TW201105824A - Gold and nickel selective etching liquid - Google Patents

Gold and nickel selective etching liquid Download PDF

Info

Publication number
TW201105824A
TW201105824A TW99108964A TW99108964A TW201105824A TW 201105824 A TW201105824 A TW 201105824A TW 99108964 A TW99108964 A TW 99108964A TW 99108964 A TW99108964 A TW 99108964A TW 201105824 A TW201105824 A TW 201105824A
Authority
TW
Taiwan
Prior art keywords
acid
gold
nickel
etching
organic solvent
Prior art date
Application number
TW99108964A
Other languages
Chinese (zh)
Inventor
Hideki Takahashi
Kazuaki Nagashima
Original Assignee
Kanto Kagaku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Kagaku filed Critical Kanto Kagaku
Publication of TW201105824A publication Critical patent/TW201105824A/en

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • ing And Chemical Polishing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

The present invention provides a method of etching and an etching liquid, which etches a material containing both gold and nickel by a single etching liquid and controls the etching rate of the gold and the nickel. The present invention provides a method of etching gold and/or nickel by an etching liquid, wherein the etching liquid is obtained by adding an inorganic acid or an organic acid that is in solid phase at room temperature, and/or an organic solvent, as each component for adjusting the ratio, in an iodine-based etching liquid.

Description

201105824 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種在金與鎳共存之材料中,蝕刻金及 /或鎳之液體及方法。 【先前技術】 半導體有關之以矽晶圓基板或第ni/ v族基板作為基 體之元件’液晶有關之以玻璃基板作為基體之元件,以聚 醯亞胺材等有機基板作為基體之元件,乃至於使用以二氧 化矽及鋁作為基體而成的陶瓷基板之元件等,要求一種藉 由將由賤金屬與貴金屬之異種金屬所構成之積層膜加以姓 刻來形成配線或凸塊(bump)等之技術〇 貴金屬(金、銀、銅、釕、铑、餓、銥及鉑等)的電 阻低、通電容易,但是通常與石夕或玻璃基板之黏附性差。 因此,是在基板上形成由黏附性較佳的金屬所構成的基底 膜’並在該基底膜上形成貴金屬膜。作為該基底膜所使用 的金屬’已知有對矽或玻璃基板的黏附性優良之鉬、鎳、 鉻、鈦’其中,因為處理性優良’所以鎳或鉻被廣泛地採 用。上述組合中’特別是金與鎳的組合在廣闊領域中被使 用,該等的加工技術是以使用化學藥品之濕式蝕刻方法為 主流。 使用金與鎳的積層膜之加工處理,通常是使用二液之 蝕刻處理,依照金膜、鎳膜之順序進行蝕刻處理。金的钮 201105824 刻液多半是使用王水系或碘系’但是因為王水系是強酸而 不容易處理,而且钱刻速率與授拌速度成反比例而難以控 制。又,因為王水系之成分揮發大,會有性能安定性差等 問題。相對地’由填及碘化物及水所構成的蛾系蝕刻液, 雖然碘多少會揮發,但是因為金的蝕刻速率容易控制,且 蝕刻選擇性高(溶解金但幾乎不溶解鎳)等之理由,所以 碘系蝕刻液成為主流(專利文獻1) ^鎳的飯刻液則是以 過氧化氫水+磷酸(專利文獻2 )、硫酸+鹽酸(專利文獻3 )、 硝酸鈽銨+過鹽酸(專利文獻4 )、硫酸+過氧化氫水+硝酸 (專利文獻5)、氣化鐵+鹽酸+高分子化合物(專利文獻6) 等的氧化劑+無機酸或無機酸混合液系,而有廣闊範圍的蝕 刻液能夠使用。 [先前技術文獻] (專利文獻) 專利文獻1 專利文獻2 專利文獻3 專利文獻4 專利文獻5 專利文獻6 曰本特開2004-21 1 142號公報 曰本特開2006-294797號公報 θ本特開2004-190054號公報 θ本特開2004-59973號公報 θ本特開2004-52001號公報 9本特開2000-336491號公報 【發明内容】 [發明所欲解決之問題] 201105824 但是,使用2種類蝕刻液之處理方法時,難以使金與 鎳的剖面形狀或側面蝕刻量一致,而且使用蝕刻液之處理 步驟長,在處理時間方面且同時在裝置配置方面,存在許 夕問題。作為金與鎳之總括蝕刻液,可以考慮王水系,但 因為王水系是強酸而不容易處理,而且金與鎖㈣刻速率 與攪拌速度成反比例,所以難以控制2種蝕刻速率。又, 因為王水系之液體容易產生分解,會有性能安定性差等問 題而難以實m換及蛾化物及水所構成的㈣姓刻液 亦能夠微量地㈣帛’但是鎳㈣刻速率幾乎無法控制而 且非常低’又,因為鎳的蝕刻花費時間,戶斤以金的側面蝕 刻大。而且,會有容易產生鎳殘渣等的問題,所以難以進 行總括處理。 本發明是鑒於上述的課題而進行,目的在於使用單液 來處理金與錦共存之材料,且提供—種在㈣金與錄共存 的材料時控制金及/或鎳的蝕刻速率之方法及蝕刻液。 [解決問題之手段] 本發明者以開發新穎蝕刻液為目的而專心進行研討, 結果發現藉由在姓刻金與鎳之碟系餘刻&中,鄕酸及/ 或有機☆劑並調整調配比,則能夠-舉解決上述問題點, 而完成了本發明。 亦即,本發明是有關於前述方法,係在金與鎳共存之 :料中選擇性地蝕刻金及/或鎳之方法,纟包含:調整在 、化物及碘、以及酸及/或有機溶劑之蝕刻液中的各 成分的調配比。 201105824 :調整碘與 配量,以使 又,本發明是有關於前述方法,其中包含 蛾化物的重量比、以及酸及/或有機溶劑的調 碘不析出。 而且 之材料中=明是有關於前述飯·,係在金與錄共存 的姓㈣’其含有:破化物及碟、以及酸 及/或有機溶劑。 又,本發明是有關於前述餘刻液,其中有機溶劑是選 由.含氮五員環化合物、有機硫化合物、醇化合物、酮 化合物及酿胺化合物所組成之群組中@ i種或2種以上。 而且,本發明是有關於前述钮刻液,其中有機溶劑是 N-甲基-2-«*比咯啶酮(NMP)。 又’本發明是有關於前述蝕刻液,其申有機溶劑是n,n_ 二曱基乙醯胺(DMAc)。 而且,本發明是有關於前述蝕刻液,其中有機溶劑的 濃度為1 〇容量%以上。 又本發明疋有關於刚述餘刻液,其中相對於蜗,峨 化物的重量比率為3以上。 而且,本發明是有關於前述蝕刻液,其中酸是選自由 無機酸及在常溫為固體的有機酸所組成之群組中的丨種或 2種以上。 又’本發明是有關於前述蝕刻液,其中酸是選自由: 鹽酸、硫酸、硝酸、檸檬酸、丙二酸、酒石酸、蘋果酸及 2,2’·硫二乙酸所組成之群組中的1種或2種以上。 而且’本發明是有關於前述银刻液,其中酸是鹽酸。 201105824 又’本發明是有關於前述钮刻液’其中酸的濃度為5mM 以上。 而且’本發明是有關於前述蝕刻液,其中鎳與金的蝕 刻速率比為(鎳的蝕刻速率/金的蝕刻速率)Ni〆AU= 〇.1〇 以上。 又,本發明是有關於前述蚀刻液,其中不含有酸。 而且’本發明是有關於前述蝕刻液,其為使用於下述 方法.在金與鎳共存之材料中,藉由調整蝕刻液中的各成 分的調配比,來選擇性地蝕刻金及/或鎳之方法。 本發明的蝕刻方法及蝕刻液,是藉由在含有碘化物及 碘之習知的碘系蝕刻液中,調配酸及/或有機溶劑,並調 整各成分之調配比,而能夠達成以往難以達成之提升鎳的 姓刻力及/或抑制金的蝕刻’並能夠因應微細加工。 又’本發明的蝕刻方法及蝕刻液,能夠以單液來處理 金及鎳之二層的積層膜’且能夠使剖面形狀或側面蝕刻量 一致。 在另外的態樣中,在碘及碘化物的水溶液中僅添加有 機溶劑時,本發明的蝕刻方法及蝕刻液能夠抑制鎳的蝕刻。 【實施方式】 以下,更詳細地說明本發明。 在本發明中所使用的酸,從與碘系蝕刻液的相溶性或 溶解性之觀點而言,以無機酸或在常溫為固體的有機酸為 201105824 佳。在此,常溫是意味著15〜35它。 作為無機酸,可舉出:鹽酸、硫酸、硝 氣酸、氣酸、過氣酸、氫 磷馱、次 虱碘酸、次碘酸、碘酸、 氫漠酸、次溴酸、漠酸、過 過碘醆、 亞鱗酸、次鱗酸等。,臭酸、亞硫酸、過硫峻、碳酸、 酸 酸 酸 作為在常溫為固體的有機酸,可舉出 酒石酸、蘋果酸、22,找 , 傈酸、丙二 酞酸、反丁烯二酸、Γ ^ _丁烯二 敗 乙二胺四乙酸、二伸乙= 一伸乙三胺五乙酸、麵胺酸、柳酸等。 胺四乙 、在本發明中所使用的酸,從鎳的溶解性之觀 以鹽酸、硫酸、硝酸、掉 .而3, ”,访Α 丙二酸、酒石酸、蘋果舱 2,2-硫一乙酸為更佳。 两果酸、 3有2種以上之該等酸時該等的全部或 選自無機酸。又,亦可全Α 分能夠 機酸。 類為選自在常溫為固體的有 ,、含有-種酸時’ _的溶解性㈣ 價格之觀點而言,以鹽酸為佳。 旱〜性' 又/有機溶㈣時使㈣,以與有機溶劑的 良好之酸、鹽酸為佳。 性 在本發明中所使用的碟化物是蛾化卸、碟化鈉、球化 錄等。特別是從價格的觀點而言,㈣化鉀為佳。、 換與蜗化物之重量比例沒有特別限定,以1:3〜1: 10為佳,以1:5〜1:10為更佳,進而以1: 特佳。 …為 201105824 佳 使用酸時’換與換化物之重量比率以 8 為 在本發明中所使用的有機溶劑, 溶性的觀點而a v . ^ -、碘系蝕刻液的相 J規點而g ’以含氣五昌 醇化人你 化合物、有機硫化合物、 合衫传人七 化合物、酮化合物、醯胺化 «物為佳。含有2種以上的該# v J g寺有機溶劑時’其全部或一 4为可選自上述化合物群 一 群組之中。 群、·且之中’亦可選自不同的化合物 作為含氮五員環化合物,可舉出:吼洛咬綱"米 睏、•号唑、噻唑、巧二唑、 哫 巷—〇坐、四η坐或三。坐衍生物望 化合物。更具體而言是: 以甲基-2-吡咯啶酮(NMP) 、2 料㈣、聚匕稀料_、h乙基二· 曱基-2-咪唑啶酮、2_咪吔 鲷、2 -亞胺基-1-曱基- 4-°米唾唆 網、1_曱基如米錢_、π雙u-笨基 雙(1·笨基 W,3,4·嚷唑、2,5_雙(1 苯基 Μ,3,4一二唾、2,5· 雙(1-萘基)-1,3,4-巧二嗅、14雙[2(5苯基々二唾基)]苯、 Μ-雙[2-(5·笨基巧二唾基)_4_第三丁基笨]、2,5雙屮蔡 基)1,3,4-噻一唑、2,5-雙(1•萘基噻二唑、丨,4-雙 [2-(5-苯基嗟二絲)]笨、2,5_雙(1_萘基)43,4•三唾、认 雙[2-(5-苯基三♦基)]笨等u之中以錢酸等的相溶 It佳之NMP、2-«比略啶_、L3·:甲基_2_味唑啶鋼為佳。 作為有機硫化合物,有··二甲基亞颯、氩硫基琥珀酸、 2,2’-硫二乙酸等。該等之中,以與鹽酸的相溶性佳之良琉 基琥珀酸、2,2,-硫二乙酸為佳。 201105824 作為醇化合物,可舉出碳數丨〜1〇 ^ . 幻醇,該等可以是 飽和、不飽和、環狀之任一種結構 疋 I*从# * 々- J从是具有2個以 上的減之多謂。更具體而言,可舉出:甲醇、乙醇、 1-丙醇、己醇等的直鏈醇;乙二醇、丙二醇、丁二醇、 1,6-己二醇等的二醇;12 4_丁三醇、 ’ ^ 己^醇、1’2,3·庚三醇等的三醇;及環戊醇環己醇等的環 狀醇。該等之中,以與鹽酸的相溶性佳之乙二醇丙二醇、 1,4-丁二醇為佳。 作為醯胺化合物,只要是具有醯胺基,則亦可以具有 確基、本基、鹵素等取代基。更具體而言,可舉出:N_甲 基曱酿胺、N,N-二曱基曱醯胺、n,N-二乙基曱醯胺、n-甲 基乙醯胺、N,N-二曱基乙醯胺(DMAc)、N-甲基丙醯胺、 丙稀酿胺、己·一酿胺、乙酿胺、2-乙酿胺丙稀酸、4-乙酿 胺苯曱酸、2-乙醯胺苯曱酸曱酯、乙醯胺乙酸乙酯、4_乙 醯胺苯酚、2-乙醯胺苐、6-乙醯胺己酸、對乙醯胺苯甲醛、 3 -乙醯胺丙二酸二乙酯、4-乙醯胺丁酸、醯胺硫酸、醯胺 硫酸銨、阿米酚(amidol)、3-胺基苯曱醯胺、對胺基苯磺醯 胺、蒽基醯胺、異菸鹼醯胺、 N-異丙基丙烯醯胺、N-異丙基-1-哌咐乙醢胺、脲醸胺 解離酶、2-乙氧基苯曱醯胺、順-13-二十二烯醯胺、油醯胺、 2_氣乙醯胺、甘胺醯胺鹽酸鹽、琥珀酿胺、琥珀二醯胺、 柳醯胺、2 -氣基乙酿胺、2 -氛基硫乙醯胺、二乙酿胺、二 丙酮丙烯醢胺、二異丙基曱醯胺、N,N-二異丙基異丁醯胺、 N,N-二乙基乙醯乙醯胺、N,N二乙基乙醯胺、N,N_二乙基 201105824 十二烷醯胺、N,N-二乙基菸鹼醯胺、二氰基二醯胺、N,N-二丁基甲醯胺、N,N-二丙基乙醢胺、N,N-二曱基丙醯胺、 N,N-二甲基苯曱醯胺、 硬脂醯胺、苯磺胺(sulfanilamide)、磺胺苯甲醯胺、磺 醯胺酸、丹醯胺(dansylamide)、硫乙醯胺、硫異於驗醯胺、 硫苯甲醢胺、2-硝基苯甲醯胺、3-硝基苯甲醯胺、2-硝基苯 甲醯胺、2-硝基苯磺醯胺、3-硝基苯磺醯胺、4-硝基苯磺醢 胺、吡咯啉醯胺、吡啡醯胺、2-苯基丁醯胺、N-苯基苯甲 酿胺、苯氧基乙醯胺、酞醯胺、酞二酿胺、反丁烯醯胺、 N-丁基乙酿胺、正丁醯胺、丙院醯胺(propanamide)、丙醯 胺(propionamide)、己醯胺、苯甲醯胺、苯磺醯胺、甲酿胺、 丙二酿胺(malonamide)、丙二酸二醯胺(malondiamide)、甲 確醯胺、N-甲基苯曱醯胺、;^曱基順丁烯醯胺酸(N_methyl maleamidic acid)、埃乙醯胺。該等之中,以與鹽酸等的相 溶性良好之N-甲基曱醯胺、N,N_二曱基乙醢胺為佳。 作為嗣化合物’可舉出碳數3至10的酮,具體而言, 有乙酮、曱基乙基酮、環己酮、二巧烷、4羥基_2甲基戊 酮、r -丁内酯、碳酸乙烯酯、碳酸丙烯酯等❶該等之中, 以與鹽酸等的相溶性良好之丙酮、碳酸乙烯酯為佳。 該等有機溶劑之中,因為能夠將金與鎳的蝕刻速率保 持安定,故以揮發性低的有機溶劑為佳。此種有機溶劑有 氮五員環化〇物、一醇化合物、三醇化合物、酿胺化合 物等。因為#刻時㈣性亦良好,以NMP或DMAe為特佳。 作為鷇而3有選自由:鹽酸、硫酸、硝酸、檸檬酸、 201105824 丙二酸、酒石酸、蘋果酸、2,2,_硫二乙酸所組成之群組令 的1種或2種以上,及作為有機溶劑而含有選自由:含氮 五員環化合物、有機硫化合物、醇化合物酮化合物、二 醇化合物、三醇化合物、醯胺化合物所組成之群組中的j 種或2種以上時’這樣㈣刻液能夠更適當地提升錦的餘 刻力及/或抑制金的蝕刻。 此種有機溶劑的使用量以!〜9〇容量%為佳,以1〇〜 85容量%為更佳,以2〇〜8〇容量%為特佳。在此範圍内時, 能夠抑制鎳的蝕刻力。 此種無機酸或在常溫為固體的有機酸之使用量以 0.005〜3莫耳/升為佳’ α 〇 〇〇5〜〇 2莫耳,升為更佳, 以0.005莫耳/升〜〇·〇5莫耳/升為特佳。在此範圍内時, 能夠提升鎳的蝕刻力。 混合有機溶劑及酸而使用時,以含有2〇〜6〇容量%的 有機溶劑、5〜1〇〇毫莫耳/升(mM)的酸為佳。 藉由變更在蝕刻液所使用之無機酸或在常溫為固體的 有機酸之使用量,能夠抑制鎳與金的蝕刻速率比。 鎳與金的蝕刻速率比是表示鎳的蝕刻速率/金的蝕刻 速率(以下略記為Ni/Au比),其必須為Ni/Au比=〇 以上。Ni/ Au比=〇. 1 〇以上時,能夠得到提升鎳的蝕刻力 及/或抑制金的钮刻力的效果,故較佳。更佳的效果是以 0.20以上為佳。201105824 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid and a method for etching gold and/or nickel in a material in which gold and nickel coexist. [Prior Art] A semiconductor-based device using a germanium wafer substrate or a ni/v-group substrate as a substrate, a liquid crystal-related component using a glass substrate as a substrate, an organic substrate such as a polyimide substrate, or the like. In the case of using a ceramic substrate made of cerium oxide and aluminum as a substrate, it is required to form a wiring, a bump, or the like by laminating a laminated film made of a dissimilar metal of a base metal and a noble metal. Technically, precious metals (gold, silver, copper, tantalum, niobium, tantalum, niobium, platinum, etc.) have low electrical resistance and are easy to electrify, but generally have poor adhesion to Shi Xi or glass substrates. Therefore, a base film 'which is made of a metal having a good adhesion is formed on the substrate, and a noble metal film is formed on the base film. As the metal used for the base film, molybdenum, nickel, chromium, and titanium having excellent adhesion to a crucible or a glass substrate are known. Among them, nickel or chromium is widely used because of its excellent handleability. Among the above combinations, in particular, a combination of gold and nickel is used in a wide range of fields, and such processing techniques are mainly based on wet etching methods using chemicals. The processing using a laminated film of gold and nickel is usually performed by etching using a two-liquid process in the order of a gold film or a nickel film. The gold button 201105824 is mostly made of aqua regia or iodine. However, because the aquarium is strong acid, it is not easy to handle, and the rate of money is inversely proportional to the rate of mixing and is difficult to control. Moreover, since the components of the water system are highly volatile, there are problems such as poor performance stability. Relatively 'moth molybdenum etchant composed of iodide and water, although iodine is somewhat volatilized, the reason is that the etching rate of gold is easy to control, and the etching selectivity is high (the gold is dissolved but the nickel is hardly dissolved). Therefore, the iodine-based etching liquid is in the mainstream (Patent Document 1). ^The rice cooking liquid is hydrogen peroxide water + phosphoric acid (Patent Document 2), sulfuric acid + hydrochloric acid (Patent Document 3), ammonium cerium nitrate + hydrochloric acid ( Patent Document 4), sulfuric acid + hydrogen peroxide water + nitric acid (Patent Document 5), gasification iron + hydrochloric acid + polymer compound (Patent Document 6), etc., oxidizing agent + inorganic acid or inorganic acid mixed liquid system, and has a wide range The etching solution can be used. [Prior Art Document] (Patent Document) Patent Document 1 Patent Document 2 Patent Document 3 Patent Document 4 Patent Document 5 Patent Document 6 曰本特开2004-21 1 142 曰本本开2006-294797号 θ本特Japanese Laid-Open Patent Publication No. 2004-59973. In the treatment method of the etching liquid, it is difficult to match the cross-sectional shape or the side etching amount of gold and nickel, and the processing step using the etching liquid is long, and there is a problem in terms of processing time and device arrangement. As the total etching solution of gold and nickel, the aqua regia can be considered, but since the aqua regia is strong acid and is not easy to handle, and the gold and lock (four) engraving rate is inversely proportional to the stirring speed, it is difficult to control the two etching rates. In addition, because the liquid of the Wangshui system is prone to decomposition, there are problems such as poor performance and stability, and it is difficult to change the m-type and moth compound and water. (4) The surname engraving can also be traced (four) 帛' but the nickel (four) engraving rate is almost uncontrollable. And very low' again, because the etching of nickel takes time, the side of the gold is etched with gold. Further, there is a problem that nickel residue or the like is likely to be generated, so that it is difficult to carry out the collective treatment. The present invention has been made in view of the above problems, and an object thereof is to use a single liquid to treat a material in which gold and gold coexist, and to provide a method and an etching method for controlling an etching rate of gold and/or nickel when (4) gold and a material coexisting. liquid. [Means for Solving the Problem] The present inventors focused on the development of a novel etching solution, and as a result, it was found that the tannic acid and/or organic ☆ agent was adjusted by the name of the gold and nickel discs in the last name & The blending ratio can solve the above problems and complete the present invention. That is, the present invention relates to the above method, which is a method for selectively etching gold and/or nickel in a material in which gold and nickel coexist, and comprises: adjusting an organic compound, iodine, and an acid and/or an organic solvent. The mixing ratio of each component in the etching solution. 201105824: The iodine and the amount are adjusted so that the present invention relates to the aforementioned method, wherein the weight ratio of the moth compound and the iodine of the acid and/or the organic solvent are not precipitated. In addition, the material is the same as the above-mentioned rice, which is the surname (4) of the coexistence of gold and recorded. It contains: broken material and dish, and acid and/or organic solvent. Further, the present invention relates to the aforementioned remnant, wherein the organic solvent is selected from the group consisting of a nitrogen-containing five-membered ring compound, an organic sulfur compound, an alcohol compound, a ketone compound, and a brewing amine compound. More than one species. Moreover, the present invention relates to the aforementioned button engraving, wherein the organic solvent is N-methyl-2-«*pyrrolidone (NMP). Further, the present invention relates to the above etching liquid, and the organic solvent is n,n-dimercaptoacetamide (DMAc). Further, the present invention relates to the etching liquid described above, wherein the concentration of the organic solvent is 1% by volume or more. Further, the present invention relates to a remnant solution in which the weight ratio of the bismuth compound is 3 or more with respect to the worm. Furthermore, the present invention relates to the above etching liquid, wherein the acid is one or more selected from the group consisting of inorganic acids and organic acids which are solid at normal temperature. Further, the present invention relates to the foregoing etching solution, wherein the acid is selected from the group consisting of: hydrochloric acid, sulfuric acid, nitric acid, citric acid, malonic acid, tartaric acid, malic acid, and 2,2'·thiodiacetic acid. One or two or more. Further, the present invention relates to the aforementioned silver engraving liquid wherein the acid is hydrochloric acid. Further, the present invention relates to the above-mentioned button engraving liquid, wherein the acid concentration is 5 mM or more. Further, the present invention relates to the foregoing etching liquid in which the etching rate ratio of nickel to gold is (etching rate of nickel/etching rate of gold) Ni 〆 AU = 〇.1 〇 or more. Further, the present invention relates to the aforementioned etching liquid, which does not contain an acid. Further, the present invention relates to the etching liquid described above, which is used in the method of selectively etching gold and/or by adjusting a compounding ratio of each component in the etching liquid in a material in which gold and nickel coexist. Nickel method. In the etching method and the etching solution of the present invention, by mixing an acid and/or an organic solvent in a conventional iodine-based etching solution containing iodide and iodine, and adjusting the mixing ratio of each component, it is difficult to achieve conventionally. It enhances the nickel's surname and/or inhibits the etching of gold' and can handle micro-machining. Further, in the etching method and the etching liquid of the present invention, the laminated film of the two layers of gold and nickel can be treated in a single liquid, and the cross-sectional shape or the side etching amount can be made uniform. In another aspect, when only an organic solvent is added to an aqueous solution of iodine and iodide, the etching method and the etching solution of the present invention can suppress etching of nickel. [Embodiment] Hereinafter, the present invention will be described in more detail. The acid used in the present invention is preferably an organic acid having a mineral acid or a solid at room temperature from the viewpoint of compatibility with an iodine-based etching solution or solubility. Here, the normal temperature means 15 to 35 of it. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, gas acid, peroxy acid, hydroquinone, hydrazine, iodic acid, iodic acid, hydrogen acid, hypobromous acid, and acid acid. Passed iodine, squaraine, squaric acid and so on. , odorous acid, sulfurous acid, sulfuric acid, carbonic acid, acid acid as organic acid at room temperature, tartaric acid, malic acid, 22, find, tannic acid, malonic acid, fumaric acid , Γ ^ _ butene disodium ethylenediaminetetraacetic acid, diexit B = a stretch of ethylene triamine pentaacetic acid, a face acid, salicylic acid and the like. Amine tetraethyl, the acid used in the present invention, from the solubility of nickel, hydrochloric acid, sulfuric acid, nitric acid, and 3,", visits malonate, tartaric acid, apple cabin 2,2-sulfur More preferably, acetic acid is used, and two or more of these acids are selected from the group consisting of inorganic acids, and all of them can be classified as organic acids. In the case of containing -acids, the solubility of ' _ (4) is preferred from the viewpoint of price. It is good for hydrochloric acid and (4), and it is good for acid and hydrochloric acid with organic solvents. The dish used in the present invention is moth-removing, dishing sodium, spheroidal recording, etc. Particularly, from the viewpoint of price, (4) potassium is preferred. The weight ratio of the vortex to the snail is not particularly limited. It is preferably 1:3 to 1:10, more preferably 1:5 to 1:10, and further preferably 1:1. It is 201105824. When using acid, the ratio of the weight of the compound to the compound is 8 The organic solvent used in the invention, the viewpoint of solubility, av. ^ -, the phase of the iodine-based etching solution, and the g's a compound, an organic sulfur compound, a compound, a ketone compound, a guanidine compound, preferably. When two or more of the organic solvents are contained in the #v J g temple, all or one of them may be selected from the above compounds. Among the group, group, · and middle ' can also be selected from different compounds as nitrogen-containing five-membered ring compounds, which can be exemplified by: 吼 咬 &" 米 sleep, • azole, thiazole, Qiao Oxazole, 哫 alley - 〇 sitting, four η sitting or three. Sitting on the compound of the derivative. More specifically: methyl-2-pyrrolidone (NMP), 2 (four), polythene _, h二二·曱基-2-imidazolidinone, 2_imiene, 2-imino-1-indenyl- 4-°m sputum net, 1_曱基如米钱_,π双u- Stupid double (1·Stupid W, 3,4·carbazole, 2,5_bis (1 phenylindole, 3,4-di-sal, 2,5·bis(1-naphthyl)-1,3 , 4-qiao two scent, 14 pairs of [2 (5 phenyl hydrazide)] benzene, bismuth-bis [2-(5. phenyl), stilbene] _4_t-butyl stupid], 2, 5 屮 屮 蔡基) 1,3,4-thiazolyl, 2,5-bis(1 •naphthylthiadiazole, anthracene, 4-bis[2-(5-phenylfluorene)) stupid, 2,5_bis(1_naphthyl)43, 4•Three saliva, bismuth [2-(5-phenyltriphenyl)] stupid, etc., which is compatible with money acid, etc. It is better than NMP, 2-«bistidine _, L3·: methyl _ 2_isoxazole pyridine steel is preferred. As the organic sulfur compound, there are dimethyl hydrazine, arsenyl succinic acid, 2, 2'-thiodiacetic acid, etc. Among these, compatibility with hydrochloric acid Jiazhiliang succinic acid, 2,2,-thiodiacetic acid is preferred. 201105824 As an alcohol compound, a carbon number 丨~1〇^ can be cited. The imaginary alcohol can be saturated, unsaturated or cyclic. A structure 疋I* from # * 々-J is more than 2 minus. More specifically, a linear alcohol such as methanol, ethanol, 1-propanol or hexanol; a glycol such as ethylene glycol, propylene glycol, butanediol or 1,6-hexanediol; a triol such as ?-triol, '^hexanol, 1'2,3-heptanetriol; and a cyclic alcohol such as cyclopentanol cyclohexanol. Among these, ethylene glycol propylene glycol and 1,4-butanediol which are compatible with hydrochloric acid are preferred. The guanamine compound may have a substituent such as a substituent, a substituent or a halogen as long as it has a guanamine group. More specifically, N-methyl acetamide, N,N-didecyl decylamine, n,N-diethyl decylamine, n-methylacetamide, N, N - Dimercaptoacetamide (DMAc), N-methylpropionamide, acrylamide, hexamethyleneamine, ethanoamine, 2-ethylamine, acrylic acid, 4-ethylamine benzoquinone Acid, 2-ethylguanidinium benzoate, ethyl acetate, ethyl 4-acetamide, 2-acetamide, 6-acetamide, p-acetamide, 3 - Ethylamine malonate, 4-acetamide, butyric acid, ammonium amide, amidol, 3-aminophenylamine, p-aminophenylsulfonate Amine, mercaptodecylamine, isonicotinium amide, N-isopropyl acrylamide, N-isopropyl-1-piperidine, urea amide amine dissociation enzyme, 2-ethoxybenzoquinone Amine, cis-13-eicodecylamine, ceramide, 2_gas acetamide, glycine amide hydrochloride, amber amide, amber decylamine, sulphonamide, 2-air base Amine, 2-arylthioacetamide, diethylamine, diacetone acrylamide, diisopropyldecylamine, N,N-diisopropylisobutylamine, N,N-diethyl Base Indoleamine, N,N diethylethylammoniumamine, N,N-diethyl 201105824 dodecylguanamine, N,N-diethylnicotinamide, dicyanodiamine, N,N- Dibutylformamide, N,N-dipropylacetamide, N,N-dimercaptopropylamine, N,N-dimethylbenzamide, stearylamine, sulfanilamide, Sulfamethoxamide, sulfacetic acid, dansylamide, thioacetamide, sulphur isopropanol, thiobenzamide, 2-nitrobenzamide, 3-nitrobenzene Formamide, 2-nitrobenzamide, 2-nitrobenzenesulfonamide, 3-nitrobenzenesulfonamide, 4-nitrobenzenesulfonamide, pyrroline guanamine, pyridoxamine, 2-Phenylbutanamine, N-phenylbenzamide, phenoxyacetamide, decylamine, hydrazine, decylamine, N-butylamine, n-butyl Amine, propanamide, propionamide, hexamethyleneamine, benzamide, benzenesulfonamide, amide, malonamide, diammonium malonate Malondiamide), acetalamine, N-methylbenzamide, N-methyl maleamidic acid ), acetamide. Among these, N-methylnonylamine and N,N-didecylacetamide which are compatible with hydrochloric acid or the like are preferred. The oxime compound 'is a ketone having 3 to 10 carbon atoms, specifically, ethyl ketone, mercapto ethyl ketone, cyclohexanone, dicodane, 4 hydroxy 2 methyl pentanone, and r-butane. Among the esters, ethylene carbonate, propylene carbonate and the like, acetone or ethylene carbonate having good compatibility with hydrochloric acid or the like is preferred. Among these organic solvents, since the etching rate of gold and nickel can be kept stable, an organic solvent having a low volatility is preferred. Such an organic solvent is a nitrogen five-membered sulfonium compound, a monool compound, a triol compound, a brewing amine compound or the like. Because #刻时(四) is also good, NMP or DMAe is especially good. And 3 or more selected from the group consisting of: hydrochloric acid, sulfuric acid, nitric acid, citric acid, 201105824 malonic acid, tartaric acid, malic acid, 2,2, thiodiacetic acid, and When the organic solvent contains j or two or more selected from the group consisting of a nitrogen-containing five-membered ring compound, an organic sulfur compound, an alcohol compound ketone compound, a diol compound, a triol compound, and a guanamine compound, Such (4) engraving can more appropriately enhance the remnant force of the brocade and/or inhibit the etching of gold. The amount of this organic solvent used! ~9〇% of capacity is better, with 1〇~85% by volume being better, and 2〇~8〇% by volume is particularly good. When it is in this range, the etching force of nickel can be suppressed. The use amount of such an inorganic acid or an organic acid which is solid at a normal temperature is preferably 0.005 to 3 m/liter, which is preferably 'α 〇〇〇 5 to 〇 2 mol, and is preferably increased to 0.005 m / liter ~ 〇 · 〇 5 m / liter is especially good. Within this range, the etching force of nickel can be increased. When the organic solvent and the acid are mixed and used, it is preferably an organic solvent containing 2 〇 to 6 〇% by volume, and an acid of 5 to 1 Torr in milliliters per liter (mM). By changing the amount of the inorganic acid used in the etching solution or the organic acid which is solid at normal temperature, the etching rate ratio of nickel to gold can be suppressed. The etching rate ratio of nickel to gold is an etching rate of nickel/gold etching rate (hereinafter abbreviated as Ni/Au ratio), which must be Ni/Au ratio = 〇 or more. When the Ni/A ratio = 〇. 1 〇 or more, the effect of increasing the etching power of nickel and/or suppressing the buttoning force of gold can be obtained, which is preferable. A better effect is preferably 0.20 or more.

Ni/Au比為1.00以上時,鎳的蝕刻速率與金的蝕刻 速率會逆轉。亦即變為鎳比金更大量地被蝕刻。當鎳的膜 201105824 厚度比金的膜厚度更厚時,此種蝕刻液是有效且非常好的 例如,如第1圖所示,無機酸或在常溫為固體的有機 酸是使用鹽酸時,鹽酸為〇毫莫耳/升時金的姓刻速率高 於鎳的蝕刻速率,相對於此,鹽酸為5毫莫耳/升時,Y 產生錄的钱刻速帛高於金的㈣速帛之逆轉%象。亦即貝 鹽酸為5毫莫耳/升時,Ni/Au比會成為i 〇〇以上。因 此,藉由改變鹽酸使用量,能夠控制Ni〆Au比。 在埃或填化合⑼的水溶液中僅添加有機溶劑時,會發 揮抑制鎳的蝕刻速率之效果,例如第2圖所示,卿為〇 :量科’鎳的蝕刻速率為13奈米,分鐘,但是添加—2〇 I量%以上時’變為大致為〇。藉此’能夠得到不會溶解 Ni而僅使Au溶解之Au的選擇蝕刻效果。 藉由在含有峨及蛾化合物的钮刻液中使用無機酸或在 常溫為固體的有機酸,能夠總括蝕刻金與鎳…藉由調 節其調配比,能夠控制金與鎳的钱刻速率比。為了提高此 種姓刻液對基板之濕潤性並防止側面_,以進而添二有 機溶劑為佳。 本發明的姓刻液能夠藉由:在眾所周知的峨系银刻液 添加前述無機酸或在常溫為固體的有機酸、以及有機溶 劑;或是在水中混合碘、碘化物及該化合物來製造。又, 不必事先調製本發明的㈣&,而是亦可藉由在银刻時使 用蛾系蝕刻液、無機酸或在常溫為固體的有機酸、以及有 機溶劑’來蝕刻金與鎳。 作為本發明的㈣方法,只要是使用本發明的餘刻 13 201105824 法。通常有浸潰方式及喷霧 。從蝕刻液的組成變化之觀 液,則能夠使用眾所周知的方 方式,任一種方法均能夠因應 點而言’以浸潰方式為佳。作為具體方法,能夠藉由在钱 刻液槽中使半導體基板等材料靜止或㈣來進行金與錦的 姓刻。银刻時間若有卜⑼分鐘則為充分,姓刻溫度則是 能夠在進行。以在2Q〜3()t進行㈣卜〗分鐘 為特佳。 使用本發明的钱刻液來進行钮刻之材料,是金與錄共 存之㈣、特別是具有金與錄的積層膜之材料。具體而言 可舉出半導體基板、矽晶圓、透明導電性電極等半導體材 料。其中,以使用半導體基板為佳。 [實施例] 隨後,藉由實施例更具體地說明本發明,但是本發明 未限定於該等實施例。 <實施例1 > 設定為錄與金共存之玻璃上的鎳之㈣,而進行試驗。 製備4種蝕刻液各2〇〇毫升’該4種蝕刻液是在碘化 鉀為100克/升、碘為10克//升的蝕刻液(使用水作為溶 劑)中,調配0、20、40、60容量%之_基2喝_ (NMP)而成。隨後,將2x2公分的金試片及錄試片於 液溫為30t下’ 一邊弱授拌、一邊使其在前述蝕刻液中浸 潰1分鐘來進行敍刻。由重量法算出金與鎳的蝕刻速率, 並算出Ni/Autt。其結果是如表t及第2圖所示。 201105824 因添加NMP,鎮的為*丨、± * 傲务 '的蝕刻速率降低,在20容量%蚌幾半 變為不溶解。因此,芒 篁/〇時邊乎 . 在碘系蝕刻液中僅添加溶劑時,則 能夠進仃會溶解Au伸县尤々如χτ.When the Ni/Au ratio is 1.00 or more, the etching rate of nickel and the etching rate of gold are reversed. That is, nickel is etched in a larger amount than gold. When the thickness of the film 201105824 of nickel is thicker than the film thickness of gold, such an etching solution is effective and very good. For example, as shown in Fig. 1, an inorganic acid or an organic acid which is solid at a normal temperature is hydrochloric acid, hydrochloric acid is used. The rate of the surname of gold is higher than the etching rate of nickel. In contrast, when hydrochloric acid is 5 millimoles per liter, the rate of money recorded by Y is higher than that of gold (four). Reversal of the % elephant. That is, when the hydrochloric acid is 5 mmol/liter, the Ni/Au ratio becomes i 〇〇 or more. Therefore, the Ni〆Au ratio can be controlled by changing the amount of hydrochloric acid used. When only an organic solvent is added to the aqueous solution of argon or the compound (9), the effect of suppressing the etching rate of nickel is exerted. For example, as shown in Fig. 2, the etching rate of the nickel is smear: 13 nm, minute, However, when -2〇I is more than %, it becomes substantially 〇. Thereby, it is possible to obtain a selective etching effect of Au which does not dissolve Ni and dissolves only Au. By using a mineral acid or an organic acid which is solid at a normal temperature in a button engraving liquid containing bismuth and moth compounds, it is possible to collectively etch gold and nickel... By adjusting the mixing ratio, it is possible to control the ratio of gold to nickel. In order to improve the wettability of the surname to the substrate and prevent the side surface, it is preferred to add a second organic solvent. The surname of the present invention can be produced by adding the above-mentioned inorganic acid or an organic acid which is solid at a normal temperature and an organic solvent to a well-known lanthanide silver engraving liquid, or by mixing iodine, an iodide and the compound in water. Further, it is not necessary to prepare (4) & of the present invention in advance, but it is also possible to etch gold and nickel by using a moth-based etching solution, an inorganic acid or an organic acid which is solid at a normal temperature, and an organic solvent in silver etching. As the method (4) of the present invention, the method of using the present invention 13 201105824 is used. Usually there are dipping methods and sprays. It is possible to use a well-known method from the viewpoint of the change in the composition of the etching liquid, and it is preferable that either method can be used in the manner of impregnation. As a specific method, it is possible to carry out the surname of gold and brocade by making the material such as the semiconductor substrate still or (4) in the money bath. If the silver engraving time is (9) minutes, it is sufficient, and the temperature of the surname can be carried out. It is especially good to carry out (4) in the 2Q~3()t. The material for performing the button engraving using the money engraving of the present invention is a material which is coexisting with gold and recorded (IV), particularly a laminated film having gold and recording. Specifically, a semiconductor material such as a semiconductor substrate, a germanium wafer, or a transparent conductive electrode can be cited. Among them, it is preferred to use a semiconductor substrate. [Examples] Subsequently, the present invention will be more specifically illustrated by the examples, but the present invention is not limited to the examples. <Example 1> The test was carried out by setting (4) of nickel on the glass in which gold was coexisted. Prepare 4 kinds of etchant for each 2 liters of liquid. The four kinds of etchant are prepared in an etchant (using water as a solvent) with potassium iodide of 100 g/liter and iodine of 10 g/liter, and mix 0, 20, 40, 60% by volume of _base 2 drink _ (NMP). Subsequently, a 2 x 2 cm gold test piece and a test piece were immersed in the etching liquid for 1 minute while the liquid temperature was 30 t while being weakly mixed. The etching rate of gold and nickel was calculated by the gravimetric method, and Ni/Autt was calculated. The results are shown in Tables t and 2. 201105824 Due to the addition of NMP, the etch rate of the town is *丨, ± * 傲 ', and it becomes insoluble at 20% by volume. Therefore, when the 芒 篁 〇 〇 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在

[表1][Table 1]

I疋不溶解Nl之選擇蝕刻。 <實施例2 > 又疋為鎳與金共存之晶圓上的鎳之蝕刻而進行試驗。 製備4種蝕刻液各2〇〇毫升,該4種蝕刻液是在實施 例1的碘化鉀A 100克/升、碘為1〇克,升的蝕刻液(使 用水作為溶劑)中’調配0、5、20、50冑莫耳/升(mM) 之鹽酸而成。與實施例1同樣地將2x2公分的金試片及鎳 "式片於液溫為30C下,一邊弱攪拌、一邊使其在前述蝕 刻液中浸漬1分鐘來進行蝕刻。由重量法算出金與鎳的蝕 刻速率,並算出Ni/ Au比。其結果是如表2及第1圖所示。 結果可知,藉由添加鹽酸,鎳的蝕刻速率會上升,Ni / Αιι比亦上升。又’可知藉由變更添加劑的濃度,鎳與金 的钱刻速率會逆轉,Ni/Au比大於1.00。 15 201105824 [表2] 鹽酸添加量 (mM) Au的 蚀刻速率 (nm/min) Ni的 蝕刻速率 (nm/min) 敍刻速率比 (Ni/Au) 0 255 13 0.05 5 263 319 1.21 20 270 252 0.93 50 242 180 0.73 <實施例3 > 除了將實施例2中之鹽酸變更為如表所示之化合物以 外,與實施例2同樣地進行蝕刻。結果如表3所示。在硫 酸、硝酸的情形中,亦將結果加以圖示(第3、4圖)。結 果可知,藉由使用各種無機酸或在常溫為固體的有機酸, 鎳的蝕刻速率會上升,Ni/ Au比亦上升。又,可知藉由變 更無機酸或在常溫為固體的有機酸的濃度,鎳與金的蝕刻 速率會逆轉,Ni/Au比大於1·00。 [表3] 化合物 添加量 (mM) Au的 蝕刻速率 (nm/min) Ni的 #刻速率 (nm/min) 触刻速率比 (Ni/Au) 硫酸 0 255 13 0.05 5 262 355 1.35 20 263 257 0.98 50 248 161 0.65 硝酸 0 255 13 0.05 5 306 302 — 0.99 20 300 250 0.83 50 283 169 0.60 16 201105824 <實施例4 > 除了將實施例2中之鹽酸變更為如表所示之化合物、 並將添加量固定為5mM以外,與實施例2同樣地進行钮 刻。結果如表4所示。結果可知’藉由使用各種無機酸或 在常溫為固體的有機酸,鎳的蝕刻速率會上升,且亦使犯 / Au比上升。 [表4] 化合物 (添加量5mM) Au的 蝕刻速率 (nm/min) Ni的 蝕刻速率 (nm/min) 蝕刻速率比 (Ni/Au) 檸檬酸 216 236 1.09 丙二酸 253 266 1.05 酒石酸 213 257 1.21 蘋果酸 254 219 0.86 依照上述的實施例,可知藉由在碘系蝕刻液中添加無 機酸或在常溫為固體的有機酸,Ni的蝕刻速率會上升且犯 /Au比會上升,但是卻因此對微細部的濕潤性低落,在蝕 刻高解像度的基板時,纟易產生未溶解殘留。作為改善此 情形方法,而發現除了在峨㈣刻液中添加無機酸或在常 溫為固體的有機酸以外亦添加有機溶劑之方法4下顯示 實施例。 <實施例5 > 設定為鎳與金共存之晶 製備3種蝕刻液各2〇〇 例1的碘化鉀為1 00克/升 圓上的鎳之蝕刻,而進行試驗。 毫升,該3種蝕刻液是在實施 、礙為10克/升的蝕刻液(使 I: 17 201105824 用水作為溶劑)中’添加20毫莫耳/升之鹽酸後,調配 2〇、40、60容量%之NMP而成。與實施例i同樣地將% 公分的金試片及鎳試片,於液溫為3〇c>c下一邊弱攪拌、 一邊使其在前述蝕刻液中浸潰丨分鐘來進行蝕刻。由重量 法算出金與鎳的蝕刻速率,並算出Ni/Au比。其結果是如 表5及第5圖所示。 通常,可知在碘系蝕刻液添加有機溶劑時,則如表i 所示,Ni的蝕刻速率會降低,Ni大致變為不溶解,但是因 為添加了鹽酸,所以Ni的蝕刻速率能夠維持高值。又,犯 / Au比亦能夠得到高值。 [表5] NMP添加量 (vol%) Au的 蝕刻速率 (nm/min) Ni~S 蝕刻速率 (nm/min) 姓刻速率比 (Ni/Au) 20 213 81 0.38 — 40 149 52 0.35 60 52 28 0.54 <實施例6 > 除了將實施例4中之NMP變更為如表所示之化合物以 外,與實施例4同樣地進行蝕刻。結果如表6所示。可知 即便使用各種有機溶劑,Ni的敍刻速率亦能夠維持在古 值。又’ Ni/ Au比亦能夠得到高值。 18 201105824 [表6 化合物 添加量 (vol%) Au的 蝕刻速率 (nm/min) Ni的 #刻速率 (run/min) 触刻速率比 (Ni/Au) 1,3-二曱基 -2-0米唆咬嗣 20 180 86 0.48 40 154 47 0.31 60 75 20 0.27 20 211 90 0.43 γ-丁内酯 40 166 47 0.28 60 104 36 0.35 20 189 111 0.59 碳酸乙烯酯 40 179 78 0.44 60 175 56 0.32 20 216 123 0.57 二甲基亞砜 40 189 95 0.50 60 147 47 0.32 20 161 137 0.85 丙二醇 40 96 71 0.74 60 66 35 0.53 20 134 148 1.10 1,4-丁二醇 40 86 69 0.80 60 59 44 0.75 20 176 182 1.03 曱醇 40 161 129 0.80 60 154 81 0.53 20 105 89 0.85 1-丙醇 40 77 54 0.70 60 80 48 0.60 <實施例7> :碘的溶解性試驗(碘+碘化物+水) 在40毫升之水、0.8克之碘中,將碘化鉀調配為2.4、 4.0、6.4、8.0克等4種,來進行溶解性試驗《各自的碘與 碘化物的比率為1 : 3、1 ·· 5、1 : 8、1 : 10。各組成之試 驗結果是如表7所示。 19 201105824 可知藉由使ΚΙ相對於I的比率為5以上,可提升i的 溶解性。 [表7]I疋 does not dissolve the selective etching of Nl. <Example 2> The test was carried out by etching nickel on a wafer in which nickel and gold coexist. Prepare 2 liters of each of 4 kinds of etching liquids, which are formulated in the etchant (100 liters of liters of potassium iodide A, 1 gram of iodine, and 1 liter of iodine in Example 1 using water as a solvent). 5, 20, 50 胄 mol / liter (mM) of hydrochloric acid. In the same manner as in Example 1, a 2 x 2 cm gold test piece and a nickel " type sheet were immersed in the etching liquid for 1 minute while being stirred at a liquid temperature of 30 C, and etching was performed. The etching rate of gold and nickel was calculated by the gravimetric method, and the Ni/A ratio was calculated. The results are shown in Table 2 and Figure 1. As a result, it was found that by adding hydrochloric acid, the etching rate of nickel increased, and the Ni / Αι ratio also increased. Further, it can be seen that by changing the concentration of the additive, the rate of nickel and gold is reversed, and the Ni/Au ratio is more than 1.00. 15 201105824 [Table 2] Hydrochloric acid addition amount (mM) Au etching rate (nm/min) Ni etching rate (nm/min) Scoring rate ratio (Ni/Au) 0 255 13 0.05 5 263 319 1.21 20 270 252 0.93 50 242 180 0.73 <Example 3 > Etching was carried out in the same manner as in Example 2 except that the hydrochloric acid in Example 2 was changed to the compound shown in the table. The results are shown in Table 3. In the case of sulfuric acid or nitric acid, the results are also shown (Figs. 3 and 4). As a result, it was found that the etching rate of nickel increased and the Ni/ Au ratio also increased by using various inorganic acids or organic acids which were solid at normal temperature. Further, it is understood that the etching rate of nickel and gold is reversed by changing the concentration of the inorganic acid or the organic acid which is solid at normal temperature, and the Ni/Au ratio is more than 1.00. [Table 3] Compound addition amount (mM) Au etching rate (nm/min) Ni's engraving rate (nm/min) Tactile rate ratio (Ni/Au) Sulfuric acid 0 255 13 0.05 5 262 355 1.35 20 263 257 0.98 50 248 161 0.65 nitric acid 0 255 13 0.05 5 306 302 — 0.99 20 300 250 0.83 50 283 169 0.60 16 201105824 <Example 4 > In addition to changing the hydrochloric acid of Example 2 to a compound as shown in the table, The buttoning was carried out in the same manner as in Example 2 except that the amount of addition was fixed to 5 mM. The results are shown in Table 4. As a result, it has been found that by using various inorganic acids or organic acids which are solid at normal temperature, the etching rate of nickel increases, and the cum/ Au ratio also rises. [Table 4] Compound (addition amount 5 mM) Au etching rate (nm/min) Ni etching rate (nm/min) Etching rate ratio (Ni/Au) Citric acid 216 236 1.09 Malonic acid 253 266 1.05 Tartaric acid 213 257 1.21 Malic acid 254 219 0.86 According to the above examples, it is understood that by adding an inorganic acid to an iodine-based etching solution or an organic acid which is solid at a normal temperature, the etching rate of Ni increases and the ratio of the /Au ratio increases, but The wettability of the fine portion is low, and when the substrate having a high resolution is etched, the undissolved remains easily. As a method for improving the case, it has been found that an embodiment is shown in the method 4 of adding an organic solvent in addition to the inorganic acid in the cerium (four) etchant or an organic solvent which is solid at a normal temperature. <Example 5> Crystal in which nickel and gold coexisted was prepared. Three types of etching liquids were prepared. The potassium iodide of Example 1 was etched by nickel on a 100 liter/liter round, and the test was carried out. In milliliters, the three kinds of etching liquids are prepared by adding 20 millimoles/liter of hydrochloric acid to the etchant (I: 17 201105824 water as a solvent) which is impeding 10 liters/liter, and then blending 2 〇, 40, 60 NMP of % capacity. In the same manner as in the example i, the gold test piece and the nickel test piece of % cm were etched while being immersed in the etching liquid for a while while being weakly stirred at a liquid temperature of 3 〇 c > c. The etching rate of gold and nickel was calculated by a gravimetric method, and the Ni/Au ratio was calculated. The results are shown in Tables 5 and 5. In general, when an organic solvent is added to the iodine-based etching solution, as shown in Table i, the etching rate of Ni is lowered, and Ni is substantially insoluble. However, since hydrochloric acid is added, the etching rate of Ni can be maintained at a high value. Also, the offense/ Au ratio can also get a high value. [Table 5] NMP addition amount (vol%) Au etching rate (nm/min) Ni~S etching rate (nm/min) Last name rate ratio (Ni/Au) 20 213 81 0.38 — 40 149 52 0.35 60 52 28 0.54 <Example 6> Etching was carried out in the same manner as in Example 4 except that the NMP in Example 4 was changed to the compound shown in the table. The results are shown in Table 6. It can be seen that even with various organic solvents, the characterization rate of Ni can be maintained at an ancient value. Also, the Ni/Au ratio can also be high. 18 201105824 [Table 6 Compound addition amount (vol%) Au etching rate (nm/min) Ni's engraving rate (run/min) Tactile rate ratio (Ni/Au) 1,3-dimercapto-2- 0 m 唆 嗣 20 180 86 0.48 40 154 47 0.31 60 75 20 0.27 20 211 90 0.43 γ-butyrolactone 40 166 47 0.28 60 104 36 0.35 20 189 111 0.59 Vinyl carbonate 40 179 78 0.44 60 175 56 0.32 20 216 123 0.57 dimethyl sulfoxide 40 189 95 0.50 60 147 47 0.32 20 161 137 0.85 propylene glycol 40 96 71 0.74 60 66 35 0.53 20 134 148 1.10 1,4-butanediol 40 86 69 0.80 60 59 44 0.75 20 176 182 1.03 sterol 40 161 129 0.80 60 154 81 0.53 20 105 89 0.85 1-propanol 40 77 54 0.70 60 80 48 0.60 <Example 7>: Iodine solubility test (iodine + iodide + water) at 40 In the liter of water and 0.8 g of iodine, the potassium iodide was mixed into four kinds of 2.4, 4.0, 6.4, and 8.0 g to carry out the solubility test. The ratio of iodine to iodide was 1:3, 1 ··5, 1 : 8, 1 : 10. The test results for each component are shown in Table 7. 19 201105824 It can be seen that the solubility of i can be improved by setting the ratio of ΚΙ to I to be 5 or more. [Table 7]

Runl Run2 Run3 Run4 水(毫升) 40 40 40 40 I (克) 0.8 0.8 0.8 0.8 ΚΙ (克) 2.4 4.0 6.4 8.0 I : ΚΙ 1:3 广1 : 5 1:8 1 : ίο I的溶解性 X 〇 〇 〇 ※〇:溶解 X :不溶 <實施例8 > :碘的溶解性試驗(碘+碘化物+水+有機溶劑) 在24毫升之水、10毫升之NMp、〇 8克之碘中將 碘化鉀調配為2.4、6.4、8.0克等3種,來進行溶解性試驗。 各自的碘與碘化物的比率為1 : 3、1 : 8、i : 1〇β使 組成之試驗結果是如表8所示。 與實施例7不同, 藉由添加有機溶劑 [表8]Runl Run2 Run3 Run4 Water (ml) 40 40 40 40 I (g) 0.8 0.8 0.8 0.8 ΚΙ (g) 2.4 4.0 6.4 8.0 I : ΚΙ 1:3 广1 : 5 1:8 1 : ίο I Solubility X 〇 〇〇※〇: Dissolved X: insoluble <Example 8 > : Iodine solubility test (iodine + iodide + water + organic solvent) In 24 ml of water, 10 ml of NMp, 〇 8 g of iodine The potassium iodide was mixed into three types of 2.4, 6.4, and 8.0 g to carry out a solubility test. The respective iodine to iodide ratios were 1:3, 1:8, i:1 〇β The test results of the composition are shown in Table 8. Unlike Example 7, by adding an organic solvent [Table 8]

不溶 能夠確認即便ΚΙ相對於工的比率為 ,則I的溶解性也會提升。 20 201105824 <實施例9> :碘的析出狀態調查(碘+碘化物+水+有機溶 劑+無機酸) 製備姓刻液,該蝕刻液是在24毫升之水、16毫升之 NMP、0.8克之碘中,將碘化鉀調配為2 4、6 *、8 〇克等 3種(各組成的碘與碘化物的比率為1: 3、ι: 8、ι: 而成。隨後,在該等液體中每次滴加1〇微升之36重量% 鹽酸(11.7毫莫耳/升),來調查碘析出時之鹽酸的滴加 量。碘析出狀態調查之方法’是使水晶基板(1〇><1〇><〇4毫 来)浸潰於蝕刻液10移、’隨後浸潰於靜止狀態的純水ι〇 秒時,目視觀察在基板表面有無析出的碘。碘的析出狀態 調查結果是如表9所示。 ΚΙ相對於I的比率為3時,碘析出時的鹽酸濃度是9 毫莫耳/升,為8時是29毫莫耳/升,& 1〇時是44毫莫 耳/升。藉此,可知ΚΙ相對於I的比率越大,越能夠抑制 碘的析出。上述試驗方法與實際生產線製程大致相同,純 水洗淨時之㈣出在實際生產'線製程中成大問題。 [表9]Insoluble It can be confirmed that even if the ratio of bismuth to work is, the solubility of I increases. 20 201105824 <Example 9>: Investigation of precipitation state of iodine (iodine + iodide + water + organic solvent + inorganic acid) The surging solution was prepared, and the etching solution was in 24 ml of water, 16 ml of NMP, and 0.8 g. In iodine, potassium iodide is blended into three types such as 24, 6*, and 8 gram (the ratio of iodine to iodide of each composition is 1:3, ι: 8, ι:. Then, in the liquids One drop of microliters of 36% by weight hydrochloric acid (11.7 mmol/L) was added dropwise to investigate the amount of hydrochloric acid dropped during the iodine precipitation. The method of investigating the state of iodine precipitation was to make a crystal substrate (1〇><1〇><<>>> immersed in the etchant 10, and then immersed in the still state of the pure water for 1 second, visually observed the presence or absence of iodine precipitated on the surface of the substrate. The results of the investigation are shown in Table 9. When the ratio of ΚΙ to I is 3, the concentration of hydrochloric acid at the time of iodine precipitation is 9 millimoles/liter, and when it is 8, it is 29 millimoles/liter, & 44 millimoles/liter. Therefore, it can be seen that the larger the ratio of cerium to I, the more the iodine precipitation can be suppressed. The above test method is substantially the same as the actual production line process. When the pure water washing (iv) in the actual production of 'wire Cheng Zhongcheng big problem. [Table 9]

鹽酸的滴加量 (微升) Run5 (I * KI= 1 ι 3) Run6 (I:KI=1:8) Run7 (I : KI=1 : im 0 〇 〇 〇 10 〇 〇 〇 20 〇 〇 〇 30 40 —Q_ X —Q__ 〇 _Q_ 〇 50 X 〇 〇 100 X 〇 〇 — 150 200 X X X X 〇 X ※◦:無變化 X:碘析出 21 201105824 實施例7〜9的結果而言,換化物相對於蛾的比率低 時’即便無機酸的添加量低’亦會有在基板上發生碘析出 的問題,但是磁化物相對於㈣比率高時,㈣大量地添 加無機酸。由Λ ’可知無機酸或在常溫為固體的有機酸之 添加量能夠在廣範圍中使用,而能夠控制以往難以控制之 金與鎳的钱刻速率。 【圖式簡單說明】 第1圖是顯示使用鹽酸時之鎳與金的蝕刻速率之圖。 第2圖是顯示使用ΝΜΡ時之鎳與金的蝕刻速率之圖。 第3圖是顯示使用硫酸時之鎳與金的蝕刻速率之圖。 第4圖是顯示使用硝酸時之錄與金的餘刻速率之圖。 第5圖是顯示使用鹽酸與ΝΜρ時之錦與金㈣刻速率 【主要元件符號說明】 無 22The amount of hydrochloric acid added (microliter) Run5 (I * KI = 1 ι 3) Run6 (I: KI = 1:8) Run7 (I : KI = 1: im 0 〇〇〇 10 〇〇〇 20 〇〇〇 30 40 —Q_ X —Q__ 〇_Q_ 〇50 X 〇〇100 X 〇〇— 150 200 XXXX 〇X ※◦: no change X: iodine precipitation 21 201105824 The results of Examples 7 to 9 are relative to When the ratio of the moth is low, even if the amount of the inorganic acid added is low, there is a problem that iodine is precipitated on the substrate. However, when the ratio of the magnetization to the (four) is high, (4) a large amount of the inorganic acid is added. The amount of organic acid which is solid at room temperature can be used in a wide range, and it is possible to control the rate of gold and nickel which are difficult to control in the past. [Simplified illustration] Fig. 1 shows nickel and gold when hydrochloric acid is used. A graph of the etch rate. Fig. 2 is a graph showing the etch rate of nickel and gold when ruthenium is used. Fig. 3 is a graph showing the etch rate of nickel and gold when sulfuric acid is used. Fig. 4 is a view showing the use of nitric acid. Figure of the record of the residual rate of gold and gold. Figure 5 shows the use of hydrochloric acid and ΝΜρ (Iv) gold etch rates The main element 22 None REFERENCE SIGNS

Claims (1)

201105824 七、申請專利範圍: 及/或鎳之方法係錄共存之材料中選擇性地银刻金 酸及/或二=:整在含有魏物及蛾、以及 ㈣冷劑之蝕刻液中的各成分的調配比 2·如_請專利範圍^項所述之方法,其中包含:調整 碘與碘化物的重量比、乃 以使碟不析^ 及酸及/或有機溶劑的調配量, =刻液’係在金與錦共存之材料中所使用的钱刻 、有·碘化物及碘、以及酸及/或有機溶劑。 :申請專利範圍第3項所述之蝕刻液,其中有機溶劑 疋選自由:含氮五員環化合物、有機硫化合物、醇化合物、 酮化合物及醯胺化合物所組成之群組中的丨種或2種以 上0 5^.如申請專利範圍第3項所述之银刻液,其中有機溶劑 疋Ν-甲基_2_"比嘻咬鲖(ΝΜΡ)。 6β如申請專利範圍第3項所述之蝕刻液,其中有機溶劑 是Ν,Ν-二甲基乙醯胺(dmAc )。 7. 如申請專利範圍第3項所述之蝕刻液,其中有機溶劑 的濃度為10容量%以上。 8. 如申請專利範圍第3項所述之蝕刻液,其中相對於 破’碘化物的重量比率為3以上。 ; 9. 如申請專利範圍第3項所述之蝕刻液,其中酸是選自 由:無機酸及在常溫為固體的有機酸所組成之群組中的工 種或2種以上。 23 201105824 10. 如申請專利範圍第3項所述之蝕刻液,其中酸選自 由:鹽酸、硫酸、硝酸、檸檬酸、丙二酸、酒石酸、蘋果 酸及2,2’-硫二乙酸所組成之群組中的丨種或2種以上。 11. 如申請專利範圍第3項所述之蝕刻液,其中酸是鹽酸。 12. 如申請專利範圍第3項所述之蝕刻液,其中酸的濃度 為5mM以上。 13. 如申喷專利範圍第3項所述之钮刻液,其中鎳與金的 蝕刻速率比為(鎳的蝕刻速率/金的蝕刻速率)Ni/Au =0 · 10以上〇 14. 如申4專利範圍第3項所述之截刻液,其中不含有酸。 15·如申叫專利範圍第3至項中任一項所述之蝕刻 液妓其為使詩下述方法:在金與錄共存之材料中,藉由 刻液中的各成分的調配比,來選擇性地㈣金及/ 或鎳之方法。 24201105824 VII. Scope of application for patents: and/or method of nickel. Selectively silver-engraved gold and/or two in materials coexisting: each in the etchant containing Weiwu and moth, and (4) cold agent The compounding ratio of the components is as follows: the method described in the scope of the invention includes: adjusting the weight ratio of iodine to iodide, so as to adjust the amount of the dish and the acid and/or organic solvent, The liquid 'is a kind of money, an iodide and an iodine used in a material in which gold and gold coexist, and an acid and/or an organic solvent. The etching solution according to claim 3, wherein the organic solvent is selected from the group consisting of: a nitrogen-containing five-membered ring compound, an organic sulfur compound, an alcohol compound, a ketone compound, and a guanamine compound; More than 2 kinds of 0 5^. The silver engraving liquid described in claim 3, wherein the organic solvent 疋Ν-methyl_2_" is more than 嘻 (ΝΜΡ). 6β The etching solution according to claim 3, wherein the organic solvent is hydrazine, hydrazine-dimethylacetamide (dmAc). 7. The etching solution according to claim 3, wherein the concentration of the organic solvent is 10% by volume or more. 8. The etching solution according to claim 3, wherein the weight ratio with respect to the broken iodide is 3 or more. 9. The etching solution according to claim 3, wherein the acid is selected from the group consisting of inorganic acids and organic acids which are solid at room temperature, or two or more types. 23 201105824 10. The etching solution according to claim 3, wherein the acid is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, citric acid, malonic acid, tartaric acid, malic acid and 2,2'-thiodiacetic acid. Two or more species in the group. 11. The etching solution of claim 3, wherein the acid is hydrochloric acid. 12. The etching solution according to claim 3, wherein the acid concentration is 5 mM or more. 13. The nicking solution according to item 3 of the patent application scope, wherein the etching rate ratio of nickel to gold is (etching rate of nickel/etching rate of gold) Ni/Au =0 · 10 or more 〇 14. 4. The engraving solution of claim 3, which does not contain an acid. The etchant according to any one of claims 3 to 3, which is the method for making the following method: in the material coexisting with gold and recorded, by the ratio of the components in the engraving, To selectively (iv) gold and / or nickel methods. twenty four
TW99108964A 2009-03-25 2010-03-25 Gold and nickel selective etching liquid TW201105824A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074914A JP5758065B2 (en) 2009-03-25 2009-03-25 Selective etching solution for gold and nickel

Publications (1)

Publication Number Publication Date
TW201105824A true TW201105824A (en) 2011-02-16

Family

ID=42770446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99108964A TW201105824A (en) 2009-03-25 2010-03-25 Gold and nickel selective etching liquid

Country Status (4)

Country Link
JP (1) JP5758065B2 (en)
KR (1) KR20100107399A (en)
CN (1) CN101845630A (en)
TW (1) TW201105824A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021578B (en) * 2010-12-08 2012-12-05 中山火炬职业技术学院 Production method of deplating liquid for concentrated gold coating
EP2751296A1 (en) * 2011-09-01 2014-07-09 Dedek, Petr Method for the removal and recovery of metals and precious metals from substrates
JP5936438B2 (en) * 2012-05-18 2016-06-22 シチズンファインデバイス株式会社 Method for manufacturing piezoelectric vibration device
CN104674222A (en) * 2013-11-27 2015-06-03 芝普企业股份有限公司 Etching liquid capable of effectively retarding galvanic effect
CN105506628B (en) * 2015-12-03 2018-01-12 苏州鑫德杰电子有限公司 A kind of compatibile extract etching solution and preparation method thereof
KR101718460B1 (en) 2016-11-14 2017-03-22 길기환 Etchant composition for gold thin films
JP6863574B2 (en) * 2017-02-22 2021-04-21 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor devices
KR102504833B1 (en) * 2017-11-16 2023-03-02 삼성전자 주식회사 Etching gas mixture, and method of forming pattern and method of manufacturing integrated circuit device using the same
JP2019145546A (en) 2018-02-16 2019-08-29 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor device
CN109706456A (en) * 2019-03-07 2019-05-03 济南大学 A kind of metallographic etchant of ferritic stainless steel and its prepare corrosion method
CN112928020A (en) * 2021-02-08 2021-06-08 江苏艾森半导体材料股份有限公司 Etching method of gold-nickel film and application thereof
KR102295216B1 (en) 2021-03-02 2021-09-01 회명산업 주식회사 Metal mask detergent composition and the method thereof
KR102444064B1 (en) * 2021-08-23 2022-09-16 백영기 Titanium alloy thin film etching composition as under bump metal layer of gold bump process, and method for etching titanium alloy thin film as under bump metal layer using the same
CN114351144B (en) * 2021-12-07 2023-06-02 湖北兴福电子材料股份有限公司 Gold etching solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621595A (en) * 1992-10-20 1997-04-15 Cohen; Uri Pinched-gap magnetic recording thin film head
JP4104454B2 (en) * 2002-12-27 2008-06-18 関東化学株式会社 Etching solution
JP4696565B2 (en) * 2005-01-19 2011-06-08 三菱化学株式会社 Etching solution and etching method
JP4744181B2 (en) * 2005-04-14 2011-08-10 関東化学株式会社 Metal selective etchant
CN101130870A (en) * 2006-08-23 2008-02-27 关东化学株式会社 Laminated film
CN100570002C (en) * 2006-10-31 2009-12-16 佛山市顺德区汉达精密电子科技有限公司 Magnesium alloy etching technique

Also Published As

Publication number Publication date
CN101845630A (en) 2010-09-29
KR20100107399A (en) 2010-10-05
JP5758065B2 (en) 2015-08-05
JP2010229429A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
TW201105824A (en) Gold and nickel selective etching liquid
TWI278535B (en) Etchant compositions for metal thin films having as the major component silver
Gallaway et al. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating
Luo et al. Copper dissolution in aqueous ammonia-containing media during chemical mechanical polishing
TW201040316A (en) Etching solution for copper-containing multilayer film
TWI378989B (en) Etchant for patterning composite layer and method of fabricating thin film transistor using the same
TW201014906A (en) Alkaline aqueous solution composition for treating a substrate
TW201219601A (en) Composition for etching metal layer
JP6886042B2 (en) Formulation for selectively etching silicon germanium against silicon
TW201333266A (en) Etching solution composition for metal film comprising copper layer and/or copper alloy layer, and etching method using same
JP2013058629A5 (en)
WO2005017230A1 (en) Etching solution for titanium-containing layer and method for etching titanium-containing layer
TW201204875A (en) Etching solution composition for metal layer comprising copper and titanium
KR20180020273A (en) Wet etching method and etching solution
TWI364072B (en) Etching composition
JP2009007634A (en) Etching method for silver alloy film, and etching solution
WO2008026542A1 (en) Etchant and etching process
TWI662155B (en) Etching solution composition for metal layer and manufacturing method of an array substrate for liquid crystal display using the same
JP5992150B2 (en) Semiconductor substrate product manufacturing method, thin film removing solution and kit used therefor
KR20180045185A (en) Etchant composition for titanium nitride layer
CN108385109A (en) Etchant and the manufacturing method for utilizing its array substrate for display device
TW201207525A (en) Method of fabricating an array substrate for a liquid crystal display
JP2006233327A (en) Metal blackening liquid
Luo Copper dissolution behavior in acidic iodate solutions
Lin et al. Adsorption and desorption studies of glycine and benzotriazole during Cu oxidation in a chemical mechanical polishing bath