JPWO2010116830A1 - Method for producing optical film - Google Patents

Method for producing optical film Download PDF

Info

Publication number
JPWO2010116830A1
JPWO2010116830A1 JP2011508285A JP2011508285A JPWO2010116830A1 JP WO2010116830 A1 JPWO2010116830 A1 JP WO2010116830A1 JP 2011508285 A JP2011508285 A JP 2011508285A JP 2011508285 A JP2011508285 A JP 2011508285A JP WO2010116830 A1 JPWO2010116830 A1 JP WO2010116830A1
Authority
JP
Japan
Prior art keywords
optical film
resin
acrylic resin
cellulose ester
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011508285A
Other languages
Japanese (ja)
Inventor
瀧本 正高
正高 瀧本
伸夫 久保
伸夫 久保
隆 建部
隆 建部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Publication of JPWO2010116830A1 publication Critical patent/JPWO2010116830A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

低吸湿性であり、透明で、高耐熱性であり、脆性を改善した光学フィルムを提供する。特に偏光板保護フィルムとして用いられる光学フィルムを提供する。本発明の光学フィルムは、溶液流延法で作製した光学フィルムであって、(i)アクリル樹脂とセルロースエステル樹脂を一定質量比で含有し、(ii)メチルメタクリレートモノマーを一定質量%で含有し、(iii)前記アクリル樹脂の重量平均分子量が一定値以上であり、当該アクリル樹脂中の前記メチルメタクリレートモノマーの含有量が一定質量%であり、かつ(iv)前記セルロースエステル樹脂のアシル基の総置換度が一定範囲内であり、炭素数が一定範囲内のアシル基の置換度が一定範囲内であり、当該セルロースエステル樹脂の重量平均分子量が一定値以上であることを特徴とする。An optical film having low hygroscopicity, transparency, high heat resistance, and improved brittleness is provided. In particular, an optical film used as a polarizing plate protective film is provided. The optical film of the present invention is an optical film produced by a solution casting method, and includes (i) an acrylic resin and a cellulose ester resin at a constant mass ratio, and (ii) a methyl methacrylate monomer at a constant mass%. (Iii) a weight average molecular weight of the acrylic resin is a certain value or more, a content of the methyl methacrylate monomer in the acrylic resin is a constant mass%, and (iv) a total of acyl groups of the cellulose ester resin. The substitution degree is within a certain range, the substitution degree of an acyl group having a carbon number within a certain range is within a certain range, and the weight average molecular weight of the cellulose ester resin is not less than a certain value.

Description

本発明は、光学フィルムに関し、より詳しくは、特定のアクリル樹脂とセルロースエステル樹脂をブレンドすることにより、低吸湿性であり、透明で、高耐熱性であり、脆性を著しく改善した光学フィルムに関する。   The present invention relates to an optical film, and more particularly to an optical film having a low hygroscopic property, transparency, high heat resistance, and markedly improved brittleness by blending a specific acrylic resin and a cellulose ester resin.

液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で、需要が拡大している。通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板で構成されており、それぞれの偏光板は、偏光子(偏光膜、偏光フィルムともいう)を2枚の光学フィルム(偏光板保護フィルム)で挟まれた構成となっている。この偏光板保護フィルムとしては、通常、セルローストリアセテートフィルムが用いられている。   The demand for liquid crystal display devices is expanding in applications such as liquid crystal televisions and personal computer liquid crystal displays. In general, a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, and two polarizing plates provided on both sides thereof. The optical element (polarizing plate protective film) is sandwiched between a child (also referred to as a polarizing film or a polarizing film). As this polarizing plate protective film, a cellulose triacetate film is usually used.

一方、近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、液晶表示装置の用途が多様化している。例えば、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。   On the other hand, with the recent advancement of technology, the enlargement of the liquid crystal display device is accelerated, and the use of the liquid crystal display device is diversified. For example, it can be used as a large display installed on a street or in a store, or used as an advertising display in a public place using a display device called digital signage.

このような用途においては、屋外での利用が想定されるため、偏光フィルムの吸湿による劣化が問題になり、偏光板保護フィルムにはより高い耐湿性が求められている。しかしながら、従来用いられているセルローストリアセテートフィルム等のセルロースエステルフィルムでは十分な耐湿性を得ることは困難であり、耐湿性を得る為に厚膜化すると光学的な影響が大きくなるという問題があった。更には、近年は装置の薄型化も求められているため、偏光板自体が厚くなることも問題となった。   In such an application, since it is assumed to be used outdoors, degradation due to moisture absorption of the polarizing film becomes a problem, and higher moisture resistance is required for the polarizing plate protective film. However, it has been difficult to obtain sufficient moisture resistance with cellulose ester films such as cellulose triacetate films that have been used in the past, and there has been a problem that the optical effect increases when the film thickness is increased to obtain moisture resistance. . Furthermore, in recent years, there has been a demand for thinning of the apparatus, so that the thickness of the polarizing plate itself has also become a problem.

一方、低吸湿性の光学フィルム材料として、アクリル樹脂の代表であるポリメチルメタクリレート(以下、「PMMA」と略す。)は、低吸湿性に加え、優れた透明性や寸法安定性を示すことから、光学フィルムに好適に用いられていた。   On the other hand, polymethyl methacrylate (hereinafter abbreviated as “PMMA”), which is a representative of acrylic resin, as a low hygroscopic optical film material, exhibits excellent transparency and dimensional stability in addition to low hygroscopicity. It was suitably used for optical films.

しかしながら、上述のように液晶表示装置が大型化し、屋外への用途が拡大したことに伴い、屋外でも映像が十分に認識できるようにするためにバックライトの光量を増加させる必要があるとともに、より過酷な条件下で使用されることとなり、高温下での耐熱性やより長期的な耐熱性が求められることとなった。   However, as the liquid crystal display device is enlarged as described above, and the applications to the outdoors are expanded, it is necessary to increase the amount of light of the backlight so that the image can be fully recognized even outdoors. It was used under harsh conditions, and heat resistance at high temperatures and longer-term heat resistance were required.

しかし、PMMAフィルムは、耐熱性に乏しく高温下での使用、長期的な使用などにおいて、形状が変わるという問題が発生した。   However, since the PMMA film has poor heat resistance, there has been a problem that the shape of the PMMA film changes when used at high temperatures or for long-term use.

この問題は、フィルム単体での物性としてだけではなく、このようなフィルムを用いた偏光板、表示装置においても重要な課題であった。すなわち、液晶表示装置において、フィルムの変形に伴い偏光板がカールするため、パネル全体が反ってしまう問題が発生した。フィルム変形による問題は、バックライト側でも問題となるが、視認側表面の位置で使用した際にも変形により設計上の位相差が変化してしまうために、視野角の変動や色味の変化が起きるという問題が生じる。   This problem is an important issue not only as a physical property of a single film but also in a polarizing plate and a display device using such a film. That is, in the liquid crystal display device, the polarizing plate curls as the film is deformed, causing a problem that the entire panel is warped. The problem due to film deformation is also a problem on the backlight side, but when used at the position on the viewing side surface, the design phase difference changes due to deformation, so the viewing angle changes and the color changes. The problem arises.

また、アクリル樹脂フィルムは、セルロースエステルフィルム等と比較した場合、割れやすく脆い性質があり、取扱いが困難であり、特に大型の液晶表示装置用の光学フィルムを安定して製造することが困難であった。   In addition, the acrylic resin film is fragile and brittle when compared with a cellulose ester film and the like, and is difficult to handle. In particular, it is difficult to stably produce an optical film for a large liquid crystal display device. It was.

さらに、PMMA樹脂はメチルメタクリレートモノマーを含有していることが多いが、メチルメタクリレートモノマーは感作性があるので、昨今の環境意識の高まりもあり、PMMA樹脂を用いて作製したフィルムにメチルメタクリレートモノマーが多量に含有していると好ましくない。   Furthermore, PMMA resin often contains methyl methacrylate monomer, but since methyl methacrylate monomer has sensitization property, there is also a recent increase in environmental consciousness, and methyl methacrylate monomer is added to the film produced using PMMA resin. Is not preferable if it is contained in a large amount.

上述の問題に対し、耐湿性及び耐熱性を改善するためにアクリル樹脂にポリカーボネート(以下「PC」と略す。)を添加する方法が提案されたが、使用できる溶媒に制限があること、樹脂同士の相溶性が不十分であることから、白濁し易く光学フィルムとしての使用は困難であった(例えば特許文献1参照)。   In order to improve the moisture resistance and heat resistance, a method of adding a polycarbonate (hereinafter abbreviated as “PC”) to an acrylic resin has been proposed to solve the above-mentioned problems. Insufficient compatibility of these materials is likely to cause cloudiness and is difficult to use as an optical film (see, for example, Patent Document 1).

耐熱性を改善するための別の方法としては、アクリル樹脂の共重合成分として脂環式アルキル基を導入する方法や、分子内環化反応をさせて分子主鎖に環状構造を形成する方法などが開示されている(例えば、特許文献2、3参照。)。   Other methods for improving heat resistance include a method of introducing an alicyclic alkyl group as a copolymer component of an acrylic resin, a method of forming a cyclic structure in a molecular main chain by intramolecular cyclization reaction, etc. (For example, refer to Patent Documents 2 and 3).

しかしながら、これらの方法では、耐熱性は改良するもののフィルムの脆性が十分ではなく、大型の液晶表示装置に用いられる光学フィルムを製造することは困難であった。また、脆性が不十分な場合、光学フィルムがパネルの変形を助長し、結局位相差変化を抑制することができず、視野角の変動、色味の変化の問題も発生した。   However, in these methods, although the heat resistance is improved, the film is not sufficiently brittle, and it has been difficult to produce an optical film used for a large-sized liquid crystal display device. In addition, when the brittleness is insufficient, the optical film promotes the deformation of the panel, and consequently the change in the phase difference cannot be suppressed, and the problem of the change in the viewing angle and the change in the color tone also occurs.

耐湿性及び耐熱性を改善するための技術として、アクリル樹脂に耐衝撃性アクリルゴム−メチルメタクリレート共重合体やブチル変性アセチルセルロースを組み合わせた樹脂が提案されている(例えば特許文献4参照)。   As a technique for improving moisture resistance and heat resistance, a resin in which an acrylic resin is combined with an impact-resistant acrylic rubber-methyl methacrylate copolymer or butyl-modified acetyl cellulose has been proposed (see, for example, Patent Document 4).

しかしながら、この方法でも十分な脆性の改善は得られず大型の液晶表示装置に用いられる光学フィルムを製造するためには取扱い性が十分ではなかった。また、混合された成分によるヘーズも発生し、より高いコントラストが求められる屋外等で使用した場合は、画像のコントラストが低下する問題が発生した。   However, even with this method, sufficient improvement in brittleness cannot be obtained, and handling properties are not sufficient for producing an optical film used for a large-sized liquid crystal display device. Further, haze due to the mixed components is also generated, and when used outdoors where a higher contrast is required, there is a problem that the contrast of the image is lowered.

一方、アクリル樹脂を用いた光学フィルムは溶融製膜方法で製造されることがあるが、溶融製膜方法では、アクリル樹脂中のメチルメタクリレートモノマーがそのままフィルム中に含有されてしまう。また、樹脂を溶融させるために高温に加熱しなければならず、この熱によって樹脂が分解しメチルメタクリレートモノマーがかえって増加してしまう懸念もある。   On the other hand, an optical film using an acrylic resin may be manufactured by a melt film forming method, but in the melt film forming method, the methyl methacrylate monomer in the acrylic resin is contained as it is in the film. In addition, the resin must be heated to a high temperature in order to melt the resin, and there is a concern that the resin is decomposed by this heat and the methyl methacrylate monomer is increased.

また、従来のセルロースエステルフィルムに対して、可塑剤や光学特性の制御のためにアクリル樹脂を混合する技術も提案されている(例えば特許文献5参照)。   Moreover, the technique which mixes an acrylic resin with the conventional cellulose-ester film for control of a plasticizer and an optical characteristic is also proposed (for example, refer patent document 5).

しかしながら、これらの目的では、耐湿性を十分に改善できる程度にアクリル樹脂を添加することはない為、やはり十分な耐湿性は得られず、高湿環境下においては偏光板の劣化や光学フィルムの光学値の変化等の問題が発生した。また、従来は、セルロースエステル樹脂に耐湿性を向上するために他の樹脂を大量に添加した場合は、透明性が低下すると考えられており、高湿環境下において光学値が変化しない程度に耐湿性が改善されたセルロースエステルフィルムは得られていなかった。   However, for these purposes, the acrylic resin is not added to such an extent that the moisture resistance can be sufficiently improved, so that sufficient moisture resistance cannot be obtained. Problems such as changes in optical values occurred. Conventionally, when a large amount of other resin is added to the cellulose ester resin in order to improve the moisture resistance, it is considered that the transparency is lowered, and the moisture resistance is such that the optical value does not change in a high humidity environment. A cellulose ester film having improved properties has not been obtained.

上記の状況下、最近の液晶表示装置の用途拡大に伴い、用いられる光学フィルムにおける、低吸湿性、透明性、高耐熱性、脆性などの課題は、益々顕著になってきており、改善が求められていた。   Under the above circumstances, along with the recent expansion of applications of liquid crystal display devices, problems such as low hygroscopicity, transparency, high heat resistance, brittleness, etc. in the optical film used are becoming more and more prominent and improvement is required. It was done.

特開平5−306344号公報JP-A-5-306344 特開2002−12728号公報JP 2002-12728 A 特開2005−146084号公報JP-A-2005-146084 特開平5−119217号公報Japanese Patent Laid-Open No. 5-119217 特開2003−12859号公報JP 2003-12859 A

本発明は、上記問題・状況にかんがみ成されたものであり、その解決課題は、低吸湿性であり、透明で、高耐熱性であり、脆性を著しく改善した光学フィルムを提供することである。   The present invention has been made in view of the above problems and situations, and a solution to that problem is to provide an optical film having low hygroscopicity, transparency, high heat resistance, and markedly improved brittleness. .

特に、大型の液晶表示装置や、屋外用途の液晶表示装置における偏光板保護フィルムとして好適に用いられる光学フィルムを提供することである。   In particular, it is to provide an optical film suitably used as a polarizing plate protective film in a large-sized liquid crystal display device or a liquid crystal display device for outdoor use.

本発明に係る上記課題は以下の手段により解決される。   The above-mentioned problem according to the present invention is solved by the following means.

1.溶液流延法で作製した光学フィルムであって、(i)アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5〜30:70の質量比で含有し、(ii)メチルメタクリレートモノマーを、当該光学フィルム総質量に対して、0.02〜0.15質量%で含有し、(iii)前記アクリル樹脂(A)の重量平均分子量が80000以上であり、当該アクリル樹脂(A)中の前記メチルメタクリレートモノマーの含有量が、当該アクリル樹脂(A)総質量に対して、0.20〜1.00質量%であり、かつ、(iv)前記セルロースエステル樹脂(B)のアシル基の総置換度が2.0〜3.0であり、炭素数3〜7の範囲内のアシル基の置換度が1.2〜3.0であり、当該セルロースエステル樹脂(B)の重量平均分子量が75000以上であることを特徴とする光学フィルム。   1. An optical film produced by a solution casting method, comprising (i) an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, and (ii) a methyl methacrylate monomer And (iii) the acrylic resin (A) has a weight average molecular weight of 80000 or more, and is contained in the acrylic resin (A). Content of the said methyl methacrylate monomer is 0.20-1.00 mass% with respect to the said acrylic resin (A) total mass, and (iv) The total of the acyl group of the said cellulose ester resin (B) The degree of substitution is 2.0 to 3.0, the degree of substitution of acyl groups in the range of 3 to 7 carbon atoms is 1.2 to 3.0, and the weight average molecular weight of the cellulose ester resin (B) is 75,000 or more An optical film characterized by the above.

2.前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲外のアシル基の置換度の総和が、1.3以下であることを特徴とする前記第1項に記載の光学フィルム。   2. 2. The optical film as set forth in claim 1, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups outside the range of 3 to 7 carbon atoms of 1.3 or less.

3.前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲内のアシル基の置換度の総和が、2.00以上であることを特徴とする前記第1項又は第2項に記載の光学フィルム。   3. 3. The optical system according to item 1 or 2, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups in the range of 3 to 7 carbon atoms of 2.00 or more. the film.

4.前記セルロースエステル樹脂(B)のアシル基の総置換度が、2.5〜3.0であることを特徴とする前記第1項から第3項までのいずれか一項に記載の光学フィルム。   4). Item 4. The optical film according to any one of Items 1 to 3, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups of 2.5 to 3.0.

5.前記アクリル樹脂(A)が、分子内にメチルメタクリレート単位を50〜99質量%有することを特徴とする前記第1項から第4項までのいずれか一項に記載の光学フィルム。   5). The said acrylic resin (A) has 50-99 mass% of methyl methacrylate units in a molecule | numerator, The optical film as described in any one of said 1st term | claim to 4th term | claim characterized by the above-mentioned.

6.前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5〜50:50の範囲内であることを特徴とする前記第1項から第5項までのいずれか一項に記載の光学フィルム。   6). The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is within a range of 95: 5 to 50:50, according to any one of the first to fifth items, The optical film as described.

7.前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、80:20〜60:40の範囲内であることを特徴とする前記第1項から第6項までのいずれか一項に記載の光学フィルム。   7). The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is in the range of 80:20 to 60:40, according to any one of the first to sixth items, The optical film as described.

8.前記アクリル樹脂(A)の重量平均分子量が、80000〜1000000の範囲内であることを特徴とする前記第1項から第7項までのいずれか一項に記載の光学フィルム。   8). The optical film according to any one of Items 1 to 7, wherein the acrylic resin (A) has a weight average molecular weight in the range of 80000 to 1000000.

9.前記アクリル樹脂(A)の重量平均分子量が、100000〜500000の範囲内であることを特徴とする前記第1項から第8項までのいずれか一項に記載の光学フィルム。   9. The weight average molecular weight of said acrylic resin (A) exists in the range of 100,000-500000, The optical film as described in any one of said 1st term | claim to 8th term | claim characterized by the above-mentioned.

10.前記アクリル樹脂(A)の重量平均分子量が、150000〜400000の範囲内であることを特徴とする前記第1項から第9項までのいずれか一項に記載の光学フィルム。   10. The weight average molecular weight of said acrylic resin (A) exists in the range of 150,000-400000, The optical film as described in any one of said 1st term | claim to 9th term | claim characterized by the above-mentioned.

11.前記セルロースエステル樹脂(B)の重量平均分子量が、75000〜300000の範囲内であることを特徴とする前記第1項から第10項までのいずれか一項に記載の光学フィルム。   11. The weight average molecular weight of the said cellulose ester resin (B) exists in the range of 75000-300000, The optical film as described in any one of said 1st term | claim to 10th term | claim characterized by the above-mentioned.

12.前記セルロースエステル樹脂(B)の重量平均分子量が、100000〜240000の範囲内であることを特徴とする前記第1項から第11項までのいずれか一項に記載の光学フィルム。   12 The weight average molecular weight of the said cellulose ester resin (B) exists in the range of 100,000-24,000, The optical film as described in any one of said 1st term | claim to 11th term | claim characterized by the above-mentioned.

13.前記光学フィルムが、当該光学フィルムを構成する樹脂の総質量に対して、0.5〜30質量%のアクリル粒子(C)を含有することを特徴とする前記第1項から第12項までのいずれか一項に記載の光学フィルム。   13. The said optical film contains 0.5-30 mass% acrylic particle | grains (C) with respect to the gross mass of resin which comprises the said optical film, The said 1st term to 12th term | claim characterized by the above-mentioned. The optical film as described in any one.

14.膜厚が20〜200μmの範囲内であり、偏光板保護フィルムとして用いられることを特徴とする前記第1項から第13項までのいずれか一項に記載の光学フィルム。   14 14. The optical film according to claim 1, wherein the optical film has a thickness in a range of 20 to 200 μm and is used as a polarizing plate protective film.

本発明の上記手段により、低吸湿性であり、透明で、高耐熱性であり、脆性を著しく改善した光学フィルムを提供することができる。   By the above means of the present invention, an optical film having low hygroscopicity, transparency, high heat resistance, and markedly improved brittleness can be provided.

特に、大型の液晶表示装置や、デジタルサイネージ用液晶表示装置に用いられる偏光板保護フィルムとして好適に用いられる光学フィルムを提供することができる。また、本発明の光学フィルムを偏光板の少なくとも一方の面に適用することで、視野角の変動やカラーシフトが低減された液晶表示装置を得ることが可能である。   In particular, it is possible to provide an optical film that is suitably used as a polarizing plate protective film used in a large-sized liquid crystal display device or a digital signage liquid crystal display device. In addition, by applying the optical film of the present invention to at least one surface of a polarizing plate, a liquid crystal display device in which fluctuations in viewing angle and color shift are reduced can be obtained.

本発明の効果発現の機構は、必ずしも十分には解明されていないが、以下に、当該機構に関する考察を記載する。   Although the mechanism of the effect expression of the present invention has not necessarily been fully elucidated, considerations regarding the mechanism are described below.

従来、偏光板保護フィルムとしては、一般的にセルロースエステルフィルムが用いられているが、セルロースエステルフィルムはアクリルフィルムに比べて吸湿性が高いという欠点を有していた。しかしながら、セルロースエステル樹脂にアクリル樹脂を混合させて吸湿性を改善しようとすると、互いに相溶せずにヘーズが上昇し、光学フィルムとしての使用は困難であった。特に、分子量の大きなアクリル樹脂は、セルロースエステル樹脂に対しては相溶しないと考えられており、樹脂の混合による吸湿性の改善は困難であると考えられていた。特許文献5では、可塑剤として比較的分子量の低いアクリル樹脂をセルロースエステル樹脂に添加することが記載されているものの、添加量が少ないため吸湿性が改善できず、また、分子量の小さいアクリル樹脂を添加することで、耐熱性が低下し、大型の液晶表示装置や屋外用途の液晶表示装置に用いられる光学フィルムとして適した特性を得ることはできていなかった。   Conventionally, as a polarizing plate protective film, a cellulose ester film is generally used. However, the cellulose ester film has a drawback of higher hygroscopicity than an acrylic film. However, when an acrylic resin is mixed with a cellulose ester resin to improve the hygroscopicity, the haze increases without being compatible with each other, making it difficult to use as an optical film. In particular, an acrylic resin having a large molecular weight is considered to be incompatible with the cellulose ester resin, and it has been considered difficult to improve the hygroscopicity by mixing the resin. Patent Document 5 describes that an acrylic resin having a relatively low molecular weight is added to the cellulose ester resin as a plasticizer. However, the hygroscopicity cannot be improved because the addition amount is small, and an acrylic resin having a low molecular weight is used. By adding, the heat resistance is lowered, and characteristics suitable as an optical film used for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use cannot be obtained.

一方、アクリル樹脂フィルムは、耐熱性に乏しく高温下での使用、長期的な使用などにおいて、形状が変わり易く、脆性に劣るという性質を有している。特許文献1〜3ではアクリル樹脂の特性の改善に取り組んでいるものの、十分な光学フィルムとしての特性は得られていなかった。特許文献3では、アクリル樹脂に対して、セルロースエステル樹脂を混合させることで耐熱性を改善する技術も考案されていたが、分子量の高いセルロースエステル樹脂はアクリル樹脂と相溶しないと考えられていたため、分子量の低いセルロースエステル樹脂が添加され、結果として脆性が十分に改善できていなかった。   On the other hand, the acrylic resin film has poor heat resistance, and has a property that its shape is easily changed and inferior in brittleness when used at high temperatures or for long-term use. Although Patent Documents 1 to 3 are working to improve the properties of acrylic resin, sufficient properties as an optical film have not been obtained. In Patent Document 3, a technique for improving heat resistance by mixing a cellulose ester resin with an acrylic resin has been devised, but it was thought that a cellulose ester resin having a high molecular weight was incompatible with an acrylic resin. The cellulose ester resin having a low molecular weight was added, and as a result, the brittleness was not sufficiently improved.

ところが、本発明者らの検討の結果、特定の分子量のアクリル樹脂に対して、特定の置換度を有するセルロースエステル樹脂が高い相溶性を示すことが見出され、更に驚くべきことに分子量の比較的高いセルロースエステル樹脂もヘーズを上昇させることなく、相溶させることができることが判明した。   However, as a result of the study by the present inventors, it has been found that a cellulose ester resin having a specific substitution degree exhibits high compatibility with respect to an acrylic resin having a specific molecular weight, and surprisingly, a molecular weight comparison is made. It has been found that even higher cellulose ester resins can be compatible without increasing haze.

また、溶融製膜法では、原料のアクリル樹脂に含まれるメチルメタクリレートモノマーはそのまま出来上がりのフィルム中に持ち込まれてしまうが、溶液製膜法ではフィルム中のメチルメタクリレートモノマーの含有量は原料より少なくなる。これは樹脂を溶解した溶媒にメチルメタクリレートモノマーが抽出され、フィルムの乾燥工程で除去されるためと考えられる。   In the melt film forming method, the methyl methacrylate monomer contained in the raw acrylic resin is brought into the finished film as it is, but in the solution film forming method, the content of the methyl methacrylate monomer in the film is less than the raw material. . This is presumably because the methyl methacrylate monomer is extracted in the solvent in which the resin is dissolved and removed in the film drying step.

さらには、アクリル樹脂に対して特定の置換度を有するセルロースエステル樹脂をブレンドすることによりフィルム中のメチルメタクリレートモノマーの含有量がさらに減少する。これはブレンドした特定の置換度を有するセルロースエステル樹脂がアクリル樹脂中での溶媒などの拡散速度を大きくする効果があるためと考えられる。   Furthermore, the content of methyl methacrylate monomer in the film is further reduced by blending a cellulose ester resin having a specific substitution degree with respect to the acrylic resin. This is presumably because the blended cellulose ester resin having a specific degree of substitution has the effect of increasing the diffusion rate of the solvent and the like in the acrylic resin.

乾燥工程でフィルムから感作性のあるメチルメタクリレートモノマーを除去することによって、フィルムの安全性、環境適正が向上することはもちろんであるが、特定の乾燥工程の条件でメチルメタクリレートモノマーを除去することによってフィルムの物性、特に脆性が大きく向上する。   By removing sensitizing methyl methacrylate monomer from the film during the drying process, the safety and environmental friendliness of the film will be improved, but the methyl methacrylate monomer should be removed under specific drying process conditions. As a result, the physical properties of the film, particularly the brittleness, are greatly improved.

さらに、驚くべきことにアクリル樹脂の割合が非常に多いフィルムの場合は、特定の乾燥条件でメチルメタクリレートモノマーを除去してもフィルムの物性は向上せず、上記の特定のアクリル樹脂とセルロースエステル樹脂を特定の割合でブレンドした場合に特有の効果であることがわかった。   Furthermore, surprisingly, in the case of a film having a very large proportion of acrylic resin, the physical properties of the film are not improved even if methyl methacrylate monomer is removed under specific drying conditions. It was found that this was a unique effect when blended at a specific ratio.

結果として、アクリル樹脂(A)とセルロースエステル樹脂(B)とを特定の混合比の範囲でブレンドにより相溶化することで、アクリル樹脂、セルロースエステル樹脂それぞれの欠点が改善され、低吸湿性であり、透明で、高耐候性であり、脆性を著しく改善した光学フィルムが得られることを見出し、本発明を成すに至った次第である。   As a result, by compatibilizing acrylic resin (A) and cellulose ester resin (B) by blending within a specific mixing ratio range, the disadvantages of acrylic resin and cellulose ester resin are improved and low moisture absorption is achieved. The present inventors have found that an optical film that is transparent, has high weather resistance, and has markedly improved brittleness can be obtained.

溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図The figure which showed typically an example of the dope preparation process, casting process, and drying process of a solution casting film forming method

本発明の光学フィルムは、溶液流延法で作製した光学フィルムであって、(i)アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5〜30:70の質量比で含有し、(ii)メチルメタクリレートモノマーを、当該光学フィルム総質量に対して、0.02〜0.15質量%で含有し、(iii)前記アクリル樹脂(A)の重量平均分子量が80000以上であり、当該アクリル樹脂(A)中の前記メチルメタクリレートモノマーの含有量が、当該アクリル樹脂(A)総質量に対して、0.20〜1.00質量%であり、かつ、(iv)前記セルロースエステル樹脂(B)のアシル基の総置換度が2.0〜3.0であり、炭素数3〜7の範囲内のアシル基の置換度が1.2〜3.0であり、当該セルロースエステル樹脂(B)の重量平均分子量が75000以上であることを特徴とする。この特徴は、請求項1から請求項14に係る発明に共通する技術的特徴である。   The optical film of the present invention is an optical film produced by a solution casting method, and contains (i) an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, (Ii) The methyl methacrylate monomer is contained at 0.02 to 0.15% by mass with respect to the total mass of the optical film, (iii) the acrylic resin (A) has a weight average molecular weight of 80000 or more, Content of the said methyl methacrylate monomer in an acrylic resin (A) is 0.20-1.00 mass% with respect to the said acrylic resin (A) total mass, and (iv) The said cellulose ester resin ( The total substitution degree of the acyl group of B) is 2.0 to 3.0, the substitution degree of the acyl group within the range of 3 to 7 carbon atoms is 1.2 to 3.0, and the cellulose ester resin ( B) Weight average molecule The quantity is 75000 or more. This feature is a technical feature common to the inventions according to claims 1 to 14.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。   Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.

〔本発明の光学フィルムの概要〕
本発明の光学フィルムは、溶液流延法で作製した光学フィルムであって、以下の要件(i)〜(iv)を満たすことを特徴とする。
[Outline of Optical Film of the Present Invention]
The optical film of the present invention is an optical film produced by a solution casting method and is characterized by satisfying the following requirements (i) to (iv).

(i)アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5〜30:70の質量比で含有すること
(ii)メチルメタクリレートモノマーを、当該光学フィルム総質量に対して、0.02〜0.15質量%で含有すること
(iii)前記アクリル樹脂(A)の重量平均分子量が80000以上であり、当該アクリル樹脂(A)中の前記メチルメタクリレートモノマーの含有量が、当該アクリル樹脂(A)総質量に対して、0.20〜1.00質量%であること
(iv)前記セルロースエステル樹脂(B)のアシル基の総置換度が2.0〜3.0であり、炭素数3〜7の範囲内のアシル基の置換度が1.2〜3.0であり、当該セルロースエステル樹脂(B)の重量平均分子量が75000以上であること
本発明の実施態様としては、本発明の効果発現の観点から、前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲外のアシル基の置換度の総和が、1.3以下であることが好ましい。また、当該セルロースエステル樹脂(B)の炭素数が3〜7の範囲内のアシル基の置換度の総和が、2.00以上であることが好まし。さらに、当該セルロースエステル樹脂(B)のアシル基の総置換度が、2.5〜3.0であることが好ましい。
(I) The acrylic resin (A) and the cellulose ester resin (B) are contained in a mass ratio of 95: 5 to 30:70. (Ii) The methyl methacrylate monomer is 0.02 with respect to the total mass of the optical film. (Iii) The acrylic resin (A) has a weight average molecular weight of 80000 or more, and the content of the methyl methacrylate monomer in the acrylic resin (A) is the acrylic resin ( A) It is 0.20-1.00 mass% with respect to the total mass. (Iv) The total substitution degree of the acyl group of the said cellulose ester resin (B) is 2.0-3.0, and carbon number The substitution degree of the acyl group within the range of 3 to 7 is 1.2 to 3.0, and the weight average molecular weight of the cellulose ester resin (B) is 75000 or more. From the viewpoint of the effect expression, the sum of the substitution degrees outside the scope of the acyl group having a carbon number of 3 to 7 of the cellulose ester resin (B) is preferably 1.3 or less. Moreover, it is preferable that the sum total of the substitution degree of the acyl group in the range whose carbon number of the said cellulose-ester resin (B) is 3-7 is 2.00 or more. Furthermore, it is preferable that the total substitution degree of the acyl group of the said cellulose ester resin (B) is 2.5-3.0.

本発明においては、前記アクリル樹脂(A)が、分子内にメチルメタクリレート単位を50〜99質量%有することが好ましい。   In this invention, it is preferable that the said acrylic resin (A) has 50-99 mass% of methyl methacrylate units in a molecule | numerator.

また、前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5〜50:50の範囲内であることが好ましく、さらに好ましくは、80:20〜60:40の範囲内であることである。   The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is preferably in the range of 95: 5 to 50:50, more preferably in the range of 80:20 to 60:40. It is to be.

本発明においては、前記アクリル樹脂(A)の重量平均分子量が、80000〜1000000の範囲内であることが好ましく、さらには、100000〜500000の範囲内であること、最も好ましくは、150000〜400000の範囲内であることである。   In the present invention, the acrylic resin (A) preferably has a weight average molecular weight in the range of 80,000 to 1,000,000, more preferably in the range of 100,000 to 500,000, most preferably 150,000 to 400,000. It is within the range.

一方、前記セルロースエステル樹脂(B)の重量平均分子量は、75000〜300000の範囲内であることが好ましく。さらに好ましくは、100000〜240000の範囲内であることである。   On the other hand, it is preferable that the weight average molecular weight of the said cellulose ester resin (B) exists in the range of 75000-300000. More preferably, it is in the range of 100,000 to 240,000.

また、本発明の光学フィルムは、当該光学フィルムを構成する樹脂の総質量に対して、0.5〜30質量%のアクリル粒子(C)を含有する態様のものであることも好ましい。   Moreover, it is preferable that the optical film of this invention is a thing of the aspect containing 0.5-30 mass% acrylic particle (C) with respect to the gross mass of resin which comprises the said optical film.

本発明の光学フィルムは、その膜厚を20〜200μmの範囲内とした場合、偏光板保護フィルムとして好適に用いることができる。   The optical film of this invention can be conveniently used as a polarizing plate protective film, when the film thickness shall be in the range of 20-200 micrometers.

以下、構成要素等について詳細な説明をする。   Hereinafter, the components and the like will be described in detail.

〈アクリル樹脂(A)〉
本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50〜99質量%、およびこれと共重合可能な他の単量体単位1〜50質量%からなるものが好ましい。
<Acrylic resin (A)>
The acrylic resin used in the present invention includes a methacrylic resin. Although it does not restrict | limit especially as resin, What consists of 50-99 mass% of methyl methacrylate units and 1-50 mass% of other monomer units copolymerizable with this is preferable.

共重合可能な他の単量体としては、アルキル数の炭素数が2〜18のアルキルメタクリレート、アルキル数の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。   Other monomers that can be copolymerized include alkyl methacrylates having 2 to 18 carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, and the like. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like can be mentioned, and these can be used alone or in combination of two or more monomers.

これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。   Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.

本発明の光学フィルムに用いられるアクリル樹脂(A)は、特に光学フィルムとしての脆性の改善及びセルロースエステル樹脂(B)と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が80000以上である。アクリル樹脂(A)の重量平均分子量(Mw)が80000を下回ると、十分な脆性の改善が得られず、セルロースエステル樹脂(B)との相溶性が劣化する。アクリル樹脂(A)の重量平均分子量(Mw)は、80000〜1000000の範囲内であることが更に好ましく、100000〜600000の範囲内であることが特に好ましく、150000〜400000の範囲であることが最も好ましい。アクリル樹脂(A)の重量平均分子量(Mw)の上限値は特に限定されるものではないが、製造上の観点から1000000以下とされることが好ましい形態である。   The acrylic resin (A) used in the optical film of the present invention has a weight average molecular weight (Mw) particularly from the viewpoint of improving brittleness as an optical film and improving transparency when it is compatible with the cellulose ester resin (B). Is 80000 or more. When the weight average molecular weight (Mw) of the acrylic resin (A) is less than 80000, sufficient brittleness improvement cannot be obtained, and compatibility with the cellulose ester resin (B) deteriorates. The weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 80,000 to 1,000,000, particularly preferably in the range of 100,000 to 600,000, and most preferably in the range of 150,000 to 400,000. preferable. Although the upper limit of the weight average molecular weight (Mw) of an acrylic resin (A) is not specifically limited, It is a preferable form that it shall be 1 million or less from a viewpoint on manufacture.

本発明に係るアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。   The weight average molecular weight of the acrylic resin according to the present invention can be measured by gel permeation chromatography. The measurement conditions are as follows.

溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.

本発明に係るアクリル樹脂中のメチルメタクリレートモノマー含有量は、ガスクロマトグラフ質量分析計より測定することができる。測定条件は以下の通りである。   The methyl methacrylate monomer content in the acrylic resin according to the present invention can be measured with a gas chromatograph mass spectrometer. The measurement conditions are as follows.

試料:アクリル樹脂をアセトニトリルに溶解し0.1%の試料溶液を作製
試料量:1μl
機器:HP 5890シリーズII/HP5971 MSD
カラム:GLサイエンス製 InertCAP for amines(0.32mmid×30m)
注入口:200℃
MSD:SIM m/z=55,100
OVEN:60℃(4min)→15(℃/min)→120℃
なお、作製した光学フィルム中のメチルメタクリレートモノマーの量も同様の方法で測定することができる。
Sample: Acrylic resin is dissolved in acetonitrile to prepare a 0.1% sample solution Sample volume: 1 μl
Equipment: HP 5890 Series II / HP 5971 MSD
Column: InertCAP for amines (0.32 mmid × 30 m) manufactured by GL Sciences
Inlet: 200 ° C
MSD: SIM m / z = 55,100
OVEN: 60 ° C. (4 min) → 15 (° C./min)→120° C.
The amount of methyl methacrylate monomer in the produced optical film can also be measured by the same method.

本発明におけるアクリル樹脂(A)の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30〜100℃、塊状又は溶液重合では80〜160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。   There is no restriction | limiting in particular as a manufacturing method of the acrylic resin (A) in this invention, You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. Regarding the polymerization temperature, suspension or emulsion polymerization may be performed at 30 to 100 ° C, and bulk or solution polymerization may be performed at 80 to 160 ° C. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.

本発明に係るアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。   A commercially available thing can also be used as an acrylic resin which concerns on this invention. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Denki Kagaku Kogyo Co., Ltd.) and the like can be mentioned. . Two or more acrylic resins can be used in combination.

〈セルロースエステル樹脂(B)〉
本発明に係るセルロースエステル樹脂(B)は、特に脆性の改善やアクリル樹脂(A)と相溶させたときに透明性の観点から、アシル基の総置換度(T)が2.0〜3.0、炭素数が3〜7のアシル基の置換度が1.2〜3.0であり、炭素数3〜7のアシル基の置換度は、2.0〜3.0であることが好ましい。即ち、本発明に係るセルロースエステル樹脂は、炭素数が3〜7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
<Cellulose ester resin (B)>
The cellulose ester resin (B) according to the present invention has an acyl group total substitution degree (T) of 2.0 to 3 from the viewpoint of transparency, particularly when improved in brittleness or compatible with the acrylic resin (A). 0.0, the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 2.0 to 3.0. preferable. That is, the cellulose ester resin according to the present invention is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms. Specifically, propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferable. Used.

セルロースエステル樹脂(B)の、アシル基の総置換度が2.0を下回る場合、即ち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0を上回る場合には、アクリル樹脂(A)とアクリル樹脂(B)が十分に相溶せず光学フィルムとして用いる場合にヘーズが問題となる。また、アシル基の総置換度が2.0以上であっても、炭素数が3〜7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られないか、脆性が低下することとなる。例えば、アシル基の総置換度が2.0以上の場合であっても、炭素数2のアシル基、即ちアセチル基の置換度が高く、炭素数3〜7のアシル基の置換度が1.2を下回る場合は、相溶性が低下しヘーズが上昇する。また、アシル基の総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3〜7のアシル基の置換度が1.2を下回る場合は、脆性が劣化し、所望の特性が得られない。   When the total substitution degree of the acyl group of the cellulose ester resin (B) is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic ester When the resin (A) and the acrylic resin (B) are not sufficiently compatible and used as an optical film, haze becomes a problem. Moreover, even if the total substitution degree of the acyl group is 2.0 or more, if the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, still sufficient compatibility cannot be obtained, Brittleness will decrease. For example, even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 2 carbon atoms, that is, the acetyl group is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1. When it is less than 2, the compatibility is lowered and the haze is increased. Even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 8 or more carbon atoms is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2. In such a case, the brittleness deteriorates and desired characteristics cannot be obtained.

本発明に係るセルロースエステル樹脂(B)のアシル置換度は、総置換度(T)が2.0〜3.0であり、炭素数が3〜7のアシル基の置換度が1.2〜3.0であれば問題ないが、炭素数が3〜7以外のアシル基、即ち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。   As for the acyl substitution degree of the cellulose ester resin (B) according to the present invention, the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0. If it is 3.0, there is no problem, but the total substitution degree of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less. .

また、セルロースエステル樹脂(B)のアシル基の総置換度(T)は、2.5〜3.0の範囲であることが更に好ましい。   The total substitution degree (T) of the acyl group of the cellulose ester resin (B) is more preferably in the range of 2.5 to 3.0.

本発明において前記アシル基は、脂肪族アシル基であっても、芳香族アシル基であってもよい。脂肪族アシル基の場合は、直鎖であっても分岐していても良く、さらに置換基を有してもよい。本発明におけるアシル基の炭素数は、アシル基の置換基を包含するものである。   In the present invention, the acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent. The number of carbon atoms of the acyl group in the present invention includes an acyl group substituent.

上記セルロースエステル樹脂(B)が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0〜5個であることが好ましい。この場合も、置換基を含めた炭素数が3〜7であるアシル基の置換度が1.2〜3.0となるように留意が必要である。例えば、ベンゾイル基は炭素数が7になる為、炭素を含む置換基を有する場合は、ベンゾイル基としての炭素数は8以上となり、炭素数が3〜7のアシル基には含まれないこととなる。   When the said cellulose ester resin (B) has an aromatic acyl group as a substituent, it is preferable that the number of the substituents X substituted to an aromatic ring is 0-5. Also in this case, it is necessary to pay attention so that the substitution degree of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0. For example, since the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.

更に、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。   Further, when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).

上記のようなセルロースエステル樹脂(B)においては、炭素数3〜7の脂肪族アシル基の少なくとも1種を有する構造を有することが、本発明に係るセルロース樹脂に用いる構造として用いられる。   In the cellulose ester resin (B) as described above, having a structure having at least one kind of an aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used for the cellulose resin according to the present invention.

本発明に係るセルロースエステル樹脂(B)の置換度は、アシル基の総置換度(T)が2.0〜3.0、炭素数が3〜7のアシル基の置換度が1.2〜3.0である。   The substitution degree of the cellulose ester resin (B) according to the present invention is such that the total substitution degree (T) of the acyl group is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 2.0. 3.0.

また、炭素数が3〜7のアシル基以外、即ちアセチル基と炭素数が8以上のアシル基の置換度の総和が1.3以下であることが好ましい構造である。   Moreover, it is a preferable structure that the sum total of the substitution degree of other than an acyl group having 3 to 7 carbon atoms, that is, an acetyl group and an acyl group having 8 or more carbon atoms is 1.3 or less.

本発明に係るセルロースエステル樹脂(B)としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、特に、炭素原子数3又は4のアシル基を置換基として有するものが好ましい。   The cellulose ester resin (B) according to the present invention is particularly preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate. Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.

これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。   Among these, cellulose ester resins that are particularly preferred are cellulose acetate propionate and cellulose propionate.

アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することが出来る。   The portion that is not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.

なお、アセチル基の置換度や他のアシル基の置換度は、ASTM−D817−96に規定の方法により求めたものである。   In addition, the substitution degree of an acetyl group and the substitution degree of other acyl groups are obtained by a method prescribed in ASTM-D817-96.

本発明に係るセルロースエステル樹脂の重量平均分子量(Mw)は、特にアクリル樹脂(A)との相溶性、脆性の改善の観点から75000以上であり、75000〜300000の範囲であることが好ましく、100000〜240000の範囲内であることが更に好ましく、160000〜240000のものが特に好ましい。セルロースエステル樹脂の重要平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が十分ではなく、本発明の効果が得られない。本発明では2種以上のセルロース樹脂を混合して用いることもできる。   The weight average molecular weight (Mw) of the cellulose ester resin according to the present invention is 75000 or more, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and is preferably in the range of 75,000 to 300,000. More preferably, it is in the range of ˜240,000, particularly preferably in the range of 160000 to 240000. When the important average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the effect of improving heat resistance and brittleness is not sufficient, and the effect of the present invention cannot be obtained. In the present invention, two or more kinds of cellulose resins can be mixed and used.

本発明の光学フィルムにおいて、アクリル樹脂(A)とセルロースエステル樹脂(B)は、95:5〜30:70の質量比で含有されるが、好ましくは95:5〜50:50であり、更に好ましくは90:10〜60:40である。   In the optical film of the present invention, the acrylic resin (A) and the cellulose ester resin (B) are contained in a mass ratio of 95: 5 to 30:70, preferably 95: 5 to 50:50. Preferably it is 90: 10-60: 40.

アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5よりもアクリル樹脂(A)が多くなると、セルロースエステル樹脂(B)による効果が十分に得られず、同質量比が30:70よりもアクリル樹脂が少なくなると、耐湿性が不十分となる。   If the mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is more than 95: 5, the effect of the cellulose ester resin (B) cannot be sufficiently obtained, and the mass ratio is When the amount of acrylic resin is less than 30:70, the moisture resistance becomes insufficient.

本発明の光学フィルムにおいては、アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態で含有されることが好ましい。光学フィルムとして必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことにより達成している。   In the optical film of the present invention, the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state. The physical properties and quality required for an optical film are achieved by supplementing each other by dissolving different resins.

アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。   Whether the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by, for example, the glass transition temperature Tg.

例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。   For example, when the two resins have different glass transition temperatures, when the two resins are mixed, there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin. When they are compatible, the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.

尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。   The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a temperature rising rate of 20 ° C./min. The point glass transition temperature (Tmg).

アクリル樹脂(A)とセルロースエステル樹脂(B)は、それぞれ非結晶性樹脂であることが好ましく、いずれか一方が結晶性高分子、あるいは部分的に結晶性を有する高分子であってもよいが、本発明においてアクリル樹脂(A)とセルロースエステル樹脂(B)が相溶することで、非結晶性樹脂となることが好ましい。   The acrylic resin (A) and the cellulose ester resin (B) are each preferably an amorphous resin, and either one may be a crystalline polymer or a partially crystalline polymer. In the present invention, the acrylic resin (A) and the cellulose ester resin (B) are preferably compatible with each other to become an amorphous resin.

本発明の光学フィルムにおけるアクリル樹脂(A)の重量平均分子量(Mw)やセルロースエステル樹脂(B)の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて、分別した後に、それぞれ測定することにより得られる。樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。本発明の光学フィルムが、アクリル樹脂(A)やセルロースエステル樹脂(B)以外の樹脂を含有する場合も同様の方法で分別することができる。   In the optical film of the present invention, the weight average molecular weight (Mw) of the acrylic resin (A), the weight average molecular weight (Mw) of the cellulose ester resin (B), and the degree of substitution are different in solubility in the solvent of both resins. It is obtained by measuring each after use. When fractionating the resin, it is possible to extract and separate the soluble resin by adding a compatible resin in a solvent that is soluble only in either one. At this time, heating operation or reflux is performed. May be. A combination of these solvents may be combined in two or more steps to separate the resin. The dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying. These fractionated resins can be identified by general structural analysis of polymers. When the optical film of the present invention contains a resin other than the acrylic resin (A) and the cellulose ester resin (B), it can be separated by the same method.

また、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。   If the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.

また、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することもできる。   In addition, the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure. By detecting the resin composition for each molecular weight fraction, it is possible to identify each compatible resin. By measuring the molecular weight distribution of each of the resins separated in advance based on the difference in solubility in a solvent by GPC, it is possible to detect each of the compatible resins.

また、本発明において、「アクリル樹脂(A)やセルロースエステル樹脂(B)を相溶状態で含有する」とは、各々の樹脂(ポリマー)を混合することで、結果として相溶された状態となることを意味しており、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂(B)に混合させた後に重合させることにより混合樹脂とされた状態は含まれないものとする。   In the present invention, “containing acrylic resin (A) and cellulose ester resin (B) in a compatible state” means mixing each resin (polymer), resulting in a compatible state. This means that a state in which a precursor of acrylic resin such as monomer, dimer or oligomer is mixed with cellulose ester resin (B) and then polymerized by polymerization is not included. .

例えば、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂(B)に混合させた後に重合されることにより混合樹脂を得る工程は、重合反応が複雑であり、この方法で作製した樹脂は、反応の制御が困難であり、分子量の調整も困難となる。また、このような方法で樹脂を合成した場合は、グラフト重合、架橋反応や環化反応が生じることが多く、溶媒に溶解しいケースや、加熱により溶融できなくなることが多く、混合樹脂中におけるアクリル樹脂を溶離して重量平均分子量(Mw)を測定することも困難である為、物性をコントロールすることが難しく光学フィルムを安定に製造する樹脂として用いることはできない。   For example, the process of obtaining a mixed resin by mixing a precursor of an acrylic resin such as a monomer, dimer, or oligomer with the cellulose ester resin (B) and then polymerizing it involves a complicated polymerization reaction. The resin is difficult to control the reaction, and it is difficult to adjust the molecular weight. In addition, when a resin is synthesized by such a method, graft polymerization, cross-linking reaction or cyclization reaction often occurs. In many cases, the resin is soluble in a solvent or cannot be melted by heating. Since it is difficult to elute the resin and measure the weight average molecular weight (Mw), it is difficult to control the physical properties and it cannot be used as a resin for stably producing an optical film.

本発明の光学フィルムは、光学フィルムとしての機能を損なわない限りは、アクリル樹脂(A)、セルロースエステル樹脂(B)以外の樹脂や添加剤を含有して構成されていても良い。   Unless the function as an optical film is impaired, the optical film of this invention may contain resin and additives other than an acrylic resin (A) and a cellulose-ester resin (B), and may be comprised.

アクリル樹脂(A)、セルロースエステル樹脂(B)以外の樹脂を含有する場合、添加される樹脂が相溶状態であっても、溶解せずに混合されていてもよい。   When the resin other than the acrylic resin (A) and the cellulose ester resin (B) is contained, even if the added resin is in a compatible state, it may be mixed without being dissolved.

本発明の光学フィルムにおけるアクリル樹脂(A)とセルロースエステル樹脂(B)の総質量は、光学フィルムの55質量%以上であることが好ましく、更に好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。   The total mass of the acrylic resin (A) and the cellulose ester resin (B) in the optical film of the present invention is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.

アクリル樹脂(A)とセルロースエステル樹脂(B)以外の樹脂や添加剤を用いる際には、本発明の光学フィルムの機能を損なわない範囲で添加量を調整することが好ましい。   When using resins and additives other than the acrylic resin (A) and the cellulose ester resin (B), it is preferable to adjust the addition amount within a range not impairing the function of the optical film of the present invention.

〈アクリル粒子(C)〉
本発明の光学フィルムは、アクリル粒子を含有することが好ましい。
<Acrylic particles (C)>
The optical film of the present invention preferably contains acrylic particles.

本発明に係るアクリル粒子(C)とは、前記アクリル樹脂(A)及びセルロースエステル樹脂(B)を相溶状態で含有する光学フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。   The acrylic particles (C) according to the present invention are present in a state of particles (also referred to as an incompatible state) in an optical film containing the acrylic resin (A) and the cellulose ester resin (B) in a compatible state. Represents an acrylic component.

上記アクリル粒子(C)は、例えば、作製した光学フィルムを所定量採取し、溶媒に溶解させて攪拌し、充分に溶解・分散させたところで、アクリル粒子(C)の平均粒子径未満の孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶物の重さが、光学フィルムに添加したアクリル粒子(C)の90質量%以上あることが好ましい。   The acrylic particles (C) are obtained, for example, by collecting a predetermined amount of the produced optical film, dissolving it in a solvent, stirring, and sufficiently dissolving / dispersing it, so that the pore diameter is less than the average particle diameter of the acrylic particles (C). It is preferable that the weight of the insoluble matter filtered and collected using the PTFE membrane filter is 90% by mass or more of the acrylic particles (C) added to the optical film.

本発明に用いられるアクリル粒子(C)は特に限定されるものではないが、2層以上の層構造を有するアクリル粒子(C)であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。   The acrylic particles (C) used in the present invention are not particularly limited, but are preferably acrylic particles (C) having a layer structure of two or more layers, particularly the following multilayer structure acrylic granular composite. It is preferable.

多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、および最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体を言う。   The multilayer structure acrylic granular composite is formed by laminating an innermost hard layer polymer, a cross-linked soft layer polymer exhibiting rubber elasticity, and an outermost hard layer polymer from the center to the outer periphery. This refers to a particulate acrylic polymer having a structure.

すなわち、多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層、架橋軟質層、および最外硬質層からなる多層構造アクリル系粒状複合体である。この3層コアシェル構造の多層構造アクリル系粒状複合体が好ましく用いられる。   That is, the multilayer structure acrylic granular composite is a multilayer structure acrylic granular composite comprising an innermost hard layer, a crosslinked soft layer, and an outermost hard layer from the central portion toward the outer peripheral portion. This three-layer core-shell multilayer acrylic granular composite is preferably used.

本発明に係るアクリル系樹脂組成物に用いられる多層構造アクリル系粒状複合体の好ましい態様としては、以下の様なものが挙げられる。(a)メチルメタクリレート80〜98.9質量%、アルキル基の炭素数が1〜8のアルキルアクリレート1〜20質量%、および多官能性グラフト剤0.01〜0.3質量%からなる単量体の混合物を重合して得られる最内硬質層重合体、(b)上記最内硬質層重合体の存在下に、アルキル基の炭素数が4〜8のアルキルアクリレート75〜98.5質量%、多官能性架橋剤0.01〜5質量%および多官能性グラフト剤0.5〜5質量%からなる単量体の混合物を重合して得られる架橋軟質層重合体、(c)上記最内硬質層および架橋軟質層からなる重合体の存在下に、メチルメタクリレート80〜99質量%とアルキル基の炭素数が1〜8であるアルキルアクリレート1〜20質量%とからなる単量体の混合物を重合して得られる最外硬層重合体、よりなる3層構造を有し、かつ得られた3層構造重合体が最内硬質層重合体(a)5〜40質量%、軟質層重合体(b)30〜60質量%、および最外硬質層重合体(c)20〜50質量%からなり、アセトンで分別したときに不溶部があり、その不溶部のメチルエチルケトン膨潤度が1.5〜4.0であるアクリル系粒状複合体、が挙げられる。   Preferred embodiments of the multilayer structure acrylic granular composite used in the acrylic resin composition according to the present invention include the following. (A) Monomer composed of 80 to 98.9% by mass of methyl methacrylate, 1 to 20% by mass of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group, and 0.01 to 0.3% by mass of polyfunctional grafting agent An innermost hard layer polymer obtained by polymerizing a mixture of the body, (b) in the presence of the innermost hard layer polymer, an alkyl acrylate having an alkyl group of 4 to 8 carbon atoms of 75 to 98.5% by mass. A crosslinked soft layer polymer obtained by polymerizing a mixture of monomers comprising 0.01 to 5% by mass of a polyfunctional crosslinking agent and 0.5 to 5% by mass of a multifunctional grafting agent, (c) In the presence of a polymer comprising an inner hard layer and a crosslinked soft layer, a mixture of monomers comprising 80 to 99% by mass of methyl methacrylate and 1 to 20% by mass of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group. Outermost obtained by polymerizing The layered polymer has a three-layer structure, and the obtained three-layered polymer is the innermost hard layer polymer (a) 5 to 40% by mass, the soft layer polymer (b) 30 to 60% by mass. And the outermost hard layer polymer (c) 20 to 50% by mass, having an insoluble part when fractionated with acetone, and an insoluble granular part having a methyl ethyl ketone swelling degree of 1.5 to 4.0 Complex.

なお、特公昭60−17406号あるいは特公平3−39095号において開示されている様に、多層構造アクリル系粒状複合体の各層の組成や粒子径を規定しただけでなく、多層構造アクリル系粒状複合体の引張り弾性率やアセトン不溶部のメチルエチルケトン膨潤度を特定範囲内に設定することにより、さらに充分な耐衝撃性と耐応力白化性のバランスを実現することが可能となる。   As disclosed in Japanese Patent Publication No. 60-17406 or Japanese Patent Publication No. 3-39095, not only the composition and particle size of each layer of the multilayer structure acrylic granular composite are defined, but also the multilayer structure acrylic granular composite. By setting the tensile modulus of the body and the degree of swelling of methyl ethyl ketone in the acetone-insoluble part within a specific range, it is possible to realize a further sufficient balance between impact resistance and stress whitening resistance.

ここで、多層構造アクリル系粒状複合体を構成する最内硬質層重合体(a)は、メチルメタクリレート80〜98.9質量%、アルキル基の炭素数が1〜8のアルキルアクリレート1〜20質量%および多官能性グラフト剤0.01〜0.3質量%からなる単量体の混合物を重合して得られるものが好ましい。   Here, the innermost hard layer polymer (a) constituting the multi-layer structure acrylic granular composite is 80 to 98.9% by mass of methyl methacrylate and 1 to 20% of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group. % And a mixture of monomers consisting of 0.01 to 0.3% by mass of a polyfunctional grafting agent is preferred.

ここで、アルキル基の炭素数が1〜8のアルキルアクリレートとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が挙げられ、メチルアクリレートやn−ブチルアクリレートが好ましく用いられる。   Here, examples of the alkyl acrylate having 1 to 8 carbon atoms in the alkyl group include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like. And n-butyl acrylate are preferably used.

最内硬質層重合体(a)におけるアルキルアクリレート単位の割合は1〜20質量%であることが好ましい。   The ratio of the alkyl acrylate unit in the innermost hard layer polymer (a) is preferably 1 to 20% by mass.

多官能性グラフト剤としては、異なる重合可能な官能基を有する多官能性単量体、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸のアリルエステル等が挙げられ、アリルメタクリレートが好ましく用いられる。多官能性グラフト剤は、最内硬質層重合体と軟質層重合体を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は0.01〜0.3質量%である。   Examples of the polyfunctional grafting agent include polyfunctional monomers having different polymerizable functional groups, such as allyl esters of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, and allyl methacrylate is preferably used. . The polyfunctional grafting agent is used to chemically bond the innermost hard layer polymer and the soft layer polymer, and the ratio used during the innermost hard layer polymerization is 0.01 to 0.3% by mass. .

アクリル系粒状複合体を構成する架橋軟質層重合体(b)は、上記最内硬質層重合体(a)の存在下に、アルキル基の炭素数が1〜8のアルキルアクリレート75〜98.5質量%、多官能性架橋剤0.01〜5質量%および多官能性グラフト剤0.5〜5質量%からなる単量体の混合物を重合して得られるものが好ましい。   The crosslinked soft layer polymer (b) constituting the acrylic granular composite is an alkyl acrylate 75-98.5 having 1 to 8 carbon atoms in the presence of the innermost hard layer polymer (a). What is obtained by polymerizing a monomer mixture consisting of mass%, polyfunctional crosslinking agent 0.01 to 5 mass% and polyfunctional grafting agent 0.5 to 5 mass% is preferred.

ここで、アルキル基の炭素数が4〜8のアルキルアクリレートとしては、n−ブチルアクリレートや2−エチルヘキシルアクリレートが好ましく用いられる。   Here, as the alkyl acrylate having 4 to 8 carbon atoms in the alkyl group, n-butyl acrylate or 2-ethylhexyl acrylate is preferably used.

また、これらの重合性単量体と共に、25質量%以下の共重合可能な他の単官能性単量体を共重合させることも可能である。   In addition to these polymerizable monomers, it is possible to copolymerize 25% by mass or less of other monofunctional monomers capable of copolymerization.

共重合可能な他の単官能性単量体としては、スチレンおよび置換スチレン誘導体が挙げられる。アルキル基の炭素数が4〜8のアルキルアクリレートとスチレンとの比率は、前者が多いほど重合体(b)のガラス転移温度が低下し、即ち軟質化できるのである。   Other monofunctional monomers that can be copolymerized include styrene and substituted styrene derivatives. As for the ratio of the alkyl acrylate having 4 to 8 carbon atoms in the alkyl group and styrene, the glass transition temperature of the polymer (b) decreases as the former increases, that is, the ratio can be softened.

一方、樹脂組生物の透明性の観点からは、軟質層重合体(b)の常温での屈折率を最内硬質層重合体(a)、最外硬質層重合体(c)、および硬質熱可塑性アクリル樹脂に近づけるほうが有利であり、これらを勘案して両者の比率を選定する。   On the other hand, from the viewpoint of the transparency of the resin assembly, the refractive index of the soft layer polymer (b) at room temperature is set to the innermost hard layer polymer (a), the outermost hard layer polymer (c), and the hard heat. It is more advantageous to make it closer to the plastic acrylic resin, and the ratio between them is selected in consideration of these.

多官能性グラフト剤としては、前記の最内層硬質重合体(a)の項で挙げたものを用いることができる。ここで用いる多官能性グラフト剤は、軟質層重合体(b)と最外硬質層重合体(c)を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は耐衝撃性付与効果の観点から0.5〜5質量%が好ましい。   As the polyfunctional grafting agent, those mentioned in the item of the innermost layer hard polymer (a) can be used. The polyfunctional grafting agent used here is used to chemically bond the soft layer polymer (b) and the outermost hard layer polymer (c), and the proportion used during the innermost hard layer polymerization is impact resistance. 0.5-5 mass% is preferable from a viewpoint of the property provision effect.

多官能性架橋剤としては、ジビニル化合物、ジアリル化合物、ジアクリル化合物、ジメタクリル化合物などの一般に知られている架橋剤が使用できるが、ポリエチレングリコールジアクリレート(分子量200〜600)が好ましく用いられる。   As the polyfunctional crosslinking agent, generally known crosslinking agents such as divinyl compounds, diallyl compounds, diacrylic compounds, and dimethacrylic compounds can be used, and polyethylene glycol diacrylate (molecular weight 200 to 600) is preferably used.

ここで用いる多官能性架橋剤は、軟質層(b)の重合時に架橋構造を生成し、耐衝撃性付与の効果を発現させるために用いられる。ただし、先の多官能性グラフト剤を軟質層の重合時に用いれば、ある程度は軟質層(b)の架橋構造を生成するので、多官能性架橋剤は必須成分ではないが、多官能性架橋剤を軟質層重合時に用いる割合は耐衝撃性付与効果の観点から0.01〜5質量%が好ましい。   The polyfunctional cross-linking agent used here is used to generate a cross-linked structure at the time of polymerization of the soft layer (b) and develop an effect of imparting impact resistance. However, if the above-mentioned polyfunctional grafting agent is used during the polymerization of the soft layer, the polyfunctional crosslinking agent is not an essential component because the crosslinked structure of the soft layer (b) is generated to some extent. Is preferably 0.01 to 5% by mass from the viewpoint of imparting impact resistance.

多層構造アクリル系粒状複合体を構成する最外硬質層重合体(c)は、上記最内硬質層重合体(a)および軟質層重合体(b)の存在下に、メチルメタクリレート80〜99質量%およびアルキル基の炭素数が1〜8であるアルキルアクリレート1〜20質量%からなる単量体の混合物を重合して得られるものが好ましい。   In the presence of the innermost hard layer polymer (a) and the soft layer polymer (b), the outermost hard layer polymer (c) constituting the multilayer structure acrylic granular composite is 80 to 99 masses of methyl methacrylate. % And a mixture of monomers consisting of 1 to 20% by mass of an alkyl acrylate having 1 to 8 carbon atoms in the alkyl group is preferred.

ここで、アクリルアルキレートとしては、前述したものが用いられるが、メチルアクリレートやエチルアクリレートが好ましく用いられる。最外硬質層(c)におけるアルキルアクリレート単位の割合は、1〜20質量%が好ましい。   Here, as the acrylic alkylate, those described above are used, and methyl acrylate and ethyl acrylate are preferably used. The ratio of the alkyl acrylate unit in the outermost hard layer (c) is preferably 1 to 20% by mass.

また、最外硬質層(c)の重合時に、アクリル樹脂(A)との相溶性向上を目的として、分子量を調節するためアルキルメルカプタン等を連鎖移動剤として用い、実施することも可能である。   Further, for the purpose of improving the compatibility with the acrylic resin (A) during the polymerization of the outermost hard layer (c), it is also possible to use an alkyl mercaptan or the like as a chain transfer agent in order to adjust the molecular weight.

とりわけ、最外硬質層に、分子量が内側から外側へ向かって次第に小さくなるような勾配を設けることは、伸びと耐衝撃性のバランスを改良するうえで好ましい。具体的な方法としては、最外硬質層を形成するための単量体の混合物を2つ以上に分割し、各回ごとに添加する連鎖移動剤量を順次増加するような手法によって、最外硬質層を形成する重合体の分子量を多層構造アクリル系粒状複合体の内側から外側へ向かって小さくすることが可能である。   In particular, it is preferable to provide the outermost hard layer with a gradient such that the molecular weight gradually decreases from the inside toward the outside in order to improve the balance between elongation and impact resistance. Specifically, the outermost hard layer is divided into two or more monomer mixtures for forming the outermost hard layer, and the amount of chain transfer agent to be added each time is increased sequentially. It is possible to decrease the molecular weight of the polymer forming the layer from the inside to the outside of the multilayer structure acrylic granular composite.

この際に形成される分子量は、各回に用いられる単量体の混合物をそれ単独で同条件にて重合し、得られた重合体の分子量を測定することによって調べることもできる。   The molecular weight formed at this time can also be examined by polymerizing a mixture of monomers used each time under the same conditions and measuring the molecular weight of the resulting polymer.

本発明に好ましく用いられるアクリル粒子(C)の粒子径については、特に限定されるものではないが、10〜1000nmであることが好ましく、さらに、20〜500nmであることがより好ましく、特に50〜400nmであることが最も好ましい。   The particle diameter of the acrylic particles (C) preferably used in the present invention is not particularly limited, but is preferably 10 to 1000 nm, more preferably 20 to 500 nm, particularly 50 to Most preferably, it is 400 nm.

本発明に好ましく用いられる多層構造重合体であるアクリル系粒状複合体において、コアとシェルの質量比は、特に限定されるものではないが、多層構造重合体全体を100質量部としたときに、コア層が50〜90質量部であることが好ましく、さらに、60〜80質量部であることがより好ましい。なお、ここでいうコア層とは、最内硬質層のことである。   In the acrylic granular composite that is a multilayer structure polymer preferably used in the present invention, the mass ratio of the core and the shell is not particularly limited, but when the entire multilayer structure polymer is 100 parts by mass, The core layer is preferably 50 to 90 parts by mass, and more preferably 60 to 80 parts by mass. In addition, the core layer here is an innermost hard layer.

このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。   Examples of such commercially available multilayered acrylic granular composites include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kane Ace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and Haas “Acryloid” manufactured by KK, “Staffyroid” manufactured by Ganz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used alone or in combination of two or more.

また、本発明に好ましく用いられるアクリル粒子(C)として好適に使用されるグラフト共重合体であるアクリル粒子(C)の具体例としては、ゴム質重合体の存在下に、不飽和カルボン酸エステル系単量体、不飽和カルボン酸系単量体、芳香族ビニル系単量体、および必要に応じてこれらと共重合可能な他のビニル系単量体からなる単量体の混合物を共重合せしめたグラフト共重合体が挙げられる。   Further, specific examples of the acrylic particles (C) that are graft copolymers suitably used as the acrylic particles (C) preferably used in the present invention include unsaturated carboxylic acid esters in the presence of a rubbery polymer. Copolymerization of a mixture of monomers, unsaturated carboxylic acid monomers, aromatic vinyl monomers, and other vinyl monomers copolymerizable with these if necessary Examples thereof include a graft copolymer.

グラフト共重合体であるアクリル粒子(C)に用いられるゴム質重合体には特に制限はないが、ジエン系ゴム、アクリル系ゴムおよびエチレン系ゴムなどが使用できる。具体例としては、ポリブタジエン、スチレン−ブタジエン共重合体、スチレン−ブタジエンのブロック共重合体、アクリロニトリル−ブタジエン共重合体、アクリル酸ブチル−ブタジエン共重合体、ポリイソプレン、ブタジエン−メチルメタクリレート共重合体、アクリル酸ブチル−メチルメタクリレート共重合体、ブタジエン−アクリル酸エチル共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン系共重合体、エチレン−イソプレン共重合体、およびエチレン−アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体は、1種又は2種以上の混合物で使用することが可能である。   The rubbery polymer used for the acrylic particles (C) that are the graft copolymer is not particularly limited, but diene rubber, acrylic rubber, ethylene rubber, and the like can be used. Specific examples include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, Butyl acrylate-methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-isoprene copolymer, and ethylene-methyl acrylate copolymer A polymer etc. are mentioned. These rubbery polymers can be used alone or in a mixture of two or more.

また、本発明の光学フィルムにアクリル粒子(C)を添加する場合は、アクリル樹脂(A)とセルロースエステル樹脂(B)との混合物の屈折率とアクリル粒子(C)の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子(C)とアクリル樹脂(A)の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。   Moreover, when adding an acrylic particle (C) to the optical film of this invention, the refractive index of the mixture of an acrylic resin (A) and a cellulose-ester resin (B) and the refractive index of an acrylic particle (C) must be near. From the viewpoint of obtaining a film with high transparency. Specifically, the refractive index difference between the acrylic particles (C) and the acrylic resin (A) is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.

このような屈折率条件を満たすためには、アクリル樹脂(A)の各単量体単位組成比を調整する方法、および/又はアクリル粒子(C)に使用されるゴム質重合体あるいは単量体の組成比を調製する方法などにより、屈折率差を小さくすることができ、透明性に優れた光学フィルムを得ることができる。   In order to satisfy such a refractive index condition, a method of adjusting the monomer unit composition ratio of the acrylic resin (A) and / or a rubbery polymer or monomer used for the acrylic particles (C) The refractive index difference can be reduced by a method of adjusting the composition ratio, and an optical film excellent in transparency can be obtained.

尚、ここで言う屈折率差とは、アクリル樹脂(A)が可溶な溶媒に、本発明の光学フィルムを適当な条件で十分に溶解させ白濁溶液とし、これを遠心分離等の操作により、溶媒可溶部分と不溶部分に分離し、この可溶部分(アクリル樹脂(A))と不溶部分(アクリル粒子(C))をそれぞれ精製した後、測定した屈折率(23℃、測定波長:550nm)の差を示す。   The refractive index difference referred to here is a solution in which the optical film of the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble to obtain a cloudy solution, which is subjected to an operation such as centrifugation. After separating the solvent-soluble part and the insoluble part and purifying the soluble part (acrylic resin (A)) and insoluble part (acrylic particles (C)), the measured refractive index (23 ° C., measuring wavelength: 550 nm). ) Difference.

本発明においてアクリル樹脂(A)に、アクリル粒子(C)を配合する方法には、特に制限はなく、アクリル樹脂(A)とその他の任意成分を予めブレンドした後、通常200〜350℃において、アクリル粒子(C)を添加しながら一軸又は二軸押出機により均一に溶融混練する方法が好ましく用いられる。   There is no restriction | limiting in particular in the method of mix | blending an acrylic particle (C) with an acrylic resin (A) in this invention, After blending an acrylic resin (A) and another arbitrary component previously, Usually at 200-350 degreeC, A method of uniformly kneading with a single screw or twin screw extruder while adding acrylic particles (C) is preferably used.

また、アクリル粒子(C)を予め分散した溶液を、アクリル樹脂(A)、及びセルロースエステル樹脂(B)を溶解した溶液(ドープ液)に添加して混合する方法や、アクリル粒子(C)及びその他の任意の添加剤を溶解、混合した溶液をインライン添加する等の方法を用いることができる。   In addition, a solution in which acrylic particles (C) are dispersed in advance is added to and mixed with a solution (dope solution) in which acrylic resin (A) and cellulose ester resin (B) are dissolved, and acrylic particles (C) and A method such as in-line addition of a solution obtained by dissolving or mixing other optional additives can be used.

本発明に係るアクリル粒子としては、市販のものも使用することができる。例えば、メタブレンW−341(C2)(三菱レイヨン(株)製)を、ケミスノーMR−2G(C3)、MS−300X(C4)(綜研化学(株)製)等を挙げることができる。   A commercially available thing can also be used as an acrylic particle concerning this invention. For example, metabrene W-341 (C2) (manufactured by Mitsubishi Rayon Co., Ltd.), Chemisnow MR-2G (C3), MS-300X (C4) (manufactured by Soken Chemical Co., Ltd.) and the like can be mentioned.

本発明の光学フィルムにおいて、当該フィルムを構成する樹脂の総質量に対して、0.5〜30質量%のアクリル粒子(C)を含有することが好ましく、1.0〜15質量%の範囲で含有することが更に好ましい。   In the optical film of the present invention, it is preferable to contain 0.5 to 30% by mass of acrylic particles (C) with respect to the total mass of the resin constituting the film, and in the range of 1.0 to 15% by mass. It is more preferable to contain.

〈その他の添加剤〉
本発明の光学フィルムにおいては、組成物の流動性や柔軟性を向上するために、可塑剤を併用することも可能である。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
<Other additives>
In the optical film of the present invention, a plasticizer can be used in combination in order to improve the fluidity and flexibility of the composition. Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.

この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。   Of these, polyester and phthalate plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.

従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。   Therefore, it can be applied to a wide range of uses by selecting or using these plasticizers according to the use.

ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。   The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.

特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3−ブチレン、1,4−ブチレン、1,6−ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸およびグリコールはそれぞれ単独で、あるいは混合して使用してもよい。   In particular, when adipic acid, phthalic acid or the like is used, those having excellent plasticizing properties can be obtained. Examples of the glycol include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.

このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100〜10000の範囲が良いが、好ましくは600〜3000の範囲が、可塑化効果が大きい。   The ester plasticizer may be any of ester, oligoester, and polyester types, and the molecular weight is preferably in the range of 100 to 10,000, and preferably in the range of 600 to 3000, which has a large plasticizing effect.

また、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200〜5000MPa・s(25℃)の範囲が良い。さらに、いくつかのポリエステル系可塑剤を併用してもかまわない。   The viscosity of the plasticizer has a correlation with the molecular structure and molecular weight. In the case of an adipic acid plasticizer, the viscosity is preferably in the range of 200 to 5000 MPa · s (25 ° C.) in view of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.

可塑剤は、本発明の光学フィルム100質量部に対して、0.5〜30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。   The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the optical film of the present invention. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.

本発明の光学フィルムは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2−ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。   The optical film of the present invention preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.

ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。   Here, among ultraviolet absorbers, ultraviolet absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high-temperature molding, so that the weather resistance is effectively improved with a relatively small amount of addition. be able to.

分子量が400以上の紫外線吸収剤としては、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2−ベンゾトリアゾール、2,2−メチレンビス[4−(1,1,3,3−テトラブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート等のヒンダードアミン系、さらには2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、1−[2−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2−ベンゾトリアゾールや2,2−メチレンビス[4−(1,1,3,3−テトラブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]が特に好ましい。   Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl L] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine and the like, hindered phenol and hindered amine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.

さらに、本発明の光学フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、光学フィルムに帯電防止性能を与えることも可能である。   Furthermore, various antioxidants can also be added to the optical film of the present invention in order to improve the thermal decomposability and thermal coloring during molding. It is also possible to add an antistatic agent to give the optical film antistatic performance.

本発明の光学フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。   For the optical film of the present invention, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.

ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。   Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.

具体的な例としては、トリフェニルホスフェート、9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキシド、フェニルホスホン酸、トリス(β−クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。   Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl). Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.

本発明の光学フィルムによれば、従来の樹脂フィルムでは成し得なかった低吸湿性、透明性、高耐熱性及び脆性の改善を同時に達成することができる。   According to the optical film of the present invention, improvement in low hygroscopicity, transparency, high heat resistance, and brittleness that could not be achieved with conventional resin films can be achieved at the same time.

本発明においては、脆性の指標としては、「延性破壊が起こらない光学フィルム」であるかどうかという基準により判断する。延性破壊が起こらない、脆性が改善された光学フィルムを得ることで、大型の液晶表示装置用の偏光板を作製する際にも、製造時の破断や割れが発生せず、取り扱い性に優れた光学フィルムとすることができる。ここで、延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じる破断のことであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。   In the present invention, the brittleness index is determined based on the criterion of whether or not it is “an optical film in which ductile fracture does not occur”. By obtaining an optical film with improved brittleness that does not cause ductile fracture, even when manufacturing a polarizing plate for a large-sized liquid crystal display device, breakage and cracking during production do not occur, and the handling property is excellent. It can be an optical film. Here, the ductile fracture is a fracture caused by applying a stress larger than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material until the final fracture. The fracture surface is characterized by numerous indentations called dimples.

本発明では、「延性破壊が起こらない光学フィルム」であるか否かは、フィルムを2つに折り曲げるような大きな応力を作用させても破断等の破壊がみられないことにより評価するものとする。このような大きな応力が加えられても延性破壊が起こらない光学フィルムであれば、大型化された液晶表示装置用の偏光板保護フィルムとして用いられた場合であっても製造時の破断等の問題を十分に低減することが可能となり、さらに、一度貼り合わされた後に再度引き剥がして光学フィルムを使用する場合においても、破断が発生せず、光学フィルムの薄型化へも十分に対応可能である。   In the present invention, whether or not it is “an optical film that does not cause ductile fracture” is evaluated based on the fact that no breakage or the like is observed even when a large stress is applied such that the film is folded in two. . Even if it is used as a polarizing plate protective film for a large-sized liquid crystal display device, if it is an optical film that does not cause ductile fracture even when such a large stress is applied, problems such as breakage during production Furthermore, even when the optical film is used after being peeled off after being pasted once, no breakage occurs and the optical film can be sufficiently reduced in thickness.

本発明においては、耐熱性の指標として、張力軟化点を用いる。液晶表示装置が大型化され、バックライト光源の輝度が益々高くなっていることに加え、デジタルサイネージ等の屋外用途への利用により、より高い輝度が求められていることから、光学フィルムはより高温の環境下での使用に耐えられることが求められているが、張力軟化点が、105℃〜145℃であれば、十分な耐熱性を示すものと判断できる。特に110℃〜130℃に制御することがより好ましい。   In the present invention, the tension softening point is used as an index of heat resistance. In addition to the increasing size of liquid crystal display devices and the increasing brightness of backlight light sources, the use of digital signage and other outdoor applications demands higher brightness. However, if the tension softening point is 105 ° C. to 145 ° C., it can be determined that sufficient heat resistance is exhibited. In particular, it is more preferable to control to 110 ° C to 130 ° C.

光学フィルムの張力軟化点を示す温度の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC−1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。   As a specific measuring method of the temperature indicating the tension softening point of the optical film, for example, the optical film is cut out at 120 mm (length) × 10 mm (width) using a Tensilon tester (ORIENTEC, RTC-1225A). The temperature can be raised at a rate of 30 ° C./min while pulling with a tension of 10 N, and the temperature at the time when the pressure reaches 9 N is measured three times, and the average value can be obtained.

また、耐熱性の観点では、光学フィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。   From the viewpoint of heat resistance, the optical film preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.

尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。   The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a temperature rising rate of 20 ° C./min. Point glass transition temperature (Tmg).

本発明における光学フィルムの透明性を判断する指標としては、ヘーズ値(濁度)を用いる。特に屋外で用いられる液晶表示装置においては、明るい場所でも十分な輝度や高いコントラストが得られることが求められる為、ヘーズ値は1.0%以下であることが必要とされ、0.5%以下であることが更に好ましい。   As an index for judging the transparency of the optical film in the present invention, haze value (turbidity) is used. In particular, liquid crystal display devices used outdoors are required to have sufficient brightness and high contrast even in a bright place. Therefore, the haze value is required to be 1.0% or less, and 0.5% or less. More preferably.

アクリル系樹脂(A)とセルロースエステル樹脂(B)を含有する本発明の光学フィルムによれば、高い透明性を得ることができるが、別の物性を改善する目的でアクリル粒子を使用する場合は、樹脂(アクリル系樹脂(A)とセルロースエステル樹脂(B))とアクリル粒子(C)との屈折率差を小さくすることで、ヘーズ値の上昇を防ぐことができる。   According to the optical film of the present invention containing the acrylic resin (A) and the cellulose ester resin (B), high transparency can be obtained, but when using acrylic particles for the purpose of improving another physical property. By increasing the difference in refractive index between the resin (acrylic resin (A) and cellulose ester resin (B)) and the acrylic particles (C), an increase in haze value can be prevented.

また、表面の粗さも表面ヘーズとしてヘーズ値に影響するため、アクリル粒子(C)の粒子径や添加量を前記範囲内に抑えること、製膜時のフィルム接触部の表面粗さを小さくすることも、有効である。   In addition, since the surface roughness also affects the haze value as surface haze, the particle diameter and addition amount of acrylic particles (C) should be kept within the above range, and the surface roughness of the film contact portion during film formation should be reduced. Is also effective.

また、本発明における光学フィルムの吸湿性については、湿度変化に対する寸法変化により評価するものとする。   In addition, the hygroscopicity of the optical film in the present invention is evaluated by dimensional change with respect to humidity change.

湿度変化に対する寸法変化の評価方法としては、以下の方法が用いられる。   The following method is used as an evaluation method of dimensional change with respect to humidity change.

作製した光学フィルムの流延方向に、目印(十字)を2箇所つけて60℃、90%RHで1000時間処理し、処理前と処理後の目印(十字)の距離を光学顕微鏡で測定し、寸法変化率(%)を求める。寸法変化率(%)は下記式で表される。   In the casting direction of the produced optical film, two marks (crosses) were attached and treated at 60 ° C. and 90% RH for 1000 hours, and the distance between the mark (cross) before and after treatment was measured with an optical microscope. Obtain the dimensional change rate (%). The dimensional change rate (%) is expressed by the following formula.

寸法変化率(%)=〔(a1−a2)/a1〕×100
a1:熱処理前の距離
a2:熱処理後の距離
液晶表示装置の偏光板用保護フィルムとして光学フィルムが用いられる場合は、吸湿による寸法変化により光学フィルムにムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。しかし、上記の条件における寸法変化率(%)が0.5%未満であれば、十分な低吸湿性を示す光学フィルムであると評価できる。更に、0.3%未満であることが好ましい。
Dimensional change rate (%) = [(a1-a2) / a1] × 100
a1: Distance before heat treatment a2: Distance after heat treatment When an optical film is used as a protective film for a polarizing plate of a liquid crystal display device, unevenness or a change in retardation value occurs due to a dimensional change due to moisture absorption. This causes problems such as a decrease in contrast and uneven color. In particular, the above problem becomes significant when the polarizing plate protective film is used in a liquid crystal display device used outdoors. However, if the dimensional change rate (%) under the above conditions is less than 0.5%, it can be evaluated that the optical film exhibits sufficiently low hygroscopicity. Furthermore, it is preferable that it is less than 0.3%.

また、本発明の光学フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。   In the optical film of the present invention, it is preferable that the number of defects in a film plane of 5 μm or more is 1/10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.

ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。   Here, the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.

欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。   The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. When the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.

なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。   In addition, when observing with reflected light, if the size of the defect is unclear, aluminum or platinum is deposited on the surface for observation.

かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。   In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.

欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。   When the number of defects is greater than 1/10 cm square, for example, when the film is tensioned during processing in a later process, the film may break with the defects as a starting point, and productivity may decrease.

また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。   Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.

また、目視で確認できない場合でも、当該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。   Moreover, even when it cannot visually confirm, when a hard-coat layer etc. are formed on the said film, a coating agent cannot be formed uniformly and may become a fault (coating omission). Here, the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.

また、本発明の光学フィルムは、JIS−K7127−1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。   In the measurement according to JIS-K7127-1999, the optical film of the present invention preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more.

破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。   The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.

本発明の光学フィルムの厚さは、20μm以上であることが好ましい。より好ましくは30μm以上である。   The thickness of the optical film of the present invention is preferably 20 μm or more. More preferably, it is 30 μm or more.

厚さの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚さは用途により適宜選定することができる。   The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying, and the like. In addition, the thickness of a film can be suitably selected according to a use.

本発明の光学フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。   The optical film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.

また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。   Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.

本発明の光学フィルムは、上記のような物性を満たしていれば、大型の液晶表示装置や屋外用途の液晶表示装置用の偏光板保護フィルムとして特に好ましく用いることができる。   The optical film of the present invention can be particularly preferably used as a polarizing plate protective film for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.

このような物性は、光学フィルムを、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5〜30:70の質量比で含有し、前記アクリル樹脂(A)の重量平均分子量Mwが80000以上であり、当該セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.00〜3.00、炭素数が3〜7のアシル基の置換度が1.2〜3.0であり、重量平均分子量(Mw)が75000以上であることを特徴とする光学フィルムとすることにより得ることができる。   Such physical properties include the optical film containing the acrylic resin (A) and the cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, and the weight average molecular weight Mw of the acrylic resin (A) is 80000. The total substitution degree (T) of the acyl group of the cellulose ester resin (B) is 2.00 to 3.00, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0. And having a weight average molecular weight (Mw) of 75,000 or more.

〈光学フィルムの製膜〉
光学フィルムの製膜方法の例を説明するが、本発明はこれに限定されるものではない。
<Optical film formation>
An example of a method for producing an optical film will be described, but the present invention is not limited to this.

本発明の光学フィルムの製膜方法としては、インフレーション法、T−ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液製膜が好ましい。   As a method for forming the optical film of the present invention, production methods such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used. From the standpoint of suppressing optical defects such as die lines and optical defects such as die lines, solution casting by casting is preferred.

(有機溶媒)
本発明の光学フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、アクリル樹脂(A)、セルロースエステル樹脂(B)、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。
(Organic solvent)
The organic solvent useful for forming the dope when the optical film of the present invention is produced by the solution casting method is one that simultaneously dissolves the acrylic resin (A), the cellulose ester resin (B), and other additives. It can be used without any limitation.

例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。   For example, as the chlorinated organic solvent, methylene chloride, as the non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- Examples include 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.

ドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのアクリル樹脂(A)、セルロースエステル樹脂(B)の溶解を促進する役割もある。   In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the ratio of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy. When the ratio of alcohol is small, acrylic resin (A) and cellulose ester in non-chlorine organic solvent system. There is also a role of promoting dissolution of the resin (B).

特に、メチレンクロライド、及び炭素数1〜4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂(A)と、セルロースエステル樹脂(B)と、アクリル粒子(C)の3種を、少なくとも計15〜45質量%溶解させたドープ組成物であることが好ましい。   In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, acrylic resin (A), cellulose ester resin (B), and acrylic particles (C) 3 A dope composition in which at least 15 to 45 mass% of the seed is dissolved is preferable.

炭素原子数1〜4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。   Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.

以下、本発明の光学フィルムの好ましい製膜方法について説明する。   Hereinafter, the preferable film forming method of the optical film of the present invention will be described.

1)溶解工程
アクリル樹脂(A)、セルロースエステル樹脂(B)に対する良溶媒を主とする有機溶に、溶解釜中で当該アクリル樹脂(A)、セルロースエステル樹脂(B)、場合によってアクリル粒子(C)、その他の添加剤を攪拌しながら溶解しドープを形成する工程、或いは当該アクリル樹脂(A)、セルロースエステル樹脂(B)溶液に、場合によってアクリル粒子(C)溶液、その他の添加剤溶液を混合して主溶解液であるドープを形成する工程である。
1) Dissolution step In an organic solution mainly composed of a good solvent for the acrylic resin (A) and the cellulose ester resin (B), the acrylic resin (A), the cellulose ester resin (B), and, in some cases, acrylic particles ( C), the step of dissolving other additives while stirring to form a dope, or the acrylic resin (A) and cellulose ester resin (B) solutions, optionally with acrylic particle (C) solutions and other additive solutions Are mixed to form a dope which is a main solution.

アクリル樹脂(A)、セルロースエステル樹脂(B)の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9−95544号公報、特開平9−95557号公報、又は特開平9−95538号公報に記載の如き冷却溶解法で行う方法、特開平11−21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることが出来るが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。   For dissolving the acrylic resin (A) and the cellulose ester resin (B), a method performed at normal pressure, a method performed below the boiling point of the main solvent, a method performed under pressure above the boiling point of the main solvent, JP-A-9-95544 Various melting methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure as described in JP-A-11-21379, and the like. Although it can be used, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.

ドープ中のアクリル樹脂(A)と、セルロースエステル樹脂(B)は、計15〜45質量%の範囲であることが好ましい。溶解中又は後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。   The total amount of the acrylic resin (A) and the cellulose ester resin (B) in the dope is preferably in the range of 15 to 45% by mass. An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.

濾過は捕集粒子径0.5〜5μmで、かつ濾水時間10〜25sec/100mlの濾材を用いることが好ましい。   It is preferable to use a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml.

この方法では、粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5〜5μmで、かつ濾水時間10〜25sec/100mlの濾材を用いることで凝集物だけ除去出来る。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。   In this method, the aggregate remaining at the time of particle dispersion and the aggregate generated when the main dope is added are aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml. Can only be removed. In the main dope, the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.

図1は、本発明に好ましい溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図である。   FIG. 1 is a diagram schematically showing an example of a dope preparation step, a casting step, and a drying step of a solution casting film forming method preferable for the present invention.

必要な場合は、アクリル粒子仕込釜41より濾過器44で大きな凝集物を除去し、ストック釜42へ送液する。その後、ストック釜42より主ドープ溶解釜1へアクリル粒子添加液を添加する。   If necessary, large agglomerates are removed from the acrylic particle charging kettle 41 by the filter 44 and fed to the stock kettle 42. Thereafter, the acrylic particle additive solution is added from the stock kettle 42 to the main dope dissolving kettle 1.

その後主ドープ液は主濾過器3にて濾過され、これに紫外線吸収剤添加液が16よりインライン添加される。   Thereafter, the main dope solution is filtered by the main filter 3, and an ultraviolet absorbent additive solution is added in-line from 16 to this.

多くの場合、主ドープには返材が10〜50質量%程度含まれることがある。返材にはアクリル粒子が含まれることがある、その場合には返材の添加量に合わせてアクリル粒子添加液の添加量をコントロールすることが好ましい。   In many cases, the main dope may contain about 10 to 50% by mass of the recycled material. The return material may contain acrylic particles. In that case, it is preferable to control the addition amount of the acrylic particle addition liquid in accordance with the addition amount of the return material.

アクリル粒子を含有する添加液には、アクリル粒子を0.5〜10質量%含有していることが好ましく、1〜10質量%含有していることが更に好ましく、1〜5質量%含有していることが最も好ましい。   The additive solution containing acrylic particles preferably contains 0.5 to 10% by mass of acrylic particles, more preferably 1 to 10% by mass, and 1 to 5% by mass. Most preferably.

上記範囲内であれば、添加液は低粘度で取り扱い易く、主ドープへの添加が容易であるため好ましい。   If it is in the said range, since an addition liquid is low-viscosity, it is easy to handle and it is easy to add to the main dope, it is preferable.

返材とは、光学フィルムを細かく粉砕した物で、光学フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした光学フィルム原反が使用される。   The return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .

また、予めアクリル樹脂、セルロースエステル樹脂、場合によってアクリル粒子を混練してペレット化したものも、好ましく用いることができる。   In addition, an acrylic resin, a cellulose ester resin, and, in some cases, acrylic particles kneaded into pellets can be preferably used.

2)流延工程
ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する無端の金属ベルト31、例えばステンレスベルト、或いは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt 31 such as a stainless steel belt or a rotating metal drum that feeds the dope to a pressure die 30 through a liquid feed pump (for example, a pressurized metering gear pump) and transfers it indefinitely. This is a step of casting a dope from a pressure die slit to a casting position on a metal support.

ダイの口金部分のスリット形状を調整出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。或いは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。   A pressure die that can adjust the slit shape of the die base and facilitates uniform film thickness is preferred. The pressure die includes a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.

3)溶媒蒸発工程
ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.

溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40〜100℃の雰囲気下、支持体上で乾燥させることが好ましい。40〜100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。   To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or to heat by means such as infrared rays.

面品質、透湿性、剥離性の観点から、30〜120秒以内で当該ウェブを支持体から剥離することが好ましい。   From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.

4)剥離工程
金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.

金属支持体上の剥離位置における温度は好ましくは10〜40℃であり、更に好ましくは11〜30℃である。   The temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.

尚、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50〜120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。   The residual solvent amount at the time of peeling of the web on the metal support at the time of peeling is preferably peeled in a range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.

ウェブの残留溶媒量は下記式で定義される。   The residual solvent amount of the web is defined by the following formula.

残留溶媒量(%)=(ウェブの加熱処理前質量−ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
尚、残留溶媒量を測定する際の加熱処理とは、140℃で2時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
In addition, the heat treatment for measuring the residual solvent amount represents performing heat treatment at 140 ° C. for 2 hours.

金属支持体とフィルムを剥離する際の剥離張力は、通常、196〜245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、更には、剥離できる最低張力〜166.6N/m、次いで、最低張力〜137.2N/mで剥離することが好ましいが、特に好ましくは最低張力〜100N/mで剥離することである。   The peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, when wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension that can be peeled to 166.6 N / m, and then peel at a minimum tension to 137.2 N / m, and particularly preferably peel at a minimum tension to 100 N / m.

本発明においては、当該金属支持体上の剥離位置における温度を−50〜40℃とするのが好ましく、10〜40℃がより好ましく、15〜30℃とするのが最も好ましい。   In the present invention, the temperature at the peeling position on the metal support is preferably -50 to 40 ° C, more preferably 10 to 40 ° C, and most preferably 15 to 30 ° C.

5)乾燥及び延伸工程
剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
5) Drying and stretching step After peeling, a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.

乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40〜250℃で行われる。特に40〜160℃で乾燥させることが好ましい。   Generally, the drying means blows hot air on both sides of the web, but there is also a means for heating by applying microwaves instead of the wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout the drying is generally carried out at 40-250 ° C. It is particularly preferable to dry at 40 to 160 ° C.

テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御出来る装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。   When a tenter stretching apparatus is used, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.

また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。   It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.

尚、延伸操作は多段階に分割して実施してもよい。たとえばテンター工程の主に前半で延伸を行い、後半では幅を保持しフィルムの応力の緩和を行っても良いし、あるいはテンター工程の前半で充分な予熱を行った後に後半で延伸操作を行っても良い。また、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。   The stretching operation may be performed in multiple stages. For example, stretching may be performed mainly in the first half of the tenter process and the width may be maintained to relieve the stress of the film in the second half, or after sufficient preheating in the first half of the tenter process, the stretching operation may be performed in the second half. Also good. It is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.

この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。   In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.

・流延方向に延伸−幅手方向に延伸−流延方向に延伸−流延方向に延伸
・幅手方向に延伸−幅手方向に延伸−流延方向に延伸−流延方向に延伸
また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍〜×1.5倍の範囲でとることができる。
-Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction-Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferable draw ratio of simultaneous biaxial stretching can be taken in the range of x1.01 to x1.5 times in both the width direction and the longitudinal direction.

テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20〜100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、更に好ましくは5質量%以下である。   When the tenter is used, the residual solvent amount of the web is preferably 20 to 100% by mass at the start of the tenter, and it is preferable to perform drying while applying the tenter until the residual solvent amount of the web becomes 10% by mass or less. More preferably, it is 5% by mass or less.

テンターを行う場合の乾燥温度は、30〜160℃が好ましく、50〜150℃が更に好ましく、70〜140℃が最も好ましい。   The drying temperature when performing the tenter is preferably 30 to 160 ° C, more preferably 50 to 150 ° C, and most preferably 70 to 140 ° C.

テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。   In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C Is more preferable, and within ± 1 ° C. is most preferable.

テンターの後の乾燥工程でさらに残留溶媒量を減少させることが好ましい。残留溶媒量としては5%以下が好ましく、さらには、2%以下が好ましい。   It is preferable to further reduce the amount of residual solvent in the drying step after the tenter. The amount of residual solvent is preferably 5% or less, and more preferably 2% or less.

テンター工程後の乾燥工程の乾燥温度は80℃〜160℃が好ましく、90〜140℃がさらに好ましい。また、乾燥温度はこの乾燥工程の前半では低めに、後半では高めに設定することが好ましい。   80 to 160 degreeC is preferable and the drying temperature of the drying process after a tenter process has more preferable 90 to 140 degreeC. The drying temperature is preferably set lower in the first half of the drying step and higher in the second half.

この乾燥温度は、ウェブの残留溶媒と搬送張力によって調整することができる。すなわち、残留溶媒が多い場合はウェブの見かけのTgが低下するので乾燥温度を低めにしてウェブの伸びを抑制することが好ましい。   This drying temperature can be adjusted by the residual solvent and conveyance tension of the web. That is, when the residual solvent is large, the apparent Tg of the web is lowered. Therefore, it is preferable to suppress the elongation of the web by lowering the drying temperature.

あるいは、張力カットロールなどを用いて搬送張力を下げた上で乾燥温度を高めに設定してウェブの伸びを抑制しつつ、残留溶媒をさらに減少させることもできる。   Alternatively, the residual solvent can be further reduced while the elongation of the web is suppressed by lowering the conveying tension using a tension cut roll and setting the drying temperature higher.

ウェブの伸びが大きい場合には出来上がった光学フィルムにテンター工程で発現させる設計値以外の位相差が出てしまうので好ましくない。   When the web stretches greatly, a phase difference other than the design value developed in the tenter process appears in the finished optical film, which is not preferable.

このテンター工程の温度、時間、延伸倍率と、テンター工程後の乾燥工程の温度、時間の組み合わせによってメチルメタクリレートモノマーを効率よく除去することができ、さらにフィルム特性、特に脆性を向上させることができる。   The methyl methacrylate monomer can be efficiently removed by the combination of the temperature, time, and draw ratio of the tenter process and the temperature and time of the drying process after the tenter process, and the film characteristics, particularly brittleness, can be improved.

テンター工程後の乾燥工程ではある程度、高温にすることが好ましいが、搬送張力の関係で高温にできない場合がある。この場合には、フィルムを把持しながら搬送するため搬送方向にはほとんど張力がかからないテンター工程を高温にすることで、上記のメチルメタクリレートモノマー除去と脆性向上の効果を得ることができる。   In the drying process after the tenter process, it is preferable to raise the temperature to some extent, but there are cases where the temperature cannot be increased because of the conveyance tension. In this case, since the film is conveyed while being gripped, the effect of removing the methyl methacrylate monomer and improving the brittleness can be obtained by setting the tenter process, which hardly takes tension in the conveying direction, to a high temperature.

テンター工程ではその前半で延伸を行えばウェブの膜厚が早い段階で薄くなるのでメチルメタクリレートモノマー除去と脆性向上の効果を得やすいことがある。ただし、テンター工程での滞留時間の影響もあるので、温度と延伸倍率の組み合わせを適切に選択する必要がある。   In the tenter process, if the film is stretched in the first half, the thickness of the web becomes thin at an early stage, so that the effects of removing methyl methacrylate monomer and improving brittleness may be easily obtained. However, since there is an influence of the residence time in the tenter process, it is necessary to appropriately select a combination of the temperature and the draw ratio.

また、テンター工程とテンター工程後の乾燥工程のいずれかでウェブのTgより20℃以上高い温度で乾燥処理を行うことが好ましい。この処理工程を行うことで脆性を大幅に改善することができる。ウェブのTg+20℃より低い温度で時間を長くすることによってメチルメタクリレートモノマーの除去を行っても脆性の改善効果は少ない。   Moreover, it is preferable to perform a drying process at a temperature 20 degreeC or more higher than Tg of a web in either the tenter process and the drying process after a tenter process. By performing this processing step, brittleness can be greatly improved. Even if the methyl methacrylate monomer is removed by extending the time at a temperature lower than Tg + 20 ° C. of the web, the effect of improving brittleness is small.

一方、テンター工程、テンター工程後の乾燥工程においてあまり高温をかけすぎると樹脂の分解によるメチルメタクリレートモノマーが発生し好ましくない。   On the other hand, if the temperature is too high in the tenter process and the drying process after the tenter process, methyl methacrylate monomer is generated due to decomposition of the resin, which is not preferable.

6)巻き取り工程
ウェブ中の残留溶媒量が2質量%以下となってから光学フィルムとして巻き取り機37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることが出来る。特に0.00〜0.10質量%で巻き取ることが好ましい。
6) Winding step This is a step of winding the optical film by the winder 37 after the residual solvent amount in the web is 2% by mass or less, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. A film with good properties can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.

巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。   As a winding method, a generally used method may be used. There are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.

本発明の光学フィルムは、長尺フィルムであることが好ましく、具体的には、100〜10000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3〜4mであることが好ましく、1.4〜2mであることがより好ましい。   The optical film of the present invention is preferably a long film. Specifically, the optical film has a thickness of about 100 to 10,000 m and is usually provided in a roll shape. Moreover, it is preferable that the width | variety of a film is 1.3-4m, and it is more preferable that it is 1.4-2m.

本発明の光学フィルムの膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20〜200μmであることが好ましく、25〜100μmであることがより好ましく、30〜80μmであることが特に好ましい。   Although there is no restriction | limiting in particular in the film thickness of the optical film of this invention, When using for the polarizing plate protective film mentioned later, it is preferable that it is 20-200 micrometers, it is more preferable that it is 25-100 micrometers, and it is 30-80 micrometers. It is particularly preferred.

〔偏光板〕
本発明の光学フィルムを偏光板用保護フィルムとして用いる場合、偏光板は一般的な方法で作製することが出来る。本発明の光学フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
〔Polarizer〕
When using the optical film of this invention as a protective film for polarizing plates, a polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.

もう一方の面には本発明の光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC6UA、KC4UA、KC12UR、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC8UE、KC4UE、KC4FR−3、KC4FR−4、KC4HR−1、KC8UY−HA、KC8UX−RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。   On the other surface, the optical film of the present invention may be used, or another polarizing plate protective film may be used. For example, commercially available cellulose ester films (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC6UA, KC4UA, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, K4, R4 -4, KC4HR-1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.

偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。   A polarizer, which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.

偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。   For the polarizer, a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.

上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa〜1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体又は架橋構造を形成する硬化型粘着剤が好適に用いられる。As the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer, a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 Pa to 1.0 × 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. Preferably, a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded is suitably used.

具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子−イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。   Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types, Examples include anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.

上記粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。   The pressure-sensitive adhesive may be a one-component type or a type that is used by mixing two or more components before use.

また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1〜50質量%である。   The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type. The density | concentration of the said adhesive liquid should just be suitably determined with the film thickness after adhesion, the coating method, the coating conditions, etc., and is 0.1-50 mass% normally.

〔液晶表示装置〕
本発明の光学フィルムを貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来るが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明に係る偏光板は、前記粘着層等を介して液晶セルに貼合する。
[Liquid Crystal Display]
By incorporating the polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use. The polarizing plate according to the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.

本発明に係る偏光板は反射型、透過型、半透過型LCD又はTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上、特に30型〜54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。   The polarizing plate according to the present invention is a reflective type, transmissive type, transflective LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type (including FFS type), etc. It is preferably used in LCDs of various driving methods. In particular, in a large-screen display device having a screen size of 30 or more, especially 30 to 54, there is no white spot at the periphery of the screen, and the effect is maintained for a long time.

また、色ムラ、ギラツキや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。   In addition, there was little color unevenness, glare and wavy unevenness, and the eyes were not tired even during long-time viewing.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
〔アクリル樹脂の調製〕
以下のアクリル樹脂A1−A10、及びMS1、2を公知の方法によって調製した。
Example 1
[Preparation of acrylic resin]
The following acrylic resins A1-A10 and MS1 and MS2 were prepared by a known method.

A1:モノマー質量比(MMA:MA=98:2)、Mw70000
メチルメタクリレートモノマー含有量0.55%
A2:モノマー質量比(MMA:MA=97:3)、Mw160000
メチルメタクリレートモノマー含有量0.53%
A3:モノマー質量比(MMA:MA=97:3)、Mw350000
メチルメタクリレートモノマー含有量0.52%
A4:モノマー質量比(MMA:MA=97:3)、Mw550000
メチルメタクリレートモノマー含有量0.61%
A5:モノマー質量比(MMA:MA=97:3)、Mw800000
メチルメタクリレートモノマー含有量0.75%
A6:モノマー質量比(MMA:MA=97:3)、Mw930000
メチルメタクリレートモノマー含有量0.80%
A7:モノマー質量比(MMA:MA=94:6)、Mw1100000
メチルメタクリレートモノマー含有量0.99%
A8:上記A3の樹脂をエタノールで洗浄、乾燥を行い、メチルメタクリレートモノマーの除去を行った。
A1: Monomer mass ratio (MMA: MA = 98: 2), Mw 70000
Methyl methacrylate monomer content 0.55%
A2: monomer mass ratio (MMA: MA = 97: 3), Mw 160000
Methyl methacrylate monomer content 0.53%
A3: monomer mass ratio (MMA: MA = 97: 3), Mw350,000
Methyl methacrylate monomer content 0.52%
A4: monomer mass ratio (MMA: MA = 97: 3), Mw550,000
Methyl methacrylate monomer content 0.61%
A5: monomer mass ratio (MMA: MA = 97: 3), Mw 800000
Methyl methacrylate monomer content 0.75%
A6: monomer mass ratio (MMA: MA = 97: 3), Mw 930,000
Methyl methacrylate monomer content 0.80%
A7: monomer mass ratio (MMA: MA = 94: 6), Mw1100000
Methyl methacrylate monomer content 0.99%
A8: The resin of A3 was washed with ethanol and dried to remove the methyl methacrylate monomer.

メチルメタクリレートモノマー含有量0.21%
A9:上記A3の樹脂をメチルエチルケトンに溶解しエタノールで再沈殿後、洗浄、乾燥を行い、メチルメタクリレートモノマーの除去を行った。
Methyl methacrylate monomer content 0.21%
A9: The resin of A3 was dissolved in methyl ethyl ketone, reprecipitated with ethanol, washed and dried to remove the methyl methacrylate monomer.

メチルメタクリレートモノマー含有量0.15%
A10:上記A3の樹脂にメチルメタクリレートモノマーを添加して含有量を1.00%にした。
Methyl methacrylate monomer content 0.15%
A10: A methyl methacrylate monomer was added to the resin of A3 to make the content 1.00%.

MS1:モノマー質量比(MMA:ST=60:40)、Mw100000
メチルメタクリレートモノマー含有量0.39%
MS2:モノマー質量比(MMA:ST=40:60)、Mw100000
メチルメタクリレートモノマー含有量0.42%
MMA:メチルメタクリレート
MA:メチルアクリレート
ST:スチレン
その他、以下の市販のアクリル樹脂を用いた。
MS1: monomer mass ratio (MMA: ST = 60: 40), Mw100,000
Methyl methacrylate monomer content 0.39%
MS2: monomer mass ratio (MMA: ST = 40: 60), Mw100,000
Methyl methacrylate monomer content 0.42%
MMA: Methyl methacrylate MA: Methyl acrylate ST: Styrene In addition, the following commercially available acrylic resins were used.

ダイヤナールBR80(三菱レイヨン(株)製) Mw95000
メチルメタクリレートモノマー含有量0.55%
ダイヤナールBR83(三菱レイヨン(株)製) Mw40000
メチルメタクリレートモノマー含有量0.53%
ダイヤナールBR85(三菱レイヨン(株)製) Mw280000
メチルメタクリレートモノマー含有量0.51%
ダイヤナールBR88(三菱レイヨン(株)製) Mw480000
メチルメタクリレートモノマー含有量0.68%
80N(旭化成ケミカルズ(株)製) Mw100000
メチルメタクリレートモノマー含有量0.65%
上記市販のアクリル樹脂における分子中のMMA単位の割合は、いずれも90〜99質量%であった。
Dianar BR80 (Mitsubishi Rayon Co., Ltd.) Mw95000
Methyl methacrylate monomer content 0.55%
Dianar BR83 (Mitsubishi Rayon Co., Ltd.) Mw40000
Methyl methacrylate monomer content 0.53%
Dianar BR85 (Mitsubishi Rayon Co., Ltd.) Mw280000
Methyl methacrylate monomer content 0.51%
Dianar BR88 (manufactured by Mitsubishi Rayon Co., Ltd.) Mw 480000
Methyl methacrylate monomer content 0.68%
80N (Asahi Kasei Chemicals Corporation) Mw100,000
Methyl methacrylate monomer content 0.65%
The ratio of the MMA unit in the molecule in the commercially available acrylic resin was 90 to 99% by mass.

〔光学フィルムの作製〕
〈光学フィルム1の作製〉
(ドープ液組成1)
ダイヤナールBR85(三菱レイヨン(株)製) 70質量部
セルロースエステル(セルロースアセテートプロピオネート アシル基総置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.56、Mw=200000)
30質量部
メチレンクロライド 300質量部
エタノール 40質量部
上記組成物を、加熱しながら十分に溶解し、ドープ液を作製した。
[Production of optical film]
<Preparation of optical film 1>
(Dope solution composition 1)
Dianal BR85 (manufactured by Mitsubishi Rayon Co., Ltd.) 70 parts by mass Cellulose ester (cellulose acetate propionate acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree 2.56, Mw = 200000 )
30 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass The above composition was sufficiently dissolved while heating to prepare a dope solution.

(アクリル樹脂フィルムの製膜)
上記作製したドープ液を、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。
(Made of acrylic resin film)
The produced dope solution was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.

剥離したアクリル樹脂のウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットした。その後、テンター工程の前半で延伸温度140℃で幅方向に1.3倍に延伸し、テンター工程後半では幅を保持したままフィルムの応力の緩和を行った。テンター工程での滞留時間は20秒であった。   The peeled acrylic resin web was evaporated at 35 ° C. and slit to a width of 1.6 m. Thereafter, the film was stretched 1.3 times in the width direction at a stretching temperature of 140 ° C. in the first half of the tenter process, and the stress of the film was relaxed while maintaining the width in the second half of the tenter process. The residence time in the tenter process was 20 seconds.

このときテンターで延伸を始めたときの残留溶剤量は10%であった。   At this time, the residual solvent amount when starting stretching with a tenter was 10%.

テンター工程の後の乾燥工程では乾燥ゾーンを多数のロールで搬送させながら乾燥を行った。   In the drying process after the tenter process, drying was performed while the drying zone was conveyed by a number of rolls.

まず、乾燥工程の前半ではウェブの単位断面積にかかる張力160N/cm、温度100℃、滞留時間5分で乾燥し、後半では張力160N/cm、温度110℃、滞留時間5分で乾燥した。First, in the first half of the drying process, the web is dried at a tension of 160 N / cm 2 , a temperature of 100 ° C. and a residence time of 5 minutes, and in the latter half, a tension of 160 N / cm 2 , a temperature of 110 ° C. and a residence time of 5 minutes. did.

その後、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、フィルムの単位断面積にかかる初期張力220N/cm、終張力110N/cmで内径15.24cmコアに巻き取り、アクリル樹脂フィルムである光学フィルム1を得た。Then slit to 1.5m wide, knurling width 10mm height 5μm to both ends of the film, the initial tension 220 N / cm 2 according to the unit cross-sectional area of the film, the inner diameter 15.24cm core a final tension 110N / cm 2 The optical film 1 which is an acrylic resin film was obtained.

ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。   The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.

表1に記載の光学フィルム1の残留溶剤量は0.1%であり、膜厚は40μm、巻長は4000mであった。   The residual solvent amount of the optical film 1 described in Table 1 was 0.1%, the film thickness was 40 μm, and the winding length was 4000 m.

〈光学フィルム2〜50、及び101〜123の作製〉
表1及び表2に記載したアクリル樹脂(A)、セルロースエステル樹脂(B)の種類と組成比と、表3に記載したテンター工程条件とその後の乾燥工程の条件を、表4及び5のように組み合わせた以外は上記光学フィルム1の作製と同様にして、光学フィルム2〜50、及び101〜123を作製した。
<Production of optical films 2 to 50 and 101 to 123>
Tables 4 and 5 show the types and composition ratios of the acrylic resin (A) and cellulose ester resin (B) described in Tables 1 and 2, the tenter process conditions described in Table 3, and the subsequent drying process conditions as shown in Tables 4 and 5. The optical films 2 to 50 and 101 to 123 were produced in the same manner as the production of the optical film 1 except that they were combined.

また、表1及び表2に記載のセルロースエステル樹脂のアシル基は、acはアセチル基、prはプロピオニル基、buはブチリル基、penはペンタノイル基、bzはベンゾイル基、hepはヘプタノイル基、octはオクタノイル基、phはフタリル基を表す。   The acyl groups of the cellulose ester resins shown in Tables 1 and 2 are as follows: ac is an acetyl group, pr is a propionyl group, bu is a butyryl group, pen is a pentanoyl group, bz is a benzoyl group, hep is a heptanoyl group, and oct is Octanoyl group, ph represents a phthalyl group.

《評価方法》
得られた光学フィルム1〜50、101〜123について、以下の評価を実施した。
"Evaluation method"
The following evaluation was implemented about the obtained optical films 1-50 and 101-123.

(ヘーズ:コントラストに影響の大きい透明性評価)
上記作製した各々のフィルム試料について、フィルム試料1枚をJIS K−7136に従って、ヘーズメーター(NDH2000型、日本電色工業(株)製)を使用して測定した。
(Haze: Transparency evaluation that greatly affects contrast)
About each produced said film sample, one film sample was measured using the haze meter (NDH2000 type | mold, Nippon Denshoku Industries Co., Ltd. product) according to JISK-7136.

(張力軟化点:耐熱性評価)
テンシロン試験機(ORIENTEC社製、RTC−1225A)を用いて、以下のような評価を行った。
(Tension softening point: heat resistance evaluation)
The following evaluation was performed using a Tensilon tester (ORITC Corporation, RTC-1225A).

光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均を出した。   The optical film was cut out at 120 mm (length) × 10 mm (width) and continuously heated at a heating rate of 30 ° C./min while pulling with a tension of 10 N, and the temperature at 9 N was measured three times. Averaged.

(延性破壊:脆性評価)
光学フィルムを100mm(縦)×10mm(幅)で切り出し、縦方向の中央部で山折り、谷折りと2つにそれぞれ1回ずつ折りまげ、この評価を3回測定して、下記基準で評価した。尚、ここでの評価の折れるとは、割れて2つ以上のピースに分離したことを表す。
(Ductile fracture: brittleness evaluation)
The optical film is cut out at 100 mm (length) × 10 mm (width), folded in a mountain fold and a valley fold at the center in the longitudinal direction once each, and this evaluation is measured three times and evaluated according to the following criteria. did. In addition, breaking of evaluation here represents having broken into two or more pieces.

○:3回とも折れない
×:3回のうち少なくとも1回は折れる
(位相差:リターデーションの測定)
各光学フィルムから試料35mm×35mmを切り出し、25℃,55%RHで2時間調湿し、自動複屈折計(KOBRA21DH、王子計測(株))で、590nmにおける垂直方向から測定した値とフィルム面を傾けながら同様に測定したレターデーション値の外挿値より下記のRo、Rtを算出した。
○: Cannot be folded 3 times ×: Can be folded at least 1 out of 3 times (phase difference: measurement of retardation)
A 35 mm × 35 mm sample was cut from each optical film, conditioned at 25 ° C. and 55% RH for 2 hours, and measured with an automatic birefringence meter (KOBRA21DH, Oji Scientific Co., Ltd.) from the vertical direction at 590 nm and the film surface. The following Ro and Rt were calculated from the extrapolated values of retardation values measured in the same manner while tilting.

Ro(590)=(nx−ny)×d(nm)
Rt(590)={(nx+ny)/2−nz}×d(nm)
〔上式中、Ro(590)は波長590nmにおけるフィルム内の面内リターデーション値を表し、Rt(590)は590nmにおけるフィルム内の厚さ方向のリターデーション値を表す。また、dは光学フィルムの厚さ(nm)を表し、nxは590nmにおけるフィルムの面内の最大の屈折率を表し、遅相軸方向の屈折率ともいう。nyは590nmにおけるフィルム面内で遅相軸に直角な方向の屈折率を表し、nzは590nmにおける厚さ方向におけるフィルムの屈折率を表す。〕
(カッティング性:製造適性評価)
軽荷重引き裂き試験機(東洋精機社製)を用いて各光学フィルムを引き裂き、以下のように評価した。
Ro (590) = (nx−ny) × d (nm)
Rt (590) = {(nx + ny) / 2−nz} × d (nm)
[In the above formula, Ro (590) represents the in-plane retardation value in the film at a wavelength of 590 nm, and Rt (590) represents the retardation value in the thickness direction in the film at 590 nm. D represents the thickness (nm) of the optical film, nx represents the maximum refractive index in the plane of the film at 590 nm, and is also referred to as the refractive index in the slow axis direction. ny represents the refractive index in the direction perpendicular to the slow axis in the film plane at 590 nm, and nz represents the refractive index of the film in the thickness direction at 590 nm. ]
(Cutability: Manufacturing suitability evaluation)
Each optical film was torn using a light load tear tester (Toyo Seiki Co., Ltd.) and evaluated as follows.

○:引き裂き面が非常に滑らかで、かつ、真っ直ぐに裂けている。   ○: The tear surface is very smooth and is torn straight.

△:引き裂き面にややバリがあるが、真っ直ぐに裂けている。   Δ: There are some burrs on the tear surface, but it is torn straight.

×:引き裂き面にバリがかなりあり、真っ直ぐに裂けていない。   X: There are considerable burrs on the tear surface, and it is not torn straight.

(フィルム外観:製造適正評価)
作製した光学フィルムに関して、フィルム外観を目視で評価し、以下の基準に従って評価した。
(Film appearance: Manufacturing suitability evaluation)
About the produced optical film, the film external appearance was evaluated visually and evaluated according to the following references | standards.

○:非常に平滑な平面性である。   ○: Very smooth flatness.

△:ややツレや皺、段が確認できる。   Δ: Slightly slippery, wrinkled or stepped can be confirmed.

×:はっきりとツレや皺、段が確認できる。   X: Clear, wrinkled, and step can be clearly confirmed.

(液晶表示装置としての特性評価)
〈偏光板の作製〉
各光学フィルムを偏光板保護フィルムとした偏光板を、以下のようにして作製した。
(Characteristic evaluation as a liquid crystal display device)
<Preparation of polarizing plate>
A polarizing plate using each optical film as a polarizing plate protective film was prepared as follows.

厚さ120μmの長尺ロールポリビニルアルコールフィルムを、沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光膜を作製した。   A 120 μm-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched in the transport direction 5 times at 50 ° C. to prepare a polarizing film.

次に、この偏光膜の片面にアクリル接着剤を用いて、実施例1で作製した光学フィルム1にコロナ処理を施したのち、貼合した。   Next, the optical film 1 produced in Example 1 was subjected to corona treatment using an acrylic adhesive on one side of the polarizing film, and then bonded.

更に偏光膜のもう一方の面にアルカリケン化処理した位相差フィルムであるコニカミノルタオプト社製KC8UCR−5を貼り合わせ、乾燥して偏光板P1を作製した。同様にして光学フィルム2〜50、及び101〜123を用いて偏光板P2〜P50、及びP101〜P123を作製した。   Furthermore, KC8UCR-5 manufactured by Konica Minolta Opto Co., Ltd., which is a retardation film subjected to alkali saponification treatment, was bonded to the other surface of the polarizing film and dried to prepare a polarizing plate P1. Similarly, polarizing plates P2 to P50 and P101 to P123 were prepared using the optical films 2 to 50 and 101 to 123.

本発明の光学フィルムを用いた偏光板は、フィルムカッティング性に優れ、加工がし易かった。   The polarizing plate using the optical film of the present invention was excellent in film cutting property and easy to process.

〈液晶表示装置の作製〉
上記作製した各偏光板を使用して、光学フィルムの表示特性評価を行った。
<Production of liquid crystal display device>
Each of the produced polarizing plates was used to evaluate the display characteristics of the optical film.

シャープ(株)製32型テレビAQ−32AD5の予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板をそれぞれKC8UCR−5が液晶セルのガラス面側になるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように貼合し、液晶表示装置を各々作製した。   Remove the polarizing plates on both sides of the 32-inch TV AQ-32AD5 previously manufactured by Sharp Corporation so that the KC8UCR-5 is on the glass surface side of the liquid crystal cell. The liquid crystal display devices were each fabricated by pasting so that the absorption axis was directed in the same direction as the polarizing plate that had been pasted in advance.

(視野角変動:偏光板保護フィルムとしての耐熱・耐湿性評価)
以上のようにして作製した液晶表示装置1〜50、及び101〜123を用いて下記の評価を行った。
(Variation of viewing angle: Evaluation of heat and moisture resistance as a polarizing plate protective film)
The following evaluation was performed using the liquid crystal display devices 1-50 and 101-123 produced as described above.

23℃、55%RHの環境で、ELDIM社製EZ−Contrast160Dを用いて液晶表示装置の視野角測定を行った。続いて上記偏光板を60℃、90%RHで1000時間処理したものを同様に測定し、下記基準で3段階評価した。   The viewing angle of the liquid crystal display device was measured using EZ-Contrast 160D manufactured by ELDIM in an environment of 23 ° C. and 55% RH. Subsequently, a sample obtained by treating the polarizing plate at 60 ° C. and 90% RH for 1000 hours was measured in the same manner, and evaluated according to the following criteria.

○:視野角変動が全くない
△:視野角変動が僅かに認められる
×:視野角変動が大きい
(カラーシフト:偏光板保護フィルムとしての耐熱・耐湿性評価)
上記作製した液晶表示装置1〜50及び101〜123に関して、23℃、55%RHの環境でディスプレイを黒表示にし、斜め45°の角度から観察した。続いて上記偏光板を60℃、90%RHで1000時間処理したものを同様に観察し、色変化を下記基準で評価した。
○: No change in viewing angle △: A little change in viewing angle is observed ×: Large viewing angle change (Color shift: Evaluation of heat and moisture resistance as a polarizing plate protective film)
Regarding the manufactured liquid crystal display devices 1 to 50 and 101 to 123, the display was displayed in black in an environment of 23 ° C. and 55% RH and observed from an oblique angle of 45 °. Subsequently, the polarizing plate treated at 60 ° C. and 90% RH for 1000 hours was observed in the same manner, and the color change was evaluated according to the following criteria.

○:色変化が全くない
△:色変化が僅かに認められる
×:色変化が大きい
以上の評価の結果を表4及び5に示す。
◯: No color change Δ: Slight color change X: Color change is large Tables 4 and 5 show the results of the above evaluation.

表4及び5に記載のように、本発明の光学フィルムは、低吸湿性であり、透明で、高耐熱性であり、脆性の改善に優れるという特性を示した。また、本発明の光学フィルムを用いて作製した偏光板、液晶表示装置は、視認性やカラーシフトに優れた特性を示した。   As shown in Tables 4 and 5, the optical film of the present invention exhibited characteristics such as low hygroscopicity, transparency, high heat resistance, and excellent brittleness improvement. Moreover, the polarizing plate and liquid crystal display device produced using the optical film of the present invention exhibited excellent properties in visibility and color shift.

実施例2
〔アクリル粒子の調製〕
〈アクリル粒子(C1)の調製〉
内容積60リットルの還流冷却器付反応器に、イオン交換水38.2リットル、ジオクチルスルホコハク酸ナトリウム111.6gを投入し、250rpmの回転数で攪拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響が事実上無い状態にした。APS0.36gを投入し、5分間攪拌後にMMA1657g、BA21.6g、およびALMA1.68gからなる単量体の混合物を一括添加し、発熱ピークの検出後さらに20分間保持して最内硬質層の重合を完結させた。
Example 2
[Preparation of acrylic particles]
<Preparation of acrylic particles (C1)>
A reactor with a reflux condenser with an internal volume of 60 liters was charged with 38.2 liters of ion-exchanged water and 111.6 g of sodium dioctylsulfosuccinate, and the temperature was raised to 75 ° C. under a nitrogen atmosphere while stirring at a rotational speed of 250 rpm. The effect of oxygen was virtually eliminated. 0.36 g of APS was added, and after stirring for 5 minutes, a monomer mixture consisting of MMA 1657 g, BA 21.6 g, and ALMA 1.68 g was added all at once, and after the detection of the exothermic peak, it was held for another 20 minutes to polymerize the innermost hard layer Was completed.

次に、APS3.48gを投入し、5分間攪拌後にBA8105g、PEGDA(200)31.9g、およびALMA264.0gからなる単量体の混合物を120分間かけて連続的に添加し、添加終了後さらに120分間保持して,軟質層の重合を完結させた。   Next, 3.48 g of APS was added, and after stirring for 5 minutes, a monomer mixture consisting of BA1055 g, PEGDA (200) 31.9 g, and ALMA264.0 g was continuously added over 120 minutes. Hold for 120 minutes to complete the polymerization of the soft layer.

次に、APS1.32gを投入し、5分間攪拌後にMMA2106g、BA201.6gからなる単量体の混合物を20分間かけて連続的に添加し、添加終了後さらに20分間保持して最外硬質層1の重合を完結した。   Next, 1.32 g of APS was added, and after stirring for 5 minutes, a mixture of monomers consisting of 2106 g of MMA and 201.6 g of BA was continuously added over 20 minutes. The polymerization of 1 was completed.

次いで、APS1.32gを投入し、5分後にMMA3148g、BA201.6g、およびn−OM10.1gからなる単量体の混合物を20分間かけて連続的に添加し、添加終了後にさらに20分間保持した。ついで95℃に昇温し60分間保持して、最外硬質層2の重合を完結させた。   Next, 1.32 g of APS was added, and after 5 minutes, a mixture of monomers consisting of 3148 g of MMA, 201.6 g of BA, and 10.1 g of n-OM was continuously added over 20 minutes, and held for another 20 minutes after the addition was completed. . Next, the temperature was raised to 95 ° C. and held for 60 minutes to complete the polymerization of the outermost hard layer 2.

このようにして得られた重合体ラテックスを、3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰り返したのち乾燥し、3層構造のアクリル粒子(C1)を得た。吸光度法により平均粒子径を求めたところ100nmであった。   The polymer latex thus obtained was poured into a 3% by weight aqueous sodium sulfate solution, salted out and coagulated, then dried after repeated dehydration and washing, and three-layer acrylic particles ( C1) was obtained. When the average particle size was determined by the absorbance method, it was 100 nm.

上記の略号は各々下記材料である。   The above abbreviations are the following materials.

MMA;メチルメタクリレート
MA;メチルアクリレート
BA;n−ブチルアクリレート
ALMA;アリルメタクリレート
PEGDA;ポリエチレングリコールジアクリレート(分子量200)
n−OM;n−オクチルメルカプタン
APS;過硫酸アンモニウム
〔光学フィルムの作製〕
〈光学フィルム38−1〜38−6の作製〉
(ドープ液組成)
ダイヤナールBR80(三菱レイヨン(株)製) 66.5質量部
セルロースエステル(セルロースアセテートプロピオネート アシル基総置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.56、Mw=100000)
28.5質量部
上記調製したアクリル粒子(C1) 20質量部
メチレンクロライド 300質量部
エタノール 40質量部
上記組成物を、加熱しながら十分に溶解し、ドープ液を作製した。
MMA; methyl methacrylate MA; methyl acrylate BA; n-butyl acrylate ALMA; allyl methacrylate PEGDA; polyethylene glycol diacrylate (molecular weight 200)
n-OM; n-octyl mercaptan APS; ammonium persulfate [Preparation of optical film]
<Preparation of optical films 38-1 to 38-6>
(Dope solution composition)
Dianal BR80 (manufactured by Mitsubishi Rayon Co., Ltd.) 66.5 parts by mass Cellulose ester (cellulose acetate propionate acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree 2.56, Mw = 100,000)
28.5 parts by mass The prepared acrylic particles (C1) 20 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass The above composition was sufficiently dissolved while heating to prepare a dope solution.

次に、実施例1に記載の光学フィルム38の製造方法と同様にして、光学フィルム38−1を作製した。   Next, an optical film 38-1 was produced in the same manner as in the method for producing the optical film 38 described in Example 1.

以下、アクリル樹脂(A)、セルロースエステル樹脂(B)、アクリル粒子(C)、組成比を表6記載のように代えた以外は、光学フィルム38の製造方法と同様にして、光学フィルム38−2〜38−6を作製した。   Hereinafter, except for changing the acrylic resin (A), the cellulose ester resin (B), the acrylic particles (C), and the composition ratio as shown in Table 6, the optical film 38- 2-38-6 were produced.

また、光学フィルム38−5は、アクリル粒子C1の替わりにC2としてメタブレンW−341(三菱レイヨン社製)を、光学フィルム38−6は単層構造であるMR−2G(綜研化学社製)をC3として用いた。   Further, the optical film 38-5 is made of Meblene W-341 (manufactured by Mitsubishi Rayon Co.) as C2 instead of the acrylic particles C1, and the optical film 38-6 is made of MR-2G (manufactured by Soken Chemical Co., Ltd.) having a single layer structure. Used as C3.

《評価方法》
得られた光学フィルム38−1〜38−6について以下の評価を実施した。
"Evaluation method"
The following evaluation was implemented about the obtained optical films 38-1 to 38-6.

(樹脂と粒子の状態:相溶/非相溶)
作製した光学フィルム38−1に関して、フィルム試料を12g測り取り、再び上記組成のメチクロ/エタノール溶媒に溶解させて攪拌し、充分に溶解・分散させたところで0.1μmの孔径を有するPTFE製のメンブレンフィルターT010A(ADVANTEC社製)を用いて濾過し、濾過された不溶物を充分に乾燥させてから重さを測ったところ、1.8gであった。
(Resin and particle state: compatible / incompatible)
Regarding the produced optical film 38-1, 12 g of a film sample was measured, dissolved again in a methylo / ethanol solvent having the above composition and stirred, and when sufficiently dissolved and dispersed, a PTFE membrane having a pore diameter of 0.1 μm Filtration was performed using a filter T010A (manufactured by ADVANTEC), and the filtered insoluble matter was sufficiently dried and weighed. As a result, the weight was 1.8 g.

また、この不溶物を再び溶媒に分散させ、マルバーン(マルバーン社製)を用いて粒度分布を測定したところ、0.10〜0.20μm付近に分布が見られた。   Further, when this insoluble material was dispersed again in the solvent and the particle size distribution was measured using Malvern (Malvern), the distribution was found in the vicinity of 0.10 to 0.20 μm.

以上のことから、添加したアクリル粒子(C)の90質量%以上が不溶物として残存していることが分かり、光学フィルム中にアクリル粒子(C)が非相溶な状態で存在していることが分かった。   From the above, it can be seen that 90% by mass or more of the added acrylic particles (C) remains as insoluble matter, and the acrylic particles (C) are present in an incompatible state in the optical film. I understood.

同様に、光学フィルム38−2〜38−6について同様な測定を行ったところ、38−1と同様であった。   Similarly, when the same measurement was performed on optical films 38-2 to 38-6, it was the same as 38-1.

これらの試料について、実施例1と同様の評価を行い、得られた結果を表7に示す。   These samples were evaluated in the same manner as in Example 1, and the results obtained are shown in Table 7.

上述のように、本発明の光学フィルムにアクリル微粒子を更に添加した場合、透明性(ヘーズ)は若干低下するものの、フィルムのカッティング性や外観、液晶表示装置の視野角変動やカラーシフトを更に改善することができた。   As described above, when acrylic fine particles are further added to the optical film of the present invention, the transparency (haze) is slightly reduced, but the film cutting performance and appearance, the viewing angle variation and the color shift of the liquid crystal display device are further improved. We were able to.

実施例3
光学フィルム5のドープを調製する際に、下記紫外線吸収剤を添加した以外は、実施例1と同様に光学フィルム5−1、5−2を作製し、実施例1と同様に液晶表示装置を作製した。
Example 3
When preparing the dope of the optical film 5, optical films 5-1 and 5-2 were prepared in the same manner as in Example 1 except that the following ultraviolet absorber was added. Produced.

5−1:チヌビン109(チバ・ジャパン(株)製) 1.5質量部
チヌビン171(チバ・ジャパン(株)製) 0.7質量部
5−2:LA−31((株)ADEKA製) 1.5質量部
得られた液晶表示装置は、更に視野角変動及びカラーシフトに優れていた。
5-1: Tinuvin 109 (Ciba Japan Co., Ltd.) 1.5 parts by mass
Tinuvin 171 (manufactured by Ciba Japan Co., Ltd.) 0.7 part by mass 5-2: LA-31 (manufactured by ADEKA Co., Ltd.) 1.5 part by mass It was excellent.

上述のように、本発明の光学フィルムを用いた場合も従来の偏光板保護フィルムに用いられる添加剤を適宜添加することが可能であり、また、それにより作製した偏光板、液晶表示装置は、更に視認性やカラーシフトに優れた特性を示した。   As described above, even when the optical film of the present invention is used, it is possible to appropriately add the additives used in the conventional polarizing plate protective film, and the polarizing plate produced thereby, the liquid crystal display device, Furthermore, it showed excellent properties in visibility and color shift.

1 溶解釜
3、6、12、15 濾過器
4、13 ストックタンク
5、14 送液ポンプ
8、16 導管
10 紫外線吸収剤仕込釜
20 合流管
21 混合機
30 ダイ
31 金属支持体
32 ウェブ
33 剥離位置
34 テンター装置
35 ロール乾燥装置
41 粒子仕込釜
42 ストックタンク
43 ポンプ
44 濾過器
DESCRIPTION OF SYMBOLS 1 Melting pot 3, 6, 12, 15 Filter 4, 13 Stock tank 5, 14 Liquid feed pump 8, 16 Conduit 10 Ultraviolet absorber charging pot 20 Merge pipe 21 Mixer 30 Die 31 Metal support 32 Web 33 Peeling position 34 Tenter device 35 Roll dryer 41 Particle charging vessel 42 Stock tank 43 Pump 44 Filter

1.重量平均分子量が80000以上で、メチルメタクリレートモノマーを総質量に対して0.20〜1.00質量%で含有するアクリル樹脂(A)と、アシル基の総置換度が2.0〜3.0であり、炭素数3〜7の範囲内のアシル基の置換度が1.2〜3.0であり、重量平均分子量が75000以上であるセルロースエステル樹脂(B)とを用いて、前記アクリル樹脂(A)と前記セルロースエステル樹脂(B)を95:5〜30:70の質量比で含有し、前記メチルメタクリレートモノマーを総質量に対して0.02〜0.15質量%で含有する光学フィルムを溶液流延法で作製するに当たり、以下の1)〜3)の処理を行うことを特徴とする光学フィルムの作製方法
1)テンター工程において、前半で延伸を行い後半では幅を保持するか、前半で予熱を行い後半で延伸する。
2)テンター工程とテンター工程後の乾燥工程の何れかでウエブのガラス転移温度Tgより20℃以上高い温度で乾燥処理を行う。
3)テンター工程後の乾燥工程での乾燥温度を80℃〜160℃とし、後半の温度を前半より高くする。
1. The acrylic resin (A) having a weight average molecular weight of 80000 or more and containing a methyl methacrylate monomer in an amount of 0.20 to 1.00% by mass with respect to the total mass, and a total substitution degree of acyl groups of 2.0 to 3.0 A cellulose ester resin (B) having a substitution degree of an acyl group in the range of 3 to 7 carbon atoms of 1.2 to 3.0 and a weight average molecular weight of 75,000 or more, and the acrylic resin. An optical film containing (A) and the cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70 and containing the methyl methacrylate monomer in an amount of 0.02 to 0.15% by mass relative to the total mass. In producing the optical film by the solution casting method, the following processes 1) to 3) are carried out .
1) In the tenter process, stretching is performed in the first half and the width is maintained in the second half, or preheating is performed in the first half and stretching is performed in the second half.
2) A drying process is performed at a temperature higher by 20 ° C. or more than the glass transition temperature Tg of the web in either the tenter process or the drying process after the tenter process.
3) The drying temperature in the drying step after the tenter step is set to 80 ° C. to 160 ° C., and the latter half temperature is set higher than the first half.

2.前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲外のアシル基の置換度の総和が、1.3以下であることを特徴とする前記第1項に記載の光学フィルムの作製方法2. 2. The method for producing an optical film as set forth in claim 1, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups outside the range of 3 to 7 carbon atoms of 1.3 or less. .

3.前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲内のアシル基の置換度の総和が、2.00以上であることを特徴とする前記第1項又は第2項に記載の光学フィルムの作製方法3. 3. The optical system according to item 1 or 2, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups in the range of 3 to 7 carbon atoms of 2.00 or more. A method for producing a film.

4.前記セルロースエステル樹脂(B)のアシル基の総置換度が、2.5〜3.0であることを特徴とする前記第1項から第3項までのいずれか一項に記載の光学フィルムの作製方法4). The total substitution degree of the acyl group of the said cellulose ester resin (B) is 2.5-3.0, The optical film as described in any one of said 1st term | claim to 3rd term | claim characterized by the above-mentioned. Manufacturing method .

5.前記アクリル樹脂(A)が、分子内にメチルメタクリレート単位を50〜99質量%有することを特徴とする前記第1項から第4項までのいずれか一項に記載の光学フィルムの作製方法5. The said acrylic resin (A) has 50-99 mass% of methyl methacrylate units in a molecule | numerator, The manufacturing method of the optical film as described in any one of said 1st term | claim to 4th term | claim characterized by the above-mentioned.

6.前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5〜50:50の範囲内であることを特徴とする前記第1項から第5項までのいずれか一項に記載の光学フィルムの作製方法6). The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is within a range of 95: 5 to 50:50, according to any one of the first to fifth items, The manufacturing method of the optical film of description.

7.前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、80:20〜60:40の範囲内であることを特徴とする前記第1項から第6項までのいずれか一項に記載の光学フィルムの作製方法7). The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is in the range of 80:20 to 60:40, according to any one of the first to sixth items, The manufacturing method of the optical film of description.

8.前記アクリル樹脂(A)の重量平均分子量が、80000〜1000000の範囲内であることを特徴とする前記第1項から第7項までのいずれか一項に記載の光学フィルムの作製方法8). The weight average molecular weight of the acrylic resin (A) is in the range of 80,000 to 1,000,000, The method for producing an optical film according to any one of the first to seventh items.

9.前記アクリル樹脂(A)の重量平均分子量が、100000〜500000の範囲内であることを特徴とする前記第1項から第8項までのいずれか一項に記載の光学フィルムの作製方法9. The method for producing an optical film according to any one of Items 1 to 8, wherein the acrylic resin (A) has a weight average molecular weight in the range of 100,000 to 500,000.

10.前記アクリル樹脂(A)の重量平均分子量が、150000〜400000の範囲内であることを特徴とする前記第1項から第9項までのいずれか一項に記載の光学フィルムの作製方法10. The weight average molecular weight of said acrylic resin (A) exists in the range of 150,000-400000, The preparation methods of the optical film as described in any one of said 1st term | claim to 9th term | claim characterized by the above-mentioned.

11.前記セルロースエステル樹脂(B)の重量平均分子量が、75000〜300000の範囲内であることを特徴とする前記第1項から第10項までのいずれか一項に記載の光学フィルムの作製方法11. The weight average molecular weight of the said cellulose ester resin (B) exists in the range of 75000-300000, The preparation methods of the optical film as described in any one of said 1st term | claim to 10th term | claim characterized by the above-mentioned.

12.前記セルロースエステル樹脂(B)の重量平均分子量が、100000〜240000の範囲内であることを特徴とする前記第1項から第11項までのいずれか一項に記載の光学フィルムの作製方法12 The weight average molecular weight of the cellulose ester resin (B) is in the range of 100,000 to 240,000, The method for producing an optical film according to any one of items 1 to 11 above.

13.前記光学フィルムが、当該光学フィルムを構成する樹脂の総質量に対して、0.5〜30質量%のアクリル粒子(C)を含有することを特徴とする前記第1項から第12項までのいずれか一項に記載の光学フィルムの作製方法13. The said optical film contains 0.5-30 mass% acrylic particle | grains (C) with respect to the gross mass of resin which comprises the said optical film, The said 1st term to 12th term | claim characterized by the above-mentioned. The manufacturing method of the optical film as described in any one.

14.膜厚が20〜200μmの範囲内であり、偏光板保護フィルムとして用いられることを特徴とする前記第1項から第13項までのいずれか一項に記載の光学フィルムの作製方法14 14. The method for producing an optical film according to any one of items 1 to 13, wherein the film thickness is in a range of 20 to 200 [mu] m and used as a polarizing plate protective film.

Claims (14)

溶液流延法で作製した光学フィルムであって、(i)アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5〜30:70の質量比で含有し、(ii)メチルメタクリレートモノマーを、当該光学フィルム総質量に対して、0.02〜0.15質量%で含有し、(iii)前記アクリル樹脂(A)の重量平均分子量が80000以上であり、当該アクリル樹脂(A)中の前記メチルメタクリレートモノマーの含有量が、当該アクリル樹脂(A)総質量に対して、0.20〜1.00質量%であり、かつ、(iv)前記セルロースエステル樹脂(B)のアシル基の総置換度が2.0〜3.0であり、炭素数3〜7の範囲内のアシル基の置換度が1.2〜3.0であり、当該セルロースエステル樹脂(B)の重量平均分子量が75000以上であることを特徴とする光学フィルム。   An optical film produced by a solution casting method, comprising (i) an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, and (ii) a methyl methacrylate monomer And (iii) the acrylic resin (A) has a weight average molecular weight of 80000 or more, and is contained in the acrylic resin (A). Content of the said methyl methacrylate monomer is 0.20-1.00 mass% with respect to the said acrylic resin (A) total mass, and (iv) The total of the acyl group of the said cellulose ester resin (B) The degree of substitution is 2.0 to 3.0, the degree of substitution of acyl groups in the range of 3 to 7 carbon atoms is 1.2 to 3.0, and the weight average molecular weight of the cellulose ester resin (B) is 75,000 or more An optical film characterized by the above. 前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲外のアシル基の置換度の総和が、1.3以下であることを特徴とする請求項1に記載の光学フィルム。   The optical film according to claim 1, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups outside the range of 3 to 7 carbon atoms of 1.3 or less. 前記セルロースエステル樹脂(B)の炭素数が3〜7の範囲内のアシル基の置換度の総和が、2.00以上であることを特徴とする請求項1又は請求項2に記載の光学フィルム。   3. The optical film according to claim 1, wherein the cellulose ester resin (B) has a total substitution degree of acyl groups in the range of 3 to 7 carbon atoms of 2.00 or more. . 前記セルロースエステル樹脂(B)のアシル基の総置換度が、2.5〜3.0であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルム。   The total substitution degree of the acyl group of the said cellulose-ester resin (B) is 2.5-3.0, The optical film as described in any one of Claim 1- Claim 3 characterized by the above-mentioned. 前記アクリル樹脂(A)が、分子内にメチルメタクリレート単位を50〜99質量%有することを特徴とする請求項1から請求項4までのいずれか一項に記載の光学フィルム。   The said acrylic resin (A) has 50-99 mass% of methyl methacrylate units in a molecule | numerator, The optical film as described in any one of Claim 1- Claim 4 characterized by the above-mentioned. 前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5〜50:50の範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の光学フィルム。   The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is in a range of 95: 5 to 50:50, according to any one of claims 1 to 5. Optical film. 前記アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、80:20〜60:40の範囲内であることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学フィルム。   The mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is in the range of 80:20 to 60:40, according to any one of claims 1 to 6. Optical film. 前記アクリル樹脂(A)の重量平均分子量が、80000〜1000000の範囲内であることを特徴とする請求項1から請求項7までのいずれか一項に記載の光学フィルム。   The weight average molecular weight of the said acrylic resin (A) exists in the range of 80000-1 million, The optical film as described in any one of Claim 1- Claim 7 characterized by the above-mentioned. 前記アクリル樹脂(A)の重量平均分子量が、100000〜500000の範囲内であることを特徴とする請求項1から請求項8までのいずれか一項に記載の光学フィルム。   The weight average molecular weight of the said acrylic resin (A) exists in the range of 100000-500000, The optical film as described in any one of Claim 1- Claim 8 characterized by the above-mentioned. 前記アクリル樹脂(A)の重量平均分子量が、150000〜400000の範囲内であることを特徴とする請求項1から請求項9までのいずれか一項に記載の光学フィルム。   The weight average molecular weight of the said acrylic resin (A) exists in the range of 150,000-400000, The optical film as described in any one of Claim 1- Claim 9 characterized by the above-mentioned. 前記セルロースエステル樹脂(B)の重量平均分子量が、75000〜300000の範囲内であることを特徴とする請求項1から請求項10までのいずれか一項に記載の光学フィルム。   The weight average molecular weight of the said cellulose-ester resin (B) exists in the range of 75000-300000, The optical film as described in any one of Claim 1- Claim 10 characterized by the above-mentioned. 前記セルロースエステル樹脂(B)の重量平均分子量が、100000〜240000の範囲内であることを特徴とする請求項1から請求項11までのいずれか一項に記載の光学フィルム。   The weight average molecular weight of the said cellulose ester resin (B) exists in the range of 100,000-24,000, The optical film as described in any one of Claim 1- Claim 11 characterized by the above-mentioned. 前記光学フィルムが、当該光学フィルムを構成する樹脂の総質量に対して、0.5〜30質量%のアクリル粒子(C)を含有することを特徴とする請求項1から請求項12までのいずれか一項に記載の光学フィルム。   The said optical film contains 0.5-30 mass% acrylic particle (C) with respect to the gross mass of resin which comprises the said optical film, Any of Claim 1-12 characterized by the above-mentioned. An optical film according to claim 1. 膜厚が20〜200μmの範囲内であり、偏光板保護フィルムとして用いられることを特徴とする請求項1から請求項13までのいずれか一項に記載の光学フィルム。   14. The optical film according to claim 1, wherein the optical film has a thickness in a range of 20 to 200 μm and is used as a polarizing plate protective film.
JP2011508285A 2009-04-10 2010-03-05 Method for producing optical film Pending JPWO2010116830A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009095705 2009-04-10
JP2009095705 2009-04-10
PCT/JP2010/053641 WO2010116830A1 (en) 2009-04-10 2010-03-05 Optical film

Publications (1)

Publication Number Publication Date
JPWO2010116830A1 true JPWO2010116830A1 (en) 2012-10-18

Family

ID=42936118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011508285A Pending JPWO2010116830A1 (en) 2009-04-10 2010-03-05 Method for producing optical film

Country Status (3)

Country Link
JP (1) JPWO2010116830A1 (en)
TW (1) TWI544014B (en)
WO (1) WO2010116830A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596991B (en) 2011-08-23 2016-09-14 罗姆及哈斯公司 Multi-step polymerization compositions and the film prepared by said composition and polarization plates
JP6024662B2 (en) * 2011-09-05 2016-11-16 コニカミノルタ株式会社 Manufacturing method of optical film
WO2014203637A1 (en) * 2013-06-17 2014-12-24 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
JP6232072B2 (en) * 2013-11-01 2017-11-15 富士フイルム株式会社 Polarizing plate protective film, dope composition, polarizing plate protective film manufacturing method, polarizing plate and liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322406B2 (en) * 1991-10-23 2002-09-09 鐘淵化学工業株式会社 Polarizing film protective film
JP2002356658A (en) * 2001-05-31 2002-12-13 Nippon Carbide Ind Co Inc Acrylic overlay film
JP4788072B2 (en) * 2001-06-29 2011-10-05 コニカミノルタホールディングス株式会社 Cellulose ester film, protective film for polarizing plate and polarizing plate
JP5170083B2 (en) * 2007-03-12 2013-03-27 コニカミノルタアドバンストレイヤー株式会社 Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device

Also Published As

Publication number Publication date
WO2010116830A1 (en) 2010-10-14
TW201107382A (en) 2011-03-01
TWI544014B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
JP5110061B2 (en) Optical film
JP5521552B2 (en) Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same
JP5545294B2 (en) Optical element
JP5040688B2 (en) Acrylic resin-containing film, polarizing plate and display device using the same
JP5447374B2 (en) Acrylic film manufacturing method and acrylic film produced by the manufacturing method
JP5463914B2 (en) Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same
JP5333447B2 (en) Acrylic film manufacturing method and acrylic film manufactured by the manufacturing method
JP5402925B2 (en) Polarizing plate and liquid crystal display device
JP5533858B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
WO2010116830A1 (en) Optical film
JP5533857B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP5045539B2 (en) Protective film for polarizing plate, polarizing plate and liquid crystal display device
WO2011055590A1 (en) Protective film roll for liquid crystal polarization plate and manufacturing method thereof
WO2009119268A1 (en) Acrylic resin-containing film, process for producing acrylic resin-containing film, and polarizing plate and liquid crystal display device using the acrylic resin-containing film
JPWO2009090900A1 (en) Acrylic resin-containing film and method for producing the same
JP2010242017A (en) Method for producing optical film
WO2010116822A1 (en) Optical film, process for producing optical film, liquid crystal panel, and image display device
JP2012016845A (en) Optical film forming method, optical film, polarizing plate, and liquid crystal display
WO2010116823A1 (en) Optical film, method for producing optical film, liquid crystal panel and image display device
JP2012016844A (en) Optical film forming method, optical film, polarizing plate, and liquid crystal display
JP2011123402A (en) Sheet polarizer and liquid crystal display device using the same
JP5263299B2 (en) Optical film, polarizing plate, liquid crystal display device, and method of manufacturing optical film