TW201110283A - Diamond based semiconductor device and its associated method - Google Patents

Diamond based semiconductor device and its associated method Download PDF

Info

Publication number
TW201110283A
TW201110283A TW98130505A TW98130505A TW201110283A TW 201110283 A TW201110283 A TW 201110283A TW 98130505 A TW98130505 A TW 98130505A TW 98130505 A TW98130505 A TW 98130505A TW 201110283 A TW201110283 A TW 201110283A
Authority
TW
Taiwan
Prior art keywords
layer
diamond
semiconductor device
bottom semiconductor
substrate
Prior art date
Application number
TW98130505A
Other languages
Chinese (zh)
Inventor
jian-min Song
Original Assignee
jian-min Song
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by jian-min Song filed Critical jian-min Song
Priority to TW98130505A priority Critical patent/TW201110283A/en
Publication of TW201110283A publication Critical patent/TW201110283A/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention provides a diamond based semiconductor device and its associated method. One of the method comprises: forming a epitaxial layer of single crystal silicon carbide on a single crystal silicon growth substrate; forming a epitaxial diamond layer on the silicon carbide layer; forming a silicon layer on the diamond layer; using a silicon dioxide surface of silicon carrier substrate to combine the silicon layer; and removing the silicon growth substrate for exposing the silicon carbide layer. On the other hand, a semiconductor layer is deposed on the silicon carbide layer. The semiconductor layer can be deposited through epitaxial method.

Description

201110283 六、發明說明: 【發明所屬之技術領域】 尤指一種鑽石底半導 明涉及電子以及材料 本發明係屬於一種半導體夺置, 體裝置以及其相關方法。因此,本t 科學領域。 【先前技術】 在許多已開發國家,大邱八a R▲上 八。卩分居民認為能將電子裝置整 合於他們的生活之中。如此料番 子電子裝置越來越多使用以及 依賴使得人們要求電子裝置越來料並且㈣越快一電 子裝置的電路增進了速度並且減少了尺寸,對於這類裝置 的散熱變成了棘手的問題。 電子裝置&包含印刷電路板,在印刷電路板上整合 連接有電子元件以便讓電子裝置能執行所有功能。這些電 子元件,諸如處理器、電晶體、電阻、電容以及發光二極 體(LED)等等,產生大量的熱量。當熱量不斷增加時,將會 對電子元件造成各種熱量問題。大量的高熱能夠影響電; 裝置的可靠度’甚至造成電子裝置故障,例如造成電子元 件本身的燒毀或是短路’更甚者則會擴散殃及電路板表面 其他電子元件。因此,熱量的增高最終會影響電子裝置的 運作壽命。這對具有高功率以及高電流要求的電子元件以 及承載這些電子元件的印刷電路板而言是個重大問題。 電子裝置使用了諸如風扇、散熱器、電熱致冷晶片 (Peltier)以及水冷裝置等各式各樣的散熱裝置來減少不 斷增加的發熱率。當不斷提升的速度與消耗功率提高了發 熱率,這類散熱裝置通常必須提升尺寸並且必須供給電力, 201110283 以便能夠有效地進行散熱。舉例而言,風扇必須增加其尺 寸以及速度以便增加風量’散熱器必須增加其尺寸以便辦 加熱容量以及表面積。然而對於小型電子裝置而言,其不 僅要求避免這些散熱裝置的體積增加,更可能要大量的縮 小其體積。 因此,本發明提供方法以及其裝置以在對電子裝置提 供適當的散熱功效時’能同時將此類裝置上的散熱裝置的 體積以及耗電最小化。 【發明内容】 因此,本發明提供一種具有增進散熱功效的半導體裝 置以及其製造這類裝置的方法。在一方面,舉例而言,本 發明提供一種鑽石底半導體基材。該半導體基材可包含一 矽載具基材,該矽載具基材具有一二氧化矽表面,在該矽 載具基材的二氧化矽表面上耦合有一矽層,在該矽層上耦 合有一鑽石廣,以及在該鑽石層上以取向附生方式耦合有 一單晶碳化石夕層。 在本發明另一方面,該半導體裝置可包含有—耦合至1 該碳切層的半導體層。透過各種應用於沉積此種層^ 的技術’忒半導體材料的晶格可以取向附生方式耦合或四 配於·^故化妙層的晶格。此外,該半導體層可為—單晶 或者至少實質上為單晶體。 a 可依據半導體裝置所預計的用途而利用多 料來建構此一半導俨驻罢 m 1 導體裝置。舉例而言,在一方面半導體菜 置材料可包含有至少-石夕、碳化"化錄 '坤化鎵、, 化鎵、錯 '硫化鋅、磷化鎵、録化鎵、射化鎵、磷化銘、 201110283 石申化紹、坤化鎵紹、氮化錄、氮化领、氮化銘、碎化铜、 磷化銦、銻化銦、氮化銦以及其混合物。在另一特定方面, 舉例而言’該半導體層可包含氮化鎵。 根據本發明某些方面,該鑽石層可依據該半導體裝置 的用途不同而作出廣泛的改變。舉例而言,在一方面該 鑽石層可為一單晶體或者大致上為一單晶體。在另一方面, 及鑽石層可為—無支撑力鑽石層。此外,在某些應用之中, 該鑽石層可大致為透明,以便有利於這些應用。 本發明亦提供製造各種半導體裝置的方法。在一方面, 舉例而s,本發明提供一種一製造半導體基材的方法。此 -製造基材的方法可包含:在一單晶矽生長基材上形成有 一取向附生單晶碳化矽層;在該碳化石夕層上形成有一取向 附生鑽石層;在該鑽石層上形成有一矽層;令該矽層與一 石夕載具基材的二氧化_表面相結合;以及去除該碎生長基 材以便露出該碳化矽層。 可使用各種技術來將該鑽石層取向附生沉積或是形成 在該碳化矽層。舉例而言’在一方面,形成取向附生鑽石 層的步驟可進-步包含:使—單晶切生長基材的生長基材 由矽層逐漸轉化為碳化矽層,以便形成該碳化矽層;以及 將依石反化石夕曰曰圓&生長基材逐漸轉化為鑽石卩便形成該鑽 石層。在另一方面,形成取向附生鑽石層的步驟可進一步 包含.在-單晶矽生長基材上形成有一保角無晶鑽石層以 便使遠石反化石夕層形成在單晶石夕生長基材與保角無鑽石層之 p日1,移除6亥保角無晶鑽石層以便露出該碳化矽層;以及以 取向附生方式在該碳化矽層上形成一鑽石層。 201110283 在另一方面,本發明提供一製造發光二極體裝置的方 法。此方法可包含:製造一如上所述的半導體基材;在該 半導體基材的碳化矽層上依序形成有複數氮化物發光二極 體(Nitride LED)層;在該複數氮化物層上耦合一鑽石支樓 基材以令該複數氮化物層位於該鑽石層與該鑽石支撐層之 間。在又一方面,本發明方法可進一步包含:將一 p型電 極電搞合到該複數氮化層的一第一端;以及將一 η型電極 電耦合到該複數氮化層的一第二端。在一特定方面,該將 Ρ型電極電耦合到該複數氮化層的一第一端的步驟可進 一步包含在§亥鑽石層中加入删以形成ρ型半導體。 在某些方面’該鑽石層在功效上可作為透光部以令氮 化層所產生的光線可穿透該鑽石層。在這些例子中,可移 除矽載具基材以及矽層以便露出該鑽石層,藉此可令發光 一極體的光線穿透該鑽石層。 在此先以較寬廣方式描述本發明各項特徵,以使讀者 忐更了解之後本發明的詳細描述。本發明其餘特徵將透過 下列的本發明詳細說明與所附的申請專利範圍,或者透過 實施本發明來清楚呈現。 【實施方式】 定義 在敘述與主張本發明時,將會根據下列所提出的定義 來使用下列的用詞。 「一」以及「該」等單數冠詞包含複數的意義,除非 文中明確指出不同的使用方法。因此,舉例而f,「一埶 Λ、」一詞包含了 一或多個這類的熱源,且「該鑽石層」一 201110283 詞包含了一或多個層結構。 「熱轉移」、「熱速率」以及「熱傳輸」等用詞可相 互交替使用,是用於指出將熱量從—高溫區域轉移到—低 溫區域的速率。熱量轉移速率可包含任何本發明所屬領域 中具有通常知識者已知的熱量傳輸機制,例如而不受限於 傳導性、對流性以及轄射性等等。 文中所使用的「散發,—古司1ό π & 月又赞」 】疋礼自一固態材料轉移到 空氣的熱或是光轉移程序。 文中所使用的「發光表面」一詞是指一裝置或物體的 一表面,光自該表面散發。光可包含可見光或者在紫外線 光譜内的光。發光表面的例子可包含而不限制於一發光二 極體上的氮化物層,或者一個將與發光二極體結合的半導 體層結構上的氮化物層’光則自該氮化物層發出。 文中所使用的「氣相沉積」一詞是指透過使用氣相沉 積技術而形成的材料。氣相沉積程序可包含任何而不受限 於化學氣相沉積(Chemical Vapor Deposition, CVD)以及物 理氣相沉積(Physical Vapor Deposition, PVD)等程序。本 發明所屬技術領域具有通常知識者可實施各個氣相沉積方 法的廣泛的各種不同態樣。氣相沉積方法的例子包含熱燈 絲化學氣相沉積、RF化學氣相沉積、雷射化學氣相沉積 (LCVD)、雷射脫落(Laser Ablation)、同構形鑽石塗佈程序 (Conformal Diamond Coating Processes)、有機金屬化學 氣相沉積(MetahOrganic CVD, M0CVD)、濺錢、熱蒸發物 理氣相沉積、電離金屬物理氣相沉積(Ionized Metal PVD, IMPVD)、電子束物理氣相沉積(Electron Beam PVD, 201110283 EBPVD)、反應性物理氣相沉積等方法。 文令所使用的「化學氣相沉積」或是「cvd」等用气 是指任透過化學方式將蒸氣中的鑽石粒子沉積於-表面i 的方法。此領域中有多種已知的化學氣相沉積技術。 文中所使用的「物理氣相沉積」或是「pvD」等 =指任透過物理方式將蒸氣中的鑽石粒子沉積於一表面: 的方法。此領域中有多種已知的物理氣相沉積技術。 文中所使用的「鑽石,—喟θ ^ 構,該結構中碳原子血碳科:^曰一種碳原子的結晶結 …原子與奴原子透過四面體配位晶格方式鍵 結’該四面體配位鍵紝即县p + & I。即疋已知的sP3鍵結。具體而言, '原子受到其他四個碳原子所環繞而鍵結,四個周圍的 分別位於正四面體的頂點。此外,…下,任兩 广2 :間的鍵長為U4埃’且任兩鍵之間的夾角為⑽ 度2 8分1 6秒,實驗么士里古士丈A , .、°果有極為小微差異但可忽略。鑽石 的,,、。構與性質,包括其物理與電 m J 質,均為該本發明所 屬技術領域具有通常知識者所知悉。 四面^中所使料「扭曲四面體配位」—詞是指碳原子的 四面體配位鍵結為不規則狀, 次耆偏離刖述鑽石的正常四 此種扭曲型態通常導致其t 一些鍵長加長而其 餘的鍵長縮短,並且使得鍵之間㈣度改變。此外 四面體改變了碳的特性斑性 /、『生貝,使其特性與性質實際上介 二p配位鍵結的碳結構(例如鑽石)與以sp2配位鍵結 鍵^例如石墨)之間。其中一個具有以扭曲四面體 鍵^的碳原子的材料便是無晶鑽石。 文中所使用的「類鑽碳」一詞是指一以主碳原子為主 201110283 要成分的含碳材料,該含碳材料中的大量碳原子以扭曲四 面體配位鍵結。儘管化學氣相沉積程序或其他程序可用於 形成類鑽碳,類鑽碳亦可透過物理氣相沉積程序而形成。、 尤其’類鑽碳材料t可含有各種作為雜f或摻雜物的元素, 這些元素可包含而不受限於氫、㉟、磷、硼、氮以 鎮等等。 文中所使用的「無晶鑽石」一詞是指一種類鑽碳1 類鑽碳主要元素為碳原且大多數的碳原子以扭曲四: 體配位鍵結。在-方面,無晶鑽石中的碳原子數量可為佔 總量的至少大、約90%,且這些碳原子之中的至少2〇%以杻 曲四面體配位鍵結。無晶鑽石具有高於錢石的原子密度(鑽 石密度為176原子/每立方公分⑼·/…)。此外無 晶鑽石以及鑽石材料在熔化時體積收縮。 ”、 文中所使用的「無支撐力(Adynamjc)」_詞是指—種 層結構,該層結構無法獨立維持其結構以及/或是強度。 舉例而言,在缺乏—M a. js 4-' , ^ 之棋具層或—支撐層的情況下,一無支 樓力鑽石層將會在移該除模具面或是鑽石面之後捲ι或是 變形。儘管有許多原因導致—層結構具有無支擇力的性質, t —方面’導致無支標力性質的原因在於該層結構非常的 薄0 以及「生長表面」等用詞可 化學氣相沉積程序之中,一 面。 文中所使甩的「生長側」 相互交替使用’並且是指在一 薄膜或是一層結構上生長的表 撐 表 文中所使用的「基材」-詞是指-種支撐表面 面可連接各種材料以藉此形&一半導體裝置或 έ玄支 鑽石 201110283 底+導體裝置。該基材可具有任何能夠達成特定結果的外 形、厚度或材料’且包含而不限制於金屬、合金、陶瓷以 及其混合物。此外’在某些方面,該基材可為—現有的半 導體裝置或是晶圓,或者可為一種能夠結合—適當裝置的 #文中所使用的「大致上」一詞是指一作用、特徵、性 貝狀匕、、纟。構、物品或結果之完全或近乎完全的範圍戋 =度。舉例而言,一物體「大致上」被包覆,其意指被 完全地包覆’或者被幾乎完全地包覆。與絕對完全程度相 差之部確可允許偏差程度,係可在某些例子中取決於說明 書内文。然而,一般而言,接近完全時所得到的結果將如 同在絕對且徹底完全時得到的全部結果一般。當「大致上」 被使用於描述完全或近乎完全地缺乏一作用、特徵、性質、 狀態、結構、物品或結果時,該使用方式亦是如前述方式 而同等地應用%。舉例而言’一「大致上不包含」粒子: 組成物’係可完全缺乏粒子,或是近乎完全缺乏粒子而到 達如同其完全缺乏粒子的程度。換言之,只要一「大致上 不包含」原料或元件的組成物不具有可被量測得的效果., 該組成物實際上仍可包含這些原料或是元件。 文中所使用的「大約」是指給予一數值範圍之端點彈 性,所給予的數值可高於該端點少許或是低於該端點少許。 文中所使用的複數物品、結構元件、組成員件以及/ 或材料,可以一般列表方式呈現以利芕便性。然而,該等 列表應被解釋為:該列表的各成員係被獨立的視為分離且 獨特的成員。因此,基於此列表的成員出現在同一群組中 201110283 而沒有其他反面的指示,此列表^的各成員均不應被解釋 為與同列表中的任何其他成員相同的。 派度、數量以及其他數值資料可以一範圍形式表達或 呈現。要了解的是’此範圍形式僅僅為了方便與簡潔而使 用,因此該範圍形式應該被彈性地解釋為不僅包含了被清 楚描述以作範圍限制的數值,亦包含在該範圍中的所有^ 立數值以及子範圍。因&,在此數值範圍中分別包含了獨 立數值例如2,3及4,子範圍,例如1-3、2-4及3-5等 等,以及1、2、3、4及5。 相同的原則適用於作為最小值或最大值的單一數 值。此外,不論所描述範圍或特徵的幅度為何,都應 用這樣的解釋。 本發明 本發明係提供整合有鑽石層的半導體裝置以及其製造 此種裝置的方法。半導體裝置通常對散熱有很高的挑戰性, ,其是那些發光的半導體裝置。應注意的&,雖然下列大 2的敘述是針對例如發光二極體等發光裝置,本發明申 :利範圍的料被發光裝置所侷限,且文中所教示的内 令’、同樣能夠適用於其他類型的半導體裝置。 半導體裝置所產生的大部分熱量是在半導體層之中增 長,也因而影響了半導體裝置的效率。舉例 二極辦可目 ' 奴兀* -複數氮化層,這些氮化層被配置為可由一發 先表面發 線。由於發光二極體在電子裝置以及發光裝 電力中變的越來越重要,發光二極體持續發展而不斷增加 這二裝置典型的微小體積令散熱問題惡化,此 11 201110283 則使具有傳統鋁鰭片的散熱器因為自身笨重的性質而無法 對這些裝置有效地發揮散熱功效。此外,此類傳統散熱器, 若應用在發光二極體的發光表面,則會阻礙了光線的發散。 由於散熱器無可干涉氮化層或是發光表面的功能,它們通 常會被設置在光二極體以及—例如電路板等支撐結構之 間。這樣的散熱器位置相對於熱源累積處(即是發光表面 或以及氮化層)的位置較遠。 目刖已發現在發光二極體封裝之中形成一鑽石層後, 即便在高功率狀況下亦能有效對發光二極體進行散熱,且 同時能夠有效維持發光二極體封裝的小巧體積。此外,在 一方面一發光二極體的最大運作瓦數可能會低於以—鑽石 層對該發光二極體的半導體層吸熱的吸熱率,以便藉此令 該發光二極體在高於其自纟最大運作瓦數的運作瓦數下運 作。 此外,在會發光以及不發光的半導體裝置之中,由於 製造34些半導體裝置的材料具有相對差的導熱率,執量會 被阻塞於半導體層之中。此外,半導體層之間的晶格錯配 降低了導熱率’也因此進一步提高增熱率。本發明人已發 展出整合有鑽石層的半導體裝置,該鑽石層除了其他以外 的特性’還對該半導體裝置提供了增進的散熱性。此鑽石 層增加了橫向穿過半導體裝置的熱流動性以減少阻塞於半 導體層之中的熱量。此橫向的熱傳遞可有效地增進許多半 導體裝置的散熱性。此外’根據本發明某些方面,半導體 裝置的晶格匹配程度增加’因而進一步增進了半導體裝置 的政熱I·生此外,應注意的是鑽石層所提供的有益特性不 12 [S 1 201110283 僅僅在於較好的散熱性而6,因&本發明的範_不應僅揭 限在散熱性之上。 因此,在本發明一方面,其提供一種半導體基材。如 第1圖所示’此-基材可包切載具基材12,財載具基 材具有-二氧㈣表面14、_賴合於該梦載具基材12 的二氧化石夕表面14上的石夕層16、一輕合於該石夕層16的鑽 石層18以及一以取向附生方式而耦合於該鑽石層18的單 晶碳化㈣20。此外,如第2圖所示,該暴露的碳化石夕層 2〇提供-有用表面以令-半導體層22能夠透過取向附生 方式進行沉積在該表面上。碳切層2Q的單晶特性能夠有 利於晶格匹配的單晶半導體層22進行生長,藉此建構各種 半導體裝置。本發明範嗜涵蓋任何已知會產生熱量的半導 體裝置。帛導體裝置的特定的例子可為而不受限於發光二 極體、雷射二極體、聲波過攄器,例如表面聲波(Surface 丨CSAW)過遽器以及塊體聲波_k Acoustic Wave, BAW)過濾器以及積體電路(丨c)晶片等等。 第®顯示才艮據本發明特定方面來製造一半導體基 材的方法的部分步驟。提供—單晶石夕生長基材以供其他材 枓在該早晶石夕生長基材上沉積。雖然該矽生長基材不必要 是单晶結構’此種單晶晶格構造相較於非單晶基材而言, 可使所附加上的材料在沉積時有相對較少的晶格的錯配 (Mismatch)問題。在沉積之前徹底的清潔石夕生長基材以在 >儿積之刖,自晶圓上移除非έ士曰 非',〇日日狀的矽或是非矽粒子是有 益的,這些非結晶狀的石夕或是非石夕粒子可能會導致石夕生長 基材以及其上的沉積層之間的晶格錯配。本發明範嘴包含 13 201110283 任何可清理該矽生長基材的方法,然而,在一方面,該基 材可浸泡於氫氧化鉀之中並以蒸餾水透過超音波方式對該 基材進行清洗。 在清洗該矽生長基材34之後’矽生長基材上可沉積一 早晶碳化石夕32的取向附生層以及一取向附生鑽石層%, 並使該單晶碳切層32位於财生長基材34以及該鑽石 層之間36。該碳化石夕層可於沉積時與該鑽石層相分離,或 是可為該鑽石層沉積的結果,亦或是可於沉積時與該沉績 ==相互結合。舉例而言,該碳化碎層可為由料漸 反化為鑽石的程序的沉積結果,此例子會在稱後敛述。此 二可藉由在該矽生長基材上沉積一無晶鑽石層而在内部 創造该碳化矽層,此例子亦會在稍後敘述。 辦進且:^鑽石層36上沉積一硬層38。該梦層38 二Si 合到該鑽石層36的結合強度。該 I基材42具有一可結合到該矽層38的二氧 面 。在石夕載具積材42以晶圓結合方式結合到該…8之 後,可移除該矽生長基材34而露出誃浐 所述’該碳化矽層32可作為一生以 《 32。如上 沉積在該生長表面上。’ *表面以便令半導體材料 鑽石材料具有優異的導熱性 導體裝置的理相材料。# μ W使八成為整合到半 罝的L透過鑽石材料可 中轉移熱量的速度。應注意的是’本發明=導體裝置 熱量轉移理論。因此,在本發 。限於特定的 過將熱量轉移進入以及通過來面二广部分透 内部轉移熱量的速度。由於鑽;=半導體裝置 硬吳的熱傳導性質,熱量 201110283 可快速地橫向傳播通過鑽石層以及到達-半導體裝置的邊 緣在邊緣的熱量可更快速的排散到空氣之中或者排散到 周圍的散熱器或者半導體裝置的支樓架等結構之中。此外, 具有大部分面積暴露於空氣之t的鑽石層將會更快速地排 散正口有此鑽石層的裝置的熱量。由於鑽石的熱傳導性 大於-與該鑽石層熱耦合的半導體裝置層或其他結構的熱 傳導性,因此該鑽石層成為—散熱器。因&,該鑽石層吸 取了該半導體裝£層㈣懺生的熱量,並料些熱量以橫 向方式傳播並排散於該半導體裝置之外。此種加速熱轉移 速率的方式可導致半導體裝置具有更低的運作溫度。此外, 熱轉移速率的加速不僅僅冷卻一半導體裝置,更會降低在 空間上位於該半導體裝置附近的許多電子元件的熱負載。 在本發明某些方面,可將鑽石層的一部分暴露於空氣 之中。此種暴露的狀態可限制在某些例子中限制在只暴露 鑽石層的邊緣;或者可暴露該鑽石層大比例的表面積,例 如暴露鑽石層的其中一側。在此方面中,至少一部分透過 將熱量自鑽石層轉移到空氣中的方式,可達成半導體裝置 的熱量移除速率的加速效果。舉例而言,鑽石材料,例如 類鑽碳(Diamond-like Carbon, DLC)等,即便在低於 10〇〇c 的溫度’亦具有優異的熱發射率特性,因此鑽石材料能直 接轄射熱量到空氣中。含半導體裝置在内的多數其他材料 的導熱性優於熱輻射性。因此,半導體裝置可傳導熱量到 類鑽碳層’將熱量在類鑽碳層中橫向傳播,且接著沿著類 鑽碳層的邊緣或是其他外露的表面將熱量輻射到空氣之 中。由於類鑽碳的高導熱性以及高熱輻射性,由類鑽碳轉 201110283 移到空氣中的埶量榦 …菫轉移逮率可大於由半 氣中的熱量轉移速率。此 、轉移到空 熱罝轉移速率可*於山,* 』頌鑽敌層的 坭年了大於由半導體裝置 率。因此,類錯磁;® 虱旳熟里轉移速 .^ ._θ s可用做加速自該半導體層移除埶量的 速率,使得透過類镨球M u也θ 了 .、、、3:的 、頰鑽妷層的熱量轉移速率高 的熱量轉移速率或去古从丄 门、千導體本身 率。 次者问於由半導體到空氣中的熱量轉移速 如上所建議的,可使用各種鑽石材料來對—半 置提供熱量轉移速率的Λ、 ^ 羊的加速特性。這類鑽石材料的例子可 包含而不又限是鑽石、類鑽碳、無晶鑽石以及其結合等等。 應注意的丨,任何可用於對一半導體裝置降溫的^然或^ 造鑽石材料均在本發明範疇之内。 ^ ^應注意的是,下列敘述是關於鑽石沉積技術很一般的 討論’這些鑽石沉積技術可以或是未必會使用於特定鑽石 曰或應用且這些鑽石沉積技術可廣泛的介於本發明的各 種不同方面。—般而言,可用各種已知方法來形成鑽石, 这些方法包含各種氣相沉積技術。可使用任何已知的氣相 沉積技術來形成鑽石層。儘管可使用與氣相沉積法特性與 產物相近的任何方法來形成鑽石,最常見的氣相沉積技術 包含化學氣相沉積以及物理氣相沉積。在一方面,可使用 化學氣相 >儿積技術,例如熱燈絲、微波電漿、氫氧焰 (Oxyacetylene Flame)、RF 化學氣相沉積(RF-CVD)、雷射 化學氣相沉積(Laser CVD)、雷射脫落(Laser Ablation)、 同構形鑽石塗佈程序(Conformal Diamond Coating Processes)、有機金屬化學氣相沉積(Meta卜Organic CVD, [s 16 201110283 MOCVD)以及直流 電弧技術(Direct Current Arc Tech no log jes)專技術。血划沾几嚴 ^ + 〃、坦的化學沉積技術使用氣態反應 物來將鑽石或是類鑽碳 厌材科〉儿積為一層結構或一膜結構。 前述氣體可包含少量f女 卜产 (A約少於5% )的含碳材料,例如以 氫氣稀釋的甲按。太ϋαπ 本七月所屬技術領域具有通常知識者知 乂、各種化學氣相沉積程岸 _ 序的6又備與條件,亦知悉特別適用 於氮化硼層的程序。在 〜 另方面’可使用物理氣相沉積技 術,例如滅鎖、陰極電弧以及熱蒸發等等。此外,可使用 特f的沉積條件以調整類鑽碳、無晶鑽石或者是純鑽石等 所沉積材料的確切型璩。、 〜、應注思的是,咼溫會降低諸如發 光一極體等許多半導體^Γ σ μ 丁夕干等遐裝置的品質β必須小心翼 確保鑽石以低消方—' ,,n Μ 低酿方式,儿積,藉此避免鑽石於沉積時損壞的 問題。舉例而言,若半導體包含有氮化麵,可使用最多到 6〇〇 C的沉積溫度。在氮化鎵的例子中,最多到大約⑽〇 C均能保持層結構的熱穩定性。此外,可以不過度干涉鑽 石層的熱轉移或與半導體裝置發光表面的方法,透 (Braze)、膠合或是貼合等方式將預先形成的複數層結構固 定於半導體層或是半導體層的支撐基材上。 在一基材的生長表面上形成一選用的成核 (Nucleati —加強層u增進鑽石㈣沉積品質以及減少沉積 時間。特別是,可以透過沉積適用的晶核的方式來形成— 鑽石層,例如,在一基材的—鑽石生長表面上沉積—鑽石 晶核’接著透過氣相沉積技術令該晶核生長‘ LA, JL^ ’导膜或層 ,,-。構。在本發明一方面,在該基材上可塗佈— /开狀的成枝 加強層以增強鑽石層的生長。接著將鑽石晶核置放在气成 17 201110283 =加強層上’且透過化學氣相沉積來進行鑽石層的生長程 本發明所屬技術領域具有通常知識者可知 為成核加強材料的適用材料。在本發明一方面,兮^乍 刪可為-選自金屬、金屬合金、金屬化合物、加 =物形成鄉a「bide F〇「mer)以及其結合。201110283 VI. Description of the invention: [Technical field to which the invention pertains] In particular, a diamond bottom semiconductor relates to electrons and materials. The invention belongs to a semiconductor device, a body device and related methods. Therefore, this t scientific field. [Prior Art] In many developed countries, Daegu Ba A R ▲ is eight. Residents believe that they can integrate electronic devices into their lives. The increasing use and dependence of such electronic devices has led to the demand for electronic devices to be more and more, and (4) the faster the circuits of an electronic device have increased speed and reduced size, the heat dissipation of such devices has become a thorny problem. The electronic device & includes a printed circuit board on which electronic components are integrated to allow the electronic device to perform all functions. These electronic components, such as processors, transistors, resistors, capacitors, and light-emitting diodes (LEDs), etc., generate a large amount of heat. As heat increases, it creates various thermal problems with electronic components. A large amount of high heat can affect electricity; the reliability of the device' even causes malfunction of the electronic device, such as causing the electronic component itself to burn out or short-circuit, and even more, it will spread to other electronic components on the surface of the board. Therefore, the increase in heat ultimately affects the operational life of the electronic device. This is a significant problem for electronic components with high power and high current requirements as well as printed circuit boards that carry these electronic components. The electronic device uses a variety of heat sinks such as a fan, a heat sink, a Peltier, and a water cooling device to reduce the ever-increasing heat generation rate. When increasing speed and power consumption increase the heat rate, such heat sinks usually have to be sized and must be powered, 201110283 for efficient heat dissipation. For example, a fan must increase its size and speed to increase the amount of air. The radiator must be increased in size to handle heating capacity and surface area. However, for small electronic devices, it is not only required to avoid an increase in the volume of these heat sinks, but is also likely to be greatly reduced in size. Accordingly, the present invention provides a method and apparatus thereof that minimizes the volume and power consumption of the heat sink on such devices while providing appropriate heat dissipation to the electronic device. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a semiconductor device having improved heat dissipation efficiency and a method of fabricating the same. In one aspect, for example, the present invention provides a diamond-bottom semiconductor substrate. The semiconductor substrate may comprise a crucible carrier substrate having a cerium oxide surface, a ruthenium layer coupled to the ruthenium dioxide surface of the ruthenium carrier substrate, coupled to the ruthenium layer A diamond is widely distributed, and a single crystal carbonized stone layer is coupled to the diamond layer in an epitaxial manner. In another aspect of the invention, the semiconductor device can include a semiconductor layer coupled to the carbon cut layer. Through a variety of techniques applied to deposit such layers, the crystal lattice of the semiconductor material can be epitaxially coupled or tetragonally coupled to the crystal lattice of the layer. Further, the semiconductor layer may be - single crystal or at least substantially single crystal. a The semi-conductor m 1 conductor device can be constructed using a plurality of materials depending on the intended use of the semiconductor device. For example, on the one hand, the semiconductor vegetable material may include at least - Shi Xi, carbonized & "chemical" 'Kun, gallium, gamma zinc sulfide, gallium phosphide, gallium nitride, gallium gallium, Phosphate Ming, 201110283 Shi Shenhua Shao, Kunhua gallium, nitride, nitride, nitriding, copper, indium phosphide, indium bismuth, indium nitride and mixtures thereof. In another specific aspect, for example, the semiconductor layer can comprise gallium nitride. According to certain aspects of the invention, the diamond layer can vary widely depending on the use of the semiconductor device. For example, in one aspect the diamond layer can be a single crystal or substantially a single crystal. In another aspect, and the diamond layer can be a layer of unsupported diamond. Moreover, in some applications, the diamond layer can be substantially transparent to facilitate these applications. The present invention also provides methods of fabricating various semiconductor devices. In one aspect, the invention provides a method of fabricating a semiconductor substrate, for example. The method of manufacturing a substrate may include: forming an oriented epitaxial monocrystalline niobium carbide layer on a single crystal germanium growth substrate; forming an oriented epitaxial diamond layer on the carbonized stone layer; on the diamond layer Forming a layer of tantalum; bonding the layer of tantalum to the surface of the surface of a stone substrate; and removing the ground growth substrate to expose the layer of tantalum carbide. Various techniques can be used to epitaxially deposit or form the diamond layer in the tantalum carbide layer. For example, in one aspect, the step of forming an oriented epitaxial diamond layer may further comprise: gradually converting a growth substrate of the single crystal cut growth substrate from a tantalum layer to a tantalum carbide layer to form the tantalum carbide layer And forming the diamond layer by gradually converting the stone substrate into a diamond enamel. In another aspect, the step of forming the oriented epitaxial diamond layer may further comprise: forming a conformal amorphous diamond layer on the single crystal germanium growth substrate to form the far stone reversed stone layer on the single crystal growth substrate And the conformal diamond-free layer p day 1, the 6-Haijiao amorphous diamond layer is removed to expose the tantalum carbide layer; and a diamond layer is formed on the tantalum carbide layer in an epitaxial manner. 201110283 In another aspect, the invention provides a method of making a light emitting diode device. The method may include: fabricating a semiconductor substrate as described above; forming a plurality of nitride photodiode (Nitride LED) layers on the tantalum carbide layer of the semiconductor substrate; coupling on the plurality of nitride layers A diamond substrate substrate such that the plurality of nitride layers are between the diamond layer and the diamond support layer. In still another aspect, the method of the present invention can further include: electrically coupling a p-type electrode to a first end of the plurality of nitride layers; and electrically coupling an n-type electrode to a second of the plurality of nitride layers end. In a particular aspect, the step of electrically coupling the Ρ-type electrode to a first end of the plurality of nitride layers can further comprise adding a ruthenium to form a p-type semiconductor. In some aspects, the diamond layer acts as a light transmissive portion to allow light generated by the nitride layer to penetrate the diamond layer. In these examples, the substrate of the crucible carrier and the layer of germanium may be removed to expose the layer of diamond, thereby allowing light from the body of the light to penetrate the layer of diamond. The features of the present invention are described in the broader aspects of the preferred embodiments of the invention. The remaining features of the present invention will be apparent from the following detailed description of the appended claims. [Embodiment] Definitions In describing and claiming the present invention, the following terms will be used in accordance with the definitions set forth below. The singular articles "a" and "the" are used in the plural unless the meaning Thus, by way of example, f, the term "一埶 Λ," includes one or more of such heat sources, and the "diamond layer"-201110283 word includes one or more layer structures. The terms "heat transfer", "heat rate" and "heat transfer" can be used interchangeably to indicate the rate at which heat is transferred from the high temperature zone to the low temperature zone. The heat transfer rate may comprise any heat transfer mechanism known to those of ordinary skill in the art to which the present invention pertains, such as, without limitation, conductivity, convection, and irrigility. The word "distribution, - Gusi 1 ό π & Month and praise" used in the text] is transferred from a solid material to air heat or light transfer procedures. The term "luminescent surface" as used herein refers to a surface of a device or object from which light is emitted. Light can include visible light or light in the ultraviolet spectrum. Examples of the light-emitting surface may include, without limitation, a nitride layer on a light-emitting diode, or a nitride layer on a semiconductor layer structure to be bonded to the light-emitting diode, from which light is emitted. The term "vapor deposition" as used herein refers to a material formed by the use of vapor deposition techniques. The vapor deposition process can include any process that is not limited to Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD). A wide variety of different aspects of the various vapor deposition methods can be implemented by one of ordinary skill in the art to which the present invention pertains. Examples of vapor deposition methods include hot filament chemical vapor deposition, RF chemical vapor deposition, laser chemical vapor deposition (LCVD), laser ablation (Laser Ablation), and conformal diamond coating process. ), metal oxide chemical vapor deposition (MetahOrganic CVD, M0CVD), splashing, thermal evaporation physical vapor deposition, ionized metal physical vapor deposition (Ionized Metal PVD, IMPVD), electron beam physical vapor deposition (Electron Beam PVD, 201110283 EBPVD), reactive physical vapor deposition and other methods. The "chemical vapor deposition" or "cvd" gas used in the text refers to a method of chemically depositing diamond particles in the vapor onto the surface i. There are many known chemical vapor deposition techniques in this field. The term "physical vapor deposition" or "pvD" as used herein refers to a method of physically depositing diamond particles in a vapor onto a surface. There are many known physical vapor deposition techniques in this field. As used herein, "diamond, 喟θ ^ structure, carbon atom in the structure of carbon atoms: ^ 结晶 a crystal of carbon atoms... atoms and slave atoms are bonded through a tetrahedral coordination lattice method' The bit key is the county p + & I. That is, the known sP3 bond. Specifically, 'the atom is surrounded by the other four carbon atoms and bonded, and the four surrounding are located at the vertices of the regular tetrahedron. In addition, ..., under the two Guang 2: the length of the bond is U4 angstroms ' and the angle between the two keys is (10) degrees 2 8 minutes and 16 seconds, the experiment of the murderer Gu Shi A, ., ° Extremely small but negligible. The structure and properties of diamonds, including their physical and electrical properties, are known to those of ordinary skill in the art to which the present invention pertains. "Tetrahedral coordination" - the word means that the tetrahedral coordination bond of carbon atoms is irregular, and the secondary twist deviates from the normal four of the diamonds. This type of twisting usually leads to the extension of some of the bond lengths and the remaining bond lengths. Shorten and change the degree between the keys (four). In addition, the tetrahedron changes the characteristic properties of carbon/, the raw shell, so that its properties and properties are actually between the two p-coordination bonded carbon structures (such as diamonds) and sp2 coordination bonds (such as graphite) . One of the materials with a carbon atom that twists the tetrahedral bond is an amorphous diamond. The term "diamond-like carbon" as used herein refers to a carbonaceous material whose main carbon atom is the main component of 201110283. A large number of carbon atoms in the carbonaceous material are coordinated by a twisted tetrahedral bond. Although chemical vapor deposition procedures or other procedures can be used to form diamond-like carbon, diamond-like carbon can also be formed by physical vapor deposition procedures. In particular, the diamond-like carbon material t may contain various elements as hetero-f or dopants, which may include, without limitation, hydrogen, 35, phosphorus, boron, nitrogen, and the like. The term "amorphous diamond" as used herein refers to a diamond-like carbon type 1 diamond carbon whose main element is carbon and most of the carbon atoms are twisted by a four-body coordination bond. In the aspect, the number of carbon atoms in the amorphous diamond may be at least about 90% of the total amount, and at least 2% of these carbon atoms are coordinately bonded by a tetrahedral. Amorphous diamonds have an atomic density higher than that of rock stones (diamond density is 176 atoms/cm3 (9)·/...). In addition, amorphous diamonds and diamond materials shrink in volume as they melt. The term "Adynamjc" used in the text refers to a layered structure that cannot maintain its structure and/or strength independently. For example, in the absence of a board layer or a support layer of -M a. js 4-' , ^, a layer of unsupported diamonds will be rolled or removed after removing the mold or diamond surface. It is a deformation. Although there are many reasons for the fact that the layer structure has an irreducible nature, the t-direction's cause the unsupported force property because the layer structure is very thin and the word "growth surface" can be used for chemical vapor deposition procedures. One side. The "growth side" of the crucible used in the text is used interchangeably and refers to the "substrate" used in the form of a sheet supported on a film or a layer of structure - the word means that the support surface can be connected to various materials. In this way & a semiconductor device or έ 支 支 diamond 201110283 bottom + conductor device. The substrate can have any shape, thickness or material' that is capable of achieving a particular result' and includes, without limitation, metals, alloys, ceramics, and mixtures thereof. Furthermore, 'in some aspects, the substrate may be an existing semiconductor device or wafer, or may be a combination of appropriate devices. The term "substantially" as used herein refers to an action, feature, Sexual shellfish, sputum. The complete or near-complete range of structures, objects, or results. For example, an object is "substantially" coated, meaning it is completely covered or completely covered. The degree of deviation that is allowed to differ from the absolute degree of completeness may depend, in some cases, on the text of the description. However, in general, the results obtained when approaching complete will be as general as the results obtained when absolutely and completely complete. When "substantially" is used to describe a complete or near complete lack of an action, feature, property, state, structure, article, or result, the mode of use is equally applied as previously described. For example, a "substantially does not contain" particles: a composition can be completely devoid of particles, or nearly completely lacking particles to the extent that it is completely devoid of particles. In other words, as long as a composition of "substantially does not contain" the material or component does not have a measurable effect, the composition may actually contain these materials or components. As used herein, "about" refers to the endpoint elasticity imparted to a range of values, which can be given a value that is a little above the endpoint or a little below the endpoint. The plural articles, structural elements, group members, and/or materials used herein may be presented in a general list for ease of convenience. However, such lists should be interpreted as: Each member of the list is considered to be a separate and distinct member. Therefore, members based on this list appear in the same group 201110283 and there are no other negative instructions, and members of this list ^ should not be interpreted as being the same as any other member in the same list. Dispatch, quantity, and other numerical data can be expressed or presented in a range. It is to be understood that the scope of the present invention is to be construed as being limited to the scope of the invention. And sub-range. Because of &, separate values such as 2, 3, and 4, sub-ranges such as 1-3, 2-4, 3-5, etc., and 1, 2, 3, 4, and 5 are included in this numerical range. The same principle applies to a single value as a minimum or maximum. In addition, such an interpretation should be used regardless of the extent of the described range or feature. The present invention is to provide a semiconductor device incorporating a diamond layer and a method of manufacturing the same. Semiconductor devices are generally very challenging for heat dissipation, and are those that emit light. It should be noted that although the following description of the big 2 is directed to a light-emitting device such as a light-emitting diode, the material of the present invention is limited by the light-emitting device, and the internal command taught in the text can also be applied to Other types of semiconductor devices. Most of the heat generated by the semiconductor device is grown in the semiconductor layer and thus affects the efficiency of the semiconductor device. For example, the two-pole operation can be seen as a 'slave*-multiple nitride layer, which is configured to be emitted from a first surface. As the light-emitting diodes become more and more important in electronic devices and illuminating power, the LEDs continue to develop and the typical micro-volumes of these two devices are increasing, which causes the heat-dissipation problem to deteriorate. This 11 201110283 has traditional aluminum fins. The heat sink of the film cannot effectively perform heat dissipation on these devices because of its cumbersome nature. In addition, such conventional heat sinks, if applied to the light-emitting surface of the light-emitting diode, hinder the divergence of light. Since the heat sink does not interfere with the function of the nitride layer or the light-emitting surface, they are typically placed between the photodiode and a support structure such as a circuit board. Such a heat sink position is relatively far from the location where the heat source is accumulated (i.e., the light emitting surface or the nitride layer). It has been found that after forming a diamond layer in the LED package, the light-emitting diode can be effectively dissipated even under high power conditions, and at the same time, the compact size of the LED package can be effectively maintained. In addition, on the one hand, the maximum operating wattage of a light-emitting diode may be lower than that of the diamond layer to absorb heat of the semiconductor layer of the light-emitting diode, so that the light-emitting diode is higher than the light-emitting diode It operates under the operating wattage of the largest operating wattage. Further, among semiconductor devices which emit light and which do not emit light, since materials for manufacturing 34 semiconductor devices have relatively poor thermal conductivity, the amount of the film is blocked in the semiconductor layer. In addition, the lattice mismatch between the semiconductor layers lowers the thermal conductivity' and thus further increases the heat rate. The inventors have developed a semiconductor device incorporating a diamond layer which, among other things, provides improved heat dissipation to the semiconductor device. This diamond layer increases the thermal flow across the semiconductor device to reduce heat trapped in the semiconductor layer. This lateral heat transfer effectively enhances the heat dissipation of many semiconductor devices. Furthermore, 'in accordance with certain aspects of the present invention, the degree of lattice matching of the semiconductor device is increased' thus further enhancing the political heat of the semiconductor device. Furthermore, it should be noted that the beneficial properties provided by the diamond layer are not 12 [S 1 201110283 only In terms of better heat dissipation, 6, because the invention should not be limited to heat dissipation. Accordingly, in one aspect of the invention, a semiconductor substrate is provided. As shown in Fig. 1, the substrate can be used to cut the carrier substrate 12, the substrate of the carrier has a surface of the dioxin (tetra), and the surface of the oxidized surface of the dream carrier substrate 12 A layer 16 on the 14th layer, a diamond layer 18 lightly attached to the layer 16, and a monocrystalline carbonization (20) 20 coupled to the diamond layer 18 in an epitaxial manner. Further, as shown in Fig. 2, the exposed carbonized carbide layer provides a useful surface to enable the semiconductor layer 22 to be deposited on the surface by epitaxial attachment. The single crystal characteristic of the carbon cut layer 2Q can facilitate the growth of the lattice-matched single crystal semiconductor layer 22, thereby constructing various semiconductor devices. The present invention encompasses any semiconductor device known to generate heat. Specific examples of germanium conductor devices may be, without limitation, light emitting diodes, laser diodes, acoustic wave passers, such as surface acoustic wave (Surface 丨 CSAW) filters and bulk acoustic waves _k Acoustic Wave, BAW) filters and integrated circuit (丨c) wafers and the like. Section ® shows a partial step of a method of fabricating a semiconductor substrate in accordance with certain aspects of the present invention. A single crystal growth substrate is provided for deposition of other materials on the as early as growth substrate. Although the ruthenium growth substrate does not have to be a single crystal structure, the single crystal lattice structure can provide a relatively small lattice error in deposition when compared with a non-single crystal substrate. Match (Mismatch) problem. Thoroughly cleaning the substrate before deposition to remove the non-gentleman's from the wafer after the deposition, it is beneficial to use the daytime 矽 or non-antimony particles. Shaped Shixi or non-Shixia particles may cause lattice mismatch between the Shih-Growth substrate and the deposited layer thereon. The present invention includes any method for cleaning the growth substrate of the crucible. However, in one aspect, the substrate can be immersed in potassium hydroxide and the substrate is ultrasonically cleaned by distilled water. After cleaning the crucible growth substrate 34, an oriented epitaxial layer of an early-crystalline carbonized carbide day 32 and an oriented epitaxial diamond layer % may be deposited on the crucible growth substrate, and the single crystal carbon cut layer 32 is located on the growth substrate. The material 34 and the diamond layer are 36. The carbonized stone layer may be separated from the diamond layer during deposition, or may be the result of deposition of the diamond layer, or may be combined with the grade == during deposition. For example, the carbonized fracture layer can be the result of deposition of a program that is progressively turned into a diamond, and this example will be categorized after weighing. The second layer can be internally created by depositing a layer of amorphous diamond on the growth substrate of the crucible, as will be described later. Go ahead and: ^ deposit a hard layer 38 on the diamond layer 36. The bonding layer 38 is bonded to the diamond layer 36. The I substrate 42 has a dioxic surface that can be bonded to the ruthenium layer 38. After the Shishi carrier material 42 is bonded to the substrate 8 in a wafer bonding manner, the ruthenium growth substrate 34 can be removed to expose the 碳. The ruthenium carbide layer 32 can be used as a lifetime. It is deposited on the growth surface as above. '* Surface to make the semiconductor material Diamond material has an excellent thermal conductivity conductor material for the phase material. # μ W makes the eight into a semi-罝 L through the diamond material to transfer heat at a rate. It should be noted that the present invention = conductor device heat transfer theory. Therefore, in this issue. It is limited to the specific rate of heat transfer into and through the internal transfer of heat. Due to the heat transfer properties of the semiconductor device, the heat 201110283 can be rapidly propagated laterally through the diamond layer and the heat at the edge of the edge of the semiconductor device can be dissipated into the air more quickly or dissipated to the surrounding heat. In the structure of a stand or a stand of a semiconductor device. In addition, a diamond layer having a majority of the area exposed to air t will dissipate the heat of the device having the diamond layer more quickly. Since the thermal conductivity of the diamond is greater than the thermal conductivity of the semiconductor device layer or other structure thermally coupled to the diamond layer, the diamond layer becomes a heat sink. Because of &, the diamond layer absorbs the heat generated by the semiconductor layer (4), and the heat is propagated laterally and dispersed outside the semiconductor device. This manner of accelerating the rate of thermal transfer can result in semiconductor devices having lower operating temperatures. In addition, the acceleration of the heat transfer rate not only cools a semiconductor device, but also reduces the thermal load of many electronic components that are spatially located near the semiconductor device. In some aspects of the invention, a portion of the diamond layer can be exposed to the air. The state of such exposure may be limited to limiting exposure to only the edges of the diamond layer in some instances; or may expose a large proportion of the surface area of the diamond layer, such as one side of the exposed diamond layer. In this aspect, at least a portion of the heat transfer rate of the semiconductor device can be accelerated by transferring heat from the diamond layer to the air. For example, diamond materials, such as diamond-like carbon (DLC), have excellent thermal emissivity characteristics even at temperatures below 10 °c, so diamond materials can directly administer heat to in the air. Most other materials, including semiconductor devices, have better thermal conductivity than thermal radiation. Thus, the semiconductor device can conduct heat to the diamond-like carbon layer' to propagate heat laterally within the diamond-like carbon layer and then radiate heat into the air along the edges of the diamond-like carbon layer or other exposed surfaces. Due to the high thermal conductivity of the diamond-like carbon and the high heat radiation, the transfer rate from the diamond-like carbon to 201110283 can be greater than the heat transfer rate from the semi-gas. This, transfer to the air enthalpy transfer rate can be * in the mountains, * 颂 颂 drilling the enemies of the leap year is greater than the semiconductor device rate. Therefore, the type of misalignment; the speed of transfer in the ^. _ θ s can be used to accelerate the rate of removal of the amount of enthalpy from the semiconductor layer, so that through the eucalyptus M u also θ.,,, 3: The heat transfer rate of the buccal drill layer is high, and the rate of heat transfer from the gate to the gate is small. The second asks for the rate of heat transfer from semiconductor to air. As suggested above, various diamond materials can be used to provide the acceleration characteristics of the heat transfer rate of the heat transfer rate. Examples of such diamond materials may include, but are not limited to, diamonds, diamond-like carbons, amorphous diamonds, combinations thereof, and the like. It should be noted that any diamond material that can be used to cool a semiconductor device is within the scope of the present invention. ^ ^ It should be noted that the following statements are a general discussion of diamond deposition techniques. 'These diamond deposition techniques may or may not be useful for a particular diamond crucible or application and these diamond deposition techniques can be varied across the present invention. aspect. In general, diamonds can be formed by a variety of known methods, including various vapor deposition techniques. The diamond layer can be formed using any known vapor deposition technique. Although diamonds can be formed using any method similar to that of vapor deposition, the most common vapor deposition techniques include chemical vapor deposition and physical vapor deposition. In one aspect, chemical vaporization can be used, such as hot filament, microwave plasma, Oxyacetylene Flame, RF chemical vapor deposition (RF-CVD), laser chemical vapor deposition (Laser) CVD), Laser Ablation, Conformal Diamond Coating Processes, Organometallic Chemical Vapor Deposition (Meta Bu Organic CVD, [s 16 201110283 MOCVD) and DC Arc Technology (Direct Current) Arc Tech no log jes) expertise. The blood is stained a few times. ^ + The chemical deposition technique of 〃 and 坦 uses gaseous reactants to accumulate diamonds or diamond-like carbons into a layer structure or a membrane structure. The foregoing gas may contain a small amount of carbonaceous material (about less than 5% by weight), such as a nail press diluted with hydrogen. Too ϋαπ This July is a general knowledge of the technical field, and the various chemical vapor deposition processes are also suitable for the boron nitride layer. Physical vapor deposition techniques such as unlocking, cathodic arcing, and thermal evaporation can be used in other aspects. In addition, the deposition conditions of the special f can be used to adjust the exact type of material deposited such as diamond-like carbon, amorphous diamond or pure diamond. ~, should be noted that the temperature will reduce many semiconductors such as light-emitting diodes such as 一 σ μ 丁 丁 丁 丁 的 的 的 的 的 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须 必须Stuffing method, so as to avoid the problem of diamond damage during deposition. For example, if the semiconductor contains a nitrided surface, a deposition temperature of up to 6 〇〇 C can be used. In the case of gallium nitride, up to about (10) 〇 C maintains the thermal stability of the layer structure. In addition, the pre-formed plurality of layers can be fixed to the semiconductor layer or the support layer of the semiconductor layer without excessively interfering with the thermal transfer of the diamond layer or the method of emitting the surface of the semiconductor device, by means of Braze, gluing or bonding. On the material. An optional nucleation is formed on the growth surface of a substrate (Nucleati-enhancement layer u enhances the deposition quality of the diamond (4) and reduces the deposition time. In particular, it can be formed by depositing a suitable crystal nucleus - for example, Depositing a diamond nucleus on a diamond-grown surface of a substrate and then growing the 'LA, JL^' film or layer by vapor deposition techniques. In one aspect of the invention, The substrate may be coated with an open/stranded reinforcing layer to enhance the growth of the diamond layer. The diamond nucleus is then placed on the gas layer 17 201110283 = reinforcement layer and the diamond layer is deposited by chemical vapor deposition. The growth process of the present invention is known in the art to be a suitable material for nucleating reinforcing materials. In one aspect of the invention, the 兮^乍 may be selected from the group consisting of metals, metal alloys, metal compounds, and additions. a "bide F〇 "mer" and its combination.

t㈣例子可為m錯'鉻H以及鐘。I 二妷化物的例子可包含碳化鎢、碳化矽、碳化鈦、碳化 產σ以及其結合。 當使用時,該成核加強層為一足夠薄的層結構以致於 其不會不利地影響該鑽石層的熱傳導性。在本發明一方面, 該成核加強層的厚度可小於大約01微米㈣。在本發明 另二方面’該厚度可至少小於大約1Q奈米(nm)。在本發明 又一方面,該成核加強層的厚度可小於大約5奈米。在本 發明另-方面’該成核加強層的厚度可少於大約3奈米。 可使用各種方法來增加在透過氣相沉積技術所形成的 鑽石層的成核表面的鑽石品質。舉例而言,可在鑽石沉積 的較早階段時,減少甲院流量並且增加總氣體壓力來增進 鑽石粒子的品質。這樣的措施能減少碳的分解率,並且能 增加氫原子濃度。因此,將會使非常高比例的碳以sp3鍵 結配置狀態沉積,且能增進所形成的鑽石晶核的品質。此 外’可增加鑽石粒子的成核率以便減少鑽石粒子之間的空 隙。增加鑽石粒子成核率的方法可包含而不限制於下列例 子對。亥生長表面提供-適量的負偏壓,通常大約是⑽ 伏特,·以精細鑽石膠或是鑽石粉末對該生長表面進㈣光,The t(d) example can be m-misc 'chrome H and clock. Examples of the I dihalide compound may include tungsten carbide, niobium carbide, titanium carbide, carbonization σ, and combinations thereof. When used, the nucleation enhancing layer is a sufficiently thin layer structure such that it does not adversely affect the thermal conductivity of the diamond layer. In one aspect of the invention, the nucleation enhancing layer can have a thickness of less than about 01 microns (d). In still another aspect of the invention, the thickness can be at least less than about 1 Q nanometer (nm). In still another aspect of the invention, the nucleation enhancing layer can have a thickness of less than about 5 nanometers. In another aspect of the invention, the nucleation enhancing layer may have a thickness of less than about 3 nanometers. Various methods can be used to increase the quality of the diamond on the nucleation surface of the diamond layer formed by vapor deposition techniques. For example, at the early stages of diamond deposition, the flow of the hospital can be reduced and the total gas pressure can be increased to enhance the quality of the diamond particles. Such measures can reduce the decomposition rate of carbon and increase the concentration of hydrogen atoms. Therefore, a very high proportion of carbon will be deposited in the sp3 bonding configuration state, and the quality of the formed diamond nuclei can be improved. In addition, the nucleation rate of the diamond particles can be increased to reduce the gap between the diamond particles. Methods for increasing the nucleation rate of diamond particles can include, but are not limited to, the following example pairs. The surface of the growth surface provides - a moderate amount of negative bias, usually about (10) volts, · (4) light on the growing surface with fine diamond glue or diamond powder,

I 18 201110283 該精細鑽石膠或粉末可部分留存於該生長表面;以及透過 物理氣相沉積或是電漿輔助式化學氣相沉積(pECVD)的程 序來植入如碳、矽、鉻、錳、鈦、釩、锆、鎢、鉬、钽、 以及類似的離子,來控制生長表面的成分。物理氣相沉積 程序的實施溫度一般低於化學氣相沉積程序的溫度,且在 某些例子中可低於大約200。〇而在大約15(rc。其他增進 鑽石成核的方法對於本發明所屬技術領域具有通常知識者 是顯而易見的。 ^在本發明一方面,該鑽石層可為一同構形鑽石層的型 態。可透過廣泛的各種基材,例如包括非平面基材來實 施同構形鑽石塗佈程序。同構形鑽石塗佈程序相較於傳統 的鑽石薄膜程序能具有許多優點。可透過不利用偏壓的鑽 石生長條件來預先處理生長表面形成-碳膜。鑽石生長條 件可為傳統適用鑽石的化學氣相沉積條件並且不使用偏 壓。因此,所形成的碳薄膜大多小於⑽㈣厚度。預先 處理步驟可在大約200。。到大約9〇『c的生長溫度,而較 佳的低溫在大約500。。以下。無須任何特殊理論,碳薄膜 在少於-小時的短短時間形成’且該碳薄膜為一種氫端 (Hydfogen-terminated)無晶碳。 在形成該薄碳膜之後,該 條件F形成一同構型錢石層。 用傳統化學氣相沉積式鑽石生 於傳統鑽石膜生長,由上述預 是一種同構形鑽石臈。此外, 大致整個基材上開始生長。再 生長表面可接著在鑽石生長 該鑽石生長條件可為通常使 長方式的條件。然而,不同 先處理步驟所產生的鑽石膜 鑽石膜一般無須醒釀期即在 者,可生長到在大約8〇nm Γ r~ L ύ 19 201110283 以内马·度的大致上兔 為連續性而無紋理邊界的鑽石膜。大致 上無紋理邊界的—± i 鑽石層相較有紋理邊界的鑽石層可更有效 地進行散熱。 對於某些鑽石層,特別是那些即將沉積有半導體層的 鑽層創&個生長基材而令該半導體材料可以最少的 晶格錯位結構(例如大致上為單晶體的結構)沉積形成於 §亥生長基材上是有益的。大致上為單晶體結構的生長表面 :半導體材料之間有強大的鍵結效應,因此利用大致上為 單晶體結構的生長表面可促進將晶格錯位的情形降到最 低。在本發明一方面,此種基材包含一大致上為單晶體結 構的鑽石I纟3亥鑽石層耦合有一大致上為單晶體結構的 碳化矽層。該碳化層大致上為單晶體結構的特性有利於一 例如氮化鎵或是氮化料半導體大致上沉積為―單晶體。 此外,由鑪鑽石層到該碳化矽層以及由該鑽石層到該半導 體層的取向附生關係、,增加了鑽石層的熱傳導性,因此增 進了半導體裝置的散熱性。 可使用各種可能的方法來建造此種鑽石/碳化石夕合成 基材。任何這類方法均被視為是屬於本發明範疇之内。舉 例而言,在-方面可透過將-單晶石夕晶圓逐漸變化為一單 晶石夕鑽石層的方式來創造-基材。換言之,該妙晶圓能由 矽逐漸的轉化為碳化矽並接著逐漸轉化為鑽石。逐漸變化 的技術發明人於2007年5月31曰提出申請,代理人第 00802-32733.NP號的美國專利巾請案「漸變式結晶材料及 其相關方法」,作進一步的探討,該申請案載明於本文之 中以供參考。除了上述對晶格錯位最小化的優點,大致上 20 201110283 為單晶體的鑽石層可為透明而透光,以利建造一發光半導 體裝置’例如發光二極體以及雷射二極體。 在增厚鑽石層或是設置一支撐基材到該鑽石層上之 後,可透過任何本發明所屬技術領域具有通常知識者已知 的各種方去來移除該石夕晶圓。最後產出的結構則包括一大 致上為單晶體結構的鑽石層,在該鑽石層上以取向附生方 '搞&有大致上為單晶體結構的碳化石夕層。接著使用任 何本發明所屬技術領域具有通常知識者已知的方法以取 向附生方式在該碳化石夕層上沉積有一半導體材料。在本發 明一方面,此沉積程序可發生在一漸變程序之中,該漸變 私序類似於在該矽晶圓上形成鑽石層所使用的漸變技術。 根據本發明某些方面,該鑽石層可具有供一半導體裝 置進行散熱的任何厚度。鑽石廣的厚度可根據應用以及半 導體裝置結構的不同而改變。舉例而言,較大的散熱需求 將會需要較厚的鑽石層。鑽石層厚度亦會隨著該鑽石層内 所使用的材料的不同而有所變化。換言之,在一方面一鑽 石層的厚度可由大約10到大約5〇微米。在另一例子,, 二鑽石層的厚度可等於或小於大約1G微米,又—例子中, -鑽石層厚度可由大約50微米到大約⑽微米,在另一例 子中,一鑽石層的厚度可大於大約5〇微米。在又一例子中, 一鑽石層可為無支撐力鑽石層。 根據本發明某些方面’該碳化石夕層可依據碳化石夕層的 、方法以及半導體裝置的用途而具有不同的厚度。在某 ίΙΓ ’該碳化石夕層可僅足夠厚到能排列沉積於碳化石夕層 上的層結構的晶格方向。在其他方面,較厚的碳化石夕層較 21 201110283 為有利。根據這些變化,在一方面該礙化石夕層的厚 於或小於大約1微米。在另 + *山 寻 隹另—方面,該碳化矽的厚度可 於或小於大約500奈米。力v 在又—方面,該碳化矽的厚度 等於或小於大約1奈米。在I 18 201110283 The fine diamond glue or powder may be partially retained on the growth surface; and implanted by means of physical vapor deposition or plasma assisted chemical vapor deposition (pECVD) processes such as carbon, germanium, chromium, manganese, Titanium, vanadium, zirconium, tungsten, molybdenum, niobium, and similar ions are used to control the composition of the growing surface. The physical vapor deposition process is typically performed at a lower temperature than the chemical vapor deposition process and, in some instances, may be less than about 200. Further, at about 15 (rc. Other methods of enhancing diamond nucleation will be apparent to those of ordinary skill in the art to which the present invention pertains.) In one aspect of the invention, the diamond layer can be in the form of a monomorphic diamond layer. The isomorphic diamond coating procedure can be performed through a wide variety of substrates, including, for example, non-planar substrates. The isomorphic diamond coating procedure has many advantages over conventional diamond film procedures. The diamond growth conditions are used to pre-treat the growth surface to form a carbon film. The diamond growth conditions can be chemical vapor deposition conditions of conventionally applied diamonds and no bias is used. Therefore, the formed carbon film is mostly less than (10) (iv) thickness. The pretreatment step can be At about 200 ° to a growth temperature of about 9 〇 c, and a preferred low temperature is about 500 ° or less. Without any special theory, the carbon film is formed in a short time of less than - hour and the carbon film is A hydrogenated (Hydfogen-terminated) amorphous carbon. After forming the thin carbon film, the condition F forms a homogeneous carbonaceous layer. Diamonds are born from traditional diamond film growth, which is pre-formed as an isomorphic diamond crucible. In addition, the growth begins on the entire substrate. The regrowth surface can then grow in the diamond. The diamond growth conditions can be the conditions that usually make the long way. However, the diamond film diamond film produced by the different first processing steps generally does not need to be awake, and can grow to a continuous size of about 8 〇nm Γ r~ L ύ 19 201110283. Diamond film without texture boundaries. The ± i diamond layer with substantially no grain boundary can dissipate heat more effectively than the diamond layer with grain boundary. For some diamond layers, especially those with a semiconductor layer to be deposited It is advantageous to create and grow a substrate such that the semiconductor material can be deposited on a growth substrate with a minimum of lattice misalignment structures (e.g., a substantially monocrystalline structure). A growth surface that is substantially a single crystal structure: There is a strong bonding effect between semiconductor materials, so the use of a growth surface that is roughly a single crystal structure can promote the case of lattice misalignment. In one aspect of the invention, the substrate comprises a diamond layer having a substantially single crystal structure, and a diamond layer of substantially a single crystal structure is coupled to the substrate. The carbonized layer is substantially advantageous in the properties of a single crystal structure. Generally, a gallium nitride or a nitride semiconductor is deposited as a single crystal. Further, a diamond layer is added from the furnace diamond layer to the tantalum carbide layer and the orientation epitaxial relationship from the diamond layer to the semiconductor layer. The thermal conductivity, thus improving the heat dissipation of the semiconductor device. Various possible methods can be used to construct such a diamond/carbon carbide synthetic substrate. Any such method is considered to be within the scope of the present invention. In other words, the substrate can be created by gradually changing the single crystal silicon wafer into a single crystal stone layer. In other words, the wafer can be gradually converted from tantalum to tantalum carbide and then gradually converted into diamonds. The gradual change of the inventor filed an application on May 31, 2007, and the agent's US Patent No. 00802-32733.NP filed the "gradual crystalline material and related methods" for further discussion. It is included in this article for reference. In addition to the above advantages of minimizing lattice misalignment, substantially a single crystal diamond layer can be transparent and transparent to facilitate the construction of a light-emitting semiconductor device such as a light-emitting diode and a laser diode. After thickening the diamond layer or providing a support substrate to the diamond layer, the lithographic wafer can be removed by any of a variety of means known to those skilled in the art to which the present invention pertains. The resulting structure consists of a diamond layer that is generally a single crystal structure on which the epitaxial side of the diamond layer is <a carbon stone layer having a substantially single crystal structure. A semiconductor material is then deposited on the carbonized stone layer in an epitaxial manner using any method known to those skilled in the art to which the present invention pertains. In one aspect of the invention, the deposition process can occur in a gradual process similar to the grading technique used to form a diamond layer on the wafer. According to some aspects of the invention, the diamond layer can have any thickness for a semiconductor device to dissipate heat. The wide thickness of the diamond can vary depending on the application and the structure of the semiconductor device. For example, a larger heat sink requirement would require a thicker diamond layer. The thickness of the diamond layer will also vary with the materials used in the diamond layer. In other words, in one aspect, the thickness of a diamond layer can range from about 10 to about 5 microns. In another example, the thickness of the two diamond layers can be equal to or less than about 1 G microns, and in another example, the thickness of the diamond layer can be from about 50 microns to about (10) microns. In another example, the thickness of a diamond layer can be greater than About 5 microns. In yet another example, a diamond layer can be an unsupported diamond layer. According to certain aspects of the invention, the carbonized carbide layer may have different thicknesses depending on the method of the carbonization layer, the method, and the use of the semiconductor device. The carbonized stone layer may be only thick enough to align the lattice direction of the layer structure deposited on the carbonized stone layer. In other respects, thicker carbonized stone layers are more favorable than 21 201110283. According to these variations, on the one hand, the layer of the barrier layer is thicker or smaller than about 1 micrometer. The tantalum carbide may have a thickness of about 500 nm or less in terms of another. The force v is in turn, the thickness of the tantalum carbide is equal to or less than about 1 nm. in

你入另一方面,該碳化矽的厚声 可大於大約1微米。 X 如上所述,根據本發明某些方面,該半導體裝置包含 複數連接到一個或多個鑽石層的半導體層。這些半導體只 可透過本發明所屬技術領域具有通常知識者所知曉的各i 方法連接到-鑽石層。在本發明一方面,可在一鑽石層上 沉積一個或多個半導體層,或者如上所述,可在一輕 鑽石層的碳化石夕層上沉積一個或多個半導體層。 可利用本發明所屬技術領域具有通常知識者已知的各 種技術在一例如瑞化石々% | u : 展化矽層的基材上沉積-半導體層。這類 '「的,、中冑例子疋有機金屬化學氣相沉積…抑卜 cyanic ChemiCal Vapor Dep〇sUj〇n,序。 該半導體層可包含任何適用於形成電子裝置、半導體 裝置或是其他類似裝置的材料。許多半導體是基於矽、鎵、 銦乂及錯然而,適用於半導體層的材料可包含而不限制 於石夕、碳化石夕、石夕化錯、坤化鎵、氮化鎵、鍺、硫化辞、 碟化鎵、録化鎵、糾㈣、魏紹、〜⑽、_化錄銘、 氮化鎵、氮化领、氮化銘、砰化銦、磷化麵、錄化姻、氮 化姻以及其混合物。在另一特定方面,舉例而言,該半導 體層y包含石夕、碳化石夕、砰化鎵、氮化錄、鱗化錄、氮化 鋁、氮化銦、氮化鎵銦、氮化鎵鋁或是其混合物。 在某些額外的實施例之令,可形成諸如基於神化錄、 [S ] 22 201110283 氮化鎵、冑、氮化删、氮化紹、銦基材料以及其混合等等 非3矽的半導體裝置。在另一實施例中,該半導體層可包 含虱化鎵、氮化鎵銦、氮化銦以及其混合物。在一特定方 省半導體材料為氮化鎵。在另一特定方面,該半導體 材料為H化。其餘可使用的半導體材料包含氧化銘、氧 化鈹 '鎢、翻、c_Y2〇3、(Y〇 9La。1)2〇3、c A丨23〇2爲、。‘ MgAI2〇4、t-MgF2、石墨以及其混合物。應了解的是該半 導體層可包含任何已知的半導體材料,且不應限制於文中 所述的這些材料。此外,半導體材料可為任何已知的結構 配置,例如而不限制於立方體閃鋅礦(zincb|ende 〇「 sphalerite)結構、六方晶系τ閃辞礦結構(Wurtzjtjc)、菱形 六面體結構(「hombohedral)、石墨結構、亂層(Turb〇stratjc) 結構、裂解(Pyrolytic)結構、六角形結構(Hexag〇na|)、無 晶結構或是其混合。如上所述,可利用本發明所屬技術領 域具有通常知識者已知的方法來沉積該半導體層14。可使 用各種已知的氣相沉積方法來沉積這些半導體層,並且允 許這些沉積程序在一漸變方法中進行。此外,可在所述的 兩沉積步驟之間實行一表面處理以便能提供一平滑表面而 供進行後續的沉積步驟。可透過任何已知的方法,例如化 學蝕刻、拋光、皮輪拋光(Buffing)以及研磨等方法來進行 前述表面處理程序。 在本發明一方面’至少一半導體層可為氮化鎵。氮化 鎵半導體層有利於建造發光二極體或是其他半導體裝置。 在某些例子中’將碳化矽或是其他基材逐漸轉化為該半導 體層是有益的。舉例而言,可透過固定氣相沉積的氮濃度On the other hand, the thickness of the tantalum carbide can be greater than about 1 micron. X As described above, in accordance with certain aspects of the present invention, the semiconductor device includes a plurality of semiconductor layers connected to one or more diamond layers. These semiconductors can only be connected to the -diamond layer by means of i-methods known to those skilled in the art. In one aspect of the invention, one or more semiconductor layers can be deposited on a diamond layer or, as described above, one or more semiconductor layers can be deposited on a carbon stone layer of a light diamond layer. The semiconductor layer can be deposited on a substrate such as a fluorite 々 | | u | | 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 This type of ",", the middle of the example 疋 organometallic chemical vapor deposition ... anti-cyanic ChemiCal Vapor Dep〇sUj〇n, order. The semiconductor layer can comprise any suitable for forming electronic devices, semiconductor devices or other similar devices Materials. Many semiconductors are based on germanium, gallium, indium germanium and the same. However, materials suitable for the semiconductor layer can be included without limitation to Shi Xi, carbon carbide, Xi Shihua, Kunlun, gallium nitride, germanium. , vulcanization, gallium gallium, recorded gallium, correction (four), Wei Shao, ~ (10), _ Hua Lu Ming, gallium nitride, nitride, nitrite, indium bismuth, phosphating surface, recorded marriage, Nitrile and a mixture thereof. In another specific aspect, for example, the semiconductor layer y comprises Shi Xi, carbon carbide, gallium antimonide, nitrided, scaled, aluminum nitride, indium nitride, nitrogen Gallium indium, gallium aluminum nitride or a mixture thereof. In some additional embodiments, it may be formed, for example, based on Deuteration, [S] 22 201110283, gallium nitride, germanium, nitride, germanium, indium a base material and a mixture thereof, etc., other than a semiconductor device. In another implementation The semiconductor layer may comprise gallium antimonide, indium gallium nitride, indium nitride, and a mixture thereof. In a particular aspect, the semiconductor material is gallium nitride. In another specific aspect, the semiconductor material is H. The semiconductor materials used include Oxidation, yttrium oxide, tungsten, turn, c_Y2〇3, (Y〇9La.1)2〇3, c A丨23〇2, 'MgAI2〇4, t-MgF2, graphite and A mixture thereof. It should be understood that the semiconductor layer may comprise any known semiconductor material and should not be limited to those materials described herein. Furthermore, the semiconductor material may be of any known structural configuration, such as without limitation to a cube. Sphalerite (zincb|ende 〇 "sphalerite" structure, hexagonal τ flash structure (Wurtzjtjc), rhombohedral structure ("hombohedral", graphite structure, Turb〇stratjc structure, pyrolytic (Pyrolytic) Structure, hexagonal structure (Hexag〇na|), amorphous structure or a mixture thereof. As described above, the semiconductor layer 14 can be deposited by a method known to those skilled in the art to which the present invention pertains. Has Known vapor deposition methods for depositing these semiconductor layers and allowing these deposition procedures to be performed in a grading process. Further, a surface treatment can be performed between the two deposition steps to provide a smooth surface for subsequent processing The deposition step can be carried out by any known method such as chemical etching, polishing, buffing, and grinding. In one aspect of the invention, at least one of the semiconductor layers can be gallium nitride. The gallium nitride semiconductor layer facilitates the construction of light emitting diodes or other semiconductor devices. In some instances, it may be beneficial to gradually convert tantalum carbide or other substrate into the semiconductor layer. For example, nitrogen concentration that can be deposited by fixed vapor deposition

[SI 23 201110283 並且改變鎵以及銦的沉積濃度’使鎵:姻的濃度比例由〇: 1 逐漸變化為1 :〇,藉此將一氮化銦半導體基材逐漸轉化為一 I化紹半導體層。換言之’鎵與銦的供給產生變化以使得 虽銦的濃度減少的同時,鎵的濃度增加。該逐漸轉化的功 能為大幅減少在敗化鎵直接形成於氮化銦時所觀察到的晶 格錯配現象。 在本發明另一方面,至少一半導體層可為一氮化鋁層。 該敗化铭層可透過本發明所屬技術領域具有通常知識者已 知的任何方法沉積到一基材上。如上述氮化鎵層一般,兩 半導體層之間的逐漸轉化程序可增進半導體裝置的功能 性。舉例而言,在一方面可透過將氮化銦層逐漸轉化為氮 化紹層的方式來將氮化鋁沉積到一氮化銦半導體基材上。 此種逐漸轉化程序可包含例如透過固定所沉積的氮濃度並 且改變銦以及鋁的沉積濃度,使一銦:鋁的濃度比例由0:1 逐漸變化為1:0,藉此將一氮化銦半導體基材逐漸轉化為一 鼠化鎵半導體層。此逐漸轉化的程序大幅減少在氮化鋁直 接形成於氮化銦時所觀察到的晶格錯配現象。可在所述的 任何兩沉積步驟之間實行一表面處理以便能提供一平滑表 面而供進行後續的沉積步驟。可透過任何已知的方法,例 如化學蝕刻、拋光、皮輪拋光以及研磨等方法來進行前述 表面處理程序。 本發明進一步提供製造一發光二極體的方法。此方法 可包含:製造一如上所述的半導體基材;在該碳化矽層上 依序形成複數氮化發光二極體層;以及在該複數氮化層上 耦合一鑽石支撐基材以使得該複數氤化層位於該鑽石層與 201110283 該鑽石支樓層之間。此外,可將—p型電極電輕合到該複 數氮化層的-第一端;以及可將—n型電極電耦合到該複 數氮化層的一第二端。 範例 下列範例顯示製造一本發明半導體裴置的各種技術。 然而,應注意的是,下列範例僅是示範或顯示本發明的原 在不运反本發明範嘴與精神下,本發明所屬技術領域 具有通常知識者可構想出各種修改與不同的組合、方法以 及系統。所附上的申1青專利範圍是欲涵蓋這些修改與佈局。 因此,雖然上述内容已詳細敘述本發明,下列範例以本發 明複數實施例來提供進一步的詳細說明。 x 範例一 可根據下列所述形成一半導體基材: 取得一皁晶矽晶圓,將該單晶矽晶圓浸泡於氫氧化鉀 之中,並且利用蒸鶴水進行超音波清潔的方式來清洗單晶 石夕晶圓’去除其上的非單晶石夕以及外部碎屑。透過將該石夕 晶固暴露在化學氣相沉積狀態而不提供任何偏壓的方式, 在4矽曰曰圓的清潔表面上設置—同構型無晶碳塗佈層。在 對該表面進行碳化之後,在咖。c下,1%f燒以及99% ,氣的條件下,進行大約3G分鐘的無晶錯石沉積程序 =可在900X的條件下’利用氫氣或是氟氣進行大約肋 为鐘的處理程序來去降續益a eUj 層…… 及塗佈層。去除無晶碳塗佈 Ί —取向附生碳化發層,該碳切層則是曾經 "於矽晶圓以及無晶碳塗佈層 約為10奈米。 ^心反化石夕層的厚度大 25 I Si 201110283 接著使用f燒進行化學氣相沉積約1G小時 化碎層上沉積-厚度為㈣米的透明鑽石塗佈層。在在該;炭 小時之後,該原本供給的甲烷改為持續供钤 10分鐘以沉積-層厚度約1微米的矽層…’_4)約 載具厚度砂層上晶圓結合,具基材,” 載:基有一結合該石夕層的二氧切表面。在晶圓結合 程序之後,㈣份氫氟酸、三份亞魏以及一 的(HF + 3HNQW)溶液進行㈣以去除料^晶圓, 並且露出碳切層。關於㈣碎材料的細節記載於美 4,981’818號專利案之中,該專利記載於本文中以供參考。 範例2 可依下列程序製造一半導體裝置: 可依據範例彳取得一半導體基材。透過有機金屬化學 氣相沉積程序並且利用氫化鎵(GaH3)以及氨氣材料,在該 暴露的碳化矽層上沉積一氮化鎵半導體層。 應了解的是,上述内容僅供說明本發明原理的應用。 在不違背本發明範疇及精神的前提下,本發明所屬技術領 域具有通常知識者可做出多種修改及不同的配置,且依附 在後的申請專利範圍則意圖涵蓋這些修改與不同的配置。 因此’當本發明中目前被視為是最實用且較佳之實施例的 細節已被揭露如上時,對於本發明所屬技術領域具有通常 知識者而言’可依據本文中所提出的概念與原則來作出而 不受限於多種包含了尺寸、材料、外形、形態、功能、操 作方法、組裝及使用上的改變。 【圖式簡單說明】 ] 26 201110283 第1圖係本發明一實施例中的半導體裝置的一剖視 圖。 第2圖係本發明另一實施例中的半導體裝置的一剖視 圖。 第3圖係本發明又一實施例中的半導體裝置的一剖視 圖。 【主要元件符號說明】 1 2矽載具基材 1 4二氧化矽表面 1 6 ί夕層 1 8鑽石層 2 0碳化矽層 22半導體層 32單晶碳化矽 34矽生長基材 36鑽石層 38石夕層 40二氧化矽基材 42矽載具基材 27[SI 23 201110283 and changing the deposition concentration of gallium and indium] causes the concentration ratio of gallium: marriage to gradually change from 〇: 1 to 1: 〇, thereby gradually converting an indium nitride semiconductor substrate into a semiconductor layer. . In other words, the supply of gallium and indium changes so that the concentration of gallium increases while the concentration of indium decreases. The function of this gradual conversion is to substantially reduce the lattice mismatch observed when arsenide is formed directly on indium nitride. In another aspect of the invention, the at least one semiconductor layer can be an aluminum nitride layer. The damaged layer can be deposited onto a substrate by any method known to those skilled in the art to which the present invention pertains. As with the gallium nitride layer described above, the gradual conversion process between the two semiconductor layers enhances the functionality of the semiconductor device. For example, on the one hand, aluminum nitride can be deposited onto an indium nitride semiconductor substrate by gradually converting the indium nitride layer into a nitride layer. Such a gradual conversion process may include, for example, by fixing the deposited nitrogen concentration and changing the deposition concentration of indium and aluminum, gradually changing the concentration ratio of one indium: aluminum from 0:1 to 1:0, thereby indium nitride The semiconductor substrate is gradually converted into a rodent gallium semiconductor layer. This gradual conversion procedure drastically reduces the lattice mismatch observed when aluminum nitride is formed directly on indium nitride. A surface treatment can be performed between any two deposition steps to provide a smooth surface for subsequent deposition steps. The foregoing surface treatment process can be carried out by any known method such as chemical etching, polishing, leather wheel polishing, and grinding. The invention further provides a method of making a light emitting diode. The method may include: fabricating a semiconductor substrate as described above; sequentially forming a plurality of nitrided light emitting diode layers on the tantalum carbide layer; and coupling a diamond support substrate on the plurality of nitride layers to cause the plurality The smelting layer is located between the diamond layer and the 201110283 diamond floor. Additionally, a -p-type electrode can be electrically coupled to the first end of the complex nitride layer; and an -n-type electrode can be electrically coupled to a second end of the complex nitride layer. EXAMPLES The following examples show various techniques for fabricating a semiconductor device of the present invention. However, it should be noted that the following examples are merely exemplary or illustrative of the present invention, and that the present invention may be conceived in various ways. And the system. The scope of the Shen 1 Green patent attached is intended to cover these modifications and layouts. Accordingly, the present invention has been described in detail by reference to the exemplary embodiments herein x Example 1 A semiconductor substrate can be formed as follows: A soap cell wafer is obtained, the single crystal germanium wafer is immersed in potassium hydroxide, and the cleaning is performed by ultrasonic cleaning using steamed crane water. The spar wafer "removed non-single crystals on it and external debris." An isomorphous amorphous carbon coating layer is disposed on the 4 inch round clean surface by exposing the shi jing solid to a chemical vapor deposition state without providing any bias. After carbonizing the surface, it is in the coffee. Under c, 1% f-burning and 99%, under the conditions of gas, carry out the amorphous stone deposition procedure of about 3G minutes = can be used under the conditions of 900X to use hydrogen or fluorine gas to process the ribs Continuation benefits a eUj layer... and coating layer. Removal of the amorphous carbon coating Ί—Oriented epitaxial carbonization layer, which was once about 10 nm on the wafer and the amorphous carbon coating. ^The thickness of the core anti-fossil layer is large. 25 I Si 201110283 Next, chemical vapor deposition is performed using f-firing for about 1 G hour. A transparent diamond coating layer having a thickness of (four) meters is deposited on the fracture layer. After the charcoal hour, the originally supplied methane was changed to a continuous layer for 10 minutes to deposit a layer thickness of about 1 micrometer... '_4) about the carrier thickness of the wafer layer on the sand layer, with a substrate," Loading: the base has a dioxent surface combined with the layer. After the wafer bonding process, (iv) parts of hydrofluoric acid, three parts of ferulic acid, and one (HF + 3HNQW) solution are carried out (4) to remove the wafer, And the carbon cut layer is exposed. The details of the (4) broken material are described in the U.S. Patent No. 4,981,818, the disclosure of which is incorporated herein by reference. a semiconductor substrate. A gallium nitride semiconductor layer is deposited on the exposed tantalum carbide layer by an organometallic chemical vapor deposition process and using gallium hydride (GaH3) and an ammonia gas material. It should be understood that the above is only for The application of the principles of the present invention is described. Without departing from the scope and spirit of the present invention, those skilled in the art can make various modifications and different configurations, and the application is attached. The scope is intended to cover such modifications and various configurations. Therefore, when the details of the presently considered to be the most practical and preferred embodiments have been disclosed as above, for those of ordinary skill in the art to which the invention pertains' It can be made in accordance with the concepts and principles set forth herein, and is not limited to a variety of changes including dimensions, materials, shapes, shapes, functions, methods of operation, assembly, and use. [Simplified Schematic] ] 26 201110283 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention. Fig. 2 is a cross-sectional view showing a semiconductor device according to another embodiment of the present invention. Fig. 3 is a view showing a semiconductor device according to still another embodiment of the present invention. Cross-sectional view. [Main component symbol description] 1 2 矽 carrier substrate 1 4 cerium oxide surface 1 6 夕 1 layer 1 8 diamond layer 2 0 cerium carbide layer 22 semiconductor layer 32 single crystal cerium carbide 34 矽 growth substrate 36 diamond Layer 38 Asahi 40 cerium oxide substrate 42 矽 carrier substrate 27

Claims (1)

201110283 七、申請專利範圍: 1_一種鑽石底半導體裝置,其包含: 矽栽具基材,其具有一二氧化矽表面; 在該矽載具基材的二氧化矽表面上耦合有一矽層; 在該發層上耦合有一鑽石層;以及 層 在該鑽石層 上以取向附生方式耦合有一 單晶碳化石夕 2.如申請專利範圍第1項所述的鑽石底半導體裝置, 其中該鑽石層為一單晶體 3_如申印專利範圍第1項所述的鑽石底半導體裝置, 其中該鑽石層為一無支撐力鑽石層。 4·如申請專利範圍第1項所述的鑽石底半導體襞置, 其進一步包含一耦合到該碳化矽層上的半導體層。 5·如申請專利範圍第4項所述的鑽石底半導體裝置, 其中該半導體層以取向附生方式耦合到該碳化矽層上。 6. 如申請專利範圍第4項所述的鑽石底半導體裝置, 其中該半導體層為一單晶體。 7. 如申請專利範圍第4項所述的鑽石底半導體裝置, 其中該半導體層所包含的成分是選自矽、碳化矽、矽化鍺、 砷化鎵、氮化鎵、鍺、硫化鋅、磷化鎵、銻化鎵、磷砷銦 録、鱗化銘、砷化鋁、砷化鎵鋁、氮化鎵、氮化硼、氮化 铭、坤化麵、磷化銦、銻化銦、氮化銦以及其混合物。 8. 如申請專利範圍第4項所述的鑽石底半導體裝置, 其中該半導體層為氮化鎵。 9. 如申請專利範圍第1項所述的鑽石底半導體裝置, [S3 28 201110283 其中該鑽石層大致上為透明。 10. 如申叫專利範圍第彳項所述的鑽石底半導體裝置, 其中忒鑽石層的厚度是大約1 0到大約50微米。 11. 如申叫專利範圍第彳項所述的鑽石底半導體裝置, 其中該鑽石層的厚度是等於或小於大約10微米。 如申叫專利範圍第1項所述的鑽石底半導體裝置, 其中該碳化矽層的厚度是等於或小於大約1微米。 1 3·如申請專利範圍第1項所述的鑽石底半導體裝置, 其中該碳化矽層的厚度是等於或小於大約500奈米。 14.如申請專利範圍第1項所述的鑽石底半導體裝置, 其中該碳化矽層的厚度是等於或小於大約彳奈米。 1 5·一種製造鑽石底半導體裝置的方法,其包含: 在一單晶矽生長基材上形成—單晶碳化矽的取向附生 層; 在該碳化矽層上形成一取向附生鑽石層; 在該鑽石層上形成一石夕層; 令一碎載具基材的一二氧化矽表面結合在該矽層上; 以及 去除該矽生長基材以露出該碳化矽層。 16.如申請專利範圍第15項所述的製造鑽石底半導體 裝置的方法’其進一步包含在該碳化矽層上型成一半導體 層。 17·如申請專利範圍第16項所述的製造鑽石底半導體 裝置的方法’其中該形成半導體層的步驟進一步包括以取 向附生方式形成該半導體層。 [S] 29 201110283 18·如申請專利範圍第15項所述的製造鑽石底半導體 裝置的方法’其中該形成一取向附生鑽石層的步驟進一步 包括; 令該單晶矽生長基材的一生長表面逐漸由矽變化為碳 化石夕以形成該碳化;5夕層;以及 令該碳化矽晶圓的一生長表面逐漸由碳化矽變化為鑽 石以形成邊鑽石層。 19. 如申請專利範圍第15項所述的製造鑽石底半導體 裝置的方法,其中該形成一取向附生鑽石_步驟進一步 包括: 在該單晶石夕生長基材上形成一同構形無晶鑽石層以令 該碳化石夕層介於單晶石夕生長基材與同構形無晶鑽石層之 間; 去除同構形無鑽石層以露出該碳化石夕層;以及 以取向附生方式在該碳化石夕層上形成一鑽石詹。 20. -種製造發光二極體裝置的方法,其包含: 製造-如申請專利範圍第15項的鑽石底半導體裝置; 在該碳化碎層上依.岸形士、士、a 序心成有複數氮化發光二極體層; 以及 〃在5玄複數氮化層上輕合一鑽石支樓基材以使得該複數 鼠化層位於該鑽石層以及該鑽石支撑層之間。 21. 如申請專利範圍第μ 項所述製造發光二極體裝置 的方法’其進一步包含: 在該複數氮化層的一第—砂L ^ 端上電耦合一 p型電極;以 及 30 201110283 在該複數氣化層的一第二端上電耦合一 η型電極。 22. 如申請專利範圍第21項所述製造發光二極體裝置 的方法,其中該在複數氮化層第一端電耦合一 ρ型電極的 步驟進一步包含在該鑽石層之中摻入硼以形成該Ρ型電 極° 23. 如申請專利範圍第20項所述製造發光二極體裝置 的方法,其進一步包含去除該矽載具基材以及矽層以便外 露該鑽石層。 八、圖式:(如次頁) 31201110283 VII. Patent application scope: 1_ A diamond-bottom semiconductor device comprising: a enamel substrate having a cerium oxide surface; a ruthenium layer coupled to the ruthenium dioxide surface of the ruthenium carrier substrate; Coupling a diamond layer on the hair layer; and the layer is coupled to the diamond layer in a directionally epitaxial manner with a single crystal carbonized stone. The diamond bottom semiconductor device according to claim 1, wherein the diamond layer A diamond-bottom semiconductor device according to the invention of claim 1, wherein the diamond layer is a supportless diamond layer. 4. The diamond-bottom semiconductor device of claim 1, further comprising a semiconductor layer coupled to the tantalum carbide layer. 5. The diamond-bottom semiconductor device of claim 4, wherein the semiconductor layer is coupled to the tantalum carbide layer in an epitaxial manner. 6. The diamond-bottom semiconductor device of claim 4, wherein the semiconductor layer is a single crystal. 7. The diamond-bottom semiconductor device according to claim 4, wherein the semiconductor layer comprises a component selected from the group consisting of ruthenium, ruthenium carbide, bismuth telluride, gallium arsenide, gallium nitride, ruthenium, zinc sulfide, and phosphorus. Gallium, gallium arsenide, phosphorus indium and indium, scallop, aluminum arsenide, aluminum gallium arsenide, gallium nitride, boron nitride, nitriding, Kunming, indium phosphide, indium bismuth, nitrogen Indium and mixtures thereof. 8. The diamond-bottom semiconductor device of claim 4, wherein the semiconductor layer is gallium nitride. 9. The diamond-bottom semiconductor device according to claim 1, [S3 28 201110283 wherein the diamond layer is substantially transparent. 10. The diamond-bottom semiconductor device of claim 4, wherein the diamond layer has a thickness of from about 10 to about 50 microns. 11. The diamond-bottom semiconductor device of claim 4, wherein the diamond layer has a thickness equal to or less than about 10 microns. The diamond-bottom semiconductor device of claim 1, wherein the thickness of the tantalum carbide layer is equal to or less than about 1 micrometer. The diamond-bottom semiconductor device according to claim 1, wherein the thickness of the tantalum carbide layer is equal to or less than about 500 nm. 14. The diamond-bottom semiconductor device according to claim 1, wherein the thickness of the tantalum carbide layer is equal to or less than about 彳 nanometer. A method for manufacturing a diamond-bottom semiconductor device, comprising: forming an oriented epitaxial layer of monocrystalline niobium carbide on a single crystal germanium growth substrate; forming an oriented epitaxial diamond layer on the tantalum carbide layer; Forming a layer on the diamond layer; bonding a cerium oxide surface of the carrier substrate to the ruthenium layer; and removing the ruthenium growth substrate to expose the ruthenium carbide layer. 16. The method of manufacturing a diamond-bottom semiconductor device according to claim 15, which further comprises forming a semiconductor layer on the tantalum carbide layer. The method of manufacturing a diamond-bottom semiconductor device according to claim 16, wherein the step of forming the semiconductor layer further comprises forming the semiconductor layer in an epitaxial manner. [S] 29 201110283. The method of manufacturing a diamond-bottom semiconductor device according to claim 15, wherein the step of forming an oriented epitaxial diamond layer further comprises: growing a growth of the single crystal germanium growth substrate The surface gradually changes from tantalum to carbon carbide to form the carbonized layer; the layer of the tantalum; and a growth surface of the tantalum carbide wafer is gradually changed from tantalum carbide to diamond to form a side diamond layer. 19. The method of manufacturing a diamond-bottom semiconductor device according to claim 15, wherein the forming an oriented epitaxial diamond further comprises: forming an isomorphous crystallization diamond on the single crystal growth substrate The layer is such that the carbonized stone layer is interposed between the single crystal growth substrate and the isomorphous amorphous diamond layer; the isomorphous diamond-free layer is removed to expose the carbonized stone layer; and the orientation is epitaxially A diamond Zan is formed on the carbonized stone layer. 20. A method of fabricating a light-emitting diode device, comprising: manufacturing - a diamond-bottom semiconductor device as claimed in claim 15; on the carbonized layer, a banknote, a, and a preamble a plurality of nitrided light-emitting diode layers; and a light-weighted diamond-tipped substrate on the five-fold complex nitride layer such that the plurality of mouse layers are located between the diamond layer and the diamond support layer. 21. The method of manufacturing a light-emitting diode device according to the invention of claim 5, further comprising: electrically coupling a p-type electrode on a first sand-L ^ end of the plurality of nitride layers; and 30 201110283 A second end of the plurality of gasification layers is electrically coupled to an n-type electrode. 22. The method of fabricating a light emitting diode device according to claim 21, wherein the step of electrically coupling a p-type electrode at the first end of the plurality of nitride layers further comprises doping boron into the diamond layer The method of fabricating a light-emitting diode device according to claim 20, further comprising removing the tantalum carrier substrate and the tantalum layer to expose the diamond layer. Eight, the pattern: (such as the next page) 31
TW98130505A 2009-09-10 2009-09-10 Diamond based semiconductor device and its associated method TW201110283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98130505A TW201110283A (en) 2009-09-10 2009-09-10 Diamond based semiconductor device and its associated method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130505A TW201110283A (en) 2009-09-10 2009-09-10 Diamond based semiconductor device and its associated method

Publications (1)

Publication Number Publication Date
TW201110283A true TW201110283A (en) 2011-03-16

Family

ID=44836236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130505A TW201110283A (en) 2009-09-10 2009-09-10 Diamond based semiconductor device and its associated method

Country Status (1)

Country Link
TW (1) TW201110283A (en)

Similar Documents

Publication Publication Date Title
TWI378497B (en)
TWI402385B (en) Semiconductor-on-diamond devices and associated methods
CN101924020B (en) Methods of making semiconductor devices
US7799600B2 (en) Doped diamond LED devices and associated methods
CN102212794B (en) Copper plating substrate-based method for preparing large-area graphene film
US8753911B2 (en) Diamond LED devices and associated methods
US20110024767A1 (en) Semiconductor Substrates, Devices and Associated Methods
TW201121371A (en) Electronic substrate having low current leakage and high thermal conductivity and associated methods
US7867802B2 (en) Diamond LED devices and associated methods
TW201133945A (en) Diamond LED devices and associated methods
CN102893419A (en) Stress regulated semiconductor and associated methods
US7846767B1 (en) Semiconductor-on-diamond devices and associated methods
US7781256B2 (en) Semiconductor-on-diamond devices and associated methods
US20120280253A1 (en) Stress Regulated Semiconductor Devices and Associated Methods
US7799599B1 (en) Single crystal silicon carbide layers on diamond and associated methods
US20120193642A1 (en) Diamond semiconductor devices and associated methods
TW201110283A (en) Diamond based semiconductor device and its associated method
WO2012076927A1 (en) Diamond semiconductor devices and associated methods
TW201027680A (en) Diamond insulated circuits and associated methods
TW201225330A (en) Diamond semiconductor device and method thereof
CN102034772B (en) Diamond-bottom semiconductor device and relevant method thereof
US9006086B2 (en) Stress regulated semiconductor devices and associated methods
TW200933937A (en) Semiconductor devices having enhanced light emission and associated methods