TW201106371A - A flash backed DRAM module - Google Patents

A flash backed DRAM module Download PDF

Info

Publication number
TW201106371A
TW201106371A TW099104472A TW99104472A TW201106371A TW 201106371 A TW201106371 A TW 201106371A TW 099104472 A TW099104472 A TW 099104472A TW 99104472 A TW99104472 A TW 99104472A TW 201106371 A TW201106371 A TW 201106371A
Authority
TW
Taiwan
Prior art keywords
volatile memory
memory
power
memory device
power source
Prior art date
Application number
TW099104472A
Other languages
Chinese (zh)
Other versions
TWI428922B (en
Inventor
Mark Moshayedi
Douglas Finke
Original Assignee
Stec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/369,027 external-priority patent/US7830732B2/en
Priority claimed from US12/369,079 external-priority patent/US8169839B2/en
Priority claimed from US12/369,040 external-priority patent/US7990797B2/en
Priority claimed from US12/369,076 external-priority patent/US7983107B2/en
Priority claimed from PCT/US2009/033755 external-priority patent/WO2010093356A1/en
Priority claimed from US12/369,052 external-priority patent/US8566639B2/en
Priority claimed from US12/369,032 external-priority patent/US20100205349A1/en
Priority claimed from US12/369,046 external-priority patent/US8977831B2/en
Application filed by Stec Inc filed Critical Stec Inc
Publication of TW201106371A publication Critical patent/TW201106371A/en
Application granted granted Critical
Publication of TWI428922B publication Critical patent/TWI428922B/en

Links

Landscapes

  • Techniques For Improving Reliability Of Storages (AREA)
  • Retry When Errors Occur (AREA)

Abstract

A memory device for use with a primary power source includes: volatile memory including a plurality of memory portions each of which has a normal operating state and a low-power state; an interface for connecting to a backup power source arranged to temporarily power the volatile memory upon a loss of power from the primary power source; a non-volatile memory; and a controller in communication with the volatile memory and the non-volatile memory programmed to detect a loss of power of the primary power source and in response to move data from the volatile memory to the non-volatile memory at least one memory portion at a time, and while moving data from the volatile memory to the non-volatile memory place the memory portions from which data is being moved into a normal operating state and the memory portions from which data is not being moved into a low-power state.

Description

201106371 六、發明說明: 本申睛案主張2009年2月11曰申請之美國專利申請 案第12/369,027號之優先權;主張2〇09年2月u曰申 *月之美國專利申請案第12/369,032號之優先權;主張 2009年2月11曰申請之美國專利申請案第12/369,〇4〇 號之優先權;主張2009年2月11曰申請之美國專利申 凊案第12/369,046號之優先權;主張2〇〇9年2月η曰 申請之美國專利申請案第12/369,〇52號之優先權;主張 2009年2月11曰申請之美國專利申請案第12/369 〇76 號之優先權;主張2009年2月11曰申請之美國專利申 請案第12/369,〇79號之優先權;及主張2009年2月11 曰申請之PCT專利申請案第Pct/us〇9/33755號之優先 權。 【發明所屬之技術領域】 所揭示之標的物係關於一種階段備用快閃回存雙行記 憶體模組(DIMM)模組。 【先前技術】 諸如RAID系統之數位處理裝置有時使用(例如)記 憶體快取(memory cache )來改良讀寫操作之效能。通 常使用揮發性記憶體來實施快取。然而,若揮發性記情 體之功率源失效’則健存於該揮發性記憶體中之資料可 4 201106371 能丟失。此外,諸如DRAM記憶體模組之揮發性記憶體 裝置通常需要描述DRAM裝置之性質之某些參數,該等 DRAM裝置組成待置放在位於記憶體模組上之一單獨非 揮發性記憶體中之模組《其一實例為序列存在檢測 (.SPD)。然而,此資訊之儲存可能僅為達成此目的而需 要將整個非揮發性記憶體添加至該揮發性記憶體。 【發明内容】 本揭示案係關於一種快閃回存雙行記憶體模組 (DIMM )模組,該模組包括一非揮發性記憶體、一揮發 性記憶體及一控制器。在正常操作期間,DIMM由一主 功率源供電。當該主功率源被中斷時,一備用功率源供 應足夠之臨時功率予該DIMM以便控制器在來自備用功 率源之功率被耗盡之前可將資料自揮發性記憶體傳送至 非揮發性記憶體中。當該主功率源再次變得可用時該 控制器將儲存於非揮發性記憶體中之資料傳回至揮發性 記憶體中。當控制器將資料自揮發性記憶體移動至非揮 發性記憶體時,控制器將正移動資料所自之記憶體部分 置於一正常操作狀態,且將未正移動資料所自之記憶體 部分置於一低功率狀態。 在一態樣中,一種與一主功率源一起使用之記憶體裝 置包括:揮發性記憶體’其包括複數個記憶體部分,該 複數個記憶體部分中之每一者具有一正常操作狀態及一 201106371 低功率狀態 一介面,其用於連接至一備用功率源,該 備用功率源經配置以在來自該主功率源之一功率損失發 生後即臨時供電至該揮發性記憶體;一非揮發性記憶 體;及一控制器,其與該揮發性記憶體及該非揮發性記 憶體通訊且經程式化以偵測該主功率源之一功率損失, 且每次至少一個記憶體部分回應於將資料自揮發性記憶 體移動至非揮發性記憶體,且當將資料自揮發性記憶體 移動至非揮發性記憶體時,將正移動資料所自之記憶體 部分置於一正常操作狀態’且將未正移動資料所自之記 憶體部分置於一低功率狀態。 在另-態樣中,-種方法包括:债測一揮發性記憶體 之)一主功率源之—電源故障,該揮發性記憶體包含複數 個記憶體部分,該複數個記憶體部分中之每一者具有一 正常操作狀態及-低功率狀態;及回應於偵測該電源故 障且田該揮發性記憶體由—備用功率源供電時:每次至 少-個記憶體部分將儲存於揮發性記憶體中之資料移動 至非揮發性記憶體;且當將資料自揮發性記憶體移動至 非揮發性記憶體時,將正移動資料所自之記憶體部分置 正常操作狀態’且將未正移動資料所自之記憶體部 分置於一低功率狀態。 在又一態樣中,一種與一 裝置包括:揮發性記憶體, 該複數個記憶體區段由至少 個結束位址定義;一介而 主功率源一起使用之記憶體 其包括複數個記憶體區段, 一個起始位址及一相應至少 r ’其用於連接至一備用功‘ 201106371 源,該備用功率源經配置以在來自該主功率源之一功率 損失發生後即臨時供電至該揮發性記憶體;一非揮發性 記憶體;及一控制器,其與該揮發性記憶體及該非揮發 性S己憶體通訊且經程式化以偵測該主功率源之一功率損 失,且基於該至少一個起始位址及該至少一個結束位址 而回應於將資料自揮發性記憶體移動至非揮發性記憶 體。在一些態樣中,僅存在一至少一個起始位址且僅存 在一至少一個結束位址,且將資料自揮發性記憶體移動 至非揮發性记憶體包括僅移動儲存於一起始位址與一結 束位址之間的位址處之該揮發性記憶體中之資料。 在另一態樣中,一種方法包括:偵測一揮發性記憶體 之一主功率源之一電源故障,該揮發性記憶體包括複數 個記憶體區段,該複數個記憶體區段由至少一個起始位 址及一相應至少一個結束位址定義;及回應於偵測該電 源故障且當用一備用功率源供電該揮發性記憶體時:基 於至少一個起始位址及至少一個結束位址將儲存於該揮 發性§己憶體中之資料移動至一非揮發性記憶體。在一些 態樣中,僅存在一至少一個起始位址且僅存在一至少一 個結束位址,且將資料自揮發性記憶體移動至非揮發性 S己憶體包括僅移動儲存於一起始位址與一結束位址之間 的位址處之該揮發性記憶體中之資料。 在又一態樣中,一種裝置包括:非揮發性記憶體;一 控制器,其與該非揮發性記憶體通訊,其中該控制器經 程式化以在一揮發性記憶體之一主功率源之一功率損失[ 201106371 發生後即將資料自該揮發性記憶體移動至該非揮發性記 憶體;及一備用電源,其在該主功率源之該功率損失發 生後即提供臨時功率予該控制器及該揮發性記憶體該 備用電源包括:一具有一輸出端子之電容器組;—至一 電壓源之連接,該電壓源將該電容器組充電至一正常操 作電壓;及一健康狀態監控器,其經程式化以基於該電 容器組之該輸出端子處之一電壓產生一故障訊號。 在另一態樣中,一種方法包括:中斷由一電壓源對一 電容器組之充電,該電容器組經配置以提供臨時功率予 一控制器,該控制器經程式化以在一揮發性記憶體之一 主功率源之一功率損失發生後即將資料自該揮發性記憶 體移動至一非揮發性記憶體,及在一主功率源之該功率 損失發生後即提供功率予一揮發性記憶體;當充電被中 斷時,對所有該電容器組之輸出端子施加一預定電阻達 一預定時段;在該預定時段期間監控該電容器組之該輸 出端子以判定是否該輸出端子處之電壓降至一預定臨限 電壓之下,且右該輸出端子處之電壓在該預定時段之内 降至該預定臨限電壓之下,則產生一故障訊號。 在另一態樣t,一種裝置包括揮發性記憶體;一或多 個非揮發性記憶體晶片,其每—者制於儲存自該揮發 性S己憶體移動之資料;一介面,其用於連接至一備用功 率源,該備用功率源經配置以在來卜主功率源之一功 率損失發生後即臨時供電至該揮發性記憶體;一控气 器,其與揮發性記憶體及非揮發性記憶體通訊,其中 8 201106371 該控制器經程式化以在該揮㈣記憶體之該主功率源之 一功率損失發生後即將資料自揮發性記憶體移動至非揮 發性記憶體晶片;及將描述該揮發性記憶體之參數儲存 於非揮發性記憶體晶片中至少一者中,料非揮發性記 憶體晶片儲存自該揮發性記憶體移動之資料。在一些態 樣中’該等參數包括序列存在檢測資訊。 在另一態樣中,一種方法包括在揮發性記憶體之一主 功率源之一功率損失發生後即,當揮發性記憶體由一備 用功率源臨時供電時,基於描述揮發性記憶體之儲存於 非揮發性記憶體晶片中至少一者中的參數,該等非揮發 性記憶體晶片儲存自該揮發性記憶體移動之資料,將資 料自揮發性記憶體移動至非揮發性記憶體晶片,該等非 揮發性記憶體晶片中之每一者係用於儲存自該揮發性記 憶體移動之資料。在一些態樣中,該等參數包括序列存 在檢測資訊。 在一些態樣中,一種記憶體裝置包括:揮發性記憶體; 一介面,其用於連接至一備用功率源,該備用功率源經 配置以在一主功率源之一功率損失發生後即供電至該揮 發性記憶體;非揮發性記憶體;一第一組態資料匯流排, 其用於存取描述該揮發性記憶體之序列存在檢測的參 數;一第二組態資料匯流排,其用於存取備用功率源之 健康狀態資訊及記憶體裝置之狀態資訊中至少一者,其 中該第一組態資料匯流排及該第二組態資料匯流排實施 r201106371 VI. INSTRUCTIONS: This application claims the priority of U.S. Patent Application Serial No. 12/369,027, filed on Feb. 11, 2009, and claims the U.S. Patent Application No. Priority No. 12/369,032; priority to US Patent Application No. 12/369, No. 4, filed on February 11, 2009, filed on February 12, 2009. Priority of US Patent No. 369,046; priority to U.S. Patent Application Serial No. 12/369, No. 52, filed on February 29, 2009; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> /us〇9/33755 priority. [Technical Field] The disclosed subject matter relates to a stage backup flash memory double-line memory module (DIMM) module. [Prior Art] Digital processing devices such as RAID systems sometimes use, for example, a memory cache to improve the performance of read and write operations. Volatile memory is often used to implement the cache. However, if the power source of the volatile ticks fails, then the data stored in the volatile memory can be lost. In addition, volatile memory devices such as DRAM memory modules typically require certain parameters describing the nature of the DRAM device that is to be placed in a separate non-volatile memory located on the memory module. One example of this is the Sequence Presence Detection (.SPD). However, the storage of this information may only require the addition of the entire non-volatile memory to the volatile memory for this purpose. SUMMARY OF THE INVENTION The present disclosure is directed to a flash memory dual-line memory module (DIMM) module that includes a non-volatile memory, a volatile memory, and a controller. During normal operation, the DIMM is powered by a primary power source. When the primary power source is interrupted, an alternate power source supplies sufficient temporary power to the DIMM to allow the controller to transfer data from the volatile memory to the non-volatile memory before the power from the alternate power source is exhausted. in. The controller returns the data stored in the non-volatile memory back to the volatile memory when the primary power source becomes available again. When the controller moves the data from the volatile memory to the non-volatile memory, the controller places the memory portion of the data to be moved into a normal operation state, and the memory portion of the data is not moved. Placed in a low power state. In one aspect, a memory device for use with a primary power source includes: a volatile memory that includes a plurality of memory portions, each of the plurality of memory portions having a normal operating state and A 201106371 low power state interface for connecting to a standby power source configured to temporarily supply power to the volatile memory after a power loss from one of the primary power sources occurs; a non-volatile And a controller that communicates with the volatile memory and the non-volatile memory and is programmed to detect a power loss of the primary power source, and each time at least one of the memory portions is responsive to The data moves from the volatile memory to the non-volatile memory, and when the data is moved from the volatile memory to the non-volatile memory, the memory portion from which the data is being moved is placed in a normal operating state' The portion of the memory from which the data is not being moved is placed in a low power state. In another aspect, the method includes: a debt detecting a volatile power source, a main power source, a power failure, the volatile memory including a plurality of memory portions, and the plurality of memory portions Each has a normal operating state and a low power state; and in response to detecting the power failure and the volatile memory is powered by the backup power source: at least one memory portion will be stored in the volatile each time The data in the memory moves to the non-volatile memory; and when the data is moved from the volatile memory to the non-volatile memory, the portion of the memory from which the data is being moved is placed in the normal operating state' and will not be positive The mobile data is placed in a low power state from the memory portion. In another aspect, a device and a device include: a volatile memory, the plurality of memory segments are defined by at least one end address; and a memory used together with the main power source includes a plurality of memory regions a segment, a start address and a corresponding at least r' for connection to a backup work '201106371 source, the alternate power source configured to temporarily supply power to the volatilization after a power loss from one of the main power sources occurs a non-volatile memory; and a controller that communicates with the volatile memory and the non-volatile S memory and is programmed to detect a power loss of the primary power source and is based on The at least one start address and the at least one end address are responsive to moving data from the volatile memory to the non-volatile memory. In some aspects, there is only one at least one start address and only one at least one end address exists, and moving data from the volatile memory to the non-volatile memory includes moving only to a start address The data in the volatile memory at the address between the address and the end address. In another aspect, a method includes: detecting a power failure of one of a primary power source of a volatile memory, the volatile memory comprising a plurality of memory segments, the plurality of memory segments being at least a start address and a corresponding at least one end address definition; and in response to detecting the power failure and when the volatile memory is powered by a standby power source: based on at least one start address and at least one end bit The site moves the data stored in the volatile § memory to a non-volatile memory. In some aspects, there is only one at least one start address and only one at least one end address exists, and moving the data from the volatile memory to the non-volatile S memory includes moving only in a start bit The information in the volatile memory at the address between the address and an end address. In another aspect, a device includes: a non-volatile memory; a controller in communication with the non-volatile memory, wherein the controller is programmed to be a primary power source of a volatile memory a power loss [201106371 occurs after the data is moved from the volatile memory to the non-volatile memory; and a backup power supply that provides temporary power to the controller after the power loss of the primary power source occurs Volatile memory The backup power supply includes: a capacitor bank having an output terminal; - a connection to a voltage source that charges the capacitor bank to a normal operating voltage; and a health monitor that is programmed A fault signal is generated based on a voltage at the output terminal of the capacitor bank. In another aspect, a method includes interrupting charging of a capacitor bank by a voltage source configured to provide temporary power to a controller, the controller being programmed to be in a volatile memory One of the main power sources generates power loss from the volatile memory to a non-volatile memory, and provides power to a volatile memory after the power loss occurs in a main power source; When charging is interrupted, applying a predetermined resistance to an output terminal of all of the capacitor banks for a predetermined period of time; monitoring the output terminal of the capacitor bank during the predetermined period to determine whether the voltage at the output terminal falls to a predetermined period Below the voltage limit, and the voltage at the output terminal to the right falls below the predetermined threshold voltage within the predetermined time period, a fault signal is generated. In another aspect, a device includes a volatile memory; one or more non-volatile memory chips, each of which is stored in a data stored from the volatile S-reminis; an interface, Connected to an alternate power source configured to temporarily supply power to the volatile memory after a power loss occurs in one of the main power sources; a controller, which is associated with volatile memory and Volatile memory communication, wherein 8 201106371 the controller is programmed to move data from the volatile memory to the non-volatile memory chip after the power loss of one of the main power sources of the (four) memory occurs; The parameters describing the volatile memory are stored in at least one of the non-volatile memory chips, and the non-volatile memory chips are stored from the volatile memory. In some cases, the parameters include sequence presence detection information. In another aspect, a method includes describing a volatile memory based storage after a power loss of one of the primary power sources of the volatile memory occurs, that is, when the volatile memory is temporarily powered by an alternate power source. In a parameter of at least one of the non-volatile memory chips, the non-volatile memory chips store data transferred from the volatile memory to move the data from the volatile memory to the non-volatile memory chip. Each of the non-volatile memory chips is used to store data transferred from the volatile memory. In some aspects, the parameters include the presence of detection information in the sequence. In some aspects, a memory device includes: a volatile memory; an interface for connecting to a backup power source configured to supply power after a power loss occurs in one of the primary power sources To the volatile memory; non-volatile memory; a first configuration data bus for accessing parameters describing the presence detection of the volatile memory; a second configuration data bus, At least one of health status information for accessing the backup power source and status information of the memory device, wherein the first configuration data bus and the second configuration data bus are implemented

一相同匯流排協定;一控制器,其與該第一組態資料M 201106371 流排、該第二組態資料匯流排、該揮發性記憶體及該非 揮發性記憶體通訊,該控制器經程式化以偵測該主功率 源之一功率損失且回應於將資料自揮發性記憶體移動至 非揮發性記憶體,其中該控制器之第一組態資訊為經由 該第一組態資料匯流排可讀及可寫資訊中至少一者;且 其中該健康狀態資訊及該狀態資訊中至少一者為經由該 第二組態資料匯流排可讀及可寫資訊中至少一者。 在另一態樣中,一種與一主功率源及一備用功率源一 起使用之記憶體裝置包括:揮發性記憶體;一介面,其 用於連接至一備用功率源,該備用功率源經配置以在來 自該主功率源之一功率損失發生後即臨時供電至該揮發 性記憶體 ;滿動個迫,甘益_ iU ..a same bus bar protocol; a controller that communicates with the first configuration data M 201106371, the second configuration data bus, the volatile memory, and the non-volatile memory, the controller is programmed Transmitting to detect a power loss of the primary power source and in response to moving the data from the volatile memory to the non-volatile memory, wherein the first configuration information of the controller is via the first configuration data bus At least one of readable and writable information; and wherein at least one of the health status information and the status information is at least one of readable and writable information via the second configuration data bus. In another aspect, a memory device for use with a primary power source and a backup power source includes: a volatile memory; an interface for connecting to an alternate power source, the alternate power source configured To temporarily supply power to the volatile memory after the power loss from one of the main power sources occurs; the full operation is forced, and the benefit is _iU..

之一功率損失作出反應。One of the power losses reacts.

一非揮發性記憶體,該非 10 201106371 揮發性記憶體包含一可選數目之 曰之非揮發性記憶體晶片, 其中該移動係基於該可選數目之非揮發性記憶體晶片。 在另-態樣令,一種與一主機處理器及一主功率源一 起使用之記憶體裝置包括:非揮發性記憶體;揮發性纪 憶體;一介面’其用於連接至-備用功率源,該備用功 率源經配置以在來自該主功率源之一功率損失發生後即 臨時供電至該揮發性記憶體;隔離邏輯,其用於控制該 主機處理器對該揮發性記憶體之存取,該隔離邏輯具有 -第-模式及-第二模式,該隔離邏輯在該第一模式期 間為該主機處理器提供對用於儲存或讀取資料之該揮發 性記憶體的存取,且該隔離邏輯在該第二模式期間使該 揮發性記憶體與該主機處理器之存取隔離;及一控制 器’其控制該隔離邏輯,該控制器經程式化以當該揮發 性記憶體正由該主功率源供電時將該隔離邏輯置於該第 模式中’及當自該主功率源至該揮發性記憶體之功率 被中斷時,將該隔離邏輯置於該第二模式中且將資料自 該揮發性記憶體傳送至該非揮發性記憶體。 在又匕、樣中,種方法包括:偵測一揮發性記憶體 之一主功率源之一電源故隆. 障,及回應於偵測該電源故障 且田該揮發性憶體由—備用功率源供電時:將隔離邏 輯之一模式自—第—模式改變至—第二模式,該第-模 式在該揮發性記憶體正由該主功㈣供電時為—主機處 理器提供對用於儲存或讀取資料之該揮發性記憶體的存 取’該第二模式使該揮發性記憶體與該主機處理器之存[s 201106371 取隔離;及將儲存於該揮發性記憶體中之資料移動至一 非揮發性記憶體》 【實施方式】 參閱第1圖’本發明之所描述實施例為雙行記憶體模 組(DIMM ) 1 00,其包括揮發性記憶體12〇、非揮發性 記憶體130、隔離邏輯14〇及控制器n〇。DIMM 100連 接至一主功率源(未圖示)以支援正常操作且亦連接至 備用功率源200 (參見第2圖)。當DIMM 1〇〇在由主功 率源供應之功率下操作時,外部系統(例如,RAID系統) 經由介面105將資料儲存於揮發性記憶體12〇中且自揮 發性記憶體120讀取資料。然而,當來自主功率源2〇〇 之功率被中斷時,備用功率源供應足夠之臨時功率予 DIMM 100以便控制器11〇可引起隔離邏輯14〇使揮發性 記憶體120與外部系統隔離,且然後在來自備用功率源 200之功率被耗盡之前將資料自揮發性記憶體^傳送 至非揮發性記憶體13Q I當該主功率源再次變得可用 時’控制n 1 ίο將健存於非揮發性記憶冑中之資料 傳回至揮發性憶H i 2Q + ’且引起隔離邏輯^ 將揮 發性記憶體120再連接至該外部系統。 揮發性記憶體120為一 DRAM陣列,該抓颜陣列包 括各種DRAM晶片,例如,DRAM晶片i 2】及DRAM晶 片122。非揮發性記憶體13〇包括各種快閃記憶體裝置,「 12 201106371 J如陕閃裝置13 1及快閃裝置丨3 2。歸因於DIMM丨〇〇 之限制,無法一次將儲存於揮發性記憶體120中之所有 資料移動至非揮發性記憶體13G。此等限制中之一者在 於無法如自揮發性記憶體120之DRAM裝置讀取一般快 地寫入至非揮發性記憶體13〇之快閃裝置中。考慮到此 差異,每次一個DRAM晶片將資料自揮發性記憶體 移動至非揮發性記憶體13Ge此外,在將資料自揮發性 記憶體120傳送至非揮發性記憶體13〇期間,使未正主 動傳送之DRAM晶片進入一低功率狀態,該低功率狀態 保持儲存於其中之資料,但比正常操作狀態消耗更少功 率。在揮發性記憶體12〇之DRAM晶片中,此低功率狀 態為自我再新模式。藉由使未正主動傳送之DRAM晶片 進入一低功率狀態,模組1〇〇在備用操作期間比原本情 況需要更少功率。舉例而言,此舉允許使用一較小且更 便宜之備用功率源。 第2圖展示此功率源之一方塊圖。特定言之第2圖 展不電化學雙層(EDL )電容器備用電源模組2〇〇,其使 用介面線(例如,功率、1/〇等)17〇與DIMM 10〇相互 作用(EDL電容器亦稱為超級電容器及超高電容器)。電 谷器21 0在DIMM 1 〇〇之主功率源之電源故障時將備用 功率供應予DIMM 100。充電器及監控器22〇將電容器 210充電且執行電容器21〇之健康狀態監控以便(例如) 在電容器210失效而無法再提供備用功率之情況下向 DIMM 1〇〇警報。在一些狀況下,可選擇電池來替代電 13 201106371 容器。舉例而言,第3圖展示可替代模組2〇〇使用之電 池備用電源模組300之方塊圖。 非揮發性記憶體130嵌有用於揮發性記憶體12〇之序 列存在檢測(SPD)資訊(例如,描述揮發性記憶體i2Q 中之DRAM晶片之大小及速度的資訊)。藉由使用非揮 發性記憶體130來儲存揮發性記憶體12〇之spD資訊, 揮發性記憶體120避免需要具有用於儲存此資訊之單獨 EEPROM模組。避免增加單獨EEpR〇M可節省成本減 小模組100之大小及減少所需組件之數目。 DIMM 100包括外部系統與控制器11〇之間的兩個i2c 匯流排。當(例如)簡單性及低製造成本比速度更重要 時,I2C匯流排通常用以將低速周邊裝置附著至各種裝 置。第一 I2C匯流排係用於存取序列存在檢測(spD ) EEPROM (「SPD I2C匯流排」)。其經由標準jedec規範 定義。第二I2C匯流排係用於存取其他模組1〇〇之資訊, 諸如對於控制器11 〇、非揮發性記憶體丨3 〇及備用功率 源200之狀態資訊及健康狀態(s〇H)資訊(「NVDIMM I2c 匯流排」)。該狀態資訊可包括(例如)快閃記憶體之當 前狀態(寫入、已抹除、正抹除、損壞等);被置換出之 壞區塊之數目;剩餘之備用區塊之數目;完成之下載循 環之總數;最後下載中之ECC錯誤之數目;最後復原中 之ECC錯誤之數目;最後下載之狀態(進行中、無錯誤 完成、有錯誤完成等);最後復原之狀態(進行中、無錯 誤完成、有錯誤完成等);快閃標頭資訊。該s〇H資訊‘ 201106371 可包括(例如)備用功率源之當前狀態(已充電、放電、 正充電等)、是否組成備用功率源之任何電容器已失效 (且若已失效,則判定哪些電容器已失效)及備用功率 源之類型(例如,電容器或電池)。 方塊圖鈿f 快閃§己憶體130在DIMM上提供非揮發性儲存且藉由 使用安全數位(SD ) /多媒體卡+ ( MMC+ )得以實施。 控制器11 〇可支援各種配置,例如,四個獨立SD/MMC+ 介面連接至四個SD大量儲存裝置,每一 SD大量儲存裝 置使用4-位元資料匯流排,用2〇百萬位元組/秒之頻寬 操作,或介面連接至四個MMC+大量儲存裝置,每一 MMC +大量儲存襞置使用8_位元資料匯流排,用4〇百萬 位7G組/秒之頻寬操作。使用SD/MMC技術之一優點係藉 由使甩一簡單、低引腳數目之介面使管理快閃記憶體之 複雜性自控制器110隱藏。快閃記憶體可以一單—裝置 (例如’ SanDisk iNAND)來實施,或可在同一 mMM 上使用具有單獨NAND記憶體裝置之離散§〇控制器來 建構。在任一狀況下,SD/MMC控制器根據所使用之 NAND技術負責ECC及壞區塊管理。 將序列存在檢測(SPD)資料儲存於第一 256個位元 組之快閃記憶體中,該快閃記憶體附著至第一 SD/MMC + 介面(亦即,快閃晶片使用儲存於快閃組態空間 之内的旗標來實施典型寫入保護機制。控制器11〇實施 用於SPD資料之讀快取、寫入機制,其中spD資訊可儲[ 15 201106371 存於控制器110上之体 、5己憶體中(除在快閃晶片13 1 上之外)。在系統電力開啟期 ’曰曰片 栌Μ 刀間控制11 U〇自快閃記憶 體k取SPD貝料。在spD j 跑咨# π ± 介面上之讀取操作使用快 =’同時將寫入操作立即寫入至快閃記憶體。在對 該快閃記憶體之寫入操作期間,洲Μ介面將忽略任 何讀取或寫入請求。 :態資訊資料儲存於第二256個位元組之快閃記憶 快閃記憶體附著至第- SD/MMC +介面。此介面 允許使用者監控及組態非揮發性功能之操作。該區域亦 用以在最後電源循環期間追㈣統狀態。控制實 施用於組態資料之讀快取、寫快取機制,其中狀態資訊 可儲存於控制g 11G上之快取記憶體中(除在㈣晶片 131上之外)。在系統電力開啟期間’ FPGA自快閃記憶 體提取資料。在NVDIMMI2C介面上之讀寫操作使用^ 取資料。在斷電及功率損失(備用)事件期間,將快取 資料寫回。 控制器110為一進階嵌入式處理器,該處理器具有一 定製133 MHz DDR控制器、四個定製SD/MMC+主機介 面、SPD I2C介面及NVDIMM I2C介面。微處理器可為 (例如)一軟式32-位元Altera NIOS RISC處理器,其 可在FPGA (可程式唯讀記憶體(pR〇M) n5 )中執行 來自内部記憶體實例之韌體。處理器在DDR介面與 SD/MMC +介面之間控制模組1〇〇資料移動之操作狀態, 且控制在SPD介面及NVDIMMI2C介面上之通訊。定^ 16 201106371 DDR介面允許控制器110以每一位元組通道為基礎操作 DRAM陣列。該介面具有對CKe訊號之個別控制,從而 允許控制DRAM陣列中之每一裝置◎控制器在陣列中使 用每一位元組通道中之前8個位元組以設定匯流排之内 部相位對準。四個定製SD/MMC +介面經設計用於不需要 諸如熱插拔等功能之嵌入式應用。該介面在高達5〇MHz 之時脈速率下支援1-位元、4-位元及8-位元操作。該等 介面亦可同時操作使四個SD/MMC +卡同步,從而允許高 頻寬讀寫操作而無需大量之資料緩衝對於需要移除 SD/MMC +卡之應用,FPGA主機介面允許在未以正確次 序安裝卡之情況下重排序該等卡。 揮發性s己憶體120為一 DRAM陣列。在下表中展示各 種實例組態,其包括用於每64位元之實際資料的8位元 之糾錯碼(Error Correcting Code,ECC )。在具有兩個十 億位元組之NVDIMM之實例中,可根據當前記憶體需求 開啟或關閉一個排。當一個排不被需要時可關閉以節省 電力。當將資料(實際資料及Ecc)自揮發性記憶體12〇 移動至非揮發性圮憶體!3〇時,非揮發性記憶體!儲 存實際資料及ECC,而儲存;^非揮發性記憶體13〇中之 實際資料與ECC*存在區別。當將資料自非揮發性記憶 、〇移回至揮發性s己憶體120時,控制器i丨〇將適合 ί使用之特疋DRAM裝置的實際資料及ECC復原回至 揮發性記憶體12〇中。 201106371 NVDIMM 總数 DRAM 裝置 组態 DRAM 4^# 列 256百萬位元组 512百萬位元 32M字X 16位元 5 1 512百萬位元组 1十億位元 64M字X 16位元 5 1 1十億位元组 1十億位元 128M字x8位元 9 1 2十億位元组 1十億位元 128M字X 8位元 18 2 PLL 161為一高效能、低時間偏斜、基於PLL、零延 遲之緩衝區,該緩衝區將一差分輸入時脈訊號分散至 DRAM陣列。將多工來自邊緣連接器之DDR時脈與來自 控制器11 0之DDR2時脈以防止PLL 161進入其低功率 狀態且防止PLL 1 6 1將其輸出變為三態。在此實例設計 中,該選定PLL必須以所要系統速率以及較慢之DDR 控制器速率操作。大體而言,PLL略過其自身且以最慢 之時脈速率作為一小延遲緩衝區操作。 經由暫存器162將控制及位址訊號重新驅動至以下上 升時脈邊緣上之DRAM裝置(資料存取延遲了 一個時 脈)。控制器110使用三態來存取位址及控制訊號。當控 制器110控制DRAM 120時,可使用FET匯流排開關163 使暫存器與邊緣連接器隔離且控制器110可直接驅動暫 存器輸入。當系統控制DRAM陣列時,FET匯流排開關 163接通且FPGA將其輸出變為三態。將CKE訊號與其 他控制訊號不同地處理。兩種操作模式之間的切換具有 較少短時脈衝波形干擾(glitchless)以確保DRAM 120 仍處於自我再新模式。對於此等訊號,FET開關163用[ 18 201106371 以在邊緣連接器(通向系統)與控制器i丨〇之間多工。 尚頻寬FET多工器163及FET多工器164經設計用於 支援尚頻寬應用’諸如記憶體交錯、匯流排隔離及低失 真訊號閘控。FET多工器16s及FET多工器164在功率 損失事件期間使模組丄〇〇與系統匯流排隔離。fet多工 器使用充電泵來增加傳輸電晶體之閘極電壓提供低而 平坦的接通狀態電阻。該低而平坦的接通狀態電阻允許 最小傳播延遲且支援資料輸入/輸出(1/〇)埠上之軌至 軌切換。FET彡Ji ϋ亦以低資料1/〇電容為特徵,以將 資料匯流排上之電容性負載及訊號失真減至最少。 視模組100之、组態而定,並非將儲存於揮發性記憶體 120中之所有資料備用至非揮發性記憶體13〇。替代地, 模組1 〇〇可經組態以將儲存於揮發性記憶體12〇之選定 W刀中之資料備用(且㈣復原)。館存於非揮發性記憶 體中之資訊通常為用以判^樓案系統中之f訊(例如, 檔案)之位置的關鍵/目錄資訊。關鍵/目錄資訊為基本上 所有使用者將選擇備用之極重要資訊。然而,其他類型 之資訊亦可儲存於揮發性記憶體12〇中。舉例而言,不 改變之軟體程式資訊(例如’「咖」槽案)可儲存於揮 發性記憶冑120巾。控制器m包括允許使用者分段揮 發性s己憶體120之暫存器。將起始位址儲存於一暫存器 中且將結束位址儲存於一第二暫存器中。料於此等兩 個位址之間的所有資料將得以備用及復原。儲存於此貳 位址之外的資料將不會得以備用/復原。經由 19 201106371 I2C匯流排控制此等暫存器之值。使用者可選擇(例如) 指定起始位址及結束位址以使得僅關鍵/目錄資訊得以 備用續原。選擇僅復原關鍵/目錄資訊之-個原因在於藉 由不/良費時間復原並不需要自非揮發性記憶體⑽復原 之資訊而改良復原時間(例如「exe」很可能並未改變且 可在需要時自主機系統載入)。 模組100可經組態以支援各種數目之快閃晶片(例 如,1-4個)且可根據選定數目程式化其勒體。所使用之 快閃晶片之數目可基於(例如)需要被備用之揮發性記 憶體之大小及該備用必須發生所用之時間(例如,備用 功率可供應之時間量)或基於達到一所要復原逮度(亦 即,更多快閃裝置允許一更快之復原時間)。舉例而言, 對於可支援高達四個快閃晶片之控制器,該控制器將具 有四個匯流排。可根據敎數目之快閃晶片將該等匯流 排中之每一者連接至(或不連接至)快閃晶片。將該選 定數目之快閃晶片(例如,卜2或4個)連接至匯流排 且焊接至印刷電路板(PCB)上。對於經設計用於容納 多達四個快閃晶片之模組1〇〇,若僅安裝兩個快閃晶片, 則用於未安裝之兩個快閃晶片之剩餘空間保持為^且控 制器110經程式化以僅試圖與該兩個已安裝之快閃晶片 通訊。對於-恒㈣用時間或復原時間,快閃晶片:數 目可與揮發性記憶體之大小成比例增加。或者,備用時 間及復原時間可藉由增加快閃晶片之數目而減少。 訊號描述 [s】 20 201106371 模組100實施一 72位元DDR2記憶體介面,該記憶體 介面具有一 244引腳小型DIMM連接器。連接器訊號指 定係在DDR2註冊之小型DIMM設計規範之JEDEC標準 21C第4.20.14-2頁中定義(當前可自www.jdec.org獲 得)。此等訊號中之每一者可為訊號150或訊號170之部 分〇對應於244個引腳中之每一者的訊號並未圖示於第 1圖中以避免使第1圖難以閱讀。 NVDIMM—RESET訊號初始化控制器110且迫使控制 器重新啟動其狀態機。當標準RESET_IN輸入得以確定 時,亦重設控制器11 0 (與例如揮發性記憶體120及暫 存器162 —起)。當控制器110由NVDIMM—RESET保持 於重設時,模組 100 將正常操作。亦即,當 NVDIMM_RESET經確定時,FET開關163保持接通,從 而允許系統存取DRAM記憶體120而無需進一步相互作 用。 NVDIMM_PG訊號報告使用者系統中之功率狀態。當 該訊號為高位準時,系統功率軌在規格之内操作。當該 訊號變為低位準時,功率損失逼近且控制器110將資料 移動至快閃記憶體130。若將DRAM裝置資料移動至快 閃記憶體(如NVCACHE_ENABLE訊號所指示),則在 否定NVDIMM_PG之前,系統使所有DRAM裝置(例如, 121-122)進入自我再新操作。若當NVDIMM_PG否定時 NVCACHE一ENABLE為低位準,貝ij在功率損失事件期間 Γ 忽略DRAM裝置中之資料。 21 201106371 NVCACHE_ENABLE訊號報告在系統功率失效情況 下,DRAM裝置中應移動至快閃記憶體之快取資料的存 在。若當NVDIMM—PG否定時NVCACHE_ENABLE為高 位準,則控制器110將DRAM裝置中之資料移動至快閃 記憶體。若當NVDIMM—PG否定時NVCACHE_ENABLE 為低位準,則忽略DRAM内容且不將其儲存於快閃記憶 體130中。彼最後順序由系統使用以正常關閉(例如, 回應於使用者請求關閉而不發生電源故障)。當 NVDIMM—PG為低位準時,NVCACHE—ENABLE可由控 制器110忽略以防止訊號上之假性轉換影響任何備用事 件。 在復原操作期間,NVC ACHE—ENABLE由系統使用以 向控制器110發訊號可能抹除快閃記憶體130。並不清 除在該快閃記憶體之内的已使用標簽(dirty tag )直到與 NVCACHE_ENABLE之訊號交換完成為止。此舉允許(例 如)系統在復原操作期間處理另一功率損失事件。 在將資料自快閃記憶體130移動至DRAM 120之後, 確定指示系統可存取資料之DRAM_AVAILABLE訊號。 當系統決定應清除快閃記憶體130時(例如,以防止資 料在功率損失事件之後再次被復原),該系統否定(下降 邊緣)NVCACHE_ENABLE以重設該快閃記憶體。系統 等待 NVDIMM_READY 在再次確定 NVCACHE_ENABLE 之前確定。系統可在NVDIMM_READY確定之前持續使 Γ • i. 用模組100,但在功率損失事件期間將不備用資料。 22 201106371 CACHE一DIRTY訊號指示快閃記憶體130含有DRAM 120之資料影像。在「備用」狀態期間,CACHE_DIRTY 訊號指示備用過程之開始。在「加電」狀態期間, CACHE_DIRTY指示快閃記憶體130含有備分影像檔 案。該訊號保持高位準直到NVCACHE_ENABLE訊號得 以否定(下降邊緣)為止,從而指示已自DRAM 120讀 取快取資料。 DRAM—AVAILABLE訊號指示系統何時可存取DRAM 120。當DRAM_AVAILABLE為低位準時,控制器110具 有對DRAM 120之控制。當該訊號為高位準時,系統可 使DRAM裝置(例如,121-122)退出自我再新且存取資 料。在加電具有資料之快閃記憶體130之情況下, DRAM_AVAILABLE將保持否定直到將快閃資料移動至 DRAM 120為止。一旦該訊號確定,系統即可對DRAM 120讀取及寫入,但無法確定NVCACHE_ENABLE直到 模組 100 就緒為止。在 DRAM_AVAILABLE 與 NVCACHE_ENABLE之確定之間可發生一延遲,例如, 在復原操作之後,因為正抹除非揮發性記憶體130或正 再充電備用功率源。該系統可選擇在此時間期間僅自揮 發性記憶體120讀取(與自揮發性記憶體120讀取及寫 入至揮發性記憶體120不同)。 NVDIMM—READY訊號指示模組100能夠處理功率損 失事件。該訊號不確定直到外部功率源處於健康狀態且 Γ 完全充電為止。當經組態以完全抹除快閃記憶體130 23 201106371 時,NVDIMM_READY訊號亦不會確定直到將快閃記憶 體130完全初始化至一已知狀態為止。此特徵結構允許 設計支援快閃記憶體裝置,在不抹除快閃記憶體之情況 下,該等快閃記憶體裝置無法支援全速叢發寫入操作。 在正常系統操作(閒置狀態)期間,系統無法確定 NVCACHE_ENABLE 直到 NVDIMM_READY 得以確定為 止。在備用操作期間,NVDIMM_READY得以否定。在 復原操作期間,NDIMM—READY得以否定。若控制器110 在任何時候判定無法正確地處理功率損失事件,例如, 若EDL電容器組未能進行自我測試操作,則控制器110 否定NVDIMM_READY以通知系統自DIMM記憶體移動 任何快取資料(例如,將資料移動至諸如該系統之硬碟 之永久儲存器)。 NVDIMM—SEATED為在DIMM引出腳上之上拉引腳, 該上拉引腳允許系統偵測模組1 00 ^該系統同樣亦可藉 由試圖自NVDIMM I2C介面讀取來偵測模組100以查看 是否I2C從屬介面產生回應。 控制器110上之NVDIMM I2C從屬介面提供一完整功 能使用者介面予控制器 110。使用者可使用 NVDIMM—SDA 及 NVDIMM_SCL (訊號 152)組態且控 制控制器11 0以及存取詳細的狀態資訊。 V3P3_AUX為輔助3.3V電壓軌,其在正常系統操作期 間供電予非揮發性邏輯。在功率損失狀態期間,模組l〇p 自此供應切換且自VBACK 171 (在備用操作期間電源使 24 201106371 用之電壓軌)操作直到控制器11 0將其自身關閉為止。 模組100亦包括第三I2C介面,該第三I2C介面位於 控制器110與備用功率源200之間(「備用電源I2C介 面」)。備用電源I2C介面允許控制器110使用 VBACK—SDA及VABACK_SCL與外部備用電源模組通 訊。經由該介面’控制器11 0可判定備用功率方法之類 型(例如’ EDL電容器或電池),以及判定該電源之充電 狀態及健康狀態。在備用電源I2C介面中通訊之資訊可 作為SoH資訊之部分於NVDIMM I2C介面中進行通訊。 備用電源重設(VBACK_RESET)允許控制器110重設外 部備用電源模組》VCHRG電壓軌供電予EDL電容器充 電或外部電池備用電源模組。電壓軌為能夠獲得500mA 之標稱12伏特電壓軌。 訊號TEST_RX及訊號TEST_TX組成為一 57.6Kbaud 串列鏈路之生產測試介面。在正常系統操作期間,該等 測試訊號具有三態且浮動。 狀態及狀態轉換 第4圖圖示展示模組100之各種狀態及狀態轉換之狀 態圖。舉例而言,無論模組操作於何種狀態,模組100 藉由系統重設而初始化至「加電」狀態。在此狀況下,該 模組在判定最後電源循環發生了什麼之前初始化所有邏 輯且自快閃記憶體提取組態。舉例而言,模組自FPGA PROM 115載入韌體;CACHE_DIRTY得以確定’且「 NVDIMM READY 及 DRAM_AVAILABLE 得以否定。 25 201106371 SD/MMC +快閃記憶體經初始化至SD/MMC +傳送狀態。 快閃組態區塊經讀取以判定最後電源循環之狀態。若「已 使用」標簽經設定且先前備用操作成功地完成,則將該 狀態轉換至「拭除j狀態(若經組態以拭除執行時間區 域)。若未經組態以拭除執行時間區域,則將狀態轉換至 「復原」狀態。若「已使用」標簽經設定且備用操作並未 成功地完成,則將該狀態移動至「抹除」狀態(若「抹除」 位元經設定)或移動至 DRAM—AVAILABLE 及 CACHE—DIRTY設定之「閒置」狀態。若先前「抹除」狀 態並未完全地完成且該「抹除」位元經設定,則將其轉換 至「抹除」狀態以重新執行抹除循環。若「已使用」標簽 未經設定,貝1J CACHE—DIRTY 得以否定 , DRAM_AVAILABLE得以確定,且該狀態轉換至「間置」 狀態。 當施加系統功率時,「間置」狀態為正常操作狀態。若 CACHE_DIRTY 已經設定且然後 NVCACHE_ENABLE 得 以確定,貝1J CACHE—DIRTY 得以否定。CACHE—DIRTY 可用以確認歸因於無效備用而引起之不成功復原操作之 回應。若 NVCACHE_ENABLE 得以確定且 NVDIMM—READY得以確定,則確定CACHE—DIRTY將 確認控制器現正以一非揮發性狀態操作(功率損失將觸 發備用操作)。若NVCACHE_ENABLE否定’則否定 CACHE DIRTY以確認控制器現正以一揮發性狀態操作 — Γ (功率損失將不進行備用操作)。若備用功率源在電壓規 26 201106371 格之内,則確定NVDIMM_READY指示系統可支援電源 故障。若備用功率源未能進行自我測試(或由於任何其 他原因,控制器110無法完成備用操作),則否定 NVDIMM—READY將向系統發出訊號以清空快取記憶 體。若CACHE_DIRTY得以確定且NVDIMM_PG否定, 則功率已損失且DRAM記憶體含有待寫入至快閃記憶體 之資料。在此狀況下,控制器 110 否定 DRAM_AVAILABLE 及 NVDIMM_READY 且轉換至「備 用」狀態。若CACHE—DIRTY得以否定且NVDIMM_PG 否定,則DRAM記憶體不含有有效資料且功率正常關 閉。在此狀況下,否定 DRAM—AVAILABLE 及 NVDIMM—READY (若設定)且轉換至「斷電」狀態。 當在備用功率下操作時,「備用」狀態負責將資料自 DRAM 120移動至快閃記憶體130。若「短時脈衝波形干 擾」位元未經設定,則控制器110等待CKE變為低位準 以確保DRAM記憶體處於自我再新(若備用操作開始, 則該「短時脈衝波形干擾」位元經設定,但在操作期間功 率回升)。機載調節器自備用功率切換至電源功率。將 DDR匯流排斷開且控制器110驅動DRAM 120。因為系 統可能斷電,所以控制器110將NVCACHE_ENABLE訊 號遮蔽。控制器11 〇確定「已使用」暫存器且寫入該快閃 組態頁以記錄備用過程之開始。若歸因於自「短時脈衝 波形干擾」狀態轉換回而存在一檢查點,則控制器110 Γ 自該檢查點重新啟動備用。另外,對於DRAM 120之每 27 201106371 一 dram裝置,使該DRAM裝置退出自我再新且寫入快 問記憶體UOM容。若NDIMM_PG在記憶體複製操作 期間確定,則使主動DRAM裝置回到自我再新中、檢查 當前備用點及移動至「短時脈衝波形干擾」狀態。當已將 所有DRAM裝置複製至快閃且該快閃已完成其程式循環 時,控制器110在該快閃組態中寫入當前狀態資訊且^ 待該程式循環完成。最後,控制器110將模組移動 至「斷電」狀態。In a non-volatile memory, the non-volatile memory includes an optional number of non-volatile memory chips, wherein the movement is based on the selectable number of non-volatile memory chips. In another aspect, a memory device for use with a host processor and a primary power source includes: a non-volatile memory; a volatile memory; an interface for connecting to an alternate power source The standby power source is configured to temporarily supply power to the volatile memory after power loss from one of the primary power sources occurs; and isolation logic for controlling access by the host processor to the volatile memory The isolation logic has a -first mode and a second mode, the isolation logic providing the host processor with access to the volatile memory for storing or reading data during the first mode, and the The isolation logic isolates the volatile memory from access by the host processor during the second mode; and a controller 'which controls the isolation logic, the controller is programmed to when the volatile memory is being The isolation logic is placed in the first mode when the primary power source is powered, and when the power from the primary power source to the volatile memory is interrupted, the isolation logic is placed in the second mode and the data is The volatile memory is transmitted to the non-volatile memory. In another example, the method includes: detecting a power source of one of the main power sources of the volatile memory, and responding to detecting the power failure and the volatile memory is replaced by the standby power. When the source is powered: one mode of the isolation logic is changed from the first mode to the second mode, and the first mode is when the volatile memory is being powered by the main power (four) - the host processor provides a pair for storage Or reading the volatile memory of the data. The second mode separates the volatile memory from the host processor [s 201106371; and moves the data stored in the volatile memory [Non-Volatile Memory] [Embodiment] Referring to Figure 1 , the described embodiment of the present invention is a dual-line memory module (DIMM) 100, which includes volatile memory 12 〇, non-volatile memory Body 130, isolation logic 14〇 and controller n〇. DIMM 100 is connected to a primary power source (not shown) to support normal operation and is also connected to alternate power source 200 (see Figure 2). When the DIMM 1 is operating at the power supplied by the primary power source, an external system (e.g., a RAID system) stores the data in the volatile memory 12 via the interface 105 and reads the data from the volatile memory 120. However, when the power from the primary power source 2 is interrupted, the backup power source supplies sufficient temporary power to the DIMM 100 so that the controller 11 can cause the isolation logic 14 to isolate the volatile memory 120 from the external system, and The data is then transferred from the volatile memory to the non-volatile memory 13Q I before the power from the alternate power source 200 is depleted. When the primary power source becomes available again, 'control n 1 ίο will survive. The data in the volatile memory 传 is passed back to the volatile memory H i 2Q + 'and causes the isolation logic to reconnect the volatile memory 120 to the external system. Volatile memory 120 is a DRAM array that includes various DRAM wafers, such as DRAM wafers i 2 and DRAM wafers 122. Non-volatile memory 13〇 includes various flash memory devices, “12 201106371 J such as Shaanxi flash device 13 1 and flash device 丨 3 2. Due to the limitation of DIMM丨〇〇, it cannot be stored in volatile at one time. All of the data in the memory 120 is moved to the non-volatile memory 13G. One of these limitations is that it cannot be written to the non-volatile memory 13 as quickly as the DRAM device of the volatile memory 120 reads. In the flash device, in consideration of this difference, each time a DRAM wafer moves data from the volatile memory to the non-volatile memory 13Ge, in addition, the data is transferred from the volatile memory 120 to the non-volatile memory 13 During the process, the DRAM chip that is not actively being transferred enters a low power state, the low power state retains the data stored therein, but consumes less power than the normal operating state. In the DRAM chip of the volatile memory 12, This low power state is a self-renew mode. By allowing a DRAM chip that is not actively transmitting to enter a low power state, the module 1 需要 requires less power during standby operation than would otherwise be the case. In this case, this allows the use of a smaller and cheaper alternative power source. Figure 2 shows a block diagram of this power source. In particular, Figure 2 shows an electrochemical double-layer (EDL) capacitor backup power module. 2〇〇, it uses an interface line (for example, power, 1/〇, etc.) 17〇 to interact with DIMM 10〇 (EDL capacitors are also called supercapacitors and ultra-high capacitors). Electric grid 21 0 is in DIMM 1 〇〇 The backup power is supplied to the DIMM 100 when the main power source fails. The charger and monitor 22 充电 charges the capacitor 210 and performs a health monitoring of the capacitor 21 以便 to, for example, fail the capacitor 210 to provide backup power. In the case of DIMM 1 〇〇 alarm. In some cases, the battery can be replaced by the electric 13 201106371 container. For example, Figure 3 shows the battery backup power module 300 used in place of the module 2 之Non-volatile memory 130 embeds sequence presence detection (SPD) information for volatile memory 12〇 (eg, information describing the size and speed of DRAM chips in volatile memory i2Q) By using the non-volatile memory 130 to store the spD information of the volatile memory 12, the volatile memory 120 avoids the need to have a separate EEPROM module for storing this information. Avoiding the addition of a separate EEpR〇M can save cost. The size of the small module 100 and the number of required components are reduced. The DIMM 100 includes two i2c busbars between the external system and the controller 11A. When, for example, simplicity and low manufacturing cost are more important than speed, I2C The busbars are typically used to attach low speed peripheral devices to various devices. The first I2C busbar is used to access the sequence presence detection (spD) EEPROM ("SPD I2C Busbar"). It is defined by the standard jedec specification. The second I2C bus is used to access information of other modules, such as status information and health status (s〇H) for controller 11 非, non-volatile memory 丨 3 〇 and standby power source 200. Information ("NVDIMM I2c Bus"). The status information may include, for example, the current state of the flash memory (write, erased, erased, corrupted, etc.); the number of bad blocks that were replaced; the number of remaining spare blocks; completed The total number of download cycles; the number of ECC errors in the last download; the number of ECC errors in the final restore; the status of the last download (in progress, no error completion, error completion, etc.); the final state of recovery (in progress, No error completion, error completion, etc.); flash header information. The s〇H information '201106371 may include, for example, the current state of the alternate power source (charged, discharged, positively charged, etc.), whether any of the capacitors that make up the alternate power source have failed (and if it has failed, determine which capacitors have Failure) and the type of alternate power source (eg, capacitor or battery). Block Diagram 钿f Flash § Recall 1 provides non-volatile storage on the DIMM and is implemented using Secure Digital (SD) / MultiMedia Card + (MMC+). The controller 11 supports various configurations. For example, four independent SD/MMC+ interfaces are connected to four SD mass storage devices, and each SD mass storage device uses a 4-bit data bus with 2 megabytes. / sec bandwidth operation, or interface to four MMC + mass storage devices, each MMC + mass storage device uses 8 _ data bus, operating with 4 〇 7G group / sec bandwidth. One of the advantages of using SD/MMC technology is that the complexity of managing flash memory is hidden from controller 110 by a simple, low pin count interface. Flash memory can be implemented as a single device (e.g., 'SanDisk iNAND) or can be constructed on a single mMM using discrete § controllers with separate NAND memory devices. In either case, the SD/MMC controller is responsible for ECC and bad block management depending on the NAND technology used. The sequence presence detection (SPD) data is stored in the first 256-bit flash memory, and the flash memory is attached to the first SD/MMC+ interface (ie, the flash memory is stored in the flash) A flag within the configuration space is used to implement a typical write protection mechanism. The controller 11 implements a read cache and write mechanism for SPD data, wherein the spD information can be stored [15 201106371 on the controller 110 In the 5 memory (except on the flash chip 13 1). In the system power-on period, the control is controlled by 11 U〇 from the flash memory k to take the SPD material. In spD j Run Query # π ± The read operation on the interface is fast = 'At the same time, the write operation is immediately written to the flash memory. During the write operation to the flash memory, the interface will ignore any read. Or write request. : The information is stored in the second 256-bit flash memory flash memory attached to the SD-MMC + interface. This interface allows the user to monitor and configure non-volatile functions. Operation. This area is also used to track the status of the system during the last power cycle. The read cache and write cache mechanism for configuration data, wherein the state information can be stored in the cache memory on the control g 11G (except on the (4) wafer 131). During the system power on period, the FPGA Flash memory extraction data. The read and write operations on the NVDIMMI2C interface use the data. During the power outage and power loss (standby) events, the cache data is written back. The controller 110 is an advanced embedded processor. The processor has a custom 133 MHz DDR controller, four custom SD/MMC+ host interfaces, an SPD I2C interface, and an NVDIMM I2C interface. The microprocessor can be, for example, a soft 32-bit Altera NIOS RISC processor. It can execute the firmware from the internal memory instance in the FPGA (programmable read-only memory (pR〇M) n5). The processor controls the module between the DDR interface and the SD/MMC + interface. Move the operating state and control the communication between the SPD interface and the NVDIMMI2C interface. The 16 201106371 DDR interface allows the controller 110 to operate the DRAM array on a per-tuple channel basis. The interface has individual control of the CKe signal. Thus Allows control of each device in the DRAM array. The controller uses the first 8 bytes of each byte channel in the array to set the internal phase alignment of the bus. Four custom SD/MMC + interfaces are designed For embedded applications that do not require features such as hot swap. The interface supports 1-bit, 4-bit and 8-bit operations at clock rates up to 5 〇 MHz. These interfaces can also be used simultaneously. Operation synchronizes four SD/MMC+ cards, allowing high-bandwidth read and write operations without extensive data buffering For applications that need to remove SD/MMC+ cards, the FPGA host interface allows for heavy-duty installations without the correct order Sort the cards. The volatile s-resonance 120 is a DRAM array. Various example configurations are shown in the table below, which include an 8-bit Error Correcting Code (ECC) for the actual data per 64 bits. In an example of a two-billion-bit NVDIMM, one row can be turned on or off based on current memory requirements. Turn off when a row is not needed to save power. When moving the data (actual data and Ecc) from the volatile memory 12〇 to the non-volatile memory! 3 〇, non-volatile memory! The actual data and ECC are stored and stored; ^The actual data in the non-volatile memory 13〇 is different from the ECC*. When the data is transferred from the non-volatile memory and the sputum back to the volatile simon memory 120, the controller 复原 restores the actual data and ECC of the special DRAM device suitable for ί to the volatile memory 12〇 in. 201106371 NVDIMM Total DRAM Device Configuration DRAM 4^# Column 256 megabytes 512 megabytes 32M words X 16 bits 5 1 512 million bytes 1 billion bits 64M words X 16 bits 5 1 1 billion bits 1 billion bits 128M words x8 bits 9 1 2 billion bits 1 billion bits 128M words X 8 bits 18 2 PLL 161 is a high performance, low time skew, Based on a PLL, zero delay buffer, this buffer spreads a differential input clock signal to the DRAM array. The DDR clock from the edge connector is multiplexed with the DDR2 clock from controller 110 to prevent PLL 161 from entering its low power state and to prevent PLL 161 from tri-state its output. In this example design, the selected PLL must operate at the desired system rate and at the slower DDR controller rate. In general, the PLL skips itself and operates as a small delay buffer at the slowest clock rate. The control and address signals are re-driven via register 162 to the DRAM device on the rising edge of the clock (data access is delayed by one clock). Controller 110 uses three states to access the address and control signals. When controller 110 controls DRAM 120, FET bus switch 163 can be used to isolate the register from the edge connector and controller 110 can directly drive the register input. When the system controls the DRAM array, the FET bus switch 163 is turned "on" and the FPGA tri-states its output. The CKE signal is processed differently from other control signals. Switching between the two modes of operation has less glitchless to ensure that DRAM 120 is still in self-renew mode. For these signals, FET switch 163 uses [ 18 201106371 to multiplex between the edge connector (to the system) and the controller i. The wide bandwidth FET multiplexer 163 and FET multiplexer 164 are designed to support still wide bandwidth applications such as memory interleaving, bus isolation, and low distortion signal gating. The FET multiplexer 16s and FET multiplexer 164 isolates the module 丄〇〇 from the system bus during power loss events. The fet multiplexer uses a charge pump to increase the gate voltage of the transfer transistor to provide a low, flat on-state resistance. This low, flat on-state resistance allows for minimum propagation delay and supports rail-to-rail switching on data input/output (1/〇). FET彡Ji ϋ also features low data 1/〇 capacitance to minimize capacitive loading and signal distortion on the data bus. Depending on the configuration of the module 100, not all of the data stored in the volatile memory 120 is reserved for the non-volatile memory 13A. Alternatively, module 1 can be configured to reserve (and (4) recover) the data stored in the selected W-knife of volatile memory 12A. The information stored in the non-volatile memory is usually the key/directory information used to determine the location of the information (eg, files) in the system. The key/directory information is basically the most important information that all users will choose to reserve. However, other types of information can also be stored in volatile memory. For example, software program information that does not change (for example, the 'coffee' slot) can be stored in a volatile memory file. The controller m includes a register that allows the user to segment the volatile suffix 120. The start address is stored in a register and the end address is stored in a second register. It is expected that all data between these two addresses will be backed up and restored. Data stored outside of this address will not be backed up/restored. The value of these registers is controlled via the 19 201106371 I2C bus. The user can choose, for example, to specify a start address and an end address so that only critical/directory information can be renewed. The reason for choosing to restore only critical/directory information is to improve recovery time by not recovering from good time and without the need to recover from non-volatile memory (10) (eg "exe" is probably not changed and can be Load from the host system when needed). Module 100 can be configured to support a variety of flash chips (e.g., 1-4) and can be programmed according to a selected number. The number of flash chips used may be based, for example, on the size of the volatile memory that needs to be spared and the time that the backup must occur (eg, the amount of time the backup power is available) or based on achieving a recovery hazard. (ie, more flash devices allow for a faster recovery time). For example, for a controller that can support up to four flash chips, the controller will have four bus bars. Each of the bus banks can be connected to (or not connected to) the flash wafer according to the number of turns of the flash wafer. The selected number of flash wafers (e.g., 2 or 4) are connected to the bus bar and soldered to a printed circuit board (PCB). For a module 1 designed to accommodate up to four flash chips, if only two flash chips are installed, the remaining space for the two flash chips that are not mounted remains ^ and the controller 110 Stylized to attempt to communicate with only the two installed flash chips. For a constant (four) time or recovery time, the flash wafer: number can be increased in proportion to the size of the volatile memory. Alternatively, the spare time and recovery time can be reduced by increasing the number of flash chips. Signal Description [s] 20 201106371 Module 100 implements a 72-bit DDR2 memory interface with a 244-pin mini DIMM connector. The connector signal designation is defined in the JEDEC Standard 21C, page 4.20.14-2 of the DDR2 registered small DIMM design specification (currently available at www.jdec.org). Each of these signals may be part of signal 150 or signal 170. The signal corresponding to each of the 244 pins is not shown in Figure 1 to avoid making Figure 1 difficult to read. The NVDIMM-RESET signal initializes controller 110 and forces the controller to restart its state machine. When the standard RESET_IN input is determined, the controller 110 is also reset (together with, for example, the volatile memory 120 and the register 162). When controller 110 is reset by NVDIMM-RESET, module 100 will operate normally. That is, when NVDIMM_RESET is asserted, FET switch 163 remains on, thereby allowing the system to access DRAM memory 120 without further interaction. The NVDIMM_PG signal reports the power status in the user's system. When the signal is high, the system power rail operates within specifications. When the signal changes to a low level, the power loss approaches and the controller 110 moves the data to the flash memory 130. If the DRAM device data is moved to flash memory (as indicated by the NVCACHE_ENABLE signal), the system causes all DRAM devices (e.g., 121-122) to enter self-renew operation before negating NVDIMM_PG. If NVCACHE-ENABLE is low when NVDIMM_PG is negative, ij ignores the data in the DRAM device during the power loss event. 21 201106371 The NVCACHE_ENABLE signal reports the presence of cached data that should be moved to the flash memory in the DRAM device in the event of a system power failure. If NVCACHE_ENABLE is high when NVDIMM-PG is negative, controller 110 moves the data in the DRAM device to the flash memory. If NVCACHE_ENABLE is low when NVDIMM-PG is negative, the DRAM contents are ignored and are not stored in flash memory 130. The last order is used by the system to shut down normally (for example, in response to a user request to shut down without a power failure). When NVDIMM-PG is low, NVCACHE_ENABLE can be ignored by controller 110 to prevent false transitions on the signal from affecting any alternate events. During a restore operation, NVC ACHE_ENABLE is used by the system to signal controller 110 to erase flash memory 130. The used tag (radity tag) within the flash memory is not cleared until the signal exchange with NVCACHE_ENABLE is completed. This allows, for example, the system to handle another power loss event during the restore operation. After moving the data from the flash memory 130 to the DRAM 120, a DRAM_AVAILABLE signal indicating that the system can access the data is determined. When the system decides that flash memory 130 should be cleared (e.g., to prevent the data from being restored again after a power loss event), the system negates (falls edge) NVCACHE_ENABLE to reset the flash memory. The system waits for NVDIMM_READY to be determined before determining NVCACHE_ENABLE again. The system can continue to use module 100 until NVDIMM_READY is determined, but no data will be available during the power loss event. 22 201106371 The CACHE-DIRTY signal indicates that the flash memory 130 contains a data image of the DRAM 120. During the "standby" state, the CACHE_DIRTY signal indicates the beginning of the alternate process. During the "power on" state, CACHE_DIRTY indicates that flash memory 130 contains a backup image file. The signal remains high until the NVCACHE_ENABLE signal is negated (falling edge), indicating that the cached data has been read from DRAM 120. The DRAM-AVAILABLE signal indicates when the system can access the DRAM 120. Controller 110 has control of DRAM 120 when DRAM_AVAILABLE is low. When the signal is high, the system can cause the DRAM device (e.g., 121-122) to exit self-renew and access the data. In the case of powering up flash memory 130 with data, DRAM_AVAILABLE will remain negative until the flash data is moved to DRAM 120. Once the signal is determined, the system can read and write to DRAM 120, but NVCACHE_ENABLE cannot be determined until module 100 is ready. A delay can occur between the determination of DRAM_AVAILABLE and NVCACHE_ENABLE, for example, after the restore operation, because the volatile memory 130 is being erased or the alternate power source is being recharged. The system may choose to read only from the volatile memory 120 during this time (as opposed to reading from and writing to the volatile memory 120 from the volatile memory 120). The NVDIMM-READY signal indicating module 100 is capable of handling power loss events. This signal is undefined until the external power source is healthy and Γ fully charged. When configured to completely erase the flash memory 130 23 201106371, the NVDIMM_READY signal is also not determined until the flash memory 130 is fully initialized to a known state. This feature allows the design to support flash memory devices that do not support full-speed burst write operations without erasing the flash memory. During normal system operation (idle state), the system cannot determine NVCACHE_ENABLE until NVDIMM_READY is determined. NVDIMM_READY is negated during the standby operation. NDIMM-READY is negated during the restore operation. If the controller 110 determines at any time that the power loss event cannot be handled correctly, for example, if the EDL capacitor bank fails to perform a self-test operation, the controller 110 negates NVDIMM_READY to inform the system to move any cached data from the DIMM memory (eg, Move the data to a permanent storage such as the hard drive of the system). NVDIMM—SEATED is the pull-up pin on the DIMM pin. The pull-up pin allows the system to detect the module 100. ^The system can also detect the module 100 by attempting to read from the NVDIMM I2C interface. See if the I2C slave interface generates a response. The NVDIMM I2C slave interface on controller 110 provides a complete functional user interface to controller 110. The user can configure and control the controller 110 and access detailed status information using NVDIMM-SDA and NVDIMM_SCL (signal 152). V3P3_AUX is an auxiliary 3.3V rail that supplies power to non-volatile logic during normal system operation. During the power loss state, the module l〇p switches from this supply and operates from VBACK 171 (the power rail used by the power supply during the standby operation 24 201106371) until the controller 110 turns itself off. The module 100 also includes a third I2C interface between the controller 110 and the backup power source 200 ("backup power I2C interface"). The backup power I2C interface allows the controller 110 to communicate with the external backup power module using VBACK-SDA and VABACK_SCL. A mode of the standby power method (e.g., an 'EDL capacitor or battery) can be determined via the interface&apos; controller 110, and the state of charge and health of the power source can be determined. Information communicated in the backup power I2C interface can be communicated as part of the SoH information in the NVDIMM I2C interface. The standby power reset (VBACK_RESET) allows the controller 110 to reset the external standby power module "VCHRG voltage rail" to the EDL capacitor charging or the external battery backup power module. The voltage rail is a nominal 12 volt rail that can achieve 500 mA. The signal TEST_RX and the signal TEST_TX form a production test interface for a 57.6Kbaud serial link. These test signals are tri-stated and floating during normal system operation. State and State Transitions Figure 4 illustrates a state diagram showing various states and state transitions of module 100. For example, regardless of the state of operation of the module, the module 100 is initialized to a "power on" state by system reset. In this case, the module initializes all logic and extracts the configuration from the flash memory before determining what happened to the last power cycle. For example, the module loads firmware from FPGA PROM 115; CACHE_DIRTY is determined to be 'and' NVDIMM READY and DRAM_AVAILABLE are negated. 25 201106371 SD/MMC + flash memory is initialized to SD/MMC + transfer state. The configuration block is read to determine the state of the last power cycle. If the "used" tag is set and the previous standby operation is successfully completed, the state is switched to the "erased j state" (if configured to erase Execution time zone. If the execution time zone has not been configured to erase, the state is switched to the "reset" state. If the "Used" tab is set and the backup operation has not been successfully completed, move the status to the "Erase" state (if the "Erase" bit is set) or move to the DRAM-AVAILABLE and CACHE-DIRTY settings. The "idle" state. If the previous "erase" status is not completely completed and the "erase" bit is set, it is converted to the "erase" state to re-execute the erase cycle. If the "Used" tab is not set, the Bay 1J CACHE-DIRTY is negated, DRAM_AVAILABLE is determined, and the state transitions to the "Intermittent" state. When the system power is applied, the "intervening" state is the normal operating state. If CACHE_DIRTY has been set and then NVCACHE_ENABLE is determined, BJ1J CACHE-DIRTY is negated. CACHE-DIRTY can be used to acknowledge a response to an unsuccessful restore operation due to an invalid backup. If NVCACHE_ENABLE is determined and NVDIMM_READY is determined, then it is determined that CACHE-DIRTY will confirm that the controller is now operating in a non-volatile state (power loss will trigger an alternate operation). If NVCACHE_ENABLE is negative, then CACHE DIRTY is denied to confirm that the controller is now operating in a volatile state - Γ (power loss will not be performed alternately). If the alternate power source is within the voltage gauge 26 201106371, it is determined that the NVDIMM_READY indicates that the system can support a power failure. If the alternate power source fails to self-test (or controller 110 cannot complete the standby operation for any other reason), then NVDIMM-READY will signal the system to clear the cache memory. If CACHE_DIRTY is determined and NVDIMM_PG is negative, power is lost and the DRAM memory contains data to be written to the flash memory. In this case, the controller 110 denies DRAM_AVAILABLE and NVDIMM_READY and transitions to the "standby" state. If CACHE-DIRTY is negated and NVDIMM_PG is negated, the DRAM memory does not contain valid data and the power is normally turned off. In this case, DRAM-AVAILABLE and NVDIMM-READY (if set) are negated and transitioned to the "power off" state. The "standby" state is responsible for moving data from DRAM 120 to flash memory 130 when operating at standby power. If the "short pulse waveform interference" bit is not set, the controller 110 waits for the CKE to be low to ensure that the DRAM memory is self-renewed (if the standby operation starts, the "short pulse waveform interference" bit Set, but the power rises during operation). The on-board regulator switches from standby power to power supply. The DDR bus is disconnected and the controller 110 drives the DRAM 120. Because the system may be powered down, controller 110 masks the NVCACHE_ENABLE signal. Controller 11 determines the "used" register and writes to the flash configuration page to record the beginning of the alternate process. If there is a checkpoint due to a transition from the "short-time waveform interference" state, the controller 110 restarts the standby from the checkpoint. In addition, for every 27 201106371 dram device of the DRAM 120, the DRAM device is caused to re-enter the self and rewrite the memory UOM capacity. If the NDIMM_PG is determined during the memory copy operation, the active DRAM device is returned to self-renew, the current spare point is checked, and the "short pulse waveform interference" state is moved. When all DRAM devices have been copied to flash and the flash has completed its program loop, controller 110 writes the current state information in the flash configuration and waits for the program to cycle. Finally, controller 110 moves the module to the "power off" state.

若系統功率仍然可用,則「斷電」狀態處理該斷電操作 以防止記憶體模組100提前重啟動。亦即,NVDIMMJG 可指示一功率損失事件,但系統功率可能尚未自該記憶 體模組移除。若在備用功率下操作,則控制器110將機 載調節器切換回至正常功率。控制器丨10將控制器與多 工器163之間的介面變為三態,且將DRAM裝置連接至 DDR匯流排,若NVDIMM—pG曾確定,則系統功率仍然 存在,因此系統藉由移動至「加電」狀態而重啟動。 短時脈衝波形干擾狀態表示系統臨時損失功率之狀 況,但功率在備用操作完成之前已返回,從而允許使用 者擷取DRAM内容而無需使用快閃資料。「短時脈衝波形 干擾j狀態可在備用操作期間被進入多次。在「短時脈衝 波形干擾」狀態中時存在兩個結果。功率損失事件繼續 且將在DRAM 120之内的資料備用至快閃13〇或將在 DRAM 120之内的資料被擷取且NVC ACHE_ENABLE % 以否定。若該功率損失為臨時的,則記憶體模組仍然必[ 28 201106371 須在確定NVDIMM__READY之前將EDL電容器再充電至 一已知狀態,且允許該系統依非揮發性功能而定。為此, 模組100藉由確定「短時脈衝波形干擾」暫存器來記錄事 件,從而指示在備用功率損失之前復原的功率;將機載 調節器自正常系統功率切換至電源功率;將控制器110 變為三態且將DDR匯流排再連接至DRAM記憶體;確 定指示資料可用之 DRAM_AVAILABLE ; 將 NYCACHE_ENABLE訊號去遮蔽,因為系統可清空 DRAM裝置之資料;若 NVDIMM_PG得以確定且 NVCACHE—ENABLE得以否定,貝ij不需要在快閃記憶體 中之部分複製,否定CACHE_DIRTY且轉換至「抹除」 狀態;若NVCACHE_ENABLE得以確定且NVDIMM_PG 否定,則功率已損失且DRAM記憶體含有待寫入至快閃 記憶體之資料,否定DRAM_AVAILABLE且轉換至「備 用」狀態以自檢查點重新開始。 拭除狀態係用於將DRAM 120之部分用於執行時間、 非揮發性目的之應用(例如,若使用者已決定將非關鍵/ 目錄資訊儲存於揮發性記憶體120中且已選擇不去備用/ 復原該非關鍵/目錄資訊)。在該拭除狀態中,控制器110 可經組態以在位址空間中將一單一連續區域歸零。此特 徵結構防止在DRAM記憶體之内的假性ECC錯誤。模組 100 :斷開DDR匯流排且使控制器110驅動DRAM記憶 體;若該拭除功能藉由NVDIMM_PG否定所指示之功率f 損失而中斷,則轉換至「斷電」狀態;對於每一 DRAM, 29 201106371 將經組態之位址空間初始化至零且初始化相關聯ECC 值;當所有DRAM完成時,轉換至「復原」狀態。 該「復原j狀態將快閃記憶體130内容傳回至DRAM 120 °不退出該狀態直到系統指示已讀取DRAM中之復 原資料為止’以便在此狀態期間處理功率損失事件。在 「復原」狀態期間的功率損失事件引起將同一影像復原至 下一通電事件上之DRAM記憶體。模組1〇〇 :若尚未如 此進行’則斷開DDR匯流排且使控制器丨丨〇驅動DRAM 記憶體;在快閃組態記憶體中記錄復原操作已開始允許 系統偵測多個復原事件;對於每一 DRAM,將内容自該 快閃記憶體複製至DRAM,·當所有DRAM完成時,更新 具有儲存於快閃組態中之值的「模式」位元組(在「模式」 值為唯讀時之系統「模式」值)且使彼DRAM進入自我 再新操作;若該復原功能藉由NVDIMM_PG否定所指示 之功率損失而中斷’則轉換至「斷電」狀態;將控制器 變為三態且將DDR匯流排再連接至drami2〇;確 定 RAM—AVAILABLE ;且當 NVCACHE一ENABLE 自高 位準轉換至低位準(下降邊緣)冑,轉換至「抹除」狀態 以抹除快閃内容。 :二恍閃記憶體裝置要求抹除記憶體以在大的起 入操:期間達成最大頻寬效能。在此等實施例中, 至少清除指示部分複本或影像存在於快閃記憶體1 何旗標1除操作無法發生直到該系統已指示 dram 120讀取DRAM 12〇中之任何資料(亦即, 30 201106371 資料或部分備用資料)。模組.1 〇〇進入「抹除」狀態且: 若抹除循環由另一功率損失中斷,則首先重啟動該抹除 循環;使控制器11 0變為三態且將DDR匯流排再連接至 DRAM 120 ;確定DRAM_AVAILABLE ;若需要,寫入該 快閃組態以清除指示該快閃記憶體之内之潛在備用或備 分影像檔案的任何旗標且標記一抹除循環已開始;若「抹 除」暫存器得以確定,則抹除快閃記憶體模組;若該抹 除功能藉由NVDIMM_PG否定所指示之功率損失而中 斷,則轉換至「斷電」狀態;當抹除循環正常完成時更新 該快閃組態;當抹除操作完成時,轉換至「閒置」狀態。 I2C介面 FPGA控制器具有兩個單獨從屬I2C介面,該等I2C 介面藉由使用相同協定來控制,如工業標準雙線I2C串 列 EEPROM(亦即,SPD I2C 介面及 NVDIMM I2C 介面)。 將用於SPD I2C介面之基底位址設定在標準OxAO,而將 用於NVDIMM I2C介面之基底位址設定在OxBO。將1-位元位址偏移應用於兩個基底位址以允許在需要時將該 兩個介面連接在一起且與其他模組相互操作。亦即,SPD I2C介面及NVDIMM I2C介面可實施為使用不同位址範 圍之單一實體介面。控制器110使用快閃記憶體中之第 一 512個位元組區塊,該快閃記憶體附著至第一 SD/MMC +介面。該區塊之第一半係用於SPD資料,而該 區塊之第二半係用於快閃組態。第5圖展示使用I2C介 Γ 面讀取之功能操作。第6圖展示使用I2C介面寫入之功 31 201106371 能操作。 除錯、維護、測試及掃描 模組100亦包括用於除錯、維護、測試及掃描之功能 性。舉例而言,若控制器藉由使用Altera處理器來實施, 則Altera JTAG UART介面為一完整功能除錯及監控介 面,其允許使用者存取韌體功能。使用Altera工具套件, 韌體可受監控及/或由新韌體所覆寫以供研究之目的。使 用内建式UART功能,JTAG介面可用以仿真允許低速定 製通訊之串列介面。同樣地,對於較大FPGA組態,韌 體可併入測試使用者介面以對DRAM及快閃記憶體執行 診斷測試以供測試之目的。測試使用者介面亦經由建置 於Altera JTAG介面中之UART存取。 在生產測試期間,可將控制器11 〇保持於重設以允許 測試DRAM 120及SD/MMC+快閃130。因此,當將控制 器110保持於重設時,將在DDR介面上之FET開關163 及FET開關164保持於適當狀態。同時,控制器110使 SD/MMC+介面變為三態以允許快閃記憶體之針床測試。If the system power is still available, the "power down" state handles the power down operation to prevent the memory module 100 from restarting in advance. That is, the NVDIMMJG can indicate a power loss event, but the system power may not have been removed from the memory module. If operating at standby power, controller 110 switches the onboard regulator back to normal power. The controller 变为10 tristates the interface between the controller and the multiplexer 163 and connects the DRAM device to the DDR bus. If the NVDIMM-pG is determined, the system power still exists, so the system moves to Restart in the "Power On" state. The glitch state indicates the condition in which the system temporarily loses power, but the power has returned before the standby operation is completed, allowing the user to retrieve DRAM content without using flash data. “Short Intermittent Waveform Interference j state can be entered multiple times during standby operation. There are two results in the “short pulse waveform interference” state. The power loss event continues and the data within DRAM 120 is backed up to flash 13 or the data within DRAM 120 is captured and NVC ACHE_ENABLE % is negated. If the power loss is temporary, the memory module must still [28 201106371 must recharge the EDL capacitor to a known state prior to determining NVDIMM__READY, and allow the system to be non-volatile. To this end, the module 100 records the event by determining the "short-time waveform interference" register to indicate the power restored before the standby power loss; switching the on-board regulator from the normal system power to the power supply; The device 110 is tri-stated and reconnects the DDR bus to the DRAM memory; determines the DRAM_AVAILABLE indicating that the data is available; masks the NYCACHE_ENABLE signal because the system can clear the data of the DRAM device; if the NVDIMM_PG is determined and the NVCACHE-ENABLE is negated Bay ij does not need to be partially copied in the flash memory, negates CACHE_DIRTY and transitions to the "erase" state; if NVCACHE_ENABLE is determined and NVDIMM_PG is negated, the power is lost and the DRAM memory contains the memory to be written to the flash memory. The data of the body, negating DRAM_AVAILABLE and transitioning to the "standby" state to restart from the checkpoint. The erase state is used to apply portions of the DRAM 120 for time-critical, non-volatile applications (eg, if the user has decided to store non-critical/directory information in the volatile memory 120 and has not selected to spare / Restore this non-critical/directory information). In the erased state, controller 110 can be configured to zero a single contiguous region in the address space. This feature structure prevents false ECC errors within the DRAM memory. Module 100: disconnecting the DDR bus and causing the controller 110 to drive the DRAM memory; if the erase function is interrupted by the NVDIMM_PG negating the indicated power f loss, then switching to the "power off" state; for each DRAM , 29 201106371 Initializes the configured address space to zero and initializes the associated ECC value; when all DRAMs are completed, transitions to the "reset" state. The "restore j state returns the flash memory 130 content back to the DRAM 120 ° without exiting the state until the system indicates that the recovered data in the DRAM has been read" to process the power loss event during this state. The power loss event during the period causes the same image to be restored to the DRAM memory on the next power-on event. Module 1〇〇: If not already done, then disconnect the DDR bus and cause the controller to drive the DRAM memory; recording the restore operation in the flash configuration memory has begun to allow the system to detect multiple recovery events. For each DRAM, copy the content from the flash memory to the DRAM, and when all DRAMs are completed, update the "mode" byte with the value stored in the flash configuration (at the "mode" value Read-only system "mode" value) and make the DRAM enter self-re-operation; if the recovery function is interrupted by NVDIMM_PG negating the indicated power loss, then switch to the "power off" state; change the controller into Tri-state and reconnect the DDR bus to the drami2〇; determine the RAM—AVAILABLE; and when the NVCACHE-ENABLE transitions from the high level to the low level (falling edge), transition to the “erase” state to erase the flash content. : Two-flash memory devices require that the memory be erased to achieve maximum bandwidth performance during large start-up operations. In these embodiments, at least the clearing of the portion of the copy or image is present in the flash memory 1 flag flag 1 except that the operation cannot occur until the system has instructed the dram 120 to read any of the data in the DRAM 12 (ie, 30) 201106371 data or part of the backup data). Module .1 〇〇 enters the “erase” state and: if the erase cycle is interrupted by another power loss, the erase cycle is first restarted; the controller 110 is tri-stated and the DDR bus is reconnected To DRAM 120; determine DRAM_AVAILABLE; if necessary, write the flash configuration to clear any flags indicating potential spare or backup image files within the flash memory and mark an erase cycle has begun; If the register is determined, the flash memory module is erased; if the erase function is interrupted by the NVDIMM_PG negating the indicated power loss, the mode is switched to the "power off" state; when the erase cycle is completed normally The flash configuration is updated; when the erase operation is completed, it transitions to the "idle" state. The I2C interface FPGA controller has two separate slave I2C interfaces that are controlled using the same protocol, such as the industry standard two-wire I2C serial EEPROM (ie, the SPD I2C interface and the NVDIMM I2C interface). The base address for the SPD I2C interface is set to standard OxAO, and the base address for the NVDIMM I2C interface is set to OxBO. A 1-bit address offset is applied to the two base addresses to allow the two interfaces to be joined together and interoperate with other modules as needed. That is, the SPD I2C interface and the NVDIMM I2C interface can be implemented as a single physical interface using different address ranges. Controller 110 uses the first 512th byte block in the flash memory that is attached to the first SD/MMC+ interface. The first half of the block is for SPD data and the second half of the block is for flash configuration. Figure 5 shows the functional operation using I2C interface read. Figure 6 shows the work of writing using the I2C interface. 31 201106371 Operation. The debug, maintenance, test and scan module 100 also includes functionality for debugging, maintenance, testing, and scanning. For example, if the controller is implemented using an Altera processor, the Altera JTAG UART interface is a full-featured debug and monitoring interface that allows the user to access firmware functions. With the Altera tool suite, firmware can be monitored and/or overwritten with new firmware for research purposes. Using the built-in UART function, the JTAG interface can be used to emulate a serial interface that allows low speed custom communication. Similarly, for larger FPGA configurations, the firmware can be incorporated into the test user interface to perform diagnostic tests on DRAM and flash memory for testing purposes. The test user interface is also accessed via the UART built into the Altera JTAG interface. During production testing, controller 11A can be reset to allow testing of DRAM 120 and SD/MMC+ flash 130. Therefore, when the controller 110 is held in reset, the FET switch 163 and the FET switch 164 on the DDR interface are maintained in an appropriate state. At the same time, controller 110 tristates the SD/MMC+ interface to allow needle bed testing of flash memory.

控制器110具有一生產測試控制,該生產測試控制組 態韌體以在DDR介面及SD/MMC+介面上執行生產測試 以確保適當連接性。控制器110對DDR記憶體裝置讀寫 以運用DDR之位址、資料及控制訊號。同樣地,控制器 110經由SD/MMC +命令及資料匯流排傳遞足夠之資料以 運用所有訊號。作為一終端客戶生產測試,NVDIMM I2C Γ Γ 介面提供一機制以控製備用及復原操作及直接存取快閃 32 201106371 及DDR記憶體。 FPGA架椹 第7圖展示控制器110之一實例架構,控制器1 10使 用具有用以將IP區塊連接在一起之Avalon匯流排的嵌 入式NIOS處理器(例如,若控制器藉由使用Altera處 理器(Altera JTAG)來實施)。對來自Altera之設計之 更改包括用於新特徵結構之另一 I2C介面(NVDIMM I2C 介面)' 更新之GPIO及修改之韌體。 電源描述 模組1 00之電源執行許多系統操作。其產生控制器11 0 所需之電壓軌且其在電源故障期間使模組11 0與系統軌 隔離。第8圖展示該電源之結構。 在正常操作期間,電晶體Q3及二極體D1將系統功率 VDD及V3P3_AUX導引至模組100上之裝置。V3P3_AUX 為一額外邊緣連接器引腳,該引腳為模組100上之非標 準裝置供電。VDD為包括許多邊緣連接器引腳之標準模 組功率源。VMEM為給模組100裝置供電之電源軌。將 V3P3_AUX電壓軌轉換至控制器110所需之三個額外電 源軌。大體而言,V1P2電壓軌及VIP8電壓軌供應大部 分控制器功率,同時V2P5軌為FPGA類比PLL供電且 V3P3為FPGA數位I/O、振盪器及SD/MMC+卡供電。 經由邊緣連接器訊號或經由NVDIMM I2C介面通知控 制器110 —逼近之功率損失。一旦其發生,控制器11() 接通Q1及Q4且斷開電晶體Q3以自EDL電容器組獲得 33 201106371 功率,該EDL電容器組連接至VBACK 171且使該模组 與系統功率隔離。此電源開關無觸點,如(例如)在此 狀況下電源調節器ΙΠ、U2、U3及U4經組態以不引起控 制器110重設或不引起DRAM 120丟失資料。在電源之 間切換之一方法係使用二極體開關。二極體D1防止(例 如)EDL電容器電壓反饋至V3P3_AUX電源中,歸因於 在兩個轨道上之「解耦」電容器之間的電荷共用,若使用 一電晶體,則該EDL電容器電壓可引起該電源出現短時 脈衝波形干擾(該等電容器中之一者為EDL電容器組)。 根據功率損失事件之類型,控制器110可被請求停止使 用EDL電容器組且被請求返回至系統功率。再次,此電 源開關無觸點以防止功率軌上之資料損失或短時脈衝波 形干擾。 模組100亦使用VCHRG電源充電且監控EDL電容器 組。此電壓軌經指定以僅用於充電之目的,且即使當 VCHRG未經連接時,該模組仍持續正常地操作。為了改 良EDL電容器組之功率效率,U3及U4之最小輸入電虔 可盡可能低。因為備用操作必須在U3或U4達到其規格 限制之前完成’所以此最小輸人規格限制了狐電容器 放電曲線之低端。為此原因,V3p3調節器⑴為自Μ” 電源之升壓調節器,從而允許最小舰放電位準盡可能 低。The controller 110 has a production test control that controls the firmware to perform production tests on the DDR interface and the SD/MMC+ interface to ensure proper connectivity. The controller 110 reads and writes to the DDR memory device to utilize the address, data, and control signals of the DDR. Similarly, controller 110 passes sufficient data to utilize all signals via SD/MMC+ commands and data busses. As an end-user production test, the NVDIMM I2C 提供 提供 interface provides a mechanism to control standby and restore operations and direct access to flash 32 201106371 and DDR memory. FPGA Architecture Figure 7 shows an example architecture of controller 110 that uses an embedded NIOS processor with an Avalon bus to connect IP blocks together (e.g., if the controller uses Altera) Processor (Altera JTAG) to implement). Changes to Altera's design include another I2C interface (NVDIMM I2C interface) for the new feature structure' updated GPIO and modified firmware. Power Description Module 1 00 power performs many system operations. It produces the voltage rails required by controller 110 and isolates module 110 from the system rail during a power failure. Figure 8 shows the structure of the power supply. During normal operation, transistor Q3 and diode D1 direct system power VDD and V3P3_AUX to the device on module 100. V3P3_AUX is an additional edge connector pin that powers the non-standard device on module 100. VDD is a standard modular power source that includes many edge connector pins. The VMEM is a power rail that supplies power to the module 100 device. The V3P3_AUX voltage rail is converted to the three additional power rails required by controller 110. In general, the V1P2 voltage rail and the VIP8 voltage rail supply most of the controller power, while the V2P5 rail powers the FPGA analog PLL and the V3P3 powers the FPGA digital I/O, oscillator, and SD/MMC+ card. The power loss is approached by the controller 110 via the edge connector signal or via the NVDIMM I2C interface. Once it occurs, controller 11() turns on Q1 and Q4 and turns off transistor Q3 to obtain 33 201106371 power from the EDL capacitor bank, which is connected to VBACK 171 and isolates the module from system power. This power switch has no contacts, such as, for example, the power conditioners ΙΠ, U2, U3, and U4 are configured in this condition to not cause the controller 110 to reset or cause the DRAM 120 to lose data. One way to switch between power supplies is to use a diode switch. Diode D1 prevents, for example, the EDL capacitor voltage from being fed back into the V3P3_AUX supply due to charge sharing between the "decoupled" capacitors on the two tracks. If a transistor is used, the EDL capacitor voltage can cause The power supply has a glitch (one of the capacitors is an EDL capacitor bank). Depending on the type of power loss event, controller 110 may be requested to stop using the EDL capacitor bank and be requested to return to system power. Again, this power switch has no contacts to prevent data loss or short-term pulse waveform interference on the power rail. Module 100 also charges with the VCHRG power supply and monitors the EDL capacitor bank. This voltage rail is specified for charging purposes only, and the module continues to operate normally even when VCHRG is not connected. In order to improve the power efficiency of the EDL capacitor bank, the minimum input power of U3 and U4 can be as low as possible. Because the standby operation must be completed before U3 or U4 reaches its specification limit, the minimum input specification limits the low end of the Fox Capacitor discharge curve. For this reason, the V3p3 regulator (1) is a boost regulator for the self-powered “power supply”, allowing the minimum ship discharge level to be as low as possible.

田級聯調節器影響電源之效率時,與電源相比, V奶及V2P5為相對較低功率。歸因於較低的最小放電S 34 201106371 位準’級聯V3P3調節器m之功率損失顯著低於改良之 EDL電容器組效率。在最小EDL電容器組電壓中減少iv 可在總系統功率中獲得1〇〇/0之改良,而級聯V3P3調節 器U1表示僅V3P3電源軌之效率之大致3〇%的下降(其 大致為總系統功率之5%-1 〇% )。 第1圖之系統支援具有不同數目之SD/MMC+記憶體When the cascading regulator affects the efficiency of the power supply, the V milk and V2P5 are relatively lower power than the power supply. The power loss due to the lower minimum discharge S 34 201106371 level 'cascade V3P3 regulator m is significantly lower than the improved EDL capacitor bank efficiency. Decreasing iv in the minimum EDL capacitor bank voltage yields an improvement of 1 〇〇/0 in total system power, while cascading V3P3 regulator U1 represents a roughly 3% reduction in efficiency of the V3P3 power rail only (which is roughly total) 5% - 〇% of system power). The system in Figure 1 supports a different number of SD/MMC+ memories.

裝置之DRAM裝置的四種組態。每一組態具有不同pCB 佈局,其允許電源設計經調整以支援不同負載。該電源 設計可處理無強制氣流之7(rc周圍(pcB )溫度。用於 電源設計之組件位於PCB之一侧上且具有4 mm之最大 同度。該電源採用僅僅3吋χ1吋之板空間,該空間包括 任何散熱器。 VDD系統軌係過度約朿的以使得在電晶體Q3處之電 壓降不引起VMEM電源超出下游裝置範圍。Q3電晶體 電壓降之電壓降預算已在任意百分比之標稱值下加以選 擇’但更好的效能是需要的。 圖式中所示之調節器具有功能且可組合成多輸出調節 器裝置。所有電壓軌具有監控器(「pG」訊號),該等監 控器可與調節器組合或組合成一單獨裝置。彻監控器 為單獨的,因為當ν3Ρ3—Αυχ軌為功率源時,v3p3監 控器監控V3P3軌。若不供應VCHRG,則V3P3調節器 不運仃’但此並非為一誤差,因為模組ι〇〇必須仍然持 、只操作(參見第2圖及第3圖)。為了增加EDL電容器 之忐里儲存效率,對調節器之最小容許輸入電壓應▲ 35 201106371 可能低。下表提供關於調節器之額外資訊。 调节器 最小输入 最大输入 注解 U1 V3P3 1.8V VBACK 1 &gt; 2 &gt; 3 U2 V2P5 2.8 V VBACK 3 U3 V1P8 2.8 V VBACK 3 U4V1P2 2.8 V VBACK 3 注解: 1. 所有調節器之最接近之淨空高度且限制EDL電容器 組之效能。 2. 當調節器在正常操作中閒置(電容負載)時之低靜 態電流要求。 3. 基於組態之規格。有關規格參見關於電壓軌之部 分。因為功率消耗仍為估計值,所以應研究接近於當前 規格之裝置。 功率電晶體負責將DRAM裝置移動至備用功率且使備 用功率與系統功率VDD及V3P3_AUX隔離。電容器充 電器U6處理功率損失且防止EDL電容器組經由充電器 放電回來。電晶體Q3及電晶體Q4為η-通道MOSFET 且由FPGA控制,該FPGA使用3.3V控制訊號移除對高 邊驅動器之需要。電晶體Q1為由FPGA直接控制之ρ-通道MOSFET或為具有某一高邊驅動機制之η-通道 MOSFET ( VCHRG電源或VCΑΡ電源無法正常地使用, ΓFour configurations of the DRAM device of the device. Each configuration has a different pCB layout that allows the power supply design to be adjusted to support different loads. The power supply is designed to handle 7 (cb) temperatures without forced airflow. The components used for power supply design are located on one side of the PCB and have a maximum squareness of 4 mm. The power supply uses only 3 吋χ 1 板 of board space. The space includes any heat sink. The VDD system rail is excessively high so that the voltage drop at the transistor Q3 does not cause the VMEM supply to exceed the downstream device range. The voltage drop of the Q3 transistor voltage drop is already at any percentage. Select the value to choose 'but better performance is needed. The regulators shown in the figure are functional and can be combined into a multi-output regulator device. All voltage rails have monitors ("pG" signals), etc. The monitor can be combined with the regulator or combined into a single device. The monitor is separate, because the v3p3 monitor monitors the V3P3 rail when ν3Ρ3—the rail is the power source. If the VCHRG is not supplied, the V3P3 regulator does not operate. But this is not an error, because the module must still be held and operated only (see Figure 2 and Figure 3). In order to increase the storage efficiency of the EDL capacitor, the most regulator The small allowable input voltage should be ▲ 35 201106371 may be low. The following table provides additional information about the regulator. Regulator minimum input maximum input note U1 V3P3 1.8V VBACK 1 &gt; 2 &gt; 3 U2 V2P5 2.8 V VBACK 3 U3 V1P8 2.8 V VBACK 3 U4V1P2 2.8 V VBACK 3 Notes: 1. The closest headroom of all regulators and limits the performance of the EDL capacitor bank. 2. Low quiescent current requirement when the regulator is idle during normal operation (capacitive load). Based on the configuration specifications. See the section on voltage rails for specifications. Since the power consumption is still an estimate, devices that are close to the current specifications should be studied. The power transistor is responsible for moving the DRAM device to the standby power and making the standby power System power VDD and V3P3_AUX are isolated. Capacitor charger U6 handles power loss and prevents EDL capacitor bank from being discharged back through the charger. Transistor Q3 and transistor Q4 are η-channel MOSFETs and are controlled by FPGA, which uses 3.3V control signal shift In addition to the need for high-side drivers, transistor Q1 is a ρ-channel MOSFET directly controlled by the FPGA or has a high-side drive Η-channel MOSFET (VCHRG power supply or VCΑΡ power supply cannot be used normally, Γ

除非模組持續在無此等電源之情況下操作)。在下表中A 36 201106371 出之電流具有某一超規格設計容限,因此接近於滿足該 規格之電晶體亦可用於此實例設計中。在功率損失事件 期間’該等電晶體僅操作直到EDL電容器組得以放電為 止(例如,大約2分鐘之最大值)。 電晶体 最大VDS 最大IDD 接通電阻 Q1 12 V 2700 mA 0.020 ohm 1 Q3 1.8 V 4000 mA 0.009 ohm 2 Q4 1.8 650 mA 0.056 ohm 2 注解: 1·基於VCAP ( 2.8v)之低電源規格及電源電壓之2% 容限。 2.基於電源之低電源電流規格及電源電壓之2%容限。 EDL電容器雷瀘 回到第2圖及第3圖,連接至VBACK 171之EDL電 容器210或備用電池31〇位於模組ι〇〇之外部,因為其 實體上較大且對溫度敏感。EDL電容器及電池之長期壽 命對周圍溫度以及電容器之操作電壓敏感。為了此設 a十’已選擇該操作電壓以使得電容器將耐受小於5〇。匸之 周圍/m度達至少1〇年。大體而言,該備用功率位於進氣 口附近或底盤之内的另一相對涼爽位置附近。備用控制 器220對備用功率源執行週期性健康狀態檢查以判定是 否該電源不再能夠持續且經由NVDIMM I2C介面報告狀 態。 EDL電容器之長期壽命展示溫度與操作電壓之相關二 37 201106371 如鋁電容器,溫度降低每10°C其壽命通常加倍。亦如鋁 電容器,該電容器對工作電壓指數敏感。麥克斯威技術 (Maxwell Technologies )使用熱-非熱(T-NT )模型以 小時模型化PC 10電容器之壽命·· L(V,T) 4.8901五-06 F79838 exp(- 9385.8、 T ' 其中T為凱式溫度且V為以伏特為單位之工作電壓。此 模型假定在電容器壽命之末期,電容已自其初始值減少 20%。在下表中呈現許多不同操作環境以展示PC 10電容 is之預期哥命. 描述 温度 °c 電壓工作 壽命 年 室温 25 2.50 18 周围(高電壓) 40 2.50 3.9 周围(降低電壓) 40 2.20 11 操作(高電壓) 50 2.50 1.6 操作(降低電壓) 50 1.95 11 伺服器(高電壓) 60 2.50 0.7 伺服器(降低電壓) 60 1.75 11 伺服器(高電壓) 70 2.50 0.3 伺服器(降低電壓) 70 1.60 10 如圖所示,該等電容器在低工作電壓下操作,其影響 電壓調節器之結構。在一並聯組態中,總電容為所有* 38 201106371 容器之和。然而,該放電電流在使用期間對於一小電壓 擺動較大。電壓調師器需要具有向.電流電感器之升壓開 關模式電源架構。在一串聯組態中’總電容為電容之倒 數之和的倒數’但總工作電壓已增加。問題包括使電容 之間的操作電壓平衡及使電容器之數目保持合理。為了 設計探索之目的,已選擇5(TC之操作溫度,從而允許設 a十使用75%之電谷器工作電壓達10年之壽命。此情況允 許超過在伺服器機房之内的企業電腦之共同35〇c外部周 圍溫度15 °c的溫度上升。另一目標環境將為一具有4〇 °C最大周圍溫度之電信NEBS標準,該最大周圍溫度可 在短期HVAC失效期間在設備框架之内增加至具有5。^ 更向溫度之50°C周圍溫度。每一短期溫度失效之長度經 定義兩達96小時’但每年不超過I〗天。 第9圖展示一外部EDl電容器備用電源架構,其為第 2圖之更加詳細版本。一些實施例提供電容器充電器, 例如,實施恒定電流、恒定電壓設計之電容器組充電器。 該充電器施加一恒定電流至電容器組直到該電容器組達 到其最終完全充電電壓為止。在彼時,該充電器施加一 恒定電壓以使該電容器組浮動。之所以施加該浮動電 壓,是因為EDL電容器具有一相當大之洩漏電流,其要 求該電容器組之内的平衡電阻器得以偏壓以確保該電容 器組之内的所有電容器具有等同之充電電壓。因為可為 每一組態最佳化電容器組之大小,所以浮動電壓可由' 電阻器程式化且精確i丄0/。。浮動電壓可自vCHRG (減 39 201106371 去某一淨空高度)設定至6伏特。該設計可利用LiOn 電池充電器技術(通常為單端初級電感轉換器或SEPIC 架構),但亦可使用其他技術。一些充電器需要一小型處 理器來監控充電週期且將充電器自恒定電流操作切換至 恒定電壓操作。為了此等設計,可根據演算法之複雜性 及與充電器設計之硬體連接性使用控制器11 〇之内的處 理器。下表提供與VCHRG及VCAP相關之資訊。 電源名稱 額定電壓 精確度 注解 VCHRG 12 V +/- 5% 1 VCAP 11.5 V +/-1% 2 注解: 1. 可視系統而定,例如,在某些實施例中,較寬之電 源範圍可具有優點。 2. 電容器組之標稱浮動電壓。在放電週期期間,調節 器持續操作直到電容器組放電至2.8V或更低為止。 電源名稱 最小電流 最大電流 注解 VCHRG 500 mA 1 VCAP 100 mA 2700 mA 2 注解: 1. 基於一實例客戶規格,充電器在所有狀況下之消耗 不超過最大規格。 2. 基於在70%效率下操作之U1、在80%效率下操作之 U3及在90%效率下操作之U4,在2.8V (操作範圍之低 40 201106371 端)下操作之VCAP具有一 2%之損失。 所描述之實施例亦包括用於備用電源之健康狀態監控 器。EDL電容器具有一有限之壽命’該壽命對工作電壓、 周園或儲存溫度及充電/放電週期(磨損)之數目敏感。 在一些應用中’僅工作電壓及周圍溫度為重要的,例如, 在預測週期之數目比規格小100倍之情況下^ EDL電容 器之哥命基於降低至一指定臨限值之電容(在大多數狀 況下’自初始電容之30%之下降)或增加至一指定臨限 值之電容之ESR(視產商而定,自初始ESR之30%至100% 之增加)。假定EDL電容器對應力之敏感性,該控制器 監控電容器之健康狀態。健康狀態監控器Uu (第9圖) 可根據實施與充電器U6組合。若電容器組經充電足以處 理功率損失,則健康狀態監控器將通知FPGa。大體而 5,充電器U6必須能夠在測試期間「斷開舉例而言, 在具有許多串聯電容器之實施例中,在每一電容器處之 電壓可知以監控且被送至訊號,該等訊號可經由備用電 源I2C匯流排得以檢查。此舉允許對已失效之特定電容 器之識別以及指示備用功率源已全部失效。 量測自通電(施加VCHRG功率)至當VCAP達到完 全充電狀態時之時間提供估計電容器組之健康狀態之一 方法。控制器110可報告是否模組1〇〇能夠處理功率損 失事件。若該電容器組從未達成一完全充電狀態,則系 統偵測此情形且宣告一錯誤。 為了里測電谷,將電谷器完全充電。首先將充電器斷 41 201106371 開且將®疋已知負載(電阻器)施加於該電容器組達 某一時段以將該電容器略微放電。大體而言,負載電流 對於防止ESR影響量測而言太小。若VCAp電源降至一 固定電壓以下’則該量測方法可如在控制$ 11〇上觸發 中斷之電壓比較器-樣簡單。若該中斷在測試期間得 以觸發,則電容太低且該電容器組未通過測試。一問題 在於因為功率^事件可能正好在自㈣試之後發生, 所以部分地放電電容器,其必須被考慮在能量預算之内。 為了將EDL電谷器電源之成本降至最低,將自我測試 智慧定位於模組110上。為了控制電源中之邏輯,使用 一至GPIO擴展器裝置之I2Ce因此,控制器ιι〇能夠控 制且監控備用電源模組(例如,2〇〇或)上之訊號。 如所論述,在某些狀況下,可能選擇電池要優於選擇 EDL電容器,因為電池比EDL電容器具有更高之能量密 度且因此需要較少體積及質量。例如,一單一 A123電池 在3.3V下之額定電流為23Ah,重7〇克且需要2立方 对。若模組100需要5瓦特達2分鐘,則所需能量僅為 〇-〇5Ah,其超過小於電池容量之數量級。用於攜帶型膝 上型電腦之大部分電池充電器具有備用電源所需之所有 必要功能。此外,大部分此等裝置具有用於監控、組態 及控制之積體I2C介面,該介面可由模組1〇〇使用。 資料格戎. 在單一 SD/MMC +卡操作中,SD卡(位元組〇至位今 組511)之第一區塊用於SPD及快閃組態之目的。sd_^ 42 201106371 中之剩餘區塊用於備用資料。在備用操作期間,將備用 資料以一連續位元組串流自第一 DRAM裝置讀取且寫入 至單一快閃記憶體中。備用控制器然後為其他DRAM裝 置重複該過程直到所有其他裝置之備用完成為止。在復 原操作期間,將資料以一連續位元組串流自單一快閃記 憶體讀取且寫入至第- DRAM裝置中。備用控制器然後 為其他DRAM裝置重複該過程直到所有其他裝置完成為 止。備用控制器串流使用一單一連續讀取/寫入操=將資 料讀取且寫入至快閃記憶體。此機制允許sd卡以最大 頻寬執行,但其具有副作肖,即若每—⑽趙備分影像 播案之長度並非為512位S組之倍數,則每—dram備 分影像檔案之排列可能會超過SE)卡區塊之邊界。 對於雙SD/MMC +卡操作,在槽〇中之犯卡(位元组 〇至位元組川)之第-區塊用於SPD及快閃組態之目 的。不使用在槽!中之另一犯卡之第一區塊且將其忽 略。在備用操作期間,將資料以一連續位元組串流自第 一 DRAM裝置讀取且同時寫入至兩個快閃記憶體中。藉 由發送所有偶次位元組至槽G且發送所有奇次位元組至 槽:來將資料串流分成兩個快閃寫入資料串流。備用控 制器然後為其他裳置重複該過程直到所有DRAM裝置完 成為止。在復原操作期間,自兩個快閃記憶體讀取資料, 該資料係經由位元組將該等資❹流交錯以形成寫入至 ⑽Μ中之翠一資料串流而組合。倩用控制器然 裝置重複該過程直到所有裝置完成為 43 201106371 止。備用控制器串流使用一單一連續讀取/寫入操作為每 一 SD卡將資料讀取且寫入至快閃記憶體。此機制允許 SD卡以最大頻寬執行’但其具有副作用即若每一 DRAM備分影像檔案之長度並非為i千拜之倍數,則每 一 dram備分影像檔案之排列可能會超過橫穿SD卡區 塊之邊界。 對於四線SD/MMC +卡操作,在槽〇中之sd卡(位元 組〇至位元組511)之第一區塊用於SPD及快閃組態之 目的。不使用在槽1中之另一 SD卡之第一區塊且將其 忽略。在備用操作期間,將資料以一連續位元組串流自 第一 DRAM裝置讀取且同時寫入至所有快閃記憶體中。 藉由發送每4個位元組至一介面來將資料串流分成四個 快閃寫入資料串流。備用控制器然後為其他裝置重複該 過程直到所有DRAM裝置完成為止。在復原操作期間, 自兩個快閃記憶體讀取資料,該資料係經由位元組將該 等資料串流交錯以形成寫入至該第一 DRAM中之單一資 料串流而組合。備用控制器然後為其他dram裝置重複 該過程直到所有裝置完成為止。備用控制器串流使用一 早一連續讀取/寫入操作為每一 SD卡將資料讀取且寫入 至快閃記憶體。此機制允許SD卡以最大頻寬執行,但 其具有副作用,即若每一 DRAM備分影像檔案之長度並 非為2千位70組之倍數,則每一 DRAM備分影像擋案之 排列可能會超過SD卡區塊之邊界。Unless the module continues to operate without such power supplies). In the table below, the current from A 36 201106371 has a certain over-spec design tolerance, so a transistor close to this specification can also be used in this example design. During the power loss event, the transistors operate only until the EDL capacitor bank is discharged (e.g., a maximum of about 2 minutes). Transistor Maximum VDS Maximum IDD On Resistor Q1 12 V 2700 mA 0.020 ohm 1 Q3 1.8 V 4000 mA 0.009 ohm 2 Q4 1.8 650 mA 0.056 ohm 2 Notes: 1. Low power supply specification and supply voltage based on VCAP (2.8v) 2% tolerance. 2. Based on the low power supply current specification of the power supply and the 2% tolerance of the power supply voltage. EDL Capacitor Thunder Returning to Figures 2 and 3, the EDL capacitor 210 or backup battery 31 connected to VBACK 171 is external to the module ι because it is physically large and temperature sensitive. The long-term life of EDL capacitors and batteries is sensitive to ambient temperature and the operating voltage of the capacitor. For this purpose, the operating voltage has been chosen such that the capacitor will withstand less than 5 〇. The surrounding area/m degree is at least 1 year. In general, the backup power is located near the air intake or near another relatively cool location within the chassis. The standby controller 220 performs a periodic health check on the alternate power source to determine if the power is no longer sustainable and reports status via the NVDIMM I2C interface. Long-term life of EDL capacitors shows the relationship between temperature and operating voltage. 2 201106371 For aluminum capacitors, the temperature is usually reduced by 10 times per 10 °C. Also like an aluminum capacitor, this capacitor is sensitive to the operating voltage index. Maxwell Technologies uses a thermal-non-thermal (T-NT) model to model the life of a PC 10 capacitor in hours. L(V,T) 4.89015-06 F79838 exp(- 9385.8, T ' where T It is the Kay temperature and V is the operating voltage in volts. This model assumes that the capacitor has been reduced by 20% from its initial value at the end of the capacitor life. Many different operating environments are presented in the table below to demonstrate the expected PC 10 capacitance is Destiny. Description Temperature °c Voltage Operating Life Year Room Temperature 25 2.50 18 Surrounding (High Voltage) 40 2.50 3.9 Surrounding (Reducing Voltage) 40 2.20 11 Operation (High Voltage) 50 2.50 1.6 Operation (Reducing Voltage) 50 1.95 11 Server ( High voltage) 60 2.50 0.7 Servo (lower voltage) 60 1.75 11 Servo (high voltage) 70 2.50 0.3 Servo (reduced voltage) 70 1.60 10 As shown in the figure, these capacitors operate at low operating voltage, the effect Structure of the voltage regulator. In a parallel configuration, the total capacitance is the sum of all * 38 201106371 containers. However, the discharge current is large for a small voltage swing during use. The voltage regulator requires a boost switch mode power supply architecture with a current inductor. In a series configuration, 'total capacitance is the reciprocal of the sum of the reciprocals of the capacitance' but the total operating voltage has increased. The problem involves making the capacitance between The operating voltage is balanced and the number of capacitors is kept reasonable. For the purpose of design exploration, 5 (TC operating temperature is selected, which allows a ten to use 75% of the electric barn operating voltage for a life of 10 years. This allows Exceeding the common external temperature of the enterprise computer in the server room, the external temperature of 15 °c rises at a temperature of 15 ° C. The other target environment will be a telecommunications NEBS standard with a maximum ambient temperature of 4 ° C, the maximum ambient temperature can be During the short-term HVAC failure, it is added within the equipment frame to an ambient temperature of 50 ° C with a temperature of 5. The temperature of each short-term temperature failure is defined by two to 96 hours 'but not more than one day per year. The figure shows an external ED capacitor back-up power architecture, which is a more detailed version of Figure 2. Some embodiments provide a capacitor charger, for example, to implement constant current, constant current Designed capacitor bank charger. The charger applies a constant current to the capacitor bank until the capacitor bank reaches its final full charge voltage. At that time, the charger applies a constant voltage to float the capacitor bank. This floating voltage is due to the fact that the EDL capacitor has a relatively large leakage current that requires the balancing resistor within the capacitor bank to be biased to ensure that all capacitors within the capacitor bank have equivalent charging voltages. Since the size of the capacitor bank can be optimized for each configuration, the floating voltage can be programmed by the 'resistor and accurate i丄0/. . The float voltage can be set from vCHRG (minus 39 201106371 to a headroom) to 6 volts. The design can utilize LiOn battery charger technology (usually a single-ended primary inductor converter or SEPIC architecture), but other techniques can be used. Some chargers require a small processor to monitor the charge cycle and switch the charger from constant current operation to constant voltage operation. For these designs, the processor within controller 11 can be used depending on the complexity of the algorithm and the hardware connectivity to the charger design. The following table provides information related to VCHRG and VCAP. Power Supply Name Rated Voltage Accuracy Annotation VCHRG 12 V +/- 5% 1 VCAP 11.5 V +/-1% 2 Notes: 1. Depending on the system, for example, in some embodiments, a wider power range may have advantage. 2. The nominal floating voltage of the capacitor bank. During the discharge cycle, the regulator continues to operate until the capacitor bank discharges to 2.8V or lower. Power Name Minimum Current Maximum Current Note VCHRG 500 mA 1 VCAP 100 mA 2700 mA 2 Notes: 1. Based on an example customer specification, the charger will not exceed the maximum specifications under all conditions. 2. Based on U1 operating at 70% efficiency, U3 operating at 80% efficiency, and U4 operating at 90% efficiency, VCAP operating at 2.8V (lower operating range 40 201106371) has a 2% Loss. The described embodiments also include a health status monitor for the backup power source. EDL capacitors have a limited lifetime. This lifetime is sensitive to the number of operating voltages, ambient or storage temperatures, and charge/discharge cycles (wear). In some applications, 'only the operating voltage and ambient temperature are important. For example, if the number of prediction cycles is 100 times smaller than the specification, the EDL capacitor's life is based on the capacitance reduced to a specified threshold (in most Under conditions, 'from a 30% drop in initial capacitance' or an increase in the ESR of a specified threshold (depending on the manufacturer, from 30% to 100% of the initial ESR). Assuming the sensitivity of the EDL capacitor to stress, the controller monitors the health of the capacitor. The health status monitor Uu (Fig. 9) can be combined with the charger U6 depending on the implementation. If the capacitor bank is charged enough to handle power loss, the health monitor will notify FPGa. In general, the charger U6 must be able to "break" during the test. In the embodiment with many series capacitors, the voltage at each capacitor can be monitored and sent to the signal. The backup power supply I2C busbar is checked. This allows identification of the specific capacitor that has failed and indicates that the backup power source has all failed. Measurement self-energization (applying VCHRG power) to provide an estimated capacitor when VCAP reaches full charge state One of the health status of the group. The controller 110 can report whether the module 1 can handle the power loss event. If the capacitor bank never reaches a fully charged state, the system detects the situation and announces an error. To measure the valley, fully charge the battery. First, turn off the charger 41 201106371 and apply a known load (resistor) to the capacitor bank for a certain period of time to slightly discharge the capacitor. In general, The load current is too small to prevent the ESR impact measurement. If the VCAp power supply falls below a fixed voltage, then the measurement method can be The voltage comparator that triggers the interrupt on control $11〇 is simple. If the interrupt is triggered during the test, the capacitor is too low and the capacitor bank fails the test. One problem is that the power^ event may be just right (4) This happens later, so partially discharge the capacitor, which must be considered within the energy budget. To minimize the cost of the EDL grid power supply, self-test intelligence is located on the module 110. To control the logic in the power supply, Using an I2Ce to a GPIO expander device, therefore, the controller can control and monitor the signal on the standby power module (eg, 2 or). As discussed, in some cases, it may be preferable to select a battery. EDL capacitors are chosen because batteries have a higher energy density than EDL capacitors and therefore require less volume and quality. For example, a single A123 battery has a current rating of 23 Ah at 3.3 V, weighs 7 gram and requires 2 cubic pairs. If the module 100 requires 5 watts for 2 minutes, the required energy is only 〇-〇5Ah, which exceeds the order of magnitude of the battery capacity. For portable laptops Most battery chargers in the brain have all the necessary functions required for backup power. In addition, most of these devices have an integrated I2C interface for monitoring, configuration, and control that can be used by the module.格戎. In a single SD/MMC + card operation, the first block of the SD card (bytes to the current group 511) is used for SPD and flash configuration purposes. sd_^ 42 201106371 remaining area The block is for alternate data. During the standby operation, the spare data is streamed from the first DRAM device in a continuous byte stream and written into a single flash memory. The standby controller then repeats the other DRAM device. The process continues until the standby of all other devices is completed. During the restore operation, the data is streamed from a single flash memory in a continuous byte and written to the first DRAM device. The standby controller then repeats the process for the other DRAM devices until all other devices have completed. The standby controller stream uses a single continuous read/write operation = reads and writes data to the flash memory. This mechanism allows the sd card to be executed at the maximum bandwidth, but it has a side effect, that is, if the length of each (10) Zhao backup video broadcast is not a multiple of the 512-bit S group, the per-dram backup video file arrangement It may exceed the boundaries of the SE) card block. For dual SD/MMC + card operations, the first block of the card in the slot (bytes to bytes) is used for SPD and flash configuration purposes. Not used in the slot! The other block in the card is the first block of the card and is ignored. During the standby operation, the data is streamed from the first DRAM device in a continuous byte stream and simultaneously written to the two flash memories. The data stream is split into two flash write data streams by sending all even bytes to slot G and sending all odd bytes to the slot: The standby controller then repeats the process for the other devices until all DRAM devices have finished. During the restore operation, data is read from the two flash memories, which are interleaved by the tuples to form a stream of data that is written to (10). The controller repeats the process with the controller until all devices are completed at 43 201106371. The standby controller stream reads and writes data to the flash memory for each SD card using a single continuous read/write operation. This mechanism allows the SD card to execute at the maximum bandwidth', but it has the side effect that if the length of each DRAM backup image file is not a multiple of i, then the arrangement of each dram backup image file may exceed the SD. The boundary of the card block. For four-wire SD/MMC + card operation, the first block of the sd card (bit group to byte 511) in the slot is used for SPD and flash configuration purposes. The first block of another SD card in slot 1 is not used and is ignored. During the standby operation, the data is streamed from the first DRAM device in a continuous byte group and simultaneously written to all of the flash memory. The data stream is divided into four flash write data streams by sending every 4 bytes to an interface. The standby controller then repeats the process for other devices until all DRAM devices are completed. During the restore operation, data is read from two flash memories that are serially interleaved via a byte to form a single stream of data written into the first DRAM for combination. The standby controller then repeats the process for the other dram devices until all devices are completed. The standby controller stream reads and writes data to the flash memory for each SD card using an early one continuous read/write operation. This mechanism allows the SD card to be executed at the maximum bandwidth, but it has the side effect that if the length of each DRAM backup image file is not a multiple of 2 kilobits and 70 groups, the arrangement of each DRAM backup image file may be Exceeds the boundary of the SD card block.

下表提供對於每一 SD/MMC卡且對於每一 MMC + +^S 44 201106371 別使用20百萬位元組/秒及40百萬位元組/秒之最壞狀況 寫入/讀取頻寬所計算的實例備用時間。該計算亦包括用 於更新快閃組態之最壞狀況SD/MMC+寫入間隔。 NYDIMM 大小 總资料 一個 SD/MMC 有 效介面(20百萬位 元组/秒) 两個SD/MMC有 效介面(40百萬位 元组/秒) 四個MMC+有 效介面(160百 萬位元组/秒) 256百萬位 元组 288百 萬位元 组 15秒 8秒 2秒 512百萬位 元组 576百 萬位元 组 30秒 15秒 4秒 1十億位元 组 1152 百 萬位元 组 58秒 30秒 8秒 2十億位元 组 2304 百 萬位元 组 116秒 59秒 16秒 預燒錄自我測試操作 DIMM 100亦包括自我測試功能性。可藉由使用在 FPGA上之PRODTEST輸入以及經由NV I2C介面觸發自 我測試。將該自我測試之結果永久儲存直到經由另一自 我測試序列抹除快閃記憶體為止。在一實例中,自我測 試:接收DDR介面(FET開關斷開);設定進行中之 SELFTEST測試位元高的;用0xA5填充DRAM記憶體; 用0x00填充快閃記憶體;接通進度LED ;將DRAM記 憶體備用至快閃記憶體;用0x00填充DRAM記憶體^ £ 45 201106371 自快閃記憶體復原DRAM記憶體;測試DRAM記憶體之 内容;及若偵測一錯誤,則設定一錯誤LED且將結果儲 存於快閃内。若未發現錯誤,則該過程返回以用0x00填 充快閃記憶體。自我測試方法可由第1圖之系統之各個 使用者定義,例如,該等方法可由客戶定義。 視覺指示器 尤其當在一系統之内使用多個模組1 〇〇時,在板上之 視覺指示允許診斷對於記憶體模組之系統問題。在以下 狀況下,一 LED之慢閃光為0.2 5秒之接通及1秒之斷 開,而一 LED之快閃光為0.5秒之接通及0.5秒之斷開。 該記憶體模組具有LED以指示備用操作正發生。假定一 些組態花費多分鐘來完成備用操作,則LED向維修技術 員指示在功率損失事件之後模組1 00或電容器組必須不 受干擾。 红色LED 描述 斷開 系统功率及電容器功率斷開或記憶體模组以正 常操作(「加電」或「閑置」狀態)操作。 若系统功率斷開,則可斷開記憶體模组及/或電 容器组。 慢閃光 「復原」操作(快閃至DRAM)操作進行中。 快閃光 「備用j操作(DRAM至快閃)操作進行中。 接通 復原操作完成,在轉换至「閑置j之前等待將 DRAM清除The table below provides the worst case write/read frequency for each SD/MMC card and for each MMC + +^S 44 201106371 using 20 megabytes/second and 40 megabytes/second Width calculated instance backup time. This calculation also includes the worst case SD/MMC+ write interval used to update the flash configuration. NYDIMM size total data one SD/MMC effective interface (20 megabytes/sec) Two SD/MMC effective interfaces (40 megabytes/sec) Four MMC+ effective interfaces (160 megabytes/ Seconds) 256 million bytes 288 million bytes 15 seconds 8 seconds 2 seconds 512 million bytes 576 million bytes 30 seconds 15 seconds 4 seconds 1 billion bytes 1152 million bytes 58 seconds 30 seconds 8 seconds 2 billion bytes 2304 million bytes 116 seconds 59 seconds 16 seconds pre-burning self-test operation DIMM 100 also includes self-test functionality. The self-test can be triggered by using the PRODTEST input on the FPGA and via the NV I2C interface. The results of the self-test are stored permanently until the flash memory is erased via another self-test sequence. In one example, self-test: receive DDR interface (FET switch off); set the SELFTEST test bit high in progress; fill DRAM memory with 0xA5; fill flash memory with 0x00; turn on progress LED; The DRAM memory is spared to the flash memory; the DRAM memory is filled with 0x00. ^ 45 201106371 The DRAM memory is restored from the flash memory; the content of the DRAM memory is tested; and if an error is detected, an error LED is set and Store the results in a flash. If no errors are found, the process returns to fill the flash memory with 0x00. The self-test method can be defined by various users of the system of Figure 1, for example, the methods can be defined by the customer. Visual Indicators Especially when multiple modules are used within a system, the visual indication on the board allows for the diagnosis of system problems with the memory module. Under the following conditions, the slow flash of an LED is 0.2 5 seconds on and 1 second off, and the fast flash of one LED is 0.5 second on and 0.5 second off. The memory module has LEDs to indicate that alternate operations are occurring. Assuming that some configurations take many minutes to complete the standby operation, the LED indicates to the service technician that the module 100 or capacitor bank must be undisturbed after the power loss event. Red LED Description Disconnect System power and capacitor power are disconnected or the memory module is operating normally ("Power On" or "Idle" state). If the system power is off, the memory module and/or the capacitor bank can be disconnected. Slow flash The "Reset" operation (flash to DRAM) operation is in progress. Fast flash "The standby j operation (DRAM to flash) operation is in progress. On The restore operation is completed, waiting for the DRAM to be cleared before switching to "idle j"

提供給備用電源一視覺指示以指示備用功率經正確連C L w 46 201106371 接、充電、完全充電或失效。舉例而言,此在具有多個 模組100之系統中可為有用的,有可能維修技術員必須 實體識別一已失效之模組或電容器以供替換。 绿色LED 描述 斷開 無備用電源經連接或模组開啟。 慢閃光 備用電源正充電》 快閃光 備用電源未通過自我測试》 接通 備用電源經完全充電。 在預燒測試期間亦使用視覺 伯不 JLtU 〇若自 执咧哥中 之任一者在預燒測試期間失效,則紅色LED鎖上。為證 明自我測試操作正在進行中,綠色LED將在自我測試期 間閃光。當測試進行時,綠色LED在每一測試週期(寫 /讀取DRAM及續寫快閃記憶體)之末期雙態觸發。· 舉例而言,外部系統可包括各種類型之系統,例如, 主機、伺服器、用戶端及各種系統之網路等。揮發性記 憶體120可包括(例如)動態隨機存取記憶體(DRAM)、 Z-RAM®、靜態隨機存取記憶體(sr R:TTRAM)等。特發性記'«1料包括(例如 唯…己憶體(ROM)、快閃記憶體、鐵電 可程式化金屬化單元(ρΜΓ、 平疋〔PMC )等。在某些實施例中,備 用電源200可包括為DIMM 1〇〇之 t邛为,而在其他實施 例中,備用電源2〇〇 T A f j馮(例如)一外部裝置。非揮發 性記憶體130及揮發性 r&gt;_ 记隐體120可為各種大小且不必‘: 47 201106371 為相同大小《在備用操作期間,各種實施例可將儲存於 揮發性記憶體120中之所有資料移動至非揮發性記憶體 13〇或儲存於揮發性記憶體120中之資料之某一子集。 在自非揮發性記憶體uo至揮發性記憶體12〇之復原操 作期間亦同樣如此。第1圖之某些實施例不包括第i圖 之每一組件及/或功能。舉例而言,某些實施例不包括隔 離邏輯140,某些實施例不將SPD資訊儲存於揮發性記 憶體120中,某些實施例將儲存於揮發性記憶體12〇中 之所有資料同時移動至非揮發性記憶體丨3〇 (例如,同 時所有DRAM裝置)’且某些實施例將儲存於揮發性記 憶體120中之資料以組塊移動至非揮發性記憶體13〇, 例如’—次一個DRAM裝置。 控制器11 〇可(例如)使用各種FPGA、控制器、處理 器及/或記憶體來實施。在另一實施例中,非揮發性控制 器11〇為一特殊應用積體電路(ASIC),其包括控制器内 部之一快閃晶片介面。藉由將快閃晶片介面併入 控制器,將不使用外部SD/MMC+控制器,且可改良保存 /復原效能《在另一實施例中,揮發性記憶體i2〇可藉由 使用各種起始位址及結束位址而分成各種區段。此等位 址可藉由經由NVDIMMI2C匯流排設定控制器11〇中之 暫存器來組態。由此等位址定義之哪些區段(且以何次 序)應得以備用及/或復原亦可藉由設定控制器11〇中之 暫存器而可控制《雖然本發明已在上述說明性實施例中 T . 加以描述及說明,但應瞭解本揭示案已僅以實例進行說 48 201106371 明’且可在不脫離本發明之精神及範疇的情況下進行本 發明之實施例之細節之許多變化,本發明之精神及範疇 僅受以下申請專利範圍限制。 【圖式簡單說明】 第1圖為一雙行記憶體模組(DIMM)之方塊圖。 第2圖為基於電容器之備用電源之方塊圖,該備用電 源可用以在電源故障之情況下供電第1圖之組件。 第3圖為基於電池之備用電源之方塊圖,該備用電源 可用以在電源故障之情況下供電第1圖之組件。 第4圖為圖示第i圖中所圖示之mMM之實例狀態及 轉換的方塊圖。 第5圖展示在第i圖中所圖示之mMM之内部積體電 路(I2C)介面的各種讀取操作時序圖。 第6圖展示在第1圖中所圖示之之内部積體電 路(I2C)介面的各種寫入操作時序圖。 第7圖展示在第1圖中所圖示之DIMM之架構。 第8圖展不用以供電在第!圖中所圖示之以讀之電 源的架構》 第9圖為第2圖之備用電源之更詳細圖示。 【主要元件符號說明】 100 雙行記憶體模組(DIMM) Γ 49 201106371 105 介面 110 控制器 115 FPGA可程式唯讀記憶體 120 揮發性記憶體 121 DRAM 晶片 122 DRAM 晶片 130 非揮發性記憶體 131 快閃晶片/快閃裝置 132 快閃裝置 140 隔離邏輯 150 訊號A visual indication is provided to the backup power source to indicate that the backup power is properly connected, charged, fully charged, or disabled. For example, this may be useful in systems having multiple modules 100, and it is possible that a service technician must physically identify a failed module or capacitor for replacement. Green LED Description Disconnect No backup power is connected or the module is turned on. Slow flash Backup power is charging" Fast flash Backup power fails self-test" On The backup power is fully charged. Vision is also used during the burn-in test. JLtU 〇 If any of the self-defense brothers fails during the burn-in test, the red LED is locked. To demonstrate that the self-test is in progress, the green LED will flash during the self-test. When the test is in progress, the green LED triggers at the end of each test cycle (write/read DRAM and resume flash memory). • For example, external systems can include various types of systems, such as hosts, servers, clients, and networks of various systems. The volatile memory 120 may include, for example, dynamic random access memory (DRAM), Z-RAM®, static random access memory (sr R: TTRAM), and the like. The idiosyncratic '«1 material includes (for example, only a memory (ROM), a flash memory, a ferroelectric programmable metallization unit (ρΜΓ, 疋 疋 [PMC], etc.). In some embodiments, The backup power supply 200 can include a DIMM, and in other embodiments, the backup power supply 2〇〇TA fjvon, for example, an external device. Non-volatile memory 130 and volatile r&gt; The hidden body 120 can be of various sizes and does not have to be ': 47 201106371 is the same size. During the standby operation, various embodiments can move all the data stored in the volatile memory 120 to the non-volatile memory 13 or store it in A subset of the data in the volatile memory 120. The same is true during the recovery operation from the non-volatile memory uo to the volatile memory 12〇. Some embodiments of Figure 1 do not include the i-th image. Each component and/or function. For example, some embodiments do not include isolation logic 140. Some embodiments do not store SPD information in volatile memory 120, and some embodiments store volatile memory. Simultaneous shift of all data in volume 12〇 To non-volatile memory 〇3〇 (eg, all DRAM devices at the same time)' and some embodiments move the data stored in volatile memory 120 to non-volatile memory 13〇, eg, ' The next DRAM device. The controller 11 can be implemented, for example, using various FPGAs, controllers, processors, and/or memories. In another embodiment, the non-volatile controller 11 is a special application integrated body. An integrated circuit (ASIC) that includes a flash chip interface inside the controller. By incorporating the flash die interface into the controller, the external SD/MMC+ controller will not be used and the save/restore performance can be improved. In an embodiment, the volatile memory i2 can be divided into various segments by using various start addresses and end addresses. The addresses can be set by the NVDIMMI2C bus set controller 11 To configure, which segments (and in what order) of the address definitions should be spared and/or restored can also be controlled by setting the register in the controller 11" although the invention has been In the above illustrative embodiment, T. The description and illustrations are to be understood as being limited to the details of the details of the embodiments of the present invention, and the spirit of the present invention may be made without departing from the spirit and scope of the invention. The scope is only limited by the scope of the following patent application. [Simple diagram of the diagram] Figure 1 is a block diagram of a two-line memory module (DIMM). Figure 2 is a block diagram of a capacitor-based backup power supply. It can be used to power the components of Figure 1 in the event of a power failure. Figure 3 is a block diagram of a battery-based backup power supply that can be used to power the components of Figure 1 in the event of a power failure. Figure 4 is a block diagram showing an example state and transition of the mMM illustrated in Figure i. Fig. 5 is a timing chart showing various read operations of the internal integrated circuit (I2C) interface of the mMM illustrated in Fig. i. Fig. 6 is a timing chart showing various write operations of the internal integrated circuit (I2C) interface illustrated in Fig. 1. Figure 7 shows the architecture of the DIMM illustrated in Figure 1. The 8th exhibition does not need to be powered in the first! The architecture of the power source for reading as illustrated in the figure is a more detailed illustration of the backup power supply of Figure 2. [Main component symbol description] 100 dual-line memory module (DIMM) Γ 49 201106371 105 interface 110 controller 115 FPGA programmable read-only memory 120 volatile memory 121 DRAM chip 122 DRAM chip 130 non-volatile memory 131 Flash chip/flash device 132 flash device 140 isolation logic 150 signal

161 PLL 162 暫存器 163 FET匯流排開關/FET多工器 164 FET開關/FET多工器 170 介面線/訊號161 PLL 162 Register 163 FET Bus Switch / FET Multiplexer 164 FET Switch / FET Multiplexer 170 Interface Line / Signal

171 VBACK 200 備用電源/備用功率源/備用電源模組 210 EDL電容器 220 備用控制器/充電器及監控器 300 備用電源模組 310 備用電池 201106371 Q3 電晶體 Q4 電晶體 U1 電源調節器 Ull 健康狀態監控器 U2 電源調節器 U3 電源調節器 U4 電源調節器 U6 充電器 51171 VBACK 200 Backup Power / Standby Power Source / Standby Power Module 210 EDL Capacitor 220 Standby Controller / Charger & Monitor 300 Backup Power Module 310 Backup Battery 201106371 Q3 Transistor Q4 Transistor U1 Power Regulator Ull Health Status Monitoring U2 Power Regulator U3 Power Regulator U4 Power Regulator U6 Charger 51

Claims (1)

201106371 七、申請專利範圍: ι_ 一種與一主功率源一起使用之記憶體裝置,該記憶體 裝置包含: 揮發14 3己憶體,其包括複數個記憶體部分,該複數個記 憶體部分中之每-者具有-正常操作狀態及一低功率狀 態; 一介面,其用於連接至一備用功率源,該備用功率源經 配置以在來自該主功率源之一功率損失發生後即臨時供 電至該揮發性記憶體; 一非揮發性記憶體;及 一控制器,其與該揮發性記憶體及該非揮發性記憶體通 訊且經程式化以偵測該主功率源之一功率損失,並回應 於該功率損失,將資料以每次至少一個記憶體部分之方 式自該揮發性記憶體移動至該非揮發性記憶體,且在將 資料自該揮發性記憶體移動至該非揮發性記憶體時,將 正在被移出資料之該等記憶體部分置於一正常操作狀 態’且將非正在被移出資料之該等記憶體部分置於一低 功率狀態。 2.如申請專利範圍第1項之記憶體裝置,其進一步包含 一裝置就緒輸出且其中該控制器進一步經程式化以: (a )判定是否該備用功率源在將資料自該揮發性記憶體 移動至該非揮發性記憶體之該移動期間具有足夠功率以 供電至該記憶體裝置; [ 52 201106371 (b)判定是否該非揮發性記憶體準備接受儲存於該揮發 性記憶體中之該資料;及 基於(a)及(b),驅動該裝置就緒輸出。 3.如申請專利範圍第1項之記憶體裝置,其中資料自該 揮發性記憶體至該非揮發性記憶體之該移動及對該等部 分之該等狀態之該控制係基於可將資料移動至該非揮發 性記憶體中之一速率。 4·如申請專利範圍第1項之記憶體裝置,其中該揮發性 記憶體為一動態隨機存取記憶體,該等部分為動態隨機 存取記憶體晶片,且該低功率狀態為自我再新。 5. 如申請專利範圍第1項之記憶體裝置,其中該非揮發 性記憶體包含電子可抹除可程式化唯讀記憶體 (EEPROMs)。 6. 如申請專利範圍第丨項之記憶體裝置,其中該控制器 包含一特殊應用積體電路(ASIC)及一場可程式化閘陣 列(FPGA)中至少一者。 7. 如申請專利範圍第1項之記憶體裝置,其中來自該備 用功率源之功率主要來自一電容器。 53 201106371 8.如申請專利範圍第1項之記憶體裝置’其中來自該備 用功率源之功率主要來自一超級電容器。 9·如申請專利範圍第1項之記憶體裝置,其進一步包含 一輸出健康訊號及一健康狀態監控器,該監控器監控該 備用功率源之健康狀態,且在該備用功率源無足夠功率 來提供備用功率之情況下使該輸出健康訊號被驅動。 10.如申請專利範圍第!項之記憶體裝置,其中該控制器 進一步經程式化以偵測該主功率源之一功率復原,且回 應於該功率復原將資料自該非揮發性記憶體移動至該揮 發性記憶體。 11.如申請專利範圍第丨項之記憶體裝置,其中在該非揮 發性3己憶體中包含四個快閃記憶體晶片。 1 Δ 偵測一揮發性記憶體之一主功率源之一電源故障,該 發性記憶體包含複數個記憶體部分,該複數個記憶體 分中之每-者具有-正常操作狀態及一低功率狀態; 回應於偵測該電源故障且當該揮發性記憶體由一備用 率源供電時: 以每次至少一個記憶體部分之方式將儲存於該揮 性記憶體中之資料移動至—非揮發性記憶體;及 54 201106371 虽將資料自該揮發性記憶體移動至該非揮發性記憶 體時,將正在移出資料之記憶體部分置於一正常操作狀 t且將非正在移出資料之記憶體部分置於一低功率狀 離。 13. 如申請專利範圍第12項之方法,其進一步包含以下 步驟: (a)判定是否該備用功率源在資料自該揮發性記憶體移 動至該非揮發性記憶體之該移動期間具有足夠功率以供 電至該揮發性記憶體; (M判定是否該非揮發性記憶體準備接受儲存於該揮發 性記憶體中之該資料;及 基於(a)及(b),驅動一裝置就緒輸出。 14. 如申請專利範圍第12項之方法,其中資料自該揮發 性圮憶體至該非揮發性記憶體之該移動之步驟及該等部 分之該等狀態之該控制之步驟係基於可將資料移動至該 非揮發性記憶體中之一速率。 1 5.如申請專利範圍第12項之方法,其中該揮發性記憶 體為一動態隨機存取記憶體,該等部分為動態隨機存取 s己憶體晶片’且該低功率狀態為自我再新。 16.如申凊專利範圍第丨2項之方法,其中該非揮發性記 55 201106371 憶體包含電子可抹除可程式化唯讀記憶體咖叫 17.如申請專利範圍第12項之方法,其中來自該備用功 率源之功率主要來自一電容器。 18.如申請專利範園第12項之方沬 万去,其中來自該備用功 率源之功率主要來自一超級電容器。 步包含以下 19.如申請專利範圍第12項之方法其進一 步驟: 監控該備用功率源之健康狀態;及 在該備用功率源無足夠功率來提供備用功率之情況下 驅動一輸出健康訊號。 2〇.如申請專利範圍帛12g之方法,其進一步包含以下 步驟: 偵測該主功率源之一功率復原;及 回應於該功率復原將資料自該非揮發性記憶體移動至該 揮發性記憶體。 21. —種與一主功率源一起使用之記憶體裝置,該記憶體 裝置包含: 揮發性記憶體,其包括複數個記憶體區段,該複數個哼 憶體區段由至少一個起始位址及一相應至少一個結束位 56 201106371 址定義; 一介面,其用於連接至一備用功率源,該備用功率源經 配置以在來自該主功率源之一功率損失發生後即後臨時 供電至該揮發性記憶體; 一非揮發性記憶體;及 一控制器,其與該揮發性記憶體及該非揮發性記憶體通 訊且經程式化以偵測該主功率源之一功率損失,且基於 該至少一個起始位址及該至少一個結束位址而回應於該 功率損失而將資料自該揮發性記憶體移動至該非揮發性 記憶體。 22. 如申請專利範圍第21項之記憶體裝置,其中僅存在 一至少一個起始位址且僅存在一至少一個結束位址,且 其中資料自該揮發性記憶體移動至該非揮發性記憶體之 該移動包含僅移動儲存於該一起始位址與一結束位址之 間的位址處之該揮發性記憶體中之資料。 23. 如申請專利範圍第22項之記憶體裝置,其中儲存於 該一起始位址與一結束位址之間的位址處之該揮發性記 憶體中之資料為關鍵資料及目錄資料中至少一者。 24. 如申請專利範圍第22項之記憶體裝置,其中非儲存 於該一起始位址與一結束位址之間的位址處之該揮發性 記憶體中之資料為可執行資料。 [ 57 201106371 25.如申請專利範圍第22項之記憶體裝置,其中該控制 器進一步經程式化以偵測該主功率源之一且回應於該功 率復原: 拭除並非在該一起始位址與一結束位址之間的該揮發性 記憶體之一區段;及 將資料自該非揮發性記憶體移動至該一起始位址與一結 束位址之間的該揮發性記憶體之一區段。 26.如申請專利範圍第25項之記憶體裝置,其中該拭除 包含歸零。201106371 VII. Patent application scope: ι_ A memory device used together with a main power source, the memory device comprising: a volatile 14 3 memory, comprising a plurality of memory portions, wherein the plurality of memory portions Each having a normal operating state and a low power state; an interface for connecting to a standby power source configured to temporarily supply power after a power loss from one of the primary power sources occurs The volatile memory; a non-volatile memory; and a controller that communicates with the volatile memory and the non-volatile memory and is programmed to detect a power loss of the primary power source and responds For the power loss, the data is moved from the volatile memory to the non-volatile memory in at least one memory portion at a time, and when the data is moved from the volatile memory to the non-volatile memory, Putting the portions of the memory that are being removed from the data into a normal operating state' and placing the portions of the memory that are not being removed from the data Power state. 2. The memory device of claim 1, further comprising a device ready output and wherein the controller is further programmed to: (a) determine whether the alternate power source is from the volatile memory Moving to the non-volatile memory during the movement has sufficient power to supply power to the memory device; [52 201106371 (b) determining whether the non-volatile memory is ready to receive the data stored in the volatile memory; Based on (a) and (b), the device ready output is driven. 3. The memory device of claim 1, wherein the movement of the data from the volatile memory to the non-volatile memory and the control of the state of the portion are based on moving the data to One of the rates in the non-volatile memory. 4. The memory device of claim 1, wherein the volatile memory is a dynamic random access memory, the portions are dynamic random access memory chips, and the low power state is self-renewed. . 5. The memory device of claim 1, wherein the non-volatile memory comprises electronic erasable programmable read only memory (EEPROMs). 6. The memory device of claim 3, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable gate array (FPGA). 7. The memory device of claim 1, wherein the power from the alternate power source is derived primarily from a capacitor. 53 201106371 8. The memory device of claim 1 wherein the power from the alternate power source is primarily from a supercapacitor. 9. The memory device of claim 1, further comprising an output health signal and a health status monitor, the monitor monitoring a health status of the standby power source, and the standby power source does not have sufficient power The output health signal is driven in the case of providing standby power. 10. If you apply for a patent scope! The memory device of the item, wherein the controller is further programmed to detect power restoration of one of the primary power sources, and in response to the power restoration, moving data from the non-volatile memory to the volatile memory. 11. The memory device of claim 3, wherein the non-volatile 3 memory is comprised of four flash memory chips. 1 Δ detecting a power failure of one of the main power sources of a volatile memory, the active memory comprising a plurality of memory portions, each of the plurality of memory segments having a normal operating state and a low Power state; in response to detecting the power failure and when the volatile memory is powered by a spare rate source: moving the data stored in the volatile memory to at least one memory portion at a time Volatile memory; and 54 201106371 Although the data is moved from the volatile memory to the non-volatile memory, the memory portion of the data being removed is placed in a normal operation state t and the memory that is not being removed from the data is stored. Part is placed in a low power state. 13. The method of claim 12, further comprising the steps of: (a) determining whether the alternate power source has sufficient power during the movement of the data from the volatile memory to the non-volatile memory Powering to the volatile memory; (M determining whether the non-volatile memory is ready to receive the data stored in the volatile memory; and driving a device ready output based on (a) and (b). The method of claim 12, wherein the step of controlling the movement of the volatile memory from the volatile memory to the non-volatile memory and the controlling of the states of the portions are based on moving the data to the non- The method of claim 12, wherein the volatile memory is a dynamic random access memory, and the portion is a dynamic random access memory chip. 'And the low power state is self-renewed. 16. The method of claim 2, wherein the non-volatile record 55 201106371 contains an electronic erasable program The method of claim 12, wherein the power from the backup power source is mainly from a capacitor. 18. The power of the backup power source is mainly from a supercapacitor. The steps include the following 19. The method of claim 12, wherein the method further improves: monitoring the health status of the standby power source; and having insufficient power to provide backup in the standby power source In the case of power, an output health signal is driven. 2〇. The method of claim 12G further includes the steps of: detecting power recovery of one of the primary power sources; and responding to the power recovery from the non-volatile material The memory moves to the volatile memory. 21. A memory device for use with a primary power source, the memory device comprising: a volatile memory comprising a plurality of memory segments, the plurality of The memory segment is defined by at least one start address and a corresponding at least one end bit 56 201106371; an interface, Connected to an alternate power source configured to temporarily supply power to the volatile memory after a power loss from one of the primary power sources occurs; a non-volatile memory; and a controller, Communicating with the volatile memory and the non-volatile memory and programming to detect a power loss of the primary power source, and responding to the at least one start address and the at least one end address The data device is moved from the volatile memory to the non-volatile memory. 22. The memory device of claim 21, wherein there is only one at least one start address and only one at least one end a location, wherein the movement of the data from the volatile memory to the non-volatile memory comprises moving only the volatile memory stored at an address between the start address and an end address Information. 23. The memory device of claim 22, wherein the information stored in the volatile memory at the address between the start address and an end address is at least in the key data and the directory data. One. 24. The memory device of claim 22, wherein the data in the volatile memory that is not stored at the address between the start address and an end address is executable data. [57201106371 25. The memory device of claim 22, wherein the controller is further programmed to detect one of the primary power sources and respond to the power restoration: the erasure is not at the start address a segment of the volatile memory with an end address; and moving the data from the non-volatile memory to a region of the volatile memory between the start address and an end address segment. 26. The memory device of claim 25, wherein the erasing comprises zeroing. 該移動之前得以執行。 28.如申請專利範圍第 含: —位址記憶體,其用戈 2!項之記憶體裝置,其進一步包 少一個結束位址;及 其用於儲存該至少一個起始位址及該至This movement was performed before. 28. The scope of the patent application includes: - address memory, which uses the memory device of the item 2!, which further includes an end address; and it is used to store the at least one start address and the 該至少一個結束位址。 29.如申請專利範圍第28 項之記憶體裝置,其中該位址 58 201106371 記憶體包含暫存器,該組態資料匯流排包含一内部整合 電路(Inter-integrated circuit, I2C)匯流排’且該存取包含 讀取及寫入。 3 0.如申請專利範圍第21項之記憶體裝置’其中該非揮 發性記憶體包含電子可抹除可程式化唯讀記憶體 (EEPROMs )。 3 1.如申請專利範圍第21項之記憶體裝置,其中該控制 器包含一特殊應用積體電路(ASIC )及一場可程式化閘 陣列(FPGA)中至少一者。 32. 如申請專利範圍第2丨項之記憶體裝置’其中來自該 備用功率源之功率主要來自一電容器。 33. 如申請專利範圍第21項之記憶體裝置’其中來自該 備用功率源之功率主要來自一超級電容器。 34. 一種方法,其包含以下步驟: 偵測一揮發性記憶體之一主功率源之一電源故障,該揮 發性記憶體包含複數個記憶體區段,該複數個記憶體區 段由至少一個起始位址及一相應至少一個結束位址定 義;及 Γ 回應於俄測該電源故障且當用一備用功率源供電至該揮 59 201106371 發性記憶體時:基於該至少一個起始位址及至少一個結 束位址而將儲存於該揮發性記憶體中之資料移動至一非 揮發性記憶體。 35. 如申請專利範圍第34項之方法,其中僅存在一至少 一個起始位址且僅存在一至少—個結束位址,且其中資 料自該揮發性記憶體移動至該非揮發性記憶體之該移動 之步驟包含僅移動儲存於該一起始位址與一結束位址之 間的位址處之該揮發性記憶體中之資料。 36. 如申請專利範圍第35項之方法,其進一步包含以下 步驟: ㈣該主功率源之—功率復原且回應於該功率復原: 拭除並非在該一起始位址與一結束位址之間的該揮 發性記憶體之一區段;及 將資料自該非揮發性記憶體移動至該—起始位址與 一結束位址之間的該揮發性記憶體之一區段。 ^ 37·如申請專利範圍第36項之方法甘士斗u人 ^ 喟义万法,其中該拭除包含歸 方法’其中儲存於該一起 址處之該揮發性記憶體中 中至少一者,且其中非^ 38.如申請專利範圍第35項之 始位址與一結束位址之間的位 之資料為關鍵資料及目錄資料 60 201106371 存於該一把始位III-The at least one ending address. 29. The memory device of claim 28, wherein the address 58 201106371 memory comprises a register, the configuration data bus comprising an inter-integrated circuit (I2C) bus bar and This access contains both read and write. 30. The memory device of claim 21, wherein the non-volatile memory comprises electronic erasable programmable read only memory (EEPROMs). 3. The memory device of claim 21, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable gate array (FPGA). 32. The memory device of claim 2, wherein the power from the alternate power source is primarily from a capacitor. 33. The memory device of claim 21, wherein the power from the alternate power source is primarily from a supercapacitor. 34. A method comprising the steps of: detecting a power failure of a primary power source of a volatile memory, the volatile memory comprising a plurality of memory segments, the plurality of memory segments being at least one a start address and a corresponding at least one end address definition; and 回应 in response to the Russian test of the power failure and when powered by a backup power source to the 59 201106371 hair memory: based on the at least one start address And storing at least one end address to move the data stored in the volatile memory to a non-volatile memory. 35. The method of claim 34, wherein there is only one at least one start address and only one at least one end address exists, and wherein data is moved from the volatile memory to the non-volatile memory The step of moving includes moving only the data in the volatile memory stored at the address between the start address and an end address. 36. The method of claim 35, further comprising the steps of: (d) power recovery of the primary power source and in response to the power restoration: the erasure is not between the start address and an end address And a segment of the volatile memory; and moving the data from the non-volatile memory to the segment of the volatile memory between the start address and an end address. ^ 37. The method of claim 36, the method of claim 36, wherein the erase includes at least one of the volatile memory stored in the same location, and wherein Non-^ 38. If the information between the starting address and the ending address of Article 35 of the patent application scope is the key information and catalogue information 60 201106371 is stored in the initial position III- 束位址之間的位址處之該揮發 34項之方法,其進一步包含以下a method of volatilizing 34 items at an address between the bundle addresses, which further comprises the following 39.如申請專利範圍第 步驟:基於來自一主i 40.如申請專利範圍第 統之該輸入係接收自一 39項之方法,其中來自該主機系 I2C匯流排。 41.—種裝置’其包含: 非揮發性記憶體; 控制器,其與該非揮發性記憶體通訊,其中該控制器 主功率源之一功率損 經程式化以在一揮發性記憶體之一 失發生後即將資料自該揮發性記憶體移動至該非揮發性 記憶體;及 一備用電源,其在該主功率源之該功率損失發生後即臨 時供電至該控制器及該揮發性記憶體,該備用電源包含: 一電容器組’其具有一輸出端子; 一至一電壓源之連接,該電壓源將該電容器組充電 至一正常操作電壓;及 一健康狀態監控器,其經程式化以基於該電容器組 之該輸出端子處之一電壓產生一故障訊號。 61 201106371 42. 如申請專利範圍第41項之記憶體裝置,其中該健康 狀態監控器進一步經程式化以: 中斷該電壓源對該電容器組之該充電; 當該充電被中斷時,對該電容器組之所有該輸出端 子施加一預定電阻達一預定時段; 在該預定時段期間監控該電容器組之該輪出端子以 判定是否該輸出端子處之該電壓降至一預定臨限電壓之 下;及 若該輸出端子處之該電壓在該預定時段之内降至該 預定臨限電壓之下,則產生該故障訊號。 43. 如申請專利範圍第42項之記憶體裝置其中該預定 電阻及預定時間經判定以保持所有該電容器之該輸出端 子之該電塵向於一必要操作電壓。 44. 如申請專利範圍第41項之記憶體裝置,其中該電容 器組包含複數個並聯之電容器。 45. 如申請專利範圍第44項之記憶體裝置,其進—步包 含在該複數個電容器之每一電容器處之一電容器位準端 子,且其中該健康狀態監控器進一步經程式化以基於該 等電容器位準端子中之任一者處之一電壓產生該故障訊 號。 62 201106371 46. 如申請專利範圍第4i項之記憶體裝置,其進一步包 含: 一處理器’其與該揮發性記憶體及一永久儲存系統通 訊,其中若該控制器產生該故障訊號,則該處理器經程 式化以將該資料自該揮發性記憶體移動至該永久儲存系 統。 47. 如申請專利範圍第46項之記憶體裝置,其中在該永 久儲存系統中包含一硬碟。 48. 如申請專利範圍第41項之記憶體裝置,其中該揮發 性記憶體包含一動態隨機存取記憶體。 49. 如申請專利範圍第41項之記憶體裝置,其中該非揮 發性記憶體包含電子可抹除可程式化唯讀記憶體 (EEPR〇Ms)〇 5〇.如申請專利範圍第41項之記憶體裝置,其中該控制 器包含一特殊應用積體電路(ASIC)及一場可程式化間 陣列(FPGA)中至少一者。 5 I如申請專利範圍第41項之記憶體裝置,其中該控制 器進一步經程式化以在該主功率源之一功率復原發生後 即將資料自該非揮發性記憶體移動至該揮發性記憶體: 63 201106371 52.如申请專利範圍第41項之記憶體裝置,其中該控制 器與該備用電源經由一組態資料匯流排通訊。: 5 3.如申印專利範圍第41項之記憶體裝置,其中該組態 資料匯流排為一 I2C匯流排。 54. —種方法,其包含以下步驟: 中斷-電壓源對一電容器組之充電,該電容器組經配置 以提供臨時功率予—控制器,該控制器經程式化以在一 揮發性記憶體之一主功率源之一功率損失發生後即將資 料自該揮發性記憶體移動至一非揮發性記憶體,且在一 主功率源之該功率損失發生後即供電予一揮發性記憶 體; * 當該充電被中斷時,對該電容器組之所有輸出端子施加 一預定電阻達一預定時段; 在該預定時段期間監控該電容器組之該輸出端子以判定 是否該輸出端子處之電壓降至一預定臨限電壓之下;及 若在該輸出端子處之該電壓在該預定時段之内降至該預 定臨限電壓之下,則產生一故障訊號。 5 5.如申請專利範圍第54項之方法,其中該預定電阻及 預定時間經判定以保持該電容器之所有該輸出端子之該 電壓高於一必要操作電壓。 ' 64 201106371 56•如中請專利範圍第54項之方法,其中該電容器組包 含複數個並聯電容器。 57. 如申請專利範圍第54項之方法,其中在該複數個電 容器之每-電容器處存在一電容器位準端子,且該方法 進一步包含以下步驟:基於該等電容器位準端子中之任 一者處之一電壓產生該故障訊號。 58. 如申請專利範圍第57項之方法,其中該故障訊號指 示該複數個電容器中之哪一者已失效。 59. 如申請專利範圍第54項之方法,其中該非揮發性記 憶體包含電子可抹除可程式化唯讀記憶體(EEpR〇Ms)。 60. 如申請專利範圍第54項之方法’其中該控制器包含 一特殊應用積體電路(ASIC)及—場可程式化閉陣列 (FPGA)中至少一者。 61· —種裝置,其包含: 揮發性記憶體; 或多個非揮發性s己憶體晶片,其每一者係用於儲存自 該揮發性記憶體移動之資料; 介面,其用於連接至-備用功率源,該備用工力率源經。 65 201106371 配置以在來自一主功率源之一功率損失發生後即臨時供 電至該揮發性記憶體; 控制器,其與該揮發性記憶體及該非揮發性記憶體通 訊, 其中: 該控制器經程式化以在該揮發性記憶體之該主功率 源之一功率損失發生後即將資料自該揮發性記憶體移動 至該等非揮發性記憶體晶片;及 將描述該揮發性記憶體之參數儲存於該等非揮發性 記憶體晶片中至少一者中,該等非揮發性記憶體晶片儲 存自該揮發性記憶體移動之該資料。 62. 如申凊專利範圍第61項之記憶體裝置,其中該等參 數包含序列存在檢測資訊。 63. 如申請專利範圍第61項之記憶體裝置,其中該等參 數描述該揮發性記憶體之一大小。 64·如申請專利範圍第61項之記憶體裝置,其中該等參 數描述該揮發性記憶體之一速度。 65·如申請專利範圍第61項之記憶體裝置,其中該控制 °進步包含用於儲存該等參數之一快取記憶體。 66 201106371 66. 如申請專利範圍第61項之記憶體裝置,其進一步包 含用於存取該等參數之一組態資料匯流排。 67. 如申請專利範圍第61項之記憶體裝置,其進一步包 含用於存取該等參數之一組態資料匯流排,其中該控制 器進一步包含用於儲存該等參數之一快取記憶體,且其 中該控制器進一步經程式化以回應於經由該組態資料匯 流排接收對該等參數之一請求而自該快取記憶體讀取該 等參數。 68·如申請專利範圍第61項之記憶體裝置,其中該揮發 性記憶體包含一動態隨機存取記憶體。 69.如申請專利範圍第61項之記憶體裝置,其中該等非 揮發性s己憶體晶片包含電子可抹除可程式化唯讀記憶 體。 70. 如申請專利範圍第61項之記憶體裝置,其中該控制 器包含一特殊應用積體電路(ASIC )及一場可程式化閘 陣列(FPGA)中至少一者。 71. 如申請專利範圍第61項之記憶體裝置,其中該控制 器進一步經程式化以在該主功率源之一功率復原發生_ 將資料自該等非揮發性記憶體晶片移動至該揮發性記憶。 67 20110637139. The first step of the patent application scope is based on the method of receiving an input from a master system, i.e., from the host system I2C busbar. 41. A device comprising: a non-volatile memory; a controller communicating with the non-volatile memory, wherein one of the main power sources of the controller is programmed to be one of a volatile memory After the loss occurs, the data is moved from the volatile memory to the non-volatile memory; and a backup power source is temporarily supplied to the controller and the volatile memory after the power loss of the main power source occurs. The backup power supply includes: a capacitor bank having an output terminal; a voltage source connected to the voltage source to charge the capacitor bank to a normal operating voltage; and a health status monitor programmed to be based on the A voltage at the output terminal of the capacitor bank generates a fault signal. 61 201106371 42. The memory device of claim 41, wherein the health monitor is further programmed to: interrupt the voltage source to charge the capacitor bank; when the charging is interrupted, the capacitor Applying a predetermined resistance to all of the output terminals of the group for a predetermined period of time; monitoring the wheel terminal of the capacitor bank during the predetermined period to determine whether the voltage at the output terminal falls below a predetermined threshold voltage; The fault signal is generated if the voltage at the output terminal falls below the predetermined threshold voltage within the predetermined time period. 43. The memory device of claim 42, wherein the predetermined resistance and the predetermined time are determined to maintain the electrical dust of the output terminals of all of the capacitors to a necessary operating voltage. 44. The memory device of claim 41, wherein the capacitor bank comprises a plurality of capacitors in parallel. 45. The memory device of claim 44, further comprising a capacitor level terminal at each of the plurality of capacitors, and wherein the health monitor is further programmed to be based on the The voltage at one of the capacitor level terminals generates the fault signal. 62 201106371 46. The memory device of claim 4, further comprising: a processor that communicates with the volatile memory and a permanent storage system, wherein if the controller generates the fault signal, The processor is programmed to move the data from the volatile memory to the permanent storage system. 47. The memory device of claim 46, wherein a hard disk is included in the permanent storage system. 48. The memory device of claim 41, wherein the volatile memory comprises a dynamic random access memory. 49. The memory device of claim 41, wherein the non-volatile memory comprises an electronic erasable programmable read only memory (EEPR 〇 Ms) 〇 5 〇. The memory of claim 41 The device, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable inter-array (FPGA). 5I. The memory device of claim 41, wherein the controller is further programmed to move data from the non-volatile memory to the volatile memory after power recovery of one of the primary power sources occurs: 63 201106371 52. The memory device of claim 41, wherein the controller communicates with the backup power source via a configuration data bus. 5: The memory device of claim 41, wherein the configuration data bus is an I2C bus. 54. A method comprising the steps of: interrupting a voltage source to charge a capacitor bank, the capacitor bank being configured to provide temporary power to a controller, the controller being programmed to be in a volatile memory After a power loss occurs in one of the main power sources, the data is moved from the volatile memory to a non-volatile memory, and the power is supplied to a volatile memory after the power loss of the main power source occurs; When the charging is interrupted, applying a predetermined resistance to all output terminals of the capacitor bank for a predetermined period of time; monitoring the output terminal of the capacitor bank during the predetermined period to determine whether the voltage at the output terminal falls to a predetermined period Below the voltage limit; and if the voltage at the output terminal falls below the predetermined threshold voltage within the predetermined time period, a fault signal is generated. 5. The method of claim 54, wherein the predetermined resistance and the predetermined time are determined to maintain the voltage of all of the output terminals of the capacitor above a necessary operating voltage. The method of claim 54, wherein the capacitor bank comprises a plurality of parallel capacitors. 57. The method of claim 54, wherein a capacitor level terminal is present at each capacitor of the plurality of capacitors, and the method further comprises the step of: based on any one of the capacitor level terminals One of the voltages generates the fault signal. 58. The method of claim 57, wherein the fault signal indicates which of the plurality of capacitors has failed. 59. The method of claim 54, wherein the non-volatile memory comprises an electronic erasable programmable read only memory (EEpR〇Ms). 60. The method of claim 54, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a field programmable closed array (FPGA). 61. A device comprising: a volatile memory; or a plurality of non-volatile simon memory wafers, each of which is for storing data transferred from the volatile memory; an interface for connecting To the standby power source, the standby power rate source passes. 65 201106371 configured to temporarily supply power to the volatile memory after a power loss from one of the primary power sources occurs; the controller communicates with the volatile memory and the non-volatile memory, wherein: the controller Stylizing to move data from the volatile memory to the non-volatile memory wafer after a power loss of the primary power source of the volatile memory occurs; and storing the parameter describing the volatile memory In at least one of the non-volatile memory chips, the non-volatile memory chips store the data moved from the volatile memory. 62. The memory device of claim 61, wherein the parameter comprises sequence presence detection information. 63. The memory device of claim 61, wherein the parameter describes a size of the volatile memory. 64. The memory device of claim 61, wherein the parameters describe a velocity of the volatile memory. 65. The memory device of claim 61, wherein the control comprises a cache memory for storing one of the parameters. 66 201106371 66. The memory device of claim 61, further comprising a configuration data bus for accessing one of the parameters. 67. The memory device of claim 61, further comprising a configuration data bus for accessing one of the parameters, wherein the controller further comprises a cache memory for storing the one of the parameters And wherein the controller is further programmed to read the parameters from the cache memory in response to receiving a request for one of the parameters via the configuration data bus. 68. The memory device of claim 61, wherein the volatile memory comprises a dynamic random access memory. 69. The memory device of claim 61, wherein the non-volatile simon memory wafer comprises an electronic erasable programmable read only memory. 70. The memory device of claim 61, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable gate array (FPGA). 71. The memory device of claim 61, wherein the controller is further programmed to generate power recovery at one of the primary power sources _ moving data from the non-volatile memory wafer to the volatile memory. 67 201106371 72,如申請專利範圍第61項之記憶體裝置其中來自該 備用功率源之功率主要來自一電容器。 73.如申請專利範圍第61項之記憶體裝置,其中來自該 備用功率源之功率主要來自一超級電容器。 74· —種方法,其包含以下步驟: 在一揮發性記憶體之—主功率源之—功率損失發生後 即’當該揮發性記憶體由—備用功率源臨時供電時,基 2述儲存於非揮發性記憶體晶片中至少—者中的該揮 ^憶體之參數,料非揮發性錢體W儲存自該 揮發性記憶體移動之資料 肘该貝枓自該揮發性記憶體 移動至該等非揮發性記恃 曰a + 隐體曰日片,該等非揮發性記憶體 ::中之每-者係用於儲存自該揮發性記憶體移動之資 其中該等參數包含 其中該等參數描述 75.如申請專利範圍第74項之方法 序列存在檢測資訊。 76.如申請專利範圍第74項之方法 該揮發性記憶體之一大小。 68 201106371 如申δ月專利範圍第74項之方法其中該等參數描述 該揮發性記憶體之一速度。 78. 如申請專利範圍第74項之方法其進一步包含以下 步驟.在該主功率源之一功率復原發生後即將資料自該 等非揮發性s己憶體晶片移動至該揮發性記憶體。 79. 如申請專利範圍第74項之方法,其中來自該備用功 率源之功率主要來自一電容器。 80.如申請專利範圍第74項之方法,其甲該等非揮發性 記憶體晶片包含電子可抹除可程式化唯讀記憶體。 —種記憶體裝置,其包含: 揮發性記憶體; .... .......τ何、,咏两用初华沒 配置以在一主功率源之一功率損失發生後即供電至言 發性記憶體; 非揮發性記憶體; 一第一組態資料匯流排’其用於存取描述該揮發性气 體之主要永久特性的參數; 一第二組態資料匯流排’其用於存取該備用功率源。 康狀態資訊及該記憶體裝置之狀態資訊中至少—者 中該第一组態資料匯流排及該第二組態資料匯流排$ 69 201106371 一相同匯流排協定; 控制器,其與該第-組態資料匯流排、該第二組態資 料匯流排、該揮發性記憶體及該非揮發性記憶體通訊, •該控制ϋ經程式化以偵測該主功率源之-功率損失且回 應於該功率損失將資料自該揮發性記憶體移動至該非揮 發性記憶體, 其中該控制器之第-組態f訊為經由該第—組態資料匯 流排至少可讀或至少可寫者;及 其中該健康狀態資訊及該狀態資訊中至少一者為經由該 第一組態資料匯流排至少可讀或至少可寫者。 82, 如申請專利範圍第8丨項之記憶體裝置,其中該健康 狀態資訊包括該功率源之一狀態’該狀態指示該備用功 率源為已充電狀態、放電狀態及充電狀態中至少一者。 83. 如申請專利範圍第81項之記憶體裝置,其中該健康 狀態資訊指示是否包含該備用功率源之任何電容器已失 效0 84_如申請專利範圍第83項之記憶體裝置,其中該健康 狀態資訊指示包含該備用功率源之該等電容器中之哪一 者已失效。 85.如申請專利範圍第81項之記憶體裝置,其中該健康 70 201106371 狀態資訊指示備用功率源之一類塑。 86. 如申清專利範圍第85項之記憶體裝置其中該類塑 ‘ 可為電容器或電池。 87. 如申請專利範圍帛81項之記憶體裝置纟中該狀態 資訊指示該非揮發性記憶體為寫入狀態、已抹除狀態、 正抹除狀態及知壞狀態中至少一者。 88. 如申請專利範圍第8丨項之記憶體裝置,其中該狀態 資訊包括該非揮發性記憶體之標頭資訊。 89. 如申請專利範圍第81項之記憶體裝置,其中該狀態 資訊包括一壞記憶體區塊之數目、一備用記憶體區塊之 數目、一完成之下載循環之數目、一最後下載中之糾錯 碼(Error Correcting Code,ECC)錯誤之數目、一最後復原 中之ECC錯誤之數目、一最後下載之一狀態及一最後復 原之一狀態中至少一者。 • 90.如申請專利範圍第81項之記憶體裝置,其中該揮發 性記憶體包含一動態隨機存取記憶體。 91.如申請專利範圍第81項之記憶體裝置,其中該非 發性記憶體包含電子可抹除玎程式化唯讀記憶體 71 201106371 (EEPROMs)。 92. 如申請專利範圍第81項之記憶體裝置,其中該控制 器包含一特殊應用積體電路(ASIC )及一場可程式化閘 陣列(FPGA )中至少一者。 93. 如申請專利範圍第81項之記憶體裝置,其中該控制 器進一步經程式化以在該主功率源之一功率復原發生時 將資料自該非揮發性記憶體移動至該揮發性記憶體。 94. 如申請專利範圍第81項之記憶體裝置,其中該相同 匯流排協定為一 I2C匯流排協定。 95·如申請專利範圍第81項之記憶體裝置,其中該第一 組態資料匯流排及第二組態資料匯流排包含一實體I2C 匯流排’且其中該第一組態資料匯流排及第二組態資料 匯流排使用不同位址範圍。 96. 如申請專利範圍第8丨項之記憶體裝置,其中該等參 數包含序列存在檢測資訊。 97. -種與—主功率源及—備用功率源〆起使用之記憶 體裝置,該記憶體裝置包含: ^ 揮發性記憶體; [; 72 201106371 一介面,其用於連接至一備用功率源,該備用功率源經 配置以在來自該主功率源之一功率損失發生後即臨時供 電至該揮發性記憶體; ^ 複數個埠,其每一者係用於接收一對應之不同非揮發性 記憶體晶片; 複數個介面,其每一者係用於經由該複數個埠中之一對 應之不同槔與連接至彼埠之任何非揮發性記憶體通訊; 一控制器,其經程式化以根據哪些埠將接收非揮發性記 憶體晶片來啟動該複數個介面之一可選集合,其中該控 制器亦經程式化以藉由經由該等選定介面將資料自該揮 發性記憶體移動至連接至介面之該可選集合的任何非揮 發隹5己憶體來對來自該主功率源之一功率損失作出反 應0 98.如申請專利範圍第97項之記憶體裝置,其中該揮發 性記憶體《大小為一個十億4立元組且該㈣器經程式化 以啟動四個埠。 99·如申請專利範圍第97項之記憶體裝置,其中該複數 個介面包含四個介面,其中該四個介面中之兩者連接至 非揮發性記憶體晶片,且其中該控制器經程式化以啟動 連接至非揮發性記憶體晶片之該兩個介面。 1〇°·如申請專利範圍第97項之記憶體裝置,其中該 73 201106371 揮發性記憶體包含電子可抹除可程式化唯讀記憶體 (EEPROMs)。 101. 如申請專利範圍第97項之記憶體裝置,其中該控 制器包含一特殊應用積體電路(ASIC )及一場可程式化 閘陣列(FPGA )中至少一者。 102. 如申請專利範圍第97項之記憶體裝置,其中來自 該備用功率源之功率主要來自一電容号。 103. 如申請專利範圍第97項之記憶體裝置,其中來自 該備用功率源之功率主要來自一超級電容器。 104. 如申請專利範圍第97項之記憶體裝置,其中該控 制器進一步經程式化以在該主功率源之一功率復原發生 後即將資料自連接至介面之該可選集合的任何非揮發性 記憶體移動至該揮發性記憶體。 105. 如申請專利範圍第97項之記憶體裝置,其中該複 數個埠中之每一者包含一印刷電路板之孔、接墊或端子 區域。 106.如申請專利範圍第97項之記憶體裝置,其中該控 Γ Γ 制器進一步包含用於儲存埠資料之一組態記憶體,從而j 74 201106371 識別該複數個槔中之B那—土_t 那者連接至一非揮發性記憶體裝 置,且該記憶體裝置進一 進 /包含用於讀取及寫入該埠資 料之一組態資料匯流排。 107.種方法’其包含以下步驟: 偵測一揮發性記憶體夕—士 A #、 主功率源之一電源故障;及 回應於偵測該電源故障且杏 供田丄方E w 早且田用—備用功率源供電至該揮 發性記憶體時:將儲在 册傾存於該揮發性記憶體中之資料移動 至包含一可選數目之非揮發 开评赞迮δ己憶體晶片之一非揮發性 記憶體,其中該移動之并 砂勒之步驟係基於該可選數目之非揮發 性記憶體晶片。 刚.如中請專利範圍第⑽項之方法,其中該揮發性 記憶體之大小為一個十億位元組且該可選數目為四。 贈.如申請專利範圍第刚項之方法其中該非揮發 性記憶體包含電子可抹除可程式化唯讀記憶體 (EEPROMS)。 110.如申請專利範圍第109項之方法,其進一步包含 以下步u該主功率源之__功率復原發生後即將資料 自該非揮發性記憶體移動至該揮發性記憶體。 ⑴.*中請專利範圍帛11()項之方法,其中來自該 75 201106371 用功率源之功率主要來自一電容器。 112.如申請專利範圍帛lu項之方法,丨巾來自該備 用功率源之功率主要來自一超級電容器。 113. 一種與一主機處理器及一主功率源一起使用之記 憶體裝置,該記憶體裝置包含: 非揮發性記憶體; 揮發性記憶體; 一介面m連接至一備用功率源,該備用功率源經 配置以在來自該主功率源之__功率損失發生後即臨時供 電至該揮發性記憶體; 隔離邏輯,其用於控制該主機處理器對該揮發性記憶體 之存取’胃隔離邏輯具有—帛一模式及一第二模式該 隔離邏輯在該第-模式期間為該主機處理器提供對用於 儲存或讀取請之該揮發性記㈣之存取,且該隔離邏 輯在該第二模式期間使該揮發性記憶體與該主機處理器 之存取.隔離;及 -控制器’其控制該隔離邏輯’該控制器經程式化以當 該揮發性記憶體正由該主功率源供電時將該隔離邏輯置 於該第-模式中’且當自該主功率源至該揮發性記憶體 之功率被中斷時,將該隔離邏輯置㈣第二模式中且將 資料自該揮發性記憶體傳送至該非揮發性記憶體。η 76 201106371 114. 如申請專利範圍第113項之記憶體裴置,其中該 控制器進一步經程式化以: 在該主功率源之一復原發生後即將資料自該非揮發性記 憶體復原至該揮發性記憶體;及 當該資料得以復原時,將該隔離邏輯置於該第—模式中。 115. 如申請專利範圍第113項之記憶體裝置,其中該 控制器進一步經程式化以在該隔離邏輯處於該第—模式 中時,驅動該控制器與該隔離邏輯之間的一轉合至 阻抗狀態。 116. 如申請專利範圍第113項之記憶體褒置,其中在 該隔離邏輯中包含至少一個多工器。 117. 如申請專利範圍第113項之記憶體裝置,&amp; + &amp; 該隔離邏輯中包含一第一多工器及一第二多工哭 _ _ 少丄15,該第 一多工器經配置以多工位址及控制訊號且該第- ^ 一夕工器 經配置以多工資料訊號。 118. 如申請專利範圍第113項之記憶體裝置,其+胃 揮發性記憶體包含一動態隨機存取記憶體。 119. 如申請專利範圍第U3項之記憶體裝置,其中_ 非揮發性記憶體包含電子可抹除可程式化唯讀記障y 77 201106371 (EEPROMs )。 120.如申請專利範圍第113項之記憶體裝置,其中該 控制器包含一特殊應用積體電路(ASIC )及一場可程式 化閘陣列(FPGA )中至少一者。 121.如申請專利範圍第113項之記憶體裝置,其中來 自該備用功率源之功率主要來自一電容器。 122.如申請專利範圍第113項之記憶體裝置,其中來 自該備用功率源之功率主要來自一超級電容器。 123· 一種方法,其包含以下步驟: 偵測一揮發性記憶體之一主功率源之一電源故障丨及 回應於偵測該電源故障且當該揮發性記憶體由—備用功 率源供電時: 將隔離邏輯之一模式自一第一模式改變至一第二模 式’該第-模式在該揮發性記憶體正由該主功率源:電 時為一主機處理器提供對用於儲存或讀取資料之禮 性記憶體之存取,該第—槿々佶兮趂鉻从 以揮發 通第一模式使該揮發性記憶體與該主 機處理器之存取隔離;及 將儲存於該揮發性記憶體中之資料移動 性記憶體。 非揮發 78 201106371 124·如申請專利範圍第123項之方法,其進一步包含 以下步驟: 在該主功率源之一復原發生後即將資料自該非揮發性記 憶體復原至該揮發性記憶體;及 當該資料得以復原時,將該隔離邏輯置於該第一模式中。 125. 如申請專利範圍第123項之方法,其進一步包含 以下步驟:當該隔離邏輯處於該第一模式時,驅動該控 制器與該隔離邏輯之間的一耦合至—高阻抗狀態。 126. 如申請專利範圍第123項之方法,其中在該隔離 邏輯中包含至少一個多工器。 127. 如申請專利範圍第123項之方法,其中在該隔離 邏輯中包含一第一多工器及一第二多工器,該第一多工 器經配置以多工位址及控制訊號且該第二多工器經配置 以多工資料訊號。 128. 如申請專利範圍第123項之方法,其中該揮發性 記憶體包含一動態隨機存取記憶體。 129. 如申請專利範圍第123項之方法,其中該非揮發 性記憶體包含電子可抹除可程式化唯讀記憶$ 1 (EEPROMs )。 ] 79 201106371 130. 如申請專利範圍第123項之方法,其中來自該備 用功率源之功率主要來自一電容器。 131. 如申請專利範圍第123項之方法,其中來自該備 用功率源之功率主要來自一超級電容器。 8072. The memory device of claim 61, wherein the power from the alternate power source is derived primarily from a capacitor. 73. The memory device of claim 61, wherein the power from the alternate power source is primarily from a supercapacitor. 74. A method comprising the steps of: after a power loss of a volatile memory-main power source occurs, ie, when the volatile memory is temporarily powered by the backup power source, the base 2 is stored in a parameter of the at least one of the non-volatile memory chips, the non-volatile body W is stored from the volatile memory, and the data is moved from the volatile memory to the And other non-volatile memory a + hidden corpus, each of which is used to store the movement from the volatile memory, wherein the parameters include therein Parameter Description 75. The detection sequence exists in the method sequence as set forth in claim 74. 76. The method of claim 74, wherein the volatile memory is one of a size. 68 201106371 The method of claim 74, wherein the parameters describe the velocity of the volatile memory. 78. The method of claim 74, further comprising the step of moving data from the non-volatile simon memory wafer to the volatile memory after power recovery of one of the primary power sources occurs. 79. The method of claim 74, wherein the power from the backup power source is derived primarily from a capacitor. 80. The method of claim 74, wherein the non-volatile memory chips comprise electronic erasable programmable read-only memory. a memory device comprising: a volatile memory; ........... τhe, 咏 dual-use nascent huahua is not configured to supply power after a power loss occurs in one of the main power sources To a speech memory; a non-volatile memory; a first configuration data bus 'which is used to access parameters describing the primary permanent characteristics of the volatile gas; a second configuration data bus' Accessing the alternate power source. At least one of the status information of the state information and the state information of the memory device, the first configuration data bus and the second configuration data bus $69 201106371, a same busbar protocol; the controller, and the first a configuration data bus, the second configuration data bus, the volatile memory, and the non-volatile memory communication, • the control is programmed to detect a power loss of the primary power source and respond to the Power loss moves data from the volatile memory to the non-volatile memory, wherein the first configuration of the controller is at least readable or at least writable via the first configuration data bus; At least one of the health status information and the status information is at least readable or at least writable via the first configuration data bus. 82. The memory device of claim 8, wherein the health status information includes a state of the power source. The status indicates that the standby power source is at least one of a charged state, a discharged state, and a charged state. 83. The memory device of claim 81, wherein the health status information indicates whether any capacitor including the backup power source has failed. 84. The memory device of claim 83, wherein the health status is The information indicates which of the capacitors containing the alternate power source has failed. 85. The memory device of claim 81, wherein the health 70 201106371 status information indicates one of the alternate power sources. 86. The memory device of claim 85, which may be a capacitor or a battery. 87. In the memory device of claim 81, the status information indicates that the non-volatile memory is at least one of a write state, an erased state, a positive erase state, and a bad state. 88. The memory device of claim 8 wherein the status information includes header information of the non-volatile memory. 89. The memory device of claim 81, wherein the status information includes a number of bad memory blocks, a number of spare memory blocks, a number of completed download cycles, and a last download. At least one of an error correction code (ECC) error, a number of ECC errors in a final restoration, a state of a last download, and a state of a final restoration. 90. The memory device of claim 81, wherein the volatile memory comprises a dynamic random access memory. 91. The memory device of claim 81, wherein the non-volatile memory comprises an electronic erasable 玎 stylized read only memory 71 201106371 (EEPROMs). 92. The memory device of claim 81, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable gate array (FPGA). 93. The memory device of claim 81, wherein the controller is further programmed to move data from the non-volatile memory to the volatile memory when power recovery of one of the primary power sources occurs. 94. The memory device of claim 81, wherein the same busbar agreement is an I2C busbar agreement. 95. The memory device of claim 81, wherein the first configuration data bus and the second configuration data bus include an entity I2C bus bar and wherein the first configuration data bus and the first The second configuration data bus uses different address ranges. 96. The memory device of claim 8, wherein the parameter comprises sequence presence detection information. 97. A memory device for use with a primary power source and a standby power source, the memory device comprising: ^ a volatile memory; [; 72 201106371 an interface for connecting to an alternate power source The standby power source is configured to temporarily supply power to the volatile memory after a power loss from one of the primary power sources occurs; ^ a plurality of turns, each of which is adapted to receive a corresponding different non-volatile a memory chip; a plurality of interfaces, each of which is configured to communicate with any non-volatile memory connected to the other via a different one of the plurality of turns; a controller programmed to Selecting an optional set of the plurality of interfaces based on which ones will receive the non-volatile memory chip, wherein the controller is also programmed to move data from the volatile memory to the connection via the selected interfaces Any non-volatile 隹5 memory of the optional set of interfaces to react to power loss from one of the primary power sources. 98. Memory device as claimed in claim 97. Wherein the volatile memory "size of a one billion and the 4-tuple (iv) Li is programmable to activate via four ports. 99. The memory device of claim 97, wherein the plurality of interfaces comprise four interfaces, wherein two of the four interfaces are connected to a non-volatile memory chip, and wherein the controller is programmed To initiate the connection to the two interfaces of the non-volatile memory chip. 1〇°. The memory device of claim 97, wherein the 73 201106371 volatile memory comprises electronic erasable programmable read only memory (EEPROMs). 101. The memory device of claim 97, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable gate array (FPGA). 102. The memory device of claim 97, wherein the power from the alternate power source is derived primarily from a capacitor number. 103. The memory device of claim 97, wherein the power from the alternate power source is primarily from a supercapacitor. 104. The memory device of claim 97, wherein the controller is further programmed to self-link any non-volatile material of the selectable set of interfaces to the interface after power recovery of the primary power source occurs. The memory moves to the volatile memory. 105. The memory device of claim 97, wherein each of the plurality of turns comprises a hole, pad or terminal area of a printed circuit board. 106. The memory device of claim 97, wherein the control device further comprises a configuration memory for storing one of the data, whereby j 74 201106371 identifies the B-soil of the plurality of defects _t that is connected to a non-volatile memory device, and the memory device further includes/contains a configuration data bus for reading and writing the data. 107. A method comprising the steps of: detecting a volatile memory —-士A#, one of the main power sources of the power failure; and responding to detecting the power failure and the apricot supply field E W When the standby power source is used to supply the volatile memory: the data stored in the volatile memory is moved to one of the optional non-volatile open evaluation Volatile memory, wherein the step of moving the sand is based on the optional number of non-volatile memory wafers. The method of claim 10, wherein the volatile memory has a size of one billion bytes and the optional number is four. The method of claim 5, wherein the non-volatile memory comprises an electronic erasable programmable read only memory (EEPROMS). 110. The method of claim 109, further comprising the step of: moving the non-volatile memory from the non-volatile memory to the volatile memory after the power recovery of the primary power source occurs. (1).* The method of patent scope 帛11(), wherein the power from the power source of the 75 201106371 is mainly from a capacitor. 112. As claimed in the patent application, the power from the backup power source is primarily from a supercapacitor. 113. A memory device for use with a host processor and a main power source, the memory device comprising: non-volatile memory; volatile memory; an interface m connected to a standby power source, the standby power The source is configured to temporarily supply power to the volatile memory after the __ power loss from the primary power source occurs; isolation logic for controlling access by the host processor to the volatile memory The logic has a first mode and a second mode during which the isolation logic provides the host processor with access to the volatile record (4) for storing or reading, and the isolation logic is Separating the volatile memory from the host processor during the second mode; and - the controller 'which controls the isolation logic' is programmed to be when the volatile memory is being powered by the main power When the source is powered, the isolation logic is placed in the first mode' and when the power from the main power source to the volatile memory is interrupted, the isolation logic is set (4) in the second mode and the data is The volatile memory is transferred to the non-volatile memory. η 76 201106371 114. The memory device of claim 113, wherein the controller is further programmed to: restore data from the non-volatile memory to the volatilization after one of the primary power sources is restored Sexual memory; and when the data is restored, the isolation logic is placed in the first mode. 115. The memory device of claim 113, wherein the controller is further programmed to drive a transition between the controller and the isolation logic to when the isolation logic is in the first mode Impedance state. 116. The memory device of claim 113, wherein at least one multiplexer is included in the isolation logic. 117. The memory device of claim 113, &amp; + &amp; the isolation logic includes a first multiplexer and a second multiplex cry _ _ less 丄 15, the first multiplexer The multiplexer address and the control signal are configured and the first-to-be-worker is configured with a multiplexed data signal. 118. The memory device of claim 113, wherein the + gastric volatile memory comprises a dynamic random access memory. 119. The memory device of claim U3, wherein the non-volatile memory comprises an electronic erasable programmable read-only barrier y 77 201106371 (EEPROMs). 120. The memory device of claim 113, wherein the controller comprises at least one of a special application integrated circuit (ASIC) and a programmable gate array (FPGA). 121. The memory device of claim 113, wherein the power from the alternate power source is primarily from a capacitor. 122. The memory device of claim 113, wherein the power from the alternate power source is primarily from a supercapacitor. 123. A method comprising the steps of: detecting a power failure of one of a primary power source of a volatile memory and responding to detecting the power failure and when the volatile memory is powered by an alternate power source: Changing one mode of the isolation logic from a first mode to a second mode. The first mode provides a host processor for storing or reading while the volatile memory is being powered by the primary power source: Accessing the privileged memory of the data, the first chrome is isolated from the access of the host memory by the first mode of volatilization; and stored in the volatile memory Data in the body of mobile memory. Non-volatile 78 201106371 124. The method of claim 123, further comprising the steps of: restoring data from the non-volatile memory to the volatile memory after one of the primary power sources is restored; and When the data is restored, the isolation logic is placed in the first mode. 125. The method of claim 123, further comprising the step of: driving a coupling between the controller and the isolation logic to a high impedance state when the isolation logic is in the first mode. 126. The method of claim 123, wherein at least one multiplexer is included in the isolation logic. 127. The method of claim 123, wherein the isolation logic includes a first multiplexer and a second multiplexer, the first multiplexer configured to multiplex address and control signals and The second multiplexer is configured to multiplex data signals. 128. The method of claim 123, wherein the volatile memory comprises a dynamic random access memory. 129. The method of claim 123, wherein the non-volatile memory comprises an electronic erasable programmable read only memory $1 (EEPROMs). The method of claim 123, wherein the power from the alternate power source is primarily from a capacitor. 131. The method of claim 123, wherein the power from the alternate power source is derived primarily from a supercapacitor. 80
TW099104472A 2009-02-11 2010-02-11 A flash backed dram module TWI428922B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US12/369,027 US7830732B2 (en) 2009-02-11 2009-02-11 Staged-backup flash backed dram module
US12/369,079 US8169839B2 (en) 2009-02-11 2009-02-11 Flash backed DRAM module including logic for isolating the DRAM
US12/369,040 US7990797B2 (en) 2009-02-11 2009-02-11 State of health monitored flash backed dram module
US12/369,076 US7983107B2 (en) 2009-02-11 2009-02-11 Flash backed DRAM module with a selectable number of flash chips
PCT/US2009/033755 WO2010093356A1 (en) 2009-02-11 2009-02-11 A flash backed dram module
US12/369,052 US8566639B2 (en) 2009-02-11 2009-02-11 Flash backed DRAM module with state of health and/or status information accessible through a configuration data bus
US12/369,032 US20100205349A1 (en) 2009-02-11 2009-02-11 Segmented-memory flash backed dram module
US12/369,046 US8977831B2 (en) 2009-02-11 2009-02-11 Flash backed DRAM module storing parameter information of the DRAM module in the flash

Publications (2)

Publication Number Publication Date
TW201106371A true TW201106371A (en) 2011-02-16
TWI428922B TWI428922B (en) 2014-03-01

Family

ID=44814320

Family Applications (2)

Application Number Title Priority Date Filing Date
TW102147779A TWI529738B (en) 2009-02-11 2010-02-11 Flash -backed dram module with state of health and or status information available through a configuration data bus
TW099104472A TWI428922B (en) 2009-02-11 2010-02-11 A flash backed dram module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW102147779A TWI529738B (en) 2009-02-11 2010-02-11 Flash -backed dram module with state of health and or status information available through a configuration data bus

Country Status (1)

Country Link
TW (2) TWI529738B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823769A (en) * 2012-11-19 2014-05-28 纬创资通股份有限公司 Computer system and data recovery method
TWI579841B (en) * 2014-08-12 2017-04-21 Japan Science & Tech Agency Memory circuit
CN107077874A (en) * 2014-10-31 2017-08-18 惠普发展公司有限责任合伙企业 Power loss is protected
TWI820788B (en) * 2022-03-18 2023-11-01 日商鎧俠股份有限公司 memory system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170091042A1 (en) * 2015-09-25 2017-03-30 Quanta Computer Inc. System and method for power loss protection of storage device
TWI578006B (en) * 2015-09-25 2017-04-11 寰群科技股份有限公司 Method for determining characteristics of uknown battery
TWI687813B (en) * 2018-08-31 2020-03-11 英業達股份有限公司 Information sharing circuit and method for sharing memory state
US11099838B1 (en) * 2020-02-26 2021-08-24 Quanta Computer Inc. Method and system for recovery for custom integrated circuit
JP2022064497A (en) * 2020-10-14 2022-04-26 キオクシア株式会社 Memory system
JP7170117B1 (en) 2021-12-01 2022-11-11 ウィンボンド エレクトロニクス コーポレーション semiconductor storage device
TWI796935B (en) * 2022-01-19 2023-03-21 宏碁股份有限公司 Memory control method and memory storage devcie

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823769A (en) * 2012-11-19 2014-05-28 纬创资通股份有限公司 Computer system and data recovery method
TWI510903B (en) * 2012-11-19 2015-12-01 Wistron Corp Computer system and data recovery method thereof
US9367446B2 (en) 2012-11-19 2016-06-14 Wistron Corporation Computer system and data recovery method for a computer system having an embedded controller
CN103823769B (en) * 2012-11-19 2017-06-13 纬创资通股份有限公司 Computer system and data recovery method
TWI579841B (en) * 2014-08-12 2017-04-21 Japan Science & Tech Agency Memory circuit
CN107077874A (en) * 2014-10-31 2017-08-18 惠普发展公司有限责任合伙企业 Power loss is protected
US10198320B2 (en) 2014-10-31 2019-02-05 Hewlett-Packard Development Company, L.P. Power-loss protection
US10402274B2 (en) 2014-10-31 2019-09-03 Hewlett-Packard Development Company, L.P. Power loss protection
CN107077874B (en) * 2014-10-31 2020-05-29 惠普发展公司有限责任合伙企业 Power loss protection
US10719402B2 (en) 2014-10-31 2020-07-21 Hewlett-Packard Development Company, L.P. Power-loss protection
TWI820788B (en) * 2022-03-18 2023-11-01 日商鎧俠股份有限公司 memory system

Also Published As

Publication number Publication date
TWI529738B (en) 2016-04-11
TWI428922B (en) 2014-03-01
TW201419300A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
US9520191B2 (en) Apparatus, systems, and methods for operating flash backed DRAM module
US7990797B2 (en) State of health monitored flash backed dram module
US8169839B2 (en) Flash backed DRAM module including logic for isolating the DRAM
US7830732B2 (en) Staged-backup flash backed dram module
US8566639B2 (en) Flash backed DRAM module with state of health and/or status information accessible through a configuration data bus
TWI428922B (en) A flash backed dram module
US7983107B2 (en) Flash backed DRAM module with a selectable number of flash chips
WO2010093356A1 (en) A flash backed dram module
US20100205349A1 (en) Segmented-memory flash backed dram module
US10438669B2 (en) Flash storage device with data integrity protection
US9612761B2 (en) Semiconductor device
JP6296513B2 (en) Non-volatile domain and array wakeup and backup configuration bit sequencing control
US8880791B2 (en) Isolation switching for backup of registered memory
US9639131B2 (en) Systems, methods and devices for control of the operation of data storage devices using solid-state memory
CN110764964B (en) Memory device and control method thereof
US20200025834A1 (en) Power supply device, power supply control method, and storage device
US20200035299A1 (en) Method and system for power loss protection
US7805643B2 (en) Non-volatile semiconductor memory device
EP2207100B1 (en) System and method for data recovery in a disabled integrated circuit
CN110543227A (en) Power-down protection method and device for rail transit server