TW201107379A - Ultra high-temperature plastic package and method of manufacture - Google Patents

Ultra high-temperature plastic package and method of manufacture Download PDF

Info

Publication number
TW201107379A
TW201107379A TW098128317A TW98128317A TW201107379A TW 201107379 A TW201107379 A TW 201107379A TW 098128317 A TW098128317 A TW 098128317A TW 98128317 A TW98128317 A TW 98128317A TW 201107379 A TW201107379 A TW 201107379A
Authority
TW
Taiwan
Prior art keywords
temperature
polymeric material
increasing
frame
polymer
Prior art date
Application number
TW098128317A
Other languages
Chinese (zh)
Other versions
TWI468446B (en
Inventor
Michael Zimmerman
Original Assignee
Interplex Qlp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interplex Qlp Inc filed Critical Interplex Qlp Inc
Priority to TW98128317A priority Critical patent/TWI468446B/en
Publication of TW201107379A publication Critical patent/TW201107379A/en
Application granted granted Critical
Publication of TWI468446B publication Critical patent/TWI468446B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A package for microelectronic circuits includes a frame made of a high molecular weight plastic material, such as a liquid crystal polymer (LCP), attached to a flange, or leadframe. The plastic material is injection molded to the flange. Initial polymerization of the plastic material can occur in a liquid state and results in an intermediate material having an initial melting temperature. After the frame is injection molded, the frame is heated and undergoes further (secondary) polymerization, thereby lengthening polymer chains in the plastic material. These longer polymer chains have higher molecular weight, and the resulting final material has a higher melting temperature, than the intermediate material. The resulting ultra-high molecular weight polymer can withstand high temperatures, such as those encountered during soldering. Thus, after the further (secondary) polymerization, a die can be soldered to the flange, without damaging the plastic frame.

Description

201107379 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於積體電路之電路封裝以及更特别 係關於此類包括具有高熔化溫度之聚合物之電路封裝。 【先前技術】 不同的塑膠,例如液晶聚合物(LCP)可用於廣範圍的製 成產品’包括消費品、醫療裝置以及電子積體電路的封穿 中。在很多情況下’在一或多個製造產品之步驟期間咬之 後’例如當使用產品時加熱塑膠。例如,很多產物係藉由 射出成型製程而製造,其包括將塑膠加熱以使其變軟並且 將該經軟化塑膠射出成一模型。該塑膠係呈現模型的形狀 且(理想地)在隨後製造步驟期間以及該生成產品的整個有 效壽命中保持該形狀。 某些製造過程以及產品可藉由使用具有比慣用塑膠更高 之熔化溫度的塑膠而獲改良。其他製造過程及產品將由塑 膠的使用中獲益,該塑膠的溶化溫度可在已將塑膠模製成 一形狀之後,但在一涉及一高於該塑膠原始熔點之溫度的 隨後步驟之前升高。 例如,在操作時,錄電子電路封裝中之很多裝置(例 如某些用於高功率無線電發射機之積體電路)耗散大量的 熱。在這樣的電路封裝中,焊錫係用於將微電子裝置(模 頭)附接於金屬上或其他導熱組件(例如安裝「凸緣」或 引線框架」)上以使得自模頭至金屬組件的熱傳遞最 大。在-典型應用中,金屬組件係附接於散熱裝置上,該 142783.doc 201107379 金屬組件係經冷卻,例如藉由自然空氣對流、強迫氣流 (一般源自風扇)或循環冷卻液體冷卻。 不同的焊錫,包括金-錫(AuSn)及金_矽(AuSi)係用於將 模頭附接於電路封裝的金屬組件上。當該模頭係附接於金 屬組件上時,將該焊錫加熱至超過慣用塑膠之熔化溫度的 溫度(例如對AuSn而言係在約28(rc與約32〇β(:之間或對 AuSi而言係在約39〇t與430〇C之間)。例如,大部份慣用 塑膠在約30(TC以下熔化,並且大部份液晶聚合物在將近 或略高於330°C的溫度下熔化。因此,慣用塑膠,包括慣 用LCP無法用於電路封裝中。 、 相反地,製造商一般使用陶瓷材料。但是,陶瓷必需經 銅焊於電路封裝的其他組件上。鋼焊係—種高溫(約 的方法,其在電路封裝中引起機械問題,例如不平整。此 外’涉及陶瓷的製造過程係非常昂貴的。 另一方面,«係相對廉價’並且某些Lcp具有較好的 電介質性質以及其他在電子電路封裝中所希望的特徵。不 幸的是,t貫用LCP以及其他塑膠之相對較低的炫點已妨礙 其等在該等封裝中的實際用途。 【發明内容】 本發明揭示一種具有高熔化溫度的塑膠材料以及一種用 於製造該塑膠材料之方法。該塑膠材料包括—高分子量聚 合物。該方法藉由該塑膠材料在初始聚合階段完成之後持 續或重新開始聚合而增加聚合物的分子量。該初始聚合— 般以液態進行並且可生成一中間固體材料(就塑膠,例如 142783.doc 201107379 液晶聚合物而言為「固體」)。在任何情況下,藉由初始 聚合所製造的材料(文中所指「中間材料」)具有初始熔化 溫度。在初始聚合之後,將該中間材料加熱且經過進一步 (一次」)聚合,藉此延長該材料中之聚合物鏈。現存聚 合物鏈接合在一起以形成更長的聚合物鏈。此等更長的聚 合物鏈具有比中間材料更高的分子量,並且生成的最終材 料具有比中間材料更高的熔化溫度。例如,雖然可達到更 高或更低的熔化溫度,但是可根據所揭示的方法製造具有 超過約40(TC之熔化溫度的塑膠材料。 所揭示的塑膠材料可用於製造對微電子電路及其他有用 產品的封裝。例如’在初始聚合之前、之後或期間,將此 材料射出成型以在金屬凸緣上形成框架。在該框架硬化 後,將其如文中所揭示般加熱以經過進一步聚合並升高其 熔化溫度。隨後’可在不熔化該框架的情況下用焊錫(例 如AuSi)將一模頭附接於框架上。 熟悉此項技術者由下列本發明之實施方式將可清楚了解 本發明之此等以及其他的特徵、優點、態樣以及實施例。 【實施方式】 將2004年6月7日中請標題為「超高溫塑膠封裝及製造方 法」之美國臨時專利申請案第6〇/577,53〇號之内容以引用 的方式併入本文中。 聚合物為-種藉由很多相同且相對簡單的分子以重複連 接的單元形式結合排列成形成一長、規則模式(一般為鍵) 所形成的化學化合物。在聚合物鏈中之連接單元-般係稱 142783.doc 201107379 為「單體單元」。圖1為示範性聚合物(聚氣乙烯)之示意 圖。「單體」為在聚合物的合成中用作建構塊的實際分 子。圖2為用於合成聚氣乙烯的單體(氯乙烯)之示意圖。已 知數種聚合形式,包括加成聚合、縮合聚合及反應性聚 合0 聚合期間經常使用熱、自由基或另一種觸媒來改變單 體。聚合期間,單體的電子及/或原子係經重排以將該等 單體接合一起而形成聚合物鏈。由於電子及/或原子之重 排,聚合物鏈中之連接單體單元與構成單體係不相同的。 例如,單體氯乙烯之碳原子間的雙鍵2〇〇(圖2)在聚合期間 被打破,並且源自該雙鍵之電子對中之一者用於將單體單 元彼此鍵結,如100所示(圖1)。 液晶係一種展現某些液體的屬性以及其他固體的屬性之 材料。液晶之一種共同形式為液晶聚合物(LCP),但並不 疋所有液晶皆為聚合物。形成液晶的材料分子已知為「液 晶原」。液晶之液晶原可形成具有長距有序性的有序結 構,其液晶基之長轴係定向於一優先方向。液晶的液體狀 性質源於此等液晶原結構可容易地流過彼此的事實。固體 狀性質的產生係因為此等結構本身在發生滑動時未受擾亂 之故。 在慣用的聚合製程中,自單體中產生一般呈液體形式之 聚合物,以及在聚合鏈成長之後,一般將生成的材料冷卻 至固體形式。 聚合物的分子量係取決於聚合物的聚合程度’亦即所生 142783.doc 201107379 產的聚合鏈長度。單體一般具有相對較小的分子量,但是 聚合物一般包括高達數百萬個單體單元。因此,聚合物一 般具有高分子量。聚合物的分子量可影響聚合物的性質, 例如熔化溫度、玻璃轉換溫度、熱變形溫度以及延展性。 但是,一般並不是所有聚合材料的分子都具有相同的分子 量。換言之,在聚合期間,某些分子長得比其他的分子 長。因為所有聚合材料的分子並不需具有相同的長度,所 以該材料可能不具有單一、明確的熔化溫度。相反地,該 材料可隨著其溫度在相對小的範圍内升高而逐漸變得更柔 軟。 傳統聚合製程係受限於其生產具有極高分子量及因此極 高熔化溫度以及其他希望的機械和電學性質之材料的能 力。所揭示方法進一步聚合長鏈分子。換言之,聚合物中 之聚合鏈接合在一起以形成更長的鏈。此生成具有比其他 可能者更長的鏈,因此具有更高分子量以及更高溶化溫度 之材料。例如,熔化溫度可能增加約1 〇〇°c或更多。 顯著地,所揭示方法係在傳統聚合製程之後進行操作。 此在本文中係稱為「二次聚合」。因此,雖然所揭示的方 法亦可在液體或呈其他狀態之聚合材料上進行操作,但該 方法可在固體聚合材料上進行操作。 在一闡述於圖3及4等兩圖之示範性方法中,一種具有一 初始熔化溫度(TM1)之聚合材料係經進一步(二次)聚合以 使其熔化溫度增加至TM2。該材料之溫度(在傳統聚合製 程之後)係由其初始溫度(T0)以約0.1°C /小時(R1)至约l〇°C / 142783.doc 201107379 小時(R2)之間的速率增加直至該材料溫度處於比該材料之 初始熔化溫度低約1(rc之第一溫度(TI)與比其初始炫化溫 度低約3(TC之第二溫度(Τ2)之間。因此,升高該材料的溫 度以使得該材料之時間-溫度曲線圖維持在區域3〇〇與區域 302之範圍内,直至該材料溫度係在區域之内。 一旦達到此溫度,將材料的溫度保持至少約一小時,如 圖4之圖中所示般。隨後,以约〇 rc/小時(R3)至約丨0。^ 小時(R4)之間的速率增加材料的溫度,直至材料的溫度處 於比所希望的新熔化溫度低約仂^的第三溫度(Τ3)與比所 希望的新熔化溫度低約5(rc的第四溫度(Τ4)之間。因此, 升高材料的溫度以使得該材料之時間_溫度曲線圖維持在 區域400與402之範圍内。在—實施例中,材料的溫度係增 加至至少約34〇t: ^在其他實施例令,溫度分別增加至至 少約355。(:及39(TC。在二次聚合期間該材料所升高之最高 溫度在本文中係稱為r最終溫度」。 圖5顯示根據所揭示方法所製造之示範性液晶聚合物材 料之動態掃描熱量分析(DSC)繪製圖^ Dsc為一種用於測 量材料轉變相關熱流之變化的熱分析技 椹供 吸熱(熱吸收)及放熱(熱釋放)製程之定性數據與 據。DSC-般係用於測定聚合材料之玻璃轉換溫度以及晶 體溶點。在每個繪製圖中,♦值係顯示各別材料的Z 化=度。此等炫化溫度超過約4〇代’然而材料的初始溶 化溫度係在約28〇°c與約370。(3之間。 示範性原始材料包括一族稱為「芳族聚醋」或液晶聚合 142783.doc 201107379 物之彼等材料。 在一實施例中,原始聚合物鏈末端包含下列基團中之一 或多者:COOH、OH或醋酸,如圖6中所示般。在二次聚 合之一實例中,某些原始聚合物鏈之酸端(COOH)基與其 他聚合物鏈之醋酸端基接合,及原始聚合物連之其他酸端 基與其他聚合物鏈上之剩餘OH端接合而生成相當長鏈之 聚合物。在此實例中,4-羥基苯曱酸(HBA)(或,更一般而 言,對-羥基苯甲酸)、對苯二酚、雙酚、對苯二曱酸及/或 2-羥基-6-萘甲酸形式之聚酯單體單元較佳係存在於聚合物 鏈中。此等單體單元係概要性地顯示於圖7中。在一實施 例中,二次聚合生成一交聯結構。 可根據所揭示方法製造之一示範性超高分子量材料為液 晶聚合物,亦即包含HBA單體單元之聚合物,該液晶聚合 物在二次聚合期間被加熱至約390°C之最終溫度。此一材 料具有一大於約420°C之熔化溫度。另一依類似方式製造 的示範性材料具有一大於約30,000 gm/mol的分子量。然 而,另一依類似方式製造的示範性材料具有一大於約 25,000 psi的抗張強度。另一依類似方式製造的示範性材 料具有一大於約2%的伸長度。然而,另一依類似方式製 造的示範性材料包括大於約200個重複酯基。 如上所示,所揭示塑膠材料可用於製造微電子電路之封 裝。圖8闡釋了此一封裝800。凸緣802係由高熱傳導性材 料,例如高銅合金,或另一適合材料所製成。凸緣802包 括溝縫804,凸緣稍後可藉由該等溝縫機械地附接(例如藉 142783.doc -10- 201107379 由螺絲)於散熱裝置(未顯示)上。 介電框架806係由在所揭示二次聚合於聚合材料上進行 之前的聚合材料所製成。將框架806射出成型為凸緣802。 聚合材料之混合溫度及射出成型之成型溫度都低於隨後二 次聚合製程中所用的最高溫度。圖9及圖1〇皆為圖8之電路 封裝800之替代實施例的刮視圖。凸緣8〇2視需要包括一凹 入鍵槽900(圖9)或一凸出楔1000(圖1〇),在射出成型製程 期間’該塑膠材料係由其中或周邊射出。鍵槽9〇〇可在凸 緣802中藉由一系列工具逐漸衝壓凸緣8〇2而形成,如圖 1 l(A-C)中所示般。鍵丨〇〇〇可以類似方式形成。因為在該 材料之熔化溫度升高之前,將聚合材料射出成型為凸緣 8〇2,所以慣用溫度、製程及裝備可用於射出/成型製程。 在將框架806射出成型為凸緣8〇2之後,如上所討論般進 仃所揭不的二次聚合製程並增加框架8〇6之塑膠材料的熔 化溫度,使得塑膠材料之最終使用溫度係高於混合及模製 /亚度在框木806的熔化溫度已提高之後,將模頭8〇8(圖8) 藉由焊錫810附接於凸緣8〇2之模頭附接區域812。由於框 架806之熔化溫度已提高,該框架8〇6可在不損壞框架8㈧ 的情況下承受將模頭8〇8焊接於凸緣8〇2時所遇到的溫度。 金屬絲814以電連接模頭8〇8與引線816。 j後,將蓋子(未顯示出)’例如藉由超音波熔接、藉由 環乳樹脂或藉φ丨—適合方法附接至框架_上。凸緣 8〇2、框架806以及蓋子為模頭咖提供—密封模槽。該模 槽可經抽空或充滿空氣、惰性氣體、環氧樹脂或另一適當 142783.doc 201107379 材料。凸緣802 '框架806以及著早防丨p ,、g々片 他污染物滲人模财。 U 1體以及其 某些電路封裝不包括凸緣。在此等封裝中,將框架模製 成引線框架,並且r乂產' ^至引線框架。上述二次聚合方法係應用於此等無二 封裝以及其他電路封裝中。為簡單起見,在電路封裝令模 製框架之任何金屬或其他材料在後文争都稱為凸緣。此 外:所描述有關電路封裝之二次聚合製程可應用於其他包 括模製成其他組件之組件的製品。 熱塑性塑膠為一種可重複藉由加熱而軟化以及藉由冷卻 而硬化的材料。因此’熱塑性塑膠可藉由重新加教該材料 而重塑成型。相比之下’熱固性塑谬係一種將經歷或已經 歷—藉由熱、觸媒、紫外光等之作用的化學反應(「固 化」)’❿導致一相對不可熔的狀態。—旦固化,熱固性 材料則不能變回未固化狀態。因此,熱固性材料不可重複 也軟化或重塑成型。本文中所揭示方法可應用於熱塑性塑 心及熱固性材料中。例如’電路封裝的框架可由熱塑性 塑膠或由熱固性材料所製成。因此’該二次聚合製程可應 用於已經模製且冷减的熱塑性塑膠材料,從而生成一更高 刀子量且具有極高熔化溫度的熱塑性塑膠。該二次聚合製 程亦可應用於熱固性材料中,其不再熔化。 §本發月,、由上述示範性實施例進行闡述時,彼等一般 技術者將理解:所闡述實施例之改良及變化可在不背離本 文中所揭示之發明構思下完成。例如,雖然在製造電路封 142783.doc 12 201107379 裂的情況下射出成型之後進行二次聚合時已經闡述了二次 聚合’但二次聚合亦可在該材料射出成型之前於—材料上 進行(當製造電路封裝以及其他物件時)。此外,當闡述與 各種說明性單體、起始聚合物、溫度、溫度增加速率及溫 度保持時間有關的較佳實施例時,熟悉此項技術者將認識 到此等態樣之取代物以及改良。因此,本發明不應被視為 限制’除了受所附請求項之範圍及精神限制之外。 【圖式簡單說明】 藉由參考本發明之實施方式連同圖將可更完整了解本發 明,其中: 圖1為先前技術聚合物分子之示意圖; 圖2為用於合成圖1之聚合物分子的先前技術單體分子之 示意圖; 圖3為根據本發明一實施例,溫度在部分二次聚合製程 期間之增長圖; 圖4為溫度在另一部份圖3之二次聚合製程期間之增長 圖; 圖5為根據本發明之一實施例所製造的液晶聚合物材料 之一組動態掃描熱量分析(DSC)繪製圖; 圖6為根據本發明之三個實施例,用於合成其他聚合物 分子之不範性聚合物分子的示意圖; 圖7為根據本發明之數個實施例,包含用於合成聚合物 分子之示範性單體單元的示意圖; 圖8為根據本發明之一實施例所製造之電子電路封裴 142783.doc 13 201107379 si · 圓, 圖9為圖8之電路封裝的替代實施例之截面圖;圖1〇為圖8之電路封裝的1替代實施例之截面圖;及 圖ll(A-C)為圖9之電路封萝 久 4衮之到視圖 槽之三個階段期間的鍵槽。 【主要元件符號說明】 其_示在製造 鍵 100 鍵結 200 雙鍵 300 區域 302 區域 400 區域 402 區域 500 峰值 800 封裝 802 凸緣 804 溝縫 806 框架 808 模頭 810 焊錫 812 模頭附接區域 814 金屬絲 816 引線 900 凹入鍵槽 1000 凸出楔 142783.docBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit package for an integrated circuit and more particularly to such a circuit package including a polymer having a high melting temperature. [Prior Art] Different plastics, such as liquid crystal polymer (LCP), can be used in a wide range of products including consumer products, medical devices, and electronic integrated circuits. In many cases, 'after the bite of one or more steps in the manufacture of the product', the plastic is heated, for example, when the product is used. For example, many products are manufactured by an injection molding process that involves heating the plastic to soften it and ejecting the softened plastic into a mold. The plastic is in the shape of the model and (ideally) retains the shape during the subsequent manufacturing steps and throughout the useful life of the resulting product. Certain manufacturing processes and products can be improved by using plastics having a higher melting temperature than conventional plastics. Other manufacturing processes and products will benefit from the use of plastics that have been melted at a temperature after molding the plastic into a shape, but before a subsequent step involving a temperature above the original melting point of the plastic. For example, many devices in a recorded electronic circuit package, such as some integrated circuits for high power radio transmitters, dissipate a significant amount of heat during operation. In such a circuit package, solder is used to attach a microelectronic device (die) to a metal or other thermally conductive component (such as a "flange" or leadframe mounting) to allow self-die to metal components. The heat transfer is the largest. In a typical application, the metal component is attached to a heat sink that is cooled, for example by natural air convection, forced air flow (generally from a fan) or circulating cooling liquid. Different solders, including gold-tin (AuSn) and gold-on-silicon (AuSi), are used to attach the die to the metal components of the circuit package. When the die is attached to the metal component, the solder is heated to a temperature above the melting temperature of the conventional plastic (eg, about 28 for AuSn (rc and about 32 〇 β (: or between AuSi) For example, between about 39 〇t and 430 〇C. For example, most conventional plastics melt at about 30 (TC below), and most liquid crystal polymers are at or near 330 °C. Melting. Therefore, conventional plastics, including conventional LCPs, cannot be used in circuit packages. Conversely, manufacturers generally use ceramic materials. However, ceramics must be brazed to other components of the circuit package. A method of causing mechanical problems in circuit packaging, such as unevenness. Furthermore, the manufacturing process involving ceramics is very expensive. On the other hand, «systems are relatively inexpensive' and some Lcp have better dielectric properties and others. Desirable features in electronic circuit packaging. Unfortunately, the relatively low brightness of LCPs and other plastics has hampered their practical use in such packages. A plastic material having a high melting temperature and a method for producing the plastic material. The plastic material comprises a high molecular weight polymer. The method increases or increases polymerization by continuing or restarting polymerization of the plastic material after completion of the initial polymerization stage. The molecular weight of the material. The initial polymerization is generally carried out in a liquid state and can form an intermediate solid material (in the case of plastics, for example, 142783.doc 201107379 liquid crystal polymer is "solid"). In any case, by initial polymerization The material (the "intermediate material" referred to herein) has an initial melting temperature. After the initial polymerization, the intermediate material is heated and subjected to further (once) polymerization, thereby extending the polymer chain in the material. Existing polymer links Put together to form a longer polymer chain. These longer polymer chains have a higher molecular weight than the intermediate material, and the resulting final material has a higher melting temperature than the intermediate material. For example, although more High or lower melting temperature, but can be manufactured in excess of about according to the disclosed method 40 (TC plastic temperature melting material. The disclosed plastic material can be used to make packages for microelectronic circuits and other useful products. For example, 'Before, after or during initial polymerization, this material is injection molded to the metal flange Forming a frame thereon. After the frame is hardened, it is heated as disclosed herein to undergo further polymerization and raise its melting temperature. Then, a die can be soldered with solder (for example, AuSi) without melting the frame. This and other features, advantages, aspects and embodiments of the present invention will become apparent from the <RTIgt; The content of the U.S. Provisional Patent Application Serial No. 6/577, filed on Jan A polymer is a chemical compound formed by combining a plurality of identical and relatively simple molecules in a repeating unit form to form a long, regular pattern (typically a bond). The connection unit in the polymer chain is generally referred to as 142783.doc 201107379 as a "monomer unit". BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of an exemplary polymer (polyethylene). "Monomer" is the actual molecule used as a building block in the synthesis of polymers. 2 is a schematic view of a monomer (vinyl chloride) for synthesizing polyethylene gas. Several forms of polymerization are known, including addition polymerization, condensation polymerization, and reactive polymerization. During the polymerization, heat, free radicals, or another catalyst is often used to modify the monomer. During polymerization, the electrons and/or atoms of the monomer are rearranged to join the monomers together to form a polymer chain. Due to the rearrangement of electrons and/or atoms, the linking monomer units in the polymer chain are not identical to the constituent unit systems. For example, the double bond between the carbon atoms of the monomeric vinyl chloride (Fig. 2) is broken during polymerization, and one of the electron pairs derived from the double bond is used to bond the monomer units to each other, such as 100 is shown (Figure 1). Liquid crystal is a material that exhibits the properties of certain liquids as well as the properties of other solids. One common form of liquid crystal is liquid crystal polymer (LCP), but not all liquid crystals are polymers. The material molecules forming the liquid crystal are known as "liquid crystals". The liquid crystal of the liquid crystal can form an ordered structure having a long-range order, and the long axis of the liquid crystal group is oriented in a preferential direction. The liquid-like nature of the liquid crystal is derived from the fact that the liquid crystal original structures can easily flow through each other. The nature of the solid is due to the fact that the structures themselves are not disturbed when slipping occurs. In conventional polymerization processes, a generally liquid form of the polymer is produced from the monomer, and after the polymeric chain has grown, the resulting material is typically cooled to a solid form. The molecular weight of the polymer depends on the degree of polymerization of the polymer', i.e., the length of the polymeric chain produced by 142783.doc 201107379. Monomers generally have a relatively small molecular weight, but polymers typically include up to millions of monomer units. Therefore, the polymer generally has a high molecular weight. The molecular weight of the polymer can affect the properties of the polymer, such as melting temperature, glass transition temperature, heat distortion temperature, and ductility. However, generally not all molecules of polymeric materials have the same molecular weight. In other words, certain molecules grow longer than others during polymerization. Since the molecules of all polymeric materials do not need to have the same length, the material may not have a single, well-defined melting temperature. Conversely, the material may gradually become softer as its temperature rises within a relatively small range. Conventional polymerization processes are limited by their ability to produce materials having extremely high molecular weights and therefore extremely high melting temperatures and other desirable mechanical and electrical properties. The disclosed method further polymerizes long chain molecules. In other words, the polymeric linkages in the polymer are brought together to form a longer chain. This produces a chain that has a longer chain than others, and therefore has a higher molecular weight and a higher melting temperature. For example, the melting temperature may increase by about 1 〇〇 ° C or more. Significantly, the disclosed methods operate after conventional polymerization processes. This is referred to herein as "secondary polymerization." Thus, although the disclosed method can also be operated on liquid or other polymeric materials, the process can be operated on solid polymeric materials. In an exemplary method illustrated in Figures 2 and 4, a polymeric material having an initial melting temperature (TM1) is further (secondarily) polymerized to increase its melting temperature to TM2. The temperature of the material (after the conventional polymerization process) is increased from its initial temperature (T0) at a rate between about 0.1 ° C / hour (R1) to about 10 ° C / 142783.doc 201107379 hours (R2) until The material temperature is about 1 less than the initial melting temperature of the material (the first temperature of rc (TI) is between about 3 less than its initial tempering temperature (the second temperature of TC (Τ2). Therefore, raising the The temperature of the material is such that the time-temperature profile of the material is maintained within the range of zone 3 and zone 302 until the temperature of the material is within the zone. Once this temperature is reached, the temperature of the material is maintained for at least about one hour. , as shown in the diagram of Figure 4. Subsequently, the temperature of the material is increased at a rate between about 〇rc / hr (R3) to about 。 0. ^ hr (R4) until the temperature of the material is higher than desired The third temperature (Τ3) of the new melting temperature is about 仂 lower than the desired new melting temperature by about 5 (the fourth temperature of rc (Τ4). Therefore, the temperature of the material is raised to make the time of the material The temperature profile is maintained within the range of regions 400 and 402. In the embodiment The temperature of the material is increased to at least about 34 〇t: ^ In other embodiments, the temperature is increased to at least about 355. (: and 39 (TC.) The highest temperature of the material during the secondary polymerization is in this paper. The middle is referred to as the r final temperature. Figure 5 shows a dynamic scanning thermal analysis (DSC) plot of an exemplary liquid crystal polymer material fabricated according to the disclosed method. Dsc is a heat used to measure changes in heat flux associated with material transitions. Analytical techniques for qualitative data and data for endothermic (heat absorption) and exothermic (heat release) processes. DSC-like is used to determine the glass transition temperature and crystal melting point of polymeric materials. In each plot, ♦ value Shows the Z==degree of the individual materials. These tempering temperatures exceed about 4 '. However, the initial melting temperature of the material is between about 28 ° C and about 370. (3) The exemplary raw materials include a family name. It is a material of "aromatic poly" or liquid crystal polymerization 142783.doc 201107379. In one embodiment, the end of the original polymer chain comprises one or more of the following groups: COOH, OH or acetic acid, as shown As shown in 6. In the second In one example of polymerization, the acid end (COOH) groups of some of the original polymer chains are bonded to the acetate end groups of other polymer chains, and the other acid end groups of the original polymer are attached to the remaining OH ends of the other polymer chains. Joining to form a relatively long chain polymer. In this example, 4-hydroxybenzoic acid (HBA) (or, more generally, p-hydroxybenzoic acid), hydroquinone, bisphenol, p-phenylene The monomer units of the decanoic acid and/or the 2-hydroxy-6-naphthoic acid form are preferably present in the polymer chain. These monomer units are shown schematically in Figure 7. In one embodiment The secondary polymerization produces a crosslinked structure. An exemplary ultrahigh molecular weight material can be made according to the disclosed method as a liquid crystalline polymer, i.e., a polymer comprising HBA monomer units that are heated to a final temperature of about 390 °C during the secondary polymerization. This material has a melting temperature greater than about 420 °C. Another exemplary material made in a similar manner has a molecular weight greater than about 30,000 gm/mol. However, another exemplary material made in a similar manner has a tensile strength greater than about 25,000 psi. Another exemplary material made in a similar manner has an elongation of greater than about 2%. However, another exemplary material made in a similar manner includes greater than about 200 repeating ester groups. As indicated above, the disclosed plastic materials can be used to make packages for microelectronic circuits. Figure 8 illustrates this package 800. The flange 802 is made of a highly thermally conductive material, such as a high copper alloy, or another suitable material. The flange 802 includes a slot 804 through which the flange can be mechanically attached later (e.g., by screws 142783.doc -10- 201107379) to a heat sink (not shown). Dielectric frame 806 is made of a polymeric material prior to the secondary polymerization described on the polymeric material. The frame 806 is injection molded into a flange 802. The mixing temperature of the polymeric material and the molding temperature of the injection molding are lower than the highest temperatures used in the subsequent secondary polymerization process. 9 and 1 are both a plan view of an alternate embodiment of the circuit package 800 of FIG. The flange 8〇2 optionally includes a recessed keyway 900 (Fig. 9) or a raised wedge 1000 (Fig. 1A) during which the plastic material is ejected from or into the periphery during the injection molding process. The keyway 9〇〇 can be formed in the flange 802 by gradually pressing the flange 8〇2 by a series of tools, as shown in Fig. 1(A-C). The key 丨〇〇〇 can be formed in a similar manner. Since the polymeric material is injection molded into the flange 8〇2 before the melting temperature of the material rises, the conventional temperature, process, and equipment can be used for the injection/forming process. After the frame 806 is injection molded into the flange 8〇2, the secondary polymerization process as disclosed above is increased and the melting temperature of the plastic material of the frame 8〇6 is increased, so that the final use temperature of the plastic material is high. After the mixing and molding/Asian melting temperature of the frame wood 806 has been increased, the die 8 8 (FIG. 8) is attached to the die attachment area 812 of the flange 8〇2 by solder 810. Since the melting temperature of the frame 806 has been increased, the frame 8〇6 can withstand the temperature encountered when the die 8〇8 is welded to the flange 8〇2 without damaging the frame 8(8). Wire 814 electrically connects die 8〇8 with leads 816. After j, a cover (not shown) is attached to the frame_, for example, by ultrasonic welding, by a ring-shaped resin or by a φ丨-suitable method. The flange 8〇2, the frame 806, and the cover provide a die cavity for the die. The cavity can be evacuated or filled with air, inert gas, epoxy or another suitable material. Flange 802 'frame 806 and early anti-puppet p, g 々 film, his pollutants infiltrate the model. The U 1 body and some of its circuit packages do not include a flange. In these packages, the frame is molded into a lead frame and the '^ to the lead frame. The above secondary polymerization method is applied to such a two-package and other circuit packages. For the sake of simplicity, any metal or other material in the circuit package that is molded into a frame will be referred to hereinafter as a flange. In addition: The described secondary polymerization process for circuit packaging can be applied to other articles that include components molded into other components. Thermoplastic is a material that can be repeatedly softened by heating and hardened by cooling. Therefore, 'thermoplastics can be reshaped by re-teaching the material. In contrast, a thermoset plastic raft is a chemical reaction ("curing") that will undergo or have been subjected to heat, catalyst, ultraviolet light, etc., resulting in a relatively infusible state. Once cured, the thermoset material does not return to an uncured state. Therefore, thermoset materials cannot be repeated or softened or reshaped. The methods disclosed herein are applicable to thermoplastic cores and thermoset materials. For example, the frame of a circuit package can be made of a thermoplastic or a thermoset material. Therefore, the secondary polymerization process can be applied to thermoplastic plastic materials that have been molded and cooled down to produce a thermoplastic having a higher knife amount and a very high melting temperature. This secondary polymerization process can also be applied to thermoset materials which no longer melt. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; For example, although secondary polymerization has been described in the case of secondary polymerization after injection molding in the case of manufacturing a circuit seal 142783.doc 12 201107379, the secondary polymerization may also be performed on the material before the material is injection molded (when When manufacturing circuit packages and other objects). Moreover, when describing preferred embodiments relating to various illustrative monomers, starting polymers, temperatures, rate of temperature increase, and temperature retention time, those skilled in the art will recognize substitutions and improvements in such aspects. . Accordingly, the invention is not to be considered as limited to BRIEF DESCRIPTION OF THE DRAWINGS The invention will be more fully understood by reference to the embodiments of the invention, wherein: FIG. 1 is a schematic diagram of a prior art polymer molecule; FIG. 2 is a synthesis of the polymer molecule of FIG. Schematic diagram of prior art monomer molecules; FIG. 3 is a graph showing the growth of temperature during a partial secondary polymerization process according to an embodiment of the present invention; FIG. 4 is a graph showing the growth of temperature during the second polymerization process of FIG. Figure 5 is a set of dynamic scanning calorimetry (DSC) plots of liquid crystal polymer materials made in accordance with one embodiment of the present invention; Figure 6 is a graph for synthesizing other polymer molecules in accordance with three embodiments of the present invention. Schematic diagram of an exemplary polymer molecule; Figure 7 is a schematic diagram of an exemplary monomer unit for synthesizing polymer molecules in accordance with several embodiments of the present invention; Figure 8 is a fabrication in accordance with an embodiment of the present invention. Electronic circuit package 142783.doc 13 201107379 si · circle, FIG. 9 is a cross-sectional view of an alternative embodiment of the circuit package of FIG. 8; FIG. 1 is a cross section of an alternative embodiment of the circuit package of FIG. Figure; and Figure ll (A-C) is the circuit of Figure 9 for a long time. The keyway during the three stages of the view. [Main component symbol description] It is shown in the manufacturing key 100 bonding 200 double key 300 area 302 area 400 area 402 area 500 peak 800 package 802 flange 804 groove 806 frame 808 die 810 solder 812 die attachment area 814 Wire 816 lead 900 recessed keyway 1000 protruding wedge 142783.doc

Claims (1)

201107379 七、申請專利範圍: 1. 一種製造聚合物材料之方法,其包括: 合成具有第一熔化溫度之第一聚合材料; 以第一預定速率將第一聚合材料加熱至低於第一聚合 材料之熔化溫度的第一預定溫度;及 以第二預定速率將第一聚合材料加熱至第二預定溫 度。 2. 如請求項1之方法,其中合成第一聚合材料包括合成熱 塑性塑膠。 3. 如請求項1之方法,其中合成第一聚合材料包括合成熱 固性材料。 4. 如請求項1之方法,其進一步包括在將第一聚合材料加 熱至第一預定溫度之後,將第一聚合材料的溫度保持在 預定範圍内至少一段預定時間。 5. 如請求項1之方法,其中將第一聚合材料加熱至第二預 定溫度包括將第一聚合材料加熱至一高於第一聚合材料 之熔化溫度的溫度。 6. 如請求項1之方法,其中將第一聚合材料加熱至第二預 定溫度包括將第一聚合材料充分加熱以使第一聚合材料 中的聚合物分子與第一聚合材料中的其他聚合物分子接 合。 7. 如請求項1之方法,其中將第一聚合材料加熱至第二預 定溫度包括將第一聚合材料充分加熱以使第一聚合材料 進一步聚合並使聚合材料的熔化溫度增加至一高於第一 142783.doc 201107379 聚合材料之熔化溫度的熔化溫度。 8·们之方法’其中合成第—聚合材料包括合成液 日日聚合物0 9. 一種升高塑膠材料的熔化溫度之方法,其包括: 田以約O.rc/小時至約呢/小時之严日,的速率增加材料的 皿度J[至該材料的溫度達到第一溫度,該第—溫度係 比6亥材料之初始熔化溫度低約10。(:至約30。(:; :材料服度保持在比該材料的初始熔化溫度低約1 〇 至約30。(:,歷時至少約一小時;及 :約〇.lt/小時至約⑽/小時之間的速率增加該材料 的溫度m亥材料的溫度達到第二溫度,該第二溫度 比該材料的所需熔化溫度低約40〇c至約5(rc。 皿又 奢求項9之方法,其中將該材料的溫度增加至第二溫 括將°亥材料的溫度增加至大於約3 4 0。匚。 ,項9之方法,其中將該材料的溫度增加至第二溫 度包括將該材料的溫度增加至大於約355¾。 12. 如凊求項9之方法’其中將該材料的溫度增加至第二溫 度包括將該材料的溫度增加至大於約39〇t。 13. 如請求項9夕士、+ 哨y之方法,其中將該材料的溫度增加至第—溫 度包括増加具有至少一 C〇〇H端基之聚合物的溫度。 14. 如凊求項9之方法’其中將該材料的溫度增加至第一溫 度包括増加具有至少-〇H端基之聚合物的溫度。&quot; 15. 如請求項9夕*^.4· ^ . 方法’其中將該材料的溫度增加至第—溫 度包括増加且古^ 曰力具有至少一醋酸端基之聚合物的溫度。 142783.doc 201107379 1 6.如吻求項9之方法’其中將該材料的溫度增加至第一溫度 包括增加熱塑性塑膠的溫度。 X 17. 如凊求項9之方法,其中將該材料的溫度增加至第一溫 度包括增加熱固性材料的溫度。 覆 18. 如印求項9之方法,其中將該材料的溫度增加至第—溫 度包括增加具有至少一單體單元之聚合物的溫度,該單 體單元係選自下列組成之群: 對苯二酚; 雙酚; 間苯二曱酸; 對-羥基苯曱酸; 對苯二甲酸;及 2-羥基-6-萘甲酸。 19. 如請求項9之方法,其進一步包括形成交聯結構。 20. —種製造聚合材料的方法其包括: 合成中間聚合材料;及 在合成該中間聚合材料之後,進一步聚合該中間聚入 材料。 21. 如請求項20之方法,其中進一步聚合該中間聚合材料包 * 括: 在該中間聚合材料形成固體材料之後,進一步聚合該 中間聚合材料。 A 22_如請求項20之方法,其中進一步聚合該中間聚合材料包 括: 142783.doc 201107379 當該中間聚合材料為液體時,進一 材料。 步聚合該中間聚合 •如請求項20之方法,其中進一 括:201107379 VII. Patent Application Range: 1. A method of manufacturing a polymer material, comprising: synthesizing a first polymeric material having a first melting temperature; heating the first polymeric material to a temperature lower than the first polymeric material at a first predetermined rate a first predetermined temperature of the melting temperature; and heating the first polymeric material to a second predetermined temperature at a second predetermined rate. 2. The method of claim 1, wherein synthesizing the first polymeric material comprises synthesizing a thermoplastic plastic. 3. The method of claim 1, wherein synthesizing the first polymeric material comprises synthesizing a thermoset material. 4. The method of claim 1, further comprising maintaining the temperature of the first polymeric material within a predetermined range for at least a predetermined period of time after heating the first polymeric material to the first predetermined temperature. 5. The method of claim 1, wherein heating the first polymeric material to the second predetermined temperature comprises heating the first polymeric material to a temperature that is higher than a melting temperature of the first polymeric material. 6. The method of claim 1 wherein heating the first polymeric material to the second predetermined temperature comprises heating the first polymeric material sufficiently to polymerize the polymer molecules in the first polymeric material with other polymers in the first polymeric material Molecular bonding. 7. The method of claim 1 wherein heating the first polymeric material to the second predetermined temperature comprises heating the first polymeric material sufficiently to further polymerize the first polymeric material and increase the melting temperature of the polymeric material to a higher than 142783.doc 201107379 The melting temperature of the melting temperature of the polymeric material. 8. The method of 'the synthesis of the first-polymerized material, including the synthetic liquid, the daily polymer 0. 9. A method for raising the melting temperature of the plastic material, which comprises: the field is about O.rc / hour to about / hour On a stricter day, the rate increases the degree of material J [to the temperature of the material to a first temperature which is about 10 lower than the initial melting temperature of the material. (: to approximately 30. (:; : Material suitability is maintained at a temperature from the initial melting temperature of the material by about 1 〇 to about 30. (:, for at least about one hour; and: about lt. lt / hour to about (10) The rate between the hours increases the temperature of the material, and the temperature of the material reaches a second temperature which is about 40 〇c to about 5 less than the desired melting temperature of the material (rc. The method wherein the temperature of the material is increased to a second temperature to increase the temperature of the material to greater than about 340. The method of item 9, wherein increasing the temperature of the material to a second temperature comprises The temperature of the material is increased to greater than about 3553⁄4. 12. The method of claim 9 wherein increasing the temperature of the material to a second temperature comprises increasing the temperature of the material to greater than about 39 〇t. A method of adding a temperature to a first temperature comprising adding a temperature of a polymer having at least one C〇〇H end group. 14. A method of claim 9 Increasing the temperature of the material to the first temperature comprises adding at least -〇H end groups The temperature of the polymer. &quot; 15. If the request item 9 * *^.4· ^ . Method 'where the temperature of the material is increased to the first temperature - including the polymer with at least one acetic acid end group 142783.doc 201107379 1 6. The method of claim 9, wherein increasing the temperature of the material to the first temperature comprises increasing the temperature of the thermoplastic. X 17. The method of claim 9, wherein The method of increasing the temperature of the material to the first temperature comprises increasing the temperature of the thermosetting material. The method of claim 9, wherein increasing the temperature of the material to the first temperature comprises increasing the temperature of the polymer having at least one monomer unit The monomer unit is selected from the group consisting of hydroquinone; bisphenol; isophthalic acid; p-hydroxybenzoic acid; terephthalic acid; and 2-hydroxy-6-naphthoic acid. The method of claim 9, which further comprises forming a crosslinked structure. 20. A method of making a polymeric material comprising: synthesizing an intermediate polymeric material; and further polymerizing the intermediate polymeric after synthesizing the intermediate polymeric material 21. The method of claim 20, wherein the further polymerizing the intermediate polymeric material package comprises: further polymerizing the intermediate polymeric material after the intermediate polymeric material forms a solid material. A 22_ The method of claim 20, wherein Further polymerizing the intermediate polymeric material comprises: 142783.doc 201107379 When the intermediate polymeric material is a liquid, a further material is formed. Step polymerization The intermediate polymerization. The method of claim 20, wherein: 度直至5亥中間聚合材料的溫度達到第 中進一步聚合該中間聚合材料包 溫度’該第-溫度係比該中間聚合材料的初始熔化溫度 低約10 °C至約3 〇 ; 、將該中間聚合材料的溫度保持在比該中間聚合材料的 初始熔化溫度低約1(rc至約3(rc,歷時至少約一小時;及 以約o.rc /小時至約10。〇 /小時之間的速率增加該中間 聚合材料的溫度,直至該材料的溫度達到第二溫度,該 第二溫度係比預定溫度低約40°c至約50°c,該預定溫度 係高於該中間聚合材料的初始熔化溫度。 24. 如請求項23之方法,其中將該中間聚合材料的溫度增加 至第二溫度包括將該中間聚合材料的溫度增加至高於約 340°C。 25. 如請求項23之方法,其中將該中間聚合材料的溫度增加 至第一 度包括將該中間聚合材料的溫度增加至高於約 355〇C。 26. 如請求項23之方法,其中將該中間聚合材料的溫度增加 至第二溫度包括將該中間聚合材料的溫度增加至高於約 390°C。 27·如請求項20之方法,其中進一步聚合該中間聚合材料包 142783.doc 201107379 括延長該中間聚合材料中現存的聚合物鏈。 28·如請求項20之方法,其中進一步聚合該中間聚合材料包 括將該中間聚合材料中現存的聚合物鏈與該中間材料中 其他現存聚合物鏈接合。 29·如請求項2°之方法,其中合成中間聚合材料包括合成包 括對-羥基苯甲酸之中間聚合材料。 3〇·如請求項20之方法,其中合成中間聚合材料包括由對-經 基苯甲酸合成中間聚合材料。 -月求項20之方法,其中合成中間聚合材料包括合成包 括4-羥基苯曱酸之中間聚合材料。 3:如請求項20之方法’其中合成中間聚合材料包括合成包 括熱塑性塑膠之中間聚合材料。 33. 如請求項2〇之方法,其中合成中間聚合材料包括合成包 括熱固性材料之中間聚合材料。 34. —種製造電路封裝的方法,其包括: 將聚合材料模製至凸緣,藉此形成一框架; 、约0· 1 C /小時至約丨〇 c /小時之間的速率增加該框架 的溫度’直至該框架的溫度達到第一溫度,該第一溫度 係比該聚合材料的初始溶化溫度低約10°c至約3CTC ; 將該聚合材料的溫度保持在比該聚合材料的初始熔化 溫度低約lot至約3(rc,歷時至少約一小時;及 以約〇.1 °c /小時至約10 /小時之間的速率增加該框架 的溫度,直至框架的溫度達到第二溫度,該第二溫度係 在比該框架的所需熔化溫度低約40°c至約5(TC。 142783.doc 201107379 3 5.如請求項34之方法,其中將該框架的溫度增加至第二溫 度包括將該框架的溫度增加至高於約340°C。 36.如請求項34之方法,其中將該框架的溫度增加至第二溫 度包括將該框架的溫度增加至高於約355°C。 3 7.如請求項34之方法,其中將該框架的溫度增加至第二溫 度包括將該框架的溫度增加至高於約390°C。 38. 如請求項34之方法,其中將該框架的溫度增加至第一溫 度包括增加具有至少一 COOH端基的聚合物的溫度^ 39. 如請求項34之方法,其中將該框架的溫度增加至第一溫 度包括增加具有至少一 OH端基的聚合物的溫度。 40. 如請求項34之方法,其中將該框架的溫度增加至第一溫 度包括增加具有至少一醋酸端基的聚合物的溫度。 41. 如請求項34之方法,其中將該框架的溫度增加至第一溫 度包括增加具有至少一單體單元之聚合物的溫度,該單 體單元係選自下列組成之群: 對苯二酚; 雙酚; 對-羥基苯甲酸; 對苯二甲酸;及 2-羥基-6-萘甲酸。 42. 如請求項34之方法,其進一步包括在該框架中形成交聯 結構。 43. 如請求項34之方法,其中將聚合材料模製至凸緣包括將 熱塑性材料模製至凸緣。 142783.doc 201107379 44. 如請求項34之方法,其中將聚合材料模製至凸緣包括將 熱固性材料模製至凸緣。 45. 如請求項34之方法,其進一步包括: 令該聚合材料在混合溫度下混合,該混合溫度係低於 該第一溫度且低於該第二溫度;及 其中模製該聚合材料包括令該聚合材料在模製溫度下 進行模製,該模製溫度係低於該第一溫度且低於該第二 溫度。 46. 如請求項35之方法,其中將該框架的溫度增加至第二溫 度包括增加該框架的溫度使得該框架的最終使用溫度高 於該混合溫度且高於該模製溫度。 47. —種製造物件之方法,其包括: 將聚合材料模製成該物件之組件; 以約0.1°C /小時至約l〇°C /小時之間的速率增加該聚合 材料的溫度,直至該聚合材料的溫度達到第一溫度,該 第一溫度係在比該聚合材料的初始熔化溫度低約1 〇°C至 約 30。(:; 將該聚合材料的溫度保持在比該聚合材料的初始熔化 溫度低約1 〇°C至約30°C,歷時至少約一小時;及 以約0.1°C /小時至約l〇°C /小時之間的速率增加該聚合 材料的溫度,直至該聚合材料的溫度達到第二溫度,該 第二溫度係比該聚合材料的所需熔化溫度低約40°C至約 5〇t。 48. 如請求項47之方法,其中將該聚合材料的溫度增加至第 142783.doc 201107379 二溫度包括將該聚合材料的溫度增加至高於約340°C。 49. 如請求項47之方法,其中將該聚合材料的溫度增加至第 二溫度包括將該聚合材料的溫度增加至高於約355°C。 50. 如請求項47之方法,其中將該聚合材料的溫度增加至第 二溫度包括將該聚合材料的溫度增加至高於約390°C。 5 1. —種物質之組合物,其包括: 包含多個HBA單體單元且具有高於約420°C之熔化溫 度之液晶聚合物。 52. —種物質之組合物,其包括: 包含複數個HBA單體單元且具有大於約30,000 gm/mol 的分子量之液晶聚合物。 53. —種物質之組合物,其包括: 包含複數個HB A單體單元且具有大於約2%的延長度之 液晶聚合物。 54. —種物質之組合物,其包括: 包含複數個HBA單體單元之液晶聚合物,其中至少部 分液晶聚合物分子各包括至少約200個重複酯基。 142783.docDegree until the temperature of the intermediate material reaches 5, further polymerization, the intermediate polymeric material package temperature 'the first temperature is lower than the initial melting temperature of the intermediate polymeric material by about 10 ° C to about 3 〇; The temperature of the material is maintained at about 1 (rc to about 3 (rc, for at least about one hour; and at a rate of between about o.rc /hr to about 10. 〇 / hr) that is lower than the initial melting temperature of the intermediate polymeric material. Increasing the temperature of the intermediate polymeric material until the temperature of the material reaches a second temperature, the second temperature being about 40 ° C to about 50 ° C lower than the predetermined temperature, the predetermined temperature being higher than the initial melting of the intermediate polymeric material 24. The method of claim 23, wherein increasing the temperature of the intermediate polymeric material to a second temperature comprises increasing the temperature of the intermediate polymeric material to greater than about 340 ° C. 25. The method of claim 23, wherein Increasing the temperature of the intermediate polymeric material to a first degree comprises increasing the temperature of the intermediate polymeric material to greater than about 355 ° C. 26. The method of claim 23, wherein the temperature of the intermediate polymeric material Adding to the second temperature comprises increasing the temperature of the intermediate polymeric material to above about 390 ° C. 27. The method of claim 20, wherein the intermediate polymeric material package 142783.doc 201107379 is further polymerized to extend the existing intermediate polymeric material The method of claim 20, wherein the further polymerizing the intermediate polymeric material comprises linking the existing polymer chain in the intermediate polymeric material to other existing polymers in the intermediate material. A method of synthesizing an intermediate polymeric material comprising synthesizing an intermediate polymeric material comprising p-hydroxybenzoic acid. The method of claim 20, wherein the synthesizing the intermediate polymeric material comprises synthesizing an intermediate polymeric material from p-benzoic acid. The method of claim 20, wherein the synthesizing the intermediate polymeric material comprises synthesizing an intermediate polymeric material comprising 4-hydroxybenzoic acid. 3: The method of claim 20, wherein the synthesizing the intermediate polymeric material comprises synthesizing an intermediate polymerization comprising a thermoplastic plastic. 33. The method of claim 2, wherein the synthesizing the intermediate polymeric material comprises synthesizing including heat Intermediate polymeric material for a material. 34. A method of making a circuit package, comprising: molding a polymeric material to a flange, thereby forming a frame; from about 0. 1 C / hour to about 丨〇 c / hour The rate between the frames increases the temperature of the frame until the temperature of the frame reaches a first temperature which is about 10 ° C to about 3 CTC lower than the initial melting temperature of the polymeric material; maintaining the temperature of the polymeric material at Decreasing from the initial melting temperature of the polymeric material by from about lit to about 3 (rc for at least about one hour; and increasing the temperature of the frame at a rate of between about 0.1 ° C /hr to about 10 /hr until the frame The temperature reaches a second temperature which is about 40 ° C to about 5 (TC) lower than the desired melting temperature of the frame. 5. The method of claim 34, wherein increasing the temperature of the frame to a second temperature comprises increasing the temperature of the frame to above about 340 °C. 36. The method of claim 34, wherein increasing the temperature of the frame to a second temperature comprises increasing the temperature of the frame to above about 355 °C. The method of claim 34, wherein increasing the temperature of the frame to the second temperature comprises increasing the temperature of the frame to above about 390 °C. 38. The method of claim 34, wherein increasing the temperature of the frame to the first temperature comprises increasing the temperature of the polymer having at least one COOH end group. 39. The method of claim 34, wherein the temperature of the frame is increased The first temperature includes increasing the temperature of the polymer having at least one OH end group. 40. The method of claim 34, wherein increasing the temperature of the frame to the first temperature comprises increasing the temperature of the polymer having at least one acetate end group. 41. The method of claim 34, wherein increasing the temperature of the frame to the first temperature comprises increasing the temperature of the polymer having at least one monomer unit selected from the group consisting of: hydroquinone Bisphenol; p-hydroxybenzoic acid; terephthalic acid; and 2-hydroxy-6-naphthoic acid. 42. The method of claim 34, further comprising forming a crosslinked structure in the framework. 43. The method of claim 34, wherein molding the polymeric material to the flange comprises molding the thermoplastic material to the flange. The method of claim 34, wherein molding the polymeric material to the flange comprises molding the thermoset material to the flange. 45. The method of claim 34, further comprising: mixing the polymeric material at a mixing temperature that is lower than the first temperature and lower than the second temperature; and wherein molding the polymeric material comprises The polymeric material is molded at a molding temperature that is lower than the first temperature and lower than the second temperature. 46. The method of claim 35, wherein increasing the temperature of the frame to the second temperature comprises increasing the temperature of the frame such that the final use temperature of the frame is above the mixing temperature and above the molding temperature. 47. A method of making an article, comprising: molding a polymeric material into a component of the article; increasing the temperature of the polymeric material at a rate of between about 0.1 ° C /hr to about 10 ° C /hr until The temperature of the polymeric material reaches a first temperature that is between about 1 ° C and about 30 lower than the initial melting temperature of the polymeric material. (:; maintaining the temperature of the polymeric material at a temperature from about 1 ° C to about 30 ° C below the initial melting temperature of the polymeric material for at least about one hour; and from about 0.1 ° C / hour to about 10 ° The rate between C/hour increases the temperature of the polymeric material until the temperature of the polymeric material reaches a second temperature that is about 40 ° C to about 5 Torr lower than the desired melting temperature of the polymeric material. 48. The method of claim 47, wherein increasing the temperature of the polymeric material to a temperature of 142783.doc 201107379 comprises increasing the temperature of the polymeric material to greater than about 340 ° C. 49. The method of claim 47, wherein Increasing the temperature of the polymeric material to a second temperature comprises increasing the temperature of the polymeric material to greater than about 355 ° C. 50. The method of claim 47, wherein increasing the temperature of the polymeric material to a second temperature comprises The temperature of the polymeric material is increased above about 390 C. A composition of a material comprising: a liquid crystal polymer comprising a plurality of HBA monomer units and having a melting temperature above about 420 °C. - a combination of substances And comprising: a liquid crystal polymer comprising a plurality of HBA monomer units and having a molecular weight greater than about 30,000 gm/mol. 53. A composition of matter comprising: comprising a plurality of HB A monomer units and having greater than about a 2% extended liquid crystal polymer. 54. A composition of matter comprising: a liquid crystal polymer comprising a plurality of HBA monomer units, wherein at least a portion of the liquid crystal polymer molecules each comprise at least about 200 repeating ester groups 142783.doc
TW98128317A 2009-08-21 2009-08-21 Ultra high-temperature plastic package and method of manufacture TWI468446B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98128317A TWI468446B (en) 2009-08-21 2009-08-21 Ultra high-temperature plastic package and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98128317A TWI468446B (en) 2009-08-21 2009-08-21 Ultra high-temperature plastic package and method of manufacture

Publications (2)

Publication Number Publication Date
TW201107379A true TW201107379A (en) 2011-03-01
TWI468446B TWI468446B (en) 2015-01-11

Family

ID=44835232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98128317A TWI468446B (en) 2009-08-21 2009-08-21 Ultra high-temperature plastic package and method of manufacture

Country Status (1)

Country Link
TW (1) TWI468446B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927379A (en) * 2012-11-26 2013-02-13 天津军星管业集团有限公司 Novel oxygen blocking type polybutene tubular product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230117009A1 (en) * 2021-10-18 2023-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods of estimating thermal properties of semiconductor devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718621A (en) * 1969-09-17 1973-02-27 Goodyear Tire & Rubber Solid state polymerization process
US5616680A (en) * 1994-10-04 1997-04-01 Hoechst Celanese Corporation Process for producing liquid crystal polymer
US6730401B2 (en) * 2001-03-16 2004-05-04 Eastman Chemical Company Multilayered packaging materials for electrostatic applications
US7014791B2 (en) * 2002-12-18 2006-03-21 E.I. Du Pont De Nemours And Company Liquid crystalline polymer composition
SG157957A1 (en) * 2003-01-29 2010-01-29 Interplex Qlp Inc Package for integrated circuit die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927379A (en) * 2012-11-26 2013-02-13 天津军星管业集团有限公司 Novel oxygen blocking type polybutene tubular product

Also Published As

Publication number Publication date
TWI468446B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
US7803307B2 (en) Ultra high-temperature plastic package and method of manufacture
JP5332188B2 (en) Resin molded body and method for producing the same
KR101867623B1 (en) Liquid crystal polyester composition and process for producing the same
JP6660875B2 (en) Method for curing thermoplastics with microwave energy
US7868113B2 (en) Low shrinkage polyester thermosetting resins
CN110862523A (en) Preparation method of liquid crystal polymer film
TW201235406A (en) Liquid crystalline polyester composition
TWI599469B (en) Liquid crystal polymer molding and method for producing the same
CN109824876A (en) A kind of thermotropic liquid crystal polymer and the preparation method and application thereof
CN113929901A (en) Polyamide resin, composition thereof and preparation method thereof
TW201219486A (en) Liquid crystal polyester composition, reflective plate and light-emitting device
CN112724667B (en) Polyamide molding composition and preparation method and application thereof
WO2020218140A1 (en) Thermoplastic liquid crystal polymer film, laminate, and molded body, and production method thereof
TWI468446B (en) Ultra high-temperature plastic package and method of manufacture
JP5707404B2 (en) Ultra-high temperature plastic chip package and manufacturing method thereof
JP5197553B2 (en) Liquid crystalline resin composition and molded product thereof
TW201249625A (en) Liquid crystalline polymer molded article
TWI806997B (en) Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition and molded article
CN114393858B (en) Preparation method of high-ductility liquid crystal polyester film
JPH1199518A (en) Silicone slicing stand
CN113727832B (en) Thermoplastic liquid crystal polymer film, laminate, molded body, and method for producing the same
TWI797444B (en) Thermoplastic liquid crystal polymer film, multi-layered body and shaped article, and production methods thereof
CN117719192A (en) Method for manufacturing isotropic liquid crystal polymer film
JP2674191B2 (en) Sealing material for hybrid IC substrate
JP2023079754A (en) Film for flexible printed wiring board

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees