TW201107382A - Optical film - Google Patents
Optical film Download PDFInfo
- Publication number
- TW201107382A TW201107382A TW099110591A TW99110591A TW201107382A TW 201107382 A TW201107382 A TW 201107382A TW 099110591 A TW099110591 A TW 099110591A TW 99110591 A TW99110591 A TW 99110591A TW 201107382 A TW201107382 A TW 201107382A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical film
- cellulose ester
- resin
- film
- mass
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- G02B1/105—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/08—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polarising Elements (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
201107382 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種光學薄膜,更 摻合特定之丙烯酸樹脂與纖維素酯樹 透明且高耐熱性,明顯改善脆性的光 【先前技術】 液晶顯示裝置係在液晶電視及個 等的用途方面,需求越來越大。通常 玻璃板挾著透明電極、液晶層、彩色 設置於其兩側之2片偏光板所構成,$ 光學薄膜(偏光板保護薄膜)挾著偏 、偏光薄膜)所構成。此偏光板保護 三乙酸酯薄膜。 此外,因近年技術進步,使液晶 ’同時液晶顯示裝置之用途也多樣化 在街頭或店舖之大型顯示器使用或被 看板(Digital Signage)之顯示機器 顯示器等。 這種用途係假設用於室外,因此 而有造成劣化的問題,偏光板保護薄 °但是以往使用的纖維素三乙酸酯薄 ’很難得到充分的耐濕性。爲了得到 而有光學上的影響變大的問題。近年 詳細爲有關一種藉由 脂,得到低吸濕性, 學薄膜。 人電腦之液晶顯不器 ,液晶顯示裝置係以 濾光片等的液晶胞與 &自的偏光板係以2片 光子(也稱爲偏光膜 薄膜通常使用纖維素 顯示裝置加速大型化 。例如可作爲被設置 用於使用被稱爲電子 之公共場所的廣告用 ,因偏光薄膜之吸濕 膜需要更高的耐濕性 膜等之纖維素酯薄膜 耐濕性而厚膜化時, ,因要求裝置之薄型 -5- 201107382 化’因此偏光板本身厚度增加也會有問題。 此外’作爲低吸濕性之光學薄膜材料之丙烯酸樹脂所 代表的聚甲基丙烯酸甲酯(以下簡稱爲「PMMA」)係除 了低濕性外,也顯示優異的透明性及尺寸安定性,因此適 用於光學薄膜。 但如上述,隨著液晶顯示裝置大型化,及屋外用途之 擴大,即使在屋外也要能充分辨識影像,因此必須增加背 光的光量,同時使用於更嚴苛條件下時,要求具有高溫下 之耐熱性及長期的耐熱性。 但是PMMA薄膜係因缺乏耐熱性,且高溫下使用、長 期的使用等時,會產生形狀改變的問題。 此問題不僅是薄膜單體的物性,而且使用這種薄膜的 偏光板、顯示裝置也是重要的課題。換言之》液晶顯示裝 置中,隨著薄膜的變形,偏光板會捲曲,因此產生面板整 體變形的問題。薄膜變形所造成的問題,在背光側有會有 問題,在辨識側表面位置使用時因變形而在設計上之相位 差會改變,因此會產生視角變動或色調變化的問題。 此外,丙烯酸樹脂薄膜相較於纖維素酯薄膜等時,有 較容易破裂或易脆的特性,操作使用較困難,特別是很難 穩定地製造大型液晶顯示裝置用的光學薄膜。 PMMA樹脂含有甲基丙烯酸甲酯單體的情形較多,但 是甲基丙烯酸甲酯單體因有過敏性,因此今日環保意識抬 頭,使用PMM A樹脂製作的薄膜含有大量甲基丙烯酸甲酯 單體時,較不理想。 -6- 201107382 對於上述問題,爲了改善耐濕性及耐熱性,而提案在 丙烯酸樹脂添加聚碳酸酯(以下簡稱爲「PC」)的方法, 但是可使用的溶劑受限制,樹脂彼此之相溶性不佳,因此 容易產生白濁’很難作爲光學薄膜使用(參照例如專利文 獻1 )。 改善耐熱性之其他的方法,例如有導入脂環式烷基作 爲丙烯酸樹脂之共聚合成分的方法或使分子內環化反應, 在分子主鏈形成環狀構造的方法等(參照例如專利文獻2 、3 )。 但是此等方法係改良耐熱性,但是薄膜之脆性不佳, 很難製造用於大型液晶顯示裝置的光學薄膜。此外,脆性 不佳時’光學薄膜會助長面板之變形,結果無法抑制相位 差變化,也會發生視角之變動、色調變化的問題。 改善耐濕性及耐熱性的技術,例如丙烯酸樹脂與耐衝 撃性丙烯酸橡膠-甲基丙烯酸甲酯共聚合物或丁基變性乙 醯基纖維素組合的樹脂(參照例如專利文獻4 )。 但是此方法也無法充分改善脆性,爲了製造用於大型 液晶顯示裝置的光學薄膜時,操作使用性不佳。此外,也 會因混合的成分產生霧度(haze、混濁度),需要更高對 比之屋外等使用時,會產生圖像之對比降低的問題。 此外,使用丙烯酸樹脂之光學薄膜也有使用熔融製膜 方法製造,但是熔融製膜方法會直接在薄膜中含有丙烯酸 樹脂中之甲基丙烯酸甲酯單體。而且爲使樹脂熔融時,必 需加熱至高溫,此熱使樹脂分解’反而可能造成甲基丙烯 201107382 酸甲酯單體増加。 對於以往的纖維素酯薄膜,爲了控制可塑劑或光學特 性,而提案混合丙烯酸樹脂的技術(參照例如專利文獻5 )° 但是此等目的並未添加可充分改善耐濕性的丙烯酸樹 脂,因此仍然無法得到充分的耐濕性,在高濕環境下,會 產生偏光板劣化或光學薄膜之光學値變化等的問題。]^ ,爲了提高耐濕性,而在纖維素酯樹脂中大量添加其他_ 脂時,透明性會降低,無法得到在高濕環境下,光學{直γ 會變化之已改善耐濕性的纖維素酯薄膜。 上述狀況下,隨著最近之液晶顯示裝置之用途擴犬;, 使用之光學薄膜之低吸濕性 '透明性、高耐熱性、脆彳生胃 的課題越來越明顯,需要再改善。 [先行技術文獻] [專利文獻] [專利文獻1]特開平5 -3 06344號公報 [專利文獻2]特開2〇〇2- 1 272 8號公報 [專利文獻3]特開2005-146084號公報 [專利文獻4]特開平5-1 192 17號公報 [專利文獻5]特開2〇〇3 - 1 2859號公報 【發明內容】 [發明槪要] [發明欲解決的課題] -8 - 201107382 本發明係有鑑於上述問題·狀況而完成者,該解決課 題係提供低吸濕性,透明、高耐熱性,明顯改善脆性的光 學薄膜。 特別是提供適合大型液晶顯示裝置、屋外用途之液晶 顯示裝置中之偏光板保護薄膜使用的光學薄膜。 [解決課題的手段] 本發明之上述課題可藉由以下手段來解決。 1. 一種光學薄膜,其係以溶液流延法製作的光學薄膜 ’其特徵係(i )以95 : 5〜3 0 : 70之質量比含有丙烯酸樹 脂(A )與纖維素酯樹脂(B ) ,(Π)相對於該光學薄膜 總質量,含有0.02〜0.15質量%之甲基丙烯酸甲酯單體,( ⑴)前述丙烯酸樹脂(A)之重量平均分子量爲80000以上 ’且相對於該丙烯酸樹脂(A )總質量,該丙烯酸樹脂( A)中之前述甲基丙烯酸甲酯單體之含量爲0.20〜1.00質量 % ’且(iv)前述纖維素酯樹脂(B)之醯基之總取代度爲 2·〇〜3.0,碳數3~7之範圍內之醯基的取代度爲1.2〜3.0,該 纖維素酯樹脂(Β)之重量平均分子量爲7 5 000以上。 2. 如前述第1項之光學薄膜,其中前述纖維素酯樹脂 (Β )之碳數爲3〜7之範圍外之醯基之取代度的總和爲1.3 以下。 3. 如前述第1或2項之光學薄膜,其中前述纖維素酯樹 脂(Β )之碳數爲3〜7之範圍內之醯基之取代度的總和爲 2·〇〇以上。 201107382 4. 如前述第1〜3項中任一項之光學薄膜,其中前述纖 維素酯樹脂(Β)之醯基的總取代度爲2.5~3.0。 5. 如前述第1〜4項中任一項之光學薄膜,其中前述丙 烯酸樹脂(Α)爲分子內含有甲基丙烯酸甲酯單位50~99質 量%。 6. 如前述第1〜5項中任一項之光學薄膜,其中前述丙 烯酸樹脂(Α)與纖維素酯樹脂(Β)之質量比爲95 : 5~50: 50之範圍內。 7. 如前述第1〜6項中任一項之光學薄膜,其中前述丙 烯酸樹脂(A )與纖維素酯樹脂(Β )之質量比爲80 : 20〜60: 40之範圍內。 8. 如前述第1〜7項中任一項之光學薄膜,其中前述丙 烯酸樹脂(A)之重量平均分子量爲80000〜1 000000之範圍 內。 9. 如前述第1〜8項中任一項之光學薄膜,其中前述丙 烯酸樹脂(A)之重量平均分子量爲1 00000~500000之範圍 內。 10. 如前述第1〜9項中任一項之光學薄膜,其中前述丙 烯酸樹脂(A)之重量平均分子量爲1 50000~400000之範圍 內。 11. 如前述第卜10項中任一項之光學薄膜,其中前述 纖維素酯樹脂(B)之重量平均分子量爲75000-3 00000之 範圍內。 12. 如前述第〗〜11項中任一項之光學薄膜,其中前述 -10- 201107382 纖維素酯樹脂(B)之重量平均分子量爲looooo〜240000之 範圍內。 13·如前述第1〜12項中任一項之光學薄膜,其中前述 光學薄膜爲相對於構成該光學薄膜之樹脂的總質量,含有 0.5〜30質量%之丙烯酸粒子(C)者。 M.如前述第1〜13項中任一項之光學薄膜,其中膜厚 爲2 0〜2 00 μιη之範圍內,可作爲偏光板保護薄膜使用者。 發明效果 藉由本發明之上述手段可提供低吸濕性,透明且高耐 熱性,明顯改善脆性之光學薄膜。 特別是可提供適合作爲大型液晶顯示裝置或電子看板 之液晶顯示裝置所用之偏光板保護薄膜使用的光學薄膜。 將本發明之光學薄膜用於偏光板之至少一面可得到降低視 角變動或色彩偏移的液晶顯示裝置。 產生本發明之效果的機構雖然仍未非常明確,以下係 關於該機構之解析。 以往,偏光板保護薄膜一般使用纖維素酯薄膜,然而 纖維素酯薄膜相較於丙烯酸薄膜,具有吸濕性較高的缺點 。但是纖維素酯樹脂中混合丙烯酸樹脂,欲改善吸濕性時 ,彼此不相溶,霧度上昇,很難作爲光學薄膜使用。特別 是分子量較大的丙烯酸樹脂對於纖維素酯樹脂不相溶,不 易藉由樹脂混合改善吸濕性。專利文獻5中記載將作爲可 塑劑之分子量較低的丙烯酸樹脂添加於纖維素酯樹脂中, -11 - 201107382 但因添加量較少無法改善吸濕性,此外添加分子量較小的 丙烯酸樹脂時,耐熱性降低,無法得到適合大型液晶顯示 裝置或屋外用途之液晶顯示裝置所用的光學薄膜的特性》 另外’丙烯酸樹脂薄膜具有缺乏耐熱性,在高溫下使 用、長期使用等時,形狀容易改變,脆性差的特性。專利 文獻1〜3雖揭示組合丙烯酸樹脂改善特性,但是無法得到 充分的光學薄膜的特性。專利文獻3係提案對於丙烯酸樹 脂’藉由混合纖維素酯樹脂,以改善耐熱性的技術,但是 分子量較高的纖維素酯樹脂與丙烯酸樹脂不相溶,因此添 加分子量較低的纖維素酯樹脂,結果無法充分改善脆性。 然而,本發明人等檢討的結果發現對於特定分子量之 丙烯酸樹脂時,具有特定取代度之纖維素酯樹脂顯示較高 的相溶性’令人訝異的是分子量較高的纖維素酯樹脂也不 會使霧度上昇,可相溶。 熔融製膜法係原料之丙烯酸樹脂所含有的甲基丙烯酸 甲酯單體’直接置入完成的薄膜中,而溶液製膜法係薄膜 中之甲基丙烯酸甲酯單體的含量比原料少。此乃是因爲溶 解有樹脂的溶劑中,甲基丙烯酸甲酯單體被萃取,在薄膜 之乾燥步驟被除去的緣故。 此外,對於丙烯酸樹脂摻合具有特定取代度的纖維素 酯樹脂,可再減少薄膜中之甲基丙烯酸甲酯單體的含量。 此乃是因爲摻合之具有特定取代度的纖維素酯樹脂具有增 加在丙烯酸樹脂中之溶劑等的擴散速度的效果的緣故。 在乾燥步驟’從薄膜中除去具有人體過敏性之甲基丙 -12- 201107382 烯酸甲酯單體,可提高薄膜之安全性、環境適性,但是在 特定之乾燥步驟的條件下,藉由除去甲基丙烯酸甲酯單體 可大幅提高薄膜之物性,特別是脆性。 更令人驚訝的是丙烯酸樹脂之比例非常多的薄膜時, 在特定之乾燥條件下,即使除去甲基丙烯酸甲酯單體也無 法提昇薄膜的物性,可知以特定比例摻合上述特定之丙烯 酸樹脂與纖維素酯樹脂時特有的效果。 結果發現以特定混合比的範圍摻合丙烯酸樹脂(A) 與纖維素酯樹脂(B),藉由相溶化,可改善丙烯酸樹脂 、纖維素酯樹脂各自的缺點,可得到低吸濕性,透明且高 耐候性,明顯改善脆性的光學薄膜,遂完成本發明。 [實施發明之形態] 本發明之光學薄膜,其係以溶液流延法製作的光學薄 膜,其特徵係(i )以95 : 5~30 : 70之質量比含有丙烯酸 樹脂(A)與纖維素酯樹脂(B) ,(ii)相對於該光學薄 膜總質量,含有0.02〜0.15質量%之甲基丙烯酸甲酯單體, (Hi)前述丙烯酸樹脂(A)之重量平均分子量爲80000以 上,且相對於該丙烯酸樹脂(A)總質量,該丙烯酸樹脂 (A)中之前述甲基丙烯酸甲酯單體之含量爲0.2〇〜1.00質 量。/。,且(W )前述纖維素酯樹脂(B )之醯基之總取代度 爲2.0〜3.0,碳數3〜7之範圍內之醯基的取代度爲1.2~3.0, 該纖維素酯樹脂(B)之重量平均分子量爲75 000以上。此 特徵係申請專利範圍第1〜1 4項的發明所共同之技術特徵。 -13- 201107382 以下詳細說明本發明與其構成要素及實施本發明的形 態·態樣。 [本發明之光學薄膜的槪要] 本發明之光學薄膜係以溶液流延法製作的光學薄膜, 其特徵係滿足以下要件(i )〜(iv )者。 (i )以95 : 5~3 0 : 70之質量比含有丙烯酸樹脂(A ) 與纖維素酯樹脂(B)、 (Π)相對於該光學薄膜總質量,含有0.02〜0.15質量 %之甲基丙烯酸甲酯單體、 (iii)前述丙烯酸樹脂(A)之重量平均分子量爲 8 0000以上,且相對於該丙烯酸樹脂(A)總質量,該丙烯 酸樹脂(A)中之前述甲基丙烯酸甲酯單體之含量爲 0.20〜1.00質量 %、 (iv )前述纖維素酯樹脂(B )之醯基之總取代度爲 2.0~3.0,碳數3~7之範圍內之醯基的取代度爲1.2-3.0,該 纖維素酯樹脂(B)之重量平均分子量爲7 5 000以上。 本發明之實施態樣從本發明之效果顯現的觀點,前述 纖維素酯樹脂(B)之碳數爲3〜7之範圍外之醯基之取代度 的總和較佳爲1 .3以下。該纖維素酯樹脂(B )之碳數爲 3〜7之範圍內之醯基之取代度的總和較佳爲2.00以上。該 纖維素酯樹脂(B)之醯基的總取代度較佳爲2.5~3.0。 本發明中,前述丙烯酸樹脂(A )較佳爲分子內含有 甲基丙嫌酸甲醋單位50〜99質量°〆。。 -14 - 201107382 前述丙烯酸樹脂(A)與纖維素酯樹脂(B)之質量比 較佳爲95 : 5〜50 ·· 50之範圍內,更佳爲80 : 20〜60 : 40之 範圍內。 於本發明中,前述丙烯酸樹脂(A)之重量平均分子 量較佳爲80000〜1000000之範圍內,更佳爲1 00000~500000 之範圍內,最佳爲1 50000〜400000之範圍內。 另外前述纖維素酯樹脂(B)之重量平均分子量較佳 爲75000〜300000之範圍內,更佳爲1 00000~240000之範圍 內。 本發明之光學薄膜較佳爲相對於構成該光學薄膜之樹 脂的總質量,含有0.5〜3 0質量%之丙烯酸粒子(C )的態樣 者。 本發明之光學薄膜的膜厚爲20〜200μιη之範圍內時,可 作爲偏光板保護薄膜使用者。 以下詳細說明構成要素等。 <丙烯酸樹脂(A ) > 本發明所使用的丙烯酸樹脂也包括甲基丙烯酸樹脂。 樹脂並無特別限制,但較佳爲由甲基丙烯酸甲酯單位 50〜99質量%,及可與此共聚合之其他單體單位^50質量% 所構成者。 可共聚合之其他單體例如有烷基之碳數爲2〜18的烷基 甲基丙烯酸酯、烷基之碳數爲1〜18之烷基丙烯酸酯、丙烯 酸、甲基丙烯酸等之α,β -不飽和酸、馬來酸、富馬酸、衣 -15- 201107382 康酸等之含有不飽和基的二元羧酸、苯乙烯、α -甲基苯乙 烯等之芳香族乙烯基化合物、丙烯腈、甲基丙烯腈等之α ,石-不飽和腈、馬來酸酐、馬來醯亞胺' 取代馬來醯亞 胺、戊二酸酐等,此等可單獨使用或倂用二種以上之單體 使用。 其中從共聚合物之耐熱分解性及流動性的觀點,較佳 爲甲基丙烯酸酯、乙基丙烯酸酯、η-丙基丙烯酸酯、η-丁 基丙烯酸酯、s-丁基丙烯酸酯、2-乙基己基丙烯酸酯等, 特佳爲使用甲基丙烯酸酯或η-丁基丙烯酸酯。 本發明之光學薄膜所使用的丙烯酸樹脂(Α)特別是 從改善光學薄膜之脆性及改善與纖維素酯樹脂(Β )相溶 時之透明性的觀點,重量平均分子量(Mw)爲80000以上 。丙烯酸樹脂(A)之重量平均分子量(Mw)爲800 00以 下時,無法充分改善脆性,與纖維素酯樹脂(B )之相溶 性差。丙烯酸樹脂(A)之重量平均分子量(Mw)更佳爲 80000〜1 000000之範圍內,特佳爲1 00000〜600000之範圍內 ,最佳爲150000〜4 00000之範圍。丙烯酸樹脂(A)之重量 平均分子量(Mw )的上限値無特別限定,但是從製造上 的觀點,1 000000以下爲較佳的形態。 本發明之丙烯酸樹脂的重量平均分子量可藉由凝膠滲 透色譜法測定。測定條件如下述。 溶劑:二氯甲烷 柱:Shodex K806、 K805、 K803G (昭和電工(股) 製連接3支使用) -16- 201107382201107382 VI. Description of the Invention: [Technical Field] The present invention relates to an optical film which is further blended with a specific acrylic resin and a cellulose ester tree which is transparent and has high heat resistance and significantly improves brittleness. [Prior Art] Liquid Crystal Display The demand for LCD TVs and other applications is increasing. Usually, the glass plate is composed of a transparent electrode, a liquid crystal layer, and two polarizing plates provided on both sides of the color, and an optical film (polarizing film protective film) is formed by a polarizing film or a polarizing film. This polarizer protects the triacetate film. In addition, due to technological advances in recent years, the use of liquid crystal display devices has also been diversified. It is used in large displays on the street or in stores, or as display devices for digital signage. This type of use is assumed to be used outdoors, and thus there is a problem of deterioration, and the polarizing plate is thin, but the cellulose triacetate used in the past is difficult to obtain sufficient moisture resistance. In order to obtain, there is a problem that the optical influence becomes large. In recent years, the film has been studied in detail for a low hygroscopicity obtained by using a lipid. A liquid crystal display device of a human computer, in which a liquid crystal cell such as a filter and a polarizing plate from a filter are used as two photons (also referred to as a polarizing film film, which is generally accelerated by a cellulose display device. For example, for example. It can be used as an advertisement for use in a public place called electronic, and a moisture-absorbing film of a polarizing film requires a higher moisture resistance of a cellulose ester film such as a moisture-resistant film to form a thick film. The device is required to be thin -5 - 201107382. Therefore, there is a problem that the thickness of the polarizing plate itself is increased. In addition, polymethyl methacrylate (hereinafter referred to as "PMMA" which is represented by an acrylic resin which is a low-absorption optical film material. In addition to its low-humidity properties, it also exhibits excellent transparency and dimensional stability, so it is suitable for optical films. However, as the liquid crystal display device is enlarged and the use of outdoor applications is expanded, it can be used even outside the house. Since the image is sufficiently recognized, it is necessary to increase the amount of light in the backlight, and when it is used under more severe conditions, it is required to have heat resistance at a high temperature and long-term heat resistance. The MMA film has a problem of shape change due to lack of heat resistance, high temperature use, long-term use, etc. This problem is not only the physical properties of the film monomer, but also the polarizing plate and display device using the film are important. In other words, in the liquid crystal display device, as the film is deformed, the polarizing plate is curled, which causes a problem of overall deformation of the panel. Problems caused by film deformation may cause problems on the backlight side, and when used at the identification side surface position The phase difference in design is changed by the deformation, and thus the problem of the change of the viewing angle or the change of the color tone occurs. Further, the acrylic resin film is more likely to be broken or brittle when compared with the cellulose ester film or the like, and is used in operation. It is difficult, especially it is difficult to stably manufacture optical films for large liquid crystal display devices. PMMA resins contain methyl methacrylate monomers in many cases, but methyl methacrylate monomers are allergic, so today's environmental protection Consciousness rises, when a film made of PMM A resin contains a large amount of methyl methacrylate monomer, it is ignored. -6- 201107382 In order to improve the moisture resistance and heat resistance, a method of adding polycarbonate (hereinafter referred to as "PC") to an acrylic resin has been proposed, but the solvent that can be used is limited, and the resins are in phase with each other. If the solubility is not good, it is likely to cause white turbidity. It is difficult to use it as an optical film (see, for example, Patent Document 1). Other methods for improving heat resistance include, for example, a method of introducing an alicyclic alkyl group as a copolymerization component of an acrylic resin or Intramolecular cyclization reaction, a method of forming a cyclic structure in a molecular main chain (see, for example, Patent Documents 2 and 3). However, these methods improve heat resistance, but the brittleness of a film is poor, and it is difficult to manufacture a large liquid crystal. The optical film of the display device. In addition, when the brittleness is not good, the optical film promotes the deformation of the panel, and as a result, the phase difference change cannot be suppressed, and the change in the viewing angle and the change in the color tone occur. A technique for improving moisture resistance and heat resistance, for example, a resin in which an acrylic resin is combined with a crepe-resistant acrylic rubber-methyl methacrylate copolymer or butyl-modified acetamino cellulose (see, for example, Patent Document 4). However, this method also fails to sufficiently improve the brittleness, and in order to manufacture an optical film for a large liquid crystal display device, the workability is not good. In addition, haze (haze) is generated by the mixed components, and when the use is higher than the outside of the house, the contrast of the image is lowered. Further, an optical film using an acrylic resin is also produced by a melt film forming method, but the melt film forming method directly contains a methyl methacrylate monomer in an acrylic resin in the film. Further, in order to melt the resin, it is necessary to heat to a high temperature, which causes the resin to decompose, which may cause the methyl methacrylate 201107382 methyl ester monomer to be added. In the conventional cellulose ester film, in order to control the plasticizer or optical characteristics, a technique of mixing an acrylic resin has been proposed (see, for example, Patent Document 5). However, such an object does not add an acrylic resin which can sufficiently improve moisture resistance, and therefore Insufficient moisture resistance is not obtained, and in a high-humidity environment, problems such as deterioration of a polarizing plate or change in optical enthalpy of an optical film occur. ]^ , in order to improve the moisture resistance, when a large amount of other _ lipid is added to the cellulose ester resin, the transparency is lowered, and the fiber which has improved the moisture resistance which is optically changed in a high-humidity environment cannot be obtained. Aliester film. Under the above circumstances, with the recent use of liquid crystal display devices for expanding dogs, the problem of low hygroscopicity of the optical film used, such as 'transparency, high heat resistance, and crispy stomach, is becoming more and more obvious, and needs to be improved. [PRIOR ART DOCUMENT] [Patent Document 1] JP-A-2005-146084 [Patent Document 2] JP-A-2005-146084 [Patent Document 4] Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. 201107382 The present invention has been made in view of the above problems and circumstances, and an object of the present invention is to provide an optical film which has low hygroscopicity, transparency, high heat resistance, and remarkably improved brittleness. In particular, an optical film for use in a polarizing plate protective film in a liquid crystal display device for a large liquid crystal display device or an outdoor use is provided. [Means for Solving the Problems] The above problems of the present invention can be solved by the following means. An optical film which is produced by a solution casting method, characterized in that (i) contains an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95:5 to 3:70:70. (Π) containing 0.02 to 0.15 mass% of a methyl methacrylate monomer relative to the total mass of the optical film, ((1)) the acrylic resin (A) has a weight average molecular weight of 80,000 or more' and relative to the acrylic resin (A) total mass, the content of the aforementioned methyl methacrylate monomer in the acrylic resin (A) is from 0.20 to 1.00% by mass' and (iv) the total degree of substitution of the thiol group of the aforementioned cellulose ester resin (B) The degree of substitution of the thiol group in the range of 2·〇 to 3.0 and the carbon number of 3 to 7 is 1.2 to 3.0, and the weight average molecular weight of the cellulose ester resin (yttrium) is 75,000 or more. 2. The optical film according to the above item 1, wherein the total of the degree of substitution of the thiol group having a carbon number of from 3 to 7 in the cellulose ester resin (?) is 1.3 or less. 3. The optical film according to item 1 or 2 above, wherein the total of the degree of substitution of the thiol group in the range of 3 to 7 in the cellulose ester resin (Β) is 2 〇〇 or more. The optical film according to any one of items 1 to 3, wherein the total substitution degree of the thiol group of the cellulose ester resin (Β) is 2.5 to 3.0. 5. The optical film according to any one of the above items 1 to 4, wherein the acryl resin (mole) comprises 50 to 99% by mass of a methyl methacrylate unit in the molecule. 6. The optical film according to any one of the above items 1 to 5, wherein the mass ratio of the acrylic resin (yttrium) resin to the cellulose ester resin (yttrium) is in the range of 95:5 to 50:50. The optical film according to any one of the above items 1 to 6, wherein the mass ratio of the acrylic resin (A) to the cellulose ester resin (Β) is in the range of 80:20 to 60:40. The optical film according to any one of items 1 to 7, wherein the acrylic resin (A) has a weight average molecular weight of from 80000 to 1,000,000. The optical film according to any one of the above items 1 to 8, wherein the acryl resin (A) has a weight average molecular weight of from 1,000 to 500,000. The optical film according to any one of items 1 to 9, wherein the acryl resin (A) has a weight average molecular weight of from 150,000 to 400,000. The optical film according to any one of the preceding claims, wherein the cellulose ester resin (B) has a weight average molecular weight of from 75,000 to 30,000. 12. The optical film according to any one of the preceding items, wherein the weight average molecular weight of the above-mentioned -10- 201107382 cellulose ester resin (B) is in the range of looooo~240000. The optical film according to any one of the above aspects, wherein the optical film contains 0.5 to 30% by mass of the acrylic particles (C) based on the total mass of the resin constituting the optical film. The optical film according to any one of the above items 1 to 13, wherein the film thickness is in the range of 20 to 200 μm, and can be used as a polarizing plate protective film user. EFFECT OF THE INVENTION According to the above-mentioned means of the present invention, it is possible to provide an optical film which is low in hygroscopicity, transparent and highly resistant to heat, and which remarkably improves brittleness. In particular, an optical film suitable for use as a polarizing plate protective film for a liquid crystal display device of a large liquid crystal display device or an electronic signboard can be provided. The optical film of the present invention is used for at least one side of a polarizing plate to obtain a liquid crystal display device which reduces viewing angle variation or color shift. Although the mechanism for producing the effects of the present invention is not yet very clear, the following is an analysis of the mechanism. Conventionally, a polarizing plate protective film generally uses a cellulose ester film. However, a cellulose ester film has a disadvantage of being more hygroscopic than an acrylic film. However, in the cellulose ester resin, the acrylic resin is mixed, and when it is desired to improve the hygroscopicity, it is incompatible with each other, and the haze is increased, so that it is difficult to use it as an optical film. In particular, an acrylic resin having a relatively large molecular weight is incompatible with a cellulose ester resin, and it is not easy to improve hygroscopicity by resin mixing. Patent Document 5 discloses that an acrylic resin having a relatively low molecular weight as a plasticizer is added to a cellulose ester resin, -11 - 201107382, but the amount of addition is small, the hygroscopic property cannot be improved, and when an acrylic resin having a small molecular weight is added, The heat resistance is lowered, and the characteristics of the optical film used for a large liquid crystal display device or a liquid crystal display device for outdoor use cannot be obtained. In addition, the 'acrylic resin film has a lack of heat resistance, and when it is used at a high temperature and used for a long period of time, the shape is easily changed, and the brittleness is easily obtained. Poor characteristics. Patent Documents 1 to 3 disclose that the combined acrylic resin improves the characteristics, but the characteristics of the sufficient optical film cannot be obtained. Patent Document 3 proposes a technique for improving heat resistance by mixing a cellulose ester resin with an acrylic resin, but a cellulose ester resin having a relatively high molecular weight is incompatible with an acrylic resin, and thus a cellulose ester resin having a relatively low molecular weight is added. As a result, the brittleness cannot be sufficiently improved. However, as a result of review by the inventors of the present invention, it has been found that a cellulose ester resin having a specific degree of substitution exhibits high compatibility with an acrylic resin having a specific molecular weight. It is surprising that a cellulose ester resin having a relatively high molecular weight is not Will increase the haze and be compatible. The methyl methacrylate monomer contained in the acrylic resin of the melt-forming film-forming raw material is directly placed in the completed film, and the content of the methyl methacrylate monomer in the solution-forming film is smaller than that of the raw material. This is because the methyl methacrylate monomer is extracted in the solvent in which the resin is dissolved, and is removed in the drying step of the film. Further, for the cellulose ester resin having a specific degree of substitution in the acrylic resin blend, the content of the methyl methacrylate monomer in the film can be further reduced. This is because the cellulose ester resin having a specific degree of substitution blended has an effect of increasing the diffusion rate of a solvent or the like in the acrylic resin. In the drying step, the methyl cyano-12-201107382 methyl enoate monomer having human allergies is removed from the film, which improves the safety and environmental suitability of the film, but is removed by the specific drying step. Methyl methacrylate monomer can greatly improve the physical properties of the film, especially brittleness. More surprisingly, when a film having a very large proportion of acrylic resin is used, under specific drying conditions, even if the methyl methacrylate monomer is removed, the physical properties of the film cannot be improved, and it is known that the specific acrylic resin is blended in a specific ratio. A unique effect with cellulose ester resins. As a result, it has been found that the acrylic resin (A) and the cellulose ester resin (B) are blended in a specific mixing ratio, and by dissolving, the respective disadvantages of the acrylic resin and the cellulose ester resin can be improved, and low hygroscopicity and transparency can be obtained. The optical film having high weather resistance and remarkably improving brittleness has completed the present invention. [Form of the Invention] The optical film of the present invention is an optical film produced by a solution casting method, and is characterized in that (i) contains an acrylic resin (A) and cellulose in a mass ratio of 95:5 to 30:70. The ester resin (B), (ii) contains 0.02 to 0.15% by mass of a methyl methacrylate monomer based on the total mass of the optical film, and (Hi) the acrylic resin (A) has a weight average molecular weight of 80,000 or more, and The content of the aforementioned methyl methacrylate monomer in the acrylic resin (A) is from 0.2 Å to 1.00 by mass based on the total mass of the acrylic resin (A). /. And (W) the total substitution degree of the thiol group of the cellulose ester resin (B) is 2.0 to 3.0, and the degree of substitution of the thiol group in the range of 3 to 7 carbon atoms is 1.2 to 3.0, the cellulose ester resin ( B) has a weight average molecular weight of 75,000 or more. This feature is a common technical feature of the inventions of claims 1 to 14. -13- 201107382 The present invention and its constituent elements and the embodiment of the present invention will be described in detail below. [Summary of Optical Film of the Present Invention] The optical film of the present invention is an optical film produced by a solution casting method, and is characterized by satisfying the following requirements (i) to (iv). (i) containing 0.02 to 0.15 mass% of methyl groups based on the total mass of the optical film containing the acrylic resin (A) and the cellulose ester resin (B) and (Π) in a mass ratio of 95:5 to 30:70 The methyl acrylate monomer, (iii) the acrylic resin (A) has a weight average molecular weight of 80,000 or more, and the aforementioned methyl methacrylate in the acrylic resin (A) with respect to the total mass of the acrylic resin (A) The content of the monomer is 0.20 to 1.00% by mass, (iv) the total substitution degree of the thiol group of the cellulose ester resin (B) is 2.0 to 3.0, and the degree of substitution of the thiol group in the range of 3 to 7 carbon atoms is 1.2. -3.0, the cellulose ester resin (B) has a weight average molecular weight of 75,000 or more. In the embodiment of the present invention, from the viewpoint of the effect of the present invention, the total of the degree of substitution of the fluorenyl group having a carbon number of from 3 to 7 in the cellulose ester resin (B) is preferably 1.3 or less. The sum of the degree of substitution of the mercapto group in the range of 3 to 7 in the cellulose ester resin (B) is preferably 2.00 or more. The total degree of substitution of the thiol group of the cellulose ester resin (B) is preferably from 2.5 to 3.0. In the present invention, the acrylic resin (A) preferably contains 50 to 99 mass% of methyl propyl ketone in the molecule. . -14 - 201107382 The mass ratio of the aforementioned acrylic resin (A) to the cellulose ester resin (B) is preferably in the range of 95:5 to 50 ··50, more preferably 80:20 to 60:40. In the present invention, the weight average molecular weight of the acrylic resin (A) is preferably in the range of from 80000 to 1,000,000, more preferably in the range of from 1,000 to 500,000, most preferably in the range of from 150,000 to 400,000. Further, the weight average molecular weight of the cellulose ester resin (B) is preferably in the range of from 75,000 to 300,000, more preferably in the range of from 1,000 to 20,000. The optical film of the present invention preferably contains 0.5 to 30% by mass of the acrylic particles (C) based on the total mass of the resin constituting the optical film. When the film thickness of the optical film of the present invention is in the range of 20 to 200 μm, it can be used as a user of the polarizing plate protective film. The constituent elements and the like will be described in detail below. <Acrylic Resin (A) > The acrylic resin used in the present invention also includes a methacrylic resin. The resin is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate unit and 50% by mass of other monomer units copolymerizable therewith. Other monomers copolymerizable include, for example, an alkyl methacrylate having an alkyl group having 2 to 18 carbon atoms, an alkyl group having an alkyl group having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, or the like. Β-unsaturated acid, maleic acid, fumaric acid, clothing -15- 201107382 An aromatic vinyl compound such as an unsaturated group-containing dicarboxylic acid, styrene or α-methylstyrene, α, stone-unsaturated nitrile, maleic anhydride, maleic imine, such as acrylonitrile and methacrylonitrile, substituted for maleimide, glutaric anhydride, etc., which may be used alone or in combination of two or more. The monomer is used. Among them, from the viewpoint of heat decomposition resistance and fluidity of the copolymer, methacrylate, ethyl acrylate, η-propyl acrylate, η-butyl acrylate, s-butyl acrylate, and 2 are preferable. Ethylhexyl acrylate or the like, particularly preferably methacrylate or η-butyl acrylate. The acrylic resin used in the optical film of the present invention has a weight average molecular weight (Mw) of 80,000 or more from the viewpoint of improving the brittleness of the optical film and improving the transparency when it is compatible with the cellulose ester resin (Β). When the weight average molecular weight (Mw) of the acrylic resin (A) is 800 Å or less, the brittleness cannot be sufficiently improved and the compatibility with the cellulose ester resin (B) is inferior. The weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 80000 to 1,000,000, particularly preferably in the range of 1,000 to 600,000, and most preferably in the range of 150,000 to 4,000,000. The weight of the acrylic resin (A) The upper limit of the average molecular weight (Mw) is not particularly limited, but from the viewpoint of production, 1,000,000 or less is a preferable form. The weight average molecular weight of the acrylic resin of the present invention can be determined by gel permeation chromatography. The measurement conditions are as follows. Solvent: Dichloromethane Column: Shodex K806, K805, K803G (Showa Electric (share) system connection 3) -16- 201107382
柱溫度:2 5 °C 試料濃度:〇. 1質量% 檢測器:RI Model 504 ( GL Science公司製) 幫浦:L6 000 (日立製作所(股)製) 流量:1 . Oml/min 校正曲線:使用標準聚苯乙烯STK standard聚苯乙 烯(東曹(股)製)Mw = 2,800,000〜500之13個試樣的校正 曲線。1 3個試樣以大致等間隔使用較佳。 本發明之丙烯酸樹脂中之甲基丙烯酸甲酯單體含量可 藉由氣體色譜質量分析計測定。測定條件如下述。 試料:將丙烯酸樹脂溶解於丙烯腈中,製作0.1 %之試 料溶液 試料量:ΙμΐColumn temperature: 2 5 °C Sample concentration: 〇. 1 mass% Detector: RI Model 504 (manufactured by GL Science) Pump: L6 000 (manufactured by Hitachi, Ltd.) Flow rate: 1. Oml/min Calibration curve: A calibration curve of 13 samples of standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 2,800,000 to 500 was used. It is preferred to use 13 samples at substantially equal intervals. The content of the methyl methacrylate monomer in the acrylic resin of the present invention can be determined by a gas chromatography mass spectrometer. The measurement conditions are as follows. Sample: Acrylic resin was dissolved in acrylonitrile to prepare a 0.1% sample solution. Sample amount: Ιμΐ
機器:HP 5890 系列 ΙΙ/ΗΡ5971 MSD 柱:GL Science製 InertCAP for amines ( 0.32mmidx 30m )Machine: HP 5890 Series ΙΙ/ΗΡ5971 MSD Column: GL Science InertCAP for amines ( 0.32mmidx 30m )
注入口 : 20CTC MSD : SIM m/z = 55,100Injection inlet : 20CTC MSD : SIM m/z = 55,100
OVEN : 60°C ( 4min) -^15 ( °C/min) -^120°C 製作之光學薄膜中之甲基丙烯酸甲酯單體的量也可以 同樣的方法測定。 本發明之丙烯酸樹脂(A )的製造方法並無特別限制 ,可使用懸浮聚合、乳化聚合、塊狀聚合或溶液聚合等公 知的任何一種方法。其中聚合起始劑可使用一般的過氧化 -17- 201107382 物系及偶氮系的聚合起始劑,也可使用氧化還原系。聚合 溫度若爲懸浮或乳化聚合可以30~ 100°C聚合,塊狀或溶液 聚合可以80〜160°C聚合。爲了控制所得之共聚合物的還原 黏度,也可以烷基硫醇等作爲連鏈轉移劑使用,進行聚合 〇 本發明之丙烯酸樹脂可使用市售品。例如有Delpet 60N、80N (旭化成化學(股)製)、Dianal BR52、BR80 、BR83、BR85、BR88 (三菱 R a y ο η (股)製)、ΚΤ75 ( 電化學工業(股)製)等。丙烯酸樹脂也可倂用二種以上 <纖維素酯樹脂(Β ) > 本發明之纖維素酯樹脂(Β ),特別是從改善脆性或 與丙烯酸樹脂(A )相溶時之透明性的觀點,較佳爲醯基 之總取代度(T)爲2.0〜3.0,碳數3 ~7之醯基的取代度爲 1 .2〜3.0,碳數3~7之醯基的取代度爲2.0〜3.0 換言之,本 發明之纖維素酯樹脂係被碳數3〜7之醯基取代的纖維素酯 樹脂,具體而言,較佳爲使用丙醯基、丁醯基等,特佳爲 使用丙醯基》 纖維素酯樹脂(B )之醯基的總取代度爲低於2.0時, 換言之,纖維素酯分子之2,3,6位之羥基殘度高於1.0時 ’丙烯酸樹脂(A)與纖維素酯樹脂(B)無法充分相溶, 作爲光學薄膜用時會有混濁的問題。此外,即使醯基之總 取代度爲2.0以上,但碳數3~7之醯基的取代度低於1 .2時, -18- 201107382 仍無法得到充分的相溶性,或脆性降低。例如即使醯基之 總取代度爲2.0以上,但碳數2之醯基,即乙醯基之取代度 較高,碳數3~7之醯基的取代度低於1.2時,相溶性會降低 ,混濁上升。又,即使醯基之總取代度爲2·0以上’但碳 數8以上之醯基的取代度較高,碳數3~7之醯基的取代度低 於1.2時,脆性變差而無法得到所希望的特性。 本發明之纖維素酯樹脂(Β )的醯基取代度係總取代 度(Τ)爲2.0~3.0,碳數爲3~7之醯基的取代度爲1.2〜3.0 時,不會有問題,但是碳數3〜7以外之醯基,即乙醯基及 碳數爲8以上之醯基的取代度總計較佳爲1.3以下。 又,纖維素酯樹脂(Β)之醯基的總取代度(Τ)更佳 爲2.5〜3.0的範圍。 本發明中,前述醯基可爲脂肪族醯基或芳香族醯基。 其爲脂肪族醯基時,可爲直鏈或支鏈,尙可具有取代基。 本發明之醯基的碳數係包含醯基之取代基者。 上述纖維素酯樹脂(Β)爲具有芳香族醯基作爲取代 基時,在芳香族環上取代之取代基X的數量較佳爲〇〜5個。 此時仍需留意使包含取代基之碳數爲3 ~7之醯基的取代度 成爲1.2-3.0。例如因爲苯醯基之碳數成爲7,因此具有含 碳之取代基時,苯醯基之碳數成爲8以上,而不含在碳數 爲3〜7的醯基內。 此外,在芳香族環上取代之取代基的數量爲2個以上 時,彼此可相同或相異,且可相互連結形成縮合多環化合 物(例如萘、茚、茚滿、菲、喹啉、異喹啉、色烯、色滿 -19 - 201107382 、酞嗪、吖啶、吲哚、吲哚滿等)^ 如上述之纖維素酯樹脂(B)係具有含有碳數3〜7之脂 肪族醯基之至少1種的構造’可作爲用於本發明之纖維素 樹脂的構造使用。 本發明之纖維素醋樹脂(B)的取代度係醯基之總取 代度(T )爲2.0〜3.0 ’碳數爲3-7之醯基的取代度爲 1 .2〜3 ·0。 另外’碳數爲3〜7之醯基以外,即乙醯基與碳數爲8以 上之醯基之取代度的總和爲1.3以下者爲較佳的構造。 本發明之纖維素酯樹脂(B)特佳爲選自纖維素乙酸 酯丙酸酯、纖維素乙酸酯丁酸酯、纖維素乙酸酯苯甲酸酯 、纖維素丙酸醋、纖維素丁酸醋中之至少一種,較佳爲具 有碳原子數3或4的醯基作爲取代基者。 此等中特佳的纖維素酯樹脂爲纖維素乙酸酯丙酸酯或 纖維素丙酸酯。 未被醯基取代之部分通常以羥基的形態存在。這些可 .以公知的方法合成。 又,乙醯基之取代度或其他之醯基的取代度可藉由 ASTM-D817-96所規定的方法得到。 本發明之纖維素酯樹脂的重量平均分子量(Mw ), 特別是從與丙烯酸樹脂(A )之相溶性、改善脆性的觀點 爲75000以上,較佳爲75000~300000的範圍,更佳爲 1 00000〜240000的範圍,特佳爲1 60000~240000者。纖維素 酯樹脂之重量平均分子量(Mw )低於7 5 000時,耐熱性及 -20- 201107382 脆性之改善效果不佳,無法得到本發明的效果。本發明可 混合使用二種以上的纖維素樹脂。 本發明之光學薄膜中,以95 : 5〜3 0 : 70之質量比,較 佳爲以95: 5〜50: 50,更佳爲以90: 10〜60: 40含有丙烯 酸樹脂(A )與纖維素酯樹脂(B )。 丙烯酸樹脂(A)與纖維素酯樹脂(B)之質量比爲95 :5,丙烯酸樹脂(A )變多時,無法充分得到纖維素酯樹 脂(B )的效果,同質量比爲3 0 : 70,丙烯酸樹脂變少時 ,耐濕性不佳。 本發明之光學薄膜係以相溶狀態含有丙烯酸樹脂(A )與纖維素酯樹脂(B )較佳。使不同的樹脂相溶、互補 可達成作爲光學薄膜所必要之物性或品質。 例如可藉由玻璃轉化溫度Tg來判斷丙烯酸樹脂(A ) 與纖維素酯樹脂(B )是否成爲相溶狀態。 例如兩者之樹脂的玻璃轉化溫度不同時,混合兩者的 樹脂時,因有各自樹脂之玻璃轉化溫度,因此混合物之玻 璃轉化溫度也有2個以上,但兩者之樹脂相溶時,各自樹 脂固有的玻璃轉化溫度消失,成爲1個玻璃轉化溫度,成 爲相溶後之樹脂的玻璃轉化溫度。 又’此處所謂的玻璃轉化溫度係指使用差示掃描熱量 測定器(Perkin E1 m er公司製D S C - 7型),以升溫速度 20°C/分鐘測定後,依JIS K7 1 2 1 ( 1 987 )得到的中間點玻 璃轉化溫度(Tmg) » 丙烯酸樹脂(A)與纖維素酯樹脂(B )各自爲非結晶 -21 - 201107382 性樹脂較佳,又,其中一方可爲結晶性高分子,或一部分 具有結晶性的高分子,但本發明之丙烯酸樹脂(A )與纖 維素酯樹脂(B )相溶,成爲非結晶性樹脂較佳。 本發明之光學薄膜中之丙烯酸樹脂(A)的重量平均 分子量(Mw)或纖維素酯樹脂(B)之重量平均分子量( Mw )或取代度係使用兩者之樹脂對於溶劑之溶解性的差 異,進行區分後,各自進行測定而得。區分樹脂時,藉由 添加相溶於僅溶解其中之一之溶劑中的樹脂,再萃取溶解 的樹脂來區分,此時可進行加熱操作或回流。可以2個步 驟以上組合此等溶劑之組合,來區分樹脂。將溶解後之樹 脂與以不溶物殘留的樹脂進行過濾,對於含有萃取物之溶 液可藉由使溶劑蒸發、乾燥的步驟以區分樹脂。此等區分 後的樹脂可藉由高分子之一般結構解析來限定。本發明之 光學薄膜含有丙烯酸樹脂(A)或纖維素酯樹脂以外 的樹脂時,也可以相同方法區分。 又’相溶後之樹脂的重量平均分子量(Mw)各自不 同時,可藉由凝膠滲透色譜法(GPC ),高分子量物先被 溶離,越低分子量物需經過越長時間後始被溶離,故容易 區分且可測定分子量。 又,藉由GPC測定相溶後樹脂之分子量,同時可分開 取得每段時間溶離後之樹脂溶液,餾除溶劑,經乾燥後的 樹脂以定量進行結構解析,檢出不同分子量之每一分區的 樹脂組成,可分別限定相溶之樹脂。又,將預先以對溶劑 之溶解性之差異分開取得的樹脂,各自以GPC測定分子_胃 -22- 201107382 分布,可各自檢出相溶的樹脂。 又’本發明中,「以相溶狀態含有丙烯酸樹脂(A ) 與纖維素酯樹脂(B )」係指混合各樹脂(聚合物),結 果成爲相溶的狀態,並不包含纖維素酯樹脂(B )中混合 單體、二聚物或低聚物等之丙烯酸樹脂的前驅物後,藉由 聚合而爲混合樹脂的狀態。 例如,在纖維素酯樹脂(B)中混合單體、二聚物或 低聚物等之丙烯酸樹脂的前驅物後,藉由聚合得到混合樹 脂的步驟係聚合反應複雜,且此方法所製作之樹脂,難以 控制反應,分子量調整也困難。又,以此種方法合成樹脂 時,大多會產生接枝聚合、交聯反應或環化反應,且常有 不溶解於溶劑的情形或無法藉由加熱熔融,因此很難將混 合樹脂中之丙烯酸樹脂予以溶離測定重量平均分子量( Mw ),故難以控制物性,無法作爲可安定製造光學薄膜 的樹脂使用。 本發明之光學薄膜在不損及光學薄膜的功能時,可由 含有丙烯酸樹脂(A )、纖維素酯樹脂(B )以外之樹脂及 添加劑所構成。 含有丙烯酸樹脂(A)、纖維素酯樹脂(B )以外的樹 脂時,所添加之樹脂可爲相溶狀態,或不溶解狀態下混合 〇 本發明之光學薄膜中之丙烯酸樹脂(A)與纖維素酯 樹脂(B )的總質量較佳爲光學薄膜之55質量%以上,更 佳爲60質量%以上,特佳爲70質量%以上。 -23- 201107382 使用丙烯酸樹脂(A)及纖維素酯樹脂(B)以外之樹 脂及添加劑時,在不損及本發明之光學薄膜功能的範圍內 調整添加量爲佳。 <丙烯酸粒子(C) > 本發明之光學薄膜較佳爲含有丙烯酸粒子。 本發明之丙烯酸粒子(C )係指於以相溶狀態含有前 述丙烯酸樹脂(A )及纖維素酯樹脂(B )之光學薄膜中, 以粒子狀態(也稱非相溶狀態)存在的丙烯酸成分。 上述丙烯酸粒子(C )係例如將製作之光學薄膜採取 所定量後,溶解於溶劑後進行攪拌,使充分溶解分散後, 使用具有未達丙烯酸粒子(C)之平均粒徑之孔徑的PTFE 製薄膜過濾器過濾,過濾捕集之不溶物的重量較佳爲添加 於光學薄膜之丙烯酸粒子(C)的90質量%以上。 本發明所使用的丙烯酸粒子(C )並無特別限制,較 佳爲具有2層以上之層構造之丙烯酸粒子(C),特佳爲下 述多層構造丙烯酸系粒狀複合物。 多層構造丙烯酸系粒狀複合物係指由中心部向外周部 ’具有最內硬質層聚合物、顯示橡膠彈性之交聯軟質層聚 合物及最外硬質層聚合物以層狀重疊所成之構造的粒子狀 丙烯酸聚合物。 換言之,多層構造丙烯酸系粒狀聚合物係指由中心部 朝向外周部’由最內硬質層、交聯軟質層及最外硬質層所 構成的多層構造丙烯酸系粒狀聚合物。較佳爲使用此3層 • 24 - 201107382 芯殼構造之多層構造丙烯酸系粒狀複合物。 本發明之丙烯酸系樹脂組成物所使用的多層構造丙烯 酸系粒狀複合物之較佳形態,例如有下述者。例如由(a )由甲基丙烯酸甲酯8 0〜9 8.9質量%、烷基之碳數爲1〜8的 烷基丙烯酸酯1~20質量%、及多官能性接枝劑0.01〜0.3質 量%所構成之單體混合物進行聚合而得的最內硬質層聚合 物;(b)在上述最內硬質層聚合物之存在下,由烷基之 碳數爲4〜8的烷基丙烯酸酯75〜98.5質量%、多官能性交聯 劑0.0 1 ~5質量%及多官能性接枝劑0.5〜5質量%所構成之單 體混合物進行聚合而得的交聯軟質層聚合物;(c )在上 述最內硬質層及交聯軟質層所構成的聚合物存在下,由甲 基丙烯酸甲酯8 0〜99質量%與烷基之碳數爲1〜8之烷基丙烯 酸酯1~20質量%所構成之單體混合物進行聚合而得的最外 硬層聚合物;所構成之具有3層構造,且所得的3層構造聚 合物爲最內硬質層聚合物(a) 5〜4 0質量%、軟質層聚合物 (b) 30〜60質量%及最外硬質層聚合物(c) 20〜50質量% 所構成,以丙酮區分時有不溶部分,該不溶部分之甲基乙 基酮膨潤度爲1.5〜4.0的丙烯酸系粒狀聚合物。 又如日本特公昭60-17406號公報或特公平3-39095號公 報所揭示,不僅規定多層構造丙烯酸系粒狀複合物之各層 的組成及粒徑,也將多層構造丙烯酸系粒狀複合物之拉伸 彈性率及丙酮不溶部分之甲基乙基酮膨潤度設定在特定範 圍內,藉此可實現更充分之耐衝擊性與耐應力白化性的平 衡0 -25- 201107382 構成多層構造丙烯酸系粒狀複合物之最內硬質層聚合 物(a)較佳爲由甲基丙烯酸甲酯80〜98.9質量%、烷基之 碳數爲1〜8的垸基丙嫌酸醋1~20質量%及多官能性接枝劑 0.01〜0.3質量%所構成之單體混合物進行聚合所得者。 院基之碳數爲1~8的院基丙稀酸醋,例如有甲基丙嫌 酸酯、乙基丙烯酸酯、η-丙基丙烯酸酯、n-丁基丙烯酸酯 、s-丁基丙烯酸酯、2-乙基己基丙烯酸酯等,較佳爲使用 甲基丙烯酸酯及η-丁基丙烯酸酯。 最內硬質層聚合物(a)中之烷基丙烯酸酯單位的比 例較佳爲1~20質量%。 多官能性接枝劑係具有不同之可聚合之官能基的多官 能性單體,例如丙烯酸、甲基丙烯酸、馬來酸、富馬酸之 烯丙酯等,較佳爲使用烯丙基甲基丙烯酸酯。多官能性接 枝劑係用於使最內硬質層聚合物與軟質層聚合物進行化學 性結合,因此,該最內硬質層聚合時所用的比例爲 0.0 1〜0.3質量%。 構成丙烯酸系粒狀複合物之交聯軟質層聚合物(b) 較佳爲在上述最內硬質層聚合物(a)之存在下,由烷基 之碳數爲1〜8的烷基丙烯酸酯75〜98.5質量% '多官能性交 聯劑0.0 1 ~5質量%及多官能性接枝劑0.5~5質量%所構成之 單體混合物進行聚合而得者。 其中烷基之碳數爲4~8的烷基丙烯酸酯,較佳爲使用 η-丁基丙烯酸酯及2-乙基己基丙烯酸酯。 又,此等聚合性單體也可與25質量%以下的可共聚合 -26- 201107382 之其他單官能性單體共聚合。 可共聚合之其他單官能性單體,例如有苯乙烯及取代 苯乙烯衍生物。烷基之碳數爲4〜8的烷基丙烯酸醋與苯乙 烯之比例係當前者越多時’聚合物(b )之玻璃轉化溫度 越低,即越能軟質化。 又從樹脂組成物之透明性的觀點,軟質層聚合物(b )之常溫下的折射率_越接近最內硬質層聚合物(a)、最 外硬質層聚合物(c)及硬質熱塑性丙烯酸樹脂越佳,考 慮這些後選定兩者的比例。 多官能性接枝劑可使用如前述最內硬質層聚合物(a )之項所列舉者。在此所用之多官能性接枝劑係用於使軟 質層聚合物(b)與最外硬質層聚合物(c)進行化學性結 合’該最內硬質層聚合時所使用的比例,從耐衝擊性賦予 效果的觀點,較佳爲0.5〜5質量%。 多官能性交聯劑可使用二乙烯基化合物、二烯丙基化 合物、二丙烯酸化合物、二甲基丙烯酸化合物等一般已知 的交聯劑,較佳爲使用聚乙二醇二丙烯酸酯(分子量 200-600 )。 此處使用之多官能性交聯劑係用於軟質層(b )聚合 時生成交聯構造,使具有耐衝擊性賦予的效果。但是先前 多官能接枝劑用於軟質層之聚合時,某程度上會生成軟質 層(b )之交聯構造’因此多官能性交聯劑非必須成份, 但從耐衝擊性賦予效果的觀點,多官能性交聯劑用於軟質 層聚合時的比例,較佳爲〇·〇1〜5質量%。 -27- 201107382 構成多層構造丙烯酸系粒狀複合物之最外硬質層聚合 物(c)較佳爲在上述最內硬質層聚合物(a)及軟質層聚 合物(b)之存在下,由甲基丙烯酸甲酯80〜99質量%及烷 基之碳數爲1~8的烷基丙烯酸酯卜20質量%所構成之單體混 合物進行聚合而得者。 其中烷基丙烯酸酯可使用前述者,較佳爲使用甲基丙 烯酸酯及乙基丙烯酸酯。最外硬質層(c)中之烷基丙烯 酸酯單位的比例較佳爲1〜20質量%。 又,最外硬質層(c)之聚合時,爲了提升與丙烯酸 樹脂(A )之相溶性,爲了調節分子量,可將烷基硫醇等 作爲鏈轉移劑使用進行聚合。 特別是最外硬質層上設置分子量由內側朝外側逐次減 少的斜度,可改良延伸與耐衝擊性之平衡性,故較佳。具 體的方法係將形成最外硬質層用之單體混合物分割爲2個 以上,依序增加每次添加之鏈轉移劑量的方法,可使形成 最外硬質層之聚合物的分子量,由多層構造丙烯酸系粒狀 複合物之內側朝外側減少。 此時所形成的分子量可藉由測定將每次使用之單體混 合物各自單獨在相同條件聚合所得之聚合物的分子量而得 知。 本發明較適合使用的丙烯酸粒子(C)之粒徑並無特 別限定,較佳爲l〇nm〜lOOOnm,更佳爲20nm~500nm,最 佳爲 50nm〜400nm。 本發明較適合使用之多層構造聚合物的丙烯酸系粒狀 -28- 201107382 複合物中,芯與殼之質量比並無特別限定,但是多層構造 聚合物全體爲100質量份時,芯層較佳爲50~90質量份,更 佳爲60〜8 0質量份。此芯層係指最內硬質層。 這種多層構造丙烯酸系粒狀複合物之市售品,例如有 三菱Rayon公司製“metablen”、鐘淵化學工業公司製 “kanes”、吳羽化學工業公司製 “Paraloid”、Rohm and Haas 公司製“Acryloid”、ganz化成工業公司製“staphiloid”及 kuraray公司製“parapet SA”等,此等可單獨使用或使用2種 以上》 又,本發明較適合使用之丙烯酸粒子(C),較適用 之接枝共聚合之丙烯酸粒子(C)的具體例有在橡膠質聚 合物之存在下,由不飽和羧酸酯系單體、不飽和羧酸系單 體' 芳香族乙烯基系單體,及必要時可與此等共聚合之其 他乙烯基系單體所構成之單體混合物進行共聚而得的接枝 共聚物。 接枝共聚物之丙烯酸粒子(C)所使用的橡膠質聚合 物並無特別限制,可使用二烯系橡膠、丙烯酸系橡膠及乙 烯系橡膠等。具體例有聚丁二烯、苯乙烯-丁二烯共聚物 、苯乙烯-丁二烯之嵌段共聚物、丙烯腈-丁二烯共聚物、 丙烯酸丁酯-丁二烯共聚物、聚異戊二烯、丁二烯-甲基丙 嫌酸甲酯共聚物 '丙烯酸丁酯-甲基丙烯酸甲酯共聚物、 丁二烯-丙烯酸乙酯共聚物、乙烯-丙烯共聚物、乙烯-丙 嫌·二烯系共聚物、乙烯-異戊二烯共聚物、及乙烯-丙烯酸 甲酯共聚物等。此等橡膠質聚合物可使用1種或2種以上的 -29- 201107382 混合物。 又,本發明之光學薄膜中添加丙烯酸粒子(C)時, 從可得到透明性較高之薄膜的觀點,丙烯酸樹脂(A)與 纖維素酯樹脂(B)之混合物的折射率與丙烯酸粒子(C) 之折射率接近較佳。具體而言,丙烯酸粒子(C)與丙烯 酸樹脂(A )之折射率差較佳爲0.05以下,更佳爲0.02以 下,特佳爲〇 . 〇 1以下。 爲了滿足這種折射率條件時,可藉由調整丙烯酸樹脂 (A )之各單體單位組成比的方法,及/或調整丙烯酸粒子 (C )所使用的橡膠質聚合物或單體之組成比的方法等, 縮小折射率差,可得到透明性優異的光學薄膜。 此處所謂的折射率差係指在丙烯酸樹脂(A )可溶的 溶劑中,以適當條件將本發明之光學薄膜充分溶解形成白 濁溶液後,藉由離心分離等操作,分離成溶劑可溶部分與 不溶部分,此可溶部分(丙烯酸樹脂(A))與不溶部分 (丙烯酸粒子(C ))分別純化後,顯示測得的折射率( 23°C、測定波長:55 0iim)之差。 本發明中,丙烯酸樹脂(A)中調配丙烯酸粒子(C) 的方法並無特別限定,較佳爲使用預先摻合丙烯酸樹脂( A )與其他任意成份後,一般於2 0 0〜3 5 0 °C下添加丙烯酸粒 子(C),同時藉由單軸或雙軸擠壓機進行均勻熔融混練 的方法。 此外’可使用將預先分散有丙烯酸粒子(C)的溶液 添加於溶解有丙烯酸樹脂(A )及纖維素酯樹脂(b )的溶 -30- 201107382 液(膠漿液)進行混合的方法或將丙烯酸粒子(C)及其 他任意之添加劑溶解、混合後的溶液進行連線(i n丨i n e) 添加等的方法。 本發明之丙烯酸粒子可使用市售品。例如有metablenOVEN : 60 ° C ( 4 min ) -^15 ( ° C / min ) - ^ 120 ° C The amount of methyl methacrylate monomer in the optical film can also be measured in the same manner. The method for producing the acrylic resin (A) of the present invention is not particularly limited, and any of known methods such as suspension polymerization, emulsion polymerization, bulk polymerization or solution polymerization can be used. As the polymerization initiator, a general peroxidation -17-201107382 system and an azo-based polymerization initiator may be used, and a redox system may also be used. The polymerization temperature may be 30 to 100 ° C for suspension or emulsion polymerization, and the polymerization may be carried out at 80 to 160 ° C in bulk or solution polymerization. In order to control the reducing viscosity of the obtained copolymer, an alkylthiol or the like may be used as a chain transfer agent to carry out polymerization. Commercially available acrylic resins of the present invention can be used. For example, there are Delpet 60N, 80N (made by Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (manufactured by Mitsubishi R a y ο η), and ΚΤ75 (manufactured by Electrochemical Industry Co., Ltd.). The acrylic resin may also be used in two or more kinds; cellulose ester resin (Β) > cellulose ester resin (Β) of the present invention, particularly from the viewpoint of improving brittleness or transparency when compatible with acrylic resin (A) Preferably, the total degree of substitution (T) of the fluorenyl group is 2.0 to 3.0, the degree of substitution of the fluorenyl group having a carbon number of 3 to 7 is 1.2 to 3.0, and the degree of substitution of the fluorenyl group having 3 to 7 carbon atoms is 2.0. ~3.0 In other words, the cellulose ester resin of the present invention is a cellulose ester resin substituted with a fluorenyl group having 3 to 7 carbon atoms. Specifically, a propyl fluorenyl group, a butyl fluorenyl group or the like is preferably used, and a propyl fluorenyl group is particularly preferably used. 》 The total substitution degree of the thiol group of the cellulose ester resin (B) is less than 2.0, in other words, the hydroxy residue of the 2, 3, and 6 positions of the cellulose ester molecule is higher than 1.0 'acrylic resin (A) and fiber The ester resin (B) is not sufficiently compatible, and there is a problem that it is turbid when used as an optical film. Further, even if the total substitution degree of the fluorenyl group is 2.0 or more, when the degree of substitution of the fluorenyl group having 3 to 7 carbon atoms is less than 1.2, -18 to 201107382 cannot obtain sufficient compatibility or the brittleness is lowered. For example, even if the total substitution degree of the fluorenyl group is 2.0 or more, the substitution ratio of the fluorenyl group having 2 carbon atoms, that is, the thiol group is higher, and the degree of substitution of the fluorenyl group having 3 to 7 carbon atoms is less than 1.2, the compatibility is lowered. The turbidity rises. Further, even if the total substitution degree of the fluorenyl group is 2·0 or more, the degree of substitution of the fluorenyl group having a carbon number of 8 or more is high, and when the degree of substitution of the fluorenyl group having 3 to 7 carbon atoms is less than 1.2, the brittleness is deteriorated and cannot be obtained. Get the desired characteristics. The cellulose ester resin (Β) of the present invention has a thiol substitution degree of 2.0 to 3.0, and a substitution degree of a ruthenium group having a carbon number of 3 to 7 of 1.2 to 3.0 is not problematic. However, the degree of substitution of the fluorenyl group having 3 to 7 carbon atoms, that is, an oxime group and a fluorenyl group having 8 or more carbon atoms is preferably 1.3 or less in total. Further, the total degree of substitution (Τ) of the thiol group of the cellulose ester resin (Β) is more preferably in the range of 2.5 to 3.0. In the present invention, the above mercapto group may be an aliphatic mercapto group or an aromatic mercapto group. When it is an aliphatic fluorenyl group, it may be a straight chain or a branched chain, and hydrazine may have a substituent. The carbon number of the fluorenyl group of the present invention is a substituent containing a fluorenyl group. When the cellulose ester resin (fluorene) has an aromatic fluorenyl group as a substituent, the number of substituents X substituted on the aromatic ring is preferably from 〇 to 5. At this time, it is necessary to note that the degree of substitution of the fluorenyl group having a carbon number of 3 to 7 containing a substituent becomes 1.2 to 3.0. For example, since the phenylhydrazine group has a carbon number of 7, the carbon number of the phenylhydrazine group is 8 or more and is not contained in the fluorenyl group having 3 to 7 carbon atoms. Further, when the number of the substituents substituted on the aromatic ring is two or more, they may be the same or different from each other, and may be bonded to each other to form a condensed polycyclic compound (for example, naphthalene, anthracene, indane, phenanthrene, quinoline, or different). Quinoline, chromene, color -19 - 201107382, pyridazine, acridine, anthracene, anthracene, etc.) ^ The cellulose ester resin (B) as described above has an aliphatic hydrazine having a carbon number of 3 to 7. At least one of the structures ' can be used as the structure of the cellulose resin used in the present invention. The degree of substitution (T) of the degree of substitution of the cellulose vinegar resin (B) of the present invention is 2.0 to 3.0. The degree of substitution of the fluorenyl group having 3 to 7 carbon atoms is 1.2 to 3 · 0. Further, a combination of the sulfhydryl group having 3 to 7 carbon atoms, i.e., the total substitution degree of the fluorenyl group and the fluorenyl group having a carbon number of 8 or more is preferably 1.3 or less. The cellulose ester resin (B) of the present invention is particularly preferably selected from the group consisting of cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and fiber. At least one of the succinic acid vinegars preferably has a fluorenyl group having 3 or 4 carbon atoms as a substituent. Particularly preferred cellulose ester resins are cellulose acetate propionate or cellulose propionate. The moiety that is not substituted by a thiol group usually exists in the form of a hydroxyl group. These can be synthesized by a known method. Further, the degree of substitution of the thiol group or the degree of substitution of other thiol groups can be obtained by the method specified in ASTM-D817-96. The weight average molecular weight (Mw) of the cellulose ester resin of the present invention is, in particular, from the viewpoint of compatibility with the acrylic resin (A) and improvement of brittleness, in the range of 75,000 or more, preferably 75,000 to 300,000, more preferably 100,000. ~240000 range, especially good for 1 60000~240000. When the weight average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the heat resistance and the improvement effect of the brittleness of -20 to 201107382 are not good, and the effects of the present invention cannot be obtained. In the present invention, two or more kinds of cellulose resins may be used in combination. In the optical film of the present invention, the acrylic resin (A) is contained in a mass ratio of 95:5 to 3:70, preferably 95:5 to 50:50, more preferably 90:10 to 60:40. Cellulose ester resin (B). When the mass ratio of the acrylic resin (A) to the cellulose ester resin (B) is 95:5, when the acrylic resin (A) is increased, the effect of the cellulose ester resin (B) cannot be sufficiently obtained, and the mass ratio is 30: 70. When the acrylic resin is reduced, the moisture resistance is not good. The optical film of the present invention preferably contains the acrylic resin (A) and the cellulose ester resin (B) in a compatible state. The compatibility and complementarity of different resins can achieve the physical properties or qualities necessary for the optical film. For example, whether or not the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by the glass transition temperature Tg. For example, when the glass transition temperatures of the resins of the two are different, when the resins of the two are mixed, the glass transition temperature of the respective resins is also present, so that the glass transition temperature of the mixture is also two or more. However, when the resins of the two are compatible, the respective resins are used. The intrinsic glass transition temperature disappears and becomes one glass transition temperature, which becomes the glass transition temperature of the resin after the compatibility. In addition, the term "glass transition temperature" as used herein refers to the use of a differential scanning calorimeter (DSC-7 type manufactured by Perkin E1Mer), and is measured at a temperature increase rate of 20 ° C / min, according to JIS K7 1 2 1 (1). 987) Intermediate point glass transition temperature (Tmg) obtained » Acrylic resin (A) and cellulose ester resin (B) are each amorphous-21 - 201107382 resin is preferable, and one of them may be a crystalline polymer. Or a part of a polymer having crystallinity, but the acrylic resin (A) of the present invention is compatible with the cellulose ester resin (B), and is preferably an amorphous resin. The weight average molecular weight (Mw) of the acrylic resin (A) in the optical film of the present invention or the weight average molecular weight (Mw) or degree of substitution of the cellulose ester resin (B) is the difference in solubility of the resin using the two resins. After the distinction is made, each is measured. When the resin is distinguished, it is distinguished by adding a resin in which the phase is dissolved in a solvent which dissolves only one of them, and then extracting the dissolved resin, and at this time, heating operation or reflux can be performed. The combination of these solvents can be combined in two steps to distinguish the resins. The dissolved resin is filtered with a resin remaining as an insoluble matter, and the solution containing the extract can be distinguished from the resin by a step of evaporating and drying the solvent. These differentiated resins can be defined by general structural analysis of the polymer. When the optical film of the present invention contains a resin other than the acrylic resin (A) or the cellulose ester resin, it can be distinguished by the same method. Further, when the weight average molecular weight (Mw) of the resin after the dissolving is different, the high molecular weight substance can be first dissolved by gel permeation chromatography (GPC), and the lower the molecular weight is, the longer it takes to be dissolved. Therefore, it is easy to distinguish and the molecular weight can be measured. Further, the molecular weight of the resin after the dissolution is measured by GPC, and the resin solution after each period of time is separately obtained, the solvent is distilled off, and the dried resin is quantitatively analyzed for structure, and each partition of different molecular weight is detected. The resin composition can respectively define a compatible resin. Further, the resin which was separately obtained in advance by the difference in the solubility of the solvent was each measured by GPC to measure the molecular distribution of the molecule - stomach-22-201107382, and each of the resins was detected. In the present invention, the "containing the acrylic resin (A) and the cellulose ester resin (B) in a compatible state means that the respective resins (polymers) are mixed, and as a result, they are in a compatible state, and do not contain the cellulose ester resin. (B) A precursor of an acrylic resin such as a monomer, a dimer or an oligomer is mixed, and then the state of the resin is mixed by polymerization. For example, after mixing a precursor of an acrylic resin such as a monomer, a dimer or an oligomer in the cellulose ester resin (B), the step of obtaining a mixed resin by polymerization is complicated in polymerization, and the method is produced. Resin, it is difficult to control the reaction, and molecular weight adjustment is also difficult. Moreover, when a resin is synthesized by such a method, a graft polymerization, a crosslinking reaction, or a cyclization reaction often occurs, and it is often insoluble in a solvent or melted by heating, so that it is difficult to mix acrylic acid in a resin. Since the resin is dissolved and the weight average molecular weight (Mw) is measured, it is difficult to control the physical properties, and it cannot be used as a resin capable of stably producing an optical film. The optical film of the present invention may be composed of a resin other than the acrylic resin (A) or the cellulose ester resin (B) and an additive, without impairing the function of the optical film. When a resin other than the acrylic resin (A) or the cellulose ester resin (B) is contained, the added resin may be in a compatible state, or the acrylic resin (A) and the fiber in the optical film of the present invention may be mixed in an insoluble state. The total mass of the ester resin (B) is preferably 55 mass% or more, more preferably 60 mass% or more, and particularly preferably 70 mass% or more. -23- 201107382 When a resin other than the acrylic resin (A) and the cellulose ester resin (B) and an additive are used, it is preferred to adjust the amount of addition within a range that does not impair the function of the optical film of the present invention. <Acrylic Particles (C) > The optical film of the present invention preferably contains acrylic particles. The acrylic particles (C) of the present invention are acrylic components which are present in a particle state (also referred to as an incompatible state) in an optical film containing the acrylic resin (A) and the cellulose ester resin (B) in a compatible state. . The acrylic particles (C) are, for example, obtained by dissolving the optical film produced in a predetermined amount, dissolved in a solvent, and then sufficiently dissolved and dispersed, and then using a PTFE film having a pore diameter which does not reach the average particle diameter of the acrylic particles (C). The weight of the insoluble matter collected by the filter filtration and filtration is preferably 90% by mass or more of the acrylic particles (C) added to the optical film. The acrylic particles (C) used in the present invention are not particularly limited, and are preferably acrylic particles (C) having a layer structure of two or more layers, particularly preferably a multilayered structural acrylic granular composite. The multilayer structure acrylic granular composite refers to a structure in which the innermost portion of the central portion has the innermost hard layer polymer, the crosslinked soft layer polymer exhibiting rubber elasticity, and the outermost hard layer polymer are layered. A particulate acrylic polymer. In other words, the multilayer structure acrylic particulate polymer refers to a multilayer structure acrylic particulate polymer composed of an innermost hard layer, a crosslinked soft layer, and an outermost hard layer from the center portion toward the outer peripheral portion. It is preferable to use this three layers. • 24 - 201107382 The multilayer structure of the core-shell structure is composed of an acrylic granular composite. A preferred embodiment of the multilayer structure acrylic-based particulate composite used in the acrylic resin composition of the present invention is, for example, the following. For example, (a) an alkyl acrylate having a methyl methacrylate of 80 to 98.9 % by mass, an alkyl group having a carbon number of 1 to 8 of 1 to 20% by mass, and a polyfunctional grafting agent of 0.01 to 0.3 mass The innermost hard layer polymer obtained by polymerizing a monomer mixture composed of %; (b) an alkyl acrylate 75 having an alkyl group having a carbon number of 4 to 8 in the presence of the innermost hard layer polymer a crosslinked soft layer polymer obtained by polymerizing a monomer mixture of ~8.95% by mass, a polyfunctional crosslinking agent of 0.01 to 5% by mass, and a polyfunctional grafting agent of 0.5 to 5% by mass; (c) In the presence of the polymer composed of the innermost hard layer and the crosslinked soft layer, the alkyl acrylate having a carbon number of 80 to 99% by mass and the alkyl group having a carbon number of 1 to 8 is 1 to 20% by mass. The outermost hard layer polymer obtained by polymerizing the monomer mixture formed; having a three-layer structure, and the obtained three-layer structure polymer is the innermost hard layer polymer (a) 5 to 40% by mass , soft layer polymer (b) 30~60% by mass and outermost hard layer polymer (c) 20~50% by mass, composed of C The ketone is divided into an insoluble portion, and the insoluble portion has an ethylenic granulated polymer having a methyl ethyl ketone swelling degree of 1.5 to 4.0. Further, as disclosed in Japanese Patent Publication No. Sho 60-17406 or Japanese Patent Publication No. Hei No. 3-39095, the composition and particle diameter of each layer of the multilayered acrylic particulate composite are specified, and the multilayered structural acrylic composite is also used. The tensile modulus and the methyl ethyl ketone swelling degree of the acetone-insoluble portion are set within a specific range, thereby achieving a balance of more sufficient impact resistance and stress whitening resistance. 0 - 25 - 201107382 constituting a multilayer structure acrylic granule The innermost hard layer polymer (a) of the composite is preferably from 1 to 20% by mass of methyl methacrylate 80 to 98.9 mass%, and the carbon number of the alkyl group is from 1 to 8 The monomer mixture composed of 0.01 to 0.3% by mass of the polyfunctional grafting agent is obtained by polymerization. A yard-based acrylic acid vinegar having a carbon number of 1-8, such as methyl propyl acrylate, ethacrylate, η-propyl acrylate, n-butyl acrylate, s-butyl acrylate As the ester, 2-ethylhexyl acrylate or the like, methacrylate and η-butyl acrylate are preferably used. The ratio of the alkyl acrylate unit in the innermost hard layer polymer (a) is preferably from 1 to 20% by mass. The polyfunctional grafting agent is a polyfunctional monomer having different polymerizable functional groups, such as acrylic acid, methacrylic acid, maleic acid, allyl fumarate, etc., preferably using allyl group. Acrylate. The polyfunctional grafting agent is used for chemically bonding the innermost hard layer polymer to the soft layer polymer. Therefore, the ratio of the innermost hard layer to be polymerized is from 0.01 to 0.3% by mass. The crosslinked soft layer polymer (b) constituting the acrylic granular composite is preferably an alkyl acrylate having an alkyl group having a carbon number of 1 to 8 in the presence of the innermost hard layer polymer (a). From 75 to 98.5 mass%, a monomer mixture composed of a polyfunctional crosslinking agent of 0.01 to 5% by mass and a polyfunctional grafting agent of 0.5 to 5% by mass is polymerized. The alkyl acrylate having an alkyl group having 4 to 8 carbon atoms is preferably η-butyl acrylate and 2-ethylhexyl acrylate. Further, these polymerizable monomers may be copolymerized with 25% by mass or less of other monofunctional monomers copolymerizable -26-201107382. Other monofunctional monomers which can be copolymerized are, for example, styrene and substituted styrene derivatives. When the ratio of the alkyl acrylate to the styrene having a carbon number of 4 to 8 is more than the current one, the lower the glass transition temperature of the polymer (b), the softer it is. Further, from the viewpoint of the transparency of the resin composition, the refractive index _ at room temperature of the soft layer polymer (b) is closer to the innermost hard layer polymer (a), the outermost hard layer polymer (c), and the hard thermoplastic acrylic acid. The better the resin, consider the ratio of the two selected. As the polyfunctional grafting agent, those enumerated as mentioned in the above-mentioned innermost hard layer polymer (a) can be used. The polyfunctional grafting agent used herein is for chemically bonding the soft layer polymer (b) to the outermost hard layer polymer (c). The ratio used in the polymerization of the innermost hard layer is resistant. The viewpoint of the impact imparting effect is preferably 0.5 to 5% by mass. As the polyfunctional crosslinking agent, a generally known crosslinking agent such as a divinyl compound, a diallyl compound, a diacrylic compound or a dimethacrylic compound can be used, and polyethylene glycol diacrylate (molecular weight 200) is preferably used. -600). The polyfunctional crosslinking agent used herein is used to form a crosslinked structure when the soft layer (b) is polymerized, and has an effect of imparting impact resistance. However, when the conventional polyfunctional grafting agent is used for the polymerization of the soft layer, the crosslinked structure of the soft layer (b) is formed to some extent, so that the polyfunctional crosslinking agent is not an essential component, but from the viewpoint of imparting impact resistance, The ratio of the polyfunctional crosslinking agent used in the polymerization of the soft layer is preferably from 1 to 5 mass%. -27- 201107382 The outermost hard layer polymer (c) constituting the multilayer structure acrylic granular composite is preferably in the presence of the innermost hard layer polymer (a) and the soft layer polymer (b) A monomer mixture composed of 80 to 99% by mass of methyl methacrylate and 20% by mass of an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms is polymerized. Among them, the alkyl acrylate may be used as described above, and it is preferred to use methacrylate and ethacrylate. The proportion of the alkyl acrylate unit in the outermost hard layer (c) is preferably from 1 to 20% by mass. Further, in the polymerization of the outermost hard layer (c), in order to improve the compatibility with the acrylic resin (A), in order to adjust the molecular weight, an alkyl mercaptan or the like may be used as a chain transfer agent for polymerization. In particular, it is preferable that the outermost hard layer has a slope in which the molecular weight is gradually decreased from the inner side to the outer side, and the balance between the elongation and the impact resistance can be improved. The specific method is to divide the monomer mixture for forming the outermost hard layer into two or more, and sequentially increase the chain transfer dose per addition, and the molecular weight of the polymer forming the outermost hard layer can be made of a multilayer structure. The inner side of the acrylic granular composite decreases toward the outside. The molecular weight formed at this time can be known by measuring the molecular weight of the polymer obtained by polymerizing each of the monomer mixtures used each time under the same conditions. The particle diameter of the acrylic particles (C) which is suitably used in the present invention is not particularly limited, but is preferably from 10 nm to 100 nm, more preferably from 20 nm to 500 nm, still more preferably from 50 nm to 400 nm. In the acrylic granular -28-201107382 composite of the multilayer structure polymer which is suitable for use in the present invention, the core-shell mass ratio is not particularly limited, but when the multilayer structure polymer is 100 parts by mass, the core layer is preferably used. It is 50 to 90 parts by mass, more preferably 60 to 80 parts by mass. This core layer refers to the innermost hard layer. Commercial products of such a multilayer structure of the acrylic granular composite are, for example, "metablen" manufactured by Mitsubishi Rayon Co., Ltd., "kanes" manufactured by Kaneka Chemical Industry Co., Ltd., "Paraloid" manufactured by Kureha Chemical Industry Co., Ltd., and manufactured by Rohm and Haas Co., Ltd. "Acryloid", "staphiloid" manufactured by ganz Chemical Industry Co., Ltd., and "parapet SA" manufactured by Kuraray Co., Ltd., etc., may be used alone or in combination of two or more. Further, the acrylic particles (C) which are more suitable for use in the present invention are more suitable. Specific examples of the graft copolymerized acrylic particles (C) include an unsaturated carboxylic acid ester monomer and an unsaturated carboxylic acid monomer 'aromatic vinyl monomer in the presence of a rubbery polymer, and A graft copolymer obtained by copolymerizing a monomer mixture composed of other vinyl monomers copolymerized as described above, if necessary. The rubbery polymer used in the acrylic particles (C) of the graft copolymer is not particularly limited, and a diene rubber, an acrylic rubber, an ethylene rubber or the like can be used. Specific examples are polybutadiene, styrene-butadiene copolymer, styrene-butadiene block copolymer, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyiso Pentadiene, butadiene-methyl propyl methacrylate copolymer 'butyl acrylate-methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene - a diene copolymer, an ethylene-isoprene copolymer, and an ethylene-methyl acrylate copolymer. These rubbery polymers may be used alone or in combination of two or more of -29-201107382. Further, when the acrylic particles (C) are added to the optical film of the present invention, the refractive index of the mixture of the acrylic resin (A) and the cellulose ester resin (B) and the acrylic particles are from the viewpoint of obtaining a film having high transparency. The refractive index of C) is close to better. Specifically, the difference in refractive index between the acrylic particles (C) and the acrylic resin (A) is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 〇. In order to satisfy such a refractive index condition, the composition ratio of each monomer unit of the acrylic resin (A) may be adjusted, and/or the composition ratio of the rubbery polymer or monomer used for the acrylic particle (C) may be adjusted. The method of reducing the refractive index difference, etc., can obtain an optical film excellent in transparency. Here, the refractive index difference means that the optical film of the present invention is sufficiently dissolved in a solvent soluble in the acrylic resin (A) to form a white turbid solution under appropriate conditions, and then separated into a solvent-soluble portion by centrifugation or the like. The insoluble portion (acrylic resin (A)) and the insoluble portion (acrylic acid particles (C)) were separately purified from the insoluble portion, and the difference in the measured refractive index (23 ° C, measurement wavelength: 55 0 μm) was shown. In the present invention, the method of formulating the acrylic particles (C) in the acrylic resin (A) is not particularly limited, and it is preferred to use the acrylic resin (A) and other optional components in advance, generally in the range of 2,0 to 3,500. A method of uniformly melting and kneading the acrylic particles (C) while being subjected to uniform singulation by a uniaxial or biaxial extruder. Further, a method in which a solution in which acrylic particles (C) are dispersed in advance is added to a solution of a solution of the acrylic resin (A) and a cellulose ester resin (b), which is dissolved in a solution of a solution of the acrylic resin (A) and a cellulose ester resin (b), or a solution of acrylic acid may be used. A method in which a solution obtained by dissolving and mixing the particles (C) and any other additives is added in an in-line manner. Commercially available products can be used for the acrylic particles of the present invention. For example, there is metatable
W - 3 4 1 ( C 2 )( 一爱 R a y ο η (股)製)、c h e m i s η 〇 w M R - 2 G (C3) 、MS-300X(C4)(綜硏化學(股)製)等。 本發明之光學薄膜中’相對於構成該薄膜之樹脂總質 量’較佳爲含有〇.5~30質量%之丙烯酸粒子(c),更佳爲 含有1.0〜1 5質量%的範圍。 <其他的添加劑> 本發明之光學薄膜爲了提升組成物的流動性及柔軟性 ’可倂用可塑劑。可塑劑例如有酞酸酯系、脂肪酸酯系、 偏苯三甲酸酯系、磷酸酯系、聚酯系或環氧系等。 其中較佳爲使用聚酯系與酞酸酯系的可塑劑。聚酯系 可塑劑雖相較於酞酸二辛酯等酞酸酯系的可塑劑時,非遷 移性及耐萃取性更優異,但可塑化效果及相溶性稍微差。 因此,配合用途選擇或倂用此等可塑劑,可適用於廣 範圍的用途。 聚酯系可塑劑係一價至四價羧酸與一價至六價醇的反 應物,但主要係使用二價羧酸與甘醇反應而得者。代表性 之二價羧酸例如有戊二酸、衣康酸、己二酸、酞酸 '壬二 酸、癸二酸等。 特別是使用己二酸、酞酸等時’可得可塑化特性優異 -31 - 201107382 者。甘醇例如有乙烯、丙烯、1,3-丁烯、1,4·丁烯、1,6-己 烯、新戊烯、二乙烯、三乙烯、二丙烯等之甘醇。此等二 價羧酸及甘醇可各自單獨使用或混合使用。 此酯系之可塑劑可爲酯、低聚酯、聚酯等中任何一形 態,分子量可爲100~10000之範圍,較佳爲60 0〜3000的範 圍時可塑化效果較大。 又,可塑劑之黏度雖與分子構造或分子量有關,但爲 己二酸系可塑劑時,從相溶性、可塑化效率的關係,較佳 爲200〜5000MPa.S ( 25°C )的範圍。另外,可倂用數個聚 酯系可塑劑。 可塑劑係相對於本發明之光學薄膜丨00質量份,較佳 爲添加0.5〜30質量份。可塑劑之添加量超過3〇質量份時, 表面具黏性’實用上不佳。 本發明之光學薄膜可含有紫外線吸收劑,所使用的紫 外線吸收劑例如有苯并三唑系、2_羥基二苯甲酮系或水楊 酸苯基醋系者等。例如有2_(5_甲基_2_羥基苯基)苯并三 嗤、2-[2-經基-3,5-雙(0[,(1_二甲基苯甲基)苯基]_2„_苯 并二哩' 2-(3,5-二丁基-2_羥基苯基)苯并三唑等三唑 類、2-羥基_4-甲氧基二苯甲酮、2羥基·4_辛氧基二苯甲 嗣、2,2’-_經基_4-甲氧基二苯甲酮等的二苯甲酮類。 此等紫外線吸收劑中,分子量爲4〇〇以上之紫外線吸 收劑於咼沸點下不易揮帛,且於高溫形成時也不易飛散, 因此可以較少量添加即可有效改良耐候性。 分子量爲400以上之紫外線吸收劑例如有2_[2_羥基_ -32- 201107382 3,5-雙(α,α-二甲基苯甲基)苯基]-2-苯并三唑、2,2-亞甲 基雙[4-(1,1,3,3-四丁基)-6-(2Η-苯并三唑-2-基)酚]等 之苯并三唑系、雙(2,2,6,6-四甲基-4-哌啶基)癸二酸酯 、雙(1,2,2,6,6-五甲基-4-哌啶基)癸二酸酯等之受阻胺 系,及2-(3,5-二-t-丁基-4-羥基苯甲基)-2-η-丁基丙二酸 雙(1,2,2,6,6-五甲基-4-哌啶基酯)、1-[2-[3-(3,5 -二-t-丁基-4-羥基苯基)丙醯氧基]乙基]-4-[3- ( 3,5-二-t-丁基-4-羥基苯基)丙醯氧基]-2,2,6,6-四甲基哌啶等之分子內同 時具有受阻酚及受阻胺構造的混合系者,此等可單獨使用 或倂用2種以上。其中特佳爲2-[2-羥基- 3,5-雙(α,α-二甲 基苯甲基)苯基]-2-苯并三唑及2,2-亞甲基雙[4-(1,1,3,3-四丁基)-6-(2Η-苯并三唑-2-基)酚]。 此外,本發明之光學薄膜爲了改良成形加工時之熱分 解性及熱著色性,可添加各種防氧化劑。添加防靜電劑, 對光學薄膜可賦予防靜電性能。 本發明之光學薄膜也可使用添加有磷系難燃劑之難燃 丙烯酸系樹脂組成物。 此處使用的磷系難燃劑例如有選自紅磷、三芳基磷酸 酯、二芳基磷酸酯、單芳基磷酸酯、芳基膦酸化合物、芳 基膦氧化物化合物、縮合芳基磷酸酯、鹵化烷基磷酸酯、 含鹵素縮合磷酸酯、含鹵素縮合膦酸酯、含鹵素亞磷酸酯 等之1種或2種以上的混合物。 具體例如三苯基磷酸酯、9,10-二氫-9-噁-10-磷雜菲-10-氧化物、苯基膦酸、三(β-氯乙基)磷酸酯、三(二氯 -33- 201107382 丙基)磷酸酯、三(三溴新戊基)磷酸酯等。 依據本發明之光學薄膜時,可同時達成以往樹脂薄膜 無法完成之改善低吸濕性、透明性、高耐熱性及脆性。 本發明中,脆性之指標係以是否爲「不會產生延性破 壞的光學薄膜」爲基準來判斷。可得到不會產生延性破壞 ’改善脆性的光學薄膜,即使製作大型液晶顯示裝置用之 偏光板時’也不會發生製造時的斷裂或龜裂,可形成使用 性優異的光學薄膜。延性破壞係定義爲以大於某材料所具 有之強度更大的應力作用時會造成斷裂,且最終斷裂前伴 隨著材料之明顯的延伸或收縮的破壞。該斷面之特徵爲形 成無數被稱爲窩的凹洞。 本發明中,是否爲「不會產生延性破壞的光學薄膜」 係藉由即使施加將薄膜折彎成2片之大應力作用,也未出 現斷裂等之破壞來評價者。即使施加這種較大應力也不會 產生延性破壞的光學薄膜時,即使作爲大型化液晶顯示裝 置用之偏光板保護薄膜使用時,也可充分減少製造時斷裂 等問題,此外,即使經過一次貼合後再剝離,使用光學薄 膜時,也不會發生斷裂,可充分適用於光學薄膜之薄型化 〇 本發明係使用張力軟化點作爲耐熱性指標。隨著液晶 顯示裝置大型化 '背光光源亮度日益提高,以及將數字標 牌運用於屋外用途而要求更高亮度’因此光學薄膜需要具 有耐更高溫環境之特性,但張力軟化點爲105〜145 °C時即 可判斷爲具有充分耐熱性。特佳爲控制於1 10~13 〇°C。 -34- 201107382 顯示光學薄膜之張力軟化點之溫度的具體測定方法, 例如使用萬能拉力試驗機(ORIENTEC公司製RTC- 1 225A ),將光學薄膜切成120mm (長)xlOmm (寬)後,以 10N之張力拉伸,同時以3(TC/min之升溫速度持續升溫,3 次測定到達9N時點的溫度,求其平均値而得。 又,從耐熱性觀點,光學薄膜之玻璃轉化溫度(Tg ) 較佳爲1 l〇°C以上。更佳爲120°C以上。特佳爲150°C以上》 玻璃轉化溫度係指使用差示掃描熱量測定器(Perkin Elmer公司製DSC-7型),以升溫速度20°C/分鐘測定,依 據JIS K7 1 2 1 ( 1 987 )求得的中間點玻璃轉化溫度(Tmg) 〇 判斷本發明之光學薄膜之透明性的指標係使用霧度値 (濁度)。特別是於屋外使用之液晶顯示裝置,即使於明 亮場所也要求可得到充分亮度及高對比,因此霧度値必須 在1.0%以下,更佳爲0.5%以下。 依據含有丙烯酸系樹脂(A)與纖維素酯樹脂(B)之 本發明的光學薄膜時,可得高透明性,但爲了改善其他物 性而使用丙烯酸粒子時,藉由降低樹脂(丙烯酸系樹脂( A)與纖維素酯樹脂(B))與丙烯酸粒子(C)之折射率 差,可防止霧度値上升。 又,表面粗糙度也以表面霧度的形態影響霧度値,因 此將丙烯酸粒子(C )之粒徑及添加量控制於前述範圍內 ,可有效降低製膜時之薄膜接觸部的表面粗糙度。 又,本發明之光學薄膜的吸濕性係藉由相對於濕度變 -35- 201107382 化之尺寸變化來評價。 相對於濕度變化之尺寸變化的評價方法可使用下述方 法。 在製作之光學薄膜之流延方向,於2處作記號(十字 )’以60°C、90%RH下處理1 000小時,使用光學顯微鏡測 定處理前與處理後之記號(十字)的距離,求得尺寸變化 率(% )。尺寸變化率(% )如下述式表示。 尺寸變化率(%) =[(al-a2)/al]xl〇0 a 1 :熱處理前之距離 a2 :熱處理後之距離 使用光學薄膜作爲液晶顯示裝置的偏光板用保護薄膜 時’因吸濕造成之尺寸改變,因而使光學薄膜發生不均( 色斑)或相位差値變化,故會產生對比降低或色斑的問題 °特別是使用於屋外用之液晶顯示裝置的偏光板保護薄膜 時’上述問題會更明顯。但上述條件之尺寸變化率(% ) 未達0.5 %時,評價爲顯示充分低吸濕性的光雏薄膜。更佳 爲未達0.3%者。 又,本發明之光學薄膜係在薄膜面內之直徑5μηι以上 的缺點較佳爲1個/10cm四方以下。更佳爲0.5個/10cm四方 以下,更佳爲0.1個/l〇cm四方以下。 該缺點之直徑係指缺點爲圓形時表示其直徑,非圓形 藉由下述方法使用顯微鏡觀察缺點之範圍來決定,作 爲其最大徑(外接圓之直徑)。 缺點的範圍係當缺點爲氣泡或異物時,係指以微分千 -36- 201107382 擾顯微鏡之透過光觀察缺點時之影子 之轉印或擦傷等表面形狀之變化時, 之反射光觀察缺點確認大小。 又,以反射光觀察時,缺點大小 蒸鍍鋁或鉑來觀察。 爲了以較佳生產性得到以此種缺 異的薄膜時,可利用在流延前高精度 提高流延機周邊之潔淨度,或以階段 條件,以高效且抑制發泡進行乾燥。 缺點個數多於1個/10cm四方時, 工時等對薄膜施加張力時,有時以缺 ,生產性有降低的情形。 又,缺點的直徑爲5 μκι以上時, 目視確認,有時作爲光學構件使用時 即使無法以目視確認時,有時於 等時,塗劑無法均一形成,成爲缺點 。缺點係指在溶液製膜之乾燥步驟中 所產生之薄膜中的空洞(發泡缺陷) 物或製膜中混入之異物所產生之薄膜 又,本發明之光學薄膜依據HS- 至少一方向之斷裂伸度較佳爲1 〇%以 〇 斷裂伸度之上限並無特別限制, 的大小。缺點爲輥傷 可以微分千擾顯微鏡 不明確時,可於表面 點頻度表示之品質優 過濾聚合物溶液,或 性設定流延後之乾燥 例如於其後步驟之加 點爲起點,薄膜斷裂 可以偏光板觀察等以 會產生亮點。 該薄膜上形成硬塗層 (未被塗佈)的情形 ,因溶劑之急速蒸發 或因製膜原液中之異 中的異物(異物缺點 K7 127-1 999測定時, 上,更佳爲20%以上 實際上爲約2 50%。欲 -37- 201107382 提高斷裂伸度時,可藉由抑制因異物或發泡所造成之薄膜 中的缺點。 本發明之光學薄膜的厚度較佳爲20μηι以上。更佳爲 3 Ομηι以上。 厚度上限並無特別限定,但以溶液製膜法進行薄膜化 時’從塗佈性、發泡、溶劑乾燥等的觀點,上限爲250μηι 。又薄膜厚度可依據用途來適當選擇。 本發明之光學薄膜之全光線透過率較佳爲90%以上, 更佳爲93 %以上。又實際的上限爲99%。爲了達成此種以 全光線透過率表示之優異的透明性時,可藉由避免導入會 吸收可見光之添加劑或共聚合成份、或藉由高精度過濾去 除聚合物中的異物,或降低薄膜內部之光擴散或吸收。 此外,可藉由降低製膜時之薄膜接觸部(冷卻輥、壓 延輥、滾筒、輸送帶、溶液製膜之塗佈基材、搬運輥等) 之表面粗糙度,以降低薄膜表面之表面粗糙度,或降低丙 烯酸樹脂之折射率,減少薄膜表面之光擴散或反射。 本發明之光學薄膜滿足如上述的物性時,特別適合作 爲大型液晶顯示裝置或屋外用途之液晶顯示裝置用的偏光 板保護薄膜使用。 這種物性可藉由將光學薄膜製成具有下特徵的光學薄 膜而得到。該光學薄膜之特徵爲以95 : 5〜3 0 : 70之質量比 含有丙烯酸樹脂(Α)與纖維素酯樹脂(Β)、前述丙烯酸 樹脂(Α)之重量平均分子量Mw爲80000以上,該纖維素 酯樹脂(B)之醯基之總取代度(T)爲2.00〜3.00,碳數 -38- 201107382 3~7之範圍內之醯基的取代度爲1.2〜3_0,重量平均分子量 (Mw )爲 75000以上。 <光學薄膜之製膜> 以下說明光學薄膜之製膜方法例,但本發明不限定於 此等。 本發明之光學薄膜之製膜方法,可使用例如吹塑法、 T模法 '壓延法、切削法、流延法、乳化法、熱壓法等製 造方法’但是從抑制著色、抑制異物缺點、抑制模痕等之 光學缺點等的觀點,藉由流延法之溶液製膜較佳。 (有機溶劑) 以溶液流延法製造本發明之光學薄膜時,形成膠漿用 的有機溶劑’只要是可同時溶解丙烯酸樹脂(A)、纖維 素酯樹脂(B )、其他的添加劑者時,無特別限制均可使 用》 例如氯系有機溶劑有二氯甲烷,非氯系有機溶劑例如 有乙酸甲酯、乙酸乙酯、乙酸戊酯、丙酮、四氫呋喃、 13-二氧雜環戊烷、14-二噁烷、環己酮、甲酸乙醋、 2,2,2-三氟乙醇、2,2,3,3-六氟-1-丙醇、丨,3_二氟·2·丙醇、 1,1,1,3,3,3 -六氟-2-甲基-2-丙醇、1,ι,ι,3,3,3-六氟-2 -丙醇 、2,2,3,3,3-五氟-丨·丙醇、硝基乙烷等,較佳爲使用二氯 甲烷、乙酸甲酯、乙酸乙酯、丙酮。 膠漿中除了上述有機溶劑外’較佳爲含有^40質量% -39- 201107382 之碳原子數1〜4之直鏈或支鏈狀之脂肪族醇。膠漿中之醇 的比率升高時,纖維網(web )產生凝膠化,容易由金屬 支持體上剝離,而醇的比例較少時,非氯素系有機溶劑系 也有促進溶解丙烯酸樹脂(A)、纖維素酯樹脂(B)的功 用。 特別是使丙烯酸樹脂(A)與纖維素酯樹脂(B)與丙 烯酸粒子(C )之3種至少共計15〜45質量%溶解於含有二 氯甲烷及碳數1~4之直鏈或支鏈狀之脂肪族醇的溶劑中的 膠漿組成物較佳》 碳數1〜4之直鏈或支鏈狀之脂肪族醇,例如有甲醇、 乙醇、η -丙醇、iso -丙醇、η -丁醇、sec -丁醇、tert -丁醇。 此等當中,考慮膠漿之安定性、沸點較低、乾燥性佳等, 較佳爲乙醇。 以下說明本發明之光學薄膜之較佳的製膜方法。 1 )溶解步驟 在以對於丙烯酸樹脂(A)、纖維素酯樹脂(B)之良 溶劑爲主的有機溶劑中’在溶解鍋中將該丙烯酸樹脂(A )、纖維素酯樹脂(B )、及必要時之丙烯酸粒子(C )、 其他的添加劑進行攪拌同時溶解,形成膠漿的步驟、或將 該丙烯酸樹脂(A)、纖維素酯樹脂(B )溶液中必要時混 合丙烯酸粒子(C )溶液 '其他的添加劑溶液,形成主溶 解液之膠漿的步驟。 丙烯酸樹脂(A)、纖維素酯樹脂(B)之溶解可使用 常壓下溶解的方法、在主溶劑之沸點以下溶解的方法、在 -40- 201107382 主溶劑之沸點以上進行加壓溶解的方法、如特開平9-95 544號公報、特開平9-95 5 57號公報、或特開平9-95 5 3 8號 公報所記載,以冷卻溶解法溶解的方法、如特開平1 1 -2 1 379號公報所記載,以高壓溶解的方法等各種的溶解方 法,特佳爲在主溶劑之沸點以上進行加壓溶解的方法。 膠漿中之丙烯酸樹脂(A)與纖維素酯樹脂(B)合計 爲15〜45質量%的範圍較佳。溶解中或溶解後之膠漿中添入 添加劑,經溶解及分散後,以過濾材過濾、脫泡,並以送 液泵送至下一步驟。 過濾係使用捕集粒徑0.5〜5μπι,且爐水時間10~25sec/ 100ml的濾材較佳。 此方法係將粒子分散時殘留之凝集物或主膠漿添加時 所發生之凝集物,使用捕集粒徑0.5〜5μιη、且濾水時間 10〜25sec/100ml的濾材可僅除去凝集物。主膠漿中,粒子 之濃度相較於添加液爲非常低,因此過瀘時不會產生因凝 集物彼此黏結,造成急速的濾壓上昇。 圖1係表示本發明較佳之溶液流延製膜方法之膠漿調 製步驟、流延步驟及乾燥步驟之一例的模式圖。 必要時,由丙烯酸粒子投入鍋41以過濾器44除,去較大 的凝集物’然後送液至儲存鍋42。其後,由儲存鍋42將丙 烯酸粒子添加液加入主膠漿溶解鍋1中。 其後’主膠漿液係主過濾器3過濾,然後藉由1 6連線 添加紫外線吸收劑添加液。 較多的情形是主膠槳中含有回料1〇~50質量%。回料中 -41 - 201107382 有時含有丙烯酸粒子,此時配合回料之添加量控制丙烯酸 粒子添加液之添加量較佳。 含有丙烯酸粒子之添加液中,較佳爲含有丙烯酸粒子 0 · 5〜1 0質量%,更佳爲含有1 ~ 1 〇質量%,最佳爲含有!〜5質 量%。 上述範圍內時,添加液係低黏度,且操作使用較容易 ,也容易添加至主膠漿中,故較佳。 回料係指將光學薄膜經過微細粉碎之物品,製膜光學 薄膜時所發生之將薄膜之兩端部分切掉後的物品或因擦傷 等當作規格外之光學薄膜原料使用者。 預先將丙烯酸樹脂、纖維素酯樹脂及必要時之丙烯酸 粒子混練形成顆粒化者,較適用。 2) 流延步驟 將膠漿通過送液泵(例如加壓型定量齒輪泵)送液至 加壓模3 0,再由加壓模縫將膠漿流延至無限移送之無終端 的金屬帶31,例如有不鏽鋼帶、或旋轉之金藺滾筒等的金 屬支持體上之流延位置的流延步驟。 可調整模之模頭部分的細縫形狀,且容易使膜厚均一 之加壓模較佳。加壓模有衣架型模(coat hanger die)或T 模等均可使用。金屬支持體之表面成爲鏡面。爲了提高製 膜速度,可在金屬支持體上設置2座以上加壓模,將膠漿 量分割進行層合。或可藉由將複數之膠漿同時流延的共流 延法,可得到層合構造的薄膜。 3) 溶劑蒸發步驟 -42 - 201107382 將纖維網(使膠漿流延至流延用支持體上所形成的膠 漿膜稱爲「纖維網」)在流延用支持體上加熱,使溶劑蒸 發的步驟。 欲使溶劑蒸發時,有由纖維網側吹風的方法及/或由 支持體之內面藉由液體傳熱的方法、藉由輻射熱由表裏傳 熱的方法等,但是內面液體傳熱方法乾燥效率高,故較佳 。也可使用組合彼等的方法。使流延後之支持體上的纖維 網在4 0~ 100 °C之氣氛下’在支持體上乾燥較佳。欲維持 40〜100°C之氣氛下時,將此溫度之熱風吹纖維網上面,或 藉由紅外線等的手段加熱較佳。 從面品質、透濕性、剝離性的觀點,較佳爲在3 0〜1 2 0 秒以內,將該纖維網由支持體上剝離。 4 )剝離步驟 將在金屬支持體上使溶劑蒸發後的纖維網在剝離位置 剝離的步驟。剝離後的纖維網係被送至下一步驟。 金屬支持體上之剝離位置的溫度較佳爲10〜40 °C,更 佳爲1 1〜3 0 °C。 剝離之時點之金屬支持體上之纖維網的剝離時殘留溶 劑量係依乾燥條件之強弱、金屬支持體之長度等,在 5 0~ 1 2 0質量%之範圍進行剝離較佳,但是殘留溶劑量更多 的時點進行剝離時,若纖維網太柔軟時,會損害剝離時平 面性,因剝離張力容易產生鬆弛或直線條,因此以兼顧經 濟速度與品質,來決定剝離時的殘留溶劑量。 纖維網之殘留溶劑量係下述式定義。 -43- 201107382 殘留溶劑量(%)=(纖維網之加熱處理前質量-纖維 網之加熱處理後質量)/(纖維網之加熱處理後質量) X 100 此外,測定殘留溶劑量時之加熱處理係表示以1 4〇°C 加熱處理2小時。 剝離金屬支持體與薄膜時之剝離張力通常爲196-245 N/m,但是剝離時易產生皺紋時,以190N/m以下的張力進 行剝離較佳,更佳爲以可剝離之最低張力〜166.6N/m、接 著以最低張力〜137.2N/m剝離,特佳爲以最低張力〜l〇〇N/m 剝離。 本發明中,該金屬支持體上之剝離位置的溫度較佳 爲-50〜40°C,更佳爲10〜40°C,最佳爲15〜30°C。 5 )乾燥及延伸步驟 剝離後,使用將纖維網交互通過在乾燥裝置內複數配 置之輥,進行搬送之乾燥裝置35及/或以夾具夾住纖維網 之兩端進行搬送之拉幅延伸裝置3 4,使纖維網乾燥。 乾燥手段一般係將熱風吹纖維網之兩面,也可使用微 波照射加熱取代熱風,進行加熱的手段。太過急速的乾燥 容易損及完成之薄膜的平面性。藉由高溫之乾燥使殘留溶 劑成爲約8質量%以下即可。整體乾燥大槪是以40~2 50t乾 燥。特佳爲以40〜160°C乾燥。 使用拉幅延伸裝置時,較佳爲使用藉由拉幅器之左右 把持手段可以左右獨立控制薄膜之把持長度(把持開始至 把持終了的距離)的裝置。拉幅步驟中,爲了改善平面性 -44- 201107382 ,也可刻意製作具有不同溫度之區間。 爲了在不同溫度之區間,各自之區間之間不會產生干 擾可設置中性區域。 延伸操作可分割成多階段實施。例如拉幅步驟主要在 前半進行延伸,後半保持寬度,進行薄膜之應力緩和,或 拉幅步驟之前半充分預熱後,在後半進行延伸操作。也可 在流延方向、寬度方向實施二軸延伸。進行二軸延伸時, 可同時進行二軸延伸或分階段實施。 此時,分階段係例如可依順序進行延伸方向不同之延 伸,或將同一方向之延伸分割成多階段,且不同方向之延 伸可加諸於其中任一階段。換言之,例如可有以下的延伸 步驟。 •流延方向延伸-寬度方向延伸-流延方向延伸-流延方 向延伸 •寬度方向延伸-寬度方向延伸-流延方向延伸-流延方 向延伸 此外,同時2軸延伸時,也包括一方向延伸後,另一 方則張力緩和產生收縮的情形。同時2軸延伸之較佳之延 伸倍率係寬度方向、長度方向均可爲xl.01倍〜xl.5倍的範 圍。 拉幅器進行時之纖維網的殘留溶劑量,在拉幅器開始 時,較佳爲20〜100質量%,且纖維網之殘留溶劑量成爲10 質量%以下爲止使用拉幅器同時乾燥較佳,更佳爲5質量% 以下。 -45- 201107382 拉幅器進行時之乾燥溫度較佳爲30〜160°C,更佳爲 50~150°C,最佳爲 70~140°C。 拉幅步驟中,氣氛之寬度方向的溫度分布較少,從提 高薄膜之均一性的觀點較佳,拉幅步驟之寬度方向之溫度 分布較佳爲±5°C以內,更佳爲±2°C以內,最佳爲±1°C以內 〇 在拉幅延伸後之乾燥步驟,再減少殘留溶劑量較佳。 殘留溶劑量較佳爲5%以下,更佳爲2%以下。 拉幅步驟後之乾燥步驟之乾燥溫度較佳爲80°C〜160°C ,更佳爲90~140°C。此外,乾燥溫度較佳爲設定爲此乾燥 步驟之前半較低,在後半較高。 此乾燥溫度可藉由纖維網之殘留溶劑與搬送張力來調 整。換言之,殘留溶劑較多時,纖維網之表觀之Tg降低, 因此降低乾燥溫度抑制纖維網之延伸較佳。 或使用張力切割輥等,降低搬送張力設定爲較高的乾 燥溫度,抑制纖維網之延伸,可再減少殘留溶劑。 纖維網之延伸較大時,完成的光學薄膜在拉幅步驟會 產生設計値以外之相位差,故不佳。 藉由組合此拉幅步驟之溫度、時間、延伸倍率與、拉 幅步驟後之乾燥步驟之溫度、時間之組合,可有效除去甲 基丙烯酸甲酯單體,也可再提高薄膜特性、特別是脆性。 拉幅步驟後之乾燥步驟係設定爲某程度高溫較佳’但 是因搬送張力的關係,有時無法設定爲高溫。此時’爲了 把持薄膜同時搬送,因此藉由在搬送方向幾乎不會施加張 -46- 201107382 力之拉幅步驟設定爲高溫,可除去上述甲基丙烯酸甲酯單 體及可得到提高脆性的效果。 拉幅步驟在前半進行延伸時,纖維網之膜厚在較早段 階變薄,因此容易除去甲基丙烯酸甲酯單體除去及得到提 高脆性的效果。但是也有拉幅步驟之滯留時間的影響,因 此必須適當選擇溫度與延伸倍率之組合。 拉幅步驟與拉幅步驟後之乾燥步驟之任一步驟,以高 於纖維網之Tg高20°c以上的溫度進行乾燥處理較佳。進行 此處理步驟可大幅改善脆性。以低於纖維網之Tg + 20°C之 溫度延長時間,即使除去甲基丙烯酸甲酯單體,但是脆性 之改善效果較少。 拉幅步驟、拉幅步驟後之乾燥步驟中,施加太高溫時 ,會因樹脂分解產生甲基丙烯酸甲酯單體,故不佳。 6 )捲繞步驟 纖維網中之殘留溶劑量成爲2質量%以下後,以光學薄 膜的形態藉由捲繞機37捲繞的步驟,使殘留溶劑量在〇.4 質量%以下’可得到尺寸安定性良好的薄膜。特別是以 0.00〜0.10質量%進行捲繞較佳。 捲繞方法使用一般使用的方法即可,例如有定轉距法 、定張力法、錐度張力法(taper tension)、內部應力固 定之程式張力控制法等,將此等分開使用即可。 本發明之光學薄膜較佳爲長條薄膜,具體而言爲 100m~ l〇〇〇〇m程度者’通常以捲筒狀提供的形態者。此外 ,薄膜的寬度較佳爲1.3〜4m,更佳爲1.4〜2m。 -47- 201107382 本發明之光學薄膜之膜厚無特別限定,但是用於後述 偏光板保護薄膜時,較佳爲20〜200μηι,更佳爲25〜ΙΟΟμπι ,特佳爲30〜80μηι。 [偏光板] 以本發明之光學薄膜作爲偏光板用保護薄膜使用時’ 可以一般方法製作偏光板。較佳爲在本發明之光學薄膜之 內面側設置黏著層,再貼合於浸漬於碘溶液中延伸所製作 之偏光子之至少一面上。 另一面可使用本發明之光學薄膜,或其他的偏光板保 護薄膜。例如較佳爲使用市售的纖維素酯薄膜(例如, KonicaMinolta TAC K C 8 U X、K C 4 U X、K C 5 U X ' KC 8 U Y、 KC4UY 、 KC6UA 、 KC4UA 、 KC12UR 、 KC8UCR-3 、 KC8UCR-4 ' KC8UCR-5、KC8UE、KC4UE ' KC4FR-3、 KC4FR-4、KC4HR-1、KC8U Y·H A、KC 8UX-RH A,以上爲 KonicaMinolta Opto (股)製)等。 偏光板之主要構成要素的偏光子係指僅能通過一定方 向之偏波面之光的元件,目前已知的代表性偏光膜爲聚乙 烯醇系偏光薄膜,此偏光薄膜有將碘使聚乙烯醇系薄膜染 色者與雙色性染料染色者。 偏光子可使用將聚乙烯醇水溶液製膜後,將其單軸延 伸再染色,或染色後單軸延伸,較佳爲以硼化合物進行耐 久性處理者。 上述黏著層所使用的黏著劑較佳爲使用黏著層之至少 -48- 201107382 —部分使用在25°C之貯藏彈性率爲l.〇xl〇4Pa〜l.〇xl〇9pa2 範圍的黏著劑,而塗佈黏著劑,貼合後藉由各種化學反應 形成高分子量物或交聯構造之硬化型黏著劑較適用。 具體例如有胺基甲酸乙酯系黏著劑、環氧系黏著劑、 水性高分子-異氰酸酯系黏著劑、熱硬化型丙烯酸黏著劑 等之硬化型黏著劑、濕氣硬化胺基甲酸乙酯黏著劑、聚醚 甲基丙烯酸酯型、酯系甲基丙烯酸酯型、氧化型聚醚甲基 丙烯酸酯等之厭氣性黏著劑、氰基丙烯酸酯系之瞬間黏著 劑、丙烯酸酯與過氧化物系之二液型瞬間黏著劑等。 上述黏著劑可爲一液型、或使用前混合二液以上再使 用的二液型。 上述黏著劑可以有機溶劑爲介質的溶劑系、或以水爲 主成份之介質的乳液型、膠體分散液型、水溶液型等之水 系、或無溶劑型。上述黏著劑液之濃度可依據黏著後之膜 厚、塗佈方法、塗佈條件等適當決定,一般爲0.1〜50質量 %。 [液晶顯示裝置] 將貼合本發明之光學薄膜的偏光板組裝於液晶顯示裝 置後,可製作各種辨識性優良之液晶顯示裝置,特別適用 於大型液晶顯示裝置或電子看板等屋外用途之液晶顯示器 。本發明之偏光板係介於前述黏著層等貼合於液晶胞±。 本發明之偏光板適用於反射型、透過型、半透過型 LCD 或 TN 型、STN 型、OCB 型、HAN 型、VA 型(PVA 型、 -49- 201107382 MVA型)、IPS型(包含FFS方式)等各種驅動方式的LCD 。特別是畫面爲30吋以上’更佳爲30吋〜54吋之大畫面的 顯示裝置,在畫面周邊部無泛白等’可長時間維持該效果 〇 而且色斑、眩光或波狀斑紋較少’具有即使長時間觀 賞,眼睛也不會疲倦的效果。 【實施方式】 實施例 以下舉實施例具體說明本發明’但本發明非限定於此 等。 實施例1 [丙烯酸樹脂之調製] 藉由公知的方法調製以下的丙烯酸樹脂Α1_Α1〇、及 MS 1、2。 A1 ··單體質量比(MMA: MA = 98: 2) 、Mw70000 甲基丙烯酸甲酯單體含量0.55 % A2:單體質量比(MMA: MA = 97: 3) 、Mwl60000 甲基丙烯酸甲酯單體含量〇·53 % A3:單體質量比(MMA: MA = 97: 3) 、Mw350000 甲基丙烯酸甲酯單體含量0.52 % A4:單體質量比(MMA: MA = 97: 3) 、Mw550000 甲基丙烯酸甲酯單體含量0.61 % -50- 201107382 A5:單體質量比(MMA: MA = 97: 3) 、Mw800000 甲基丙烯酸甲酯單體含量0.75 % A6 :單體質量比(MMA : MA = 97 : 3 ) ' Mw930000 甲基丙嫌酸甲酯單體含量0·80%W - 3 4 1 ( C 2 ) (I love R ay ο η (share) system), chemis η 〇w MR - 2 G (C3), MS-300X (C4) (complex chemical system) . In the optical film of the present invention, the 'total mass of the resin constituting the film' is preferably 5% to 30% by mass of the acrylic particles (c), more preferably 1.0 to 15% by mass. <Other Additives> The optical film of the present invention can be used for the purpose of improving the fluidity and flexibility of the composition. The plasticizer may, for example, be a phthalate type, a fatty acid ester type, a trimellitic acid ester type, a phosphate type, a polyester type or an epoxy type. Among them, a polyester-based and phthalate-based plasticizer is preferably used. Although the polyester-based plasticizer is superior to the phthalate-based plasticizer such as dioctyl phthalate, it has excellent non-migration property and extraction resistance, but has a slightly poor plasticizing effect and compatibility. Therefore, the selection or use of these plasticizers in combination with the application can be applied to a wide range of applications. The polyester-based plasticizer is a reactant of a monovalent to tetravalent carboxylic acid and a monovalent to hexavalent alcohol, but mainly obtained by reacting a divalent carboxylic acid with a glycol. Representative divalent carboxylic acids are, for example, glutaric acid, itaconic acid, adipic acid, decanoic acid 'sebacic acid, sebacic acid and the like. In particular, when adipic acid, citric acid or the like is used, it is excellent in plasticizing properties -31 - 201107382. The glycol may, for example, be a glycol such as ethylene, propylene, 1,3-butene, 1,4-butene, 1,6-hexene, neopentene, diethylene, triethylene or dipropylene. These divalent carboxylic acids and glycols may be used singly or in combination. The ester-based plasticizer may be in any one of ester, oligoester, polyester, etc., and has a molecular weight of from 100 to 10,000, preferably from 60 to 3,000, and has a plasticizing effect. Further, the viscosity of the plasticizer is related to the molecular structure or molecular weight, but in the case of an adipic acid plasticizer, the relationship between compatibility and plasticizing efficiency is preferably in the range of 200 to 5000 MPa.S (25 ° C). In addition, several polyester-based plasticizers can be used. The plasticizer is preferably added in an amount of from 0.5 to 30 parts by mass based on 00 parts by mass of the optical film of the present invention. When the amount of the plasticizer added exceeds 3 parts by mass, the surface is sticky, which is practically poor. The optical film of the present invention may contain an ultraviolet absorber, and the ultraviolet absorber to be used may, for example, be a benzotriazole type, a 2-hydroxybenzophenone type or a salicylic acid phenyl vinegar type. For example, there are 2_(5-methyl-2-hydroxyphenyl)benzotriazin, 2-[2-carbazhen-3,5-bis(0[,(1-dimethylphenyl)phenyl)] _2 _ benzodiazepines 2-triazoles such as 2-(3,5-dibutyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxyl a benzophenone such as 4_octyloxybenzhydryl or 2,2'-trans-based 4-methoxybenzophenone. Among these ultraviolet absorbers, the molecular weight is 4〇〇 or more. The ultraviolet absorber is not easily swelled at the boiling point of the crucible, and is not easily scattered at the time of formation at a high temperature, so that the weather resistance can be effectively improved by adding a small amount. The ultraviolet absorber having a molecular weight of 400 or more has, for example, 2_[2_hydroxyl_ -32- 201107382 3,5-bis(α,α-dimethylbenzyl)phenyl]-2-benzotriazole, 2,2-methylenebis[4-(1,1,3, 3-tetrabutyl)-6-(2Η-benzotriazol-2-yl)phenol] benzotriazole, bis(2,2,6,6-tetramethyl-4-piperidinyl) a hindered amine system such as sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, and 2-(3,5-di-t- Butyl-4-hydroxybenzyl)-2-n-butylmalonate bis (1,2,2,6,6-five 4-piperidinyl ester), 1-[2-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propanoxy]ethyl]-4-[3- (3,5-Di-t-butyl-4-hydroxyphenyl)propanoxy]-2,2,6,6-tetramethylpiperidine or the like having both hindered phenol and hindered amine structure Mixing, these may be used alone or in combination of two or more. Among them, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2- Benzotriazole and 2,2-methylenebis[4-(1,1,3,3-tetrabutyl)-6-(2Η-benzotriazol-2-yl)phenol]. The optical film of the invention can be added with various anti-oxidants in order to improve thermal decomposition property and thermal coloring property during molding, and an antistatic agent can be added to impart antistatic properties to the optical film. The optical film of the present invention can also be added with a phosphorus-based system. A flame-retardant acrylic resin composition of a flame retardant. The phosphorus-based flame retardant used herein is, for example, selected from the group consisting of red phosphorus, triaryl phosphate, diaryl phosphate, monoaryl phosphate, and arylphosphonic acid compound. , aryl phosphine oxide compound, condensed aryl phosphate, halogenated alkyl phosphate, halogenated condensed phosphate, One or a mixture of two or more of a halogen condensed phosphonate or a halogen-containing phosphite. Specifically, for example, triphenyl phosphate, 9,10-dihydro-9-oxo-10-phosphaphenanthrene-10-oxidation , phenylphosphonic acid, tris(β-chloroethyl)phosphate, tris(dichloro-33-201107382 propyl)phosphate, tris(tribromoneopentyl)phosphate, etc. Optical film according to the invention At the same time, it is possible to simultaneously achieve improvement in low hygroscopicity, transparency, high heat resistance and brittleness which cannot be achieved by the conventional resin film. In the present invention, the index of brittleness is judged based on whether or not it is "an optical film which does not cause ductile damage". It is possible to obtain an optical film which does not cause ductile damage and which is excellent in brittleness. Even when a polarizing plate for a large liquid crystal display device is produced, cracking or cracking during production does not occur, and an optical film excellent in usability can be formed. A ductile failure system is defined as a failure that occurs when the stress is greater than the strength of a material, and is accompanied by significant elongation or contraction of the material before the final fracture. The section is characterized by the formation of a myriad of pockets called pockets. In the present invention, it is evaluated whether or not the "optical film which does not cause ductile damage" is evaluated by the fact that even if a large stress is applied to bend the film into two pieces, no damage such as breakage occurs. Even when an optical film which does not cause ductile damage is applied even when such a large stress is applied, even when it is used as a polarizing plate protective film for a large-sized liquid crystal display device, problems such as breakage during production can be sufficiently reduced, and even after one posting After the film is peeled off and the optical film is used, the film is not broken, and the optical film can be sufficiently used for thinning. In the present invention, the tension softening point is used as an index of heat resistance. With the increase in the size of liquid crystal display devices, the increasing brightness of backlights and the use of digital signage for outdoor applications require higher brightness. Therefore, optical films need to have higher temperature resistance, but the tension softening point is 105~145 °C. It can be judged that it has sufficient heat resistance. It is especially suitable for control at 10 10~13 〇 °C. -34- 201107382 For the specific measurement method of the temperature at the tension softening point of the optical film, for example, using a universal tensile tester (RTC-1 225A, manufactured by ORIENTEC Co., Ltd.), the optical film is cut into 120 mm (length) x 10 mm (width), The tension of 10N is stretched, and the temperature is continuously increased at a temperature increase rate of 3 (TC/min, and the temperature at the point of reaching 9 N is measured three times, and the average enthalpy is obtained. Further, from the viewpoint of heat resistance, the glass transition temperature of the optical film (Tg) It is preferably 1 l 〇 ° C or more, more preferably 120 ° C or more. Particularly preferably 150 ° C or more. The glass transition temperature means a differential scanning calorimeter (DSC-7 type manufactured by Perkin Elmer Co., Ltd.). The glass transition temperature (Tmg) of the intermediate point determined in accordance with JIS K7 1 2 1 (1 987) was measured at a temperature rising rate of 20 ° C /min. The index for determining the transparency of the optical film of the present invention was haze (turbidity). In particular, liquid crystal display devices used outside the house require sufficient brightness and high contrast even in bright places, so the haze must be 1.0% or less, more preferably 0.5% or less. A) with cellulose In the case of the optical film of the present invention of the resin (B), high transparency can be obtained. However, when acrylic particles are used to improve other physical properties, the resin (acrylic resin (A) and cellulose ester resin (B)) is lowered by The difference in refractive index of the acrylic particles (C) prevents the haze from rising. Further, since the surface roughness also affects the haze in the form of surface haze, the particle size and the amount of addition of the acrylic particles (C) are controlled as described above. In the range, the surface roughness of the film contact portion at the time of film formation can be effectively reduced. Further, the hygroscopicity of the optical film of the present invention is evaluated by the dimensional change with respect to the humidity change - 35 - 201107382. The following method can be used for the evaluation of the dimensional change of the change. The casting direction of the produced optical film is marked at two places (cross) at 1000 ° C, 90% RH for 1 000 hours, and measured by an optical microscope. The dimensional change rate (%) is obtained by the distance between the mark (cross) and the processed mark (cross) before processing. The dimensional change rate (%) is expressed by the following formula: Dimensional change rate (%) = [(al-a2)/al]xl 〇0 a 1 : heat treatment Distance a2: When the optical film is used as a protective film for a polarizing plate of a liquid crystal display device when the distance between heat treatments is changed, the size of the optical film changes due to moisture absorption, and thus the optical film is unevenly distributed (color unevenness) or phase difference ,, so The problem of contrast reduction or staining is caused. In particular, the above problem is more pronounced when the polarizer is used for the protective film of the liquid crystal display device for outdoor use. However, when the dimensional change rate (%) of the above conditions is less than 0.5%, it is evaluated as A film having a sufficiently low hygroscopicity is displayed, more preferably less than 0.3%. Further, the optical film of the present invention has a defect of 5 μm or more in diameter in the film surface, preferably 1/10 cm square or less. More preferably, it is 0.5 /10 cm square or less, more preferably 0.1 / l 〇 cm square. The diameter of this defect means that the diameter is a circular shape, and the non-circular shape is determined by the following method using a microscope to observe the extent of the defect as the maximum diameter (diameter of the circumscribed circle). The disadvantage is that when the defect is a bubble or a foreign matter, it refers to the change of the surface shape such as the transfer or scratch of the shadow when the light is observed by the microscopy of the micrometer-36-201107382. . Further, when observed by reflected light, the size of the defects was observed by vapor deposition of aluminum or platinum. In order to obtain a film having such a defect with better productivity, it is possible to improve the cleanliness of the periphery of the casting machine with high precision before casting, or to dry it with high efficiency and suppression of foaming in a stage condition. When the number of defects is more than one /10 cm square, when the tension is applied to the film during working hours or the like, the production may be deficient and the productivity may be lowered. When the diameter of the defect is 5 μκι or more, it is visually confirmed that when it is used as an optical member, even if it cannot be visually confirmed, the coating agent may not be uniformly formed, which may become a disadvantage. The disadvantage refers to a void (foaming defect) in a film produced in a drying step of a solution film formation or a film produced by a foreign matter mixed in a film, and the optical film of the present invention is fractured according to at least one direction of HS- The elongation is preferably 1%. The upper limit of the elongation at break is not particularly limited. The disadvantage is that the roller flaw can be differentiated when the interference microscope is not clear, the quality of the polymer can be filtered on the surface point frequency, or the drying after the casting is set, for example, the starting point of the subsequent step is taken as the starting point, and the film can be broken by the polarizing plate. Observing and so on will produce bright spots. In the case where a hard coat layer (uncoated) is formed on the film, it is preferably 20% in the case of rapid evaporation of the solvent or foreign matter in the film forming solution (foreign matter defect K7 127-1999) The above is actually about 2 50%. When the elongation at break is increased from -37 to 201107382, the disadvantage in the film due to foreign matter or foaming can be suppressed. The thickness of the optical film of the present invention is preferably 20 μm or more. More preferably, it is 3 Ομηι or more. The upper limit of the thickness is not particularly limited, but when the film is formed by a solution film forming method, the upper limit is 250 μm from the viewpoints of coatability, foaming, solvent drying, etc. Further, the film thickness can be used depending on the use. The light transmittance of the optical film of the present invention is preferably 90% or more, more preferably 93% or more, and the actual upper limit is 99%. In order to achieve such excellent transparency as the total light transmittance By avoiding the introduction of additives or copolymerized components that absorb visible light, or removing foreign matter in the polymer by high-precision filtration, or reducing light diffusion or absorption inside the film. Surface roughness of the film contact portion (cooling roll, calender roll, roller, conveyor belt, coated substrate, transfer roll, etc.) to reduce the surface roughness of the film surface or reduce the refraction of the acrylic resin The optical film of the present invention is suitable for use as a polarizing plate protective film for a large liquid crystal display device or a liquid crystal display device for outdoor use when the optical film of the present invention satisfies the physical properties as described above. The optical film is obtained by forming an optical film having the following characteristics. The optical film is characterized by containing an acrylic resin (Α) and a cellulose ester resin (Β) in a mass ratio of 95:5 to 3 0:70, and the foregoing acrylic acid. The weight average molecular weight Mw of the resin (Α) is 80,000 or more, and the total substitution degree (T) of the thiol group of the cellulose ester resin (B) is 2.00 to 3.00, and the carbon number is in the range of -38 to 201107382 3 to 7. The degree of substitution of the group is 1.2 to 3_0, and the weight average molecular weight (Mw) is 75,000 or more. <Formation of Optical Film> The following describes an example of a method for forming an optical film, but the present invention is not limited thereto. In the film forming method of the optical film of the present invention, for example, a blow molding method, a T-die method, a calendering method, a cutting method, a casting method, an emulsification method, a hot pressing method, or the like can be used, but the coloring and suppression are suppressed. From the viewpoints of foreign matter defects, optical defects such as suppression of mold marks, etc., it is preferred to form a film by a solution of a casting method. (Organic solvent) When the optical film of the present invention is produced by a solution casting method, an organic solvent for forming a paste is formed. 'When the acrylic resin (A), the cellulose ester resin (B), and other additives are simultaneously dissolved, it can be used without particular limitation. For example, a chlorine-based organic solvent includes dichloromethane, and a non-chlorine organic solvent has, for example, Methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 13-dioxolane, 14-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2 ,2,3,3-hexafluoro-1-propanol, anthracene, 3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol Alcohol, 1, ι, ι, 3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-indolyl propanol, nitroethane, etc., preferably used Methylene chloride, methyl acetate Ethyl acetate, acetone. In addition to the above organic solvent, the dope preferably contains a linear or branched aliphatic alcohol having from 1 to 4 carbon atoms in an amount of from 40% by mass to 39% to 201107382. When the ratio of the alcohol in the dope is increased, the web is gelated and easily peeled off from the metal support, and when the proportion of the alcohol is small, the non-chlorinated organic solvent also promotes dissolution of the acrylic resin ( A), the function of the cellulose ester resin (B). In particular, at least 15 to 45 mass% of the three types of the acrylic resin (A), the cellulose ester resin (B) and the acrylic acid particles (C) are dissolved in a linear or branched chain containing methylene chloride and having a carbon number of 1 to 4. The colloidal composition in the solvent of the aliphatic alcohol is preferably a linear or branched aliphatic alcohol having a carbon number of 1 to 4, for example, methanol, ethanol, η-propanol, iso-propanol, η -butanol, sec-butanol, tert-butanol. Among these, in view of the stability of the dope, the lower boiling point, and the good drying property, ethanol is preferred. A preferred film forming method of the optical film of the present invention will be described below. 1) Dissolution step In the organic solvent mainly for the acrylic resin (A) and the cellulose ester resin (B), the acrylic resin (A), the cellulose ester resin (B), And if necessary, the acrylic particles (C) and other additives are stirred and dissolved to form a dope, or the acrylic resin (A) or the cellulose ester resin (B) solution is mixed with acrylic particles (C) as necessary. Solution 'Other additive solution', the step of forming a master solution of the master solution. The method for dissolving the acrylic resin (A) or the cellulose ester resin (B) by a method of dissolving under normal pressure, a method of dissolving below the boiling point of the main solvent, or a method of dissolving and lowering at a boiling point of the main solvent of -40 to 201107382 A method of dissolving by a cooling dissolution method, such as a special method disclosed in Japanese Laid-Open Patent Publication No. Hei 9-95 544, No. Hei 9-95 5 57, or JP-A-9-95 5 3-8 In the various dissolution methods such as a method of dissolving at a high pressure, it is particularly preferred to carry out a pressure-dissolution method at a boiling point or higher of the main solvent. The acrylic resin (A) and the cellulose ester resin (B) in the dope are preferably in the range of 15 to 45 mass% in total. The additive is added to the dissolved or dissolved cement, dissolved and dispersed, filtered through a filter material, defoamed, and pumped to the next step by liquid. The filtration system is preferably a filter material having a particle diameter of 0.5 to 5 μm and a furnace water time of 10 to 25 sec/100 ml. In this method, agglomerates which are formed when the particles are dispersed or agglomerates which are generated when the main gel is added are used, and only the aggregates can be removed by using a filter medium having a particle diameter of 0.5 to 5 μm and a filtration time of 10 to 25 sec/100 ml. In the main dope, the concentration of the particles is extremely low compared to the additive liquid, so that the coagulated substances do not stick to each other when the crucible is excessively entangled, resulting in a rapid increase in the filtration pressure. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an example of a dosing step, a casting step and a drying step of a preferred solution casting film forming method of the present invention. If necessary, the acrylic particles are supplied to the pot 41 to be removed by the filter 44, and the larger aggregates are removed, and then the liquid is supplied to the storage pot 42. Thereafter, the acrylic acid particle addition liquid is added to the main dope dissolving pot 1 from the storage pot 42. Thereafter, the main slurry was filtered through the main filter 3, and then the ultraviolet absorber addition liquid was added by a line of 16. In many cases, the main rubber pad contains 1 to 50% by mass of the return material. In the return material -41 - 201107382 Sometimes the acrylic acid particles are contained. In this case, the addition amount of the acrylic acid particle addition liquid is preferably controlled by the addition amount of the recycled material. The additive liquid containing acrylic particles preferably contains 0. 5 to 10% by mass of the acrylic particles, more preferably 1 to 1% by mass, and most preferably contains! ~5 mass%. In the above range, it is preferred to add a liquid system with a low viscosity, which is easy to handle and easy to add to the main dope. The term "returning material" refers to an article in which an optical film is finely pulverized, and an article which cuts off both end portions of the film which occurs when the film is formed into an optical film or a material which is an optical film material which is used as a specification due to abrasion or the like. It is preferred to previously knead the acrylic resin, the cellulose ester resin and, if necessary, the acrylic particles to form granules. 2) The casting step feeds the glue to the pressurizing die 30 through a liquid feeding pump (for example, a pressurized quantitative gear pump), and then casts the cement to the endless metal strip 31 by the press die slit. For example, there is a casting step of a casting position on a metal support such as a stainless steel belt or a rotating metal cylinder. It is possible to adjust the shape of the slit of the die portion of the mold, and it is easy to make the pressurizing die having a uniform film thickness. The press mold can be used with a coat hanger die or a T die. The surface of the metal support becomes a mirror surface. In order to increase the film forming speed, two or more pressurizing dies may be provided on the metal support, and the amount of the sizing may be divided and laminated. Alternatively, a film of a laminated structure can be obtained by a co-casting method in which a plurality of cements are simultaneously cast. 3) Solvent evaporation step -42 - 201107382 The step of heating the solvent on the casting support by ejecting the web (the film formed by casting the paste onto the support for casting) is called "web") . When the solvent is to be evaporated, there is a method of blowing from the side of the fiber web and/or a method of transferring heat from the inner surface of the support by liquid, a method of transferring heat from the surface by radiant heat, etc., but the inner liquid heat transfer method is dried. It is more efficient and therefore better. It is also possible to use a combination of these methods. It is preferred that the web on the cast support is dried on a support under an atmosphere of 40 to 100 °C. When it is desired to maintain an atmosphere of 40 to 100 ° C, it is preferred to blow the hot air of this temperature onto the surface of the fiber web or by means of infrared rays or the like. From the viewpoint of surface quality, moisture permeability, and peelability, it is preferred that the fiber web is peeled off from the support within 30 to 120 seconds. 4) Peeling step The step of peeling the web after evaporating the solvent on the metal support at the peeling position. The stripped web is sent to the next step. The temperature at the peeling position on the metal support is preferably from 10 to 40 ° C, more preferably from 1 1 to 30 ° C. The amount of residual solvent in the peeling of the web on the metal support at the time of peeling is preferably in the range of 50 to 120% by mass, depending on the strength of the drying conditions and the length of the metal support, but the residual solvent When peeling is performed at a larger amount, if the web is too soft, the flatness at the time of peeling is impaired, and the peeling tension tends to cause slack or straight strips. Therefore, the amount of residual solvent at the time of peeling is determined in consideration of economic speed and quality. The residual solvent amount of the fiber web is defined by the following formula. -43- 201107382 Residual solvent amount (%) = (mass before heat treatment of fiber web - mass after heat treatment of fiber web) / (mass after heat treatment of fiber web) X 100 In addition, heat treatment when measuring residual solvent amount It means heat treatment at 1 4 ° C for 2 hours. The peeling tension when peeling the metal support and the film is usually 196-245 N/m, but when wrinkles are likely to occur during peeling, peeling is preferably performed at a tension of 190 N/m or less, more preferably at a minimum tension of peelable ~166.6. N/m, followed by peeling at a minimum tension of ~137.2 N/m, particularly preferably at a minimum tension of ~10 N/m. In the present invention, the temperature at the peeling position on the metal support is preferably -50 to 40 ° C, more preferably 10 to 40 ° C, most preferably 15 to 30 ° C. 5) After the drying and stretching steps are peeled off, the stretching device 35 for transporting the fibers through the rollers arranged in the drying device, and/or the tenter stretching device 3 for carrying the two ends of the fiber web by the clamps are used. 4. Dry the web. The drying means is generally a method in which hot air is blown on both sides of the fiber web, and the hot air can be replaced by microwave irradiation heating to perform heating. Too fast drying tends to damage the planarity of the finished film. The residual solvent may be made 8% by mass or less by drying at a high temperature. The overall dry sputum is dried at 40~2 50t. It is particularly preferred to dry at 40 to 160 °C. When the tenter extension device is used, it is preferable to use a device for controlling the holding length of the film (the distance from the start of gripping to the end of gripping) by the right and left holding means of the tenter. In the tentering step, in order to improve the planarity -44- 201107382, it is also possible to intentionally create intervals having different temperatures. Neutral regions can be set so that there is no interference between the respective intervals in different temperature ranges. The extension operation can be divided into multi-stage implementations. For example, the tentering step is mainly performed in the first half, the second half is kept in width, and the stress relaxation of the film is performed, or after the pre-heating of the film is half-full before the stretching step, the stretching operation is performed in the latter half. It is also possible to perform biaxial stretching in the casting direction and the width direction. When performing two-axis extension, two-axis extension or phased implementation can be performed simultaneously. In this case, the stages may be extended in different directions, for example, or may be divided into multiple stages in the same direction, and extensions in different directions may be applied to any of the stages. In other words, for example, the following extension steps are possible. • Casting direction extension - width direction extension - casting direction extension - casting direction extension / width direction extension - width direction extension - casting direction extension - casting direction extension In addition, when extending in 2 axes, also includes a direction extension After that, the other side relaxes the tension and produces a contraction. At the same time, the preferred extension ratio of the 2-axis extension is a range of xl.01 times to xl.5 times in both the width direction and the length direction. The amount of residual solvent of the web at the time of the tenter is preferably 20 to 100% by mass at the start of the tenter, and the residual solvent amount of the web is 10% by mass or less. More preferably, it is 5 mass% or less. -45- 201107382 The drying temperature during the tenter is preferably 30 to 160 ° C, more preferably 50 to 150 ° C, and most preferably 70 to 140 ° C. In the tentering step, the temperature distribution in the width direction of the atmosphere is small, and from the viewpoint of improving the uniformity of the film, the temperature distribution in the width direction of the tentering step is preferably within ±5 ° C, more preferably ± 2 °. Within C, the drying step after stretching is preferably within ±1 ° C, and the amount of residual solvent is preferably reduced. The amount of the residual solvent is preferably 5% or less, more preferably 2% or less. The drying temperature in the drying step after the tentering step is preferably from 80 ° C to 160 ° C, more preferably from 90 to 140 ° C. Further, the drying temperature is preferably set to be lower for the first half of the drying step and higher for the second half. This drying temperature can be adjusted by the residual solvent of the fiber web and the conveying tension. In other words, when the residual solvent is large, the apparent Tg of the fiber web is lowered, so that lowering the drying temperature suppresses the elongation of the fiber web. Or use a tension cutting roller or the like to lower the conveying tension to a higher drying temperature, suppress the extension of the fiber web, and further reduce the residual solvent. When the elongation of the fiber web is large, the completed optical film may have a phase difference other than the design flaw in the tentering step, which is not preferable. By combining the temperature, time, stretching ratio of the tentering step and the temperature and time of the drying step after the tentering step, the methyl methacrylate monomer can be effectively removed, and the film properties can be further improved, in particular brittleness. The drying step after the tentering step is set to a certain high temperature, but the temperature may not be set to a high temperature due to the relationship of the transport tension. At this time, in order to carry the film at the same time, the above-mentioned methyl methacrylate monomer can be removed and the brittleness can be improved by setting the stretching step to a high temperature in the conveying direction. . When the tentering step is extended in the first half, the film thickness of the fiber web becomes thinner at an earlier stage, so that the removal of the methyl methacrylate monomer and the effect of improving the brittleness are easily removed. However, there is also the influence of the residence time of the tentering step, so the combination of temperature and stretching ratio must be appropriately selected. Any step of the stretching step after the tentering step and the tentering step is preferably carried out by drying at a temperature higher than 20 ° C higher than the Tg of the fiber web. Performing this processing step can greatly improve brittleness. The temperature is extended by a temperature lower than the Tg + 20 ° C of the fiber web, and even if the methyl methacrylate monomer is removed, the effect of improving the brittleness is small. In the drying step after the tentering step and the tentering step, when the application is too high, the methyl methacrylate monomer is generated due to decomposition of the resin, which is not preferable. 6) After the amount of the residual solvent in the fiber web of the winding step is 2% by mass or less, the film is wound by the winder 37 in the form of an optical film, and the residual solvent amount is 〇.4% by mass or less. A film with good stability. In particular, it is preferred to carry out the winding at 0.00 to 0.10% by mass. The winding method may be a method generally used, for example, a fixed torque method, a constant tension method, a taper tension method, a program tension control method for internal stress fixing, etc., and these may be used separately. The optical film of the present invention is preferably a long film, specifically, a film of a degree of from 100 m to 1 m, which is usually provided in a roll shape. Further, the width of the film is preferably from 1.3 to 4 m, more preferably from 1.4 to 2 m. -47-201107382 The film thickness of the optical film of the present invention is not particularly limited, but is preferably 20 to 200 μm, more preferably 25 to ΙΟΟμπι, and particularly preferably 30 to 80 μm when used for a polarizing plate protective film to be described later. [Polarizing Plate] When the optical film of the present invention is used as a protective film for a polarizing plate, a polarizing plate can be produced by a general method. Preferably, an adhesive layer is provided on the inner surface side of the optical film of the present invention, and is bonded to at least one surface of a polarizer formed by stretching in an iodine solution. On the other hand, the optical film of the present invention, or other polarizing plate protective film can be used. For example, it is preferred to use a commercially available cellulose ester film (for example, Konica Minolta TAC KC 8 UX, KC 4 UX, KC 5 UX 'KC 8 UY, KC4UY, KC6UA, KC4UA, KC12UR, KC8UCR-3, KC8UCR-4 'KC8UCR -5, KC8UE, KC4UE 'KC4FR-3, KC4FR-4, KC4HR-1, KC8U Y·HA, KC 8UX-RH A, the above is made by Konica Minolta Opto (share)). The polarizer of the main constituent elements of the polarizing plate refers to an element which can pass only the light of the deflecting surface in a certain direction. The representative polarizing film which is known at present is a polyvinyl alcohol-based polarizing film which has iodine to make polyvinyl alcohol. Film dyes and dichroic dyes. The polarizer can be obtained by forming a film of a polyvinyl alcohol aqueous solution, stretching it by uniaxial stretching, or uniaxially stretching after dyeing, and it is preferred to carry out durability treatment with a boron compound. The adhesive used in the above adhesive layer is preferably at least -48-201107382 using an adhesive layer - partially using an adhesive having a storage modulus at 25 ° C of l. 〇 xl 〇 4 Pa 〜 l. 〇 x l 〇 9 pa 2 , It is suitable to apply an adhesive, and to form a hardened adhesive having a high molecular weight or a crosslinked structure by various chemical reactions after lamination. Specific examples thereof include a urethane-based pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, a water-based polymer-isocyanate-based pressure-sensitive adhesive, a thermosetting acrylic adhesive, and the like, and a moisture-curing urethane adhesive. , polyether methacrylate type, ester type methacrylate type, oxidized polyether methacrylate and other anaerobic adhesives, cyanoacrylate type instant adhesives, acrylates and peroxides The second liquid type instant adhesive and the like. The above-mentioned adhesive may be a one-liquid type or a two-liquid type which is used in combination of two or more liquids before use. The above-mentioned adhesive may be a solvent based on an organic solvent or an emulsion type, a colloidal dispersion type, an aqueous solution type or the like which is a medium containing water as a main component, or a solventless type. The concentration of the above-mentioned adhesive liquid can be appropriately determined depending on the film thickness after the adhesion, the coating method, the coating conditions, etc., and is usually 0.1 to 50% by mass. [Liquid crystal display device] When a polarizing plate to which the optical film of the present invention is bonded is mounted on a liquid crystal display device, various liquid crystal display devices having excellent visibility can be produced, and are particularly suitable for liquid crystal displays for outdoor use such as large liquid crystal display devices or electronic signage. . The polarizing plate of the present invention is bonded to the liquid crystal cell ± in the above-mentioned adhesive layer or the like. The polarizing plate of the present invention is suitable for reflective, transmissive, semi-transmissive LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, -49-201107382 MVA type), IPS type (including FFS mode) ) LCDs of various driving methods. In particular, the display device with a screen size of 30 吋 or more is more preferably 30 吋 to 54 吋, and there is no whitening at the periphery of the screen. 'This effect can be maintained for a long time, and the stain, glare, or wavy markings are less. 'The effect is that the eyes will not be tired even if they are watched for a long time. [Embodiment] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Example 1 [Preparation of Acrylic Resin] The following acrylic resin Α1_Α1〇 and MS 1 and 2 were prepared by a known method. A1 ··monomer mass ratio (MMA: MA = 98: 2), Mw70000 methyl methacrylate monomer content 0.55 % A2: monomer mass ratio (MMA: MA = 97: 3), Mwl60000 methyl methacrylate Monomer content 〇·53 % A3: monomer mass ratio (MMA: MA = 97: 3), Mw350000 methyl methacrylate monomer content 0.52% A4: monomer mass ratio (MMA: MA = 97: 3), Mw550000 Methyl methacrylate monomer content 0.61 % -50- 201107382 A5: Monomer mass ratio (MMA: MA = 97: 3), Mw800000 Methyl methacrylate monomer content 0.75 % A6 : Monomer mass ratio (MMA : MA = 97 : 3 ) ' Mw930000 Methyl propyl methacrylate monomer content 0. 80%
Α7:單體質量比(MMA: MA = 94: 6) 、MwllOOOOO 甲基丙烯酸甲酯單體含量〇·99% A8:上述A3之樹脂使用乙醇洗淨、乾燥’除去甲基 丙烯酸甲酯單體。 甲基丙烯酸甲酯單體含量〇·21 % A9:將上述A3之樹脂溶解於甲基乙基酮中’使用乙 醇再沈殿後,經洗淨、乾燥除去甲基丙烯酸甲酯單體。 甲基丙烯酸甲酯單體含量〇·15% A10:上述A3之樹脂中添加甲基丙烯酸甲酯單體,使 含量爲1.0 0 %。Α7: monomer mass ratio (MMA: MA = 94: 6), MwllOOOOOO methyl methacrylate monomer content 〇·99% A8: The above A3 resin is washed and dried using ethanol to remove methyl methacrylate monomer . Methyl methacrylate monomer content 〇·21 % A9: The above resin of A3 was dissolved in methyl ethyl ketone. After washing with ethanol, the methyl methacrylate monomer was removed by washing and drying. Methyl methacrylate monomer content 〇·15% A10: A methyl methacrylate monomer was added to the above resin of A3 so that the content was 1.0% by weight.
MSI :單體質量比(MMA: ST = 60: 40) 、MwlOOOOO 甲基丙烯酸甲酯單體含量0.39%MSI: monomer mass ratio (MMA: ST = 60: 40), MwlOOOOOO methyl methacrylate monomer content 0.39%
MS2 :單體質量比(MMA: ST = 40: 60) 、MwlOOOOO 甲基丙烯酸甲酯單體含量0.42% MMA :甲基丙烯酸甲酯 MA :甲基丙烯酸酯 ST :苯乙烯 其他使用以下之市售的丙烯酸樹脂。 DIANALBR80 (二菱 Rayon (股)製)Mw95000 甲基丙烯酸甲酯單體含量0.55 % 201107382 DIANALBR83 (三菱 Rayon (股)製)Mw40000 甲基丙烯酸甲酯單體含量〇·53% DIANALBR85 (三菱 Rayon (股)製)Mw2 80000 甲基丙烯酸甲酯單體含量〇·51 %MS2: monomer mass ratio (MMA: ST = 40: 60), MwlOOOOOO methyl methacrylate monomer content 0.42% MMA: methyl methacrylate MA: methacrylate ST: styrene Others are commercially available as follows Acrylic resin. DIANALBR80 (manufactured by MITSUBISHI Rayon Co., Ltd.) Mw95000 Methyl methacrylate monomer content 0.55 % 201107382 DIANALBR83 (Mitsubishi Rayon) Mw40000 Methyl methacrylate monomer content 〇·53% DIANALBR85 (Mitsubishi Rayon )) Mw2 80000 Methyl methacrylate monomer content 〇·51 %
I DIANALBR88 (三菱 Rayon (股)製)Mw480000 甲基丙烯酸甲酯單體含量0.68 % 80N (旭化成 Chemicals (股)製)MwlOOOOO 甲基丙烯酸甲酯單體含量〇_65% 上述市販之丙烯酸樹脂之分子中的MM A單位的比例均 爲90〜99質量%。 [光學薄膜之製作] <光學薄膜1之製作> (膠漿液組成1 ) DIANALBR85 (三菱Rayon (股)製) 7〇質量份 纖維素酯(纖維素乙酸酯丙酸酯醯基總取代度2.75 、乙醯基取代度〇·19、丙醯基取代度2.56、Mw = 200000 ) 3 〇質量份 二氯甲烷 3 00質量份 乙醇 40質量份 將上述組成物加熱充分溶解,製作膠漿液。 (丙烯酸樹脂薄膜之製膜) 使用帶狀流延裝置,以溫度22°C、2m寬度,將上述製 作的膠漿液均勻地流延於不銹鋼帶支持體上。在不銹鋼帶 -52- 201107382 支持體上使溶劑蒸發直到殘留溶劑量變成1 00%爲止,自不 銹鋼帶支持體上以剝離張力162N/m剝離。 剝離後的丙烯酸樹脂之纖維網以3 5 °C使溶劑蒸發,裁 切成1.6m寬。然後,在拉幅步驟之前半,以延伸溫度 140°C在寬度方向延伸1.3倍,在拉幅步驟後半,保持寬度 的狀態,進行薄膜之應力緩和。拉幅步驟之滯留時間爲20 秒。 此時,以拉幅器開始延伸時之殘留溶劑量爲1 0%。 拉幅步驟後之乾燥步驟係以多數輥搬送通過乾燥區域 (zone),同時進行乾燥。 首先,乾燥步驟之前半係對於纖維網之單位剖面積施 加之張力160N/cm2、溫度100°C、滯留時間5分鐘進行乾燥 ,後半則是張力160N/cm2、溫度110°C '滯留時間5分鐘進 行乾燥。 然後,裁切成1.5m寬,對薄膜兩端施加寬10mm、高 度5μηι之壓花加工,對薄膜之單位剖面積施加之初期張力 220N/cm2、最終張力1 1 〇N/m,捲繞於內徑1 5.24cm的芯上 ,得到丙烯酸樹脂薄膜之光學薄膜1。 由不銹鋼帶支持體上之轉速與拉幅器之運轉速度計算 得到的MD方向之延伸倍率爲1 . 1倍。 表1所記載之光學薄膜1的殘留溶劑量爲〇」%,膜厚爲 4 0 μηι > 捲長爲 4000m。 <光學薄膜2〜50、及101~123之製作> -53- 201107382 除了將表1及表2所記載的丙烯酸樹脂(A)、纖維素 酯樹脂(B )之種類與組成比及表3所記載之拉幅步驟條件 與其後之乾燥步驟的條件如表4及5所示之組合外,與上述 光學薄膜1之製作同樣操作,製作光學薄膜2〜50、及 101〜123。 此外,表1及表2所記載之纖維素酯樹脂的醯基係ac爲 乙醯基、pr係丙醯基、bu係丁醯基、pen係戊醯基、bz係 苯醯基、hep係庚醯基、oct係辛醯基、ph係酞醯基。 -54- 201107382 (m/v) §3); ; οε\δ 9 \s ε \°°6 3\芽 s\seI DIANALBR88 (Mitsubishi Rayon Co., Ltd.) Mw480000 Methyl methacrylate monomer content 0.68 % 80N (Asahi Kasei Chemicals Co., Ltd.) MwlOOOOO Methyl methacrylate monomer content 〇 _65% The above-mentioned molecules of acrylic resin The ratio of the MM A units in the range is 90 to 99% by mass. [Production of optical film] <Production of optical film 1> (Mixed liquid composition 1) DIANALBR85 (manufactured by Mitsubishi Rayon Co., Ltd.) 7 parts by mass of cellulose ester (cellulose acetate propionate sulfonate total substitution Degree 2.75, acetonitrile substitution degree 1919, propyl thiol substitution degree 2.56, Mw = 200000) 3 〇 parts by mass of dichloromethane 300 parts by mass of ethanol 40 parts by mass The above composition was sufficiently dissolved by heating to prepare a dope. (Formation of Acrylic Resin Film) The above-prepared dope was uniformly cast on a stainless steel belt support at a temperature of 22 ° C and a width of 2 m using a belt-shaped casting device. The solvent was evaporated on a stainless steel belt -52 - 201107382 until the residual solvent amount became 100%, and peeled off from the stainless steel belt support at a peeling tension of 162 N/m. The exfoliated acrylic web was evaporated at 35 ° C and cut to a width of 1.6 m. Then, in the first half of the tentering step, the film was stretched by 1.3 times in the width direction at an extension temperature of 140 ° C, and the film was relieved in the state of maintaining the width in the latter half of the tentering step. The staying time of the tentering step is 20 seconds. At this time, the amount of residual solvent when the tenter starts to extend is 10%. The drying step after the tentering step is carried out by a plurality of rolls through a drying zone while drying. First, the first half of the drying step is applied to the unit cross-sectional area of the fiber web by a tension of 160 N/cm 2 , a temperature of 100 ° C, and a residence time of 5 minutes for drying. The latter half is a tension of 160 N/cm 2 and a temperature of 110 ° C. The residence time is 5 minutes. Dry. Then, it was cut into a width of 1.5 m, and an embossing process of applying a width of 10 mm and a height of 5 μm to both ends of the film was applied, and an initial tension of 220 N/cm 2 and a final tension of 1 1 〇N/m applied to the unit sectional area of the film were wound. On the core having an inner diameter of 1.24 cm, an optical film 1 of an acrylic resin film was obtained. The extension ratio of the MD direction calculated by the rotation speed of the support on the stainless steel belt and the running speed of the tenter is 1.1 times. The optical film 1 described in Table 1 had a residual solvent amount of 〇"%, a film thickness of 40 μm, and a roll length of 4000 m. <Production of Optical Films 2 to 50 and 101 to 123> -53-201107382 In addition to the types and composition ratios of acrylic resin (A) and cellulose ester resin (B) described in Tables 1 and 2, The optical film 2 to 50 and 101 to 123 were produced in the same manner as in the above-described production of the optical film 1 except for the tentering step conditions described in the following, and the conditions of the subsequent drying step, as shown in Tables 4 and 5. Further, the thiol group ac of the cellulose ester resin described in Tables 1 and 2 is an acetonitrile group, a pr-based fluorenyl group, a bu-based butyl group, a pen-based pentamidine group, a bz-type benzoquinone group, and a hep system. Base, oct system octyl group, ph system sulfhydryl group. -54- 201107382 (m/v) §3); ; οε\δ 9 \s ε \°°6 3\ bud s\se
ZL/IZ οε\οί οε\οζ. οε\ΟΛ οε\ο卜 οε\ΟΛ οε\°Λ οε\οι οε\ΟΛ οε\οζ. 0£\0 卜 OS卜 οε\οζ οε\ο 卜 οε\ο 卜 οε\ΟΛ s\0卜 οε\οζZL/IZ οε\οί οε\οζ. οε\ΟΛ οε\οbοε\ΟΛ οε\°Λ οε\οι οε\ΟΛ οε\οζ. 0£\0 卜 OS卜οε\οζ οε\ο οοε\ ο 卜οε\ΟΛ s\0卜οε\οζ
Ms 雙雲 00000^ 0000§ 1 oioz 0000s 00000^ 00§§ ooooz oooos οοοοετ §§1 ΟΟΟΟΙΖ 0000s 0000¾ 00008 00000^ 00000^ oooooe 00008Ms 双云 00000^ 0000§ 1 oioz 0000s 00000^ 00§§ ooooz oooos οοοοετ §§1 ΟΟΟΟΙΖ 0000s 00003⁄4 00008 00000^ 00000^ oooooe 00008
OOOOON 00000^ 0000sOOOOON 00000^ 0000s
OGOOS 0000s ooiz s-3 s卜 sz sz sz. sz sz. sz s卜 sz s卜 s卜OGOOS 0000s ooiz s-3 sb sz sz sz. sz sz. sz s sz sb sb
^L^L
OT ο00OT ο00
OT 06 600OT 06 600
9S9S
SI 06 06 oz τ OS- (巴锂藤遐«貍籍 qd^0-d9-uad nq 9S- 6Γ0SI 06 06 oz τ OS- (巴锂藤遐«狸籍 qd^0-d9-uad nq 9S- 6Γ0
9S9S
9S9S
9S 95 999S 95 99
9S 91°9S 91°
9S 959S 95
9S9S
9S οε 00 01 06 s οε 01 091 οζ,.τ 0-z 6Γ0 61 619S οε 00 01 06 s οε 01 091 οζ,.τ 0-z 6Γ0 61 61
6T6T
6T 61 6ΐ 61 61 6ΐ 616T 61 6ΐ 61 61 6ΐ 61
6T 616T 61
OS 0«d 90·Ι so 0寸 °e os 0·°OS 0«d 90·Ι so 0 inch °e os 0·°
(V) IB® 趑跋K *¥s魎(V) IB® 趑跋K *¥s魉
Isd 19 0Isd 19 0
TSTS
ISIS
TS 19TS 19
ISIS
ISIS
TSTS
TSTS
TSTS
ISIS
ISIS
ISIS
TSTS
ISIS
TSTS
ISIS
TSTS
IS 19IS 19
TS 0 !·0 s.o M2 000— 0000¾TS 0 !·0 s.o M2 000— 00003⁄4
I 000— 0000s 0001 0000¾ osos 0000¾ so— 0000¾ oooi 0000s 1 0000s S008 0000s 0000s 0000¾ 0000¾ 0000¾ 0000s 0000¾ 0000¾ 0000sI 000— 0000s 0001 00003⁄4 osos 00003⁄4 so— 00003⁄4 oooi 0000s 1 0000s S008 0000s 0000s 00003⁄4 00003⁄4 00003⁄4 0000s 00003⁄4 00003⁄4 0000s
0 趑涯K i 9-8 SSH03 ss0 趑涯K i 9-8 SSH03 ss
Q9HS i» 98H8 98s s00» -Hs 【6〕 \—Q9HS i» 98H8 98s s00» -Hs [6] \-
T 寸T inch
L 8 6 01 π ei ΰL 8 6 01 π ei ΰ
9T 卜τ9T 卜τ
SI 61 03SI 61 03
IN εΝ -55- 201107382 〔zfi 組成比 (質量份) (A/B) 「70/30 1 1 70/30 丨 1 70/30 1 70/30 「70/30 | | 70/30 I | 70/30 I | 70/30 1 | 70/30 I | 70/30 1 1 70/30 1 丨 70/30 1 | 70/30 | 「70/30 1 1 70/30 1 1 70/30 1 1 70/30 1 |70/30 1 1 70/30 1 丨 70/30 1 1 70/30 1 | 70/30 1 70/30 | 70/30 I | 70/30 I 纖維素酯樹脂(B) Mw 200000 200000 200000 200000 200000 200000 200000 | 2000001 200000 200000 1 2000001 1 2000001 200000 200000 200000 200000 200000 200000 200000 ! 200000 i 2000⑻ 200000 200000 40000 200000 總取代度 1 2.20 1 1 2.80 1 2.20 2.20 | 2.20 | 2.20 | 2.20 | | 2.80 I 2.75 丨 2·75 1 2.75 2.75 2.75 2.75 1 2.75 1 2.75 [2.75 2.75 1 2.75 1 I 2.75 1 「2.75 1 1 2·75 1 :2.75 2.70 2.75 取代度 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 七 〇 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 •2 1 1 1.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 pen 1 1 1.70 1 1 I 1 1 1 1 1 1 1.70 2.30 t 1 1 1.15 1 1 1 1 1 1 1 1 1.50 1 U 1 1 1 in 2.56 2.56 1 2.56 2.56 2.56 2.56 2.56 2.56 in 04 12.56 2.56 2.5β 2.56 2.56 2.56 2.56 υ CQ 0.50 0.50 0.50 0.50 0.50; 0.50! 0.50i m.5〇 L〇.19 2 ο 2 ο 0.19 2 O 2 ο 2 ο 2 ο 2 ο 2 ο 2 ο C.1S 2 d 0.19 0.19 § 0.19 丙烯酸樹脂(A) 1瞍 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.53 0.55 0.42 0.39 0.55 0.65 J 0.21 0.53 0.52 0.68 0.61 0.75 I 0.80 J 0.99 0.15 0.51 o Mw 280000 280000 280000 280000 280000 280000 280000 280000 40000 70000 100000 1 loooooI | 950001 1 100000 350000 160000 350000 480000 550000 δοοοοοί 930000 1100000 350000 280000 350000 丙烯酸 種 BR85 BR85 BR85 BR85 BR85 BR85 BR85 BR85 BR83 | τ-Η < 1 MS 2 1 1 MSI 1 BR80 80N Α8 CO < CO BR88 Α4 A5 ί CD < A7 A9 BR85 A10 種類/ 組成比編號 CO ιη C0 ci § 5 CM 9 5 寸 s -56- 201107382IN εΝ -55- 201107382 [zfi Composition ratio (mass parts) (A/B) "70/30 1 1 70/30 丨1 70/30 1 70/30 "70/30 | | 70/30 I | 70/ 30 I | 70/30 1 | 70/30 I | 70/30 1 1 70/30 1 丨70/30 1 | 70/30 | "70/30 1 1 70/30 1 1 70/30 1 1 70/ 30 1 |70/30 1 1 70/30 1 丨70/30 1 1 70/30 1 | 70/30 1 70/30 | 70/30 I | 70/30 I Cellulose Ester Resin (B) Mw 200000 200000 200000 200000 200000 200000 200000 | 2000001 200000 200000 1 2000001 1 2000001 200000 200000 200000 200000 200000 200000 200000 ! 200000 i 2000(8) 200000 200000 40000 200000 Total Substitution 1 2.20 1 1 2.80 1 2.20 2.20 | 2.20 | 2.20 | 2.20 | | 2.80 I 2.75丨2·75 1 2.75 2.75 2.75 2.75 1 2.75 1 2.75 [2.75 2.75 1 2.75 1 I 2.75 1 "2.75 1 1 2·75 1 : 2.75 2.70 2.75 Degree of substitution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 7〇1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 pen 1 1 1.70 1 1 I 1 1 1 1 1 1 1.70 2.30 t 1 1 1. 15 1 1 1 1 1 1 1 1 1.50 1 U 1 1 1 in 2.56 2.56 1 2.56 2.56 2.56 2.56 2.56 2.56 in 04 12.56 2.56 2.5β 2.56 2.56 2.56 2.56 υ CQ 0.50 0.50 0.50 0.50 0.50; 0.50! 0.50i m.5 〇L〇.19 2 ο 2 ο 0.19 2 O 2 ο 2 ο 2 ο 2 ο 2 ο 2 ο C.1S 2 d 0.19 0.19 § 0.19 Acrylic resin (A) 1瞍0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.53 0.55 0.42 0.39 0.55 0.65 J 0.21 0.53 0.52 0.68 0.61 0.75 I 0.80 J 0.99 0.15 0.51 o Mw 280000 280000 280000 280000 280000 280000 280000 280000 40000 70000 100000 1 loooooI | 950001 1 100000 350000 160000 350000 480000 550000 δοοοοοί 930000 1100000 350000 280000 350000 Acrylic BR85 BR85 BR85 BR85 BR85 BR85 BR85 BR85 BR83 | τ-Η < 1 MS 2 1 1 MSI 1 BR80 80N Α8 CO < CO BR88 Α4 A5 ί CD < A7 A9 BR85 A10 Type / Composition ratio number CO ιη C0 ci § 5 CM 9 5 inch s -56- 201107382
疰 m m 取 m 溢! 駿 a 升 S |§ in ΙΟ ιο If) in in ΙΟ \r> ΙΟ in in If) l〇 in in in o s s tn m 8 SS o ο ο Q ο O ο 〇 o ο ο o o o s o ρ o § o 〇 r η !«\ 5 s s s s s s s 3 s s s s in '«•w :§ s s s s s m § S 钋 酲 |§ m to in m in in tn m LT> v> ιο u> m in to tip m o s s m m s 12 o ο ο o o o ο Ο o ο o o s o S o <g o o s s a <g R0 SM\ s s s S s 1 s s s s s s in s s s s s s m s s 進 雖 m a II m s s s s s s s s s 5? o 8 s s 8 s s s s s s s 褂 m 隹 Μ 00 CO CO eo CO <〇 — in in CO CO CO 00 to CO Γ0 CO CO CO CO CO CO Φ 井 井 s 并 is f: 域 并 班 盎 m 班 并 班 Μ 升 u i: φ U Φ- i 并 u 隹 m 井 u 隹 域 井 1m 并 im i: 升 ¢: m 并 6 井 u 盎 升 e φ 域 并 u φ m 升 i: 域 升 U 录 井 4m U |g 8 ο s s ο s ο s § ? o ο ο s s s 8 iMJ m 雖 m u \ 靡 a eg CQ in <〇 CO σ> 〇 - eg <r> ΙΟ to 卜 CO 〇) s SI 《評價方法》 對於所得之光學薄膜1〜5 0、及1 0 1〜1 2 3以下述評價。 (霧度(haze ):對於對比影響較大的透明性評價) 對於上述製作之各薄膜試料,依據JIS K-7136使用霧 度計(NDH2000型、日本電色工業(股)製)測定薄膜試 料1片。 (張力軟化點:耐熱性評價) -57 - 201107382疰mm 取 m overflow! 骏 a 升 S |§ in ΙΟ ιο If) in in ΙΟ \r> ΙΟ in in If) l〇in in in oss tn m 8 SS o ο ο Q ο O ο 〇o ο ο oooso ρ o § o 〇r η !«\ 5 sssssss 3 ssss in '«•w :§ sssssm § S 钋酲|§ m to in m in in tn m LT> v> ιο u> m in to tip mossmms 12 o ο ο ooo ο Ο o ο ooso S o <goossa <g R0 SM\ sss S s 1 ssssss in ssssssmss while ma II msssssssss 5? o 8 ss 8 sssssss 褂m 隹Μ 00 CO CO eo CO <〇 — in in CO CO CO 00 to CO Γ0 CO CO CO CO CO CO Φ Well s and is f: Domain and class m class and class Μ ui ui: φ U Φ- i and u 隹m well u 隹 domain well 1m and im i: ascending ¢: m and 6 wells u ang e φ domain and u φ m liter i: domain liter U logging 4m U | g 8 ο ss ο s ο s § o o ο s sss 8 iMJ m Although mu \ 靡a eg CQ in <〇CO σ> 〇-eg <r> ΙΟ to 卜CO 〇) s SI "Evaluation method" For the obtained optical film 1 to 5 0, and 1 0 1 to 1 2 3 are evaluated as follows. (Haze): Evaluation of transparency which has a large influence on the contrast. For each of the film samples prepared above, a film sample was measured by a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS K-7136. 1. (Tensile softening point: heat resistance evaluation) -57 - 201107382
使用萬能拉力試驗機(ORIENTEC公司製RTC- 1 22 5A )進行下述評價。 將光學薄膜切成120mm (長)X 10mm (寬)後,以 10N之張力拉伸’同時以3〇t/min之升溫速度持續升溫,3 次測定到達9N時點的溫度,求其平均値。 (延性破壊:脆性評價) 將光學薄膜切成100mm (長)xl0mm (寬),在縱方 向之中央部分別以外折、內折各折1次,此評價測定3次, 以下述基準評價。此處之評價之折斷係表示破裂分離成2 片以上的片段。 〇:3次均未折斷 X : 3次中,至少1次折斷 (相位差:延遲之測定) 由各光學薄膜切成試料35mmx35mm,在25°C,55%RH 下調濕2小時’使用自動雙折射計(KOBRA2 l DH、王子計 測(股))由5 90nm之垂直方向所測定之値與使薄膜面傾 斜的狀態问樣測定之延遲値之外推値(extrapoiated value ),計算下述R〇、Rt。 R 〇 ( 5 9 0 ) = ( nx-ny) x d ( nm )The following evaluation was performed using a universal tensile tester (RTC-1225 5A, manufactured by ORIENTEC Co., Ltd.). After the optical film was cut into 120 mm (length) X 10 mm (width), the film was stretched by a tension of 10 N while the temperature was raised at a temperature increase rate of 3 Torr/min, and the temperature at the point of reaching 9 N was measured three times to obtain an average enthalpy. (Expansion breakage: evaluation of brittleness) The optical film was cut into 100 mm (length) x 10 mm (width), and folded in the center of the longitudinal direction, and folded in half, and the evaluation was performed three times, and the evaluation was performed based on the following criteria. The fracture of the evaluation herein indicates that the fragment is separated into two or more pieces by rupture. 〇: 3 times unbroken X: 3 times, at least 1 break (phase difference: measurement of delay) Cut from each optical film into a sample 35mm x 35mm, adjust humidity at 25 ° C, 55% RH for 2 hours 'Use automatic double The refractometer (KOBRA2 l DH, prince measurement (strand)) is measured by the vertical direction of 5 90 nm and the delay of the measurement of the state of the film surface, and the following R〇 is calculated. , Rt. R 〇 ( 5 9 0 ) = ( nx-ny) x d ( nm )
Rt ( 590 ) ={ ( nx + ny) /2-nz}xd ( nm) [上式中’ R〇(590)係表示波長5 9 0nm之薄膜內之面內延 遲値,Rt( 590)係表示590nm之薄膜內之厚度方向的延遲 値。此外’ d係表不光學薄膜之厚度(nm) ,nx係表示 590nm之薄膜之面內之最大折射率,也稱爲遲相軸方向之 -58- 201107382 折射率。ny係表示590nm之薄膜面內,與遲相軸直角方向 之折射率,nz係表示590nm之厚度方向之薄膜的折射率] (切割性:製造適性評價) 使用輕荷重拉裂試驗機(東洋精機公司製),將各光 學薄膜拉裂如下述評價。 〇:拉裂面非常平滑,且完全斷裂。 △:拉裂面稍微有毛邊,但是完全斷裂。 X:拉裂面有非常多毛邊,且未完全斷裂。 (薄膜外觀:製造適正評價) 關於製作的光學薄膜以目視評價薄膜外觀,依據以下 基準進行評價。 〇:非常平滑的平面性。 △:稍微有鬆弛或皺紋、有段差。 X :有清楚的鬆弛或皺紋、有段差。 (液晶顯示裝置之特性評價) <偏光板之製作> 如下述製作將各光學薄膜作爲偏光板保護薄膜的偏光 板》 將厚度120μιη之長條筒狀聚乙烯醇薄膜浸漬於含有碘i 質量份、硼酸4質量份的水溶液1〇〇質量份中,50 °C下在搬 送方向延伸5倍製作偏光膜。 其次’使用丙烯酸接著劑,對實施例1製作的光學薄 膜1施加電暈處理後’貼合於上述偏光膜之單面。 在偏光膜之另一面貼合以鹼皂化處理之相位差薄膜之 -59- 201107382 1<:〇1^31^11〇1130^〇公司製1^81;乂,經乾燥製作偏光板?1 。同樣的,使用本發明之光學薄膜2〜50及101 ~1 23製作偏 光板 P2~50及 P101-123。 使用本發明之光學薄膜的偏光板係薄膜切割性優異’ 容易加工。 <液晶顯示裝置之製作> 使用上述製作的各偏光板評價光學薄膜之顯示特性。 將Sharp (股)製32吋電視AQ-32AD5之預先貼合之兩 面的偏光板剝離,將上述製作的偏光板使各自KC 8 UCR-5 在液晶胞之玻璃面側,且使吸收軸朝向於與預先貼合之偏 光板相同方向來貼合,分別製作液晶顯示裝置。 (視角變動:偏光板保護薄膜之耐熱•耐濕性評價) 使用如上述製作之液晶顯示裝置1〜50、及101〜123進 行下述評價。 在23°C、55%RH之環境下,使用ELDIM公司製EZ-C〇ntraStl60D,測定液晶顯示裝置之視角。接著同樣測定 上述偏光板經過60°C、90%RH處理1 000小時者,以下述基 準進行3階段評價。 〇:視角完全未變動 △:視角稍微變動 X :視角變動大 (色彩偏移:偏光板保護薄膜之耐熱•耐濕性評價) 關於上述製作之液晶顯示裝置1〜50 '及1〇1〜123,在 23 °C、55 %RH之環境下’使顯示器顯示黑色,由斜方向45。 -60- 201107382 之角度觀察。接著,同樣觀察將上述偏光板經過60°C、 90%RH處理1 000小時者,並以下述基準評價色變化。 〇:完全無色變化。 △:稍微有色變化。 X :色變化大。 以上評價的結果如表4及表5所示。 [表4] 薄膜 編號 滚1 祭2 光學薄膜評價 液晶顯示裝置 評價 備註 霧度 (%) 張力 軟化點 CC) 延性 破壞 聚3 嶔4 相位差 (no) 浓5 視角 變化 色彩 偏移 R 〇 R t 1 1 2 0.22 121 〇 〇 0.11 0.6 1.2 〇 〇 〇 本發明 2 2 2 0.22 106 〇 △ 0.14 0.6 1.3 〇 △ Δ 本發明 3 3 2 0.22 103 X X 0.16 0.7 1.4 〇 X X 比較例 4 4 2 0.29 131 〇 〇 0.11 0.7 1.2 〇 〇 Δ 本發明 5 5 2 0.43 132 〇 〇 0.11 0.7 1.2 〇 Δ Δ 本發明 6 6 2 0.56 135 〇 〇 0.11 0.7 1.3 〇 △ Δ 本發明 7 7 2 1.20 136 〇 〇 0.12 0.7 1.2 △ X X 比較例 8 8 2 0.27 117 X X 0.11 0.7 1.3 △ 〇 △ 比較例 9 9 2 0.28 118 〇 Δ 0.11 0.7 1.3 Δ 〇 △ 本發明 10 10 2 0.27 119 〇 〇 0.11 0.6 1.4 〇 〇 〇 本發明 11 11 2 0.25 119 〇 〇 0.11 0.8 1.2 〇 〇 〇 本發明 12 12 2 0.26 120 〇 〇 0.11 0.7 1.4 〇 〇 〇 本發明 13 13 2 0.33 118 〇 〇 0.10 0.7 1.2 △ 〇 〇 本發明 14 14 2 0.52 119 〇 〇 0.11 0.6 1.3 Δ 〇 △ 本發明 15 15 2 0.77 125 〇 Δ 0.12 0.7 1.4 △ △ △ 本發明 16 16 2 0.41 123 〇 〇 0.11 0.6 1.3 〇 〇 〇 本發明 17 17 2 0.84 124 〇 〇 0.10 0.6 1.3 Δ 〇 △ 本發明 18 18 2 1.37 125 〇 X 0.16 0.7 1.3 △ Δ △ 比較例 19 19 2 0.30 120 〇 〇 0.12 0.7 1.2 〇 〇 〇 本發明 20 20 2 0.81 124 〇 △ 0.11 0.6 1.2 Δ 〇 △ 本發明 21 21 2 1.56 121 X X 0.17 0.6 1.3 △ Δ △ 比較例 22 22 2 0.45 120 〇 Δ 0.11 0.7 1.2 Δ Δ △ 本發明 23 23 2 3.70 110 X X 0.16 0.7 1.3 X X X 比較例 24 24 2 0.68 123 〇 〇 0.11 0.7 1.3 Δ △ △ 本發明 25 25 2 0.30 122 〇 〇 0.11 0.7 1.3 〇 〇 〇 本發明 26 26 2 0.62 115 〇 〇 0.10 0.8 1.2 Δ △ △ 本發明 27 27 2 0.29 113 〇 〇 0.12 0.8 1.3 〇 〇 〇 本發明 28 28 2 0.58 110 〇 〇 0.11 0.8 1.3 〇 △ △ 本發明 29 29 2 0.47 106 〇 〇 0.11 0.8 1.3 〇 △ △ 本發明 30 30 2 0.52 111 〇 〇 0.11 0.8 1.3 〇 △ △ 本發明 31 31 2 0.39 102 〇 〇 0.11 0.7 1.3 〇 X X 比較例 32 32 2 3.20 110 X X 0.10 0.8 1.3 △ X X 比較例 33 33 2 0.29 120 〇 〇 0.11 0.7 1.3 〇 〇 〇 卒發明 34 34 2 0.32 115 X X 0.12 0.6 1.3 〇 〇 △ 比較例 35 35 2 0.33 116 X X 0.12 0.6 1.3 〇 〇 △ 比較例 36 36 2 0.89 120 〇 △ 0.10 5.1 10.5 〇 △ △ 本發明 37 37 2 0.48 119 〇 Δ 0.10 6.3 12.1 〇 △ △ 本發明 -61 - 201107382 [表5] 薄膜 編號 淡1 光學薄膜評價 液晶顯: 評 呑裝置 » 備註 效2 霧度 {%) 張力 軟化點 (C) 延性 破壞 浓3 浓4 相位差 (nm) 嶔5 視角 變化 色彩 偏移 R 〇 R t 38 3S 2 0.33 119 〇 △ 0.12 0.6 1.4 △ 〇 Δ 本發明 39 39 2 0.31 120 〇 Δ 0.15 0.7 1.2 〇 〇 〇 本發明 40 40 2 0.47 135 〇 Δ 0.06 0.8 1.3 〇 〇 〇 本發明 41 41 2 0.25 121 〇 〇 0.11 0.8 1.4 〇 〇 〇 本發明 42 42 2 0.26 123 〇 〇 0.11 0.7 1.3 〇 〇 〇 本發明 43 43 2 0.35 123 〇 Δ 0.14 0.7 1.3 〇 〇 〇 本發明 44 44 2 0.36 123 〇 △ 0.14 0.6 1.3 〇 〇 〇 本發明 45 45 2 0.51 122 〇 Δ 0.14 0.8 1.3 △ 〇 〇 本發明 46 46 2 0.64 121 〇 Δ 0.14 0,7 1.3 Δ 〇 〇 本發明 47 47 2 0.77 121 〇 Δ 0.14 0.7 1.3 Δ 〇 〇 本發明 48 48 2 0.31 123 X X 0.05 0.7 1.2 Δ 〇 Δ 比較例 49 49 2 0.35 120 X X 0.12 0.7 1.2 〇 Δ X 比較例 50 50 2 0.43 136 〇 △ 0.24 0.6 1.2 〇 X X 比較例 101 1 1 0.28 117 △ △ 0.13 1.5 3.5 〇 △ 〇 本發明 102 1 2 0.22 121 〇 〇 0.10 0.6 1.2 〇 〇 〇 本發明 103 1 3 0.22 121 〇 〇 0.08 0.5 0.9 〇 〇 〇 本發明 104 1 4 0.23 115 X X 0.20 1.1 4.2 〇 Δ Δ 比較例 105 1 5 0.27 121 Δ Δ 0.15 1.0 2.4 〇 〇 △ 本發明 106 1 6 0.23 121 〇 〇 0.10 0.8 1.8 △ 〇 〇 本發明 107 1 7 0.23 121 〇 △ 0.10 1.1 2.4 △ 〇 〇 本發明 108 1 8 0.30 121 〇 〇 0.10 1.5 3.5 △ Δ Δ 本發明 109 1 9 0.30 121 〇 〇 0.08 0.9 2.0 Δ 〇 〇 本發明 110 1 10 0.30 121 〇 〇 0.09 0.5 0.9 〇 〇 〇 本發明 111 1 11 0.27 121 〇 〇 0.08 0.3 0.7 Δ 〇 〇 本發明 112 1 12 0.26 121 △ Δ 0.10 0.4 0.7 △ 〇 〇 本發明 113 1 13 0.27 121 〇 〇 0.02 0.2 0.5 〇 〇 〇 本發明 114 1 14 0.28 121 〇 〇 0.04 0.5 0.9 〇 〇 〇 本發明 115 1 15 0.23 121 〇 〇 0.02 3.3 10.1 〇 Δ △ 本發明 116 1 16 0.31 121 〇 〇 Q.04 2.5 5.2 〇 〇 Δ 本發明 117 1 17 0.26 121 〇 〇 0.08 0.6 1.1 〇 〇 〇 本發明 118 1 18 0.26 121 〇 〇 0.07 0.4 1.0 Δ 〇 〇 本發明 119 1 19 0.25 121 Δ Δ 0.08 0.5 1.1 △ 〇 〇 本發明 120 1 20 0.27 121 〇 〇 0.05 0.9 2.1 〇 〇 〇 本發明 121 1 21 0.30 121 Δ X 0.01 4.2 7.8 〇 〇 △ 比較例 122 1 22 0.23 121 X X 0.16 1.9 12.1 △ △ △ 比較例 123 3 3 0.21 103 X X 0.14 0.6 1.4 〇 X X 比較例 ※丄:種類/組成比編號 (丙烯酸樹脂(A)、繊維素酯樹脂(B)之種類與組成比;參照表1、2) ※之:拉幅/乾燥步驟編號(拉幅步驟條件與其後之乾燥步驟之條件;參照表3) ※已:切割性 4 :甲基丙烯酸甲酯單體含S(質fl%) ※5 :薄膜外觀 -62- 201107382 如表4及5所記載,本發明之光學薄膜顯示低吸濕性, 透明且高耐熱性,脆性之改善優異的特性。此外,使用本 發明之光學薄膜製作的偏光板、液晶顯示裝置具有辨識性 及色彩偏移優異的特性。 實施例2 [丙烯酸粒子之調製] [丙烯酸粒子(C1)之調製] 在內容積60L之附有回流冷卻器的反應器中投入離子 交換水38.2L、二辛基磺基琥珀酸鈉111.6g,以25〇rpm之 轉數攪拌,同時在氮氣氛下升溫至75t,形成事實上無氧 影響的狀態。添加APS 0.3 6g,攪拌5分鐘後,一次添加由 MMA1 65 7g、BA21.6g及ALMA1.68g所構成之單體混合物, 檢測出發熱波峰後再保持2〇分鐘完成最內硬質層之聚合。 其次添加APS 3.48g,攪拌5分鐘後以120分鐘連續添 加由 BA 8 1 05g ' PEGDA ( 200 ) 31.9g 及 ALMA 264.0g 所構 成的單體混合物,添加結束後再保持120分鐘完成軟質層 之聚合。 接著添加APS 1.32g,攪拌5分鐘後以20分鐘連續添加 由MMA 2106g、BA 201.6g所構成的單體混合物,添加結 束後再保持20分鐘完成最外硬質層1之聚合。 其次添加APS 1.32g,5分鐘後以20分鐘連續添加由 MMA 3148g、BA 201.6g及n-OM lO.lg所構成的單體混合 物,添加結束後再保持20分鐘。升溫至95 °C後保持60分鐘 63- 201107382 ,完成最外硬質層2之聚合。 將上述所得之聚合物乳膠投入3質量%硫酸鈉溫水溶液 中’重覆鹽析、凝固’接著脫水、洗淨後,進行乾燥得到 3層構造之丙烯酸粒子(C1)。藉由吸光度法得到平均粒 徑爲1 〇 〇 n m » 上述簡稱係各自爲下述材料。 MMA :甲基丙烯酸甲酯 MA :甲基丙烯酸酯 BA : η-丁基丙烯酸酯 ALMA :烯丙基甲基丙烯酸酯 PEGDA:聚乙二醇二丙烯酸酯(分子量200 ) η-ΟΜ: η -辛基硫醇 APS :過硫酸銨 [光學薄膜之製作] <光學薄膜38-1〜38-6之製作> (膠漿液組成) DIANALBR80 (三菱 Rayon (股)製) 66.5 質量份 纖維素酯(纖維素乙酸酯丙酸酯醯基總取代度2.75 、乙醯基取代度0.19、丙醯基取代度2.56、Mw=100000) 2 8.5質量份 上述調製的丙烯酸粒子(C1 ) 20質量份 二聚甲烷 300質量份 乙醇 40質量份 將上述組成物加熱充分溶解製作膠漿液。 -64- 201107382 其次’與實施例1所記載之光學薄膜38的製造方法同 樣製作光學薄膜38-1。 以下除了將丙烯酸樹脂(A)、纖維素酯樹脂(B)、 丙烯酸粒子(C )、組成比改爲如表6記載外,與光學薄膜 38之製造方法同樣製作光學薄膜3 8-2〜3 8-6。 光學薄膜38-5係使用C2: metablen W-341 (三菱 Rayon公司製)取代丙烯酸粒子C1,而光學薄膜38-6係將 單層構造之MR-2G (綜硏化學公司製)作爲C3使用。 [表6] 光學薄膜編號 組成比(質量份) (A)/(B)/(C) P烯酸粒子 編號 粒子構造 38 70/30/- - 一 3Θ- 1 66.5/28,5/ 5.0 C 1 3層芯殼構造 38- 2 69.9/29.9/ 0.2 C 1 3層芯殼構造 38-3 56.0/24.0/20.0 C 1 3層芯殼構造 38—4 45.0/20.0/35.0 C 1 3層芯殼構造 38-5 69.7/29.6/ 0,7 C 2 3層芯殻構造 38-6 66.5/28.5/ 5.0 C3 單層構造 《評價方法》 對於製得之光學薄膜38-1〜38-6進行以下評價。 (樹脂與粒子之狀態:相溶/非相溶) 關於製作後的光學薄膜38-1,秤取薄膜試料12g,再 溶解於上述組成之二氯甲烷/乙醇溶劑後攪拌、充分溶解 .分散,使用具有Ο.ΐμπι之孔徑之PTFE製的薄膜過濾器 Τ010Α ( ADVANTEC公司製)過濾,過濾後的不溶物經充 分乾燥後測得重量爲1.8g。 將此不溶物再分散於溶劑中’使用malvern(malvern 公司製)測定粒度分布,發現在〇·10〜0.20μιη附近有粒度 分布。 -65 - 201107382 上可知,添加之丙烯酸粒子(C)之90質量%以 上爲以不溶物形態殘留著,在光學薄膜中,丙烯酸粒子( C)以非相溶狀態存在著。 同樣的’對光學薄膜38_2〜38-6進行同樣測定,結果 與3 8 · 1同樣。 對於此等試料進行與實施例〗同樣的評價,所得之結 果如表7所示。 〔S】 醵 m 鷗 Eg 燦 I 1 < 〇 < < < 0 o m 1 〇 〇 〇 〇 < 〇 〇 蜓 狸 硪 琳 m m 越 1 < o < < < ο < i ¥ ^Μ· Q: < tf> in ur * Ο VC (Ο d P-* o. r^t d CO· ό 卜 d 卜 d 卜 o in m <NJ Ό ΓΟ o o CSJ o to. o CM , 〇 j2 o 寸 < 〇 <3 o o < 〇 CO 〇 〇 O 〇 〇 〇 __ _ 〇 #1 雲 〇 0 0 〇 〇 〇 0 P 〇> .00 σ> o K K m m S o U) <n d n d in o s o iO CO C> 58 d C\J 1 趣 tm *rrS 细 铢 细 m 1 琺 Ψ * 细 祙 g 1 CM I 浜 CO 1 1 in 1 <〇 1 涝 避E-趣涯Μ糊fr:'ln潑 起@这:对來 i .· i iKIi .· S 髌躍鹤敏®·^: 一 兹 -66 - 201107382 如上述’本發明之光學薄膜中再添加丙烯酸微粒子時 ,透明性(霧度)有若干降低,但是已更進一步改善薄膜 之切割性、外觀、液晶顯示裝置之視角變動或色彩偏移。 實施例3 調製光學薄膜5之膠漿時,除了添加下述紫外線吸收 劑外,與實施例1同樣製作光學薄膜5-1、5-2,且與實施例 1同樣製作液晶顯示裝置。 5-1 : Tinuvin 109 ( Ciba Japan (股)製)1.5 質量份 Tinuvin 171 ( Ciba Japan (股)製)0.7 質量份 5-2 : LA-31 ((股)ADEKA 製) 1.5 質量份 所得之液晶顯示裝置係視角變動及色彩偏移更優異。 如上述,使用本發明之光學薄膜時,也可適當添加以 往偏光板保護薄膜所用的添加劑,藉此製作的偏光板、液 晶顯示裝置顯示辨識性及色彩偏移優異的特性。 【圖式簡單說明】 [圖1]係表示溶液流延製膜方法之膠漿調製步驟、流延 步驟及乾燥步驟之一例的模式圖。 【主要元件符號說明】 1 :溶解鍋 3、 6、12、15:爐過器 4、 1 3 :儲存槽 -67- 201107382 5、14 :送液泵 8、16 :導管 1 0 :紫外線吸收劑投入鍋 2 0 :合流管 21 :混合機 30 :模 3 1 :金屬支持體 3 2 :纖維網 3 3 :剝離位置 3 4 :拉幅器裝置 3 5 :輥乾燥裝置 41 :粒子投入鍋 42 :儲存槽 43 :泵 44 :過濾器 -68-Rt ( 590 ) ={ ( nx + ny) /2-nz}xd ( nm) [R 〇 (590) in the above formula represents the in-plane retardation 薄膜 in the film with a wavelength of 590 nm, Rt( 590) The retardation 厚度 in the thickness direction in the film of 590 nm is shown. Further, the 'd series indicates the thickness (nm) of the optical film, and the nx indicates the maximum refractive index in the plane of the film of 590 nm, which is also referred to as the refractive index of -58 to 201107382 in the direction of the slow axis. The ny system indicates the refractive index in the plane of the film at 590 nm, and the refractive index in the direction perpendicular to the axis of the slow phase, and the nz indicates the refractive index of the film in the thickness direction of 590 nm. (Cutability: evaluation of manufacturing suitability) Using a light load tensile tester (Toyo Seiki) The company's optical film was pulled as shown below. 〇: The cracked surface is very smooth and completely broken. △: The cracked surface is slightly burred, but completely broken. X: The cracked surface has a lot of burrs and is not completely broken. (Appearance of Film: Appropriate Evaluation of Manufacturing) The optical film produced was visually evaluated for the appearance of the film, and evaluated according to the following criteria. 〇: Very smooth flatness. △: There is a slight slack or wrinkle, and there is a step. X: There are clear slacks or wrinkles, and there are steps. (Evaluation of Characteristics of Liquid Crystal Display Device) <Production of Polarizing Plate> A polarizing plate having each optical film as a polarizing plate protective film was produced as follows. A long cylindrical polyvinyl alcohol film having a thickness of 120 μm was immersed in an iodine-containing mass. In a 1 part by mass of an aqueous solution of 4 parts by mass of boric acid, a polarizing film was formed by stretching 5 times in the transport direction at 50 °C. Then, the optical film 1 produced in Example 1 was subjected to corona treatment using an acrylic adhesive, and was bonded to one side of the above polarizing film. On the other side of the polarizing film, a phase difference film treated with an alkali saponification is attached. -59-201107382 1<: 〇1^31^11〇1130^〇1制81; 乂, dried to make a polarizing plate? 1 . Similarly, polarizing plates P2 to 50 and P101-123 were produced using the optical films 2 to 50 and 101 to 1 23 of the present invention. The polarizing plate-based film using the optical film of the present invention is excellent in cutting property and is easy to process. <Production of Liquid Crystal Display Device> The display characteristics of the optical film were evaluated using the respective polarizing plates prepared above. The polarizing plates of the two sides of the 32-inch TV AQ-32AD5 made of Sharp (strand) were peeled off, and the polarizing plates prepared above were placed on the glass surface side of the liquid crystal cell with the absorption axis facing each other. The liquid crystal display device was fabricated by bonding in the same direction as the polarizing plate to be bonded in advance. (Viewing angle variation: heat resistance and moisture resistance evaluation of the polarizing plate protective film) The following evaluations were carried out using the liquid crystal display devices 1 to 50 and 101 to 123 produced as described above. The viewing angle of the liquid crystal display device was measured using an EZ-C〇ntraStl60D manufactured by ELDIM Co., Ltd. under an environment of 23 ° C and 55% RH. Subsequently, the polarizing plate was subjected to the treatment of 60 ° C and 90% RH for 1,000 hours, and the three-stage evaluation was carried out on the following basis. 〇: The viewing angle is completely unchanged Δ: The viewing angle is slightly changed. X: The viewing angle is greatly changed (color shift: heat resistance and moisture resistance evaluation of the polarizing plate protective film) The liquid crystal display devices 1 to 50' and 1〇1 to 123 prepared as described above , in the environment of 23 ° C, 55 % RH 'to make the display black, from the oblique direction 45. -60- 201107382 from the perspective of the angle. Next, the polarizing plate was subjected to treatment at 60 ° C and 90% RH for 1,000 hours, and the color change was evaluated on the basis of the following criteria. 〇: Completely colorless change. △: A slight color change. X: The color changes greatly. The results of the above evaluation are shown in Tables 4 and 5. [Table 4] Film No. Roll 1 Festival 2 Optical Film Evaluation Liquid Crystal Display Device Evaluation Remarks Haze (%) Tension Softening Point CC) Ductile Destruction Poly 3 嵚 4 Phase Difference (no) Concentration 5 Viewing Angle Change Color Offset R 〇R t 1 1 2 0.22 121 〇〇0.11 0.6 1.2 〇〇〇2 2 2 0.22 106 〇Δ 0.14 0.6 1.3 〇Δ Δ The present invention 3 3 2 0.22 103 XX 0.16 0.7 1.4 〇XX Comparative Example 4 4 2 0.29 131 〇〇 0.11 0.7 1.2 〇〇Δ The present invention 5 5 2 0.43 132 〇〇0.11 0.7 1.2 〇Δ Δ The present invention 6 6 2 0.56 135 〇〇0.11 0.7 1.3 〇Δ Δ The present invention 7 7 2 1.20 136 〇〇0.12 0.7 1.2 △ XX Comparative Example 8 8 2 0.27 117 XX 0.11 0.7 1.3 Δ 〇 △ Comparative Example 9 9 2 0.28 118 〇 Δ 0.11 0.7 1.3 Δ 〇 △ The present invention 10 10 2 0.27 119 〇〇 0.11 0.6 1.4 〇〇〇 The present invention 11 11 2 0.25 119 〇〇 0.11 0.8 1.2 〇〇〇 The present invention 12 12 2 0.26 120 〇〇 0.11 0.7 1.4 〇〇〇 The present invention 13 13 2 0.33 118 〇〇 0.10 0.7 1.2 △ 〇〇 The present invention 14 14 2 0.52 119 〇〇 0.11 0.6 1.3 Δ 〇△ The present invention is 15 15 2 0.77 125 〇 Δ 0.12 0.7 1.4 Δ Δ Δ The present invention 16 16 2 0.41 123 〇〇 0.11 0.6 1.3 〇〇〇 The present invention 17 17 2 0.84 124 〇〇 0.10 0.6 1.3 Δ 〇 △ The present invention 18 18 2 1.37 125 〇X 0.16 0.7 1.3 Δ Δ △ Comparative Example 19 19 2 0.30 120 〇〇 0.12 0.7 1.2 〇〇〇 The present invention 20 20 2 0.81 124 〇 △ 0.11 0.6 1.2 Δ 〇 △ The present invention 21 21 2 1.56 121 XX 0.17 0.6 1.3 Δ Δ △ Comparative Example 22 22 2 0.45 120 〇 Δ 0.11 0.7 1.2 Δ Δ Δ The present invention 23 23 2 3.70 110 XX 0.16 0.7 1.3 XXX Comparative Example 24 24 2 0.68 123 〇〇 0.11 0.7 1.3 Δ △ △ The present invention 25 25 2 0.30 122 〇〇0.11 0.7 1.3 〇〇〇26 26 2 0.62 115 〇〇0.10 0.8 1.2 Δ △ △ The present invention 27 27 2 0.29 113 〇〇 0.12 0.8 1.3 〇〇〇 The present invention 28 28 2 0.58 110 〇〇 0.11 0.8 1.3 〇 △ △ The present invention 29 29 2 0.47 106 〇〇 0.11 0.8 1.3 〇 △ △ The present invention 30 30 2 0.52 111 〇〇 0.11 0.8 1.3 〇 △ △ The present invention 31 31 2 0.39 102 〇〇 0.11 0.7 1.3 〇 XX Comparative Example 32 32 2 3.20 110 XX 0.10 0.8 1.3 △ XX Comparative Example 33 33 2 0.29 120 〇〇 0.11 0.7 1.3 〇〇〇 发明 invention 34 34 2 0.32 115 XX 0.12 0.6 1.3 〇〇 △ Comparative Example 35 35 2 0.33 116 XX 0.12 0.6 1.3 〇〇 △ Comparative Example 36 36 2 0.89 120 〇 △ 0.10 5.1 10.5 〇 △ △ The present invention 37 37 2 0.48 119 〇 Δ 0.10 6.3 12.1 〇 △ △ The present invention - 61 - 201107382 [Table 5] Film number Light 1 Optical film evaluation Liquid crystal display: Evaluation device » Preparation effect 2 Haze {%) Tension softening point (C) Ductile failure concentration 3 Concentration 4 Phase difference (nm) 嵚5 Angle of view change Color shift R 〇R t 38 3S 2 0.33 119 〇 △ 0.12 0.6 1.4 Δ 〇 Δ The present invention 39 39 2 0.31 120 〇 Δ 0.15 0.7 1.2 〇〇〇 the present invention 40 40 2 0.47 135 〇 Δ 0.06 0.8 1.3 〇〇〇 the present invention 41 41 2 0.25 121 〇〇 0.11 0.8 1.4 〇〇〇 the invention 42 42 2 0.26 123 〇〇 0.11 0.7 1.3 〇〇〇 the invention 43 43 2 0.35 123 〇 Δ 0.14 0.7 1.3 〇〇〇 the invention 44 44 2 0.36 123 〇 △ 0.14 0.6 1.3 〇〇 〇 45 45 2 0.51 122 〇Δ 0.14 0.8 1.3 △ 〇〇 〇〇 46 46 46 46 46 121 0.1 0.1 0.14 0,7 1.3 Δ 〇〇 The present invention 47 47 2 0.77 121 〇Δ 0.14 0.7 1.3 Δ 〇〇 发明 发明 48 48 2 0.31 123 XX 0.05 0.7 1.2 Δ 〇 Δ Comparative Example 49 49 2 0.35 120 XX 0.12 0.7 1.2 〇 Δ X Comparative Example 50 50 2 0.43 136 〇 △ 0.24 0.6 1.2 〇 XX Comparative Example 101 1 1 0.28 117 △ △ 0.13 1.5 3.5 〇 △ 〇 The present invention 102 1 2 0.22 121 〇〇 0.10 0.6 1.2 〇〇〇 The present invention 103 1 3 0.22 121 〇〇 0.08 0.5 0.9 〇〇〇 The present invention 104 1 4 0.23 115 XX 0.20 1.1 4.2 〇Δ Δ Comparative example 105 1 5 0.27 121 Δ Δ 0.15 1.0 2.4 〇〇 △ The invention 106 1 6 0.23 121 〇〇 0.10 0.8 1.8 △ 〇〇 The present invention 107 1 7 0.23 121 〇 △ 0.10 1.1 2.4 △ 〇〇 The present invention 108 1 8 0.30 121 〇〇0.10 1.5 3.5 Δ Δ Δ The present invention 109 1 9 0.30 121 〇〇 0.08 0.9 2.0 Δ 〇〇 The present invention 110 1 10 0.30 121 〇〇 0.09 0.5 0.9 〇〇〇 The present invention 111 1 11 0.27 121 〇〇 0.08 0.3 0.7 Δ 〇 〇The present invention 112 1 12 0.26 121 Δ Δ 0.10 0.4 0.7 △ 〇〇 113 113 113 113 113 113 113 113 113 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 15 0.23 121 〇〇 0.02 3.3 10.1 〇 Δ △ The present invention 116 1 16 0.31 121 〇〇 Q.04 2.5 5.2 〇〇 Δ The present invention 117 1 17 0.26 121 〇〇 0.08 0.6 1.1 〇〇〇 The present invention 118 1 18 0.26 121 〇〇0.07 0.4 1.0 Δ 〇〇 119 1 19 0.25 121 Δ Δ 0.08 0.5 1.1 △ 〇〇 The present invention 120 1 20 0.27 121 〇〇 0.05 0.9 2.1 〇〇〇 The present invention 121 1 21 0.30 121 Δ X 0.01 4.2 7.8 〇〇 △ Comparative Example 122 1 22 0.23 121 XX 0.16 1.9 12.1 △ △ △ Comparative Example 123 3 3 0.21 103 XX 0.14 0.6 1.4 〇 XX Comparative Example ※丄: Type/composition ratio number (acrylic resin (A), auxin ester The type and composition ratio of the resin (B); refer to Tables 1 and 2) ※: tenter/drying step number (the conditions of the tentering step condition and the subsequent drying step; see Table 3) ※: Cutting property 4: A Methyl methacrylate Body containing S (mass fl%) ※ 5: film appearance -62-201107382 as described in Tables 4 and 5, the optical film of the present invention exhibit low moisture absorption, high heat resistance and excellent transparency, improve the brittleness of the characteristics. Further, the polarizing plate and the liquid crystal display device produced by using the optical film of the present invention have characteristics of excellent visibility and color shift. Example 2 [Preparation of Acrylic Particles] [Preparation of Acrylic Particles (C1)] In a reactor equipped with a reflux condenser having an internal volume of 60 L, 38.2 L of ion-exchanged water and 111.6 g of sodium dioctylsulfosuccinate were placed. The mixture was stirred at a number of revolutions of 25 rpm while being heated to 75 t under a nitrogen atmosphere to form a state in which no oxygen was actually affected. 6 Ag of APS 0.3 was added, and after stirring for 5 minutes, the monomer mixture consisting of MMA1 65 7g, BA21.6g, and ALMA1.68g was added at a time, and the polymerization of the innermost hard layer was completed after detecting the onset heat peak for 2 minutes. Next, APS 3.48g was added, and after stirring for 5 minutes, a monomer mixture composed of BA 8 1 05g 'PEGDA (200) 31.9g and ALMA 264.0g was continuously added for 120 minutes, and the polymerization of the soft layer was completed after 120 minutes of completion. . Next, 1.32 g of APS was added, and after stirring for 5 minutes, a monomer mixture composed of MMA 2106 g and BA 201.6 g was continuously added over 20 minutes, and after completion of the addition, polymerization of the outermost hard layer 1 was completed for 20 minutes. Next, 1.32 g of APS was added, and after 5 minutes, a monomer mixture composed of MMA 3148g, BA 201.6g, and n-OM 10g was continuously added for 20 minutes, and the addition was continued for 20 minutes. After heating to 95 °C for 60 minutes, 63-201107382, the polymerization of the outermost hard layer 2 is completed. The polymer latex obtained above was placed in a 3 mass% aqueous solution of sodium sulfate to "repeated salting out and solidified", followed by dehydration and washing, followed by drying to obtain acrylic particles (C1) having a three-layer structure. The average particle diameter obtained by the absorbance method is 1 〇 〇 n m » The above abbreviations are each the following materials. MMA: methyl methacrylate MA: methacrylate BA: η-butyl acrylate ALMA: allyl methacrylate PEGDA: polyethylene glycol diacrylate (molecular weight 200) η-ΟΜ: η-xin Alkyl mercaptan APS: Ammonium persulfate [Production of optical film] <Production of optical film 38-1 to 38-6> (Mixed liquid composition) DIANALBR80 (manufactured by Mitsubishi Rayon Co., Ltd.) 66.5 parts by mass of cellulose ester ( Cellulose acetate propionate thiol group total substitution degree 2.75, acetonitrile group substitution degree 0.19, propyl ketone group substitution degree 2.56, Mw = 100,000) 2 8.5 parts by mass of the above-prepared acrylic acid particles (C1) 20 parts by mass dimerization 40 parts by mass of methane and 40 parts by mass of ethanol The above composition was sufficiently dissolved by heating to prepare a dope. -64-201107382 Next, the optical film 38-1 was produced in the same manner as in the method for producing the optical film 38 described in the first embodiment. In the following, an optical film 38-2 to 3 was produced in the same manner as in the production method of the optical film 38 except that the acrylic resin (A), the cellulose ester resin (B), the acrylic particles (C), and the composition ratio were changed as shown in Table 6. 8-6. In the optical film 38-5, the acrylic film C1 was replaced with C2: metablen W-341 (manufactured by Mitsubishi Rayon Co., Ltd.), and the optical film 38-6 was used as C3 in a single layer structure of MR-2G (manufactured by Kyowa Chemical Co., Ltd.). [Table 6] Optical film number composition ratio (parts by mass) (A)/(B)/(C) Penoic acid particle number particle structure 38 70/30/- - A 3Θ- 1 66.5/28, 5/ 5.0 C 1 3-layer core shell construction 38- 2 69.9/29.9/ 0.2 C 1 3-layer core shell construction 38-3 56.0/24.0/20.0 C 1 3-layer core shell construction 38-4 45.0/20.0/35.0 C 1 3-layer core shell Structure 38-5 69.7/29.6/ 0,7 C 2 3-layer core shell structure 38-6 66.5/28.5/ 5.0 C3 Single layer structure "Evaluation method" The following evaluations were made on the obtained optical films 38-1 to 38-6. . (Resin and particle state: compatible/incompatible) After the production of the optical film 38-1, 12 g of a film sample was weighed, dissolved in the dichloromethane/ethanol solvent of the above composition, stirred, sufficiently dissolved, and dispersed. The membrane filter Τ010Α (manufactured by ADVANTEC Co., Ltd.) made of PTFE having a pore size of Ο.ΐμπι was used, and the insoluble matter after filtration was sufficiently dried to measure a weight of 1.8 g. This insoluble matter was redispersed in a solvent. The particle size distribution was measured using a Malvern (manufactured by Malvern), and it was found that there was a particle size distribution in the vicinity of 〇·10 to 0.20 μηη. In the optical film, the acrylic particles (C) are present in an incompatible state, and it is found that 90% by mass or more of the acrylic particles (C) to be added remain in an insoluble form. Similarly, the optical films 38_2 to 38-6 were measured in the same manner, and the results were the same as those of 38.1. The same evaluations as in the examples were carried out for these samples, and the results obtained are shown in Table 7. [S] 醵m Gull Eg Can I 1 < 〇 <<< 0 om 1 〇〇〇〇< 〇〇蜓狸硪琳 mm 1 < o <<< ο < i ¥ ^Μ· Q: <tf> in ur * Ο VC (Ο d P-* o. r^td CO· 卜 卜 d 卜 d 卜 o in m <NJ Ό ΓΟ oo CSJ o to. o CM , 〇j2 o inch<〇<3 oo < 〇CO 〇〇O 〇〇〇__ _ 〇#1 云〇0 0 〇〇〇0 P 〇> .00 σ> o KK mm S o U) <ndnd in oso iO CO C> 58 d C\J 1 Interest tm *rrS Fine m 1 珐Ψ * Fine 祙 g 1 CM I 浜CO 1 1 in 1 <〇1 涝避 E-趣涯Μ Paste fr: 'ln splashed up @ this: Yes i. · i iKIi .· S 髌 鹤 鹤 鹤 · · · 一 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 There are some reductions in the properties (haze), but the cuttability, appearance, viewing angle variation or color shift of the liquid crystal display device have been further improved. (Example 3) A liquid crystal display device was produced in the same manner as in Example 1 except that the optical films 5-1 and 5-2 were prepared in the same manner as in Example 1 except that the following ultraviolet absorber was added. 5-1 : Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.) 1.5 parts by mass Tinuvin 171 (manufactured by Ciba Japan Co., Ltd.) 0.7 parts by mass 5-2 : LA-31 (manufactured by ADEKA) 1.5 parts by mass of the obtained liquid crystal The display device is more excellent in viewing angle variation and color shift. As described above, when the optical film of the present invention is used, an additive for use in a protective film for a polarizing plate can be appropriately added, and a polarizing plate or a liquid crystal display device produced thereby exhibits excellent characteristics such as excellent visibility and color shift. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] is a schematic view showing an example of a dope preparation step, a casting step, and a drying step of a solution casting film forming method. [Explanation of main components] 1 : Dissolving pots 3, 6, 12, 15: Furnace 4, 1 3: Storage tank -67- 201107382 5, 14: Liquid feeding pump 8, 16: Catheter 10: UV absorber Put into the pot 20: Confluence tube 21: Mixer 30: Mold 3 1 : Metal support 3 2 : Web 3 3 : Peeling position 3 4 : Tensile device 3 5 : Roll drying device 41 : Particles into the pan 42 : Storage tank 43: pump 44: filter-68-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095705 | 2009-04-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201107382A true TW201107382A (en) | 2011-03-01 |
TWI544014B TWI544014B (en) | 2016-08-01 |
Family
ID=42936118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099110591A TWI544014B (en) | 2009-04-10 | 2010-04-06 | Optical film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2010116830A1 (en) |
TW (1) | TWI544014B (en) |
WO (1) | WO2010116830A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452070B (en) * | 2011-09-05 | 2014-09-11 | Konica Minolta Advanced Layers | Manufacturing method of optical film |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2699610B1 (en) * | 2011-08-23 | 2015-07-08 | Rohm and Haas Chemicals LLC | A multi-stage polymer composition and films and polarizer plates made therefrom |
WO2014203637A1 (en) * | 2013-06-17 | 2014-12-24 | コニカミノルタ株式会社 | Polarizing plate and liquid crystal display device |
WO2015064732A1 (en) | 2013-11-01 | 2015-05-07 | 富士フイルム株式会社 | Polarizer-protecting film, dope composition, method for manufacturing polarizer-protecting film, polarizer, and liquid-crystal display |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3322406B2 (en) * | 1991-10-23 | 2002-09-09 | 鐘淵化学工業株式会社 | Polarizing film protective film |
JP2002356658A (en) * | 2001-05-31 | 2002-12-13 | Nippon Carbide Ind Co Inc | Acrylic overlay film |
JP4788072B2 (en) * | 2001-06-29 | 2011-10-05 | コニカミノルタホールディングス株式会社 | Cellulose ester film, protective film for polarizing plate and polarizing plate |
JP5170083B2 (en) * | 2007-03-12 | 2013-03-27 | コニカミノルタアドバンストレイヤー株式会社 | Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device |
-
2010
- 2010-03-05 JP JP2011508285A patent/JPWO2010116830A1/en active Pending
- 2010-03-05 WO PCT/JP2010/053641 patent/WO2010116830A1/en active Application Filing
- 2010-04-06 TW TW099110591A patent/TWI544014B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452070B (en) * | 2011-09-05 | 2014-09-11 | Konica Minolta Advanced Layers | Manufacturing method of optical film |
Also Published As
Publication number | Publication date |
---|---|
WO2010116830A1 (en) | 2010-10-14 |
TWI544014B (en) | 2016-08-01 |
JPWO2010116830A1 (en) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI448475B (en) | An optical film, a polarizing plate and a display device using the same, and a method for manufacturing the same | |
JP5521552B2 (en) | Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same | |
JP5463914B2 (en) | Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same | |
JP5402925B2 (en) | Polarizing plate and liquid crystal display device | |
JP5333447B2 (en) | Acrylic film manufacturing method and acrylic film manufactured by the manufacturing method | |
TW201107396A (en) | Optical element | |
KR20100099195A (en) | Acrylic resin-containing film, and polarizing plate and liquid crystal display device using the acrylic resin-containing film | |
TWI468749B (en) | An optical film, a polarizing plate and a liquid crystal display device using the same | |
TW201107382A (en) | Optical film | |
JP5533857B2 (en) | Optical film, polarizing plate and liquid crystal display device using the same | |
JP5045539B2 (en) | Protective film for polarizing plate, polarizing plate and liquid crystal display device | |
KR101483328B1 (en) | Acrylic resin-containing film, process for producing acrylic resin-containing film, and polarizing plate and liquid crystal display device using the acrylic resin-containing film | |
WO2011055590A1 (en) | Protective film roll for liquid crystal polarization plate and manufacturing method thereof | |
JPWO2009090900A1 (en) | Acrylic resin-containing film and method for producing the same | |
JP2012016845A (en) | Optical film forming method, optical film, polarizing plate, and liquid crystal display | |
TW201107395A (en) | Optical film, method for producing optical film, liquid crystal panel and image display device | |
JP5402941B2 (en) | Polarizing plate and liquid crystal display device using the same | |
JP2011123402A (en) | Sheet polarizer and liquid crystal display device using the same |