TW201108441A - Manufacturing method for stacking type solar cells and its product thereof - Google Patents

Manufacturing method for stacking type solar cells and its product thereof Download PDF

Info

Publication number
TW201108441A
TW201108441A TW098127595A TW98127595A TW201108441A TW 201108441 A TW201108441 A TW 201108441A TW 098127595 A TW098127595 A TW 098127595A TW 98127595 A TW98127595 A TW 98127595A TW 201108441 A TW201108441 A TW 201108441A
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
conversion layer
photovoltaic element
substrate
photovoltaic
Prior art date
Application number
TW098127595A
Other languages
Chinese (zh)
Other versions
TWI374550B (en
Inventor
rui-hua Hong
dong-xing Wu
ming-jun Ceng
zhi-hong Wu
Zhi-Gang Zhao
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW098127595A priority Critical patent/TW201108441A/en
Publication of TW201108441A publication Critical patent/TW201108441A/en
Application granted granted Critical
Publication of TWI374550B publication Critical patent/TWI374550B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides a manufacturing method for stacking type solar cells and its product thereof. Firstly, a first photovoltaic unit is soldered to a seat board so as to series connect the seat board. Packaging is then carried by a transparent glue material. Afterwards, a second photovoltaic unit substrate is removed and adhered on the transparent glue material and series connects to the first photovoltaic unit on the seat board. Finally, the stacking type of solar cells is completed. The invention utilizes the packaging glue material instead of the specially made stand from the conventional stacking type of solar cells; therefore, not only can reduce the cost, but also can be without accurate electrode alignment. The substrate used by epitaxy has been removed in advance for the second photovoltaic unit stacked on the packaging glue material so that the structural design of the first photovoltaic unit has a greater space and effectively utilizes the incident light which is not absorbed by the second photovoltaic unit to effectively uses full band sunlight for power generation rate enhancement.

Description

201108441 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種太陽能電池的製造方法及其製品 ,特別是指一種堆疊式太陽能電池的製造方法及其製^ σα 【先前技術】 °° 由於石油存量逐年減少,使得能源短缺的危機逐步逼 ^因此世界各國不論是#界或學界皆積料找新的替代 能源,其中,因為太陽能電池具有使用方便、無污染'無 噪音、尺寸可隨意變化、方便與建築物結合等優點,且2 陽光的輻射能可謂取之不盡、用之不竭,因此,在作為替 代能源的使用上最受.到竭目。為了使太陽的輕射能做最有 效率的利用,因此有業界設計出將光伏元件利用堆疊的方 式進行串接,利用上下具有不同能隙值的光伏元件,而可 分別吸收利用太陽光中不同波長的光能,以提高單位面積 將接收到的太陽輪射能轉變為電能的效率。 參閱圖 1,如文獻「〇ver 27% efficiency GaAs/InGaAs mediamcally stacked S〇Iar ceii」令所提到的堆疊式太陽能電 池〗是利用特製支撐架U讓兩光伏元件12、12,呈上下間 隔的堆疊並彼此電性串聯,而在照光時使光線依序穿通過 兩光伏元件12、12,而分別以光伏效應產生電能,如此便可 使單位面積的光能利用率提昇,增加以光伏效應產生的電 能。 然而’在上述堆疊式太陽能電池1中.,堆疊於上方的 光伏元件12的蟲晶用基材’會造成未被上方光伏元件12, 201108441 的光電轉換層所吸收的入射光被基材所吸收,而使得下方 的光伏元件12的光電轉換層所能吸收的入射光有限,雖然 可藉由將上方光伏元件12,的基材厚度減薄,以增加下方的 光伏元件12的光電轉換層的吸收效率,但由於上、下光伏 元件12、12’的中間介質為空氣,因此在將基材厚度減薄的 同時,會造成上方的光伏元件12,的基材無法支撐其光電轉 換層,而造成上方的光伏元件12,易產生碎裂,並造成部分 入射光線因反射而無法進入下方的光伏元件,因此,將上 方的光伏元件12’的基材減薄,仍無法有效改善整體堆疊式 太陽能電池在設計上的限制,與下方的光伏元件12的吸收 效率。 此外,下方的光伏元件12的吸收效率除了受到上方的 光伏元件12,基材厚度影響之外,也受到上方的光伏元件 12’基材能隙值所限制,下方的光伏元件12僅能吸收小於上 方的光伏元件12’基材的能隙值的入射光。_般常用於光伏 元件的基材有砷化鎵(能隙值為L42eV),鍺(能隙值為 〇.66eV)及磷化銦(能隙值為134eV)等一系列基材,而為符 合多接面光伏元件的設計原則,上面的光伏元件能隙值必 須大於下方的光伏元件能隙值,因此在符合此條件的狀況 下,僅砷化鎵基材與磷化銦基材適合作為堆疊式太陽能電 池所需的基材。因此’在上述設計條件及蟲晶製程的限制 之下,習知的堆疊式太陽能電池最多僅能形成三種不同能 隙值的光伏元件,來吸收太陽光。 此外,上述的堆疊式太陽能電池1是使用特製支撐架 201108441 堆疊光伏元件UM2,,㈣製支撐架本身除了價格成本較 為昂貴之外,上下堆疊的光伏元件12'12,彼此的電極位置 必須精準地對位連結,#此才能有效向外輸出電能,這樣 也會造成結構設計與製程上的複雜度增加。201108441 VI. Description of the Invention: [Technical Field] The present invention relates to a method for manufacturing a solar cell and a product thereof, and more particularly to a method for manufacturing a stacked solar cell and a method for manufacturing the same, σα [Prior Art] ° As the oil stocks decrease year by year, the crisis of energy shortage is gradually forced. Therefore, all countries in the world, whether it is #界 or academics, are looking for new alternative energy sources. Among them, because solar cells are easy to use, non-polluting, no noise, size can be The advantages of arbitrarily changing, convenient combination with buildings, and 2 radiant energy of sunlight can be described as inexhaustible and inexhaustible. Therefore, it is the most widely used as an alternative energy source. In order to make the sun's light shots the most efficient use, there are industries that have designed photovoltaic devices to be cascaded in a stacked manner, using photovoltaic elements with different energy gap values above and below, which can be separately absorbed and utilized in different sunlight. The wavelength of light energy is used to increase the efficiency of converting the received solar energy into electrical energy per unit area. Referring to Figure 1, the stacked solar cell mentioned in the document "〇ver 27% efficiency GaAs/InGaAs mediamcally stacked S〇Iar ceii" uses a special support frame U to allow the two photovoltaic elements 12, 12 to be vertically spaced. Stacked and electrically connected in series, and in the illumination, the light is sequentially passed through the two photovoltaic elements 12, 12, and respectively generate electricity by the photovoltaic effect, so that the utilization of light energy per unit area is increased, and the photovoltaic effect is increased. Electrical energy. However, 'in the stacked solar cell 1 described above, the substrate for the insect crystal stacked on the upper photovoltaic element 12' causes the incident light that is not absorbed by the photoelectric conversion layer of the upper photovoltaic element 12, 201108441 to be absorbed by the substrate. The incident light that can be absorbed by the photoelectric conversion layer of the underlying photovoltaic element 12 is limited, although the thickness of the substrate of the upper photovoltaic element 12 can be thinned to increase the absorption of the photoelectric conversion layer of the photovoltaic element 12 below. Efficiency, but since the intermediate medium of the upper and lower photovoltaic elements 12, 12' is air, the thickness of the substrate is reduced, and the substrate of the upper photovoltaic element 12 is prevented from supporting the photoelectric conversion layer. The upper photovoltaic element 12 is prone to chipping and causes some incident light to be unable to enter the underlying photovoltaic element due to reflection. Therefore, the substrate of the upper photovoltaic element 12' is thinned, and the integrated stacked solar cell cannot be effectively improved. The design is limited to the absorption efficiency of the photovoltaic element 12 below. In addition, the absorption efficiency of the lower photovoltaic element 12 is limited by the upper photovoltaic element 12 and the substrate thickness, and is also limited by the upper photovoltaic element 12' substrate energy gap value, and the lower photovoltaic element 12 can only absorb less than Incident light of the energy gap value of the upper photovoltaic element 12' substrate. The substrate commonly used for photovoltaic elements is a series of substrates such as gallium arsenide (energy gap value L42eV), germanium (energy gap value 〇.66eV) and indium phosphide (energy gap value 134eV). In accordance with the design principle of multi-junction photovoltaic elements, the above-mentioned photovoltaic element energy gap value must be greater than the lower photovoltaic element energy gap value, so under the condition that this condition is met, only the gallium arsenide substrate and the indium phosphide substrate are suitable as The substrate required for stacked solar cells. Therefore, under the above-mentioned design conditions and limitations of the insect crystal process, conventional stacked solar cells can only form at most three photovoltaic elements of different energy value values to absorb sunlight. In addition, the above-mentioned stacked solar cell 1 is a stacked photovoltaic element UM2 using a special support frame 201108441, and the (four) support frame itself is expensive in addition to the cost of the upper and lower stacked photovoltaic elements 12'12, and the electrode positions of each other must be accurately The alignment link, # this can effectively output the external power, which will also increase the complexity of the structural design and process.

另外’上下堆疊的光伏元件12、12,之間的介質為空氣 ’所以必須在兩光伏元件12、12,之間彼此相對的表面上鍍 上抗反射膜’藉此減少光線因反射而造成光能的損失,同 時’堆疊在上方的光伏元件12,運作時產生的熱能只能藉著 空氣進行熱傳導,而容易造成光伏元件熱能的累積,進而 影響到光伏元件實際的工作壽命。 .因此’如何使堆疊式太陽能電池能充分利用不同波長 的光能以提高單位面積光能的利用率,仍有待學界、業界 共同開發、研究。 1 【發明内容】 因此,本發明之目的,即在提供一種可分別將不同波 長光能轉變成電能的堆疊式太陽能電池的製造方法。 此外’本發明之另一目的,即在提供一種可分別將不 同波長光能轉變成電能的堆疊式太陽能電池。 於是,本發明一種堆疊式太陽能電池的製造方法’包 含下列四個步驟。 首先,將-照光時以光伏效應產生電能的第一光伏元 件銲黏於-座板上’並使該第_光伏元件與該座板電性串 聯。 而製得一太陽能電池 接著,以一透明膠材進行封裝 201108441 半成品。 石曰:後’將一照光時以光伏效應產生電能之光伏元件的 I二:第二基材移除,使該光伏元件在照光時以光伏效 ’心 電能的第二光電轉換層底面裸露,製得一第 元件。 乐一尤伏 明膠Γ’將該第二光伏元件的第二光電轉換層黏貼該透 " 且與該太陽能電池半成品形成電性串聯 因照光時所產生的電能藉由電性串聯而向外輸出,心升 光伙疋件的效能,並製得該堆疊式太陽能電池。 此外,本發明一種堆疊式太陽能電池,包含-座板、 一第一光伏元件、-透明膠材,及—s二光伏元件。 該第-光伏元件設置於該座板上並與該座板電性串聯 ,且在照光時以光伏效應產生電能。 該透明膠材包覆該第一光伏元件,及部分該座板。 該第二光伏元件設置在該透明谬材上,包括一昭光時 以光伏效應產生電能的第二光電轉換層、一設置在該第二 光電轉換層上的第二頂電極’及一設置在該第二光電轉換 層上與該第二頂電極配合將第二光電轉換層產生的電能向 外輸出的第二底電極,且該第二底電極與該座板電性串聯 ,而使該[光伏元件與該第二光伏元件電性串聯。 當照光時’該第二光伏元件的第二頂電極與該座板彼 此相配合地將該第一光伏元件與該第二光伏元件之第二光 電轉換層所產生的電能向外輸出。 本發明之功效在於:開發一種新的堆疊式太陽能電池 201108441 的製&方法,错由在製程中預先移除第二基材後,再進行 :件的堆豐’使得光線穿經過第二光伏元件時不會 因第二歸的材料特性如能隙及厚度的影響而造成部分波 損失,進而大幅降低第一光伏元件的發電效能。 【實施方式】 有關本么明之前述及其他技術内容、特點與功效,在 以下配0參考圖式之二個較佳實施❾詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内4令’類似的元件是以相同的編號來表示。 >閱圖2、圖3,本發明一種堆疊式太陽能電池的製造 方法的一第一較佳實施例,是製作出如圖3所示的堆疊式 太陽能電池3。 本發明的製造方法在先了解製造出的產品結構後,當 可更加清楚的明白。 先參閱圖3,該堆疊式太陽能電池3包含一座板31、 一第一光伏元件32、一透明膠材33、一第二光伏元件34, 及多數銲線3 5。 该座板3 1包括由導電材質構成且間隔設置的一電串聯 塾311,及—電輸出墊312。 該第一光伏元件32包括一第一基材321、一自該第一 基材321上磊晶形成,且在照光時以光伏效應產生電能的 第一光電轉換層322、一設置在該第一光電轉換層322上的 第一頂電極323’及一設置在該第一光電轉換層322上與該 201108441 第一頂電極323配合將第一光電轉換層322產生的電能向 外輸出的第一底電極324,該第—光伏元件32是以該第一 基材321底面銲黏於該座板31上,該第一頂電極323及該 第一底電極324分別用銲線35與該電串聯墊311及該電輸 出墊312電連接。 該透明膠材33以包覆該第一光伏元件32、部分該電串 聯墊311、部分該電輸出墊312,及該等銲線35的態樣封裝 該第一光伏元件32與該座板31,並使該電串聯墊311的部 份區域及該電輸出墊3 12的部份區域裸露。 在此要詳細說明的是,該透明膠材33是具備穿透度大 於。85。/。、熱傳導率不小於〇 2W/〇C、玻璃轉換溫度大於 150 C、耐紫外線照射、不易黃化、具電絕緣性佳及固化後 具應力和緩等特色的膠材,.如㈣(silieGne)、聚氨醋(pu, Polyurethane)系列、環氧樹脂(Ep〇xy)系列、聚曱基丙烯酸 曱酿(PMMA ’ P〇lymethyl methacrylate)系歹丨】等材料或此等之 一組合。該透明膠材33的高穿透率主要是使部分光線在穿 經過該透明膠材33時,能減少人射光因該透明膠材Μ吸 收而造成人射光部分損失’另—方面也因該透明膠材^的 高熱傳導率,而可充分將該第二光電轉換&⑷運作時產 生的熱能導出,避免因熱能的累積造成光伏元件特性改變 ’進而減少以光伏效應產生的電能。 該第二光伏元件34設置在該透明膠材33上,是由光 伏元件移㈣晶用的第二絲341後製得,請容後詳述, 包括-照光時以光伏效應產生電能的第二光電轉換層⑷、 201108441 一設置在該第二光電轉換層342上的第 設置在該第-虫带技 貝電極343’及一 第一先電轉換層上與該第二 將第二光電轉換 貝电極343配合 符供層342產生的電能向外輪 344’該第二底電極⑽與該座板^ 巷第-底電極 外界的區域彼此以銲線35電連接。串^叫裸露於 =式太陽能電池3照光時,光線是先穿透過該 -先伙讀34,並經由該第二光伏元件3 換層342將吸收到的e 的第一先電轉In addition, the medium between the upper and lower stacked photovoltaic elements 12, 12 is air' so that an anti-reflection film must be plated on the surfaces of the two photovoltaic elements 12, 12 opposite each other to reduce the light caused by reflection. The loss of energy, while the photovoltaic elements 12 stacked on top, the heat energy generated during operation can only be conducted by air, which easily causes the accumulation of thermal energy of the photovoltaic elements, thereby affecting the actual working life of the photovoltaic elements. Therefore, how to make stacked solar cells make full use of different wavelengths of light energy to improve the utilization of light energy per unit area is still to be jointly developed and researched by the academic community and the industry. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of fabricating a stacked solar cell that can convert different wavelengths of light energy into electrical energy, respectively. Further, another object of the present invention is to provide a stacked solar cell which can separately convert light energy of different wavelengths into electrical energy. Thus, the method of manufacturing a stacked solar cell of the present invention comprises the following four steps. First, the first photovoltaic element that generates electrical energy by the photovoltaic effect is soldered to the - seat plate and the first photovoltaic element is electrically connected in series with the seat plate. A solar cell is produced and then packaged in a transparent plastic material. 201108441 Semi-finished product. Ishigaki: After the second light-emitting element of the photovoltaic element that generates electricity by the photovoltaic effect, the second substrate is removed, so that the photovoltaic element is exposed to the bottom of the second photoelectric conversion layer of the photovoltaic energy. A first component is produced. Leyi Yufuming capsule Γ affixed the second photoelectric conversion layer of the second photovoltaic element to the transparent " and electrically connected with the solar cell semi-finished product, the electrical energy generated by the illumination is externally outputted by electrical series connection , the performance of the heart and light, and the stacked solar cells. In addition, the present invention relates to a stacked solar cell comprising a - seat plate, a first photovoltaic element, a transparent adhesive, and a -s two photovoltaic element. The first photovoltaic element is disposed on the seat plate and electrically connected in series with the seat plate, and generates electrical energy by a photovoltaic effect when illuminated. The transparent rubber material covers the first photovoltaic element and a portion of the seat plate. The second photovoltaic element is disposed on the transparent coffin, and includes a second photoelectric conversion layer that generates electrical energy by a photovoltaic effect when a light is emitted, a second top electrode disposed on the second photoelectric conversion layer, and a a second bottom electrode on the second photoelectric conversion layer that cooperates with the second top electrode to output electrical energy generated by the second photoelectric conversion layer, and the second bottom electrode is electrically connected in series with the seat plate to make the photovoltaic The component is electrically connected in series with the second photovoltaic component. When the light is illuminated, the second top electrode of the second photovoltaic element and the seat plate cooperate with each other to externally output the electrical energy generated by the first photovoltaic element and the second photoelectric conversion layer of the second photovoltaic element. The effect of the present invention is to develop a new method and method for stacking solar cells 201108441, which is carried out by pre-removing the second substrate in the process, and then proceeding: the stacking of the pieces makes the light pass through the second photovoltaic The component does not cause partial wave loss due to the material properties of the second return, such as the energy gap and the thickness, thereby greatly reducing the power generation efficiency of the first photovoltaic element. [Embodiment] The foregoing and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the accompanying drawings. Before the present invention is described in detail, it is to be noted that in the following description, similar elements are denoted by the same reference numerals. > Referring to Figures 2 and 3, a first preferred embodiment of a method of fabricating a stacked solar cell of the present invention is to fabricate a stacked solar cell 3 as shown in Figure 3. The manufacturing method of the present invention can be more clearly understood after understanding the structure of the manufactured product. Referring first to FIG. 3, the stacked solar cell 3 includes a board 31, a first photovoltaic element 32, a transparent adhesive 33, a second photovoltaic element 34, and a plurality of bonding wires 35. The seat plate 31 includes an electric series 塾 311 composed of a conductive material and spaced apart from each other, and an electric output pad 312. The first photovoltaic element 32 includes a first substrate 321 , a first photoelectric conversion layer 322 formed by epitaxy from the first substrate 321 and generating electrical energy by a photovoltaic effect during illumination, and a first a first top electrode 323' on the photoelectric conversion layer 322 and a first bottom disposed on the first photoelectric conversion layer 322 to cooperate with the 201108441 first top electrode 323 to output the electrical energy generated by the first photoelectric conversion layer 322 The electrode 324, the first photovoltaic element 32 is soldered to the bottom plate 31 of the first substrate 321 , and the first top electrode 323 and the first bottom electrode 324 are respectively connected to the electrical series pad by a bonding wire 35 . 311 and the electrical output pad 312 are electrically connected. The transparent adhesive material 33 encapsulates the first photovoltaic element 32 and the seat plate 31 with the first photovoltaic element 32, a portion of the electrical series pad 311, a portion of the electrical output pad 312, and the bonding wires 35. And a portion of the electrical connection pad 311 and a portion of the electrical output pad 312 are exposed. It is to be noted in detail herein that the transparent adhesive material 33 has a transmittance greater than that. 85. /. , thermal conductivity is not less than 〇 2W / 〇 C, glass transition temperature is greater than 150 C, UV-resistant, not easy to yellow, with good electrical insulation and stress and gentle after curing, such as (four) (silieGne), Materials such as polyurethane (pu, Polyurethane), epoxy (Ep〇xy), and PMMA 'P〇lymethyl methacrylate) or a combination of these. The high transmittance of the transparent adhesive material 33 is mainly to reduce the loss of the human light when the partial light is passed through the transparent adhesive material 33, and the light is partially lost due to the absorption of the transparent plastic material. The high thermal conductivity of the rubber material can fully derivate the thermal energy generated during the operation of the second photoelectric conversion & (4) to avoid the change of the characteristics of the photovoltaic element due to the accumulation of thermal energy, thereby reducing the electrical energy generated by the photovoltaic effect. The second photovoltaic element 34 is disposed on the transparent adhesive material 33, and is prepared by moving the second wire 341 for the (four) crystal of the photovoltaic element, which is described later in detail, including the second generation of electrical energy by the photovoltaic effect during illumination. The photoelectric conversion layer (4), 201108441 is disposed on the second photoelectric conversion layer 342, and is disposed on the first-in-situ technology electrode 343' and a first electrical conversion layer and the second second photoelectric conversion The electrode 343 is coupled to the power generated by the layer 342 to the outer wheel 344'. The second bottom electrode (10) and the outer region of the base plate of the seat plate are electrically connected to each other by a bonding wire 35. When the string is exposed to the solar cell 3, the light is first penetrated through the first-reader 34, and the first photovoltaic device that is absorbed by the second photovoltaic element 3 is replaced by the layer 342.

兮第1雷l 光能轉變為電能,而未被 先電轉換層342 D及收轉換成電能的部分波長的先& ,則在穿通過該第二㈣1 一 丨刀波長的先旎 —先伏70件24與該透明膠材後33,穿進 入該第-光伏元件32’經由該第一光伏元件32的第一光電 轉換層⑵將吸收到的部分波長的光能轉變為電能,而藉 由該第二光伏_ 34的第二頂電極343與該座板31的電 輸出墊3Π裸露部分,彼此相配合地同時將該第一光電轉 換層322與該第二光電轉換層342產生的電能向外輸出。 上述的堆疊式太陽能電池3,在通過下述本發明堆疊式 太陽能電池的製造方法的第一較佳實施例說明I,當可更 加清楚的明白。 參閱圖2’本發明堆疊式太陽能電池的製造方法的第— 較佳貫施例’包含下列四個步驟。 參閱圖2、圖4’首先進行步驟21,將該第—光伏元件 32以該第-基材321接觸該座板31地設置在該座板31上 ,並利用打線(wire bonding)技術分別用銲線35電連接該第 一光伏元件32的第一頂電極323與該座板31的電串連墊 201108441 3U,及該第一光伏元件32的第一底電極324與該座板 的電輸出墊312。 多閱圖2、圖5,接著進行步驟22,以該透明膠材33 封裝該步驟21製得的製品,且在封裂時需使該電串聯塾 311的部份區域與該電輸出塾312的部份區域裸露以供後續 打線之用’製得—太陽能電池半成品301。 在此要特別說明的是,該透明膠材33是經由灌注的方 式封裝該太陽能電池半成品3〇1,並經由加熱或照光的方式 使該透明膠材33固化。 參閱圖2 '圖6,及圖7,然後進行步驟23,如圖6所 不’在一照光時以光伏效應產生電能之光伏元件上可分離 地黏貼一暫時基板3〇2,之後,如圖7所示,再將該光伏元 件磊晶用的第二基材341移除,使該光伏元件在照光時以 光伏效應產生電能的第二光電轉換層342底面裸露,製得 一黏結有暫時基板的第二光伏元件34。 在此要特別說明的是’移除該第二基材341的方式可 以疋利用化學濕式钕刻方法使該第二基材3 41與化學溶液 產生化學反應,而將該第二基材341移除;也可以是在該 第二光電轉換層342與該第二基材341的中間利用磊晶成 長的方法成長一犧牲層,並搭配化學濕式蝕刻的選擇性蝕 刻方法,使犧牲層被化學溶液蝕刻掉,而使該第二基材341 與該第二光電轉換層342分離;更可以是利用機械研磨方 式將該第二基材341與該第二光電轉換層342接觸處磨除 ’而使該第二基材341與該第二光電轉換層342分離。 10 201108441 _參閱圖2、圖8,及圖9,最後進行步驟24,如圖8所 不’將該第二光伏元件34以該第二光電轉換層342接觸該 透明膠材33地設置於該太陽能電池半成品上,之後 如n,紐”時餘迎,制#純術以鲜線 第二光伏㈣34的第二底電極344與該座板31的 電串%塾311裸露區域電連接,而可由該第二光伏元件μ 的第二頂電極343與該座板31的電輸出塾3ΐ2裸露區域招兮The first Ray 1 light energy is converted into electric energy, and the first wavelength of the partial wavelength that is not converted into the electric energy conversion layer 342 D and converted into electric energy is passed through the second (four) 1 After the 70 piece 24 and the transparent adhesive material 33, the first photovoltaic conversion layer (2) penetrating into the first photovoltaic element 32 converts the absorbed partial light energy into electrical energy, and The second top electrode 343 of the second photovoltaic layer 34 and the exposed portion of the electrical output pad 3 of the seat plate 31 cooperate with each other to simultaneously generate the electrical energy generated by the first photoelectric conversion layer 322 and the second photoelectric conversion layer 342. Output to the outside. The above-described stacked solar cell 3 is explained by the first preferred embodiment of the method for manufacturing a stacked solar cell of the present invention described below, as will be more clearly understood. Referring to Fig. 2', the first preferred embodiment of the method for fabricating a stacked solar cell of the present invention comprises the following four steps. Referring to FIG. 2 and FIG. 4', step 21 is first performed, and the first photovoltaic element 32 is disposed on the seat plate 31 with the first substrate 321 contacting the seat plate 31, and is respectively used by wire bonding technology. The bonding wire 35 is electrically connected to the first top electrode 323 of the first photovoltaic element 32 and the electrical series pad 201108441 3U of the seat plate 31, and the first bottom electrode 324 of the first photovoltaic element 32 and the electrical output of the seat plate Pad 312. 2, FIG. 5, and then proceeding to step 22, the article prepared in the step 21 is encapsulated by the transparent adhesive 33, and a portion of the electrical series 311 and the electrical output port 312 are required to be sealed during the cracking. Part of the area is bare for later use to make the line - solar cell semi-finished product 301. Specifically, it is to be noted that the transparent adhesive material 33 encapsulates the solar cell semi-finished product 3〇1 via a perfusion method, and cures the transparent adhesive material 33 by heating or illuminating. Referring to FIG. 2 ' FIG. 6 and FIG. 7 , and then proceeding to step 23, as shown in FIG. 6 , a temporary substrate 3 〇 2 is detachably adhered to a photovoltaic element that generates electric energy by a photovoltaic effect during illumination, and then, as shown in FIG. 7, the second substrate 341 for epitaxial wafer element removal is removed, so that the bottom surface of the second photoelectric conversion layer 342 that generates electrical energy by the photovoltaic effect is exposed when the photovoltaic element is illuminated, and a temporary substrate is bonded. Second photovoltaic element 34. Specifically, the method of removing the second substrate 341 may be to chemically react the second substrate 341 with a chemical solution by a chemical wet etch method, and the second substrate 341 is chemically reacted. Removing or removing a sacrificial layer by epitaxial growth between the second photoelectric conversion layer 342 and the second substrate 341, and performing a selective etching method using chemical wet etching to make the sacrificial layer The chemical solution is etched away to separate the second substrate 341 from the second photoelectric conversion layer 342; more preferably, the second substrate 341 is in contact with the second photoelectric conversion layer 342 by mechanical grinding. The second substrate 341 is separated from the second photoelectric conversion layer 342. 10 201108441 - Referring to FIG. 2, FIG. 8, and FIG. 9, finally step 24 is performed, as shown in FIG. 8, the second photovoltaic element 34 is disposed in the second photoelectric conversion layer 342 in contact with the transparent adhesive material 33. On the semi-finished product of the solar cell, after the n, the New Zealand, the Yu, the #2, the second bottom electrode 344 of the second photovoltaic (four) 34 is electrically connected to the exposed area of the electric string % 311 of the seat plate 31, and may be The second top electrode 343 of the second photovoltaic element μ and the electrical output 该3ΐ2 of the seat plate 31 are exposed

配合地將該第—光伏元件32與該第二光伏it件34的光電 轉換層322、342照光時產生的電能向外輸出,製得該堆疊 式太陽能電池3。 且 〃精由利用透明谬材33將第二光伏元件34黏結固定於 第一光伏元件32上方,而完成絲元件的堆疊,-方面不 需額外使用昂貴的特製支標架而可節省成本,另一方面在 製造過程中僅需利用打線技術以銲線35使第—頂電極切 、第一底電極324,及第二底電極344分別與電串聯墊3ιι 及電輸㈣312間電連接,便可低成本、製程簡單地製得 ,,該堆疊式太陽能電池3。 此外,在上述製造過程中,第二光伏元件34是在預先 移除磊晶用的第二基材341後,再堆疊於第一光伏元件μ 上方,使得本發明堆疊式太陽能電池3照光時,光線是先 穿通過第二光伏元件34,並由第二光伏元件34的第二光電 轉換層342吸收對應波長的光能而將其轉換成電能後,2 被第二光伏元件34的第二光電轉換層342所吸收的盆他波 長的光線可直接在穿透透明朦材33後,入射至第一光伏元 201108441 件32而被第一光伏元件32的第—光電轉換層322吸收轉 變成電能,而不會造成第一光伏元件32所能吸收的對應波 長的光能因先被第二基材342吸收而造成損失,進而大幅 降低第一光伏元件32的發電效能。 另外,在此要特別說明的是,除了可以利用打線技術 刀別電連接該第一光伏元件32的第一頂電極323與該座板 31的電串連塾311、該第一光伏元件32的第一底電極324 與該座板31的電輸出墊312,及該第二光伏元件34的第二 底電極344與該座板31的電串聯墊311裸露區域之外,也 可以利用鍍膜接線或噴印技術分別使上述元件間彼此電連 接,由於電連接的技術非本發明之重點,在此不再—一贅 參閱圖10、圖U,本發明一種堆疊式太陽能電池的製 造方法的一第二較佳實施例,是製作出如圖n所示的堆疊 式太陽能電池5,域製得的堆疊式太陽能電池5 ^^第二 較佳實施韻製得的堆疊式太陽能総3相似,不同處僅 在於第4伏元件的結構’故以下僅針對此作詳細說明。 該第一光伏元件52是由光伏元件移除蟲晶用的第一基 材52i後製得,此過程請容後詳述,包括一設置在該座二 51上且在照光時以光電效應產生電能的第―光電轉㈣ 522、一設置在該第-光電轉㈣522上的第一頂電極二 ’及一設置在該第—光電轉換層522上與該第-頂電極523 配合將第-光電轉換層522產生的電能向外輸出的第一底 12 201108441 電極524,該第一光伏元件52是以該第一光電轉換層522 底面銲黏於該座板51上,該第一頂電極523及該第一底電 極524分別與該電串聯墊511及該電輸出墊512電連接。在 本貫施例中,該第一頂電極523與該第一底電極524是以 銲線55分別與該電串聯墊511及該電輸出墊512電連接。 而藉著第一光伏元件52的第一光電轉換層522直接接 觸座板51地銲黏於座板51上,使得第一光電轉換層522 運作時產生的熱能可直接藉由座板51快速導離,增加第一 光伏元件52的散熱效率。 參閱圖10、圖12,及圖13,類似地,本發明堆疊式太 陽能電池的製造方法的第二較佳實施例是與該第一較佳實 施例的過程相似,其不同處在於:進行步驟41時,如圖12 所示,是先在一照光時以光伏效應產生電能之光伏元件上 可分離地黏接一暫時基板5〇2,之後,將磊晶用的一第一基 材521移除,僅留下該第一光電轉換層522作為產生光伏 效應的核心,而製得該第一光伏元件52;接著,如圖13所 示,以該第—光電轉換層522接觸該座板51地設置在該座 板51上後,移除該暫時基板5〇2,再利用打線技術以銲線 55使省第頂電極523及該第一底電極524分別與該座板 51的電串聯墊511及電輸出墊512電連接,在完成上述步 驟41後,接著,與該第一較佳實施例類似地,以透明膠材 53進行封裝,然後將另一光伏元件的基材移除後製得一第 二光伏元件54,並將其設置於透明膠材53上,同時,以銲 線55與座板51的電串聯墊511電連接,而製得該堆疊式太 13 201108441 陽能電池5。 雖然,在該第二較佳营祐办,丨β 貝轭例所說明的製造方法,比第 -較佳實施例更增加了步驟41巾移除蟲晶用的第一基材 切的過程’但是如此一來卻能讓第—光伏元件52以第一 光電轉換層522直接接觸座板51地㈣於座板51上,增 加第一光伏元件52的散熱效率。 參閱圖14,另外,在此要特別說明的是,本發明的製 造方法也可適用於如圖14所示該第一底電極324是設置於 該第-基# 321下方的態樣的第—光伏元件32,而在變造 過程中僅需使該第-底電極324直接透過該座板31與該電 輸出塾312電連接,而不須利用打線技術以鲜線電連接, 同樣可達到電性串接的目的。 本發明還可以預先設計第_、二光伏元件52、54的第 一、二光電轉換層522、542分別具有三種由下至上(即朝 遠離座板方向)漸增的能隙,且第二光電轉㈣542所具 有的能隙值皆大於第-光電轉換層522 ’如此使得全波域的 入射光更可被充分的吸收而轉換成電能,大幅提昇堆疊式 太陽能電池的發電效能。 綜上所述,本發明主要是提供一種新的堆疊式太陽能 電池的製造方法,藉由利用透明膠材使第二光伏元件黏固 堆疊於第一光伏元件上方,並配合利用打線技術將電極與 電串聯墊及電輸出墊電性串聯,低成本、製程簡單地製得 堆疊式太陽能電池,此外,也因為透明膠材具有高穿透率 及高熱傳導率,—方面可使光線完全穿通過透明膠材而進 14 201108441 入第一光伏元件,減少部分光能因反射而損失,另— 也使苐二光伏元件運作時產生的熱能得以利用透 座板方向導出,另外,更因為在製程中預先移除第:某材 ’使得入射光能因不會被第二基材影響而使堆疊式^处 電池可充分利用全波域的光能並將其轉換成電能,進而: 幅提昇堆疊式太陽能電池的發電效率,確實改進 制 造方法及其製品,會有因第二基材的材料特性如能隙及: :的影響而限制第一光伏元件的發電效率、因額外使用: 製支撐架而成本過高、電極須精確對準而製程複雜及散教 效率不佳的缺點,故確實能達成本發明之目的。 …、 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發”請:利 範圍及發明說明内容所作之簡單的等效變化與修飾了 屬本發明專利涵蓋之範圍内。 白 【圖式簡單說明】 圖 的構造; 1是一剖視示意圖,說明習知的堆疊式 太陽能電池 、® 2是一流程圖,說明本發明堆疊式太陽能電池的製 造方法的第一較佳實施例; 圖3是-剖視示意圖,說明本發明堆疊式太陽能電池 的第一較佳實施例的構造; 圖4是一剖視示意圖,輔助說明實施本發明的製造方 法的第-較佳實施料,將第m件以第—基材鲜黏 在座板上後,用銲線使第—光伏元件的第1電極及第— 15 201108441 底電極分別與座板的電串聯墊及電輸出墊電連接; 法的ί 5是一剖視示意圖’輔助說明實施本發明的製造方 ' —較佳實施例時,以透明膠材進行封裝; 法:疋μ視不思圖’輔助說明實施本發明的製造方 第一較佳實施例時,在一光伏元件黏貼暫時基板; 圖7是-剖視示意圖,輔助說明實施本 ;的第-較佳實施例時,移除第二光伏元件的第二, 弟一光電轉換層底面裸露; 法的18是-職,輔助制實施本發明的製造方 上;—IU圭實施例時’將第二光伏元件設置在透明膝材 法的9是—剖視示意圖,輔助說明實施本發明的製造方 K圭實施例時’料線將n伏元件的第二底 '°與座板的電串聯墊電連接; - 造方!10是一流程圖,說明本發明堆疊式太陽能電池的製 方法的第二較佳實施例; 圖11是-剖視示意圖,說明本發明堆疊式太陽能電池 乐一較佳實施例的構造; 法的=12是·'剖視示意圖,辅助說明實施本發明的製造方 2較佳實施例時,將一光伏元件點貼—暫時基板後 埘磊晶用的第一基材移除; 法2 13是1視示意圖’輔助說明實施本發明的製造方 ,移圭實施例時,以第一光伏元件設置在座板上後 時基板’再利用打線技術以銲線使第-頂電極及 16 201108441 第一底電極分別與座板的電串聯墊及電輸出墊電連接;及 圖14是一剖視示意圖,說明第一光伏元件是呈底電極 a又置於第一基材下方的態樣,而使第一底電極直接透過座 板與電輸出墊電連接。 201108441 【主要元件符號說明】 21 步驟 344 第二底電極 22 步驟 35 銲線 23 步驟 41 步驟 24 步驟 5 堆疊式太陽能電池 3 堆疊式太陽能電池 502 暫時基板 301 太陽能電池半成品 5 1 座板 302 暫時基板 511 電串聯墊 31 座板 512 電輸出墊 311 電串聯墊 52 第一光伏元件 312 電輸出墊 521 第一基材 32 第·一光伏元件 522 第一光電轉換層 321 第一基材 523 第一頂電極 322 第一光電轉換層 524 第一底電極 323 第一頂電極 53 透明膠材 324 第一底電極 54 第二光伏元件 33 透明膠材 542 第二光電轉換層 34 第二光伏元件 543 第二頂電極 341 第二基材 544 第二底電極 342 第二光電轉換層 55 銲線 343 第二頂電極 18The stacked solar cells 3 are produced by externally outputting the electric energy generated when the first photovoltaic element 32 and the photoelectric conversion layers 322 and 342 of the second photovoltaic element 34 are illuminated. Moreover, the second photovoltaic element 34 is bonded and fixed on the first photovoltaic element 32 by using the transparent coffin 33, and the stacking of the wire elements is completed, and the cost is not required to additionally use an expensive special standard holder, and the cost is saved. On the one hand, in the manufacturing process, only the wire bonding technology is used to electrically connect the first top electrode, the first bottom electrode 324, and the second bottom electrode 344 to the electrical series pad 3 and the electric (4) 312 respectively. The stacked solar cell 3 is produced at a low cost and in a simple process. In addition, in the above manufacturing process, the second photovoltaic element 34 is stacked on the first photovoltaic element μ after the second substrate 341 for epitaxial removal is removed in advance, so that when the stacked solar cell 3 of the present invention is illuminated, The light is first passed through the second photovoltaic element 34, and after the second photoelectric conversion layer 342 of the second photovoltaic element 34 absorbs the light energy of the corresponding wavelength to convert it into electrical energy, 2 is the second photoelectric of the second photovoltaic element 34. The light of the basin wavelength absorbed by the conversion layer 342 can be directly incident on the first photovoltaic element 201108441 32 after being transmitted through the transparent coffin 33 and absorbed into the electrical energy by the first photoelectric conversion layer 322 of the first photovoltaic element 32. The light energy of the corresponding wavelength that the first photovoltaic element 32 can absorb is not caused to be absorbed by the second substrate 342, thereby greatly reducing the power generation efficiency of the first photovoltaic element 32. In addition, it should be particularly noted that, in addition to the wire bonding technology, the first top electrode 323 of the first photovoltaic element 32 and the electrical series connection 311 of the seat plate 31 and the first photovoltaic element 32 can be electrically connected. The first bottom electrode 324 and the electrical output pad 312 of the seat plate 31, and the second bottom electrode 344 of the second photovoltaic element 34 and the exposed region of the electrical series pad 311 of the seat plate 31 may also be coated by a coating or The printing technology respectively electrically connects the above components to each other. Since the technology of electrical connection is not the focus of the present invention, it is no longer referred to here. Referring to FIG. 10 and FIG. U, the first method for manufacturing a stacked solar cell of the present invention. The second preferred embodiment is to fabricate a stacked solar cell 5 as shown in FIG. n, and the stacked solar cell 5 manufactured by the domain is similar to the stacked solar cell 3 produced by the second preferred embodiment. It is only the structure of the 4th volt element. Therefore, only the details will be described below. The first photovoltaic element 52 is prepared by removing the first substrate 52i for the insect crystal by the photovoltaic element, and the process is described in detail later, including a photon effect on the seat 51 and the photoelectric effect. a first photoelectric conversion (four) 522 of electrical energy, a first top electrode 2' disposed on the first photoelectric conversion (four) 522, and a first photoelectric conversion layer 522 disposed on the first photoelectric conversion layer 522 to cooperate with the first top electrode 523 a first bottom 12 201108441 electrode 524 is outputted by the conversion layer 522. The first photovoltaic element 52 is soldered to the bottom plate 51 by the bottom surface of the first photoelectric conversion layer 522. The first top electrode 523 and The first bottom electrode 524 is electrically connected to the electrical series pad 511 and the electrical output pad 512, respectively. In the present embodiment, the first top electrode 523 and the first bottom electrode 524 are electrically connected to the electrical series pad 511 and the electrical output pad 512 by bonding wires 55, respectively. The first photoelectric conversion layer 522 of the first photovoltaic element 52 is directly bonded to the seat plate 51 by contacting the seat plate 51, so that the thermal energy generated when the first photoelectric conversion layer 522 operates can be directly guided by the seat plate 51. The heat dissipation efficiency of the first photovoltaic element 52 is increased. Referring to FIG. 10, FIG. 12, and FIG. 13, similarly, the second preferred embodiment of the method for fabricating a stacked solar cell of the present invention is similar to the process of the first preferred embodiment, except that steps are performed. At 41 o'clock, as shown in FIG. 12, a temporary substrate 5 〇 2 is detachably bonded to a photovoltaic element that generates electric energy by a photovoltaic effect at the time of illumination, and then a first substrate 521 for epitaxy is moved. Except that only the first photoelectric conversion layer 522 is left as a core for generating a photovoltaic effect, and the first photovoltaic element 52 is formed; then, as shown in FIG. 13, the first photoelectric conversion layer 522 is in contact with the seat plate 51. After being disposed on the seat plate 51, the temporary substrate 5〇2 is removed, and the electric connection pad of the provincial top electrode 523 and the first bottom electrode 524 and the seat plate 51 are respectively connected by the wire bonding technology by the wire bonding method 55. 511 and the electrical output pad 512 are electrically connected. After the above step 41 is completed, similarly to the first preferred embodiment, the transparent adhesive 53 is used for packaging, and then the substrate of the other photovoltaic element is removed. A second photovoltaic element 54 is obtained and disposed on the transparent adhesive 53 Meanwhile, with the base plate 51 of the bonding wire 511 electrically connected to pad 55 in series, the prepared stacked too 13201108441 solar energy battery 5. Although, in the second preferred embodiment, the manufacturing method described in the 丨β yoke example is more than the first preferred embodiment, the process of removing the first substrate for removing the crystals from the step 41 is added' However, in this way, the first photovoltaic element 52 can directly contact the seat plate 51 on the seat plate 51 with the first photoelectric conversion layer 522, thereby increasing the heat dissipation efficiency of the first photovoltaic element 52. Referring to FIG. 14, in addition, it should be particularly noted that the manufacturing method of the present invention is also applicable to the first bottom electrode 324 which is disposed under the first base 321 as shown in FIG. The photovoltaic element 32 is only required to electrically connect the first bottom electrode 324 to the electrical output port 312 through the seat plate 31 during the deformation process, without using a wire bonding technique to electrically connect the fresh wire, and the same can be achieved. The purpose of sexual concatenation. The present invention can also pre-design the first and second photoelectric conversion layers 522, 542 of the first and second photovoltaic elements 52, 54 respectively having three energy gaps from bottom to top (ie, away from the seat plate), and the second photoelectric The turn-on (four) 542 has a larger energy gap value than the first-photoelectric conversion layer 522', so that the incident light of the full-wavelength region can be sufficiently absorbed and converted into electric energy, thereby greatly improving the power generation performance of the stacked solar cell. In summary, the present invention mainly provides a new method for manufacturing a stacked solar cell, in which a second photovoltaic element is adhered and stacked on top of a first photovoltaic element by using a transparent adhesive material, and the electrode is combined with a wire bonding technique. The electric series pad and the electric output pad are electrically connected in series, and the stacked solar cell is simply manufactured at a low cost and a simple process. In addition, because the transparent rubber material has high transmittance and high thermal conductivity, the light can be completely penetrated through the transparent The rubber material enters 14 201108441 into the first photovoltaic element, which reduces part of the light energy loss due to reflection, and also enables the heat energy generated by the operation of the second photovoltaic element to be derived from the direction of the permeable plate, and more, because it is pre-processed in the process The removal of the first: material 'so that the incident light energy is not affected by the second substrate, so that the stacked battery can make full use of the full-wavelength light energy and convert it into electrical energy, and then: the lifting of the stacked solar energy The power generation efficiency of the battery does improve the manufacturing method and its products, and the first photovoltaic element is limited by the material properties of the second substrate such as the energy gap and : Power generation efficiency, the disadvantages of additional use: the cost of the support frame is too high, the electrodes must be precisely aligned, the process is complicated, and the efficiency of the teaching is poor, so the object of the present invention can be achieved. The above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the simple equivalent of the scope of the invention and the content of the invention. Variations and modifications are within the scope of the present patent. White [Simple diagram] The construction of the diagram; 1 is a schematic cross-sectional view showing a conventional stacked solar cell, the ® 2 is a flow chart illustrating the invention BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a cross-sectional view showing the configuration of a first preferred embodiment of a stacked solar cell of the present invention; FIG. 4 is a cross-sectional view showing an auxiliary view In the first preferred embodiment of the manufacturing method of the present invention, after the m-th material is adhered to the seat plate by the first substrate, the first electrode of the first photovoltaic element and the bottom electrode of the first photovoltaic element are respectively separated by a bonding wire. The electrical series pad and the electrical output pad of the seat plate are electrically connected; the method of the method is a cross-sectional view of the 'manufacturing party of the invention', in the case of a preferred embodiment, the package is made of a transparent plastic material; μ </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Removing the second of the second photovoltaic element, the bottom surface of the photoelectric conversion layer is bare; the method of the method 18 is to assist in the implementation of the manufacturing method of the present invention; and the embodiment of the second embodiment is to set the second photovoltaic element 9 is a schematic cross-sectional view of the transparent knee method, which assists in the description of the manufacturing method of the present invention, the 'feeding line electrically connecting the second bottom '° of the n-volt element to the electrical series pad of the seat plate; Figure 10 is a flow chart illustrating a second preferred embodiment of the method for fabricating a stacked solar cell of the present invention; Figure 11 is a cross-sectional view showing the construction of a preferred embodiment of the stacked solar cell of the present invention; The method of Fig. 12 is a schematic cross-sectional view, which assists in the description of the preferred embodiment of the manufacturing method of the present invention, in which a photovoltaic element is attached-temporary substrate, and the first substrate for epitaxial deposition is removed; 13 is a 1 view schematic 'auxiliary instructions to implement this hair In the embodiment of the embodiment, when the first photovoltaic element is disposed on the seat plate, the substrate 'reuses the wire bonding technique to bond the first top electrode and the first bottom electrode of the 201108441 to the seat plate. And the electrical output pad is electrically connected; and FIG. 14 is a cross-sectional view showing the first photovoltaic element in a state in which the bottom electrode a is placed under the first substrate, and the first bottom electrode is directly transmitted through the seat plate and the electricity. Output pad electrical connection 201108441 [Main component symbol description] 21 Step 344 Second bottom electrode 22 Step 35 Bond wire 23 Step 41 Step 24 Step 5 Stacked solar cell 3 Stacked solar cell 502 Temporary substrate 301 Solar cell semi-finished product 5 1 seat Plate 302 Temporary Substrate 511 Electrical Series Pad 31 Seat Plate 512 Electrical Output Pad 311 Electrical Series Pad 52 First Photovoltaic Element 312 Electrical Output Pad 521 First Substrate 32 First Photovoltaic Element 522 First Photoelectric Conversion Layer 321 First Substrate 523 first top electrode 322 first photoelectric conversion layer 524 first bottom electrode 323 first top electrode 53 transparent adhesive 324 first bottom electrode 54 second photovoltaic element 33 transparent adhesive 542 second photoelectric conversion layer 34 second photovoltaic element 543 second top electrode 341 second substrate 544 second bottom electrode 342 second photoelectric conversion layer 55 bonding wire 343 second top electrode 18

Claims (1)

201108441 七、申請專利範圍: 1.種堆$式太陽能電池的製造方法,包含·· 電能的第一光伏元 元件與該座板電性 (a)將一照光時以光伏效應產生 件銲黏於一座板上’並使該第一光伏 串聯; 〇)以-透明料封裝該步驟⑷製得的製品,而 得一太陽能電池半成品: 、 ⑷將-照光時以光伏效應產生電能之光伏元件的 蟲晶用的第二基材移除,使該光伏元件在照光時以光伏 效應產生電能的第二光電轉換層底面裸露, 一 光伏元件; ⑷將該第二光伏元件以該第二光電轉換層接觸該透 明膠材且與該座板電性串聯地設置於該太陽能電池半成 品上,而可由該第二光伏元件的—第二頂電極與該座板 相配合地將該第-光伏元件與該第二光伏元件的光電轉 換層照光時產生的電能向外輸出,製得該堆疊式太陽能 電池。 2·依射請專利第1項所述之堆疊式太陽能電池的製 造方法,其中’該步驟⑷使用的第一光伏元件包含一蠢 晶用的第-基材、一自該第一基材向上磊晶形成並在照 光時以光伏效應產生電能的―第—光電轉換層,及分別 設置在該第一光電轉換層上的—第一頂電極與一第一底 電極,且該光伏元件是以該第—基材接觸該座板地設置 在該座板,並以二銲線分別電連接該第一頂電極與該座 19 201108441 板的一電串連墊,及該第一 墊。 底電極與該座板 的一電輸出 3.依據申請專利範圍第1項所+ β 項所述之堆豐式太陽能電池的製 造方法,其中’該步驟⑷使用的第-光伏元件是將一 照光時以光伏效應產生電能之光伏元件的蟲晶用的第一 基材移除後製得’包含一自該第一基材向上磊晶形成並 在照光時以光伏效應產生電能的一第_光電轉換層,及 分別設置在該第一光電轉換層上的一第一頂電極與一第 -底電極,且該第一光伏元件是以該第一光電轉換層底 面接觸該座板地設置在該絲,並以二銲線分別電連接 該第-頂電極與該座板的—電串連塾,及該第—底電極 與該座板的一電輸出墊。 4. 依據中請專利範圍第2《3項所述之堆疊式太陽能電池 的製造方法,其中,該步驟(b)以該透明膠材封裝該步驟 (a)製得的製品時,同時使該電串聯墊及該電輸出墊部分 裸露以供後續使用銲線電連接之用。 5. 依據申請專利範圍第4項所述之堆疊式太陽能電池的製 造方法,其中,該步驟(b)是將該透明膠材經由灌注的方 式封裝該太陽能電池半成品,並經由加熱的方式使該透 明膠材固化。 6·依據申請專利範圍第5項所述之堆疊式太陽能電池的製 造方法’其中,該步驟(C)是先將一暫時基板可分離地黏 置在該光伏元件上後,利用化學濕式蝕刻方法使該第二 基材與化學溶液產生化學反應,而將該第二基材移除。 20 201108441 7. 依據申請專利範圍第5項所述之堆疊式太陽能電池的製 造方法,其中,該步驟(c)是先將一暫時基板可分離地黏 置在該光伏元件上後,然後以化學濕式蝕刻的選擇性蝕 刻方法,使該第二光電轉換層與該第二基材間利用磊晶 成長方法成長的一犧牲層被化學溶液蝕刻掉,而使該第 二基材與該第二光電轉換層分離。 8. 依據申請專利範圍第5項所述之堆疊式太陽能電池的製 造方法,其中,該步驟(c)是先將一暫時基板可分離地黏 置在該光伏元件上後,然後以機械研磨方式將該第二基 材與該第二光電轉換層接觸處磨除,而使該第二基材與 該第二光電轉換層分離。 9 · 一種堆疊式太陽能電池,包含: 一座板; 一第一光伏元件,設置於該座板上並與該座板電性 串聯’並在照光時以光伏效應產生電能; 透明膠材,包覆該第一光伏元件及部分該座板; 及 第一光伏元件,設置 光時以光伏效應產生電能的 έ玄第二光電轉換層上的第二 光電轉換層上與該第二頂電 生的電能向外輸出的第二底 座板電性串聯, 在該透明膠材上,包括一照 第二光電轉換層、—設置在 頂電極,及一設置在該第二 極配合將第二光電轉換層產 電極’且該第二底電極與該 田…、光時,該第二光伏元件的第二頂電極與該座板 21 201108441 彼此相配合地將該第-光伏元件肖該第m件之第 二光電轉換層產生的電能向外輸出。 •依據中請專利範圍第9項所述之堆疊式太陽能m 中,該座板包括-電串聯塾,及一電輸出塾,該第―光 伏元件包括-設置在該絲上且在照光時以光電效應產 生電能的第-光電轉換層、—設置在該第一光電轉換層 上的第-頂電極,及一設置在該第一光電轉換層上與該 第一頂電極配合將第-光電轉換層產生的電能向外輸: 的第-底電極,且該第一頂電極及該第一底電極分別以 銲線與該電串聯墊及該電輸出墊電連接。 11.依射請專利範圍第9項所述之堆疊式太陽能電池,其 中’該座板包括一電串聯墊,及一電輸出墊,該第—光 伏元件包括一設置在該座板上的第一基材、—自該第— 基材上磊晶形成的第一光電轉換層、一設置在該第一光 電轉換層上的第一頂電極,及一設置在該第一光電轉換 層上與該第一頂電極配合將第一光電轉換層產生的電能 向外輪出的第一底電極,且該第一頂電極及該第一底電 極分別以銲線與該電串聯墊及該電輸出墊電連接。 12.依據中請專利範圍第1()或u項所述之堆疊式太陽能電 池i其中’該透明膠材包覆該第一光伏元件、電連接該 第頂電極與該電串聯墊的銲線,及電連接該第一底電 一=亥电輸出墊的銲線,且使得該電串聯墊及該電輸出 墊的邛伤區域裸露而使得電串聯墊裸露的部分可與該第 —底電極電連接,並以該第二頂電極與該電輸出墊裸露 22 201108441 部分配合將電能向外輸出。 13. 依據申請專利範圍第丨2 晶 喟所迷之堆®式太陽能電池,其 中,該透明膠材是穿透度大於85%、熱傳導率不小於 0.2廿W/〇C、破璃轉換溫度大於i5()C)c '耐紫外光照射、不 易黃化、具電絕緣性佳及固化後具應力和緩的膠材。 14. 依據申請專利範圍第13項所述之堆疊式太陽能電池,其 中,該透明膠材的構成材料是選自矽酮、聚氨酯系列、 %氧樹脂系列、聚甲基丙烯酸甲酯系列或此等之一組合 15.依據申請專利範圍第14項所述之堆疊式太陽能電池,其 中,該第一' 二光電轉換層分別具有三種不同能隙值, 且該等能隙是朝遠離座板方向漸增變化。 23201108441 VII. Patent application scope: 1. The manufacturing method of the pile type solar cell, including the first photovoltaic element of the electric energy and the electric property of the seat plate (a) the photovoltaic effect generating part is welded to the light a board on the 'and the first photovoltaic series; 〇) encapsulating the product obtained in the step (4) with a transparent material, and obtaining a semi-finished product of the solar cell: (4) a worm of a photovoltaic element that generates electricity by a photovoltaic effect when illuminated The second substrate for crystal removal is such that the bottom surface of the second photoelectric conversion layer that generates electrical energy by the photovoltaic effect when the photovoltaic element is illuminated is exposed, a photovoltaic element; (4) contacting the second photovoltaic element with the second photoelectric conversion layer The transparent adhesive material is electrically disposed in series with the seat plate on the solar cell semi-finished product, and the second photovoltaic element of the second photovoltaic element can cooperate with the seat plate to match the first photovoltaic element with the first The electric energy generated by the photoelectric conversion layer of the photovoltaic element is externally outputted to obtain the stacked solar cell. The method for manufacturing a stacked solar cell according to the above aspect, wherein the first photovoltaic element used in the step (4) comprises a first substrate for a stupid crystal, and a first substrate is upwardly a first-to-photoelectric conversion layer formed by epitaxial formation and generating electrical energy by a photovoltaic effect during illumination, and a first top electrode and a first bottom electrode respectively disposed on the first photoelectric conversion layer, and the photovoltaic element is The first substrate is disposed on the seat plate in contact with the seat plate, and electrically connected to the first top electrode and an electric series pad of the seat 19 201108441, and the first pad. An electric output of the bottom electrode and the seat plate 3. The method for manufacturing a stack-type solar cell according to the invention of claim 1, wherein the first photovoltaic element used in the step (4) is a light When the first substrate for the crystal element of the photovoltaic element that generates electricity by the photovoltaic effect is removed, the first substrate is removed, and the first substrate is formed by epitaxy from the first substrate and generates electricity by photovoltaic effect during illumination. a conversion layer, and a first top electrode and a first bottom electrode respectively disposed on the first photoelectric conversion layer, and the first photovoltaic element is disposed at a bottom surface of the first photoelectric conversion layer contacting the seat plate And electrically connecting the first top electrode and the electric plate of the seat plate, and the first bottom electrode and an electric output pad of the seat plate. 4. The method for manufacturing a stacked solar cell according to the above paragraph 2, wherein the step (b) encapsulating the article obtained in the step (a) with the transparent adhesive material simultaneously The electrical series pad and the electrical output pad are partially exposed for subsequent electrical connection using the bonding wire. 5. The method of manufacturing a stacked solar cell according to claim 4, wherein the step (b) is to encapsulate the transparent plastic material by infusion, and to heat the method. The transparent adhesive is cured. 6. The method of manufacturing a stacked solar cell according to claim 5, wherein the step (C) is to chemically wet the temporary substrate after the temporary substrate is detachably adhered to the photovoltaic element. The method causes the second substrate to chemically react with the chemical solution to remove the second substrate. The method for manufacturing a stacked solar cell according to claim 5, wherein the step (c) is that a temporary substrate is detachably adhered to the photovoltaic element, and then chemically a selective etching method for wet etching, wherein a sacrificial layer grown by the epitaxial growth method between the second photoelectric conversion layer and the second substrate is etched away by a chemical solution to make the second substrate and the second The photoelectric conversion layer is separated. 8. The method of manufacturing a stacked solar cell according to claim 5, wherein the step (c) is to detachably adhere a temporary substrate to the photovoltaic element, and then mechanically grind. And rubbing the second substrate with the second photoelectric conversion layer to separate the second substrate from the second photoelectric conversion layer. 9 · A stacked solar cell comprising: a board; a first photovoltaic component disposed on the seat plate and electrically connected in series with the seat plate and generating electrical energy by a photovoltaic effect when illuminated; transparent adhesive material, coated The first photovoltaic element and a portion of the seat plate; and the first photovoltaic element, the second photoelectric conversion layer on the second photoelectric conversion layer of the second photoelectric conversion layer that generates electricity by the photovoltaic effect when light is disposed, and the second top electric energy The second base plate outputted outwardly is electrically connected in series, and the transparent adhesive material comprises a second photoelectric conversion layer, disposed at the top electrode, and a second photoelectric conversion layer disposed at the second pole When the second electrode and the second bottom electrode are in contact with the field, the second top electrode of the second photovoltaic element and the seat plate 21 201108441 cooperate with each other to match the first photovoltaic element to the second of the mth element The electric energy generated by the photoelectric conversion layer is output to the outside. According to the stacked solar energy m described in claim 9 of the patent application, the seat plate comprises an electric series tandem and an electric output port, the first photovoltaic element comprising - disposed on the wire and in the case of illumination a photoelectric effect of generating a first photoelectric conversion layer, a first top electrode disposed on the first photoelectric conversion layer, and a first photoelectric conversion layer disposed on the first photoelectric conversion layer to cooperate with the first top electrode to convert the first photoelectric conversion The electrical energy generated by the layer is externally outputted to the first bottom electrode, and the first top electrode and the first bottom electrode are electrically connected to the electrical series pad and the electrical output pad by wire bonding, respectively. 11. The stacked solar cell of claim 9, wherein the seat plate comprises an electrical series pad, and an electrical output pad, the first photovoltaic element comprising a first set on the seat plate a substrate, a first photoelectric conversion layer formed by epitaxy from the first substrate, a first top electrode disposed on the first photoelectric conversion layer, and a first photoelectric conversion layer disposed on the substrate The first top electrode cooperates with the first bottom electrode that turns the electric energy generated by the first photoelectric conversion layer outward, and the first top electrode and the first bottom electrode respectively are a bonding wire and the electrical series pad and the electric output pad Electrical connection. 12. The stacked solar cell of the first aspect of the invention, wherein the transparent adhesive material covers the first photovoltaic element, and the bonding wire electrically connecting the first top electrode and the electrical series pad And electrically connecting the first bottom electric one=the electric wire of the electric output pad, and causing the electric series pad and the scratched area of the electric output pad to be exposed so that the exposed portion of the electric series pad can be connected with the first bottom electrode Electrically connected, and the second top electrode is combined with the electric output pad bare 22 201108441 part to output electrical energy to the outside. 13. According to the patent application scope 丨2 喟 喟 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆 堆I5()C)c 'Resistant to ultraviolet light, not easy to yellow, good electrical insulation and stress-sensitive adhesive after curing. 14. The stacked solar cell according to claim 13, wherein the transparent adhesive material is selected from the group consisting of an anthrone, a polyurethane series, a % oxygen resin series, a polymethyl methacrylate series or the like. The stacked solar cell of claim 14, wherein the first 'two photoelectric conversion layers respectively have three different energy gap values, and the energy gaps are gradually away from the seat plate. Increase the change. twenty three
TW098127595A 2009-08-17 2009-08-17 Manufacturing method for stacking type solar cells and its product thereof TW201108441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098127595A TW201108441A (en) 2009-08-17 2009-08-17 Manufacturing method for stacking type solar cells and its product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098127595A TW201108441A (en) 2009-08-17 2009-08-17 Manufacturing method for stacking type solar cells and its product thereof

Publications (2)

Publication Number Publication Date
TW201108441A true TW201108441A (en) 2011-03-01
TWI374550B TWI374550B (en) 2012-10-11

Family

ID=44835610

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127595A TW201108441A (en) 2009-08-17 2009-08-17 Manufacturing method for stacking type solar cells and its product thereof

Country Status (1)

Country Link
TW (1) TW201108441A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570775B2 (en) 2013-03-15 2017-02-14 Apple Inc. Thin film transfer battery systems
US9601751B2 (en) 2013-03-15 2017-03-21 Apple Inc. Annealing method for thin film electrodes
US9711770B2 (en) 2012-11-27 2017-07-18 Apple Inc. Laminar battery system
US9887403B2 (en) 2013-03-15 2018-02-06 Apple Inc. Thin film encapsulation battery systems
US9899661B2 (en) 2013-03-13 2018-02-20 Apple Inc. Method to improve LiCoO2 morphology in thin film batteries
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
US10141600B2 (en) 2013-03-15 2018-11-27 Apple Inc. Thin film pattern layer battery systems
US10930915B2 (en) 2014-09-02 2021-02-23 Apple Inc. Coupling tolerance accommodating contacts or leads for batteries
US11824220B2 (en) 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711770B2 (en) 2012-11-27 2017-07-18 Apple Inc. Laminar battery system
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
US10439187B2 (en) 2012-11-27 2019-10-08 Apple Inc. Laminar battery system
US9899661B2 (en) 2013-03-13 2018-02-20 Apple Inc. Method to improve LiCoO2 morphology in thin film batteries
US9570775B2 (en) 2013-03-15 2017-02-14 Apple Inc. Thin film transfer battery systems
US9601751B2 (en) 2013-03-15 2017-03-21 Apple Inc. Annealing method for thin film electrodes
US9887403B2 (en) 2013-03-15 2018-02-06 Apple Inc. Thin film encapsulation battery systems
US10141600B2 (en) 2013-03-15 2018-11-27 Apple Inc. Thin film pattern layer battery systems
US11508984B2 (en) 2013-03-15 2022-11-22 Apple Inc. Thin film pattern layer battery systems
US10930915B2 (en) 2014-09-02 2021-02-23 Apple Inc. Coupling tolerance accommodating contacts or leads for batteries
US11824220B2 (en) 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier

Also Published As

Publication number Publication date
TWI374550B (en) 2012-10-11

Similar Documents

Publication Publication Date Title
TW201108441A (en) Manufacturing method for stacking type solar cells and its product thereof
TWI405339B (en) Photovoltaic cell module
KR101476478B1 (en) Solar cell module manufacturing method
KR100880946B1 (en) Solar Cell and Manufacturing Method thereof
US10686090B2 (en) Wafer bonded solar cells and fabrication methods
TW200834940A (en) An optoelectronical semiconductor device having a bonding structure
US20090314330A1 (en) Photovoltaic module
TWM258416U (en) Power LED package module
JP5422082B2 (en) Solar cell and manufacturing method thereof
JP5089456B2 (en) Crimping apparatus and solar cell module manufacturing method
TWI445194B (en) Package structure of solar photovoltaic module and method of manufacturing the same
JP2017508268A (en) Solar module with alignment encapsulant
TW201005962A (en) Structure and method of solar cell efficiency improvement by strain technology
TW201125157A (en) Method of manufacturing semiconductor light-emitting chip and semiconductor light-emitting chip
JP2015159154A (en) Condensing photoelectric conversion apparatus and method for manufacturing the same
TW201010097A (en) Solar cell and manufacturing method therof
CN205488149U (en) Flexible thin film solar cell of high power density gaAs multijunction
JP2001053299A (en) Manufacture of solar cell
JP5360818B2 (en) Tandem solar cell and production method thereof
TW201121060A (en) Solar cells and apparatus comprising the same
US20120260971A1 (en) Iii-v solar cell package and method of fabricating the same
TWM469619U (en) Solar cell module
CN108091712A (en) A kind of preparation method of solar cell and its chip and the chip
CN104249523A (en) Composite high heat conduction metal backboard
TWI462316B (en) Solar cell having a thermal conductive substrate and a method for manufacturing the same