201105901 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種發光二極體,具體地說,是涉及一種 在水平視角和垂直視角方向上具有不同的光形的發光二 極體。 【先前技術】 發光二極體具有體積小、重量輕、快速反應等優點, 已經被廣泛地應用,近年來發明的白光二極體作為光源已 經應用於背光模組、照明系統以及光學投影機當中。 眾所周知,反射率與光耦合率成反比,換言之,當反 射率礼加時,光耗合率會隨之降低。第二圖為模擬發光二 極體應用在背光模組中反射率與發光二極體人射角之關 係的示意圖。如第二圖所示,當發光二極體的入射角度大 於60。時’反射率會出現明顯的增加,而有礙於光柄合率 的提高:導致普通白光二極體的光耦合率為87%左右。 士第圖所不,在應用於液晶顯示器中的背光模組1〇 ,取由於白光二極體11的封裝膠體為圓形結構,其光形 2承光光形(Lambertian Distribution )即光亮強度由中心 向周邊減弱’也稱為朗伯特分佈或_特絲。所以 顆白光二極體U中位置最BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting diode, and more particularly to a light-emitting diode having different light shapes in a horizontal viewing angle and a vertical viewing direction. [Prior Art] The light-emitting diode has been widely used because of its small size, light weight, and rapid response. The white light diode invented in recent years has been used as a light source in backlight modules, illumination systems, and optical projectors. . It is well known that the reflectance is inversely proportional to the optical coupling ratio, in other words, when the reflectance is increased, the light consumption rate decreases. The second figure is a schematic diagram of the relationship between the reflectivity of the analog light-emitting diode in the backlight module and the human-emitting angle of the light-emitting diode. As shown in the second figure, the incident angle of the light-emitting diode is greater than 60. At the time, the reflectance will increase significantly, which will hinder the improvement of the light handle ratio: the light coupling ratio of the ordinary white light diode is about 87%. In the backlight module 1 applied to the liquid crystal display, the encapsulation colloid of the white photodiode 11 has a circular structure, and the luminous intensity of the light-emitting shape (Lambertian Distribution) is The center weakens to the periphery' also known as the Lambert distribution or _special. Therefore, the position of the white light diode U is the most
, 1直琅儿,但母顆白光二極體U ^的免度比㈣’故造成背域組光亮分佈不均勾,從 而會形成熱點現象(hotspot)。 由於發光二極體的聚光光形,導致照明系統中多個發 201105901 光二極體間隔之間的光亮度較弱,造成燈管一明一暗之炫 目的現象,同時造成使用者的眼睛旅勞或不舒服的情況。 一般的發光二極體產生的視角(約為120。)並不符合 投影機光學引擎的使用(光學引擎收光角度為60。)’所 以若以發光二極體作為投影機的光源時’發光二極體的視 角必需經過適當的調整,但這又會造成光使用率的低落。 此外’為了滿足投影機特殊影像的比例(例如16:9的比例 關係)’所以需要將發光二極體產生的圓對稱光型轉換至 16:9非對稱長型光型。在實作上,一般會使用光軌 (Integration Tunnel)或者微透鏡列陣(Micro-Lens array ) 技術來達到此一目的,但此一過程不但會造成光損失,亦 會造成額外的體積增加。 綜合以上所述,現有的發光二極體的發光分佈為朗伯 特分佈(Lambertian Distribution )’在背光模組中的應用, 具有光輛合率難以提升的問題’同時出現熱點(hotspot) 現象,而在照明系統中,同樣存在光辑合率的問題,也存 在炫光(glare)的現象;而現在的發光二極體應用在光學 投影機中’會使得光使用率較低’而目前的解決方案卻會 引起其他的問題,例如增加光程,投影儀的體積增大等。 因此,本發明人從發光二極體的光形角度去解決上述 問題,以達成事半功倍的效果。 【發明内容】 本發明旨在提供一種發光二極體,該發光二極體的第 一視角的的光形分佈為蝙蝠翼形(Batwing)光形,一與 201105901 第一視角相互垂直的第二視角的光形分佈為聚光光形以 解決傳統的技術問題。 為貫現上述目的,根據本發明的主旨,一種發光二極 體,包括有形成設有-凹陷部的基座,言曼置於該凹陷部的 一發光晶片,填充於該凹陷部中的一封膠層,該發光晶片 上方設置有-透光的光學調整結構,使得該發光二極=的 水平視角方向上的光形分佈不同於其垂直視角方向上的 光形分佈。 根據上述的結構,可以使得LED的視角在水平方向 的光形與垂直方向上的光形分佈不同,例如在水平方向呈 -蝙竭翼形光形’在垂直方向呈聚絲形,這樣就有利於 LED發光的均勻度’且使得垂直視歸出㈣線角度大多 數小於6G° ’這樣有利於提高LED的光搞合率,水平視角 的編福翼絲可以解決背錢組中光的熱點(_啊)現 象以及光耦合率,當然也可以解決照明系統的炫光 (glare)現象,LED的光耦合率提高,也直接提高照明系 統的光轉合率。另外,具有上述結構的LED的光形為非 圓幵^對稱^形,其可以適用於光學投影機中,以調整其擴 圓形曲面的長軸和短軸、内凹面的寬度l以及半橢圓斜面 =半圓面的曲#,使光型接近16:9之比例,以便適用於光 學投影機中。 為使旎更進一步瞭解本發明之特徵及技術内容,請參 奋下有關本發明之詳細說明與附圖,然而所附圖式僅提 /、>考/、次明用,並非用來對本發明加以限制者。 201105901 【實施方式】 以下將參照附圖並結合相應的實施例對本發明做詳 細的說明和描述。 請參照第三圖、第四圖、第五圖,本發明的一個實施 例提供了一種發光二極體100。 該發光二極體100包括有一基座101、一發光晶片 102,以及一封膠層103。上述的基座101具有一容置空 間,該容置空間可以為基座101的上表面向下凹陷形成之 一凹陷部104,該凹陷部104内具有一底面105,以及圍 繞底面105周緣的側壁面106。底面105與側壁面106配 合界定出該容置空間,該發光晶片102設置於該凹陷部 104中,並安裝在底面105上,而基座101還包括有導電 端子107,發光晶片102電連接於該導電端子107,以提 供發光晶片102所需的電壓或其他控制訊號。其中,封膠 層103填設於該凹陷部104之容置空間中,並且填充覆蓋 發光晶片102的頂面與周面。 該發光二極體100還包括有一光學調整結構200,該 光學調整結構200位於基座101的上方,並與之封裝為一 體。由發光晶片102發出的光線,經過光學調整結構200 之後,會使得該發光二極體100的水平視角方向上的光形 分佈不同於其垂直視角方向上的光形分佈。例如,該發光 二極體的水平視角方向上的光形分佈呈蝙蝠翼形光形,其 垂直視角方向上的光形分佈呈朗伯特光形。 請結合第四圖或第八A圖所示,該光學調整結構200 201105901 大體上為一半橢圓球形202,1 τι品a ^ ,、頂面向内陷有一凹面201 並與周圍的半橢圓球形202連接。f复由 . E Α 逆按化其中,該半橢圓球形 2〇2具有203和-短軸2G4,該長轴2()3與該短轴 204相互垂直,該長軸203為-水平# (χ軸),該短轴 204為〆垂直轴(Υ轴)。後文會更加詳細的說明光學調整 結構2G0的構it,以便清楚說明發光二極體的水平視角方 向上的光形分佈呈蝙蝠翼形光形,其垂直視 形分佈昱朗伯特光形。 < Π—轧九 如第三圖所示,當發光晶片1〇2的光 時,為了=夠调整光型’該凹面2()1之幾何中心位置對齊 地設置於电光晶片102的上方。其中,該凹 必U面201由兩個 相同的半橢圓斜面2011、2012構成,並在長軸2〇3之方 向上,由該凹面201的中心向周邊形成高度遞增的能樣. 另外,上述之半橢圓球形202沿該長、短軸的^面凸出 狀。當然,該凹面2〇1也可以由兩個相同的半圓斜面構成。 更進一步地,為了更佳地控制光線,發光晶片1〇2的 輪廓最佳地與凹陷部104的外緣輪廓相似。 、,代土 n 爹号弟六圖所 示,則=曰曰片102為矩形立方體為例,即其周面是由兩 相乎盯且相間隔的長側面刪,以及兩相平行且相隔的短 側面:所構成。因此’凹陷部1〇4的外緣輪廓需對應 的言又计成矩形立方體,即其側壁面1〇6是由兩相平行且相 隔的長側壁面1〇61與兩相平行且相隔的短側壁面1〇62構 成。並且,凹陷部104的長側壁面1061平行於發光晶片 102的長側面1〇21,凹陷部104的短側壁面1〇62平行於 201105901 * 發光晶片102的短側面1022。 為了保證光線是由發光晶片102的頂面射出的,而提 供在垂直視角方向即短軸方向(第四圖中γ軸)上的光形 分佈為如第九圖所示之朗伯特光形(Lambertian, 1 straight, but the ratio of the white light diode U ^ of the mother (4)' causes the uneven distribution of the light distribution in the back domain group, which will form a hotspot. Due to the condensed light shape of the light-emitting diode, the light intensity between the multiple light-emitting diodes of the 201105901 light-emitting diode in the illumination system is weak, causing the bright and dazzling phenomenon of the light tube, and causing the user's eye travel. Labor or uncomfortable situation. The viewing angle produced by a typical light-emitting diode (about 120°) does not match the use of the projector's optical engine (the optical engine's light-receiving angle is 60.) 'So if the light-emitting diode is used as the light source of the projector' The viewing angle of the diode must be properly adjusted, but this will cause a drop in light usage. In addition, in order to satisfy the ratio of the projector's special image (for example, a 16:9 ratio), it is necessary to convert the circularly symmetric light pattern generated by the light-emitting diode to the 16:9 asymmetric long light type. In practice, the integration tunnel or Micro-Lens array technology is generally used to achieve this goal, but this process will not only cause light loss, but also cause additional volume increase. In summary, the light-emitting distribution of the existing light-emitting diodes is a Lambertian Distribution's application in a backlight module, which has the problem that it is difficult to increase the light-to-vehicle rate, and a hotspot phenomenon occurs at the same time. In the lighting system, there is also the problem of the light collection rate, and there is also a glare phenomenon; now the application of the light-emitting diode in the optical projector 'will make the light use rate lower' and the current The solution can cause other problems, such as increasing the optical path, increasing the size of the projector, and so on. Therefore, the inventors have solved the above problems from the light shape angle of the light-emitting diode to achieve a multiplier effect. SUMMARY OF THE INVENTION The present invention is directed to a light-emitting diode having a light-shaped distribution of a first viewing angle of a light-emitting diode that is a Batwing light shape, and a second perpendicular to the first viewing angle of 201105901. The light shape distribution of the viewing angle is a concentrated light shape to solve the conventional technical problem. In order to achieve the above object, in accordance with the gist of the present invention, a light-emitting diode includes a susceptor formed with a recessed portion, and a light-emitting wafer placed in the recessed portion, and one of the recessed portions is filled. The sealing layer is provided with a light-transmitting optical adjustment structure above the light-emitting chip such that the light-shaped distribution in the horizontal viewing direction of the light-emitting diode is different from the light-shaped distribution in the vertical viewing direction. According to the above configuration, it is possible to make the viewing angle of the LED in the horizontal direction different from the light distribution in the vertical direction, for example, in the horizontal direction, the - bat-shaped air-shaped shape is in the form of a polyfilament in the vertical direction, which is advantageous. The uniformity of the LED illumination 'and the vertical line return (four) line angle is mostly less than 6G ° 'this is conducive to improve the LED light fitting rate, the horizontal viewing angle of the braided wing wire can solve the hot spot in the back money group ( _ ah) phenomenon and optical coupling rate, of course, can also solve the glare phenomenon of the lighting system, the LED light coupling rate is improved, and directly improve the light conversion rate of the lighting system. In addition, the light shape of the LED having the above structure is a non-circular symmetrical shape, which can be applied to an optical projector to adjust the long axis and the short axis of the expanded circular curved surface, the width l of the concave surface, and the semi-ellipse. Bevel = semi-circular curved #, making the light pattern close to 16:9 ratio for use in optical projectors. In order to further understand the features and technical contents of the present invention, please refer to the detailed description and drawings of the present invention. However, the drawings are only for /, > The invention is limited. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described and described in detail with reference to the accompanying drawings. Referring to the third, fourth, and fifth figures, an embodiment of the present invention provides a light emitting diode 100. The LED 100 includes a pedestal 101, a luminescent wafer 102, and an adhesive layer 103. The pedestal 101 has an accommodating space, and the accommodating space may be recessed downwardly to form a recessed portion 104. The recessed portion 104 has a bottom surface 105 and a side surrounding the periphery of the bottom surface 105. Wall 106. The bottom surface 105 and the sidewall surface 106 cooperate to define the accommodating space. The illuminating wafer 102 is disposed in the recess portion 104 and is mounted on the bottom surface 105. The pedestal 101 further includes a conductive terminal 107. The luminescent wafer 102 is electrically connected to the illuminating wafer 102. The conductive terminal 107 provides a voltage or other control signal required to illuminate the wafer 102. The encapsulating layer 103 is filled in the accommodating space of the recessed portion 104 and filled to cover the top surface and the peripheral surface of the luminescent wafer 102. The LED assembly 100 further includes an optical adjustment structure 200 disposed above the susceptor 101 and packaged integrally therewith. The light emitted by the light-emitting chip 102 passes through the optical adjustment structure 200, so that the light-shaped distribution in the horizontal viewing direction of the light-emitting diode 100 is different from the light-shaped distribution in the vertical viewing direction. For example, the light-shaped distribution of the light-emitting diode in the horizontal viewing direction is a batwing light shape, and the light-shaped distribution in the vertical viewing direction is a Lambertian light shape. Please refer to the fourth figure or the eighth figure A, the optical adjustment structure 200 201105901 is substantially a semi-elliptical sphere 202, 1 τι a ^ , the top surface is inwardly recessed with a concave surface 201 and is connected with the surrounding semi-elliptical sphere 202 . f 复 E E E 其中 , , , , , , , , , , , , , , , , , 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆 逆The 短 axis) is the 〆 vertical axis (Υ axis). The configuration of the optical adjustment structure 2G0 will be described in more detail later in order to clearly show that the light-shaped distribution of the horizontal viewing angle of the light-emitting diode is a batwing shape, and its vertical vision is distributed by the Lambertian light shape. < Π - Rolling 9 As shown in the third figure, when the light of the wafer 1 〇 2 is emitted, the geometric center position of the concave surface 2 () 1 is aligned above the electro-optical wafer 102 in order to adjust the light pattern. Wherein, the concave U-plane 201 is composed of two identical semi-elliptical slopes 2011 and 2012, and in the direction of the long axis 2〇3, a height-increasing energy sample is formed from the center of the concave surface 201 to the periphery. The semi-elliptical spherical shape 202 is convex along the long and short axes. Of course, the concave surface 2〇1 can also be composed of two identical semicircular bevels. Further, in order to better control the light, the outline of the light-emitting wafer 1 2 is optimally similar to the outer contour of the depressed portion 104. As shown in Fig. 6 , the 曰曰 102 102 is a rectangular cube, that is, the circumferential surface is divided by two long sides that are closely spaced and spaced apart, and the two phases are parallel and separated. Short side: composed. Therefore, the outer edge contour of the recessed portion 1〇4 is counted as a rectangular cube, that is, the side wall surface 1〇6 is parallel and spaced apart by two parallel and spaced apart long side wall faces 1〇61. The side wall surface 1〇62 is formed. Further, the long side wall surface 1061 of the depressed portion 104 is parallel to the long side surface 1〇21 of the light emitting wafer 102, and the short side wall surface 1〇62 of the depressed portion 104 is parallel to the short side surface 1022 of the 201105901* light emitting wafer 102. In order to ensure that the light is emitted from the top surface of the light-emitting chip 102, the light-shaped distribution provided in the direction of the vertical viewing direction, that is, the short-axis direction (the γ-axis in the fourth figure) is the Lambertian light shape as shown in the ninth figure. (Lambertian
Contribution),需對上述側面 1021、1022、侧壁面 1061、 1062之寬度差異值有所限定。 如第七A圖所示,該長侧壁面1061之間的短向寬度 WS1與所述之長側面1021之間短向寬度WS2兩者之間的 寬度差異值小於0.6mm (亦即WSl-WS2<0.6mm)。同樣 的,所述之短側壁面1022之間的長向寬度WL1與短側面 1062之間長向寬度WL2兩者之間的寬度差異值小於 0.6mm (亦即WL1-WL2 < 0.6mm)。本實施例中,該短向 寬度WS1與短向寬度WS2的寬度差值為0.4mm,長向寬 度WL1與長向寬度WL2的寬度差異值亦為0.4mm。 請參閱第七B圖,由於凹陷部104的侧壁面106平行 於發光晶片102的周面,所以大部份由發光晶片102的周 面射出進入封膠層103的光線(光子),會被侷限於凹$ 部104的側壁面(長側壁面1061、短侧壁面1062之級合) 與發光晶片102的周面(長側面1021、短側面1022之每 合)來回反射,或者被吸收而轉化為其他形式的能量。因 此,實際上LED射出的光線絕大多數是發光晶片1〇2的 頂面的射出的光線。當同時考慮發光晶片1〇2尺寸與該凹 陷部104的尺寸(特別是其寬度與高度)設計’使發光晶 片102的頂面所射出的光線落在角度Θ1的範圍内,其中 201105901 該θι最佳的角度不大於12〇。。如此 射出的光線近似於雷伞、β ^ 〜九日曰片102發 中的来ill 所謂的電光源係指*線比較隼 U源。$要說明的是,在封膠層⑽ ,波細的營光粉⑽,再填設具營光粉之 ::稱螢光粉層)於該凹陷部1〇4之容置空間中,以填 片,2的頂面與周面。舉例來說,該發光晶 片〇“可、用發出藍光波長介於400nm至47〇11111之 晶片’在封膠層1G3内可摻雜用於可轉換藍光而出波^介 於520nm JL 570nm之間的黃光榮光粉,以混色形成白光, 形成白光發光二極體。當然在混色成白光的機制上,除了 上述搭配之外,還可以選用其他混色的搭配,此並非對本 發明的限定’而是舉例說明,以便更加_本發明。 基於上述,對於白光二極體而言,由發光晶片1〇2的 ,面所射出的光線對射出的白光具有實f的貢獻。而發光 晶片102的周面之出光部分對整體發光二極體所發的白 光,可視為無貢獻或者極少部分的貢獻。如此,由發光晶 片102發射出的光線近似於電光源,所謂的電光源係指光 線比較集中的光源。 以下將有詳細的描述’說明光線分佈的光形:在發光 二極體100的水平視角(X軸)方向與垂直視角(Y軸) 方向的光形呈現不同類型的光形,而兩種不同的光形在疊 加之後’會更加有利於提升光亮分佈的均勻度。此處僅以 普通發光二極體為例說明,白光發光二極體與之同理。 請參閱第八A圖,該第八A圖簡略地示意出了光學 201105901 调t結構2GG在該長軸2G3之方向上光線路徑。該凹面加 沿長軸203之方向呈一内凹弧形界面3〇1,而沿其短轴綱 之方向則呈-平面界面302 (如第八B圖所示)。 光線由上述的點光源300 (即上述之發光晶片1〇2) 射出’在在長轴方向上,光線對應的界面係為 凹面201之 内凹弧形界面301。凹面2()1的該内凹弧形界面則使白 光經過該内凹弧形界面則時發生折射,並沿著内凹弧形 界面301的下凹輪廓有著不同程度的光線發散。對其他未 經過忒内凹弧形界面3〇1,而是經過光學調整結構的 半橢圓球形2 02的光線,賴沿著半橢圓球形2 〇2的凸出 輪廓發生不同程度的光線聚集。半橢圓球形2〇2的作用在 此類似於凸透鏡的作用。如此一來,由於内凹弧形界面 所造成的光線發散,以及半橢圓球形2〇2所造成的光線聚 集,使彳于由光學調整結構2〇〇的中心部位射出的光線的光 強度會小於該中心部位兩侧的光強度,所以光強度由中心 向兩侧不斷增加直到達到一個峰值,又由於射向半橢圓球 形202的光線的比較少(發光晶片1〇2的大角度光線比較 少),加之半橢圓球形202使得通過其的光線收斂,所以 通過光學調整結構2〇〇的光強度在到達一個峰值時,光強 度開始減弱’所以在水平視角方向即長軸方向(第四圖中 X軸)的光形分佈為編幅翼形(Batwing Contribution) 光形(如第九圖所示)。 當然,調整凹面201的寬度L可以調節蝙蝠翼形光形 中心部位的光亮強度。由上述也可知,内凹弧形界面3〇1 201105901 類似於凹透鏡,因此,藉由調 化、或是半搞圓的長短轴、或者是半面的曲率變 不同曲率的内凹弧形界面3〇1 二’也會帶來 形光形。 生不同形狀的蝙蝠翼 如第八B圖所示,該第八8圖簡略地示 204之方而μ 土紿的" , 4出了 S亥紐轴 万Π上先線路徑。由上述可知,就該 出的光線而言,在發光二極體100的短軸方向上’由卜’Contribution) The width difference values of the side faces 1021, 1022 and the side wall faces 1061, 1062 are limited. As shown in FIG. 7A, the difference in width between the short-direction width WS1 between the long side wall faces 1061 and the short-direction width WS2 between the long side faces 1021 is less than 0.6 mm (ie, WSl-WS2<;0.6mm). Similarly, the difference in width between the long-width WL1 and the short-side width WL2 between the short side wall faces 1022 is less than 0.6 mm (i.e., WL1 - WL2 < 0.6 mm). In this embodiment, the difference in width between the short width WS1 and the short width WS2 is 0.4 mm, and the difference in width between the long width WL1 and the long width WL2 is also 0.4 mm. Referring to FIG. 7B, since the sidewall surface 106 of the recess 104 is parallel to the peripheral surface of the luminescent wafer 102, most of the light (photons) emitted from the peripheral surface of the luminescent wafer 102 into the encapsulant layer 103 is limited. The side wall surface (the combination of the long side wall surface 1061 and the short side wall surface 1062) of the concave portion 104 is reflected back and forth with the circumferential surface (the long side surface 1021 and the short side surface 1022 of the light-emitting wafer 102), or is absorbed and converted into Other forms of energy. Therefore, in fact, most of the light emitted from the LED is the light emitted from the top surface of the light-emitting chip 1〇2. When considering the size of the light-emitting chip 1〇2 and the size of the recessed portion 104 (especially its width and height), the light emitted by the top surface of the light-emitting chip 102 falls within the range of the angle Θ1, wherein 201105901 the θι is the most The good angle is no more than 12 inches. . The light thus emitted is similar to that of the Thunder umbrella, the β ^ ~ 9 曰 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 $ It should be noted that in the sealing layer (10), the fine powder of the camping powder (10), and then filled with the camping powder:: the fluorescent powder layer) is placed in the accommodating space of the depressed portion 1〇4, Fill the top and the perimeter of 2. For example, the luminescent wafer 〇 "can be used to emit a wafer having a blue light wavelength of 400 nm to 47 〇 11111" can be doped in the sealant layer 1G3 for convertible blue light and the output wave is between 520 nm and JL 570 nm. The Huang Guangrong light powder forms a white light with a mixed color to form a white light emitting diode. Of course, in addition to the above-mentioned collocation, in addition to the above-mentioned collocation, other color mixing combinations may be used, which is not a limitation of the present invention. For example, in the case of the white light diode, the light emitted from the surface of the light-emitting wafer 1〇2 has a contribution to the emitted white light, and the peripheral surface of the light-emitting wafer 102. The white light emitted by the light-emitting portion to the overall light-emitting diode can be regarded as no contribution or a small contribution. Thus, the light emitted by the light-emitting chip 102 is similar to an electric light source, and the so-called electric light source refers to a light source with relatively concentrated light. The following is a detailed description of the light pattern of the light distribution: the horizontal shape of the light-emitting diode 100 (X-axis) direction and the vertical viewing angle (Y-axis) direction The same type of light shape, and the two different light shapes after the superposition will be more conducive to improving the uniformity of the light distribution. Here, only the ordinary light-emitting diode is taken as an example, the white light-emitting diode is the same. Please refer to FIG. 8A, which schematically illustrates the ray path of the optical 201105901 t-structure 2GG in the direction of the long axis 2G3. The concave surface is concavely curved along the direction of the long axis 203. The interface is 3〇1, and the direction along its short axis is a-plane interface 302 (as shown in FIG. 8B). The light is emitted by the above-mentioned point source 300 (ie, the above-mentioned light-emitting chip 1〇2). In the direction of the long axis, the interface corresponding to the light is the concave curved interface 301 of the concave surface 201. The concave curved interface of the concave surface 2 () 1 causes the white light to refract when passing through the concave curved interface, and along the The concave contour of the concave curved interface 301 has different degrees of light divergence. For other rays that have not passed through the concave curved interface 3〇1, but through the optically adjusted structure, the semi-elliptical spherical shape 02 Semi-elliptical spherical 2 〇 2 convex contours with varying degrees of light The effect of the semi-elliptical spherical shape 2〇2 is similar to the action of the convex lens. Thus, the light divergence caused by the concave curved interface and the accumulation of light caused by the semi-elliptical spherical shape 2〇2 cause The light intensity of the light emitted from the central portion of the optical adjustment structure 2〇〇 is smaller than the light intensity on both sides of the central portion, so the light intensity increases from the center to the sides until reaching a peak, and also due to the semi-elliptical shape 202. The light is relatively small (the large-angle light of the light-emitting chip 1〇2 is relatively small), and the semi-elliptical spherical shape 202 causes the light passing therethrough to converge, so the light intensity of the structure 2〇〇 is optically adjusted to reach a peak value, the light intensity Start to weaken' so the light shape distribution in the horizontal viewing direction, that is, the long axis direction (X axis in the fourth figure) is the Batwing Contribution light shape (as shown in the ninth figure). Of course, adjusting the width L of the concave surface 201 can adjust the luminous intensity of the central portion of the batwing shape. It can also be seen from the above that the concave curved interface 3〇1 201105901 is similar to a concave lens, and therefore, the concave curved interface with different curvature is adjusted by the adjustment, or the semi-circular long or short axis, or the curvature of the half surface. 1 2' will also bring a shape of light. The batwing wings of different shapes are shown in Figure 8B. The eighth figure 8 shows the square of 204 and the soil of the soil. The 4th axis of the S. As can be seen from the above, in terms of the light rays, in the short-axis direction of the light-emitting diode 100,
光源300射出的光線所對應的界面則呈一平面界二點 在此時,由點光源3〇〇射出的光線經過該平面界面 =折射,光線聚集,光強度由十心部分向周圍減弱,如 第九圖所7F,故其在垂直視角方向即短車由204之方向(即 第四圖中γ軸)上的絲分佈為朗伯特光形(Lambe^The interface corresponding to the light emitted by the light source 300 is at a plane boundary two points. At this time, the light emitted by the point light source 3 经过 passes through the plane interface=refraction, the light is concentrated, and the light intensity is weakened from the ten-heart portion to the periphery, such as In the ninth figure, 7F, the distribution of the filaments in the direction of the vertical viewing direction, that is, the direction of the short carriage from 204 (i.e., the γ-axis in the fourth figure) is the Lambert light shape (Lambe^
Contribution) 〇 與現有的LED的單純的聚光光形相比,本發明的在 其水平視角方向上的光形分佈呈蝙蝠翼形光形,而其垂直 視角方向上的光形分佈呈朗伯特光形,而上述兩個視角的 光形在疊加之後,會使得光亮分佈更加均勻。 參閱第九圖’本發明LED的水平視角方向的光形分 佈呈蝙竭翼形(Batwing Contribution),即光亮分佈並非 從中心向周邊減弱,而是〇。至50。及0。至-50。的範圍内呈 7C度遞增的現象’但在其垂直視角方向的光形分佈為朗伯 特光形(Lambertian Contribution)。如此,在水平視角方 向與垂直視角方向的光形在疊加之後,則更加有利於提升 光亮分佈的均勻度。 11 201105901 更進一步的說,本發明led的整體光形分佈的法線 向量之光強度(0度角的強度)相對於最大光強度值(蝙蝠 翼形強度)可為30%至80%之間,而其最佳值大約為50% 至70%之間,而該發光二極體1〇〇所發出光強度最大值 (Batwing的鋒值)大約落30。到70。之間,最佳值大約落在 45 °到55。之間,以達到最佳的均勻度設計。 參閱第十圖及第十一圖,對於背光模組而言,作為光 源的LED通過調整光學調整結構200中長軸203與短軸 204的長度’以及調整凹面201的寬度L為1.5mm,使得 其水平視角方向為120°和垂直視角方向為80。時,可以使 得LED的出光率即光耦合率提高為92.6%。當然通過調整 光學調整結構200中長軸203與短軸204的長度,以及凹 面201的寬度L以及半橢圓斜面的曲率,LED的光亮均勻 度的提高’也可以有利於消除背光模組中出現的熱點 (hotspot)現象。 本發明揭露之發光二極體100,其利用特殊設計之透 鏡以及凹槽、透鏡、與晶片間相對位置關係,藉以調整該 發光二極體之發光形特徵,形成具有非圓對稱光形之發光 二極體,其中,本發明更可如下所述’用於以顯示裝置(如 面板、電視或螢幕等)之背光模組(back light unit)上, 結合反射板(reflecting sheet)、設置於該反射板上方之擴 散板(diffusing plate)以及設置於該反射板與該擴散板間 之本發明之複數個發光二極體100。其中發光二極體1〇〇 所產生之光線由擴散板散射炱顯示面板’於發光二極體 201105901 100下方之反射板則可將發光二極體100向下散射之光線 反射至擴散板’以有效利用發光二極體1〇〇所發出之光 線。除此之外,任兩相鄰之發光二極體1〇〇設置間距之高 度與寬度比介於0.5至1之間,故利用本發明之發光二極 體100所組成之背光模組,可有效減少發光二極體的數 量’同時符合背光模組之光強度及均勻度需求。 參閱第十二圖,為一種發光二極體(LED )燈管4〇〇, 該燈管400包含一透光燈管4〇1、一長條狀電路板(未顯 不)以及若干(複數個)本發明之發光二極體(LED)1〇〇, 其設置於該電路板上以作為光源,並嵌套在該透光燈管 401内,由於本發明之發光二極體1〇〇的光亮分佈更加均 勻,故可以消除一般發光二極體燈管炫目(glare) 之現象。 由於本發明之發光二極體1〇〇在水平視角方向的配光 曲線呈蝙蝠翼狀,其垂直視角方向的配光曲線呈朗伯特光 形分佈,使得發光二極體100的光亮分佈呈現非圓對稱光 形,通過調整半橢圓球形之半赠 短軸2〇4的長度以及凹面2〇1寬,珠形202的長軸203與 率,使得發光二極體10()的整體^ L以及半橢圓斜面的曲 光形,以符合接近投影機所使接近為非對稱橢圓形 16:9比例,相較於先前的LED而〜光形,且可產生接近 (Integration Tunnel )或者微透鏡& ’必須採用光積分管 技術來將對稱圓形光形轉化為非^陣(Micro-Lens array ; 一方面不會增加投影的體積,另〜轉_形光形,本發明 方面也不會增加光程, 13 201105901 以免光的損耗。 關於光學調整結構可選用的材質可以為有機玻璃 (聚甲基丙烯酸曱_,PPMA)、環氧樹脂、硬膠、玻璃或 聚碳酸酯’但不以上述為限。 以上所述,僅為本發明之較佳實施例而已,當不能以 此限定本發明實施之_,即大凡依本發日㈣請範圍第及 發明說明書所記載的内容所作出簡單的等效變化與修 飾,皆仍屬本發”請範圍第所涵蓋範圍之内。此外^摘 要部分和標題僅是絲㈣專敎獻搜尋之用,並非 限制本發明之權利範圍。 【圖式簡單說明】 第一圖為習知背光模組的示意圖; 二極體應用在背光模組中反射率 卓一圖為模擬習知發光 對入射角比的座標圖; 第三圖為本發明發光二極體的結構圖; 第四圖為本發明發光二極體的俯視圖; 第五圖為本發明發光二極體的基座以及發 圖; J、、'°攝 f六圖係為本發明之發光晶片容設於基座之凹陷部之_ 意圖; 不 第七A圖為發光晶片與凹陷部的俯視圖; 第七B圖為發光晶片與凹陷部的剖視圖; 第八A圖為本發明沿光學調整結構的長軸方向 圖’並示意了基本光路; °^見 201105901 第八B圖為本發明沿光學調整結構的短軸方向的剖面侧 視圖,並示意了基本光路; 第九圖為本發明發光二極體之水平視角和垂直視角的配 光曲線圖; 第十圖為本發明發光二極體之光耦合率與水平視角的分 佈圖; 第十一圖為本發明發光二極體之光耦合率與垂直視角的 分佈圖;以及 第十二圖為本發明發光二極體應用於燈管的示意圖。Contribution 〇 Compared with the simple concentrating light shape of the existing LED, the light distribution of the present invention in the horizontal viewing direction is a batwing shape, and the light distribution in the vertical viewing direction is Lambert. Light shape, and the light shapes of the above two viewing angles will make the light distribution more uniform after superposition. Referring to the ninth drawing, the light distribution of the horizontal viewing angle of the LED of the present invention is a Batwing Contribution, that is, the light distribution is not weakened from the center to the periphery, but is 〇. To 50. And 0. To -50. In the range of 7C degrees, the pattern distribution in the direction of the vertical viewing angle is the Lambertian Contribution. Thus, after the superposition of the light shapes in the horizontal viewing direction and the vertical viewing angle direction, it is more advantageous to improve the uniformity of the light distribution. 11 201105901 Furthermore, the light intensity of the normal vector of the LED of the present invention (the intensity of the 0 degree angle) may be between 30% and 80% with respect to the maximum light intensity value (batwing strength) The optimum value is about 50% to 70%, and the maximum light intensity (the peak value of Batwing) emitted by the LED is about 30. To 70. Between the best values falls between 45 ° and 55. Between to achieve the best uniformity design. Referring to the tenth and eleventh drawings, for the backlight module, the LED as the light source adjusts the length ' of the long axis 203 and the short axis 204 in the optical adjustment structure 200 and the width L of the adjustment concave surface 201 is 1.5 mm, so that The horizontal viewing direction is 120° and the vertical viewing direction is 80. At this time, the light-emitting rate of the LED, that is, the light coupling ratio can be increased to 92.6%. Of course, by adjusting the lengths of the long axis 203 and the short axis 204 in the optical adjustment structure 200, and the width L of the concave surface 201 and the curvature of the semi-elliptical slope, the improvement of the brightness uniformity of the LED can also help eliminate the occurrence of the backlight module. Hotspot phenomenon. The light-emitting diode 100 disclosed in the present invention utilizes a specially designed lens and a relative positional relationship between the lens, the lens and the wafer, thereby adjusting the light-emitting shape of the light-emitting diode to form a light having a non-circular symmetrical light shape. a diode, wherein the present invention can be further configured as follows: a backlight unit for a display device (such as a panel, a television, or a screen), a reflective sheet, and a reflective sheet A diffusing plate above the reflecting plate and a plurality of light emitting diodes 100 of the present invention disposed between the reflecting plate and the diffusing plate. The light generated by the light-emitting diode 1 炱 is scattered by the diffusion plate, and the reflective plate under the light-emitting diode 201105901 100 can reflect the light scattered downward by the light-emitting diode 100 to the diffusion plate. Effectively utilize the light emitted by the LEDs. In addition, the height and width ratio of the two adjacent light-emitting diodes are set to be between 0.5 and 1, so that the backlight module composed of the light-emitting diode 100 of the present invention can be used. Effectively reduce the number of light-emitting diodes' while meeting the light intensity and uniformity requirements of the backlight module. Referring to FIG. 12, a light-emitting diode (LED) lamp 4A, the lamp tube 400 includes a light-transmitting tube 4〇1, a long strip circuit board (not shown), and a plurality of The light-emitting diode (LED) of the present invention is disposed on the circuit board as a light source and nested in the light-transmitting light tube 401, because of the light-emitting diode of the present invention. The light distribution is more uniform, so that the phenomenon of glare of a general light-emitting diode lamp can be eliminated. Since the light distribution curve of the light-emitting diode 1 〇〇 in the horizontal viewing angle is batwing, the light distribution curve in the vertical viewing direction is a Lambertian light-shaped distribution, so that the light distribution of the light-emitting diode 100 is presented. Non-circular symmetrical light shape, by adjusting the length of the semi-elliptical spherical half-bending short axis 2〇4 and the concave surface 2〇1 width, the long axis 203 of the bead shape 202 and the rate, so that the whole of the light-emitting diode 10() And the curved shape of the semi-elliptical bevel, in proportion to the proximity of the projector to the asymmetric elliptical 16:9 ratio, compared to the previous LED ~ light shape, and can produce proximity (Integration Tunnel) or microlens & 'The light integral tube technique must be used to convert the symmetrical circular light shape into a non-array array (Micro-Lens array; on the one hand, it does not increase the volume of the projection, and the other is not a ray-shaped shape, and the aspect of the invention does not increase) Optical path, 13 201105901 To avoid loss of light. The material for the optical adjustment structure can be plexiglass (polystyrene methacrylate _, PPMA), epoxy resin, hard rubber, glass or polycarbonate 'but not above Limited to the above It is only a preferred embodiment of the present invention, and it is not possible to limit the implementation of the present invention by this, that is, simple equivalent changes and modifications made by the contents of the scope of the present invention (4) and the description of the invention are all It is still within the scope of this Scope. In addition, the summary section and the title are only for the purpose of searching for the purpose of searching for the purpose of the invention, and are not intended to limit the scope of the invention. A schematic diagram of a backlight module; a reflectance of a diode in a backlight module is a coordinate diagram simulating a ratio of a conventional illumination to an incident angle; a third diagram is a structural diagram of a light-emitting diode of the present invention; The figure is a top view of the light-emitting diode of the present invention; the fifth figure is the base and the light-emitting diode of the present invention; J, and the image of the light-emitting chip of the present invention is accommodated in the pedestal. The recessed portion is intended to be; the seventh seventh graph is a plan view of the light-emitting chip and the recessed portion; the seventh panel B is a cross-sectional view of the light-emitting chip and the recessed portion; and the eighth A is a long-axis pattern of the optical adjustment structure of the present invention. And signaled the basic light path; °^201105001 The eighth B is a cross-sectional side view of the short-axis direction of the optical adjustment structure of the present invention, and illustrates the basic optical path; the ninth figure is the light distribution curve of the horizontal and vertical viewing angles of the light-emitting diode of the present invention. Figure 10 is a distribution diagram of the light coupling ratio and the horizontal viewing angle of the light-emitting diode of the present invention; Figure 11 is a distribution diagram of the light coupling ratio and the vertical viewing angle of the light-emitting diode of the present invention; and the twelfth figure The schematic diagram of the light-emitting diode of the present invention applied to a lamp tube.
15 201105901 【主要元件符號說明】 【習知】 10 背光模組 11 白光二極體 【本發明】 100 發光二極體 101 基座 102 發光晶片 1021 長側面 1022 短側面 103 封膠層 104 凹陷部 105 底面 106 側壁面 1061 長側壁面 1062 短側壁面 107 導電端子 109 螢光粉 200 光學調整結構 201 凹面 2011 半橢圓斜面 2012 半糖圓斜面 202 半橢圓球形 203 長軸 204 短轴 300 點光源 301 内凹弧形界面 302 平面界面 400 發光二極體燈管 401 透光燈管 L 寬度 WS1 短向寬度 WS2 短向寬度 WL1 長向寬度 WL2 長向寬度 Θ1 角度15 201105901 [Explanation of main component symbols] [Practical] 10 backlight module 11 white light diode [invention] 100 light emitting diode 101 pedestal 102 light emitting chip 1021 long side 1022 short side 103 sealing layer 104 recessed portion 105 Bottom surface 106 Side wall surface 1061 Long side wall surface 1062 Short side wall surface 107 Conductive terminal 109 Fluorescent powder 200 Optical adjustment structure 201 Concave surface 2011 Semi-elliptical bevel 2012 Half sugar round bevel 202 Semi-elliptical spherical 203 Long axis 204 Short axis 300 Point light source 301 Concave Curved interface 302 Plane interface 400 Light-emitting diode tube 401 Light-transmitting tube L Width WS1 Short-direction width WS2 Short-direction width WL1 Long-direction width WL2 Long-direction width Θ1 Angle
1616