TW201107701A - Electronic weaponry with current spreading electrode - Google Patents
Electronic weaponry with current spreading electrode Download PDFInfo
- Publication number
- TW201107701A TW201107701A TW99122597A TW99122597A TW201107701A TW 201107701 A TW201107701 A TW 201107701A TW 99122597 A TW99122597 A TW 99122597A TW 99122597 A TW99122597 A TW 99122597A TW 201107701 A TW201107701 A TW 201107701A
- Authority
- TW
- Taiwan
- Prior art keywords
- target
- electrode
- diffuser
- current
- filament
- Prior art date
Links
Landscapes
- Electrotherapy Devices (AREA)
Abstract
Description
201107701 六、發明說明: 【發明所屬之技術領域】 本發明實施例係關於電子 部署單元中使用於電子武器系 有一電流散佈機能之至少一個 類或動物目標之方法。 武器系統、部署單元、和在 統之電極,以及關於經由具 電極以提供一電流流過一人 相關申請案之交互參照 本申請案係主張於2009年7 β 23日所提申之美國臨 時專利申請案第61/228,115號的權利。 【先前技術】 傳先電子武器係朝一人類或動物目標發射一個或更多 電極,以將一刺激訊號傳遞流過該目標來阻礙該目標的運 動細線係將該電子武器之一訊號產生器耦合至位在該 目標中或其附近的一經發射電極。該訊號產生器係經由絲 狀體、該一個或更多電極、和一回波路徑來完成一封閉電 路以提供該刺激訊號流過該目標。該回波路徑係可透過地 面及/或透過一第二絲狀體和電極。傳統電極係由傳導物料 所製成、且具有一尖銳帶刺尖端以獲取且維持在一目標或 其附近的位置上(例如:刺進衣物 '肌膚)。結果,相當 高的場強度和電流密度係發生於電極尖端處。 傳統電極係藉由下述方式所組裝:將銳化軸桿插入一 圓桎本體之一正面中的一軸孔内、捲曲該本體以固持該軸 201107701 桿、將一絲狀體穿過該圓柱本體之一背面中的一第二軸孔 内且進入該本體的一開放部分、將絲狀體捆繫一扭結、且 將及扭結拉入該本體的開放部分。電子武器係可受益於對 製造商為花費較少的一電極、降低將該電極耦合至該絲狀 體所需的勞力、且降低在組裝期間對該絲狀體的損害。 【發明内容】 本發明係揭示一種用於從一訊號產生器提供一電流流 過一目標之身體組織的一部署單元,該電流係禁止該目標 的自主移動,該部署單元係包括:一絲狀體,其係用於傳 導该電流;一殼體,其係固持該絲狀體的一第一末端;一 電極,其係在該殼體中;以及一推進劑,其係在該殼體中 而操作上將該電極推離該殼體以將該絲狀體朝著該目標進 行部署;其中該電極係包括:一本體’其係機械耦合至該 絲狀體附近的一第二末端;一第一結構,其係將該本體機 械麵合至該目㉟;m二結構,其係由該本體所支持 且將该電流從該絲狀體散佈以部分流過該第一結構且均衡 流過該第二結構。 【實施方式】 依據本發明各種觀點之-電子武器係將一電流傳遞玲 過—人體或動物目標以干擾該目標的 重要類別係朝一目標發射亦稱為録或探:的至電 繫鍊電極,以將該電極定位在目標身體組織中或其附近。 201107701 各別絲狀體(例如:具有或不具隔離之電線)係從該電子 武器延伸至該目標處的各個電極。一個或更多電極系可透 過一目標來形成一電路。該電路係傳導一刺激訊號。該電 路係可包含如上文所討論之一回波路徑。該電子武器係提 供該刺激訊號(例如:電流、電流脈衝)流過尤其是該絲 狀體、該電極、和該目標以干擾該目標的運動。干擾作用 係包含引起骨骼肌肉的不自主收縮以停止該目標的自主運 動、及/或對該目標引起疼痛以誘導該目標自主地停止移動。 依據本發明各種觀點之一電子武器係可包含一發射 衣 置和一個或更多場可替換部署單元。各個部署單元係可包 含消耗性(例如:單次使用)構件(例如:有線繫鍊、電 極'推進劑)。因此’該繫鍊係可通稱為—電線、一有線 繫鍊'和-絲狀體。—有線繫鍊電極係—絲狀體和至少經 機械w至該絲狀體之—末端的—電極之—組件。該絲狀 體之其匕末端係至少經機械耦合至該部署單元及/或該發射 裝置(例如:m固定於該部署單元内的_個末端),通常 直到該部署單元被移除自該電子 ^ Λ €于武夺。如下文所討論,機 槭麵合作用係可在择作★歹雷;# as '、°電子武器則或期間促進該發射裝 置和该目標的電氣耗合作用。 電子武器之一發射裝 的至少一個有線繫鍊電極。 電極係從一電線儲庫中部署 體。該絲狀體係拖良該電極 射裝置橫跨(例如:延伸、 置係朝~目標發射該電子武器 隨著該電極朝該目標前進,該 (例如:拉開)一長度的絲狀 °發射後’該絲狀體係從該發 橋接、展開)一距離至一般所 201107701 疋位在一目標中或其附近的電極。 依據本發明各種觀點中使用有線繫鍊電極之 係包含手持式裝置、所固定至建物或車輛的設備、和獨立 站台/持式裝置係可被使用在警務執法中,例如由一警 :,貝所邛署以拘留—目標。所固定至建物或車輛的設備 係可破使用於安全檢查哨或邊界以 1 u于動或自動獲取、 追縱、及/或部署電極來阻止入侵者。 百獨立站台係可被設定201107701 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention relate to a method for use in an electronic deployment unit for an electronic weapon having at least one class or animal target of a current spreading function. The invention relates to a US provisional patent application filed on July 23, 2009, in the context of a weapon system, a deployment unit, and an electrode of the present invention, and a cross-reference to a related application via an electrode to provide a current flow through a person. Right 61/228, 115. [Prior Art] A pre-existing electronic weapon transmits one or more electrodes toward a human or animal target to pass a stimulus signal through the target to block the moving thin line of the target from coupling the signal generator of the electronic weapon to An emitter electrode located in or near the target. The signal generator completes a closed circuit via the filament, the one or more electrodes, and an echo path to provide the stimulation signal for flow through the target. The echo path is permeable to the ground and/or to a second filament and electrode. Conventional electrodes are made of conductive material and have a sharply pointed tip to capture and maintain a position at or near the target (e.g., piercing the garment 'skin'). As a result, relatively high field strength and current density occur at the tip of the electrode. The conventional electrode assembly is assembled by inserting a sharpened shaft into a shaft hole in one of the front faces of a circular body, crimping the body to hold the shaft 201107701, and passing a filament through the cylindrical body. A second shaft hole in the back surface enters an open portion of the body, ties the filaments, and pulls the kinks into the open portion of the body. Electronic weapon systems can benefit from an electrode that is less expensive to the manufacturer, reduces the labor required to couple the electrode to the filament, and reduces damage to the filament during assembly. SUMMARY OF THE INVENTION The present invention discloses a deployment unit for providing a current flow through a target body tissue from a signal generator that inhibits autonomous movement of the target, the deployment unit comprising: a filament Is used to conduct the current; a housing holding a first end of the filament; an electrode in the housing; and a propellant in the housing Operating the electrode away from the housing to deploy the filament toward the target; wherein the electrode includes: a body 'which is mechanically coupled to a second end adjacent the filament; a structure mechanically joining the body to the mesh 35; m two structure supported by the body and spreading the current from the filament to partially flow through the first structure and flow equally through the The second structure. [Embodiment] According to various aspects of the present invention, an electronic weapon transmits an electric current through a human body or an animal target to interfere with an important category of the target, and emits it toward a target, also called a recording or probe. The electrode is positioned in or near the target body tissue. 201107701 Individual filaments (eg, wires with or without isolation) extend from the electronic weapon to the individual electrodes at the target. One or more electrodes can form a circuit through a target. The circuit conducts a stimulus signal. The circuitry can include an echo path as discussed above. The electronic weapon provides the stimulation signal (e.g., current, current pulses) through the movement of the filament, the electrode, and the target to interfere with the target. The interfering action includes autonomous motion that causes involuntary contraction of the skeletal muscle to stop the target, and/or causes pain to the target to induce the target to autonomously stop moving. An electronic weapon system in accordance with various aspects of the present invention can include a launching garment and one or more field replaceable deployment units. Each deployment unit can contain consumable (e.g., single use) components (e.g., a wired tether, an electrode 'propellant). Thus, the tethers are generally referred to as - wires, a wire tether, and - filaments. - a wired tether electrode system - a filament and an assembly of at least the mechanically-to-terminal end of the filament. The ends of the filaments are at least mechanically coupled to the deployment unit and/or the launch device (eg, m is fixed at the end of the deployment unit), typically until the deployment unit is removed from the electron ^ Λ €于武夺. As discussed below, the machine-matrix cooperation system can be used to select the “歹”, “as”, ° e-weapons or during the period to facilitate the electrical consumption of the launching device and the target. One of the electronic weapons emits at least one wired tether electrode. The electrodes are deployed from a wire reservoir. The filamentary system drags the electrode illuminating device across (eg, extending, locating toward the target to launch the electronic weapon as the electrode advances toward the target, the (eg, pulled apart) a length of filamentary 'The filamentary system is bridged and unfolded from the hairline' to a distance of 201107701 to the electrode in or near a target. The use of a wired tether electrode in accordance with various aspects of the present invention includes a hand-held device, a device that is fixed to a building or vehicle, and a stand-alone platform/holding device that can be used in police enforcement, such as by a police officer: Detained for the purpose of detention. Equipment that is fixed to the building or vehicle can be broken at security checkpoints or borders to capture or track, and/or deploy electrodes to prevent intruders. Hundreds of independent stations can be set
以供例如由軍事行動所柹用& F … ㈣所使用的£域封鎖。藉由將習用部署 單元取代成具有如本文討論電極 <°丨4署皁兀,諸如由 TASER國際有限公司所銷售之Χ26型電子控制裝置和For the purpose of, for example, the use of military operations, & F ... (four) used to block the domain. By replacing the conventional deployment unit with a saponin as described herein, such as the Χ26 type electronic control unit sold by TASER International Ltd. and
Sh〇ckwavei_貞單元的傳統電子武器係可被修改以實 施本發明教示。 依據本發明各種觀點之一電極係提供用於朝一目標發 射的電極之固有質量係包含在一推進劑的例到 下足夠從-發射裝置飛行至—目標之一質量。㈣極之質 量係包含足夠從一電線儲庫部署(例如:㈣、鬆開、解 開、拔出)-絲狀體的一質量。該電極之質量係足夠將— 絲狀體部署在該電極後方的同時該電極朝一目標飛行。該 電極之質量係從該電線健庫部署該絲狀體且在該電極後 方’而採取該絲狀體在該發射裝置和所定位在—目標處的 電極之間橫跨一距離的方式。一電極之質量通常係不足夠 對-目標造成嚴重的鈍器衝擊外傷。在一個實施方式中, -電極之質量係在2到3公克的範圍,較佳約2 8公克。 一電極係提供用於接收-推動力道之—表面區域以將 201107701 該電極推離自一發射裝置且朝向一目帛 射裝置之移動俜受限於耷 人極遠離該發 砂勒係又限於虱動阻力和抵抗力 狀體的張力),豆俜對從^ 6 ^ 迫〔例如.該絲 兮電⑹“ 對從—電線儲庫部署-絲狀體且將在 "電:後方之絲狀體拉開飛向一目標上產生阻力。 -電極之-正面部分係可在發射前 =極=射時及/或從該發射_向該目標飛=: 動形式係對為朝向該目#。-電極之氣 翠甲忒目払提供合適的準確度。 極推=係包含用於接收—推動力道之-形狀以將該電 動力道以推動丄之 形狀係可對應用以提供-推 , 動孩電極之—部分該發射裝置或部署單元的一 形狀。例如:一圓柱形電 #舻φ ^ η Ύ ^ 〇ρ署早兀的一圓柱形 " 。在藉由擴張氣體來發射一電極期間,該電 糸可以其本體來密封該管體以完成合適的加 ^圓枉形本體之―背面係可接收大致上Μ的推動力 =在-個實施方式,依據本發明各種觀點之一電極係包 2大致上圓柱形的本體。在發射前,該電極係被定位在 直徑些許大於該電極之一大致上圓柱形的管體中…推動 ^道/例如·迅速擴張氣體)係被施加至該管體的背面部 刀口玄孔體係推擠該電極之本體的一背面部分以將該電極 朝向:目標而向外推出該管體的其它末端。 )電極係包含用於氣動飛行之一形狀和一表面區域以 供㈣極從—發射裝置跨越例如15到35吸左右之-距離 °目私的合適傳遞準確度。一電極係可在飛行中旋轉 201107701 以提供自旋穩定飛行。—電極係可在發射、飛行至、和衝 擊-目標期間維持其朝向一目標的預先發射取向。 在衝擊上,一電極係可機械耦合至一目標。機械耦合 作用係包含.穿透目標的身體細純十十仏 T耵牙體組織或衣物,抵抗自身體組 織或衣物的移除,保持鱼一曰庐 τ行興目糕表面的接觸(例如:身體 ,且、哉毛髮衣物、護甲),及/或抵抗自該目標表面的移 除。輕合作用係可藉由穿入、刺進、鉤住、抓牢、纏繞、 包圍、附著、及/或膠合而被士志。彳六诚士义 疋成。依據本發明各種觀點之The conventional electronic weapon system of the Sh〇ckwavei_贞 unit can be modified to implement the teachings of the present invention. An electrode system according to one of the various aspects of the present invention provides an inherent quality of the electrode for emitting toward a target comprising a mass of one of the propellant sufficient to fly from the - launching device to the target. (d) The quality of the poles contains a mass that is sufficient to deploy (eg, (4), loosen, unravel, pull out) the filaments from a wire storage. The quality of the electrode is sufficient to deploy the filament behind the electrode while the electrode is flying toward a target. The quality of the electrode is such that the filament is deployed from the wire store and is positioned behind the electrode by a distance between the launching device and the electrode positioned at the target. The quality of an electrode is usually insufficient to cause a serious blunt impact on the target. In one embodiment, the mass of the electrode is in the range of 2 to 3 grams, preferably about 28 grams. An electrode system provides a surface area for receiving-pushing force to push the 201107701 electrode away from a launching device and toward the one-eye squirting device. The 俜 is limited to the scorpion pole away from the sand blasting system and is limited to swaying Resistance and resistance to the tension of the body), the cardamom is forced from ^ 6 ^ [for example. The silk wire (6) "distributed from the wire storage - filaments and will be in the "electric: rear filament" Pulling the fly to create a resistance on a target. - The front part of the electrode can be before the launch = pole = shot and / or from the launch _ to the target fly =: the dynamic form is paired towards the head #.- The electrode of the electrode provides a suitable accuracy. The pole push=includes the shape for receiving-pushing force to shape the electrodynamic path to push the shape of the electric field to provide a push-pull a part of the shape of the launching device or the deployment unit. For example, a cylindrical electric device 舻φ^ η Ύ ^ 〇 署 a cylindrical shape of the early &. During the emission of an electrode by expanding the gas, The electric raft can seal the pipe body with its body to complete a suitable round shape The "back" of the body can receive a substantially urging force = in one embodiment, the electrode package 2 is substantially cylindrical in accordance with various aspects of the present invention. The electrode is positioned at a diameter prior to launch. a substantially larger cylindrical body than the one of the electrodes, the push channel, for example, a rapidly expanding gas, is applied to the back portion of the tubular body, and the undercut portion pushes a back portion of the body of the electrode to The electrode is directed outwardly out of the other end of the tube toward the target. The electrode system comprises a shape for pneumatic flight and a surface area for the (four) pole to pass from, for example, 15 to 35 suction-distance. Appropriate transmission accuracy. An electrode system can be rotated in flight 201107701 to provide spin-stable flight. The electrode system maintains its pre-emission orientation towards a target during launch, flight to, and impact-target. In the impact, an electrode system can be mechanically coupled to a target. The mechanical coupling function consists of a body that penetrates the target's fineness of ten 仏T耵 tooth tissue or clothing, resisting its own body tissue. Remove clothing, keep the fish touching the surface of the cake (for example: body, and hair clothing, armor), and / or resist removal from the target surface. Light cooperation can be By being penetrated, pierced, hooked, grasped, entangled, encircled, attached, and/or glued, it is taken by Shi Zhi. 彳六诚士疋成成. According to various aspects of the present invention
一電極係可包含用於將該雷搞德从士 A 電極機械耦合至一目標的結構 (例如:鉤子、倒鉤、矛、黏膠、針劑)。用於輕合之— 結構係可穿透一目;^夕_ & + ^ 卜表面上的一保護隔層(例如: 衣物、毛髮、護甲)。在一個實 1U貫施方式中,一電極係可包 έ 一矛狀體(例如:指向軸桿、 仟‘大)以供穿透目標衣物 及’或身體組織。^一矛壯*在;ώ斗& 中狀體係自该電極的前方部分延伸以供 機械耦合至一目標。該矛妝舻 飞矛狀體係可包含一倒鉤以用於增加 该電極機械耦合至該目標的強度。 一電極係被機械輪合至_ 4 奸仙,4狀體以自一電線儲庫部署 11亥、4狀體且予以自該發射梦 作用将…置延伸至該目標。-機械耦合 用係可U任何習用方式被建立An electrode system can include structures (e.g., hooks, barbs, spears, glues, injections) for mechanically coupling the Raytheon to the target. For light fit - the structure can penetrate a mesh; ^ _ & + ^ a protective barrier on the surface (for example: clothing, hair, armor). In a solid embodiment, an electrode system can include a lance (e.g., pointing to the shaft, 仟 'large) for penetration of the target garment and/or body tissue. ^A spear is strong; the bucket & medium system extends from the front portion of the electrode for mechanical coupling to a target. The spear makeup system may include a barb for increasing the strength of mechanical coupling of the electrode to the target. An electrode system is mechanically rotated to _ 4 traitor, and the 4-shaped body is deployed from a wire storage reservoir to the 11th and 4th bodies and is extended from the launching dream to the target. - Mechanical coupling can be established in any customary way
仕、、糸狀體和一電極之間 (例如:將該絲狀體穿過嗜雷代Λ U " 電極中的一洞孔且將該絲狀體 ^ &抽出⑽一扭結中的絲狀體捆繫至一部分嗲雷 極、將該絲狀體膠入5W電 姐… 至4電極、將該絲體之-傳導π八 接合(例如:炫接、録接)$ ο 料4分 製造期門义 亥電極的一金屬部分)。在 …發射前、發射期間、發射後、該電極機械耦合 201107701 至-目標期間,機械輪合作用係可包含 狀體和一電極耦a w位扯 尺灼強度將一絲 號至一目桿m = 合作用且同時傳遞—刺激訊 係可藉由將該絲::::二種觀點,合適的機械雜合作用 例如:將.該絲狀體的一;八=:的;:分中而被完成。 作用係可包含封圓广傷限在该電極的-内部。褐限 或抵抗八離。、固持、保持、维持機械耦合作用、及/ -”。侷限作用係可藉由避免禍 移動或變形(例如.屎„ + 1 仇4 4'狀體的 在-個實施方式"=扭曲,)。如下文所討論’ 添附在該内部上传將;、::置放在一内部且將-矛狀體 上係將该絲狀體侷限至該内部。 2極係促進該發射裝置和該目標的電氣輕合作用。 電氣搞合作用通常传白人伽—兩上t 以、I與該電極相關聯之目標身體組織 積(例如:當使用超過-個電極時對於各別 電極的各自。(M立)。依據本發明各種觀點,該電極之一個 =多結構相”知電極係在該部位或體積中 電流密度。 nx π幻 對於各個電極’電氣輕合作用係可包含將該電極置放 為接觸目標身體組織、及/或將在該發射裝置、該部署單元' 該絲狀體、該電極、和目標身體組織間的-個或更多間隙 之空氣離子化。例如:一雷搞灿 電極針對一目標之一置放在該電 極和該目標之間造成一空氣間隙係未將該電極電氣輕合至 該目標,直到離子化該空氣間隙。離子化作用係可由包含 至少初始具有-相當高的電厂堅(例如··對於具有 '總距離 約i英口寸之一個或更多間隙為25〇〇〇伏特左右)之一刺激 10 201107701 λ號來疋成。在初始離子化作用後,該電極係保持被電氣 耦合至該目標,而刺激訊號係供應足夠電流及/或電壓以維 持離子化作用。 依據本發明各種觀點,配合一部署單元及/或一電子武 °°吏用之電極係貫行本文所討論的功能。例如:圖1、2 和 4至 10 之電極 142、16〇、236、238、400、和 1〇18 中任 者係可自武器1 00被發射朝向一目標,以與該目標建立 電路來提供一刺激訊號流過該目標。 圖之電子武器1〇〇係包含發射裝置11〇和部署單元 發射裝置110係包含使用者控制項112、處理電路 114、電源供應器116、及訊號產生g "8。在一個實施方 ^ &射裝i 1 10係'被封裝在一殼體中。該殼體係可包 :用:―部署單元的-機械和電氣介面。f用電子電路、 # %式規劃、推進力、和機械技術係可被使用,缺 不叶本文所討論。 ’、、、 的—2用者控制項係由—使用者所操作以初始化該武器 觸發器。當::::二11 2係可由一使用者所操作的-任何習用右 2與發射裝置110分開封裝時, 112 線或無線通訊技術係可被用來將使用者控制項 12鍊結處理電路114。 能。- Ϊ:Γ路係控制—電子武器的許多但不是所有功 多電極的==響應一使用者控制來初始化—個或更 作以提佴 &理電路係可控制-訊號產生器的-運 刺激訊號。例如:處理…U係接收來自使. 11 201107701 用者控制項112的一訊號來指示該武器的使用者運作,以 發射一電極且提供一刺激訊號。處理電路丨14係提供一發 射訊號152至部署單元13〇以初始化一個或更多電極的發 射。處理電路114係提供一訊號至訊號產生器118以提供 該刺激訊號至該等所發射電極。處理電路丨14係可包含一 習用微處理器和記憶體以執行記憶體中所儲存的指令(例 如:處理器的程式規劃)。 一電源供應器係提供能量以操作一電子武器且提供一 刺激訊號。例如:電源供應器116係提供能量(例如〔電 流 '電流脈衝)至訊號產生H n8以提供一刺激訊號。電 源供應器116係可進一步提供功率以操作處理電路ιΐ4和 使用者控制項1 12 ^對於手持式電子武器來說,一電源供應 器通常係包含一電池。 一訊號產生器係提供一刺激訊號以供傳遞流過一.目 標。一訊號產生器係可轉換由一電源供應器所提供的能 量,以提供具有合適特徵(例如:離子化電壓、電荷傳遞 電壓、每電流脈衝之電荷、電流脈衝重複率)之一刺激訊 號來干擾目標運動。—訊號產生器係電氣耦合至一絲狀體 以如上文所討論提供該刺激訊號流過該目標。例如:訊號 產生益11 8係提供經由各自的絲狀體將習用刺激訊號(例 如:每秒17個脈衝、各個脈衝能夠離子化空氣、各個脈衝 在約80微庫倫之離子化後傳遞至具有4〇〇歐姆左右的—阻 抗之一人類目標(例如:離子化後))提供至部署單元⑽ 的電極142。汛唬產生器π 8係經由刺激介面i 5 〇被電氣耦 12 201107701 合至電線儲庫140中所儲存的絲狀體。 -部署單元(例如:搶彈部、彈匣)係從一發射裝置 接收一發射訊號以初始化一個或更多電極的一發射且—刺 激訊號以傳遞流過-目標<•在已經發射—用過部署單元的 :些或全部電極後,該用過部署單元可被一未使用部署單 元加以替換。一未使用部I置斤总 丨晋早70係可被耦合至該發射裝置 以使額外電極能被發射。—部署單元係可接收來自—發射 裝置的訊號以經由一介面來實行一部署單元的功能。 例如.部署早疋130係、包含兩個或更多搶彈部132至 134。各個槍彈部132至134係句人妞4杰丨η 你〇 3推進劑144、一個或更 多電極、和電線儲庫140。—雷綠枝庙及μ 一 一 電線儲庫係儲存各個電極的絲 狀體。各個絲狀體如本文所砷认r 入W 4响係可機械耦合至電極。各 個絲狀體如本文所討論係可雷名^人 ™』電軋耦合至電極。處理電路i 14 係經由發射訊號152來初妒仆、联—k 木初始化一選定搶彈部之推進劑144 的啟動。推進劑144係朝向一目巧施& y ^ 目心推動一個或更多電極。 各個電極係被耦合至電線儲庫 兩皁14〇中的各自絲狀體。隨著 各個投射體朝向該目標飛行時, τ合调冤極係自電線儲庫140 中向外部署各自的絲狀體。訊辨姦斗。。 代就產生益118係經由刺激介 面150和所耦合至電極142 <、、糸狀體來提供該刺激訊號流 過該目標。 依據本發明各種觀點之— 電極係可以任何組合來實行 下述功能中一者或更多:將哕 守°亥4狀體結合至該電極、部署 該絲狀體、刺穿在該目標處的 幻物枓或身體組織、刺進該目 標的物料或身體組織、在離 化則或傳導一刺激訊號的同 13 201107701 時集中一電場形成一離子化路徑以供一刺激訊號跨越— 個或更多間隙、及針對目標身體组織之一部位及/或目標身 體組織之一體積來散佈一電流密度。 例如.圖1B之電極16〇係可作為上文所討論電極142 的一實施方式。圖1B中所示標線係例示將電流傳導流過— 目標164的路徑(例如:用於離子化、用於亦稱為電荷傳 遞之刺激)。该些標線上之箭頭係顯示電流的單一極性以 供敘述清晰。具有任何習用極性之電流係可在所示標線上 以各種次數流過一個或更多方向。電極16〇係包含用以結 合或部署一絲狀體的—個或更多結構161 :用以將該電極機 械轉合至該Μ票處之物料(例如:衣物)或身體组織、刺 進此物料或身體組織、帛中一電場、和形成刺激電流之一 離子化路徑的一個或更多結構162 ;以及用以集中一電場、 形成刺激電流之一離子化路徑、和針對目標身體組織之一 部位及/或目標身體組織之一體積來散佈一電流密度的一個 或更多結構163。僅僅為方便而在下文敘述中,儘管在一些 實施方式中為複數計,然而結構丨6丨至丨63以單數計係被 稱為結合結構161 '機械耦合結構162、和散佈結構163。 如上文所討論’一結合結構係具有用於被附接至一絲 狀體、用於被推動、且用於將該絲狀體部署至一目標的質 量、形狀 '和表面。習用質量、形狀、和表面係可被運用。 例如‘一結合結構係可具有一大致上圓柱形的質量、具有 抓取一絲狀體之表面一内部、以及具有合適氣動特性以供 有效推進且準確飛行至一目標的内表面。一結合結構係可 14 201107701 "包含一絕緣部或由絕緣材 造技術係可被使用。 ,、成。省用金屬及/或塑膠製 集令作用係包含建立電場雨^ 彎曲表面卜掛a . $在、度。因為電場密度在 用於集中之一結構—般所包含,所以 的曲率半徑。用於集中之—結構:可導由 =有-相當小 _ ^ ^ ^ 、。構係可由傳導材料所形成。 _一構係具有適用所實施之機械搞合方法的 ,以及適合形成離子化路徑且 形狀和材料。當將附著力使用於輕合作用:激的 構係可具有-相當鈍化的表面(例如作:::崎合結 以田认A 、例如,相當大的附著表面) ,:抵觸該目標處的物料及/或身體組織。當將穿 ,動;乍使用於搞合作用時,機械耦合結構係可具有一:或 的軸桿,其係具有足夠穿入該目標處的物 ;身體,.且織之尖端。假如該機械輕合結構之 作為在目標身體組織之範圍内的傳導部(例如:用於離子 话之有限刺激訊號),則該機械轉合結構之此一尖端係且 傳導點來集中電場通量以離子化到目標身體組織的: 徑。至少㈣、或A部分或所有該機_合結構係可且 有傳導性以接收來自該絲狀體的刺激訊號(例如:處於任 何極性之電流)以傳過目標身體組織。接收刺激訊號在本 文中係稱為啟動該機械輔合結構。該機械麵合結構之 2表面係可心為集中以離子化到目標身體組織之—間隙 的空氣’及/或為集中以離子化到一電極之其它部分之一 間隙中的空氣。當該機械耦合結構經定位為抵靠該電極的 15 201107701 另-傳導部時’此等間隙係可 可仰賴該結合結構以邀 機械耦合結構係 體組織中任一者之间…“糸狀體、該散佈結構、和目標身 械搞合結構係可包含^係來固持該機械耗合結構。一機 取之-扣件部分緣部(例如:由該結合結構所抓 習用金屬成形、銳化/ ^有穿入广刺進構件的一塗佈)。 用。 、、覆膠、及黏著技術係可被使 散佈結構係完成集中和成形以初始化離子化且一 佈作心= = =,標身體組織。散 (併行於) 耦0、.,°構之—電流路徑以外 用。散佈作用r於刺激訊號電流的—電流路徑之成形和使 中:=包含集中在目標身體组織之-部位和體積 流通密产 出現在—崎合結構之尖端處的電場 及=二佈結構係可具有已知用於散佈-電場以遍 器、電=積之任何形狀(例如:天線、輻射體、游離 传包^^器、點火器、火花成型設備)。一散佈結構 化二3=料且可進一步包含絕緣材料,以例如將離子 構離自該散佈結構的不欲表面及/或位置。-散佈結 習用二!人(例如:嵌入、刺進、釘住)目標身體組織。 用-屬和塑膠成形、銳化、和塗佈技術係可被使用。 戶:涉及形成-離子化路徑之一結構係可包含適合經歷 更::溫的材料。在一個實施方式中,所涉及形成-條或 二離子化路徑之一結構的磨損係促進對—特定目標使用 [部署單元、及/或電子武器的記錄程度和使用證據 16 201107701 之蒐集。 在依據圖1B之各種實施方式中,視所需支持所欲—或 更夕路徑165之導電性,結構161至163係可以傳導材料 及/或非傳導材料使用傳統製造技術予以實施(例如:鑄造、 加工、皺縮、立樁、緊固、黏著、組裝)。圖1B上相鄰一 間隙所例不之電流路徑係可被納入相鄰該間隙的結構中。 例如·在一個實施方式中,路徑m .係被實施為朝著間隙 1 83延伸之一傳導部;又在另一實施方式中,路徑171係對 應位於間隙183附近之散佈結構163的一傳導部分。藉由 類推,路徑丨73和178係可對應部分的結合結構161 ;路徑 1 74和176係可對應部分的機械耦合結構丨62 ;且路徑172、 177和179係可對應分別緊鄰間隙183、182和ΐ8ι之部分 的目標身體組織。路徑170係可被實施為鄰接目標身體: 織之散佈結構163的-部分。路a 175係可代表在結合結 構161和機械耦合結構162之間的一接合或鄰接接觸γ = 徑180係可對應用以鄰接或釘住目標身體組織164之機械 轉合結構1 6 2的一部分。 機械耦合結構162和散佈結構163兩者係如路徑18〇 和170所呈現可接觸目標身體組織。路徑18〇和17:係可 同步傳導刺激電流。於是,刺激電流係分流在路徑18〇'二 170之間。 ° 散佈結構163係可具有鄰接目標身體組 、 "月b , 而 不具穿入及/或刺進目標身體組織之功能。 當散佈結構163具有穿入目標身體組織之功能時,機 17 201107701 械搞合結構162較佳係經設計及/或配置以能夠將機械搞合 結構162之一傳導部分置入目標身體組織的一深度比散佈 結構1 6 3之一傳導部分還深。 機械耦合結構162和散佈結構163之一者或兩者係可 足夠接近目標身體組織,其中該刺激訊號之一電壓係可能 足夠將間隙182和183中一者或兩者中的空氣離子化。路 徑177和172係可同步傳導刺激電流。於是,刺激電流係 分流在路徑1 7 7和1 7 2之間。 當形成超過一條路徑的路徑165時,刺激訊號係分流 在所形成路徑之間(該等路徑165之一 Inclusive 〇R)。由 於該電極% ^的改變(例如:該電極及/或該目標針對其它 彼等者之移動)’改變訊號產生器之輸出電壓I、改變目 標身體組織之傳導性、路徑165中—條或更多係可隨著時 間所屯成 '农減、及/或再形成(例如:在—連串刺激訊號 脈衝期間)。 間隙183較佳係位在電極16〇和目標164之間。名 貫施方式中,間隙1 8 3係位於電極1 6 0内。 依據本發明各種觀點之一電極係可具有一個或更多 合結構161 (例如:超過-條絲狀體以供備份,每一個句 數個刺激訊號十各者),-個或更多機械搞合結構162( 如.具有提高深度之穿身體組織的經提高刺進功能), 或一個或更多散佈結構163(例如:複數個散佈結構經有 2配置在—矛狀體的軸桿周圍,-個或更多散佈結構 對數個機械耦合結構中各者)。 18 201107701 在以如所示各個結構中— 礼 再甲者操作時,一電壓vA係由不 號產生器1 1 8所外加跨在一 ,η ^ 絲狀體116和一回波路徑16/ 上。該回波路徑係可通過妯 镇 也面或通過類似電極160的〆弟 二電極(未圖示)。雷户也1 yg; 電机係可藉由任何一條者或更多路# 165流過目標164。路徑】以山 .1 ♦ 5中的示範性路徑係敘述在表 中。當電流流在超過~條敗你上 r€t -#* 保路役時,該電流係依據多個因素 而分流在該些路徑之間,1 會 ”中遠等因素係包含該電極的貧 際尺寸、㈣極針對該目標之位置和取向、及該目標本質 (例如:覆蓋衣物之身體組織、露出身體組織)。Between the body, the scorpion and an electrode (for example: passing the filament through a hole in the U-quot; U " electrode and extracting the filament from the skein The body is tied to a part of the thunderbolt, and the filament is glued into the 5W electric sister... to the 4 electrode, and the wire-conducting π-eight joint (for example, splicing, recording) $ ο material 4 minutes manufacturing A metal part of the Yihai Electrode). Before, during, and after the launch, the mechanical coupling of the electrode to the 201107701 to the target period, the mechanical wheel cooperation system can include a body and an electrode coupled with the awl bit. The intensity of the wire will be one to the other. m = cooperation And at the same time, the stimulating signal system can be completed by using the silk:::: two viewpoints, suitable mechanical hybridization, for example, one of the filaments; one of the eight filaments; The action system can include a wide round of damage to the inside of the electrode. Brown limit or resistance to eight. , hold, maintain, maintain mechanical coupling, and / -. Limitation can be achieved by avoiding movement or deformation (eg, 屎 „ „ 1 4 4 4 4 = = = = = = = = = = = = = = = = = = = = ). As discussed below, the attachment is placed in the internal upload;, :: placed in an interior and the lance is confined to the interior. The 2-pole system promotes electrical light cooperation of the launcher and the target. Electrical cooperation usually transmits white gamma - two on the target body tissue associated with the electrode (for example, when more than one electrode is used for each of the individual electrodes. (M). According to the invention Various viewpoints, one of the electrodes = multi-structure phase, the current density of the electrode in the portion or volume. nx π illusion for each electrode 'electrical light cooperation system may include placing the electrode in contact with the target body tissue, and / or ionizing the air in the launching device, the deployment unit 'the filaments, the electrode, and the target body tissue - for example, one of the electrodes is targeted for one target An air gap is placed between the electrode and the target to electrically couple the electrode to the target until the air gap is ionized. The ionization system may comprise at least an initial - quite high power plant (eg · For one of the stimuli 10 201107701 λ with one or more gaps of 'total distance of about 1 inch of mouth”, the electrode is guaranteed after initial ionization. The susceptor is electrically coupled to the target, and the stimuli signal supplies sufficient current and/or voltage to maintain ionization. In accordance with various aspects of the present invention, a deployment unit and/or an electronic electrode is used in conjunction with the electrode system. The functions discussed herein. For example, any of the electrodes 142, 16〇, 236, 238, 400, and 1〇18 of Figures 1, 2, and 4 through 10 can be launched from the weapon 100 toward a target to The target establishes a circuit to provide a stimulus signal to flow through the target. The electronic weapon 1 includes a transmitting device 11A and a deployment unit transmitting device 110 includes a user control item 112, a processing circuit 114, a power supply 116, And the signal generation g " 8. In one implementation ^ & shot i 1 10 series ' is packaged in a housing. The housing can be packaged: with: - deployment unit - mechanical and electrical interface. Electronic circuits, #%-style planning, propulsion, and mechanical techniques can be used, which are not discussed in this article. The '2' user control is operated by the user to initialize the weapon trigger. When::::two 11 2 can be When the user operates - any of the conventional right 2 is packaged separately from the transmitting device 110, a 112 line or wireless communication technology can be used to link the user control item 12 to the processing circuit 114. - Ϊ: Γ路系控制- Many, but not all, of the multi-electrodes of the electronic weapon == in response to a user control to initialize - or to improve the control circuit - the signal generator - the stimulus signal. For example: processing... The U system receives a signal from the user's control item 112 to indicate that the user of the weapon is operating to transmit an electrode and provide a stimulus signal. The processing circuit 14 provides a transmit signal 152 to the deployment unit 13 To initiate the emission of one or more electrodes. The processing circuit 114 provides a signal to the signal generator 118 to provide the stimulation signal to the transmitting electrodes. The processing circuitry 14 can include a conventional microprocessor and memory to execute instructions stored in the memory (e.g., program programming of the processor). A power supply provides energy to operate an electronic weapon and provide a stimulus signal. For example, power supply 116 provides energy (e.g., [current 'current pulse) to signal generation Hn8 to provide a stimulus signal. The power supply 116 can further provide power to operate the processing circuit ι4 and the user control 1 12. For handheld electronic weapons, a power supply typically includes a battery. A signal generator provides a stimulus signal for transmission through a target. A signal generator converts the energy provided by a power supply to provide a stimulus signal with appropriate characteristics (eg, ionization voltage, charge transfer voltage, charge per current pulse, current pulse repetition rate) to interfere Target movement. - The signal generator is electrically coupled to a filament to provide the stimulation signal through the target as discussed above. For example, the signal generation benefit provides a conventional stimulation signal (eg, 17 pulses per second, each pulse can ionize air, and each pulse is ionized after about 80 microcoulombs to have 4 One of the impedances of the ohms - one of the human targets (eg, after ionization) is supplied to the electrode 142 of the deployment unit (10). The 汛唬 generator π 8 is electrically coupled to the filament stored in the wire reservoir 140 via the stimulation interface i 5 〇 12 201107701. - a deployment unit (eg, a bouncing portion, a magazine) receives a transmission signal from a transmitting device to initiate a transmission of one or more electrodes and - a stimulus signal to pass through the - target < • in the already transmitted - After some or all of the electrodes of the deployment unit, the used deployment unit can be replaced by an unused deployment unit. An unused portion I can be coupled to the launch device to enable additional electrodes to be emitted. - The deployment unit can receive signals from the transmitting device to perform the functions of a deployment unit via an interface. For example, the deployment is as early as 130, including two or more bullets 132 to 134. Each of the bullets 132 to 134 is a squirrel, a propeller 144, one or more electrodes, and a wire reservoir 140. - Lei Luzhi Temple and μ Yiyi Wire storage system stores the filaments of each electrode. Each filament is mechanically coupled to the electrode as arsenic incorporated into the W 4 ring. Each of the filaments is electrically coupled to the electrode as discussed herein. The processing circuit i 14 initiates the activation of the propellant 144 of a selected bouncing portion by transmitting the signal 152. The propellant 144 is intended to push one or more electrodes toward a dexterous & y ^ eye. Each electrode system is coupled to a respective filament in the wire reservoir. As each of the projectiles flies toward the target, the τ-adjusting bungee deploys the respective filaments outward from the wire reservoir 140. Syndicate the fight. . Generations of benefit 118 are provided through the stimulation interface 150 and coupled to the electrodes 142 <, the scorpion to provide the stimulation signal through the target. In accordance with various aspects of the present invention - an electrode system can perform one or more of the following functions in any combination: bonding a scorpion to the electrode, deploying the filament, and piercing the target A phantom or body tissue, a material or body tissue that penetrates the target, and an electric field that forms an ionization path for a stimulus signal to cross over - or more when the ionization or conduction of a stimulus signal is 13 201107701 The gap, and a volume of one of the target body tissue and/or one of the target body tissues, spreads a current density. For example, the electrode 16 of FIG. 1B can be used as an embodiment of the electrode 142 discussed above. The reticle shown in Figure IB illustrates the path of current conduction through the target 164 (e.g., for ionization, for stimulation also referred to as charge transfer). The arrows on these lines show the single polarity of the current for clarity. A current system having any conventional polarity can flow through one or more directions in various times on the indicated reticle. The electrode 16 includes one or more structures 161 for bonding or deploying a filament: a material for mechanically transferring the electrode to the ticket (eg, clothing) or body tissue, piercing the electrode One or more structures 162 of material or body tissue, an electric field in the sputum, and an ionization path forming one of the stimulation currents; and an ionization path for concentrating an electric field, forming one of the stimulation currents, and one of the target body tissues One or more structures 163 of a current density are distributed in one portion of the site and/or target body tissue. For convenience only in the following description, although in some embodiments a complex number, the structures 丨6丨 to 丨63 are referred to as a bonding structure 161 'mechanical coupling structure 162, and a scattering structure 163 in a single number. As discussed above, a bonded structure has a mass, shape 'and surface for attachment to a filament, for being pushed, and for deploying the filament to a target. Custom quality, shape, and surface systems can be used. For example, a "bonding structure" can have a generally cylindrical mass, a surface-to-inside that captures a filament, and an inner surface that has suitable aerodynamic characteristics for efficient propulsion and accurate flight to a target. A bonded structure can be used. It is included in an insulating part or can be used by an insulating material system. ,,to make. The use of metal and / or plastics to make up the role of the system includes the establishment of electric field rain ^ curved surface b. a. Because the electric field density is used to concentrate one of the structures, it is included in the radius of curvature. Used for concentrating - structure: can be guided by = there - quite small _ ^ ^ ^,. The structure can be formed from a conductive material. The structuring system has a mechanical engagement method that is suitable for implementation, as well as a shape and material suitable for forming an ionization path. When adhesion is used for light cooperation: a stimulating structure can have a - rather passivated surface (for example::: Kaki-knot to A, for example, a fairly large attachment surface): against the target Material and / or body tissue. When used for cooperation, the mechanical coupling structure may have a shaft: or a shaft that has sufficient material to penetrate the target; the body, and the tip of the woven. If the mechanically-synchronized structure acts as a conductive portion within the range of the target body tissue (eg, a finite stimulation signal for ionic words), then the tip of the mechanically-converted structure and the conduction point concentrate the electric field flux Ionized to the target body tissue: diameter. At least (four), or part A or all of the machine-constructed structures may be conductive to receive stimulation signals from the filaments (e.g., currents of any polarity) for transmission through the target body tissue. Receiving the stimulation signal is referred to herein as activating the mechanical auxiliary structure. The surface of the mechanically facing structure is centered on air that is concentrated to ionize the target body tissue - and/or air that is concentrated to ionize into one of the other portions of an electrode. When the mechanical coupling structure is positioned against the 15 201107701 additional-conducting portion of the electrode, the gaps may depend on the bonding structure to invite mechanical coupling between any one of the structural body structures... "糸, The scattering structure and the target body engaging structure may include a system to hold the mechanical consumable structure. The machine takes the portion of the fastener portion (for example, the metal formed by the bonding structure is formed, sharpened/ ^ There is a coating that penetrates into the wide-spun component. The ., , the glue, and the adhesive technology can be used to concentrate and shape the dispersing structure to initialize the ionization and a cloth for the heart = = =, the body Organization. Dispersion (parallel to) coupling 0, ., ° - current path is used. Dispersion r is used to stimulate the signal current - the formation of the current path and the middle: = contains the focus on the target body tissue and The volumetric flow is densely produced. The electric field at the tip of the rugged structure and the structure of the second fabric can have any shape known to be used for spreading - electric field with a convection, electric = product (eg antenna, radiator, free transmission) Package ^^, igniter, fire Molding apparatus). Dispersing the structured material 3 and further comprising an insulating material to, for example, distort the ions from the undesired surface and/or position of the scattering structure. - Dispersing the knot 2! People (eg, embedding, Piercing, pinning) target body tissue. Use-genus and plastic forming, sharpening, and coating techniques can be used. User: One of the formation-ionization paths involved in the structure can be adapted to experience more:: temperature Materials. In one embodiment, the wear associated with one of the formation-strip or di-ionization paths promotes the collection of [targeting units, and/or electronic weapons records and usage evidence 16 201107701. In various embodiments in accordance with FIG. 1B, depending on the desired support - or the conductivity of the path 165, the structures 161 - 163 may be implemented using conventional fabrication techniques for conductive materials and/or non-conductive materials (eg, casting) , processing, shrinking, stake, fastening, bonding, assembly. The current path of the adjacent gap in Figure 1B can be incorporated into the structure adjacent to the gap. For example In one embodiment, the path m is implemented as one of the conductive portions extending toward the gap 1 83; in yet another embodiment, the path 171 corresponds to a conductive portion of the scatter structure 163 located adjacent the gap 183. Similarly, paths 丨73 and 178 can correspond to a portion of the combined structure 161; paths 1 74 and 176 can correspond to a portion of the mechanical coupling structure 丨62; and paths 172, 177, and 179 can correspond to the adjacent gaps 183, 182, and ΐ8, respectively. The portion of the target body tissue. The path 170 can be implemented to abut the target body: a portion of the woven distribution structure 163. The way a 175 can represent an engaging or abutting contact between the bonded structure 161 and the mechanical coupling structure 162. The gamma = diameter 180 system may correspond to a portion of the mechanically-converted structure 162 that is used to abut or pin the target body tissue 164. Both the mechanical coupling structure 162 and the scatter structure 163 are exposed to the target body tissue as represented by paths 18A and 170. Paths 18A and 17: Synchronous conduction stimulation currents. Thus, the stimulation current is shunted between paths 18'' and '170'. ° The scatter structure 163 may have a function of abutting the target body group, "month b, without penetrating and/or stabbing the target body tissue. When the dispensing structure 163 has the function of penetrating into the target body tissue, the machine 17 201107701 is preferably designed and/or configured to be able to place one of the conductive portions of the mechanical engagement structure 162 into the target body tissue. The depth is deeper than the one of the scatter structures 1 6 3 . One or both of the mechanical coupling structure 162 and the scatter structure 163 may be sufficiently close to the target body tissue, wherein one of the stimulation signal voltages may be sufficient to ionize air in one or both of the gaps 182 and 183. Paths 177 and 172 can simultaneously conduct the stimulation current. Thus, the stimulation current is split between paths 1 7 7 and 1 7 2 . When a path 165 is formed that is more than one path, the stimulus signal is split between the formed paths (one of the paths 165 Inclusive 〇R). Due to the change in the electrode % ^ (eg, the movement of the electrode and/or the target for others) 'changing the output voltage I of the signal generator, changing the conductivity of the target body tissue, the strip 165 - or more Multiple lines can become 'agricultural reduction, and/or re-formation over time (eg, during a series of stimulation signal pulses). The gap 183 is preferably between the electrode 16A and the target 164. In the conventional method, the gap 1 8 3 is located within the electrode 160. According to various aspects of the present invention, the electrode system may have one or more structures 161 (eg, over-striped filaments for backup, each sentence has a number of stimulus signals), one or more mechanical a structure 162 (eg, an improved piercing function of the body-worn tissue with increased depth), or one or more scatter structures 163 (eg, a plurality of scatter structures are disposed 2 around the shaft of the lance, - one or more scatter structures for each of a number of mechanically coupled structures). 18 201107701 In the case of the various structures shown in the figure, a voltage vA is applied by a non-generator 1 1 8 across a η ^ filament 116 and an echo path 16 / . The echo path can be passed through the town or through a second electrode (not shown) similar to the electrode 160. Leihu is also 1 yg; the motor system can flow through target 164 by any one or more #165. Path] The exemplary path in the mountain.1 ♦ 5 is described in the table. When the current flow exceeds the value of the line, the current is shunted between the paths according to a number of factors, and a factor such as "Zhongyuan" includes the poor of the electrode. Dimensions, (4) the position and orientation of the target, and the nature of the target (eg, covering the body tissue of the garment, exposing the body tissue).
特有路徑 環境 路徑敘述 間隙181 、-,口 &、,,。構 161 係 織164以形成間隙181 雙士 構⑹4系近接散佈結構I = 成間隙183。 Tl73^ 在電流經由如171 / 178、179、和167所例系 路徑流過絲狀體166之傳 導性部分、散佈結構163 ' 間隙183、結合結構161、 間隙18卜和目標身體組 織164後,電壓VA最初係 間隙182 機械粞合結構162 物以形成到目標身體組織之 182。機械搞合結構162係近接散 佈結構163以形成間隙183。 足夠離子化間隙181和 183中之空氣。 在電流經由如171、174、 176、177、和167所例示 路徑流過絲狀體166之傳 導性部分、散佈結構163、 間隙183、機械耦合結構 162、間隙182、和目標身 體組織164後,電壓vA 最初係足夠離子化間隙 182和中之空裔〇 19 201107701Unique path Environment Path description gap 181 , -, port &,,,. The structure 161 is woven 164 to form a gap 181. The double structure (6) 4 series close-spreading structure I = a gap 183. Tl73^ after the current flows through the conductive portion of the filament 166 via the path of 171 / 178, 179, and 167, the scattering structure 163 ' gap 183, the bonding structure 161, the gap 18, and the target body tissue 164, The voltage VA is initially gap 182 mechanically coupled to the structure 162 to form 182 to the target body tissue. The mechanical engagement structure 162 is in close proximity to the scattering structure 163 to form a gap 183. The air in the gaps 181 and 183 is sufficiently ionized. After the current flows through the conductive portion of the filaments 166, the scatter structure 163, the gap 183, the mechanical coupling structure 162, the gap 182, and the target body tissue 164 via the paths exemplified by 171, 174, 176, 177, and 167, The voltage vA is initially sufficient to ionize the gap 182 and the hollow of the 〇19 201107701
路徑180和 170 ^械耦合結構162係刺進目標身 體組織且接散佈結構163係位在 目標身體組織以形成間隙183。 2!戒Ϊ合結構162係刺進目標身 佈結構163係“ 在電流71、 174 ' 180、和167所例示 路徑流過絲狀體166之傳 導性部分、散佈結構163、 間隙183、機械编合結構 162、和目標身體組織164 後’電壓VA最初係足夠離 _子化間隙183中之空氣 不需要離子化電壓。一相 當低之刺激訊號係足夠引 起刺激電流經由路徑170 和167流過絲狀體166之 傳導性部分、散佈結構 163、機械耦合結構162、 和目標身體組織164 ° 路徑165係你主& π ’、表所要操作在對於依據本發明各種觀點 之一電極的一牲中香丄 、貫施方式和用途集合之一組路徑。如上 文所 5才論’ 一,Α. 、·。。、,·。構161係具傳導性。在另一實施方式 中,一結合結槿1 6 稱丨61係不具傳導性;於是,間隙181和路 徑 173 、 175 、 17S ί ,Paths 180 and 170 are coupled to the target body tissue and the splice structure 163 is tied to the target body tissue to form a gap 183. 2! The splicing structure 162 is pierced into the target body structure 163 "the conductive portion flowing through the filament 166 at the currents 71, 174 '180, and 167, the scattering structure 163, the gap 183, the mechanical knitting The structure 162, and the target body tissue 164, after the voltage VA is initially sufficiently independent of the air in the _ sub-gap 183, does not require an ionization voltage. A relatively low stimulation signal is sufficient to cause the stimulation current to flow through the paths 170 and 167. The conductive portion of the body 166, the scatter structure 163, the mechanical coupling structure 162, and the target body tissue 164 ° path 165 are your primary & π ', the table is intended to operate in an electrode for one of the various aspects of the present invention. A group path of a scent, a method of application, and a collection of uses. As described above, "a, Α, 。, 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。槿1 6 The 丨61 system is not conductive; thus, the gap 181 and the paths 173, 175, 17S ί ,
口 1 7 9係未被使用且可予以省略。 在另一實勒;t -V* rK 式中’一機械耦合結構1 6 2係可包含非 傳導性部分(例如 、展,,彖的傳導性材料、由絕緣材料所製 作的、,Ό構)以ri> 士地丄 八凡或對目標物料和目標身體組織的穿入與 此等物料及/或身體組織的刺進;以及包含傳導性部分(例 無色緣的傳導性材料)以供完成-電場的集中與-梨 子畫路徑跨越一間隙的形成。 在又另一f柏;+ 方式中,一散佈結構163係未打算以一 間隙183與電極 之八匕結構進行操作;於是,間隙1 83 和路徑171至ι74仫 /4係未破使用且可予以省略。 201107701 在還有其它實施方式中,—絲狀體166係可藉由直接 連'或藉由通過一電阻值(未圖示)(例>·· 一個或更多 電阻器)之連接來提供電流流過一機械耦合結構1 62。該電 阻係可被用來限制流過一機械耦合結構162之電流分流以 有利於未受限電流流過一散佈結構163。該電阻係可被實施 為一機械耦合結構之一傳導性部分上的一塗佈(例如:塗 佈至少该尖端和一矛狀體之軸桿的一正面部分)。 .依據本發明各種實施方式,電極1 60係能夠將刺激電 机傳遞在一電極丨6〇和穿戴衣物之一人類目標丨64的數個 不同置放中。目標身體組織係包含在肌膚下方的一相對低 電阻部分’而包含與鄰接該肌膚或刺進該肌膚之一表層部 分中的一相對高電阻部分。衣物或其它目標物料(例如·♦ 纏髮)係假定與該肌膚分離一氣隙。尤其是取決於彈道, 機械柄合結構162之置放(例如:刺進)係可包含在目標 物料中、該目標之肌膚中、或該目標之肌膚下方。具有些 許或不具穿入功能之一散佈結構丨63係與一機械耦合結構 1 62處於固定關係,以便穿透目標身體組織1 64至與一機械 耦合結構16 2相同的程度。 在例如圖1C之另一配置中,一散佈結構163係經固定 在一機械耦合結構162附近。在此一配置中,將一機械耦 合結構162刺進目標丨64之肌膚下方的其它身體組織後, 一散佈結構1 63係可含有空氣及/或目標物料(未圖示)之 一間隙(GAP2)或鄰接該目標之肌膚(未圖示)^ 一機械 耦合結構1 62和一散佈結構163之置放在本文中係藉由該 21 201107701 機械麵合結冑162和該散佈結構i63接近該目標之肌膚下 方的身體組織之各別傳導性部分的位置所定義。假定圖lc 中所不一機械耦合結構丨62之部分具傳導性但未被連接至 絲狀體166,在將從散佈結構163到機械耦合結構丨62之一 間隙(GAP,)中的空氣和從散佈結構163到目標肌膚之一 間隙(GAP2 )中的空氣予以離子化後,電流係大致上如數 個雙箭頭線所指示般同時流過。 在還有另一配置中,一散佈結構係接觸目標身體組 織。此配置係圖1C之-變化例,其中GAp2之離子化係不 需要而GAP,係包含目標身體組織而非空氣。 圖ic所例示從絲狀體166流過電極16〇之各種結構' 流過目標身體組織164、和該回波路徑167的電流係依據圖 1D之示意圖所流動。在電壓Va離子化間隙GApi和 之空氣後,電流係分流成流過肌膚電阻Ri和其它身體組 織電阻R2之I?與流過其它身體組織電阻之匕。節點p 係機械耦合結才冓162之一部分。節點s係散佈結構i63之 一部分。圖1D中所呈現之集總電路構件的數值在電集16〇 的一個置放中係隨著時間而不同。離子化電壓係可藉由降 低GAPj/或GAP2之尺寸和藉由在GAPi中採用目標身體 組織而非空氣而被降低。 依據本發明各種觀點之一電子武器1〇〇係可發射兩個 /、各自類型在本文中參考電極丨6〇所討論的電極,其中一 個電極如上文所討論係在該回波路徑中作用。例如:圖2A 至2B之電子武器2〇〇所示係立即在一使用者從—部署單元 22 201107701 •初始化兩個電極的發射後。電子武器200係包含一手持式 發射裝置202 ’其係接收且將一個場可替換搶彈部操作 為一種類型的部署單元。發射裝置2〇2如上文所討論係安 置電源供應器(具有一可替換電池)、一處理電路、和 一訊號產生器。發射裝置2()2係可被實施為由以咖國^ 有限公司所銷售之一習用Χ26型電子控制裝置。搶彈部= 係包3兩個有線繫鍊電極236和238。在觸發器⑽之操作 時’電極236和238係'從搶彈部230大致以「Α」之飛行方 向朝向一目標所推動(未圖示)。隨著電極咖和238丁朝 ^目標飛行,電極236 # 238係分別在其後方部署絲狀 體 232 和 234。告番扣 _l 田電極236和238被定位在該目標中或其附 近時’絲狀體232和234係從搶彈部23〇分別延伸至電極 和238。忒訊號產生器係提供一刺激訊號流過由絲狀體 、電極236、目標身體組織、電極2刊、和絲狀體Μ# 二形成的電路。電極236牙口 238如上文所討論係機械且電 乳麵合至該目標的身體組織。 -部署單元係可包含如上文所討論之一個或更多電 丄例如·圖2B之部署單元23〇 (依比例緣製)係包含配 二TASER國際有限公司所銷f _型和χ26 二搶彈部的外部尺寸、特色、和操作功能。 j 3 〇來次,各個電極係可從該部署單元之一 I : ±中的B柱形搶膛來被推動。例如:部署單元230係 s风體242、覆蓋243、電線儲庫(未圖示)、搶腔⑽ 口冰、包括分離構件之推進劑系統144、接觸點(圖示一 23 201107701 個)247、和有線繫鍊電極238和236。各個有線繫鍊 238 ( 230係包含各別絲狀體(顯示一個)234、各別本體 252(2⑴、和各別矛狀體255 ( 254 )。電線儲庫係位: 該殼體之槍膛的平面側邊兩者上,使得在圖2β之橫截面圖 中的-個電線儲庫被橫截面所移除而其他則被隱藏。兩個 接觸點係以斜對彼此方式而位在矩形覆蓋243的角落附 近。該刺激訊號係從該發射器經由該等接觸點來路由繞送 通過該部署單元。各個接觸點係電氣輕合至絲狀體的各別 末端。例如:如上文所討論,絲狀體234的—個末端係存 在一電線儲庫且由接近接觸點247的楔形部248所固持; 而絲狀體234 #其他末端係通過該電線儲庫之正面向外接 近覆蓋243、沿著本體252之長度通過 ' 且進入電極以之 -背面。部署單元組件之—方法尤其係包含以任何實際順 序·( a )將有線繫鍊電極組件之電極置放在該殼體的一搶 膛中;(b)將該絲狀體儲存在一電線儲庫中;以及(c)將 繫鍊電線附接至該殼體。該方法係可例如以圖2人至2b中 如括號所建議結構予以實施。具有所附接矛狀體(255 )和 絲狀體( 234)之本體(252 )係被饋入一搶膛(245 )。該 絲狀體( 234 )係被整齊置放在一電線儲庫中。該絲狀體 (234 )之寬鬆末端係在一接觸點(247 )附近經由一楔形 P ( 248 )而被機械麵合至部署單元的殼體(μ])。該絲 狀體(234 )之寬鬆末端係可鄰接該接觸點()或被固 持抵靠3亥接觸點(247 )。一覆蓋243係被安裝在該殼體242 的搶附近。該本體在該腔膛中之一緊密均勻切合係理想 24 201107701 且如上述教式所完成以促進手動及/或自動組裝。沿著該本 體之長度的任何直徑超過一限制係不必要地干擾該本體饋 入該腔膛。使用上,該推進劑係爆炸性地提供一氣體量以 將各個本體25 1 ( 252 )推離自各別腔膛244 ( 245 )。擊中 該目標之加速度、膛口速度、飛行動力和準確度係受到該 本體在離開該腔膛時之切合的影響。沿著該本體之長度的 任何直徑超過一限制係不必要地干擾將該本體推離該搶膛 一段時間週期。 相較上文參考電極160所討論之電氣耦合作用,電子 武器之習用電極3 00係不實行一散佈功能。例如:圖3之 習用電極300係包含一第一傳導性結構3 1〇,其係將一絲狀 體342捆繫至電極300和部署該絲狀體342 ;且包含一第二 傳導性結構320 ’其係具有一尖端以穿入目標物料(未圖示) 或目標身體組織330、刺進目標物料(未圖示)或目標身體 組織330、集中一電場於該尖端處、和形成一離子化路徑跨 越在電極300與目標身體組織33〇之間可能存在的一氣隙 3 5 2。刺激電流係僅在兩條路徑中一條(路徑3 5 23 5 4之 —EXClUSive_〇R)上被傳倒流過目標身體組織330。由線 354所呈現之第一替代性路徑係在第二傳導性結構⑽穿入 目標身體組織330時出現。由間隙:352所呈現之第二替代 性路徑係在第二傳導性結構32〇未接觸或刺進目標身體組 織330但刺進目標身體組織附近的物料中而接近到足夠形 成間隙352時出現。 在依據上文參考圖1n心ΙΑ π π > ^ 至ID和2Α至2Β所討論功能之 25 201107701 一個示範性實施方式中,結合結構1 6 1係被實施成—本體, 機械耦合結構162係被實施成一矛狀體,而散佈結構163 係被實施成一擴散器。該本體和矛狀體係可由相異材料所 組成。形成包括具有顯著延展性(例如:一鋁合金)之一 材料的本體係可促進該絲狀體的結合及/或該絲狀體和該本 體的組裝。形成包括具有顯著硬度(例如:一不鏽鋼合金) 之一材料的矛狀體係可促進一尖端的形成以用於穿入、刺 進和集中。該政佈結構之至少一部分係促進將一電場华 中在目標身體組織中或其附近。該散佈結構之一傳導性部 分係可被露出以接觸目標身體組織。該散佈結構係可包括 傳導性部分、絕緣部分、和具有一個或更多指向表面特性 的部分。散佈作用係包含在沒有散佈作用出現時降低在該 矛狀體之尖端處的電場強度(例如:通量)。 在依據上文參考圖1A至1 D所討論功能中,一絲狀體 可以參考散佈結構160所討論完成集中、形成、和散佈之 一方式被纏繫在該電極中。在以一絲狀體進行組裝前,此 一電極係可包括一結合結構1 6 1和一機械耦合結構1 62。在 以一絲狀體進行組裝後,此一電極係進一步包括所包含一 散佈結構163的一絲狀體。一電極係可藉由下述步驟來組 裝:將該絲狀體且接著該矛狀體置放為穿過一開口以進入 該本體的内部,以及塑形該本體以介入該絲狀體及/或該矛 狀體自該内部的移除(例如:皺縮該本體、將該矛狀體立 樁至該本體、封閉該本體之開口、變形該本體之一部份)。 不同於一絲狀體之一散佈結構係可被使用(例如:圖 26 201107701 μ)。儘管該絲狀體的一部分可充當散佈結構,然而—額 外散佈結構係可被使用《一絲狀體係可被電氣及/或機械耦 合至一散佈結構。 一本體係實行如上文所討論一結合結構的功能。一本 體係可具有已知適於結合一絲狀體和部署一絲狀體之任何 尺寸和形狀(例如:大致上球形、大致上圓柱形、在飛行 方向中具有一對稱軸、子彈形、淚滴形)。在各種實施方 式中,一本體係可為非傳導性、包括傳導性材料、或包括 一個或更多傳導性部分和一個或更多絕緣部的一組合。 一矛狀體係實行如上文所討論一機械耦合結構的功 能。-矛狀體係可具有已知適於穿入一目標之物料及/或身 體組織、刺進一目標之物料及/或身體組織、集中一電場以 供離子化-間隙中的空氣、以及形成—離子化路徑跨 間隙上之任何尺寸和形狀。在各種實施方式中,一矛狀體 係可為非傳導性、包括傳導性材m括—個或更 導性部分和-個或更多絕緣部的一組合。 八 非傳導性(絕緣性)材料或表面時,電極⑽ < —此= 有集中和形成功能係、可藉由—散佈結構來實行(—' 一擴散器係實行如上文所吋认___ 。)。 工又所吋,一散佈結構之功能。 一個實施方式中,由一摭私哭—批+ , ^ 擴政裔之散佈作用係均勻跨越 物料及/或身體組織之—料宕F A u ^ ^ 特疋&域上、或在物料及/或身體 織之一特定體積内呈現一均句 、、· 丄 „ J Γ 在另一個實施方式中, 由一擴散器之合適散佈作用係未 & 弓司凡成。非均句撼 用係可造成電場通量針對目01擴政作 對目‘身體組織之區域或目標身體 27 201107701 組織之體積的熱點。該等熱點係可被分散、雜散、成形、 为又、及/或分段。—熱點係其中出現該電場通量強度之一 局部最大的一區域或體積。一熱點係包含該局部最大和大 約下降到该局部最大之80%的周圍部分。 、經由一機械耦合結構所傳遞流過目標身體組織之電流 才目對經·由一散佈結構所傳遞流過目標身體組織之電流的一 比率得、< 到許多因素的影響。例如:因素係可包含在一矛 狀體、一擴散器、和目標身體組織之間的一空間關係(例 如·在結構、放置之間的距離);在一矛狀體的露出傳導 陡°卩刀 擴散器 '該電極的一本體 '和目標身體組織之 間的一空間關係;目標身體組織之傳導特性、一外部目標 表面之傳導特性(例如:衣服、護曱);目標身體組織之 干成刀(例如.汗水、血液 '血管附近、器官組織附近、 月頭附近、一藥物存在);該目標之移動;以及該電子武 器及/或絲狀體之電氣能力(例如:輸出電壓能力、來源阻 抗、串聯阻抗、輸出電流能力)。 在一矛狀體 '一擴散器、和目標身體組織中任一者之 間的一空間關係可包含在該矛狀體、該擴散器、和目標身 體組織中兩者之間的一實際距離。此一實際距離係促進或 限制在該矛狀體、該擴散器、和目標身體組織中任兩者之 間的—電氣關係。一電氣關係之一敘述係包含一電氣耦合 作用是否存在(例如:經由實際接觸、經由一間隙中的空 氣離子化)、—電氣路徑之—阻抗的強度,且假如存在一 間隙則所需將該間隙中的空氣離子化之一電壓。 28 201107701 在一矛狀體、一擴散器、及/或目標身體組織之間的空 間關係的一改變係可改變在該矛狀體、該擴散器、和目標 身體組織中任兩者之間的電氣關係。該電氣關係之—改變 係可改變所提供經由該矛狀體和該擴散器流過該目標之電 流的比率。 一空間關係係可隨著朝向一目標發射一電極且機械輕 合至該目標而改變。機械耦合作用係包含耦合至一外部目 標表面,接觸目標身體組織,和嵌入目標身體組織内。— 目標之移動係可改變在一矛狀體和目標身體組織之間的空 間關係。目標移動係可增加在一矛狀體和目標身體組織之 間的一實際距離,移動該矛狀體以接觸或離開目標身體組 織,以及增加或減少該矛狀體進入目標身體組織之—埋入 量。 在一擴散器和目標身體組織之間的一空間關係係可隨 著朝向一目標發射一電極且將該矛狀體機械耦合至該目標 而改變。一擴散器係可被定位為遠離目標身體組織—距 離,而該矛狀體不動地穿入(例如:嵌入)目標身體組織。 一擴散器係可接觸(例如··鄰接)目標身體組織,而該矛 狀體不動地穿入目標身體組織。一擴散器係可穿入目標身 體組織,而該矛狀體不動地穿入目標身體組織。一矛狀體 和一擴散器各自的傳導性部分係可經配置,使得該擴散器 之一傳導性部分的放置相較該矛狀體之—傳導性部分的放 置一般係更從非肌膚的目標身體組織開始。圖1D之電阻 R3係可少於電阻R2。電流I3係可大於電流^。 29 201107701 Λ j 一擴散器和一矛狀體之間的一空間關係係可隨著該 ' ^ 或該矛狀體接觸一目標之物料及/或身體組織而 改變。在-擴散器和一矛狀體之間的一氣隙(例如:GAp。 係:影響該電氣關係。在-擴散器和-矛狀體之間(例如: 任-或兩者的移動)的一空間關係、(例如:氣隙之長度) 的一改變係可影響該電氣關係 一擴散器係可具可撓性(例如:永久可形變、彈性)。 -擴散器係可隨著其抵觸一目標之物料及/或身體組織而移 動(例如:·彎曲、撓曲、偏斜 '復位)。_可挽性擴散器 係:具有針對-矛狀體和一電極之本體的一初始位置。該 擴散器之初始位置係可在該擴散器和該矛狀體之間建立一 、《長度#氣隙。-冑遂係可離子化該才刀始長度之氣隙 以在,擴散器和該矛狀體之間建立—電氣叙合作用,不然 彼此是絕緣的。該擴散器和該目標之物料及/或身體組織的 :觸係可將該擴散器的一操作部分移動遠離該矛狀體。隨 著該擴散器移動遠離該矛狀體,在該擴散器和該矛狀體之 間的氣隙長度係增加。隨著該氣隙長度增%,在該擴散器 和該矛狀體之間的電氣關係係發生改變。 /擴散器係、可具非撓性。—非撓性擴散器係可被定位 為遠離-矛狀體一距離以在該擴散器和該矛狀體之間建立 -氣隙。-電墨係可離子化該氣隙以在該擴散器和該矛狀 體之間建立-電氣#合作用,^彼此是絕緣的。該擴散 器和該目標身體組織之接觸係可將目標身體組織定位在該 間隙中的目標身體組織 擴散器和該矛狀體之間的間隙中。 30 201107701 係可改變在該擴散器和該矛狀體之間的電氣關係。一擴散 器係可包含-尖點以協助該擴散器對目標身體組織的穿 透、以集中-電場、以形成一離子化路徑、及/或以散佈一 電場。-擴散器係可包含一倒刺以刺$ (例如:將抵抗移 除自)該目標之物料及/或身體組織Q — 個或更多傳導性和絕緣性部分以用於成形㈣電 場。 -電極係可包含-個或更多絕緣部。—絕緣部係包含 顯著干擾操作傳導的任何材料(例如:絕緣性、隔絕、絕 緣材料)。空氣係可充當—距離上具有大於該刺激訊號之 =壓的—崩潰電壓之-絕緣部。—絕緣部係可被實施成該 結構(例如矛狀體之轴桿、—擴散之轴桿) ά電極之—結構的—塗佈。該塗佈係、可具均勻性。該 :係可部分或不具均勻性。絕緣性塗佈係包含上漆、黑 :―介電薄膜、-非傳導性鈍化層、-聚對二甲苯聚合 物(例如:parylene)、聚氟 熱塑性聚醯胺(例如.ztn ::例如:鐵氟龍)、一 尼龍. yte )。邑緣性結構係可包括塑膠、 =璃纖維或陶究。習用絕緣性技術係可被使用。 器係可二係可包含-個或更多擴散器。4目同電極之擴散 相對絕=例如:長[挽性、相對一矛狀體之位置、 ^ ,, °卩之位置、相對該電極之—本體的位f mi-, 材料成分)。各個擴散器係可提供_ =位f 目標。多MM ^ 電、流的一部分流過一 目標身體έ I °自在擴散器、電極之其他部分、及/或 身體組織之間的空間關係係可不同。 31 201107701 一擴散器係可由適於將電流散佈進入、到、及/或流過 目標物料或身體組織(例如:傳導性及/或絕緣性)之習用 材料所形成。如上文所討論,一擴散器係可藉由鄰接目標 身體組織而將該電流提供至目標身體組織、經由在該擴散 器和目標身體組織之間的一間隙中之離子化空氣而將該電 饥提供至目標身體組織、及/或經由在該擴散器和經定位於 目私身體組織中或其附近的一矛狀體之間的—間隙中之離 子化空氣而將該電流提供至目標身體組織。 所納入電極之一結構的一經絕緣傳導部係可經由該 傳導部的一露出部分來提供—電流流過一目標(例如:未 覆蓋、未絕緣、經設計在所欲條件下無效之絕緣部)。該 傳導部之-露出部分係可將一電流直接提供至目標身體組 織’或提供-電麼以適於將在該傳導部的露出部分、目標 身體組織、及/或該電極的傳導性結構之間的一間隙中的空 氣離子化。 在一個實施方式中,該擴散器係被實施成一絲狀體的 -部份。經軸向絕緣之—軸向絲狀體(心。:繫鏈電線) 係具有將該絲狀體之傳導部露出的一橫斷(一X⑷的 ㈣末端。該削切末端和從削切處往回之—部分該絲狀體 係貫灯如上文所討論—擴散器的功能。例仏削切一絲狀 體至長度通常係在該鲜妝辦& 糸狀體的削切末端處露出該傳導部。 一部分該絲狀體係可經定位,使得該削切末 矛狀體之一傳導傳部分分隔-距離。該刺激訊號 之 離子化在該絲狀體㈣導部和該矛狀體的傳 32 201107701 導性部分之間的間隙之空氣,以在該間隙中的一 Β Β κ J | .Am 間建立-電氣柄合作用。由於在該絲狀體的傳導部㈣矛 狀體之間的間隙為小型尺寸,所有一相當低電壓(例:: 2〇〇伏到400伏)之刺激訊號係可離子化該間隙中的*氣 將—間隙中之空氣離子化以在一擴散器和該電^另 -結構及目標身體組織中至少一者之間建立—路徑係可辦 加δ玄擴散器的一^显度〇溫皮的一掏士你 ν /皿度#增加係可炫化該擴散器的 ‘刀(和該電極的其它結構)。炫化—絕緣部係可使节 絕緣部的形狀產生變形。特別透過溫度的-迅速增加來炫 化一傳導部係可汽化、挖坑、及/或刻劃該傳導部的一部分, 及/或在該傳導部的一部分上沉積一碳堆積。 依據本發明各種觀點,每次在將一間隙中之空氣離子 化以提供一電流脈衝時,一 ” 得導。卩及/或一絕緣部之一可預 測部分係被熔化而造成接 攻钕供该電流脈衝(例如:記錄、符 號二據)的-累積或可測量“(例如:―刺激訊號之 =)。此指標之分析係可提供關於一電子武器之一使Port 1 7 9 is not used and can be omitted. In another embodiment; t -V* rK where a mechanical coupling structure 162 can contain non-conductive portions (eg, conductive materials, made of insulating materials, made of insulating materials) ) ri> sputum sputum or penetration of the target material and target body tissue into the material and/or body tissue; and a conductive portion (such as a colorless conductive material) for completion - The concentration of the electric field and the formation of the pear-shaped path spanning a gap. In yet another manner, a scatter structure 163 is not intended to operate with a gap 183 and an electrode gossip structure; thus, the gap 1 83 and the path 171 to ι 74 仫 / 4 are not broken and can be used. Omitted. In other embodiments, the filaments 166 can be provided by direct connection or by a connection through a resistance value (not shown) (example > one or more resistors) Current flows through a mechanical coupling structure 1 62. The resistor system can be used to limit current shunting through a mechanical coupling structure 162 to facilitate unconstrained current flow through a distribution structure 163. The resistor can be implemented as a coating on a conductive portion of a mechanical coupling structure (e.g., a front portion of the shaft that coats at least the tip and a lance). In accordance with various embodiments of the present invention, the electrode 160 is capable of transmitting a stimulation motor in a number of different placements of an electrode 丨6〇 and a human target 丨64 of one of the garments. The target body tissue comprises a relatively low resistance portion under the skin and includes a relatively high resistance portion adjacent to the skin or penetrated into a surface portion of the skin. Clothing or other target material (eg, ♦ tangled) is assumed to be separated from the skin by an air gap. In particular, depending on the ballistics, placement of the mechanical shank structure 162 (e.g., penetration) may be included in the target material, in the skin of the target, or under the skin of the target. The distribution structure 63 having a little or no penetration function is in a fixed relationship with a mechanical coupling structure 1 62 to penetrate the target body tissue 1 64 to the same extent as a mechanical coupling structure 16 2 . In another configuration, such as Figure 1C, a spreading structure 163 is secured adjacent a mechanical coupling structure 162. In this configuration, after a mechanical coupling structure 162 is inserted into other body tissue beneath the skin of the target crotch 64, a dispersing structure 163 may contain a gap between air and/or target material (not shown) (GAP2). Or a skin adjacent to the target (not shown) ^ a mechanical coupling structure 1 62 and a scatter structure 163 are placed herein by the 21 201107701 mechanical face 胄 162 and the scatter structure i63 approaching the target The location of the individual conductive parts of the body tissue beneath the skin is defined. Assuming that the portion of the mechanical coupling structure 62 in Figure lc is conductive but not connected to the filament 166, the air in the gap (GAP,) from the scattering structure 163 to the mechanical coupling structure 62 After the air in the gap (GAP2) of the distribution structure 163 is ionized, the current is substantially simultaneously flowed as indicated by a plurality of double arrow lines. In still another configuration, a scatter structure contacts the target body tissue. This configuration is a variation of Figure 1C in which the ionization of GAp2 is not required and GAP is the target body tissue rather than air. Figure ic illustrates the flow of the various structures flowing from the filaments 166 through the electrodes 16 through the target body tissue 164 and the echo path 167 flowing according to the schematic of Figure 1D. After the voltage Va ionizes the gap GApi and the air, the current is split into a flow through the skin resistance Ri and other body tissue resistance R2 and through the resistance of other body tissues. Node p is part of the mechanical coupling junction 162. The node s is a part of the structure i63. The value of the lumped circuit components presented in Figure 1D differs over time in one placement of the electrical set 16A. The ionization voltage system can be reduced by reducing the size of GAPj/ or GAP2 and by employing target body tissue rather than air in the GAPi. In accordance with various aspects of the present invention, an electronic weapon 1 can emit two /, respective types of electrodes discussed herein with reference to electrodes ,6〇, one of which acts in the echo path as discussed above. For example, the electronic weapon 2 图 of Figures 2A to 2B is immediately after a user-to-deployment unit 22 201107701 • Initialization of the emission of two electrodes. The electronic weapon 200 includes a hand-held launcher 202' that receives and operates a field replaceable bouncing portion as a type of deployment unit. The transmitting device 2 2, as discussed above, houses a power supply (having a replaceable battery), a processing circuit, and a signal generator. The transmitting device 2() 2 can be implemented as a conventional type 26 electronic control device sold by the company. Bulleting Department = Tether 3 two wired tether electrodes 236 and 238. At the time of operation of the trigger (10), the 'electrodes 236 and 238' are pushed from the ball-striking portion 230 toward the target in a flight direction of "Α" (not shown). As the electrode coffee and the 238 Ding toward the target fly, the electrodes 236 # 238 are respectively disposed with the filaments 232 and 234 behind them. The filaments 232 and 234 are positioned in or near the target' filaments 232 and 234, respectively, extending from the ballast portion 23 to the electrodes and 238, respectively. The signal generator provides a stimulus signal through the circuit formed by the filaments, the electrodes 236, the target body tissue, the electrodes 2, and the filaments #2. Electrode 236 mouth 238 is mechanically and electrically bonded to the target body tissue as discussed above. - the deployment unit may comprise one or more of the electrical devices as discussed above, for example, the deployment unit 23 of Figure 2B (proportional edge system) comprises the f _ type and the χ 26 second blasted by the TASER International Co., Ltd. External dimensions, features, and operational features. j 3 times, each electrode system can be pushed from the B-pillar of one of the deployment units I: ±. For example, the deployment unit 230 is a wind body 242, a cover 243, a wire storage (not shown), a cavity (10) ice, a propellant system 144 including a separation member, and a contact point (shown in FIG. 23 201107701) 247. And wired tether electrodes 238 and 236. Each of the wired tethers 238 (230 series includes respective filaments (show one) 234, respective bodies 252 (2 (1), and respective lances 255 (254). Wire storage system: the casing of the casing Both of the planar sides are such that the one wire reservoir in the cross-sectional view of Figure 2 is removed by the cross section and the others are hidden. The two contact points are placed in a rectangular shape in an obliquely opposite manner to each other. Near the corner of 243. The stimulation signal is routed from the transmitter to the deployment unit via the contact points. Each contact point is electrically coupled to the respective end of the filament. For example, as discussed above, The ends of the filaments 234 are present in a wire reservoir and are held by the wedges 248 proximate the contact points 247; while the other ends of the filaments 234 # are adjacent to the front cover 243, along the front of the wire reservoir The length of the body 252 passes through 'and enters the electrode-back side. The method of deploying the unit assembly includes, inter alia, in any practical order. (a) placing the electrode of the wired tether electrode assembly in the housing. (b) storing the filaments in And (c) attaching the tethered wire to the casing. The method can be implemented, for example, in the structure as suggested by the brackets in Figures 2 to 2b. Having an attached lance (255) And the body (252) of the filament (234) is fed into a rush (245). The filament (234) is placed neatly in a wire reservoir. The filament (234) The loose end is mechanically joined to the housing (μ) of the deployment unit via a wedge P (248) near a contact point (247). The loose end of the filament (234) can abut the contact point () or held against the 3H contact point (247). A cover 243 is mounted near the susceptor of the housing 242. The body is tightly and evenly aligned in the cavity 系 ideal 24 201107701 and taught as above Finished to facilitate manual and/or automated assembly. Any diameter greater than a limit along the length of the body unnecessarily interferes with the body feeding into the cavity. In use, the propellant explosively provides a quantity of gas. To push each body 25 1 ( 252 ) away from the respective cavity 244 ( 245 ). Hit the target Speed, mouth speed, flight dynamics, and accuracy are affected by the fit of the body as it leaves the cavity. Any diameter along the length of the body that exceeds a limit unnecessarily interferes with pushing the body away from the grab. The conventional electrode of the electronic weapon does not perform a spreading function. For example, the conventional electrode 300 of FIG. 3 includes a first conductive structure 3 1〇, which bundles a filament 342 to the electrode 300 and deploys the filament 342; and includes a second conductive structure 320' having a tip for penetrating into the target material (not shown) or target Body tissue 330, piercing a target material (not shown) or target body tissue 330, concentrating an electric field at the tip, and forming an ionization path spanning an air gap that may exist between electrode 300 and target body tissue 33A 3 5 2. The stimulating current is passed back through the target body tissue 330 only in one of the two paths (path 3 5 23 5 -EXClUSive_〇R). The first alternative path presented by line 354 occurs when the second conductive structure (10) penetrates the target body tissue 330. The second alternative path presented by the gap: 352 occurs when the second conductive structure 32 does not contact or penetrate the target body tissue 330 but penetrates into the material near the target body tissue and approaches enough to form the gap 352. In an exemplary embodiment in accordance with the above-mentioned reference to FIG. 1n, ΙΑ π π > ^ to ID and 2 Α to 2 Β the function of the discussion, 201107701, the combined structure 161 is implemented as a body, a mechanical coupling structure 162 It is implemented as a lance, and the scatter structure 163 is implemented as a diffuser. The body and lance system may be composed of distinct materials. The formation of a system comprising a material having significant ductility (e.g., an aluminum alloy) can promote bonding of the filaments and/or assembly of the filaments and the body. The formation of a lance system comprising a material having significant hardness (e.g., a stainless steel alloy) promotes the formation of a tip for penetration, penetration, and concentration. At least a portion of the political fabric structure facilitates the initiation of an electric field in or near the target body tissue. One of the conductive portions of the scatter structure can be exposed to contact the target body tissue. The scatter structure can include a conductive portion, an insulating portion, and a portion having one or more directional surface characteristics. The spreading action involves reducing the electric field strength (e.g., flux) at the tip end of the lance when no spreading occurs. In accordance with the functions discussed above with reference to Figures 1A through 1D, a filament may be entangled in the electrode in a manner that is concentrated, formed, and dispersed as discussed with respect to the scatter structure 160. The electrode system may include a bonding structure 161 and a mechanical coupling structure 162 before being assembled in a filament. After assembly in a filament, the electrode system further includes a filament comprising a spreading structure 163. An electrode system can be assembled by placing the filament and then the lance through an opening to enter the interior of the body, and shaping the body to intervene the filament and/or Or the removal of the lance from the interior (eg, crimping the body, studing the lance to the body, closing the opening of the body, deforming a portion of the body). A scattering structure different from a filament can be used (for example: Fig. 26 201107701 μ). Although a portion of the filament can act as a spreading structure, an additional spreading structure can be used. "A filamentary system can be electrically and/or mechanically coupled to a spreading structure. A system implements the functionality of a combined structure as discussed above. A system can have any size and shape known to be suitable for bonding a filament and deploying a filament (eg, generally spherical, substantially cylindrical, with a symmetry axis, a bullet shape, a teardrop shape in flight direction) ). In various embodiments, a system can be non-conductive, including a conductive material, or a combination comprising one or more conductive portions and one or more insulating portions. A lance system implements the function of a mechanical coupling structure as discussed above. - The lance system may have materials and/or body tissue known to penetrate a target, penetrate a target material and/or body tissue, concentrate an electric field for ionization - air in the gap, and form an ion The path is any size and shape across the gap. In various embodiments, a lance system can be non-conductive, including a combination of conductive material m-- or more conductive portions and - or more insulating portions. Eight non-conducting (insulating) materials or surfaces, the electrode (10) < - this = concentration and formation of functional systems, can be carried out by - scattering structure (-' a diffuser implementation as identified above ___ .). The work is also awkward, a function of the structure. In one embodiment, the distribution effect of a private crying-grant+, ^-expansion is evenly across the material and/or body tissue, on the FA u ^ ^ special & field, or in the material and / Or a specific sentence within a specific volume of the body weaving, · J J Γ In another embodiment, the appropriate dispersing effect by a diffuser is not & Causes the electric field flux to target the expansion of the body of the body or the body of the target body. The hotspots can be dispersed, strayed, shaped, repetitive, and/or segmented. A hot spot is a region or volume in which one of the electric field fluxes is locally largest. A hot spot includes the local maximum and a surrounding portion that drops to about 80% of the local maximum. Flow through a mechanical coupling structure The current of the target body tissue is influenced by a ratio of the current flowing through the target body tissue by a scatter structure, and to many factors. For example, the factor can be included in a lance, a diffusion Device a spatial relationship with the target body tissue (eg, the distance between the structure and the placement); the exposure conduction steepness in a lancet between the scorpion diffuser 'a body of the electrode' and the target body tissue a spatial relationship; the conductive properties of the target body tissue, the conductive properties of an external target surface (eg, clothes, ankles); the dryness of the target body tissue (eg, sweat, blood 'near blood vessels, near organ tissue, month Near the head, a drug is present; the movement of the target; and the electrical capabilities of the electronic weapon and/or the filament (eg, output voltage capability, source impedance, series impedance, output current capability). A spatial relationship between a diffuser, and any of the target body tissues can include an actual distance between the lance, the diffuser, and the target body tissue. This actual distance is promoted. Or limiting the electrical relationship between the lance, the diffuser, and the target body tissue. One of the electrical relationships includes an electrical coupling Whether there is (for example, via actual contact, ionization through air in a gap), - the electrical path - the strength of the impedance, and if there is a gap, it is necessary to ionize a voltage in the gap. 28 201107701 A change in the spatial relationship between a lance, a diffuser, and/or a target body tissue can alter the electrical relationship between the lance, the diffuser, and the target body tissue. The electrical relationship may change the ratio of the current supplied through the lance and the diffuser through the target. A spatial relationship may be as follows: an electrode is emitted toward a target and mechanically coupled to the target The mechanical coupling function is coupled to an external target surface, to the target body tissue, and to the target body tissue. — The movement of the target changes the spatial relationship between a lance and the target body tissue. The target movement system can increase an actual distance between a lance and the target body tissue, move the lance to contact or leave the target body tissue, and increase or decrease the lance into the target body tissue - embedding the amount. A spatial relationship between a diffuser and the target body tissue can be varied as the electrode is fired toward a target and the lance is mechanically coupled to the target. A diffuser system can be positioned away from the target body tissue-distance, and the lance penetrates (e.g., embeds) the target body tissue immovably. A diffuser can contact (e.g., abut) the target body tissue, and the spear penetrates the target body tissue immovably. A diffuser can penetrate the target body tissue, and the lance penetrates the target body tissue immovably. The respective conductive portions of a lance and a diffuser can be configured such that the placement of the conductive portion of the diffuser is generally more from a non-skin target than the placement of the conductive portion of the lance Body tissue begins. The resistor R3 of Figure 1D can be less than the resistor R2. Current I3 can be greater than current ^. 29 201107701 Λ j A spatial relationship between a diffuser and a lance can change as the '^ or the lance contacts a target material and/or body tissue. An air gap between the diffuser and a lance (eg, GAp. System: affects the electrical relationship. One between the - diffuser and the lance (eg: any - or both) A change in spatial relationship, such as the length of the air gap, can affect the electrical relationship. A diffuser system can be flexible (eg, permanently deformable, elastic). - The diffuser can follow a target Movement of material and/or body tissue (eg: bending, flexing, skewing 'reset). _ Portable diffuser: an initial position with a body for the lance and an electrode. The initial position of the device is such that a length #air gap can be established between the diffuser and the lance. The 胄遂 system can ionize the air gap of the length of the knife to the diffuser and the lance. The electrical-synthesis is established between the bodies, or they are insulated from each other. The diffuser and the material of the target and/or the body tissue: the contact system can move an operating portion of the diffuser away from the lance. The diffuser moves away from the lance, at the diffuser and the lance The length of the air gap increases. As the length of the air gap increases, the electrical relationship between the diffuser and the lance changes. / diffuser system, can be inflexible. - non-flexible The diffuser system can be positioned away from the lance by a distance to establish an air gap between the diffuser and the lance. The electro-ink system can ionize the air gap at the diffuser and the lance The body-to-electrical interactions are insulated from each other. The contact between the diffuser and the target body tissue positions the target body tissue between the target body tissue diffuser and the lance in the gap. 30 201107701 can change the electrical relationship between the diffuser and the lance. A diffuser system can include a cusp to assist the diffuser to penetrate the target body tissue to concentrate the electric field To form an ionization path, and/or to spread an electric field. The diffuser system can include a barb to stab $ (eg, to resist removal) from the target material and/or body tissue Q or More conductive and insulating parts are used to shape the (four) electric field. The pole system may contain one or more insulation sections. The insulation section contains any material that significantly interferes with operational conduction (eg, insulation, insulation, insulation). The air system may act as a distance greater than the stimulus signal. The pressure-breaking voltage-insulation--insulation can be implemented as the structure (for example, the shaft of the lance, the shaft of the diffusion), the structure of the electrode, the coating, the coating system, Uniformity: This may or may not be uniform. Insulating coatings include lacquering, black: dielectric films, non-conductive passivation layers, - parylene polymers (eg parylene) , polyfluoro thermoplastic polyamine (for example, .ztn :: for example: Teflon), a nylon. yte ). The rim structure may include plastic, glass fiber or ceramics. Conventional insulation techniques can be used. The system can include one or more diffusers. Diffusion of the same electrode with 4 eyes is relatively inferior = for example: long [traction, position relative to a lance, ^, position of °, relative to the electrode - the position of the body f mi-, material composition). Each diffuser can provide a _ = bit f target. Multiple MM ^ electricity, a portion of the flow through a target body έ I ° free diffuser, other parts of the electrode, and / or body tissue may have different spatial relationships. 31 201107701 A diffuser may be formed from conventional materials suitable for spreading electrical current into, into, and/or through a target material or body tissue (eg, conductivity and/or insulation). As discussed above, a diffuser can provide the current to the target body tissue by abutting the target body tissue, and the electrical hunger via ionized air in a gap between the diffuser and the target body tissue. Providing the current to the target body tissue, and/or providing the current to the target body tissue via ionized air in the gap between the diffuser and a lance positioned in or near the body tissue . An insulated conductive portion of one of the incorporated electrodes can be provided via an exposed portion of the conductive portion - current flows through a target (eg, uncovered, uninsulated, insulated portion designed to be ineffective under desired conditions) . The exposed portion of the conductive portion can provide an electrical current directly to the target body tissue or provide electrical conductivity to be suitable for the exposed portion of the conductive portion, the target body tissue, and/or the conductive structure of the electrode. The air in a gap is ionized. In one embodiment, the diffuser is implemented as a portion of a filament. The axially insulated-axial filamentary body (heart: tethered wire) has a transverse (one (X) (four) end) exposing the conducting portion of the filament. The cutting end and the cutting point Backward - part of the filamentary system of the lamp as discussed above - the function of the diffuser. Example 仏 cutting a filament to length is usually exposed at the cutting end of the fresh makeup & A portion of the filamentary system can be positioned such that one of the cutting lances conducts a partial separation-distance. The ionization of the stimulation signal is transmitted in the filament (four) guide and the lance 32 201107701 The air between the gaps between the conductive portions is established between the two Β κ κ J | .Am in the gap - the electrical shank is used because the gap between the spurs of the filaments is Small size, all a relatively low voltage (eg: 2 volts to 400 volts) stimulating signal can ionize the air in the gap - the air in the gap is ionized to a diffuser and the electricity ^ Another-structure and the establishment of at least one of the target body tissues - the path system can be Add a δ 玄 diffuser to a ^ 显 〇 〇 皮 的 你 你 ν ν 皿 皿 皿 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加 增加Deformation of the shape of the insulating portion of the joint, particularly by a rapid increase in temperature - a portion of the conductive portion that can be vaporized, pitted, and/or scored, and/or deposited on a portion of the conductive portion One carbon stacking. According to various aspects of the present invention, each time an ion is ionized in a gap to provide a current pulse, a predictive portion of one of the insulating portions is melted. The attack is for the current pulse (eg, recording, symbolic data) - accumulate or measurable" (for example: "stimulus signal ="). The analysis of this indicator can provide one for an electronic weapon.
用的資訊。例如:依撼★欢DD 依據本發明各種觀點中用於決定如本文 :心由-電極所提供之一電流範圍的一方法係包含將盆 中在提供該電流期間所來# 、 .,^ 斤形成—離子化路徑之電極的一主要 、·-。構與相同建構中的—組表 係業已依磨損量進行分類比f之成員 比較結果係促進對該主要結 構的分類決定(例如:h 、·、且中一個成員具較多磨損但比 5亥組中另一個成員且齡+游α 磨損)和後續決定由該主要結構 所扼供的可能電流範圍 33 201107701 ㈣本發明錢觀點之—電極係可包含 或更多矛狀體,和一個或更多擴散器。本體,一個 經絕緣部分(例如:-個或更多絕緣部)。2可包含一 !含一經絕緣部分(例如:-個或更多絕緣部)狀體係: 盗係可包含一經絕緣部分(例如··-個或更,έ擴散 -絲狀體係可被絕緣自該電極的其他結構。部)。 ::限制電流路徑的形成及/或集中電場以用於== 電流散佈。 &么·形成和 一本體係包含針對朝向—目標之— 圖2A之方…的前方部分(例如:正面)和=:分 (例如.月面)一本體係機械耗合至一矛狀體和一擴散 X该本體之前方部分通常係在發射該電極前、在該電極 朝向一目標飛行期間、和在 定向為朝向該目桿戒搞合至該目標後被 ^ 知精者该飛行方向朝向一目標,一本體 係被定位在該矛狀體的一尖端後方和該擴散器的經露出傳 導。(j後方。一本體係機械麵合至一絲狀體。一本體係可包 含該電極之總質量的一實質部分。一本體係提供用於接收 -推動力道之一表面區域以將該電極朝向一目標推進。一 本體係響應-推動力道而被推離自—部署單元。在其中該 本體包括-傳導性部分或整個具傳導性之—實施方式中, 經定位在目標身體組織附近之本體係可電氣耦合至一目 標。 一矛狀體係機械耦合至一電極之一本體。一矛狀體係 可延伸自。玄本體之-前方部分。—矛狀體係可將一電極機 34 201107701 械耦合至一目標。一矛狀體係可穿透一目標之—外表面上 的一保護隔層。一矛狀體係可穿透目標身體組織。一矛狀 體係可抵抗解耦合自一目標。一矛狀體係可傳遞_刺激訊 號流過一目標。一矛狀體係可電氣耦合至如本文所討論一 擴散器。一矛狀體係可電氣耦合至該本體。一矛狀體係可 機械耦合至該擴散器。 一擴散器係可機械耦合至該電極之一本體。一擴散器 係可自該本體之一前方部分延伸離開而朝向該本體。一擴 散器係可傳導一部分該電流流過該目標。一擴散器係可電 氣耦合至如本文所討論一矛狀體及/或一目標。一擴散器係 可電氣耦合至該電極之本體。一擴散器係可機械耗合至— 矛狀體。一擴散器係可機械耦合至目標身體組織。一擴散 器係可電氣耦合至一絲狀體。 一擴散器係可具可撓性或非撓性。一擴散器係可針對 該本體、該矛狀體、及/或該目標來定位。一電極在一目標 中或其附近的放置係可改變該擴散器針對該本體、該矛狀 體、及/或該目標的位置。在該擴散器、該本體、該矛狀體、 及/或該目標之間的一電氣耦合作用係至少部分取決於該擴 散器針對該本體、該矛狀體、及/或該目標的—位置。 一絕緣部係可降低建立一電氣耦合之一可能性。一絕 緣部係可影響-離子化路徑透過在該矛狀體和該擴散器之 間一間隙中的空氣之形成。一絕緣部係可在一擴散器、_ 矛狀體纟體、及/或—目標之間建立-實際關係,以經 由該矛狀體、該擴散器、及/或該本體提供一電流流過一目 35 201107701 標。一絕緣部係可在_矛㈣和1㈣之間建立 一矛狀體係可包含-絕緣部。-絕緣部係可隔,邑」矛 狀體之任何和所有邱八 ,、邑 矛 所有4刀。-矛狀體係可由呈現電氣p絕之 一材料所部分或完替裉Λ 电矾ρ™、,,邑之 |刀U整形成。一絕緣部所可作為—類型(例 如.厚度、材料 '結構)係 .^ 不狀體電虱隔絕且有低於 -臨界值之一電壓的一電流、伸 ”有低於 且有古於% t # 一…、法使δ亥矛狀體電氣隔絕 具有间於该£5界值之一電麼 成(例如:塑形、施用、—"L ° 一絕緣部係可被形 ㈣施用、疋位、移除、部分移除 以在該矛狀體上建立一可行位,直 ^ Fa ^ ^ 八中該絕緣部係可能無 法I.邑具有间於一臨界值之一電堡的—電流…絶 可相對-擴散器而被定位在一矛狀體上或其附近。 ^擴散器係、可包含—絕緣部…絕緣部係可隔絕 月文盗之任何和所有部分。一 -材m 肖政盗係可由呈現電氣隔絕之 材枓所B形成。一絕緣部所可作為一類型(例如··严 又 '材料、結構)係使該擴散器 予 值之-雷懕沾Φ 帛月文器電W絕具有低於-臨界 Α β "女使°亥擴政态電氣隔絕具有高 於忒£?„界值之一電壓的一土 。 該擴m 0電Π緣料可被形成以在 絕罝右古K ”中°玄,、,邑緣部係可能無法隔 η广臨界值之—電屋的一電流。—絕緣 對—矛狀體而被定位在-擴散器上或其附心 一尖端(例如:‘點、錐體、包括在面部間的銳角 ‘二、相“、直徑之一軸桿的末端)係操作以穿 或目標身體組織之一外表面(例如。一矛狀體:及/ 係促進-矛狀體的穿入、刺進、集中、和形成。一擴 36 201107701 散益之一尖端係促進一擴散器的集 隔絕時係择作a;I 化成。—尖端在被 隔),亩 干擾電流之一間隙或切換器(例如"且 離子化及/或電流流過該尖端。 允+^端附近的 倒鉤係操作為以將一電極刺進(例如:保一目 或身體組織中’來保持在該倒鉤和該物料及/ W機::之間的—機械耦合。—矛狀體之-倒鉤部分係 二抗機械解耦合(例如:自物料及/或身體組織之移除)。 -擴散器之一倒鉤部分係抵抗一擴散器機械解耦合自一目 標之物料及/或身體組織。 —流過-目標之-刺激訊號係可由依據本發明各種觀點 之-電極進行擴散,使得該刺激訊號之電流以多重路徑方 式流過目標身體組織、或以單一路徑方式流過目標身體組 織之多重部分。 路控係可包含透過兩個傳導部之實際接觸及/或對在 兩個傳導部間之一間隙中的空氣離子化所建立的一電氣耦 合。一間隙係可包含目標身體組織。 圖4至11之電極400係實行上文參考圖1Α至1D所討 論之一電極的功能性。電極4〇〇在組裝絲狀體47〇後係包 含本體440、矛狀體410、和擴散器430。 絲狀體470係自本體440之後方部分444延伸以將電 極400耦合至電子武器1〇〇之訊號產生器118。訊號產生器 11 8係提供一刺激訊號流過絲狀體47〇至電極4〇〇。如上文 所討論在組裝電極400時,絲狀體470係一經隔絕傳導部 37 201107701 且機械輕合至本體44G。在不存在—刺激訊號時,絲狀體 470係未被電氣耦合本體44〇或矛狀體41〇。在一個實施方 式中’絲狀體470之直徑係大約〇 〇15公寸,而具有大約 0.005公寸之-内部銅f包鋼的傳導部。在另—個實施方式 中,絲狀體470之直徑係大約〇 〇18公寸。 本體440係包含前方部分442和後方部分444,兩者皆 參考電極400朝向-目標之飛行方向。本體44〇係機械耗 合至矛狀體410。本體440係電氣耦合至矛狀體410。本體Information used. For example, according to various aspects of the present invention, a method for determining a current range as provided by a heart-electrode includes containing a period of time during which the current is supplied in the basin. A major, ·-, electrode forming the ionization path. The composition of the same construction - the group system has been classified according to the amount of wear compared to the member of f. The result is to promote the classification of the main structure (for example: h, ·, and one member has more wear and tear but less than 5 Another member of the group and age + swim α wear) and subsequent decisions on the possible current range supplied by the primary structure 33 201107701 (d) According to the present invention, the electrode system may contain more or more lances, and one or more Multi-diffusion device. The body, an insulated part (for example: - or more insulation). 2 may include one! Contains an insulated part (for example: - or more insulation)-like system: The pirate may contain an insulated part (for example, or more, the έ diffusion-filament system may be insulated from the Other structures of the electrode. Part). :: Limiting the formation of current paths and/or concentrating electric fields for == current spreading. & 、·································································································· And a diffusion X. The front portion of the body is generally oriented before the launch of the electrode, during the flight of the electrode toward a target, and after being oriented toward the target or engaged to the target. In one aspect, a system is positioned behind a tip of the lance and exposed to the diffuser. (j rear. A system mechanically bonded to a filament. A system may contain a substantial portion of the total mass of the electrode. A system provides a surface area for receiving-pushing force to face the electrode Goal advancement. A system response-driven force is pushed away from the deployment unit. In the embodiment where the body includes a conductive portion or an entire conductive embodiment, the system positioned near the target body tissue can Electrically coupled to a target. A lance system is mechanically coupled to one of the bodies of an electrode. A lance system can extend from the front portion of the sinusoidal body. The lance system can couple an electrode machine 34 201107701 to a target. A spear system can penetrate a protective barrier on the outer surface of a target. A spear system can penetrate the target body tissue. A spear system resists decoupling from a target. A spear system can transmit The stimulus signal flows through a target. A lance system can be electrically coupled to a diffuser as discussed herein. A lance system can be electrically coupled to the body. A lance system can be mechanically coupled To the diffuser, a diffuser can be mechanically coupled to one of the bodies of the electrode. A diffuser can extend away from a front portion of the body toward the body. A diffuser can conduct a portion of the current through the body A diffuser system can be electrically coupled to a lance and/or a target as discussed herein. A diffuser can be electrically coupled to the body of the electrode. A diffuser can be mechanically coupled to the lance A diffuser can be mechanically coupled to the target body tissue. A diffuser can be electrically coupled to a filament. A diffuser can be flexible or non-flexible. A diffuser can target the body, the spear Positioning the object, and/or the target. The placement of an electrode in or near a target can change the position of the diffuser for the body, the lance, and/or the target. An electrical coupling between the body, the lance, and/or the target depends, at least in part, on the position of the diffuser for the body, the lance, and/or the target. Can reduce the establishment of an electrical One possibility of coupling. An insulating portion can affect the formation of air through a gap between the lance and the diffuser. An insulating portion can be in a diffuser, _ lance Establishing a - actual relationship between the body, and/or the target to provide a current through the lance, the diffuser, and/or the body through a head 35 201107701. An insulating system can be in the _ spear (four) Establishing a lance system between 1 and 4 may include - insulation. - The insulation is separable, and any of the lances and all of Qiu Ba, and the spears are all 4 knives. One part of the material or the replacement part of the electric 矾 TMTMTM,, 邑 | 刀 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U Isolation and a current below the -threshold voltage, the extension, is lower than and has been less than % t #一..., the law makes the δHear galvanic electrical isolation have a value between the £5 threshold造成 (for example: shaping, application, -"L °-insulation can be applied (4), clamped, removed, Sub-removal to establish a feasible position on the lance, the direct insulation system may not be able to I. 邑 have a voltage value between one of the electric castles - current ... can be relative - diffusion The device is positioned on or near a lance. ^Diffuser system, can contain - insulation... Insulation can isolate any and all parts of the Moon. A material m Xiao Zheng thief can be formed by a material B that exhibits electrical insulation. An insulating part can be used as a type (for example, strict material and structure) to give the diffuser a value - Thunder 懕 帛 帛 文 文 文 绝 绝 绝 绝 绝 绝 绝 & & & & The electrical expansion of the state is higher than the voltage of one of the thresholds. The m0 electric rim material can be formed in the 罝 罝 古 K 、 、 、 、 、 玄 、 The department may not be able to separate the current from a wide threshold. - the insulating pair - the lance is positioned on the diffuser or its tip (eg: 'point, cone, acute angle included between the faces', phase", the end of one of the diameter shafts) Manipulating to wear or to the outer surface of one of the target body tissues (eg, a lance: and / to promote - the penetration, penetration, concentration, and formation of the lance. One expansion 36 201107701 A set of diffusers is selected as a; I is formed. - the tip is separated by a gap, one of the interfering currents is a gap or a switch (for example, " and ionization and/or current flows through the tip. The barb system near the end is operated to puncture an electrode (eg, to protect the eye or body tissue) to maintain a mechanical coupling between the barb and the material and/or the machine. The barb portion is mechanically decoupled by a secondary antibody (eg, removal from material and/or body tissue). - One of the diffuser portions of the diffuser is mechanically decoupled from a target material and/or Body tissue - flow-target-stimulus signals can be used in accordance with the present invention The electrode is diffused such that the current of the stimulation signal flows through the target body tissue in a multi-path manner or through multiple parts of the target body tissue in a single path. The control system may include physical contact through the two conductive portions. And/or an electrical coupling established by ionization of air in a gap between the two conducting portions. A gap system can comprise the target body tissue. The electrodes 400 of Figures 4 to 11 are implemented as described above with reference to Figures 1A through 1D. The functionality of one of the electrodes discussed. The electrode 4A includes a body 440, a lance 410, and a diffuser 430 after assembly of the filament 47. The filament 470 extends from the rear portion 444 of the body 440 to The electrode 400 is coupled to the signal generator 118 of the electronic weapon 1 . The signal generator 11 8 provides a stimulus signal through the filament 47 to the electrode 4 〇〇. As discussed above, when assembling the electrode 400, the wire The body 470 is isolated from the conductive portion 37 201107701 and mechanically coupled to the body 44G. In the absence of the stimulus signal, the filament 470 is not electrically coupled to the body 44 or the lance 41. In one embodiment Wherein the filaments 470 have a diameter of about 15 inches and have a conductive portion of about 0.005 inches of internal copper f-clad steel. In another embodiment, the diameter of the filaments 470 is about The body 440 includes a front portion 442 and a rear portion 444, both of which refer to the direction of flight of the electrode 400 toward the target. The body 44 is mechanically coupled to the lance 410. The body 440 is electrically coupled to Spear 410. Ontology
440係包含用以引入„絲此M 、,糸狀體和一矛狀體的一内部。該内部 係可以任何習知方式所私明 , 式所封閉。在—個實施方式中,本體44〇 係-軟性金屬合金(例如:一紹合金)以促進變形來封閉 該内部。在-個實施方式中,本體44〇係具有大約咖公 寸之一直徑。 矛狀體410係由例如不π 田則如不鏽鋼之任何習用電氣傳導材$ 所形成(例如:金屬、车m _ ^牛導體、超導體、奈米材料)。; 狀體4 1 〇係包含尖嫂40 j 而412和倒鉤414。矛狀體410係可包< 在矛狀體4 1 0上的—絕緣部、^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1驭矛狀體410所包含絕緣^ π矛狀體410的一個或更多部分(420、424、及/5 tU)。在另-個實施方式中,絕緣部係被省略而矛狀體41 係具有一傳導表面(例如. 420、424、412)。矛狀體 41 之後延部(tang) 61〇(圖〆 (圖6)係將矛狀體410機械耦合j 本體440。矛狀體41〇係可雷 電乳耦合至本體440。矛狀體41 係針對朝向一目標之飛杆 ^ 秕仃方向而從本體400的前方部分44 朝向一目標向前延伸。在— 個貫施方式中’矛狀體41 〇信 38 201107701 具有大約0.035公寸之一直极和從大約〇 25至大約〇 55公 寸之一長度,較佳大約0.40公寸。 依據本發明各種觀點,擴散器43〇係包括絲狀體47〇 的一末端部分。絲狀體470係進入本體4〇〇之後方部分 444,穿過本體400之内部,且從本體4〇〇之前方部分料2 延伸出去。絲狀體470之末端部分係從前方部分442延伸 向前且實行如本文所討論一擴散器之功能。 電極400之各種尺寸和其構件係影響擴散器43〇的運 作。本體400係具有在一中央對稱軸7〇2周圍的直徑7〇6 (圖7)。矛狀體410係具有在與軸線7〇2之—中央對稱軸 周圍的直徑708。絲狀體470係具有在一中央對稱軸7〇4周 圍的直徑710。軸線7〇4係跟隨擴散器43〇之傳導部的中央 穿過操作點721,以用於定義對包含如上文所討論集中、形 成和散佈作用之擴散器功能有影響的各種距離及角度。 擴散器430係包含絕緣部450和傳導部46〇。絕緣部 450係包住傳導部460 〇絕緣部45〇係將傳導部46〇隔絕自 經由在傳導部460和本體400或矛狀體41〇之間的實體接 觸而電氣耦合至本體400及矛狀體410。擴散器43〇所包括 一操作點721係包括傳導部460之未隔絕部分,經削切以 將傳導部460暴露在大氣中。絲狀體47〇之末端部分係在 一曲線上被形成大約一半徑,通常被敘述為—切線到該曲 線針對矛狀體410 (例如:一飛行方向)的角度716。角度 716在衝擊目標物料及/或目標身體組織上係足夠引起操= 點721自矛狀體41〇離開,例如在1〇度到9〇度之範圍中 39 201107701 而較佳大約45度。 擴散器430及其操作點721係被形成且給定一初始位 置’使得操作點7 2 1使用上係對刺激訊號電流建立一條或 更多‘離子化路徑。較佳定位係可使通過目標身體組織之路 徑比通過矛狀體410之路徑更合乎要求;及/或係可在矛狀 體和本體電氣耦合時使通過矛狀體410之路徑比通過本體 440之路徑更合乎要求。為使製造簡單,絲狀體47〇係可在 對本體440之一切線處被削切以形成擴散器43〇β 一般來 說’增加擴散器430針對本體之係降低從擴散器43〇到本 體440的離子化可能性(亦稱為後部致動)^ 一般來說, 增加擴散器430從矛狀體410之偏位距離720係降低從擴 散器430到矛狀體4 1 〇的離子化可能性、且增加一離子化 路徑通過目標身體組織的可能性。對包括具有一長度7 i 2 之一絕緣性後方部分和具有一長度7 1 3之一傳導性前方部 分的一矛狀體來說,增加該長度712 一般係增加從擴散器 430至目標身體組織之離子化可能性。 例如:擴散器430係可被削切成一長度,使得按壓擴 散器430以抵靠(例如:平行)前端部分442 (例如:角度 760大約90度)時,擴散器430係未延伸超過或纏繞本體 440 〇當直徑706之本體的直徑大約〇.213公寸時,矛狀體 之直徑係大約0.035公寸,且絲狀體470係經並列抵靠矛狀 體410 ’擴散器430係在對本體440之一切線處被削切成大 約從本體400之前端部分442算起大約0.089公吋的一長度 (例如·當筆直時)。於是取決於角度7 16。距離7丨4之前 40 201107701 伸部分到操作點721係處於從絲狀體47〇的一半直徑"列 如:0.0075公寸)到本體44〇之一半直徑(例如· 〇,L公 寸)的範圍,較佳大約0·089公寸。當角度716大約45产 時,前伸部分7! 4係大約G ·⑹公寸。例如:當角度7 ι 6二 約9〇度時,增加擴散器43〇之長度係可降低在操作點721 和本體440之間的離子化可能性。 該矛狀體中最接近該擴散器之操作點的傳導性部分在 本文係被稱為矛狀體致動位置。當_矛狀體之轴桿部分包 括未隔絕傳導性材料時’例如該矛狀體致動位置係可具有 從操作點721到矛狀體410上之最近點723的一距離· 一矛狀體係可包括-後方部分和一前方部分。例如:矛狀 體410係包含具有從本體44〇之前方部分442至—邊界415 的一長度712之後方部> 42〇 ’且進—步包含具有從邊界 415至尖端424的長度713之—前方部分424。在其中後方 部分420具有-非傳導性外部表面(例如:包括—絕緣部、 以一絕緣部覆蓋之一傳導部)而前方部分442具有一傳導 性外部表面之-個實施方式中,該矛狀體致動位置係可從 操作點7 21離開一距離71 §。 ^所具有一傳導性本體420經電氣輕合至矛狀體410 之一實施方式中前方致動㈣718係可少於—後方致 動距離7Η’以增加透過目標身體組織或在其附近出現矛狀 體致動之可能性。 從一矛狀體致動位置723至擴散器430之操作點721 的-距離係定義-偏位距離72〇。依據本發明各種觀點,一 41 201107701 偏位距離720係大於絲狀體47〇之一半直㉟(例如:小角 度716)而小於擴散器43〇之長度(例如:小角度716)。 在一個實施方式中,距離720在角度716為大約乜度時係 ,約〇·05公寸’絲狀體470之直徑係大約0.015公寸,擴 散器之長度係大約〇·089公寸,而前方致動距離718係大約 0 · 0 8 9公寸。 一擴散器係可經設計以在衝擊一目標上發生變形(例 如:韌性、可撓性)。一擴散器之操作點針對該電極之其 他部分的位置(例如:一偏位距離)係可在從電極製造商 和在部署前所設定的一初始位置對該目標之衝擊及/或穿透 上發生改變。例如:矛狀體41G對目標164(身體組織或物 料)之穿透係可改變擴散器430針對矛狀體41〇和本體44〇 的一位置。此一位置改變係可包含角度716之一改變、偏 位距離720之一改變、前方致動距離718之—改變、及/或 後方致動距離714之一改變。一位置改變通常係改變在操 作點721、矛狀體41〇、本體44〇、和目標身體組織μ#之 間的一個或更多電氣關係。該些電氣關係可決定數條可行 離子化路徑中哪一條或更多條可被離子化且傳導該刺激訊 號之電流。一般來說,一較短路徑係經離子化而—較長路 徑則不經離子化》 一電極4G0之尺寸、電極放置、和操作的實例係被欽 述在表2中。在此實施方式中,本體4〇〇在其内部係被電 氣耦合至矛狀體410。矛狀體410係具有從前方部分442到 尖端412《一傳導性表面(例如:矛狀體係不鏽鋼卜儘 42 201107701 管如此,尖端4 12係在下述狀况祛描B 士 μ如 便僅具有針對該回波路徑 的-電壓:(a)從操作點721傳導流過目標身體組織;從 操作點721到目標身體組織、到矛狀體41〇之離子化⑴ (例如:前方致動)’及/或(c )刭★胁 到本體440之離子化(例 如:後方致動)。 2 尺寸 放置 衝偏位距離|矛~^ 410 720幾乎與前伸距目標身體組織 離714相同;衝擊 後,距離728<偏 位距離720且距離 728 < 距離 714 耳對回"^徑之操作 衝擊前,偏位距離 720幾乎與前伸距 離714相同;衝擊 後’距離714<距 離720 ;距離728 近似距離714 矛狀體410係穿入 目標物料,使擴散 器430變形,且穿 入目標身體組織 以散佈作用進行前方致動;刺 激電流係至少在從操作點721 到目標身體組織的一第一路徑 和從操作點721經過矛狀體致 動,723到尖端412的一第二 ,徑之間加以散佈;第二路徑 係亦可在點721和點723之間 旦含目標身體組織__ 以散佈作用進行後方致動;刺 激:電流係至少在從操作點721 經過本體440到尖端412的一 第一路徑和從操作點721到目 才示身體組織的一第二路徑之間 加以散佈 在衝擊一目標期間,電極400係可由於衝擊慣性及/或 該目標之移動而最初依據表1的列丨且後續依據表丨的列2 來實行散佈作用。 在另一個實施方式中,矛狀體41〇係包含如上文所討 論經隔絕後方部分420、邊界41 5、和未隔絕前方部分424。 本體400在其内部係未被電氣耦合至矛狀體41〇。絕緣部 420係可由包含如上文所討論之任何習用電氣隔絕材料所 43 201107701 形成。例如:矛狀體410之經隔絕部分42〇的直徑係可大 約0.035公寸。一電極400在此實施方式令之尺寸電極放 置、和操作的實例係被敘述在表3中。 表3 列 尺寸 放置 針對回波路徑之操作 1 銜擊前,偏位距離 720幾乎與前伸距離 714相同;衝擊後, 距離728 <偏位距離 720且距離728 <距 離714 ;距離726小 於距離712;距離718 大於距離720 後方部分420係在 目標身體組織申 以散佈作用進行前方致動;刺 激電流係至少在從操作點721 到目標身體組織的一第一路徑 和從操作點721經過矛狀體致 動點722到尖端412的一第二 ,徑之間加以散佈;第二路徑 係亦可在點721和點722之間 包含目標身體組織 一絕緣部係可被施加至矛狀體410之一表面以形成絕 緣部420。對parylene絕緣來說,所施用絕緣部之—厚度係 在0.1微米至76微米之範圍中’較佳有6〇微米厚。 矛狀體410之一形狀係可影響絕緣部420之效能。例 如:矛狀體410之尖端412或倒鉤414的尺寸和幾何形狀 係可限制一所施用絕緣部的一厚度。絕緣部42〇之厚度在 矛狀體410之一位置處的一降減係可降低該絕緣部近接尖 端412及/或倒鉤414的電容量以阻擋一電流流過矛狀體 410。將大於一臨界值之一電壓施用至矛狀體41〇係可擊潰 尖端412或倒鉤414附近的絕緣部420以允許—電流、充過 矛狀體4 10到一目標。 依據本發明各種觀點之一擴散器係可提供如上文对論 提供一電流流過一目標之證據。當流過一擴散器之大致上 201107701 所有電流經由離子化在一擴散器之—傳導部處的一間隙來 傳導時,該傳導部之凹陷程度係直接正比於所傳遞流過目 標身體組織的電流。當流過一擴散器之大致上所有電流經 由離子化在一擴散器之一絕緣部處的一間隙來傳導時,該 傳導部之炼化係直接正比於所傳遞流過目標身體組織的電 流。 例如:在提供一電流流過一目標前,擴散器43〇之絕 緣部45〇和傳導部彻係具有—新製造絲狀體的外觀。一 新製造擴散器係缺少挖坑、刻劃、熔化、及在擴散器之絕 緣部和傳導部上提供電流的其它實際證據。例如:擴散器 430之一尖端係藉由以正交絲狀體47〇之長度方 -削切來形成。在攜載-電流前,傳導部46〇係^ = 看入擴散器430之長度方式觀看擴散器43〇的尖端而可得 以看見,且絕緣部450之邊緣係形成大約9〇度之—角度。 當擴散器430提供-電流時’傳導部楊和絕緣部彻係 可藉由離子化和該電流跨越一氣隙之電弧而被加熱。因此 一電流持續被擴散器430所傳遞時,絕緣部45〇係熔化、 而如圖8所示將傳導部45〇之邊緣切圓且露出傳導部楊。 此一電流經持續傳遞流過擴散器43〇係如圖9所示造成絕 緣部45G之額外熔化和圓形化及傳導部46()之額外露出。 絕緣部450之圓形化數額及傳導部46〇之露出數額係正比 於經由擴散器430所傳遞之電流數額。當以大致上等量電 荷之脈衝方式傳遞該電流時,圓形化數額及露出數額係可 相關所傳遞流過目㈣體組織之t流脈衝的數量。 45 201107701 ▲傳遞一電流流過擴散$ 430係可變更絕緣冑45〇和傳 導〇卩460之一表面。傳遞一電流流過擴散器4儿係在絕緣 4 :50和傳導部46〇之表面上造成挖坑、刻劃、汽化、及 厌堆積如在上文以引用方式納入之文獻所討論,絕緣 部450㈣導部46〇之表面的變更數額係正比於所傳遞流 過擴散器430之電流數額及/或電流脈衝數額。 、邑緣。P 450和傳導部46〇之_分析係提供關所傳遞流 過一目標之一電流量的證據。 在絕緣部450和傳導部楊之表面上的挖坑、刻割、 汽化、及-碳堆積數額係正比於在傳遞一刺激訊號期間發 生離子化的-時間*。在使用前對—擴散器之—形狀的形 成係在測量和比較電流流過-電極的-傳遞上提供一評量 2。較佳如上文所討論,—擴散器之―尖端係被形成以 有規則(例如:正交)邊緣。 在依據本發明各種觀點之一電極的另一實施方式中, !電極係包含在衝擊-目標上不傾向發生變形之-擴散 盗。因為此-擴散器之操作點的位置針對該電極之其它構 建來、隹持~以—電極係可包括超過-個此擴散器。例如: 圖 '之電極1018係包含本體卿、彳狀體1010、一第— 擴散'_、和—第二擴散器1_。電極1G18係實行如 上文所討論—電極160之功能。本體1〇4〇、矛狀體1010、 擴散器 1020 和 1 / 〇3〇係"刀別貫仃如上文所各自討論一本 體、—矛狀體、一撼丑今毋七丄么匕. i、政益之功此。例如:本體丨〇4〇係可以 類似本體440之—士 π > 方式予以貫鉍,除了在離子化不存在時, 46 201107701 -絲狀體(未圖示)係被電氣輕合至擴散器聊和ι〇3〇, 被隔絕自本體1 040,且被隔絕自矛狀體丨〇丨〇。 本體1040係可被形成以在其内部促進在一絲狀體和一 擴散器之間的離子化。定位在至少部分該離子化之一受控 環境中係促進對-傳導部(例如:絲狀體、擴散器、本^ 1010内之額外表面)及/或對—絕緣部(絲狀體、擴散器、 本體1〇1〇内之額外絕緣部)之改變與所傳遞流過—擴散器 之一電流量的相關性。 矛狀體1G1G係可如上文所討論由電氣傳導材料所形成 (例如:不鏽鋼)、由隔絕材料所形成、或由傳導和隔絕 材料之一組合所形成。為清楚說明,矛狀體1010在下文討 論中係在擴散器1 020和1 030附近包括傳導性材料。 矛狀體1010係如矛狀體41〇般包括一尖端合一倒釣 (未圖示)。矛狀體UH0係以任何習用方式被機械躺合至 本體1640。矛狀體1010係可電氣耦合至本體1〇4〇。矛狀 體1010係從本體1040之前方部分1〇42針對朝向一目標之 飛行方向來延伸向前。 在一個實施方式中,矛狀體1010係完全被隔絕以促進 電流自擴散器1020和1030流過目標身體組織的散佈作 用。在此一實施方式中,矛狀體1010係為實行集中、形成、 或傳導功能。 -擴散器係可實行一結合功能。當將一擴散器機械固 定至-本體時…絲狀體到—擴散器之機械輕合係將該絲 狀體結合到該本體。 47 201107701 擴散器1020和胸係針對本體ΗΜΟ之前方部分 购、矛狀體1〇1〇、和本體1〇4〇及/或矛狀體之一中 央對稱軸1048中至少一者來對稱性配置。擴散器1〇2〇和 1030係可如所示在結構和功能上相同。藉由對稱性配置係 促進至夕個擴散器與該目標之物料或身體組織的近接。 擴散器1030係由任何習用的電氣傳導材料所組成。擴 二器1030係機械耦合至本體胸的前方部分1〇42。擴散 係由則方邛分1042延伸向前。擴散器1030係未透 過實際接觸來電氣輕合至本體1G4G或矛狀體ι㈣。擴散器 1030係可經由在擴散器1〇3〇和矛狀體丨〇1〇之間一氣隙 1054的離子化來電氣耦合至矛狀體丨〇1〇。如上文所討論’ 擴散器1030係電氣耦合至一絲狀體的一傳導部(未圖示)。 較佳為.擴散器1 〇 3 0係位在盡可能遠離矛狀體1 〇 ^ 〇 之地方,而仍然要被定位在前方部分1042上。例如:當本 體1040之直徑购大約為〇.213公寸時,擴散器之長度 1050係大約〇.89公寸,擴散器之直徑係大約0.015公寸, 且矛狀體1〇1〇之表面與一擴散器1030的—最小分離ι〇54 係大約0.07公寸。 當該目標處之電極放置包含由矛狀體1〇1〇及擴散器 1020和1030中一者或更多來穿入目標身體組織時,目標身 體組織係被居間在矛狀體丨〇丨〇和一擴散器之間。矛狀體 1010之致動係涉及通過目標身體組織的一電流路徑。一電 流路徑係可由一個或更多擴散器和通過目標身體組織之回 波路徑所形成。 48 201107701 -擴散器係可具有一尖端1〇32和—軸桿ι〇3卜該尖端 在結構和功能上係可類似於上文所討論—機_合結構或 矛狀體的尖端。該尖端係可具傳導性。該擴散器係可包括 一絕緣部來電氣隔絕該擴散器(例如:軸桿),然該尖端 除外。該擴散器之操作點因此係被侷限至該^,較佳為 該尖端之一指向部分以供集中電場通量。f中作用最初係 可導引電場通量離開矛狀體_,以增加離子化及/或電流 路徑將包含目標身體組織的可能性。 在發射且衝擊目標物料和身體組織的過程中,一擴散 益之轴桿係可在該尖端和—電極的其它構件之間維持一距 離1〇54。維持作用係可藉由在飛行方向中對準一擴散器之 一中央軸(例如:軸桿)來完成。 貫施方式中,一擴散器之軸桿在衝擊目標物料 和身體組織上係導引該尖端離開該電極之其它構件,以增 加通過目標身體組織之一電流路徑或其數量。例如:導弓; 尖端贈離開矛狀體1㈣係可藉由最初對準-擴散器 1030之-中央軸(或軸桿1()31)使得稿微離開(未圖示) 該飛行方向來完成。在此一實施方式中,軸桿则係可且 可撓性以避免撕裂目標身體組織。 ” 擴散器1030係可穿入目標物料及/或身體組織。當目標 物料及/或身體組織進入擴散器刪和矛狀體ι〇ι〇之間的 -間隙時’擴散器刪和矛狀體1〇1〇之間的一電氣關係 係被改變。儘管目標身體組織被定位在擴散器ι〇3〇和矛狀 體1010之間,然而從擴散器1030到矛狀體1〇1〇之電弧作 49 201107701 用的可能性係可被減少且由_ a & 、、、糸狀體(未圖示)所提供诵 過擴散器丨030流入目標身體組 A之一電流強度係可增加。 ^ ^ , . ^ 之構件的結構係可在本發明各 種貫施方式中使用習用機姑 . 用機械和電氣耦合技術來組合。例 如·一本體和矛狀體係可作么— " ' 個、‘,σ構而由一個材料所形 成’以避免將-矛狀體組裝於—本體的成本。 本發明之實例 第- ·-部署早疋係提供_電流流過一目標之身體袓 織。該電流係阻礙該目標的自主移動。該部署單元係包括 -殼體、i少一個電極、至少一條絲狀體、及一推進劑。 該絲狀體之一末端係被機械耦合至該電極。該電極係包含 用於散佈該電流之裝置。 操作上,該推進劑係將該電極朝向該目標而推離自該 殼體以從該部署單元將該絲狀體延伸朝向該目標。該電極 之結構係將該電極機械耦合入該目標。該絲狀體係傳導該 電流。由於用於散佈該電流之裝置的位置和取向,所以相 較由該電極所傳導到該目標之身體組織内,有更多電流係 從該絲狀體傳到該目標之身體組織的一表面。 第二:一部署單元係從一訊號產生器提供一電流流過 一目標之身體組織以阻礙該目標的自主移動。該部署單元 係包括一絲狀體、一殼體、一電極、及一推進劑。該絲狀 體係傳導該電流。該殼體係固持該絲狀體之一第一末端。 該電極最初係在該殼體中。操作上,該殼體中之推進劑係 將5亥電極推離該殼體以朝向該目標.來部署該絲狀體。該電 50 201107701 極係包括-本體和兩個結構。該本體係被機械耦合至該絲 狀體之-第二末端附近。第—結構在部署後係將該本體機 械耗合至該目#。由該本體所支持之第二結構係將該電流 從該絲狀體散佈以部分流過該第一結構且均衡流過該第二 結構。 第三:一部署單元係提供一電流流.過—目標,該電流 係用於阻礙該目標的自主移動,該部署單元係包括至少一 個電極和一推進劑。該電極係包含一絲狀體、用於將該電 極機械輕合至該目標之裝置、及用於集中_電場之裝置。 在該傳導部和用於機械搞合之裝置間*具有—離子化電壓 時,該絲狀體之-傳導部係被電氣隔絕自用於將該電極機 械麵合至該目標之裝置。用於集中一電場之裝置係被定位 以離開用於機械耦合之裝置有一氣隙的一長度。 操作上,該推進劑係將該電極朝向該目標推進。該絲 狀體係提供該電流至該電極^電極係能夠經由間隙及/或 用於集中之裝置來提供該電流至目標身體組織。 第四:-部署單元係提供一電流流過一目標,該電流 係用於阻礙該目標的自主移動。該部署單元係包括至少一 個電極和-推進劑。該電極係包含用以提供該電流至本身 的-絲狀體’且係進一步包含—機械耦合結構。在該機械 稱合結構和該絲狀體之間不具有一離子化電壓日夺,該機械 耦合結構係被電氣隔絕自該絲狀體。 操作上„亥推進劑係將該電極朝向該目標推進。該電 極係經由從散佈結構至該機_合結構之—路徑及/或經由 51 201107701 該散佈結構來提供該電流至目標身體組織。 /第五 冑子武器係提供一電流流過一目標。該電流 係阻礙該目擇的白士敌 立 的自主移動。該電子武器係包含一發射裝置 矛。卩署單元,兩者係合作朝向該目標發射至少一個電 極:該,射裝置係包含用於提供該電流之一訊號產生器。 -¾ σ[5 f·單元係包含—絲狀體和該電極。該絲狀體係將該訊 唬產生器電氣耦合至該電極。該電極係包含一本體合一尖 端。該本體係具有參照該電極朝向該目標之一飛行方向的 一刖方部分》該尖端係'由該前方部分延伸向前。該絲狀體 之末端部分係在該前方部分和該尖端之間由該前方部分 延伸向前。該末端部分係提供該電流流過該目標。 第六:一部署單元係提供一電流流過一目標。該電流 係阻礙該目標的自主移動。該部署單元係包括一電極和用 於將該電極朝向該目標推進之裝置。該電極係包含一絲狀 體 '用於將該絲狀體結合至該電極之裝置' 用於將該電極 刺進該目標之裝置,和用於在該目標的身體組織中散佈該 電流之裝置。該絲狀體係將該電流傳導至用於散佈之裝 置。然而,用於結合之裝置在不具有離子化時係被隔絕自 該絲狀體的一傳導部《此外,用於刺進之裝置在不具有離 子化時係亦被隔絕自該絲狀體的傳導部。 操作上,該部署單元係接收所傳導至用於散佈之裝置 的操作電流。用於散佈之裝置係支持藉由離子化到用於刺 進之裝置的一路徑以提供至少一部分該電流。 第七:一部署單元係提供一電流流過一目標以用於阻 52 201107701 礙該目標的自主移動。 β _ °哀署早凡係包括一電極和用於將 該電極朝向該目標推推少^ 电位布用於將 體和一料。。 之—推進劑。該電極係包含一矛狀 體和擴散器。該矛灿*9* β U々上 ) 體係將該電極機械耦合至該目標。 該擴散器係被定位α Μ π '' ^ 以離開泫矛狀體有一氣隙的一長度。 J作ί ’該擴散器係依據該矛狀體和該擴散器相對目 〜 來k供该電流流過該目標。該擴散器 /’、,㈣電流之一較低電阻路徑時係支持該間隙,空 氣的離子化。 ' 第八·一電極係包含-矛狀體和-擴散器。該電極係 用於朝向所提供-目標發射以提供一電流流過該目標,苴 中該電流係阻礙該目標的自主移動。該擴散器係被定位二 離開忒矛狀體有一氣隙的一長度。該擴散器係依據該矛狀 體、該擴散器、和該目標身體組織相對彼此之一位置而經 由該矛狀體和該擴散器t至少—者來提供該電流流過該目 標。該擴散器在無法取得該電流之一較低電阻路徑時係支 持該間隙中空氣的離子化。 P第九:用於朝向所提供一目標發射之一電極係從一訊 號產生益提供一電流流過該目標。該訊號產生器不是該電 極的部分。該電流係阻礙該目標的自主移動。該電極係 包含-本體、一矛狀體、和一擴散器。該本體係包含參照 該電極朝向該目標之一飛行方向的一前方部分。該矛狀體 係被機械耦合至該本體之前方部分。該擴散器係被機械輪 合至邊本體之前方部分,且被定位以離開該矛狀體有一氣 隙的一長度。該訊號產生器係被電氣耦合至該擴散器。 53 201107701 操作上,為將該電流提供至該目標’該擴散器係能夠 經由該間隙中空氣之離子化而電氣耦合至該矛狀體、能夠 在不具有離子化時耦合至目標身體組織、且能夠以離子化 來耦合至目標身體組織。 弟十:一方法係由一部署單元所實行以用於提供一電 流流過一目標。該電流係阻礙該目標的自主移動。該方法 係以任何實際順序來包含:(a )將該部署單元之一電極朝 向-目標推進;(b )將該電極之一擴散器和一矛狀體定位 在目標身體組織中或其附近;及(〇經由該擴散器來致動 該矛狀體之一前方部分以傳遞該電流。 第十.方法係由一部署單元所實行以用於提供一 電流流過-目標。該電流係阻礙該目標的自主移動。該方 法係以任何實際順序來包含:(a)將該部署單元之一電極 朝向-目標推進以衝擊該目標;(b)響應一衝擊力道而將 该電極之-矛狀體和一擴散器相對目標身體組織來定位; 依據前述定位而經由該矛狀體、該擴散器、在該矛 目標身體組織之間的-第-氣隙、在該矛狀體和該 =之間的-第二氣隙、與在該擴散器和目標身體組織 之間第三氣隙中任何組合來提供—電流流過該目標。 尸2一.一電極係提供-電流流過-目標之傳遞指 ^電流係阻礙該目標的自主移動。該電極係包含一本 狀體。該本體係包含參照該電極朝向該目標之— 飛:订方向的一前方部分。 由該本㈣夕乂 a係機械耦合至該本體且 别方。P分延伸向前。—隔絕電線係將該電極機 54 201107701 械輕合至該電流之一來源。該雷始 °茨電線之局部加熱係產生該電 線的變形。該電線係被機械耦入 叫柄口至该本體。該電線之一末 端部分係由該本體之前方部分延柚6a 刀延伸向前。該電線之一絕緣 部係集合該電流之一電場以將一笛— 第一間隙和一第二間隙中 至少一者的空氣加以離子化。該第一間隙係將該電線之_ 傳導部隔離自目標身體組織。該第二間隙係將該傳導部隔 離自目標身體組織。任一間隙之空氣離子化而帶有生成妖 係提供該電流的傳遞指標,其中包括該電線之變形。、 前述說明係討論本發明中可被改變或修改而沒有障離 如本發明在申請專利範圍中所定義的範疇之多個較佳實施 例。刖述插入段落中所列出之多個實例隙可以替代方式或 以任何實際組合來使用。當在說明書和申請專利範圍中所 使用時,詞語「包括」、「包和」、和「具有」係引進構 件結構及/或功能的一開放性陳述。在說明書和申請專利範 圍中,詞語「一」被使用作為意謂「一個或更多」之不定 冠詞。儘管爲使前述說明清楚起見,本發明數個特定實施 例已經過敘述,然而本發明之範疇係意指由後為所提及申 凊專利範圍進行權衡。 【圖式簡單說明】 本發明實施例係參考圖式予以敘述,其中類似指稱係 代表類似元件,且: 圖1 A係依據本發明各種觀點之一電子武器的一功能方 塊圖; 55 201107701 圖1B係圖1A之電子武器中一電極 一 J刀此方塊圖; 圖1C係圖1B之電極160針對一目沪 了目铋身體組織的結構 之一佈置圖; 圖1D係圖1C中所例示電流路徑一示意圖· 圖2A係圖1A和1B之電子武器的—實施方气之側 視平面圖; 圖2B係圖2A之電子武器中部署單元的一戴面視圖; 圖3係先前技術之一電極的一功能方塊圖; 圖4係圖1B之電極的一實施方式之—立體圖; 圖5係圖4之電極的一側視圖; 圖6係圖5之電極的一截面圖; 圖7係圖4中用於定義各種維度關係之一部分電極的 一側視圖; 圖8係圖5在提供電流後一部分電極的—側視圖; 圖9係圖8在提供額外電流後一部分電極的一側視圖 ;以及 一實施方式的一側視圖。 圖10係圖1B —部分電極之另 【主要元件符號說明】 100 電子武器 110 發射裝置 112 使用者控制項 114 處理電路 116 電源供應器 56 201107701 118 訊號產生器 130 部署單元 132 -134 槍彈部 140 電線儲庫 142 電極 144 推進劑(系統) 150 刺激介面 152 發射訊號 160 電極 161 結合結構 162 機械耦合結構 163 散佈結構 164 目標(身體組織) 165 路徑 166 絲狀體 167 回波路徑 170 -180 路徑 181 -183 間隙 200 電子武器 202 手持式發射裝置 230 槍彈部 232, 234 絲狀體 236, 238 (有線繫鍊)電極 242 殼體 57 201107701 243 覆蓋 244, 245 搶膛 247 接觸點 248 楔形部 251, 252 本體 254, 255 矛狀體 264 觸發器 300 電極 3 10 第一傳導性結構 320 第二傳導性結構 330 目標身體組織 342 絲狀體 352 間隙/氣隙/路徑 354 線/路徑 400 電極 410 矛狀體 412 尖端(傳導表面) 414 倒鉤 415 邊界 420 後方部分(傳導表面) 424 前方部分(傳導表面) 430 擴散器 440 本體 442 前方部分 58 201107701 444 後方部分 450 絕緣部 460 傳導部 470 絲狀體 610 後延部 702, 704 中央對稱軸/軸線 706, 708, 710 直徑 712-713 長度 714 前伸部分(距離) 716 角度 718 前方致動距離 720 偏位距離 721 操作點 722 矛狀體致動位置( 點) 723 矛狀體致動位置( 點)/最近點 1010 矛狀體 1018 電極 1020 第一擴散器 1030 第二擴散器 1031 軸桿 1032 尖端 1040 本體 1042 前方部分 1044 直徑 59 201107701The 440 series includes an interior for introducing the M, the scorpion and the lance. The internal system can be closed by any conventional means. In one embodiment, the body 44 〇 A soft metal alloy (e.g., a alloy) is used to promote deformation to enclose the interior. In one embodiment, the body 44 has a diameter of about one inch. The lance 410 is, for example, not π. Then, it is formed by any conventional electric conductive material of stainless steel (for example: metal, car m _ ^ cattle conductor, superconductor, nano material); shape 4 1 tether contains cusp 40 j and 412 and barb 414. The lance 410 can be packaged < Insulating portion on the lance 4 1 0, ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 驭 one or more portions of the insulating π lance 410 (420, 424) , and /5 tU). In another embodiment, the insulating portion is omitted and the lance 41 has a conductive surface (e.g., 420, 424, 412). The lance 41 is then tang 61 〇 (Fig. 6) mechanically couples the lance 410 to the body 440. The lance 41 is coupled to the body 440. The lance 41 Extending forward from the front portion 44 of the body 400 toward a target for a fly toward the target. In a manner of "the lance 41" 38信38 201107701 has a constant pole of approximately 0.035 inches And from about 〇25 to about 公55 ft, preferably about 0.40 ft. According to various aspects of the invention, the diffuser 43 includes an end portion of the filament 47. The filament 470 is inserted. The rear portion 444 of the body 4 is passed through the interior of the body 400 and extends from the front portion 2 of the body 4. The end portion of the filament 470 extends forward from the front portion 442 and is implemented as herein The function of a diffuser is discussed. The various dimensions of the electrode 400 and its components affect the operation of the diffuser 43. The body 400 has a diameter 7〇6 (Fig. 7) around a central axis of symmetry 7〇2. The 410 series has a central axis of symmetry around the axis 7〇2 The diameter 708. The filament 470 has a diameter 710 around a central axis of symmetry 7〇4. The axis 7〇4 follows the center of the waveguide of the diffuser 43〇 through the operating point 721 for defining pairs as above Various distances and angles that affect the function of the diffuser that concentrates, forms, and disperses are discussed. The diffuser 430 includes an insulating portion 450 and a conductive portion 46. The insulating portion 450 encloses the conductive portion 460, the insulating portion 45, and the like. The conductive portion 46 is electrically isolated from the body 400 and the lance 410 via physical contact between the conductive portion 460 and the body 400 or the lance 41. The diffuser 43 includes an operating point 721 including The uninsulated portion of the conductive portion 460 is cut to expose the conductive portion 460 to the atmosphere. The end portion of the filament 47 is formed on a curve to form a radius, which is generally described as - tangent to the curve for An angle 716 of the lance 410 (e.g., a direction of flight). The angle 716 is sufficient to cause the target point 721 to exit from the lance 41 冲击 on the impact target material and/or the target body tissue, for example, at 1 to 9 degrees. 39 201 in the range of temperature 107701 and preferably about 45 degrees. The diffuser 430 and its operating point 721 are formed and given an initial position 'such that the operating point 7 2 1 uses the upper pair to establish one or more 'ionization paths' to the stimulus signal current. Preferably, the positioning means that the path through the target body tissue is more desirable than the path through the lance 410; and/or the path through the lance 410 is made to pass through the body 440 when the lance and the body are electrically coupled. The path is more desirable. To make the manufacturing simple, the filaments 47 can be cut at all lines of the body 440 to form a diffuser 43 〇 β. Generally, the diffuser 430 is reduced for diffusion from the body. The possibility of ionization of the device 43 to the body 440 (also referred to as rear actuation) is generally increased by increasing the deflection distance 720 of the diffuser 430 from the lance 410 from the diffuser 430 to the lance 4 1 The possibility of ionization of helium and the possibility of increasing an ionization path through the target body tissue. For a lance comprising an insulative rear portion having a length 7 i 2 and a conductive front portion having a length 713, increasing the length 712 generally increases the diffuser 430 to the target body tissue. The possibility of ionization. For example, the diffuser 430 can be cut to a length such that when the diffuser 430 is pressed against (eg, parallel) the front end portion 442 (eg, angle 760 is approximately 90 degrees), the diffuser 430 does not extend beyond or wrap. Body 440 When the diameter of the body of diameter 706 is approximately 213.213 inches, the diameter of the lance is approximately 0.035 inches, and the filaments 470 are juxtaposed against the lance 410' diffuser 430 is attached All lines of body 440 are cut to a length of approximately 0.089 ft from the front end portion 442 of body 400 (e.g., when straight). It then depends on the angle 7 16 . Before the distance of 7丨4, 40 201107701, the extension to the operating point 721 is from half the diameter of the filament 47〇"column: 0.0075 inch to one half of the diameter of the body 44〇 (eg · 〇, L inch) The range is preferably about 0. 089 inches. When the angle 716 is approximately 45, the forward portion 7! 4 is approximately G · (6) inches. For example, when the angle is 7 ι 6 and about 9 ,, increasing the length of the diffuser 43 可 reduces the likelihood of ionization between the operating point 721 and the body 440. The conductive portion of the lance that is closest to the operating point of the diffuser is referred to herein as the lance actuation position. When the shaft portion of the lance includes an uninsulated conductive material, for example, the lance actuation position may have a distance from the operating point 721 to the closest point 723 on the lance 410. It may include a rear portion and a front portion. For example, the lance 410 includes a length 712 from the front portion 442 of the body 44 to the boundary 415 and a length 713 from the boundary 415 to the tip 424. Front portion 424. In an embodiment where the rear portion 420 has a non-conductive outer surface (eg, including an insulating portion, one conductive portion covering one conductive portion) and the front portion 442 has a conductive outer surface, the spear is The body actuated position can be separated from operating point 721 by a distance 71 §. ^ One of the conductive bodies 420 is electrically coupled to the lance 410. In one embodiment, the front actuation (four) 718 system can be less than - the rear actuation distance 7 Η ' to increase the occurrence of a spear through or near the target body tissue. The possibility of body actuation. The distance from the lance actuation position 723 to the operating point 721 of the diffuser 430 defines a bias distance 72 〇. In accordance with various aspects of the present invention, a 41 201107701 offset distance 720 is greater than one half of the filament 47 半 35 (e.g., a small angle 716) and less than the length of the diffuser 43 ( (e.g., a small angle 716). In one embodiment, the distance 720 is about 乜 degrees when the angle 716 is about 乜, the diameter of the filament 470 is about 0.015 inches, and the length of the diffuser is about 089·089 inches. The front actuation distance 718 is approximately 0. 0 8 9 inches. A diffuser system can be designed to deform on an impact target (e.g., toughness, flexibility). The position of a diffuser operating point for other portions of the electrode (eg, a biasing distance) can be impacted and/or penetrated from the electrode manufacturer and an initial position set prior to deployment. changes happened. For example, the penetration of the lance 41G against the target 164 (body tissue or material) can change a position of the diffuser 430 for the lance 41〇 and the body 44〇. This change in position may include a change in one of the angles 716, a change in one of the offset distances 720, a change in the forward actuation distance 718, and/or a change in the rear actuation distance 714. A change in position typically changes one or more electrical relationships between operating point 721, lance 41〇, body 44〇, and target body tissue μ#. The electrical relationships may determine which one or more of the plurality of feasible ionization paths are ionizable and conduct the current of the stimulation signal. In general, a shorter path is ionized - a longer path is not ionized. An example of the size, electrode placement, and operation of an electrode 4G0 is described in Table 2. In this embodiment, the body 4 is electrically coupled to the lance 410 within its interior. The lance 410 has a conductive surface from the front portion 442 to the tip end 412 (for example, the lance system stainless steel bundle 42 201107701 tube, the tip 4 12 series in the following situation B B 士 μ μ The voltage of the echo path: (a) is conducted from the operating point 721 through the target body tissue; from the operating point 721 to the target body tissue, to the ionization of the lance 41 (1) (eg, front actuation) and / or (c) 刭 ★ threat to the ionization of the body 440 (for example: rear actuation) 2 size placement offset distance | spear ~ ^ 410 720 almost the same as the forward stretch target body tissue 714; after the impact, Distance 728 <deviation distance 720 and distance 728 < Distance 714 ear-to-back "^-diameter operation Before the impact, the offset distance 720 is almost the same as the forward-extending distance 714; <distance 720; distance 728 approximate distance 714 The lance 410 penetrates into the target material, deforms the diffuser 430, and penetrates into the target body tissue to actuate the front for actuation; the stimulation current is at least from the operating point 721 to A first path of the target body tissue is interspersed from the operating point 721 through the lance actuation, 723 to a second, diameter of the tip 412; the second path may also be between point 721 and point 723. Including target body tissue __ rear actuation with spreading effect; stimulation: current is at least at a first path from operating point 721 through body 440 to tip 412 and from operating point 721 to a second showing body tissue Between the paths being interspersed during the impact-target period, the electrode 400 may initially perform the dispersion according to the column of Table 1 due to the impact inertia and/or the movement of the target and subsequently according to column 2 of the table. In another embodiment, the lance 41 comprises an isolated rear portion 420, a boundary 41 5, and an uninsulated front portion 424 as discussed above. The body 400 is not electrically coupled to the lance 41 within its interior. Insulation 420 may be formed from any conventional electrical insulation material 43 201107701 as discussed above. For example, the diameter of the isolated portion 42 of the lance 410 can be about 0.035 inches. An example of the placement, and operation of an electrode 400 in this embodiment in this embodiment is set forth in Table 3. Table 3 Column Size Placement Operation for the echo path 1 Before the attack, the offset distance 720 is almost the same as the forward reach 714; after the impact, the distance 728 <deviation distance 720 and distance 728 <distance 714; distance 726 is less than distance 712; distance 718 is greater than distance 720. Rear portion 420 is actuated in front of the target body tissue for spreading; the stimulation current is at least a first from the operating point 721 to the target body tissue. The path is interspersed from the operating point 721 through the lance actuation point 722 to a second diameter of the tip 412; the second path may also include a target body tissue-insulation between the point 721 and the point 722 It may be applied to one surface of the lance 410 to form the insulating portion 420. For parylene insulation, the thickness of the applied insulating portion is in the range of 0.1 μm to 76 μm, preferably 6 μm thick. One of the shapes of the lance 410 can affect the performance of the insulating portion 420. For example, the size and geometry of the tip 412 or barb 414 of the lance 410 can limit a thickness of an applied insulating portion. A reduction in the thickness of the insulating portion 42 at one of the lances 410 reduces the capacitance of the proximal portion 412 and/or the barb 414 of the insulating portion to block a current from flowing through the lance 410. Applying a voltage greater than a threshold to the lance 41 can defeat the tip 412 or the insulator 420 near the barb 414 to allow current to flow through the lance 4 10 to a target. A diffuser system in accordance with one of the various aspects of the present invention can provide evidence that a current flows through a target as discussed above. When substantially all of the current flowing through a diffuser is transmitted through a gap at a conducting portion of a diffuser through ionization, the degree of dishing of the conducting portion is directly proportional to the current flowing through the target body tissue. . When substantially all of the current flowing through a diffuser is conducted through a gap ionized at an insulating portion of a diffuser, the refinery of the conducting portion is directly proportional to the current flowing through the target body tissue. For example, before providing a current through a target, the insulating portion 45 of the diffuser 43 and the conductive portion have the appearance of a newly manufactured filament. A new fabrication of diffusers lacks other practical evidence of digging, scoring, melting, and providing current on the insulation and conduction of the diffuser. For example, one of the tips of the diffuser 430 is formed by cutting the length of the orthogonal filaments 47〇. Before carrying the current, the conducting portion 46 is viewed from the length of the diffuser 430 to see the tip end of the diffuser 43A and is visible, and the edge of the insulating portion 450 forms an angle of about 9 degrees. When the diffuser 430 supplies a current, the conducting portion and the insulating portion can be heated by ionization and arcing of the current across an air gap. Therefore, when a current is continuously transmitted by the diffuser 430, the insulating portion 45 is melted, and as shown in Fig. 8, the edge of the conductive portion 45 is rounded and the conductive portion is exposed. This current is continuously transmitted through the diffuser 43 and causes additional melting and rounding of the insulating portion 45G and additional exposure of the conductive portion 46 () as shown in FIG. The amount of rounding of the insulating portion 450 and the amount of exposure of the conductive portion 46 are proportional to the amount of current delivered via the diffuser 430. When the current is delivered in a pulse of substantially equal amount of charge, the amount of rounding and the amount of exposure are related to the number of t-stream pulses that are transmitted through the body (IV) body tissue. 45 201107701 ▲ Passing a current through the diffusion of $ 430 can change the surface of one of the insulating 胄45〇 and the conductive 〇卩460. Passing a current through the diffuser 4 causes the pits, scoring, vaporization, and anodic stacking on the surface of the insulation 4:50 and the conductive portion 46〇 as discussed in the literature incorporated by reference above, the insulating portion The amount of change in the surface of the 450 (four) guide 46 is proportional to the amount of current flowing through the diffuser 430 and/or the amount of current pulses.邑 。. The analysis of P 450 and the conductance section 46 provides evidence of the amount of current flowing through one of the targets. The amount of digging, engraving, vaporization, and carbon accumulation on the surface of the insulating portion 450 and the conductive portion is proportional to the time - during which ionization occurs during the transmission of a stimulation signal. The shape of the diffuser-shaped shape prior to use provides a measure 2 for measuring and comparing the current-to-electrode-transfer. Preferably, as discussed above, the "tip" of the diffuser is formed with regular (e.g., orthogonal) edges. In another embodiment of the electrode according to one of the various aspects of the present invention, the ! electrode system comprises a diffusion thief that is not prone to deformation on the impact-target. Since the position of the operating point of the diffuser is for other constructions of the electrode, the electrode system can include more than one such diffuser. For example: Figure 10's electrode 1018 includes a body, a braid 1010, a first diffusion '_, and a second diffuser 1_. Electrode 1G18 performs the function of electrode 160 as discussed above. The body 1〇4〇, the lance 1010, the diffuser 1020, and the 1/〇3〇 system are as discussed above, each of which discusses an ontology, a lance, a ugly, and a 毋 丄 丄. i, the merits of the political benefits. For example, the body 丨〇4〇 can be similar to the body 440 in the manner of π > except that in the absence of ionization, 46 201107701 - the filament (not shown) is electrically lightly coupled to the diffuser Chat and 〇 3〇, isolated from the body 1 040, and isolated from the lance. The body 1040 can be formed to promote ionization between a filament and a diffuser therein. Positioning in at least a portion of the controlled environment of the ionization promotes a pair of conductive portions (eg, filaments, diffusers, additional surfaces within the body 1010) and/or a pair of insulating portions (filaments, diffusion) The change in the additional insulation in the body, the body 1) is related to the amount of current flowing through the diffuser. The lance 1G1G system can be formed from an electrically conductive material (e.g., stainless steel), formed of an insulating material, or a combination of conductive and insulating materials as discussed above. For clarity of illustration, the lance 1010 includes a conductive material adjacent the diffusers 1 020 and 1 030 in the discussion below. The lance 1010, like the lance 41, includes a tip-to-back plunge (not shown). The lance UH0 is mechanically draped to the body 1640 in any conventional manner. The lance 1010 can be electrically coupled to the body 1〇4〇. The lance 1010 extends forward from the front portion 1 〇 42 of the body 1040 for a flight direction toward a target. In one embodiment, the lance 1010 is completely isolated to facilitate the flow of current from the diffusers 1020 and 1030 through the target body tissue. In this embodiment, the lance 1010 is configured to perform a concentration, formation, or conduction function. - The diffuser system can perform a combined function. When a diffuser is mechanically secured to the body, a mechanically coupled system of filaments to diffusers bonds the filaments to the body. 47 201107701 The diffuser 1020 and the chest system are symmetrically configured for at least one of the front part of the body 、, the lance 1〇1〇, and the body 1〇4〇 and/or one of the central axis of symmetry 1048 of the lance. . The diffusers 1〇2〇 and 1030 can be identical in structure and function as shown. The proximity of the divergence diffuser to the target material or body tissue is facilitated by a symmetrical configuration. The diffuser 1030 is comprised of any conventional electrically conductive material. The expander 1030 is mechanically coupled to the front portion 1〇42 of the body chest. The diffusion system is extended forward by the square element 1042. The diffuser 1030 is electrically lightly coupled to the body 1G4G or the lance (4) without actual contact. The diffuser 1030 can be electrically coupled to the lance 丨〇1〇 via ionization of an air gap 1054 between the diffuser 1〇3〇 and the lance 丨〇1〇. As discussed above, the diffuser 1030 is electrically coupled to a conductive portion (not shown) of a filament. Preferably, the diffuser 1 〇 30 is located as far as possible from the lance 1 〇 ^ , and remains positioned on the front portion 1042. For example, when the diameter of the body 1040 is about 213.213 inches, the length of the diffuser 1050 is about 89.89 inches, the diameter of the diffuser is about 0.015 inches, and the surface of the lance is 1〇1〇. The minimum separation ι 54 of a diffuser 1030 is approximately 0.07 inches. When the electrode placement at the target includes one or more of the lance 1 〇 1 〇 and the diffusers 1020 and 10 30 to penetrate the target body tissue, the target body tissue is interposed in the lance 丨〇丨〇 Between a diffuser and a diffuser. The actuation of the lance 1010 involves a current path through the target body tissue. A current path can be formed by one or more diffusers and an echo path through the target body tissue. 48 201107701 - The diffuser system can have a tip 1 〇 32 and a shaft ι 〇 3. The tip can be structurally and functionally similar to the tip of the machine-to-mesh or lance as discussed above. The tip can be conductive. The diffuser can include an insulator to electrically isolate the diffuser (e.g., the shaft) except for the tip. The operating point of the diffuser is thus limited to the point, preferably one of the tips is directed to the concentrated electric field flux. The role of f is initially to direct the electric field flux away from the lance to increase the likelihood that the ionization and/or current path will contain the target body tissue. In the process of launching and impacting the target material and body tissue, a diffusion shaft can maintain a distance of between 1 and 54 between the tip and the other components of the electrode. The maintenance action can be accomplished by aligning a central axis of a diffuser (e.g., a shaft) in the flight direction. In the embodiment, a shaft of a diffuser guides the tip away from the other members of the electrode on the impact target material and body tissue to increase the current path through the target body tissue or its number. For example: a guide bow; the tip of the plucking lance 1 (four) can be made by the initial alignment-diffuser 1030 - the central axis (or the shaft 1 () 31) so that the draft leaves (not shown) the flight direction to complete . In this embodiment, the shaft is flexible and flexible to avoid tearing the target body tissue. The diffuser 1030 can penetrate the target material and/or body tissue. When the target material and/or body tissue enters the gap between the diffuser and the lance ι〇ι〇, the diffuser is removed and the lance is removed. An electrical relationship between 1〇1〇 is changed. Although the target body tissue is positioned between the diffuser ι〇3〇 and the lance 1010, the arc from the diffuser 1030 to the lance 1〇1〇 The possibility of using 49 201107701 can be reduced and the current intensity of one of the target body group A can be increased by the _ a &,,, scorpion (not shown). The structure of the components of ^, . ^ can be combined in the various embodiments of the present invention using mechanical and electrical coupling techniques. For example, a body and a spear system can be used - " ', , σ is formed by a material 'to avoid the cost of assembling the lance to the body. The example of the present invention - the deployment of the early 疋 system provides _ current flowing through a target body woven. Autonomous movement that hinders the target. The deployment unit includes a shell One less electrode, at least one filament, and one propellant. One end of the filament is mechanically coupled to the electrode. The electrode contains means for dispersing the current. Operationally, the propellant Pushing the electrode away from the housing toward the target to extend the filament from the deployment unit toward the target. The structure of the electrode mechanically couples the electrode into the target. The filamentary system conducts the current Due to the position and orientation of the means for dispersing the current, more current is transferred from the filament to a surface of the body tissue of the target than the body tissue that is conducted by the electrode into the target. Second: a deployment unit provides a current from a signal generator to flow through a target body tissue to block the autonomous movement of the target. The deployment unit includes a filament, a housing, an electrode, and a propulsion. The filamentary system conducts the current. The housing holds a first end of the filament. The electrode is initially attached to the housing. In operation, the propellant in the housing will be 5 The filament is deployed away from the housing toward the target. The electrical 50 201107701 pole comprises a body and two structures. The system is mechanically coupled to the vicinity of the second end of the filament. The structure mechanically depletes the body to the target after deployment. The second structure supported by the body distributes current from the filament to partially flow through the first structure and equalizes flow through the second Third, a deployment unit provides a current flow. The over-target is used to block the autonomous movement of the target. The deployment unit includes at least one electrode and a propellant. The electrode system includes a filament. a device for mechanically coupling the electrode to the target, and a device for concentrating the electric field. When the conductive portion and the device for mechanical engagement have an ionization voltage, the filament is The conducting portion is electrically isolated from the means for mechanically joining the electrode to the target. The means for concentrating an electric field is positioned to leave a length of an air gap from the means for mechanical coupling. Operationally, the propellant advances the electrode toward the target. The filamentary system provides the current to the electrode system to provide the current to the target body tissue via a gap and/or means for concentrating. Fourth: - The deployment unit provides a current flow through a target that is used to block the autonomous movement of the target. The deployment unit includes at least one electrode and a propellant. The electrode system comprises a filament-like body for providing the current to itself and further comprising a mechanical coupling structure. There is no ionization voltage between the mechanical weighed structure and the filament, and the mechanical coupling structure is electrically isolated from the filament. Operationally, the "propellant" advances the electrode toward the target. The electrode provides the current to the target body tissue via the scatter structure from the scatter structure to the machine structure and/or via 51 201107701. The fifth scorpion weapon provides a current through a target that blocks the autonomous movement of the target's white squad. The electronic weapon includes a launcher spear. The target emits at least one electrode: the emitter device includes a signal generator for supplying the current. -3⁄4 σ[5 f·cell contains - the filament and the electrode. The filamentary system generates the signal The electrode is electrically coupled to the electrode. The electrode system includes a body-integrated tip. The system has a square portion that refers to the direction of flight of the electrode toward one of the targets. The tip system is extended forward from the front portion. An end portion of the filament is extended forward from the front portion between the front portion and the tip end. The end portion provides the current to flow through the target. Sixth: a deployment unit A current flows through a target that blocks the autonomous movement of the target. The deployment unit includes an electrode and means for advancing the electrode toward the target. The electrode includes a filament "for the wire Means for binding the electrode to the electrode' means for piercing the electrode into the target, and means for spreading the current in the body tissue of the target. The filamentary system conducts the current to the dispersion Device. However, the device for bonding is isolated from a conducting portion of the filament when it is not ionized. "In addition, the device for piercing is also isolated from the filament when it is not ionized. In operation, the deployment unit receives an operating current that is conducted to the device for dispensing. The means for distributing supports at least a portion of the path by means of ionization to the device for penetration. The current: seventh: a deployment unit provides a current flowing through a target for blocking 52 201107701 Autonomous movement that hinders the target. β _ ° 哀 早 早 包括 includes an electrode and is used for the electricity Pushing towards the target is less ^ The potential cloth is used to hold the body and the material. The electrode contains a lance and a diffuser. The spear can be *9* β U々) Mechanically coupled to the target. The diffuser is positioned α Μ π '' ^ to leave a length of the air gap of the lance. J ί 'The diffuser is based on the lance and the diffuser ~ to k for the current to flow through the target. The diffuser / ',, (iv) one of the currents in the lower resistance path supports the gap, the ionization of the air. 'The eighth · one electrode system contains - the lance and a diffuser that is directed toward the provided-target emission to provide a current flow through the target, the current in the bore obstructing autonomous movement of the target. The diffuser is positioned to leave the lance and have a gas A length of the gap. The diffuser provides the current through the target via the lance and the diffuser t depending on the position of the lance, the diffuser, and the target body tissue relative to each other. The diffuser supports ionization of air in the gap when one of the lower current paths of the current is not available. P ninth: an electrode system for transmitting a target toward a target is provided with a current flowing through the target. The signal generator is not part of the electrode. This current hinders the autonomous movement of the target. The electrode comprises a body, a lance, and a diffuser. The system includes a front portion that references the direction of flight of the electrode toward one of the targets. The lance is mechanically coupled to the front portion of the body. The diffuser is mechanically rotated to the front portion of the side body and positioned to leave a length of the air gap of the lance. The signal generator is electrically coupled to the diffuser. 53 201107701 operationally, to provide the current to the target 'the diffuser is capable of being electrically coupled to the lance via ionization of air in the gap, capable of coupling to the target body tissue without ionization, and It can be coupled to the target body tissue with ionization. Tenth: A method is implemented by a deployment unit for providing a current through a target. This current hinders the autonomous movement of the target. The method comprises, in any practical order, (a) advancing one of the electrodes of the deployment unit toward the target; (b) positioning one of the diffusers and a lance of the electrode in or near the target body tissue; And (via the diffuser actuating a front portion of the lance to transmit the current. Tenth. The method is performed by a deployment unit for providing a current flow through the target. The current is blocking the Autonomous movement of the target. The method comprises in any practical order: (a) propelling one of the electrodes of the deployment unit toward the target to impact the target; (b) responsive to an impact force the lance of the electrode Positioning with a diffuser relative to the target body tissue; via the lance, the diffuser, the - air gap between the spear target body tissue, between the lance and the = according to the aforementioned positioning - a second air gap, in combination with any of the third air gap between the diffuser and the target body tissue - current flows through the target. corpse 2 - an electrode system provides - current flow - target delivery Refers to the current system that blocks the target Main electrode. The electrode system comprises a body. The system includes a front portion that is directed toward the target in the direction of the target. The fourth (4) is mechanically coupled to the body and the other side. P is extended forward. The insulated wire is used to lightly couple the electrode machine 54 201107701 to one of the sources of current. The local heating of the wire produces a deformation of the wire. The wire is mechanically coupled a handle to the body. One end portion of the wire is extended forward by the front portion of the body, and the insulating portion of the wire is an electric field of the current to provide a flute - the first gap and a The air of at least one of the second gaps is ionized. The first gap isolates the conductive portion of the wire from the target body tissue. The second gap isolates the conductive portion from the target body tissue. The air is ionized with a generation indicator that provides the current, including the deformation of the wire. The foregoing description is discussed in the present invention and can be changed or modified without the barrier as claimed in the present invention. A plurality of preferred embodiments of the scope defined in the scope of the disclosure. The plurality of example slots listed in the paragraphs can be used in an alternative or in any practical combination. When used in the specification and claims. The words "including", "package" and "having" are an open statement of the structure and/or function of the imported component. In the scope of the specification and the patent application, the word "a" is used to mean "one or more. The invention has been described with reference to a number of specific embodiments of the present invention, and the scope of the present invention is intended to be a trade-off of the scope of the claimed patents. BRIEF DESCRIPTION OF THE DRAWINGS The embodiments of the present invention are described with reference to the drawings, wherein like reference numerals represent like elements, and: FIG. 1A is a functional block diagram of an electronic weapon according to one of various aspects of the present invention; 55 201107701 FIG. 1B is FIG. 1A Figure 1C is an arrangement diagram of the electrode 160 of Figure 1B for the structure of the body tissue of the eye; Figure 1D Figure 2A is a side plan view of the implementation of the electronic weapon of Figures 1A and 1B; Figure 2B is a front view of the deployment unit of the electronic weapon of Figure 2A; Figure 1 is a perspective view of an embodiment of the electrode of Figure 1B; Figure 5 is a side view of the electrode of Figure 4; Figure 6 is a cross-sectional view of the electrode of Figure 5; 7 is a side view of a portion of the electrodes for defining various dimensional relationships in FIG. 4; FIG. 8 is a side view of a portion of the electrodes after supplying current; FIG. 9 is a side of a portion of the electrodes after providing additional current. a view; and a side view of an embodiment. Figure 10 is a diagram of another portion of the electrode. [Main component symbol description] 100 Electronic weapon 110 transmitting device 112 User control item 114 Processing circuit 116 Power supply 56 201107701 118 Signal generator 130 Deployment unit 132 - 134 Gun portion 140 Wire Reservoir 142 Electrode 144 Propellant (System) 150 Stimulation interface 152 Transmit signal 160 Electrode 161 Bonding structure 162 Mechanical coupling structure 163 Scattering structure 164 Target (body tissue) 165 Path 166 Filament 167 Echo path 170 - 180 Path 181 - 183 Gap 200 E-weapons 202 Hand-held launcher 230 Bullet 232, 234 Filament 236, 238 (wired tether) electrode 242 Housing 57 201107701 243 Cover 244, 245 Robbing 247 Contact point 248 Wedge 251, 252 Body 254, 255 lance 264 trigger 300 electrode 3 10 first conductive structure 320 second conductive structure 330 target body tissue 342 filament 352 gap / air gap / path 354 line / path 400 electrode 410 lance 412 Tip (conducting surface) 414 barb 415 Boundary 420 Rear section (conducting surface) 424 Front section (conducting surface) 430 Diffuser 440 Body 442 Front section 58 201107701 444 Rear section 450 Insulation 460 Conducting section 470 Filament 610 Rear section 702, 704 Central axis of symmetry/axis 706, 708, 710 Diameter 712-713 Length 714 Forward (distance) 716 Angle 718 Front actuation distance 720 Offset distance 721 Operating point 722 Spear actuation position (point) 723 Spear actuation position (point )/Recent point 1010 Spear 1018 Electrode 1020 First diffuser 1030 Second diffuser 1031 Shaft 1032 Tip 1040 Body 1042 Front portion 1044 Diameter 59 201107701
1048 1050 1054 Ιι - I3 GAP! Ri R2 - R VA 中央對稱軸 擴散器之長度 最小分離/氣隙(距離) 電流 -gap2 間隙 肌膚電阻 3 身體組織電阻 電壓 601048 1050 1054 Ιι - I3 GAP! Ri R2 - R VA Central axis of symmetry Length of diffuser Minimum separation / air gap (distance) Current -gap2 Clearance Skin resistance 3 Body tissue resistance Voltage 60
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22811509P | 2009-07-23 | 2009-07-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201107701A true TW201107701A (en) | 2011-03-01 |
TWI416061B TWI416061B (en) | 2013-11-21 |
Family
ID=44835363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99122597A TWI416061B (en) | 2009-07-23 | 2010-07-09 | Electronic weaponry with current spreading electrode |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI416061B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108917482A (en) * | 2018-07-04 | 2018-11-30 | 深圳民盾安全技术开发有限公司 | A kind of intelligent control low pressure triggering emitter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7042696B2 (en) * | 2003-10-07 | 2006-05-09 | Taser International, Inc. | Systems and methods using an electrified projectile |
US20060086032A1 (en) * | 2004-10-27 | 2006-04-27 | Joseph Valencic | Weapon and input device to record information |
US7314007B2 (en) * | 2005-02-18 | 2008-01-01 | Li Su | Apparatus and method for electrical immobilization weapon |
US7444939B2 (en) * | 2005-03-17 | 2008-11-04 | Defense Technology Corporation Of America | Ammunition for electrical discharge weapon |
US20070214993A1 (en) * | 2005-09-13 | 2007-09-20 | Milan Cerovic | Systems and methods for deploying electrodes for electronic weaponry |
-
2010
- 2010-07-09 TW TW99122597A patent/TWI416061B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108917482A (en) * | 2018-07-04 | 2018-11-30 | 深圳民盾安全技术开发有限公司 | A kind of intelligent control low pressure triggering emitter |
CN108917482B (en) * | 2018-07-04 | 2023-12-22 | 深圳民盾安全技术开发有限公司 | Intelligent control low-voltage trigger transmitting device |
Also Published As
Publication number | Publication date |
---|---|
TWI416061B (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5439596B2 (en) | Electronic weapon with current propagation electrode | |
US7520081B2 (en) | Electric immobilization weapon | |
US9173378B2 (en) | Electrodes for electronic weaponry and methods of manufacture | |
US8587918B2 (en) | Systems and methods for electrodes for insulative electronic weaponry | |
US8953297B2 (en) | Apparatus and methods for a wire-tethered electrode for an electronic weapon | |
KR102422068B1 (en) | Systems and methods for an electrode for a conducted electrical weapon | |
US9354026B2 (en) | Electrode for electronic weaponry that dissipates kinetic energy | |
JP4681580B2 (en) | Device for immobilizing a target and method for immobilizing a target | |
TWI364525B (en) | Systems and methods for indicating properties of a unit for deployment for electronic weaponry | |
US20150002981A1 (en) | Electronic Weaponry With Manifold For Electrode Launch Matching | |
TW202136705A (en) | Article penetrating electrode | |
US8320098B2 (en) | Electronic weaponry with manifold for electrode launch matching | |
TW201107701A (en) | Electronic weaponry with current spreading electrode | |
US20060067026A1 (en) | Stun gun | |
TWI825394B (en) | Method of deploying electrodes and conducted electrical weapon | |
WO2006134596A2 (en) | Method of transferring a stunning dose of energy | |
TW202421999A (en) | Training attachment for an electrode of a conducted electrical weapon |