 1 ^ ....·(1.2) .....(1.3) GF;=GF;.............. Η^=ΣΣ(〇Κ.,*Ηγ1 ) r=l Μ 其中公式(1.3)的\為波源s在時間t的水位高度;% 為各接收點r點在時間t的格林函數GF ; 為各接 收點r的初始水位高度;#為所有接收點Γ的總數; 及Μ為主震發生次數。 如申清專利範圍第1或7項所述之海嘯即時預警方 法’其中該解析格林函數包含公式(2.1): <Ρ(σ,λ) = 2[Γ F(b)G(b,a,A)db + Γ P(b)GAb^U)db] ° .........(2.1) 其中G為解析格林函數(AGF);供化々為總能量;&七 為新座標系統;為某一點位置之起始波形條件, 22 201111826 等於夕(χ,y ;尸(¾)為某一點位置之起始流速;及6為 座標下之距離。 9.如申請專利範圍第8項所述之海嘯即時預警方法,其 中該座標轉換係使用公式(2.2): X = Ct =yj ghi 门 9、 其中JC即為每一時間軸所對應之距離;C為波速;/ 為時間序列水位資料之時間;/z為該點位置之水深;Where \ of formula (1.3) is the water level height of wave source s at time t; % is the Green's function GF at time t of each receiving point; the initial water level height of each receiving point r; # is the total number of all receiving points ; and the number of occurrences of the main shock. For example, the tsunami immediate warning method described in claim 1 or 7 of the patent scope includes the formula (2.1): <Ρ(σ,λ) = 2[Γ F(b)G(b,a , A) db + Γ P(b)GAb^U)db] ° ... (2.1) where G is the analytical Green's function (AGF); the supply is the total energy; & New coordinate system; the starting waveform condition for a certain point position, 22 201111826 is equal to the evening (χ, y; corpse (3⁄4) is the initial flow velocity at a certain point position; and 6 is the distance under the coordinate. 9. If the patent application scope The tsunami instant warning method according to item 8, wherein the coordinate conversion system uses the formula (2.2): X = Ct = yj ghi gate 9, where JC is the distance corresponding to each time axis; C is the wave velocity; Time of the time series water level data; /z is the water depth at the point location; 及g為重力加速度。 10.如申請專利範圍第8項所述之海嘯即時預警方法,其 中該座標轉換係使用公式(2.3)及(2.4):And g is the acceleration of gravity. 10. The tsunami immediate warning method described in claim 8 of the patent application, wherein the coordinate conversion system uses formulas (2.3) and (2.4): η{χ) = η(ί)[- (2.3) axt2 xg I-— (2.4) 其中A為外海波源之波高;尽為特定點位置之波高; 名及4分別為特定點位置及外海波源之對應水深;夕 (¾)為外海波源之水位時間序列資料;ί是水位記錄時 間;α為坡度;&及&分別為特定點位置及外海波源 之離岸距離;之為離岸距離〜處之水深;及為經 由公式(2.4)轉換後的水位資料。 11.如申請專利範圍第1項所述之海嘯即時預警方法,其 中該外海點位置為水深大於50公尺之岸外海域位 置。 23 201111826 12. 如申請專利範圍第1項所述之海嘯即時預警方法,其 中該海嘯最大波高係為海嘯第一波之波高。 13. —種海嘯即時預警系統,其包含: 一遠端資料擷取模組,用以在地震發生初期,立即由 至少一遠端資訊來源擷取相關地震資訊參數; 一視窗操作介面,用以接收、顯示及編輯該遠端資料 擷取模組擷取之相關地震資訊參數,或供操作人員手 動自行輸入相關地震資訊參數; 一外海波高計算模組,利用互逆格林函數處理該相關 地震資訊參數,以快速計算出一特定外海點位置之水 位時間序列資料,以判斷海嘯最大波高及海嘯到達時 間,並將結果顯示於該視窗操作介面;及 一近岸溯上計算模組,利用解析格林函數處理該水位 時間序列資料,並經由座標轉換,以快速計算出一特 定近岸點位置之海嘯溯上高度及海嘯溢淹範圍,以自 動判斷海嘯是否越波,並將結果顯示於該視窗操作介 鲁 面。 14. 如申請專利範圍第13項所述之海嘯即時預警系統, 其中該遠端資訊來源為至少一遠端網站或至少一遠 端感測器。 15. 如申請專利範圍第13項所述之海嘯即時預警系統, 其中該相關地震資訊參數選自斷層參數、地震矩規 模、震源深度、滑移方向、傾斜角度、滑移角度、震 央緯度、震央經度或其組合。 24 201111826 16. 如申請專利範圍第15項所述之海嘯即時預警系統, 其中該斷層參數包含斷層長度、斷層寬度及滑移量。 17. 如申請專利範圍第13項所述之海嘯即時預警系統, 其中該遠端資料擷取模組或操作人員提供該斷層參 數,且該視窗操作介面依據該斷層參數自動產生該地 震矩規模。η{χ) = η(ί)[- (2.3) axt2 xg I-— (2.4) where A is the wave height of the outer sea wave source; the wave height is the position of the specific point; the name and 4 are the specific point position and the outer sea wave source respectively Corresponding to the water depth; Xi (3⁄4) is the water level time series data of the offshore wave source; ί is the water level recording time; α is the slope; & and & are the specific point position and the offshore distance of the offshore wave source; The depth of the water; and the water level data converted by the formula (2.4). 11. An instant warning method for tsunami as described in claim 1 wherein the outer sea point is located at an offshore water level with a water depth greater than 50 meters. 23 201111826 12. As for the tsunami immediate warning method described in item 1 of the patent application scope, the maximum wave height of the tsunami is the wave height of the first wave of tsunami. 13. A tsunami instant warning system, comprising: a remote data capture module for extracting relevant seismic information parameters from at least one remote information source immediately after an earthquake; a window operation interface for Receiving, displaying and editing the remote seismic data acquisition module to retrieve relevant seismic information parameters, or for the operator to manually input relevant seismic information parameters; an external sea wave height calculation module, using the reciprocal Green's function to process the relevant seismic information Parameters to quickly calculate the water level time series data of a specific outer sea point position to determine the maximum wave height and tsunami arrival time of the tsunami, and display the results in the window operation interface; and a near-shore up-going calculation module, using the analytical Green The function processes the water level time series data and coordinates the coordinates to quickly calculate the tsunami trace height and tsunami flooding range of a specific nearshore point position to automatically determine whether the tsunami is overwhelming and display the result in the window operation. Lu noodles. 14. The tsunami instant warning system of claim 13 wherein the remote source of information is at least one remote website or at least one remote sensor. 15. The tsunami immediate warning system as described in claim 13 wherein the relevant seismic information parameters are selected from the group consisting of fault parameters, seismic moment scale, focal depth, slip direction, tilt angle, slip angle, epicenter latitude, and epicenter Longitude or a combination thereof. 24 201111826 16. The tsunami instant warning system according to claim 15 wherein the fault parameter comprises a fault length, a fault width and a slip amount. 17. The tsunami instant warning system according to claim 13 wherein the remote data acquisition module or operator provides the fault parameter, and the window operation interface automatically generates the earthquake moment scale according to the fault parameter. 18. 如申請專利範圍第13項所述之海嘯即時預警系統, 其中該遠端資料擷取模組或操作人員提供該地震矩 規模,且該視窗操作介面依據該地震矩規模自動產生 該斷層參數。 19. 如申請專利範圍第13項所述之海嘯即時預警系統, 其中該互逆格林函數包含公式(1.1)、(1.2)及(1.3): 接收點r之水位/波源s之初始水位..............(1.1) (1.2) (1.3) GF;=GF;.............. r=l /=1 其中公式(1.3)的為波源s在時間t的水位高度;G&, 為各接收點r點在時間t的格林函數GF ; 為各接 收點r的初始水位高度;#為所有接收點r的總數; 及Μ為主震發生次數。 20.如申請專利範圍第13或19項所述之海嘯即時預警系 統,其中該解析格林函數包含公式(2.1): F(b)G(b,a,A)db+[P(b)Gx(b,a,Z)db] 25 201111826 22,格林函數(層);9^;為總能量7 為新座標系統;為某一點位置之起始波,, 等於π Μ ; p_某-點位置之起始二%^件5 座標下之距離。 6為 21.如申請專利範圍第2〇項所述之海嘯即時預馨系統 其中該座標轉換係使用公式(2.2): ' X~Ct = yjght ........(2.2) 為波迷;^18. The tsunami instant warning system according to claim 13 , wherein the remote data acquisition module or an operator provides the seismic moment scale, and the window operation interface automatically generates the fault parameter according to the seismic moment scale . 19. The tsunami immediate warning system as described in claim 13 wherein the reciprocal Green's function comprises the formulas (1.1), (1.2) and (1.3): the initial water level of the water level/wave source s of the receiving point r.. ............(1.1) (1.2) (1.3) GF;=GF;..............r=l /=1 where formula (1.3 Is the water level height of the wave source s at time t; G&, is the Green's function GF at time t of each receiving point; is the initial water level height of each receiving point r; # is the total number of all receiving points r; The number of occurrences of the main earthquake. 20. The tsunami instant warning system according to claim 13 or 19, wherein the analytical Green's function comprises the formula (2.1): F(b)G(b, a, A) db+[P(b)Gx( b, a, Z) db] 25 201111826 22, Green's function (layer); 9^; is the total energy 7 is the new coordinate system; the starting wave of a certain point position, equal to π Μ; p_ some-point position The starting distance is 2% of the distance under the 5 coordinates. 6 is 21. The tsunami immediate pre-sin system described in the second paragraph of the patent application, wherein the coordinate conversion system uses the formula (2.2): 'X~Ct = yjght ........(2.2) is the wave Fan; ^ 其中Λ:即為每一時間轴所對應之距離;C 為時間序列水位資料之時間;/2為該點位置之水深· 及g為重力加速度。 22.如申請專利範圍第20項所述之海嘯即時預警系统, 其中該座標轉換係使用公式(2.3)及(2.4):Where Λ: is the distance corresponding to each time axis; C is the time of the time series water level data; /2 is the water depth at the point position and g is the gravitational acceleration. 22. The tsunami immediate warning system as described in claim 20, wherein the coordinate conversion system uses equations (2.3) and (2.4): axt2 η(χ) = η(ί)[--i (2.3) ~ + ^gx^,Axt2 η(χ) = η(ί)[--i (2.3) ~ + ^gx^, (2.4)(2.4) 其中坧為外海波源之波高;尽為特定點位置之波高; 4及4分別為特定點位置及外海波源之對應水深;夕 ft)為外海波源之水位時間序列資料;ί是水位記錄時 間;α為坡度;々及〜分別為特定點位置及外海波源 之離岸距離;之為離岸距離〜處之水深;及為經 由公式(2.4)轉換後的水位資料。 23.如申請專利範圍第13項所述之海嘯即時預警系統, 26 201111826 ' 其中該外海點位置為水深大於50公尺之岸外海域位 置。 24.如申請專利範圍第13項所述之海嘯即時預警系統, 其中該海嘯最大波高係為海嘯第一波之波高。Among them, the wave height of the outer sea wave source; the wave height of the specific point position; 4 and 4 are the specific point position and the corresponding water depth of the outer sea wave source; the eve ft) is the water level time series data of the outer sea wave source; ί is the water level recording time; It is the slope; 々 and ~ are the specific point position and the offshore distance of the offshore wave source; the water distance from the offshore distance ~; and the water level data converted by the formula (2.4). 23. The tsunami immediate warning system as described in claim 13 of the patent scope, 26 201111826 ' wherein the outer sea point is located at an offshore water level with a water depth greater than 50 meters. 24. The tsunami instant warning system described in claim 13 of the patent application, wherein the maximum wave height of the tsunami is the first wave of the tsunami. 2727
TW098133172A 2009-09-30 2009-09-30 Real-time tsunami warning method and system thereof TWI408403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098133172A TWI408403B (en) 2009-09-30 2009-09-30 Real-time tsunami warning method and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098133172A TWI408403B (en) 2009-09-30 2009-09-30 Real-time tsunami warning method and system thereof

Publications (2)

Publication Number Publication Date
TW201111826A true TW201111826A (en) 2011-04-01
TWI408403B TWI408403B (en) 2013-09-11

Family

ID=44909023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098133172A TWI408403B (en) 2009-09-30 2009-09-30 Real-time tsunami warning method and system thereof

Country Status (1)

Country Link
TW (1) TWI408403B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895358A (en) * 2022-07-13 2022-08-12 海南浙江大学研究院 Earthquake and tsunami rapid early warning method and system
CN114966854A (en) * 2022-07-28 2022-08-30 海南浙江大学研究院 Single-layer non-static pressure earthquake tsunami early warning system and method
TWI783533B (en) * 2021-06-18 2022-11-11 中華電信股份有限公司 Warning system for detecting height of sea waves
TWI786023B (en) * 2022-06-15 2022-12-01 逸奇資訊有限公司 Swell warning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512266B (en) * 2014-08-08 2015-12-11 Tainan Hydraulics Lab Nat Cheng Kung University Early assessment method of long-wave induced run-up heights
CN109375062B (en) * 2018-11-16 2019-10-25 海南电网有限责任公司电力科学研究院 A kind of transmission line of electricity single-ended traveling wave localization method for calibrating velocity of wave

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721486B2 (en) * 1995-04-21 1998-03-04 郵政省通信総合研究所長 Tsunami / sea condition monitoring and prediction device
JP4220486B2 (en) * 2004-03-30 2009-02-04 株式会社東芝 Earthquake Tsunami Prediction Monitoring System and Earthquake Tsunami Prediction Monitoring Method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783533B (en) * 2021-06-18 2022-11-11 中華電信股份有限公司 Warning system for detecting height of sea waves
TWI786023B (en) * 2022-06-15 2022-12-01 逸奇資訊有限公司 Swell warning system
CN114895358A (en) * 2022-07-13 2022-08-12 海南浙江大学研究院 Earthquake and tsunami rapid early warning method and system
CN114966854A (en) * 2022-07-28 2022-08-30 海南浙江大学研究院 Single-layer non-static pressure earthquake tsunami early warning system and method
CN114966854B (en) * 2022-07-28 2022-11-18 海南浙江大学研究院 Single-layer non-static pressure earthquake tsunami early warning system and method

Also Published As

Publication number Publication date
TWI408403B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Liu et al. Tsunami hazard and early warning system in South China Sea
Bilskie et al. Data and numerical analysis of astronomic tides, wind‐waves, and hurricane storm surge along the northern Gulf of Mexico
Hoshiba et al. Numerical shake prediction for earthquake early warning: Data assimilation, real‐time shake mapping, and simulation of wave propagation
TWI408403B (en) Real-time tsunami warning method and system thereof
Wang et al. Long-term hazard analysis of destructive storm surges using the ADCIRC-SWAN model: A case study of Bohai Sea, China
Lane et al. A probabilistic tsunami hazard study of the Auckland Region, Part II: inundation modelling and hazard assessment
Thomas et al. Influence of macroroughness on tsunami loading of coastal structures
Jingming et al. Tsunami hazard assessment along the Chinese mainland coast from earthquakes in the Taiwan region
Xiong et al. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations
Aulov et al. AsonMaps: A platform for aggregation visualization and analysis of disaster related human sensor network observations.
Liu et al. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea
Ren et al. Source inversion and numerical simulation of 2017 M w 8.1 Mexico earthquake tsunami
Feng et al. Assessment of tsunami hazard for coastal areas of Shandong Province, China
Xu et al. Historical earthquakes, tsunamis and real-time earthquake monitoring for tsunami advisory in the South China Sea region
Nayak et al. Addressing the risk of the tsunami in the Indian Ocean
Li et al. Numerical study of storm surge-induced coastal inundation in Laizhou Bay, China
Guiles et al. Forecasts of Wave-induced coastal hazards in the United States Pacific Islands: past, present, and the future
Rey et al. Influence of hurricane wind field variability on real-time forecast simulations of the coastal environment
Thio et al. Probabilistic tsunami hazard analysis
Hirakawa Wave energy resource assessment around Kyushu based on numerical hindcast
Jing et al. Numerical simulation of march 11, 2011 honshu, Japan tsunami
Xiong et al. High-performance simulation of tsunami inundation and impact on building structures
Kim et al. Development of real-time forecasting technology for coastal disaster analysis
CN116540300B (en) Probabilistic tsunami disaster analysis method
CN107766409A (en) Municipal pipeline management system based on technology of Internet of things

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees