TW201105728A - Polymeric articles comprising oxygen permeability enhancing particles - Google Patents
Polymeric articles comprising oxygen permeability enhancing particles Download PDFInfo
- Publication number
- TW201105728A TW201105728A TW099109570A TW99109570A TW201105728A TW 201105728 A TW201105728 A TW 201105728A TW 099109570 A TW099109570 A TW 099109570A TW 99109570 A TW99109570 A TW 99109570A TW 201105728 A TW201105728 A TW 201105728A
- Authority
- TW
- Taiwan
- Prior art keywords
- composition
- oxygen
- oxygen permeable
- particles
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L43/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
- C08L43/04—Homopolymers or copolymers of monomers containing silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Eyeglasses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
201105728 六、發明說明: 相關申請案 本專利申請案主張基於2010年3月10日提出申請 的美國專利申請案第12/721,081號;於2〇〇9年3月31 曰k出申睛的美國暫時專利申請案第61 /164,931號;以 及於2009年10月16曰提出申請的美國暫時專利申請 案第61/252,279號所得享有之優先權。 【發明所屬之技術領域】 本發明係關於包含透氧性增強粒子之聚合物件及 形成此聚合物件之方法。 【先前技術】 於許多應用中,需要具透氧性之聚合物材料。這些 應用包括醫療裝置。隱形眼鏡即為其中之一。 可透氣軟式隱形眼鏡(Gas permeable soft contact lenses ’ )由傳統水凝膠以及石夕氧樹脂水凝膠製 成。傳統水凝膠由主要包含親水單體,例如2_羥乙基甲 基丙婦醯基(2-hydroxyethyl methacrylate,HEMA)、 N-乙烯咐•咯咬_ ( N_viny丨pyrr〇lid〇ne,Nvp )與乙烯醇 之單體混合物製備而成。這些傳統水凝膠材料之透氧性 與材料之含水量相關,典型低於約 20 到 30 barrer。對 於由傳統水凝膠材料製成之隱形眼鏡而言,其透氧性程 度適合短期配戴;然而,在需長期配戴隱形眼鏡的情況 下’這樣程度的透氧性可能不足以維持角膜的健康(例 如,30天沒有移除)。 201105728 目前在GPSCL中亦使用矽氧樹脂水凝膠(siH,s) 為材料。矽氧樹脂水凝膠典型由將包含至少一含矽氧樹 脂單體或反應大分子單體,以及至少一親水單體之混合 物加以聚合製備而成。雖然此類鏡片材料可減低與傳統 水凝膠鏡片相關之角膜水腫以及高血管分布,但矽氧樹 脂成分與親水性成分不相容,使得此類材料難以製造。 在需延長配麟_情況下,針對蛋白質吸收特徵、可 濕性與眼球一般舒適度對材料更為改良,有其需求。 聚矽氧樹脂彈性體隱形眼鏡亦曾經被使用。這 片雖然具有好的透紐’但其可祕與機械性質卻十分 地差。強化石夕纖維曾被揭露可增進梦氧樹脂彈性體 理性質。 刃 【發明内容】 本發明係關於一組成物,包含一 氧有效量的透氧性粒子分佈之聚合物村= 至少議繼Γ,平均顆粒尺寸小於約5〇〇〇nm。祕為 實施方式】 士本文中所使用’「醫療裝置」係 ==;或r使用之物件。這些裝置之= 曰·曰&植入物、引流條以及眼用裝置例如 1裝置八疋隱形眼鏡,最佳為水凝膠製成之隱形眼 4 201105728 如本文中所使用,「鏡片」指存於 之眼用裝置。這些裝置可提供光學妒τ 次艮目月内 、疋于杈正、強 少輻射,包含阻斷紫外線、減少γ ^減 t j見先或強光,治療效 果’包含傷Π癒合、傳送藥物或營養品、診斷評估或龄 測,或是其之任何組合。此處之⑽包含但祕於軟^ 隱形眼鏡、硬式隱形眼鏡、人工水3和田 „ . , . 、 日體、®加鏡片、眼 嵌入物(ocular inserts)與光學嵌入物。 此處之「反應混合液」係指成分混合物,包括反應 成分、稀釋液(若有使用)、起始劑、交聯_添加劑, 這取決於形成聚合物時之聚合物形成條件。 反應成分係指反應混合物中之成分,當聚合作用 時,與聚合物基質經由化學鍵結,或經由包埋或纏繞, 成為聚合物之永久部份。例如,反應單體經由聚合作用 成為聚合物的一部分,而非反應聚合内部潤溼劑,例如 PVP以及本發明之透氧性粒子,則經由物理性包埋成 為聚合物的一部分。稀釋液(若使用的話)與任何額外 的加工助劑,例如解塊劑,不會成為聚合物之部分結 構,也不會成為反應成分的一部分。本發明之反應混合 物可經由所屬技術領域中具有通常知識者習知之形成 聚合物或裝置的任何方法,包括攪拌、輥軋、揉揑與搖 動 此處之「生物相容性」以及「可生物相容的」係指 所問及之材料在與所要的生物系統接觸時,不會造成任 何重大的負面反應。例如,當隱形眼鏡包含透氧性粒 子’不良的負面反應包含刺痛、發炎、達不良程度的蛋 白質與脂質攝入、眼細胞損害與其他免疫反應。 201105728 「水凝膠」聚合物係指一可吸收或吸入至少約 20%(重量百分比)之水分的聚合物,在一些實施例中至 少約30%(重量百分比)之水分,在其他實施例中至少約 40%(重量百分比)之水分。 透氧性粒子具有至少約100 barrer之透氧性,在一 些實施例中有約100到約iOOObarrer之透氧性,在其他 貫施例中有約300到約1 〇〇〇 barrer之透氧性。透氧性粒 子也可具有至少約300、400或500 barrer之透氧性。本 發明之透氧性粒子可為固態或被填充或空心粒子。固體 透氧性粒子可經由交聯聚合物而成形,例如含氟聚合 物、交聯聚二烧基石夕氧烧(polydialkylsiloxane)聚合物、 自組(self-assembled)矽氧烷與剛性材料例如聚三曱基 石夕燒丙炔(polytrimethylsilylpropyne )以及其組合的交 聯聚合物。 在一實施例中,透氧性粒子為非反應性,這指形成 使用本發明之組成物的情況中,透氧性粒子不會與聚合 物共價鍵結,但可能藉由偶極-偶極作用力 (dipole-dipole forces )例如氫鍵或凡得瓦力(der Waals forces )與聚合物結合。若該透氧性粒子經過包封 (encapsulate ),該透氧性粒子不會與包封材料間生有 共價鍵結,該包封材料亦不會與透氧性粒子或聚合物有 鍵結。在一實施例中,透氧性粒子表面具有反應性,以 協助透氧性粒子散佈和/或穩定於所選之反應混合物 中。 6 201105728 '曰在陰離子或陽離子係指該分子具有潛在的離子 性。-個潛在騎子官驗的實例為-麟根,一個潛 在陰離子g能基的實例為—胺類,特別指—三級胺。 t由此法選擇之透氧性粒子不會明顯降低該聚合 物之光學特性,包括顏色及清晰度。此目的可藉由控制 透氧性粒子之顆粒大小、折射率或化學特性或其任何組 合而實現。 該透氧性粒子折射率為含水聚合混合物折射率的 大約20%以内’在—些實施例中,為含水聚合混合物折 射率的大約1G%以内。其他實施例可能使用具有含水聚 合k合物折射率大約1%以内折射率之透氧性粒子在 其他實施例則為小於〇·5%。在—實施例中,透氧性粒 子平句粒子尺寸;丨於約2Q〇至i〇Q〇 nm之間,其折射率 則為含水聚合混合物折射率之大約1〇%以内。顆粒尺寸 小於200 nm之透氧性粒子,可能具有該含水聚合混合 物之大約20%以内的折射率。在一實施例中,聚合物係 指適合製備隱形眼鏡之水凝膠,該透氧性粒子折射率介 於約1.37至約1.45之間。在一實施例中,水凝膠聚合 物之折射率介於約1.39至約1.43之間,經包封之透氧 性粒子則具有介於上述範圍内之折射率。 在一實施例中,透氡性粒子包含於眼用裝置内,在 另一實施例中’透氧性粒子在隱形眼鏡光學區外至少一 處。该光學區係指光線聚焦處。在本實施例中可容忍折 射率不匹配之較大顆粒。因此,根據本實施例所製備的 隱形眼鏡之平均粒子大小可能介於約2〇〇 nm至1〇〇 nm 間。 201105728 固體透氧性粒子 固體透氧性粒子可由包括石夕氧樹脂、氟之交聯聚合 物及其組合的材料,或是透氧性鈣鈦礦氧化物及其組合 之材料與類似物所形成。含矽氧樹脂之聚合物的具體實 例包括聚二甲基矽氧烧(polydimethylsiloxane, PDMS)、交聯聚(二曱基矽氧烷)、聚((三甲矽基)丙炔) 與父聯t (二甲基石夕氧烧)核心及一聚二曱基石夕氧烧/ 與 t (倍半石夕氧烧)(p〇ly(silseSqUi〇xane),DMS/POSS) 核心/殼,殼可自Shin Etsu,Inc.(日本)取得,名稱為 X-52-7030,尺寸為介於0 2到2〇〇〇nm的範圍,平均粒 徑分佈為800 nm。含氟聚合物之實例包括非晶氟聚合 物’例如2,2-雙(三氟曱基)_4,5_二氟-丨,^二哼唑與四氟 乙烯(tetrafluoroethylene)(以商品名 TEFLON AF 販售) 之共聚物)、氟化聚二曱基矽氧烷與氟化聚降莰烯 (polynorbomene)。只要該透氧性粒子具有於此揭露之透 氧性範圍,也可使用含有前述材料之共聚物與混合物。 在一實施例中’該固體透氧性粒子包含至少一無機材 料,例如類金屬如氮化硼、金屬氧化物,包括氧化鐵、 氧化铭、氧化鈦、氧化結,金屬,例如黃金、過渡金屬 硫化物’例如ZnS與CdS ’石墨片,無機/有機混合物 (hybrid)例如全殼塗以纖維素之金屬氧化物。也可使用 含有前述物之共聚物與包含任何前述物與無機材料之 混合物。 適合的固體透氧性粒子平均粒徑為小於5000 nm , 在一些實施例中為小於約1000mn,在一些實施例中為 8 201105728 小於約800 ηιη,在一些實施例中小於約600 nm,在其 他實施例中為小於約200 nm ° 空心奈米粒子 其他選擇為該透氧性粒子是空心。適合的空心奈米 構造具有一不透水的硬殼,包封或園住一充氣空間。空 心奈米構造對氣體’例如氧氣以及空氣,具滲透性’對 於氧氣為具有至少約200 barrer之透氧性’在*"""*些貫施 例中為至少約300 barrer,在一些實施例中為至少約500 barrer,在其他實施例中為大於約1〇〇0 barrer。本發明 之空心奈米構造具有不同名稱,包括奈米構造、奈米氣 球、微膠襄、氣囊與微球體。上述已知之奈米構造只要 具有此處所述特性,皆可被使用。適合的空心奈米構造 包含合成的空心奈米構造和氣囊。氣囊(或氣囊蛋白質) 可在細菌中自然地被發現,為具有包封一充氣空間之蛋 白質外殼。合成的奈米構造則包含由聚合物、金屬氧化 物、類金屬、碳及其組合所成形的外殼。 當透氧性粒子為空心奈米構造時,該空心奈米構造 之顆粒尺寸’在最長尺寸方向,為小於500 nm ,在一 些實施例中小於約400 ηιη,在其他實施例中僅約10與 約100 nm。在一實施例中,該空心奈米構造具有約2〇 到約100 nm之平均直禋與約到約5〇〇 nm之長度。 该奈米構造可能具有任何封閉、空心結構,包含具封閉 端之圓柱、球形、卵形、規則或不規則之多面體、橢圓 體、圓錐體、橢球體(可由其3主軸長度描述之)與其 組合的結構或不規則形狀。自然發生之奈米構造例如氣 201105728 囊,通常為具有錐形端之圓柱。合成之奈米構造可能為 任何形狀,在〆實施例中,其可為圓柱形及球形。 空心奈米構造外殼對氣體’特別是氧氣,與含有氧 氣的混合物,例如空氣,具可滲透性。氣體例如氧氣及 空氣可自由穿透本發明之空心奈米構造。本發明之奈米 構造外殼具有至·少約5 barrer之透氧性,在一些實施例 中具有至少約20 barrer。在一實施例中,該外殼之透氧 性等同或大於基質聚合物之透氧性。然而,相較於奈米 構造,由於該外殻之厚度較薄(小於約10 ηηι,在一些實 施例中介於約1到約5 nm),因此具相對低透氧性之外 殼材料仍有其用處。 由於氣體可自由擴散通過該空心奈米構造,而液體 卻不行(特別是水)’奈米構造係利用其外殼材料之剛性 維持形狀。該外殼材料具有至少約1 GPa模數,在一些 實施例中為至少約2 GPa,在一些實施例中為介於約2.5 GPa至約3.5 GPa。已知在壓力下仍可維持穩定的形狀 包括球體與圓柱體、圓錐體與橢球體(可由其3主軸長 度描述之)及其組合之形狀。在一實施例中,該空心奈 米構造為一球體’在其他實施例中,球體具有約2〇〇mn 之平均直徑。 δ玄結構亦可能包括補強構造,例如筋條、增強填 料、奈米纖維、結構蛋白質、其構造之交聯(離子或共 價)組合與類似者。 在I備、滅函及被包含入一物體時,本發明之空心 奈米構造可保持其空心結構而不崩陷。保留或保持空心 奈米構造的特徵是利用一至少約〇.〇5 MPa之臨界壓 10 201105728 力,在一些實施例中介於約0.1 MPa至約0.3 MPa,在 其他實施例則大於0.2 MPa。 該奈米構造之外層蛋白質一般為親水性,内層蛋白 質為不透水性。此特性使該奈米構造可在親水性基材聚 合物,例如水凝膠,中分散,並避免水分滲入充氣空腔。 奈米構造外殼之内層與外層結構可由分層成形,例如聚 合物分層、蛋白質或其他外殼材料,或由一親水性部份 朝外、疏水性部份朝向空心奈米構造内部,或朝向殼層 之内疏水層的兩親材料形成。 適合用於形成該奈米構造之材料的親水性及透水 性特性,可由在25°C下之透水性係數與表面張力來界 定。適合作為該外殼之外層結構的親水性材料,在2〇 °C下具有大於約1〇〇之透水性係數與大於約40 dyne/cm 之表面張力。適合作為該外殼内層結構的不透水性材 料,在25°C下具有小於約1〇之透水性係數與在2〇。〇下 小於約35 dyne/cm之表面張力。在一些實施例中,當在 室溫下使用威氏平板法(Wilhelmy plate meth〇d)與經蒸 餾及去離子之水進行測量,該親水性材料展現小於約 8〇°之接面角,而該不透水性材料則展現大於約1〇〇。之 接面角。於聚合物手冊(p〇lymer Handb〇〇k),第4版, 編輯者為 J. Brandrup,lmmergut,Ε Ή,Grulke,e A,201105728 VI. INSTRUCTIONS: RELATED APPLICATIONS This patent application claims to be based on U.S. Patent Application Serial No. 12/721,081, filed on March 10, 2010, filed on March 31, 2009. U.S. Provisional Patent Application No. 61/164,931; and U.S. Provisional Patent Application Serial No. 61/252,279, filed on Oct. 16, 2009. TECHNICAL FIELD OF THE INVENTION The present invention relates to a polymer member comprising oxygen permeable reinforcing particles and a method of forming the same. [Prior Art] In many applications, a polymer material having oxygen permeability is required. These applications include medical devices. Contact lenses are one of them. Gas permeable soft contact lenses are made of conventional hydrogels and australis resin hydrogels. Conventional hydrogels consist mainly of hydrophilic monomers, such as 2-hydroxyethyl methacrylate (HEMA), N-vinyl 咐 咯 咯 (N_viny丨pyrr〇lid〇ne, Nvp Prepared with a monomer mixture of vinyl alcohol. The oxygen permeability of these conventional hydrogel materials is related to the water content of the material, typically less than about 20 to 30 barrers. For contact lenses made from traditional hydrogel materials, the degree of oxygen permeability is suitable for short-term wear; however, in the case of long-term wear of contact lenses, such a degree of oxygen permeability may not be sufficient to maintain the cornea. Health (for example, no removal for 30 days). 201105728 Silicone resin hydrogel (siH, s) is also used in GPSCL. The epoxy resin hydrogel is typically prepared by polymerizing a mixture comprising at least one neodymium-containing resin monomer or reactive macromonomer, and at least one hydrophilic monomer. While such lens materials can reduce corneal edema and high vascular distribution associated with conventional hydrogel lenses, the indole resin component is incompatible with hydrophilic components, making such materials difficult to manufacture. In the case of the need to extend the collocation, the material is more improved and has a demand for protein absorption characteristics, wettability and general eye comfort. Polyoxyphthalate elastomer contact lenses have also been used. Although this piece has a good transparency, its secret and mechanical properties are very poor. Strengthening Shixi fiber has been exposed to enhance the elastic properties of the dream oxygen resin. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition comprising a polymer of oxygen-effective amount of oxygen-permeable particle distribution = at least Γ, having an average particle size of less than about 5 〇〇〇 nm. The secret is the implementation method] The "medical device" used in this article is ==; or the object used by r. These devices are: 曰·曰& implants, drainage strips and ophthalmic devices such as 1 device gossip contact lenses, preferably invisible eyes made of hydrogels 4 201105728 As used herein, "lens" refers to Ophthalmic device stored in it. These devices can provide optical 妒 艮 艮 艮 月 疋 疋 疋 疋 疋 疋 疋 疋 疋 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Product, diagnostic assessment or ageing, or any combination thereof. (10) here includes but is secretive of soft contact lenses, hard contact lenses, artificial waters 3 and „ , , , , , , , , lenses , ocular inserts and optical inserts. "Milk mixture" means a mixture of ingredients, including the reaction components, diluents (if used), initiators, cross-linking-additives, depending on the polymer formation conditions in the formation of the polymer. The reactive component refers to the component of the reaction mixture which, when polymerized, becomes a permanent part of the polymer via chemical bonding with the polymer matrix or by embedding or entanglement. For example, the reactive monomer becomes part of the polymer via polymerization, and the non-reactive polymeric internal wetting agent, such as PVP and the oxygen permeable particles of the present invention, is physically embedded as part of the polymer. The diluent (if used) and any additional processing aids, such as deblocking agents, do not become part of the polymer and are not part of the reaction. The reaction mixture of the present invention can be formed by any method known in the art to form a polymer or device, including agitation, rolling, kneading and shaking, "biocompatibility" and "bioaccumulation". """ means that the material in question does not cause any significant adverse reaction when in contact with the desired biological system. For example, when the contact lens contains oxygen permeable particles, the adverse reactions include stinging, inflammation, poor levels of protein and lipid uptake, ocular cell damage and other immune responses. 201105728 "Hydrogel" polymer means a polymer that absorbs or absorbs at least about 20% by weight of water, in some embodiments at least about 30% by weight of water, in other embodiments. At least about 40% by weight of moisture. The oxygen permeable particles have an oxygen permeability of at least about 100 barrer, in some embodiments from about 100 to about 100 barrer, and in other embodiments from about 300 to about 1 barrer. . Oxygen permeable particles can also have an oxygen permeability of at least about 300, 400 or 500 barrers. The oxygen permeable particles of the present invention may be solid or filled or hollow particles. The solid oxygen permeable particles may be formed by crosslinking a polymer such as a fluoropolymer, a cross-linked polydialkylsiloxane polymer, a self-assembled decane and a rigid material such as poly A crosslinked polymer of polytrimethylsilylpropyne and combinations thereof. In one embodiment, the oxygen permeable particles are non-reactive, which means that in the case of using the composition of the present invention, the oxygen permeable particles are not covalently bonded to the polymer, but may be by dipole-even Dipole-dipole forces such as hydrogen bonds or der Waals forces are combined with the polymer. If the oxygen permeable particles are encapsulated, the oxygen permeable particles are not covalently bonded to the encapsulating material, and the encapsulating material is not bonded to the oxygen permeable particles or the polymer. . In one embodiment, the surface of the oxygen permeable particles is reactive to assist in the diffusion and/or stabilization of the oxygen permeable particles in the selected reaction mixture. 6 201105728 'An anion or a cation means that the molecule has potential ionicity. An example of a potential rider's official test is - lining, an example of a latent anionic g-energy group is - amines, especially - tertiary amines. The oxygen permeable particles selected by this method do not significantly reduce the optical properties of the polymer, including color and sharpness. This object can be achieved by controlling the particle size, refractive index or chemical properties of the oxygen permeable particles or any combination thereof. The oxygen permeable particle has a refractive index within about 20% of the refractive index of the aqueous polymerization mixture. In some embodiments, it is within about 1 G% of the refractive index of the aqueous polymerization mixture. Other embodiments may use oxygen permeable particles having a refractive index of about 1% of the refractive index of the aqueous polymeric compound, and in other embodiments less than 〇·5%. In the embodiment, the oxygen permeable particle is in a particle size; the enthalpy is between about 2Q〇 and i〇Q〇 nm, and the refractive index is within about 1% of the refractive index of the aqueous polymerization mixture. Oxygen permeable particles having a particle size of less than 200 nm may have a refractive index within about 20% of the aqueous polymer mixture. In one embodiment, the polymer refers to a hydrogel suitable for the preparation of contact lenses having a refractive index between about 1.37 and about 1.45. In one embodiment, the hydrogel polymer has a refractive index between about 1.39 and about 1.43, and the encapsulated oxygen permeable particles have a refractive index within the above range. In one embodiment, the osmotic particles are included in the ophthalmic device, and in another embodiment the osmotic particles are at least one location outside the optical zone of the contact lens. This optical zone refers to the focus of the light. Larger particles having a mismatched refractive index can be tolerated in this embodiment. Therefore, the average particle size of the contact lenses prepared according to this embodiment may be between about 2 〇〇 nm and 1 〇〇 nm. 201105728 Solid oxygen permeable particle solid oxygen permeable particles may be formed from a material including a sulphur oxide resin, a crosslinked polymer of fluorine, and a combination thereof, or a material and the like of an oxygen permeable perovskite oxide and a combination thereof. . Specific examples of the polymer containing a decyloxy resin include polydimethyl siloxane (PDMS), cross-linked poly(dimercapto methoxy), poly((trimethyl decyl)propyne), and a parent t (dimethyl oxalate) core and a polydioxyl sulphate / with t (half sesame oxygen) (p〇ly (silseSqUi〇xane), DMS / POSS) core / shell, shell can Obtained by Shin Etsu, Inc. (Japan) under the name X-52-7030, having a size ranging from 0 2 to 2 〇〇〇 nm and an average particle size distribution of 800 nm. Examples of fluoropolymers include amorphous fluoropolymers such as 2,2-bis(trifluoromethyl)-4,5-difluoro-indole, dicarbazole and tetrafluoroethylene (trade name TEFLON) AF sold) copolymers, fluorinated polydidecyl alkane and fluorinated polynorbomene. Copolymers and mixtures containing the foregoing materials may also be used as long as the oxygen permeable particles have the oxygen permeability range disclosed herein. In one embodiment, the solid oxygen permeable particles comprise at least one inorganic material, such as a metalloid such as boron nitride, a metal oxide, including iron oxide, oxidized, titanium oxide, oxidized, metal, such as gold, transition metal. Sulfides' such as ZnS and CdS' graphite flakes, inorganic/organic hybrids such as full shell coated with metal oxides of cellulose. It is also possible to use a copolymer containing the foregoing and a mixture comprising any of the foregoing and inorganic materials. Suitable solid oxygen permeable particles have an average particle size of less than 5000 nm, in some embodiments less than about 1000 mn, in some embodiments 8 201105728 less than about 800 ηιη, in some embodiments less than about 600 nm, in others In the examples, hollow nanoparticles having a size of less than about 200 nm are otherwise selected such that the oxygen permeable particles are hollow. A suitable hollow nanostructure has a watertight hard shell that encloses or encloses an inflatable space. Hollow nanostructures are permeable to gases such as oxygen and air, and have an oxygen permeability of at least about 200 barrer for oxygen. In a """* some examples are at least about 300 barrer, In some embodiments, it is at least about 500 barrer, and in other embodiments, greater than about 1 Torr barrer. The hollow nanostructures of the present invention have different names, including nanostructures, nanospheres, microcapsules, balloons, and microspheres. The above known nanostructures can be used as long as they have the characteristics described herein. Suitable hollow nanostructures include synthetic hollow nanostructures and balloons. The balloon (or balloon protein) can be naturally found in bacteria, with a protein shell enclosing an inflatable space. The synthetic nanostructures comprise an outer shell formed from a polymer, a metal oxide, a metalloid, carbon, and combinations thereof. When the oxygen permeable particles are in a hollow nanostructure, the hollow nanostructure has a particle size 'in the longest dimension, less than 500 nm, in some embodiments less than about 400 ηιη, and in other embodiments only about 10 About 100 nm. In one embodiment, the hollow nanostructure has an average diameter of from about 2 到 to about 100 nm and a length of from about 5 〇〇 nm. The nanostructure may have any closed, hollow structure, including a closed-end cylindrical, spherical, oval, regular or irregular polyhedron, ellipsoid, cone, ellipsoid (which may be described by its 3 major axis length). Structure or irregular shape. Naturally occurring nanostructures such as the gas 201105728 capsule, usually a cylinder with a tapered end. The synthetic nanostructure may be of any shape, and in the embodiment, it may be cylindrical and spherical. The hollow nanostructured outer shell is permeable to gases, particularly oxygen, to mixtures containing oxygen, such as air. Gases such as oxygen and air are free to penetrate the hollow nanostructure of the present invention. The nanostructured outer shell of the present invention has an oxygen permeability of up to about 5 barrers, and in some embodiments at least about 20 barrers. In one embodiment, the outer casing has an oxygen permeability equal to or greater than the oxygen permeability of the matrix polymer. However, compared to the nanostructure, since the thickness of the outer shell is relatively thin (less than about 10 ηηι, in some embodiments, between about 1 and about 5 nm), the outer shell material having a relatively low oxygen permeability still has its usefulness. Since the gas can diffuse freely through the hollow nanostructure, the liquid does not (especially water) the nanostructure retains its shape by the rigidity of its outer shell material. The outer shell material has a modulus of at least about 1 GPa, in some embodiments at least about 2 GPa, and in some embodiments, from about 2.5 GPa to about 3.5 GPa. It is known that a stable shape can be maintained under pressure, including the shape of a sphere and a cylinder, a cone and an ellipsoid (which can be described by its three major axis lengths), and combinations thereof. In one embodiment, the hollow nanostructure is constructed as a sphere. In other embodiments, the sphere has an average diameter of about 2 〇〇 mn. The δ metastructure may also include reinforcing structures such as ribs, reinforcing fillers, nanofibers, structural proteins, cross-linking (ionic or covalent) combinations of their structures, and the like. The hollow nanostructure of the present invention maintains its hollow structure without collapse when it is prepared, extinguished, and incorporated into an object. The retention or retention of the hollow nanostructure is characterized by a critical pressure of 10 201105728 of at least about 〇 5 MPa, in some embodiments from about 0.1 MPa to about 0.3 MPa, and in other embodiments greater than 0.2 MPa. The protein of the outer layer of the nanostructure is generally hydrophilic, and the inner layer of the protein is impervious. This property allows the nanostructure to be dispersed in a hydrophilic substrate polymer, such as a hydrogel, and to prevent moisture from penetrating into the inflatable cavity. The inner and outer layers of the nanostructured outer shell may be formed by layering, such as polymer delamination, protein or other outer shell material, or from a hydrophilic portion facing outward, the hydrophobic portion toward the hollow nanostructure interior, or toward the shell An amphiphilic material of the hydrophobic layer within the layer is formed. The hydrophilicity and water permeability characteristics of the material suitable for forming the nanostructure can be defined by the water permeability coefficient at 25 ° C and the surface tension. A hydrophilic material suitable as the outer layer structure of the outer shell has a water permeability coefficient of greater than about 1 Torr and a surface tension of greater than about 40 dyne/cm at 2 °C. A water-impermeable material suitable as the inner layer structure of the outer casing has a water permeability coefficient of less than about 1 Torr at 25 ° C and is 2 Å. Under the armpit, the surface tension is less than about 35 dyne/cm. In some embodiments, the hydrophilic material exhibits a junction angle of less than about 8 〇 when measured at room temperature using Wilhelmy plate meth〇d and distilled and deionized water. The water impermeable material exhibits greater than about 1 Torr. The junction angle. In the Polymer Handbook (p〇lymer Handb〇〇k), 4th edition, edited by J. Brandrup, lmmergut, Ε Ή, Grulke, e A,
Bloch,D,中曾報導許多聚合物之透水性係數。 在-實施例中,該空^奈米材料係合成。適合的合 成方法實例包括物理化學方法,其中該外殼材料在溶劑 蒸發或與受控之靜電或化學交互作用吸_過程中沉 殿形成。此方法之一實例在1994年1月20日之自然 201105728 _ (Nature)第367冊中被揭露。該空心奈米材料可能藉由 將含有兩種或以上之聚合物的聚合混合物的溶劑加以 蒸發的相分離方式形成。表面張力及蒸發速率的選擇係 基於兩液體的散佈平衡,使一聚合物之球形液滴為另一 聚合物均勻層所覆蓋,在溶劑中形成乳化液滴懸浮。 使用不同材料作為該奈米構造外殼之内部及外部 時,外親水層形成之材料可能為一交聯或與自體聚合之 聚合物。此材料之實例包括曱基丙烯酸-2-羥乙酯 (2-hydroethyl methacrylate,( ΗΕΜΑ ))、聚醋酸乙烯酯 (poly vinyl acetate )、曱基丙稀酸(methacrylic acid )、 N-乙稀基石比洛烧銅(N-vinylpyrrolidone )、N-乙稀基乙 醯胺(N-vinyl acetamide)、N-乙稀甲基乙醯胺(N-vinyl methyl acetamide )、N,N二曱基丙稀醯胺、丙稀酸 (acrylic acid )、單曱基丙烯酸甘油酯(glycerol monomethacrylate )、2-曱基丙浠氧乙基填酸膽驗 (2-methacryloxyethyl phosphorylcholine,MPC )、曱基 丙烯酸甲酯(methyl methacrylate )、丙浠酸經乙酉旨 (hydroxyethyl acrylate )、Ν-(1,Γ·二曱-3·氧代 丁基)丙烯 醯胺(N-(l,l-dimethyl-3-oxybutyl) acrylamide)、聚乙二 醇單曱基丙烯酸酯 (polyethylene glycol monomethacrylate )、聚乙二醇二曱基丙烯酸酯 (polyethylene glycol dimethacrylate)、甲基丙稀酸-2-乙氧乙酯(2-ethoxyethyl methacrylate)、2-曱基丙烯氧 乙基罐酸膽鹼(2-methacryloxyethyl phosphorylcholine ) 及其組合與類似物。也可使用其他具有上述透水性係數 與表面張力之聚合物。實例包括多醣、親水性多肽類、 201105728 聚醋、聚醯胺、包括具有至少4個碳原子之碳重複部分 的尼龍、聚胺g旨(polyurethanes )、蛋白醋、纖維素,與 具有親水支鏈足夠提供上述透水性係數與表面張力之 具疏水骨幹聚合物及其物之組合。可形成外殼外層之聚 合物具體實例包括聚(丙烯醯胺-共-丙稀酸) (poly(acrylamide co-acrylic acid))、聚(N-異丙基丙埽醯 胺)(poly(N-isopropylacrylamide))、曱基丙烯酸_2_羥醋 (2-hydroxy methacrylate)包括聚合物及共聚物、聚乙 烯醇聚合物及共聚物與類似物。該聚合物可具有任何形 狀,包括線形、分枝狀及刷形結構。在一實施例中,該 外殼外層係由一含有至少一形成基質之單體所形成的 交聯聚合物。 可形成内層之材料實例包括均聚物與共聚物,包括 聚有機聚石夕氧烧(polyorganosiloxanes)(包括石夕氧燒甲 基丙烯酸醋(silicone methacrylates ))、含氟聚合物、脂 質體(liposomes )、疏水性多肽、聚酯(polyesters)、 1醮fee (polyamides)、聚氨S旨(p〇iyurethanes)、聚苯 乙烯(polystyrenes)、聚苯胺(p〇iyannines)、聚吡咯 (polypyrroles)及其組合與類似物。適合的無機材料實 例包括透氧性鈦鈣礦氧化物(perovskite oxides)、類金 屬例如氮化硼、金屬氧化物,包括氧化鐵、氧化鋁、二 氧化鈦、氧化錯,金屬,例如黃金、過渡金屬硫化物, 例如ZnS與CdS,石墨片,無機/有機混合物例如全殼 塗覆纖維素之金屬氧化物及聚四氟乙烷 (polytetrafkioroethane)及其組合與類似物。含有石夕氧 樹脂之聚合物之具體實例包括聚二曱基矽氧烷 201105728 (polydimethylsiloxane,PDMS )、交聯聚(二曱基石夕氧 烧)(poly(dimethylsiloxane))、聚(倍半石夕氧烧) (poly(silsesquioxane))或聚((三曱矽基)丙炔) (poly((trimethy 1 silyl)propyne))。含氟聚合物之具體實 例包括非晶氟聚合物(amorphous fluoropolymers)(如 2,2-雙(三氟甲基)-4,5-二氟-1,3-二【口 +咢】唑 (2,2-bis(trifluoromethyl)_4,5-difluoro_l,3-dioxole)與四 氟乙烯(tetrafluoroethylene )(以商品名 TEFLON AF 販 售)之共聚物)、氟化氟化聚二曱基矽氧烷與氟化聚降 莰烯(polynorbornene)。含有前述之共聚物及任何前述 無機材料之混合物也可使用。 該内層材料可能包括潛反應群組例如五氟曱基丙 烯酸(pentafluoromethacrylate)與 N-丙稀醯氧基丁二 醯亞胺(N-acryloxysuccinimide)°US2004/0120982 揭 露適合的潛反應群組,其可被加入外殼内層以使反應發 生於内層和外層材料間。在其他實施例,該外殼内層與 外層材料具有交替電荷,以使該材料經過電荷交互作用 而結合。此種材料之實例包括羧酸金屬鹽(carboxylic acid metal salts )、羧酸 / 四級銨鹽(carb〇xylic acid/quaternary ammonium salts)續g复金屬鹽(suif〇nic acid metal salts )、確酸 / 四級錄鹽(suifonic acids/quaternary ammonium salts)。 其他選擇為該外殼可由一或多種兩性離子材料、兩 性材料或其物組合形成。適合的兩性離子與微胞材料如 下述。兩性材料組合方式為以疏水部分向内朝向奈米構 造空腔’而親水部份向外朝向該基質。兩性材料接著進 201105728 行交聯,以形成一具有所需尺寸、形狀與模數之奈米構 造。 在另一實施例中,該空心奈米構造可圍繞一種子或 模板粒子而形成’其在至少一部份之奈米構造形成後移 除。在本實施例中,聚合反應例如,乳化聚合、微乳化 聚合、懸浮聚合或形成脂質體或微胞接著進行交聯,均 可被使用來形成外殼層。適合的模板材料包括聚合微球 體、油包水型(water-in-oil)乳化液滴、具聚層多泡狀結 構之向液性液晶。適合的種子或模板在外殼或外殼之至 少一層形成後’可經煅燒或溶劑蝕刻而移除。此合成方 法之實例在 “Graphene: A Perfect Nanoballoon,,, Leenaerts et al., Applied Physics Letters, 93, 193107 (2008). Dept Physics, Univ. Antwerpen ; “Growing Nanoballoons and Nanotubes of Pure polymer from a Microcapsule”,Fei et al.,Inst. Textiles, Macromol. Rapid Commun. 29 1882-1886, (2008). The Hong Kong Polytechnic University ; “Silicone Nanocapsules Templated Inside the Membranes of Cationic Vesicles”, Kepczynski et al., Langmuir, 23 7314-7320, (2007). Jagiellonian Univ· Krakow Poland ; “Encapsulation of Inorganic Particles with Nanostructured Cellulose”, Nelson and Deng, Macromol. Mater. Eng., 292 1158-1163, (2007). Georgia Tech. ; “Stable Polymeric Nanoballoons: Lyphilization and Rehydration of Cross-linked Liposomes”,Liu and O’Brian, J. Am. Chemical Society, 124 6037-6042, (2002), Chemistry Dept. Univ. Arizona ; 201105728 ‘‘Nanoparticles and nanoballoons of amorphous boron coated with crystalline boron nitride”,Appl. Phys. Lett. 79, 188 (2001) ; “Carbon Nanoballoon Produced by Thermal Treatment of Arc Soot”,New diamond and Frontier Carbon Technology, 15 No 2 (2005). Toyohashi University of Technology Japan ; Fabrication of Core-Shell Fe3 O 4/polypyrole and Hollow Polypyrole Microspheres, Polymer Composites 2009. Lu et al” Jilin University, China中被揭露。這些揭露内容在此併入作 為參考資料。 其他選擇為碳空心奈米構造可經由高於2400°C之 電弧煙塵灰處理而移除。Macromol. Mat. Eng. 2007 292, 1158-1163 “Encapsulation of Inorganic Particles with Nanostructured Cellulose”. 在另一實施例中,該奈米構造可為自細菌,像是自 藍綠菌(cyanobacteria)(像是念球藻(Anabaena)、微 嚢裔(Microcystis )、顫藻(Ocillatoria )與膠馕裔 曱烧古菌(methogens)及適鹽生物,中 分離之自然生成氣囊。自然生成之氣囊可藉WO 98/21311所揭露之習知方法分離,其在此併為參考資 料。經分離的自然生成奈米構造可以「如分離 (as-isolated)」時,或以如同於此所揭露之被塗覆或被 包封方式使用。 201105728 該透氧性粒子(包括固體及空心兩者)在納入反應混 :物中’以製備聚合物前可加以包封。此方法在固體透 氧性粒子之核心或仏奈米構造之_係由不透水性 材料或兩性材料製備而成時,特別有用。 此處之包封」係指以其他材料圍繞該透氧性粒子 或以其他材料包埋該透氧性粒子。適合的包封手段包括 塗覆(coating )該透氧性粒子、以其他材料包埋 (entrapping)該透氧性化合物,以形成例如圍繞該透 氧性粒子之脂質體、微胞、聚合結構、其物之組合與類 似者。该透氧性粒子可能因許多原因被包封。例如,當 包埋入一醫療裝置時,該透氧性粒子可能塗覆一聚合物 以避免造成免疫反應。在一實施例中,該透氧性粒子可 能被包封以改變粒子特性,舉例來說,使其更相容於用 來製備5^合物之反應混合物成份。在一實施例中,該粒 子可能被包封以幫助維持一所要粒子尺寸、以避免或限 制聚集,或提供該終物件其他所要特性,例如但不限於 折射率、生物相容性(包含免疫反應、蛋白質或脂質攝 入)其組合與類似者。舉例來說’該透氧性粒子可能包 封於一親水性外殼内,且分散於該反應混合物中。除了 展現與親水性反應混合物間增進之相容性,包封亦可避 免於該反應混合物形成之鏡片内形成一疏水側。疏水側 可能導致蛋白質變性或使鏡月髒污。其他包封原因與其 益處,為本發明所屬技術領域中具有通常知識者所習 知。 在一實施例中’該透氧性粒子可散佈或懸浮於反應 混合物中。該粒子可經由離子力或立體阻隔作用力 201105728 (steric force)或其組合而散佈。在一實施例中,透氧 性粒子形成包含尺寸小於約1〇〇〇 mn之粒子的穩定分 散物’其可保持分散至少約一小時,在一些實施例中至 少約一天’在一些實施例中為一週或更多。在一實施例 中’該反應混合物可更包含至少一介面活性劑。適合的 介面活性劑與反應混合物及懸浮或散佈粒子相容,且不 會造成渾濁(haze)。適合的介面活性劑包括小分子介面 活性劑、聚合物介面活性劑、兩性共聚物、其組合與類 似者。適合的介面活性劑實例包括PEG-120曱基葡萄糖 二油酸脂(DOE 120,購自Lubrizol)、PVP、聚乙烯醇 (poly vinyl alcohol)/ 聚醋酸乙烯酯(p〇ly vinyi acetate ) 共聚物、兩性統計共聚物或團聯共聚物(block copolymers) ’例如矽氧樹脂/PVP團聯共聚物、聚曱基 丙烯酸烧基酯(polyalkylmethacrylate ) /親水性團聯共 聚物、有機石夕氧烧化合物(organoalkoxysilanes),例如 3- 胺基 丙基三 乙氧基石夕烧 (3-aminopropyltriethoxysilane,APS )、曱基-三乙氧基石夕 烧(methyl-triethoxysilane,MTS)、苯基-三乙氧基石夕烧 (phenyl-trimethoxysilane,PTS)、乙稀基三乙氧基石夕 烷(vinyMriethoxysilane,VTS)、3-甘油氧基丙基三曱 氧基石夕烧(3-glycidoxypropyltrimethoxysilane,GPS)、 具有大於約10,000分子量且包含提高黏性之矽氧樹脂 大分子單體(silicone macromers),例如氫鍵組,例如 但不限於經基與胺甲酸乙酯(urethane groups)及其混 合物組成的介面活性劑。 201105728 當分散劑為一聚合物,其分子量為具有一範圍。由 約1000至數百萬之分子量皆有可能使用。其上限僅受 限於反應混合物中分散劑之溶解度。 當使用一分散劑’該分散劑量介於反應混合物中所 有成分重量之約〇·0〇1%到約40%。在一些實施例中’ 該分散劑量介於約0.01%到約3〇%(重量百分比),在其 他實施例為介於約0.1%到約30%(重量百分比)。在一些 實施例中,該分散劑亦為形成聚合物件之反應成分,例 如製造一包含聚乙烯醇之隱形眼鏡時。在這些實施例 中,使用之分散劑量可高至佔反應混合物中所有成分所 佔重量之約90%(重量百分比),在一些實施例中高至約 100%(重量百分比)。 在一實施例中,該透氧性粒子塗覆一塗覆組成物。 可選擇適合的塗覆組成物以提供任何上述特性。例如’ 當要與傳統水凝膠反應混合物具所要相容性時,適合的 塗覆組成物包括陰離子、潛在陰離子、陽離子、潛在陽 離子、兩性離子、不具極性塗覆組成物、其組合與類似 物。可用來作為塗覆材料之陰離子與潛在陰離子聚合物 實例包括聚丙烯酸(polyacrylic acid)、玻尿酸、葡聚醣 硫酸鹽(dextran sulfate )藻酸鹽(alginates )、共聚物或 其組合或類似物。 陽離子與潛在陽離子聚合物實例包括聚(二丙烯基 二曱基氯化錢)(P〇ly(diallyldimethylammonium chloride,PDADMAC)聚葡萄胺糖(chitosan)、聚(四 級氣化合物)(poly(quats))、聚胺類、聚°比唆、共聚物 或其組合或類似物。 19 201105728 兩性離子聚合物實例包括聚續酸内鹽(poly (sulfobetaine))、聚碳酸内鹽(poly (carboxybetaine))、 聚罐酸内鹽(poly (phosphobetaine))、共聚物或其組合 或類似物。兩性離子聚合物實例包括(聚(3-[ΛΜ:2-丙烯 胺基乙基)二甲基銨基]丙烷磺酸鹽)、聚(3-|W-(2-甲基丙 烯胺基乙基)二F基銨基]丙烷磺酸鹽)、聚(3-[Λ42-甲基 丙烯酸)二甲基銨基]丙烷磺酸鹽、聚二甲基 乙稀基-苯基)-錄基)丙烧續酸鹽、聚(3-[ν·(2-丙稀 胺基甲酸乙酯)二甲基錄基]丙酸)、聚(3_[w_(2_曱基丙烯 胺基乙基)二曱基銨基]丙酸鹽)、聚(3_[#_(2_甲基丙烯胺 基乙基)二甲基銨基]丙酸、聚(3-(;V,AL二曱基乙稀 基-苯基)-銨基)丙酸鹽與聚(2-曱基丙烯醯氧基乙基磷酸 膽鹼)。在一些實施例中,以陰離子與兩性離子或陽離 子與兩性離子塗覆組成物包含最外層。該透氧性粒子可 被塗覆一或更多層。 適合的塗覆方法包括1)陰離子/陽離子聚合物、聚 酸/聚鹼或聚合之供氫體/受氫體物種之交替層沉積,2) 電聚處理’ 3)經由傳統或經控制的 收敵與分散接枝(共)聚合作用,4)以小;子= =早化學修飾’例如接枝,或5)以化學手段所為之 ==即酸/驗催化水解、射線、伽瑪射線或 ::羼:進灯粒子表面修飾。其他修飾方法 聚處理與經控制之氣體電漿沉積。 兑’该透氧性粒子係包封於微胞内。 其可經由讀途㈣成,包括衫 /溶解聚二甲基嫩液體以與適合的介 20 201105728 形成一油包水型(oiMn-water)乳液或微乳液,2)形成 一乳液/微乳液,接著形成一活性發氧樹脂,其中該反 應矽氧樹脂可由包含但不限於矽醇官能基聚二烷基矽 氧(polydialkylsiloxane)之寡聚合物所組成,3)形成 一乳液/微乳液,接著形成一活性石夕氧樹脂,其中該反 應石夕氧樹脂可由包含但不限於乙烯基_或烯丙基_官能基 聚二烧基石夕氧(polydialkyl siloxane)與一氫化物官能 基聚二烧基石夕氧(polydialkyl siloxane)之寡聚合物混 合物所組成’ 4)使用乙稀石夕烧氧基大分子單體,例如 包含但不限於聚二烷矽氧烷,例如mPDMS (單曱基丙 烯醯氧丙基終止單丁酯終止聚二曱基石夕氧烧) (mono-n-butyl terminated polydimethylsiloxane ) ' OHmPDMS (單(3-曱基丙烯醯氧基_2_羥基丙氧基)丙基 終止單-丁基聚二甲基矽氧烷) ( mono-(3-methacryl〇xy-2-hydroxypropyl〇xy)propyl terminated , mono-butyl terminated polydimethylsiloxane)、SiMAA DM (甲基雙(三曱矽烷 氧基)-矽烧丙基甘油二曱基丙烯酸酯 (Methyl-bis(trimethylsilyl〇Xy)_siiyi_pr〇pyigiyCer〇i_dim ethacrylate))或其組合的大分子單體,經乳化/微乳化自 由基聚合作用製備含矽烷氧基之膠乳。上述之矽烷氧基 -乳化/微乳化也可於一單體反應混合物中與適當選擇之 單體和稀釋液直接製備。由上述之乳化/微乳化形成之 粒子,可進一步於硬化過程中藉引入一交聯劑而更穩 定。交聯劑的選擇為以形成粒子時,使用之反應性矽氧 樹脂的功能為依據。習知之矽氧樹脂交聯劑實例包括但 201105728 不限於SiMAA DM(甲基雙(三甲石夕炫氧基)-石夕烧丙基甘 油二曱基丙烯酸g旨)、四烧氧石夕烧(tetra-alkoxy silanes )、聚乙烯酯、丙烯酯、矽烷基-氫化物部份 (silyl-hydride moieties)與具適當金屬催化劑之石夕氫加 成(hydrosilylating)部份。 矽烷氧基-乳化/微乳化可自許多介面活性劑系統形 成’包括離子與非離子洗滌劑。可使用製備膠乳通常使 用之介面活性劑,此為所屬技術領域中具有通常知識者 所習知。該介面活性劑實例包括但不限於烷基硫酸鹽、 烷基磺酸鹽、烷基苯磺酸鹽、脂肪酸、烷基聚氧乙烯醚、 烧基季録鹽、烧基天然寡聽(alkyl glucocides)、聚山梨 醇酉旨或其組合的介面活性劑。 在製備矽氧樹脂微乳化系統時,也可使用反應性介 面活性劑。在文獻也被稱作「surfmers」,這些介面-活 性化合物在親水性或疏水性端包含有一反應官能基且 能夠參予聚合反應過程,藉此使其本身併入最終聚合粒 子,因此不需移除介面活性劑,或使需移除者最少化。 可被使用來形成矽氧樹脂微乳化粒子之材料包含但不 限於浠丙基聚稀烴基二醇醚(allyl polyalkylene glycol ethers )、乙稀基聚稀煙基二醇醚(vinyl polyalkylene glycol ethers)、乙烯基聚烯烴基二醇醚硫酸鹽(allyl polyalkylene glycol ether sulfates)、烷基聚烯烴基二醇 (alkyl polyethylene glycol)之曱基丙烯酸酯與乙烯基 聚稀經基一醇鱗(vinyl polyethylene glycol ethers)。這 些媒介可與上述標準乳化聚合作用介面活性劑作或結 合0 22 201105728 除了具較低分子量之介面活性劑,聚合介面活性劑 與乳化劑也可用於製備矽烷氧基_乳液/微乳液。該聚合 介面活性劑實例係為本發明所屬技術領域所習知^包含 但不限於聚醚/泊洛沙姆(P〇laxamer)介面活性劑、N_ 乙烯吡咯啶酮(共)聚合物、許多疏水性單體與乙烯醇 之共聚物、聚(乙烯-共-順丁烯二酸酐, (ethylene-co-maleic anhydride))或其組合的介面活性 劑。 經自由基微乳化聚合製備之矽烷氧基-膠乳所包括 之實施例,包含使用乙烯矽烷氧基大分子單體,例如,Bloch, D, has reported the permeability coefficient of many polymers. In an embodiment, the hollow nanomaterial is synthesized. Examples of suitable synthetic methods include physicochemical methods in which the outer shell material is formed during the evaporation of the solvent or in a controlled electrostatic or chemical interaction. An example of this method is disclosed in the Nature of January 20, 1994, 201105728 _ (Nature), Volume 367. The hollow nanomaterial may be formed by phase separation in which a solvent containing a polymerization mixture of two or more polymers is evaporated. The choice of surface tension and evaporation rate is based on the dispersion balance of the two liquids such that the spherical droplets of one polymer are covered by a uniform layer of another polymer, forming an emulsified droplet suspension in the solvent. When a different material is used as the inside and outside of the nanostructured outer casing, the material formed by the outer hydrophilic layer may be a crosslinked or self-polymerized polymer. Examples of such materials include 2-hydroethyl methacrylate ((ΗΕΜΑ)), poly vinyl acetate, methacrylic acid, N-ethylene sulphate N-vinylpyrrolidone, N-vinyl acetamide, N-vinyl methyl acetamide, N, N-dimercapto propylene Indoleamine, acrylic acid, glycerol monomethacrylate, 2-methacryloxyethyl phosphorylcholine (MPC), methyl methacrylate Methyl methacrylate ), hydroxyethyl acrylate, N-(l,l-dimethyl-3-oxybutyl)acrylamide (N-(l,l-dimethyl-3-oxybutyl) acrylamide ), polyethylene glycol monomethacrylate, polyethylene glycol dimethacrylate, 2-ethoxyethyl methacrylate 2-mercaptopropene oxyethyl choline (2-methacryloxy) Ethyl phosphorylcholine) and combinations and analogs thereof. Other polymers having the above water permeability coefficient and surface tension can also be used. Examples include polysaccharides, hydrophilic polypeptides, 201105728 polyacetate, polyamines, nylons including carbon repeats having at least 4 carbon atoms, polyamines, protein vinegar, cellulose, and having hydrophilic branches A combination of a hydrophobic backbone polymer and a combination thereof that provide the above-described water permeability coefficient and surface tension. Specific examples of the polymer which can form the outer layer of the outer shell include poly(acrylamide co-acrylic acid), poly(N-isopropylpropionamide) (poly(N-) Isopropylacrylamide)), 2-hydroxy methacrylate includes polymers and copolymers, polyvinyl alcohol polymers and copolymers and the like. The polymer can have any shape including linear, branched and brush-shaped structures. In one embodiment, the outer layer of the outer shell is a crosslinked polymer formed from at least one monomer forming the matrix. Examples of materials which can form the inner layer include homopolymers and copolymers, including polyorganosiloxanes (including silicone methacrylates), fluoropolymers, liposomes (liposomes). ), hydrophobic polypeptides, polyesters, 1醮fee (polyamides), poly(s), polystyrenes, polyaniline, polypyrroles, and Combinations and analogs. Examples of suitable inorganic materials include oxygen-permeable perovskite oxides, metalloids such as boron nitride, metal oxides including iron oxide, aluminum oxide, titanium dioxide, oxidization, metals such as gold, transition metal sulfides For example, ZnS and CdS, graphite flakes, inorganic/organic mixtures such as full-shell coated cellulose metal oxides and polytetrafkioroethanes, and combinations and analogs thereof. Specific examples of the polymer containing the diabase resin include polydimethyl siloxane oxime 201105728 (polydimethyl siloxane, PDMS), poly(dimethyl siloxane), poly (dimethyl sulfonate) Oxygen burn (poly(silsesquioxane)) or poly((trimethy 1 silyl) propyne). Specific examples of the fluoropolymer include amorphous fluoropolymers (e.g., 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-di[oral + oxime] oxazole ( 2,2-bis(trifluoromethyl)_4,5-difluoro_l,3-dioxole) copolymer with tetrafluoroethylene (sold under the trade name TEFLON AF), fluorinated fluorinated polydimethyl fluorene oxide With fluorinated polynorbornene (polynorbornene). Mixtures containing the foregoing copolymers and any of the foregoing inorganic materials may also be used. The inner layer material may include a latent reaction group such as pentafluoromethacrylate and N-acryloxysuccinimide ° US 2004/0120982 to disclose suitable latent reaction groups, which may It is added to the inner layer of the outer casing to allow the reaction to take place between the inner and outer layers of material. In other embodiments, the outer layer of the outer casing and the outer layer of material have alternating charges to allow the material to be bonded by charge interaction. Examples of such materials include carboxylic acid metal salts, carb xylic acid/quaternary ammonium salts, suif〇nic acid metal salts, and acid / suifonic acids/quaternary ammonium salts. Alternatively, the outer casing may be formed from one or more zwitterionic materials, amphoteric materials, or combinations thereof. Suitable zwitterionic and microcellular materials are as follows. The combination of the amphoteric materials is such that the hydrophobic portion is inwardly directed toward the nanostructure to form a cavity' and the hydrophilic portion is directed outwardly toward the substrate. The amphoteric material is then crosslinked in 201105728 to form a nanostructure of the desired size, shape and modulus. In another embodiment, the hollow nanostructure can be formed around a daughter or template particle' which is removed after formation of at least a portion of the nanostructure. In the present embodiment, a polymerization reaction such as emulsion polymerization, microemulsification polymerization, suspension polymerization or formation of liposomes or micelles followed by crosslinking can be used to form an outer shell layer. Suitable templating materials include polymeric microspheres, water-in-oil emulsified droplets, liquid-directed liquid crystals having a polylayered vesicular structure. A suitable seed or template can be removed by calcination or solvent etching after the outer shell or shell has been formed. An example of such a synthetic method is "Graphene: A Perfect Nanoballoon,,, Leenaerts et al., Applied Physics Letters, 93, 193107 (2008). Dept Physics, Univ. Antwerpen; "Growing Nanoballoons and Nanotubes of Pure polymer from a Microcapsule" , Fei et al., Inst. Textiles, Macromol. Rapid Commun. 29 1882-1886, (2008). The Hong Kong Polytechnic University ; "Silicone Nanocapsules Templated Inside the Membranes of Cationic Vesicles", Kepczynski et al., Langmuir, 23 7314-7320, (2007). Jagiellonian Univ·Krakow Poland; “Encapsulation of Inorganic Particles with Nanostructured Cellulose”, Nelson and Deng, Macromol. Mater. Eng., 292 1158-1163, (2007). Georgia Tech. ; “Stable Polymeric Nanoballoons: Lyphilization and Rehydration of Cross-linked Liposomes", Liu and O'Brian, J. Am. Chemical Society, 124 6037-6042, (2002), Chemistry Dept. Univ. Arizona ; 201105728 ''Nanoparticles and nanoballoons of amorphous Boron coated with crystalline boron nitride", Appl. Phys Lett. 79, 188 (2001); "Carbon Nanoballoon Produced by Thermal Treatment of Arc Soot", New Diamond and Frontier Carbon Technology, 15 No 2 (2005). Toyohashi University of Technology Japan ; Fabrication of Core-Shell Fe3 O 4 /polypyrole and Hollow Polypyrole Microspheres, Polymer Composites 2009. Lu et al" in Jilin University, China. These disclosures are hereby incorporated by reference. Other options for carbon hollow nanostructures can be removed via arc soot treatment above 2400 °C. Macromol. Mat. Eng. 2007 292, 1158-1163 "Encapsulation of Inorganic Particles with Nanostructured Cellulose". In another embodiment, the nanostructure can be self-bacterial, such as from cyanobacteria (like Naturally-generated airbags are isolated from Anabaena, Microcystis, Ocillatoria, and methogens and salt-producing organisms. Naturally generated balloons can be borrowed from WO 98. The conventional method disclosed in /21311 is hereby incorporated by reference. The isolated naturally occurring nanostructures can be "as-isolated" or coated as disclosed herein or Used in an encapsulated manner. 201105728 The oxygen permeable particles (both solid and hollow) can be encapsulated in the reaction mixture before they are prepared. This method is at the core of the solid oxygen permeable particles or 仏The nanostructure is particularly useful when it is prepared from a water-impermeable material or an amphoteric material. The "encapsulation" herein refers to embedding the oxygen-permeable particles around the oxygen-permeable particles or other materials by other materials. . The encapsulation means comprises coating the oxygen permeable particles, entrapping the oxygen permeable compound with other materials to form, for example, liposomes, micelles, polymeric structures surrounding the oxygen permeable particles, Combinations of the same are similar. The oxygen permeable particles may be encapsulated for a number of reasons. For example, when embedded in a medical device, the oxygen permeable particles may be coated with a polymer to avoid an immune response. In one embodiment, the oxygen permeable particles may be encapsulated to modify particle characteristics, for example, to make them more compatible with the components of the reaction mixture used to prepare the compound. In one embodiment, the particles may Encapsulated to help maintain a desired particle size, to avoid or limit aggregation, or to provide other desirable characteristics of the final article, such as, but not limited to, refractive index, biocompatibility (including immune response, protein or lipid uptake), combinations thereof And similar. For example, the oxygen permeable particles may be encapsulated in a hydrophilic outer shell and dispersed in the reaction mixture, in addition to exhibiting an enhanced reaction with the hydrophilic reaction mixture. Capacitance, encapsulation also avoids the formation of a hydrophobic side in the lens formed by the reaction mixture. The hydrophobic side may cause denaturation of the protein or stain the mirror. Other reasons for encapsulation and its benefits are common in the art to which the present invention pertains. It is well known to the skilled person. In one embodiment, the oxygen permeable particles may be dispersed or suspended in the reaction mixture. The particles may be dispersed by ionic or steric barrier force 201105728 (steric force) or a combination thereof. In one embodiment, the oxygen permeable particles form a stable dispersion comprising particles having a size of less than about 1 〇〇〇 mn, which can remain dispersed for at least about one hour, in some embodiments at least about one day 'in some embodiments. For a week or more. In one embodiment, the reaction mixture may further comprise at least one surfactant. Suitable interfacial agents are compatible with the reaction mixture and the suspended or dispersed particles and do not cause haze. Suitable interfacial agents include small molecule interfacing agents, polymeric surfactants, amphoteric copolymers, combinations and similarities thereof. Examples of suitable interfacial agents include PEG-120 mercaptoglucose dioleate (DOE 120, available from Lubrizol), PVP, poly vinyl alcohol/polyvinyl acetate (p〇ly vinyi acetate) copolymer , amphoteric statistical copolymer or block copolymers 'such as oxime resin / PVP copolymer, polyalkylmethacrylate / hydrophilic copolymer, organic oxalate compound (organoalkoxysilanes), for example, 3-aminopropyltriethoxysilane (APS), methyl-triethoxysilane (MTS), phenyl-triethoxylate Phenyl-trimethoxysilane (PTS), vinyl triethoxysilane (VTS), 3-glycidoxypropyltrimethoxysilane (GPS), having a molecular weight greater than about 10,000 And comprising a silicone resin macromolecule, such as a hydrogen bond group, such as, but not limited to, a thiol group and a mixture thereof. An interface composed of a surfactant. 201105728 When the dispersant is a polymer, its molecular weight has a range. A molecular weight of about 1,000 to several millions is possible. The upper limit is limited only to the solubility of the dispersant in the reaction mixture. When a dispersant is used, the dispersing amount is from about 〇1〇 to about 40% by weight of all components in the reaction mixture. In some embodiments, the dispersing amount is from about 0.01% to about 3% by weight, and in other embodiments, from about 0.1% to about 30% by weight. In some embodiments, the dispersing agent is also a reactive component that forms a polymeric member, such as when a contact lens comprising polyvinyl alcohol is formed. In these embodiments, the dispersing amount used can be up to about 90% by weight, and in some embodiments up to about 100% by weight, based on the weight of all ingredients in the reaction mixture. In one embodiment, the oxygen permeable particles are coated with a coating composition. A suitable coating composition can be selected to provide any of the above characteristics. For example, when it is desired to have compatibility with a conventional hydrogel reaction mixture, suitable coating compositions include anions, latent anions, cations, latent cations, zwitterions, non-polar coating compositions, combinations thereof and the like. . Examples of anionic and latent anionic polymers which can be used as coating materials include polyacrylic acid, hyaluronic acid, dextran sulfate alginates, copolymers or combinations thereof or the like. Examples of cationic and latent cationic polymers include poly(diallyldimethylammonium chloride) (PDADMAC) polytosine (chitosan), poly(quaternary gas compound) (poly(quats)) ), polyamines, polypyridyls, copolymers or combinations or analogs thereof. 19 201105728 Examples of zwitterionic polymers include poly (sulfobetaine) and poly (carboxybetaine) , poly (phosphobetaine), copolymer or a combination or analog thereof. Examples of zwitterionic polymers include (poly(3-[ΛΜ:2-propenylaminoethyl)dimethylammonium] Propane sulfonate), poly(3-|W-(2-methacrylamidoethyl)di-F-ammonio]propane sulfonate), poly(3-[Λ42-methacrylic acid) dimethyl Ammonium]propane sulfonate, polydimethylethylene-phenyl)-enyl)propanone, poly(3-[ν·(2-propylamidocarboxylate) dimethyl) Recording base] propionic acid), poly(3_[w_(2_mercaptopropenylamino)dinonyl ammonium]propionate), poly(3_[#_(2_methacrylamidoethyl) Dimethylammonium]propionic acid, (3-(;V,AL-diylethylene-phenyl)-ammonio)propionate and poly(2-mercaptopropenyloxyethylphosphocholine). In some embodiments, The anionic and zwitterionic or cationic and zwitterionic coating compositions comprise an outermost layer. The oxygen permeable particles can be coated with one or more layers. Suitable coating methods include 1) anionic/cationic polymers, polyacids/poly Alkaline or polymeric hydrogen donor/hydrogen species alternate layer deposition, 2) electropolymerization '3) via traditional or controlled entrapment and dispersion grafting (co)polymerization, 4) to small; = early chemical modification 'eg grafting, or 5) chemically determined == ie acid/catalyzed hydrolysis, ray, gamma ray or:: 羼: surface modification of the lamp particles. Other Modifications Polymerization and controlled gas plasma deposition. The oxygen permeable particles are encapsulated in the micelles. It can be formed by reading (four), including a shirt/dissolved polydimethylinner liquid to form a water-in-oil (oiMn-water) emulsion or microemulsion with a suitable medium 201105728, 2) forming an emulsion/microemulsion, An active oxygen generating resin is then formed, wherein the reactive epoxy resin may be composed of an oligopolymer including, but not limited to, a decyl alcohol functional polydialkylsiloxane, 3) forming an emulsion/microemulsion, followed by formation An active diabase resin, wherein the reaction oxime oxy-resin may comprise, but is not limited to, a vinyl- or allyl-functional polydialkyl siloxane with a hydride functional group The oligomeric polymer mixture of polydialkyl siloxane consists of '4) using an ethylene oxide alkoxy macromonomer such as, but not limited to, a polydialkyl alkane, such as mPDMS (monodecyl propylene oxypropylene) Mono-n-butyl terminated polydimethylsiloxane ' OHmPDMS (mono(3-mercaptopropenyloxy-2-hydroxyloxy)propyl terminated mono-butyr Polydimethyl oxime Mono-butyl terminated polydimethylsiloxane, mono-butyl terminated polydimethylsiloxane The macromonomer of the ester (Methyl-bis(trimethylsilyl〇Xy)_siiyi_pr〇pyigiyCer〇i_dim ethacrylate)) or a combination thereof is prepared by emulsion/microemulsion radical polymerization to prepare a decyloxy-containing latex. The above decyloxy-emulsification/microemulsification can also be prepared directly in a monomer reaction mixture with appropriately selected monomers and diluents. The particles formed by the above emulsification/microemulsification can be further stabilized by introducing a crosslinking agent during the hardening process. The choice of the crosslinking agent is based on the function of the reactive oxirane resin used in forming the particles. Examples of the conventional oxirane cross-linking agent include: 201105728 is not limited to SiMAA DM (methyl bis(trimethyl sulphate)-stone propyl glycerol dimercapto acrylate g), and four smoldering smoldering ( Tetra-alkoxy silanes), polyvinyl esters, propylene esters, silyl-hydride moieties and hydrosilylating moieties with suitable metal catalysts. The decyloxy-emulsification/microemulsification can be formed from a number of surfactant systems, including ionic and nonionic detergents. The surfactants commonly used in the preparation of latexes can be used, as is well known to those of ordinary skill in the art. Examples of such surfactants include, but are not limited to, alkyl sulfates, alkyl sulfonates, alkyl benzene sulfonates, fatty acids, alkyl polyoxyethylene ethers, geminyl salt, and alkyl glucocides. ), a polysorbate or a combination of surfactants. In the preparation of a silicone resin microemulsion system, a reactive surfactant can also be used. Also known in the literature as "surfmers", these interface-active compounds contain a reactive functional group at the hydrophilic or hydrophobic end and are capable of participating in the polymerization process, thereby incorporating themselves into the final polymeric particles, thus eliminating the need to move In addition to the surfactant, or to minimize the need to remove. Materials that can be used to form the oxime resin microemulsified particles include, but are not limited to, allyl polyalkylene glycol ethers, vinyl polyalkylene glycol ethers, Allyl polyalkylene glycol ether sulfates, alkyl methacrylates and vinyl polyethylene glycol ethers ). These vehicles can be combined or combined with the above standard emulsion polymerization surfactants. 0 22 201105728 In addition to lower molecular weight surfactants, polymeric surfactants and emulsifiers can also be used to prepare decyloxy-emulsions/microemulsions. Examples of such polymeric surfactants are well known in the art to which the present invention pertains, including but not limited to polyether/poloxamer surfactants, N-vinylpyrrolidone (co)polymers, and many hydrophobics. A surfactant of a copolymer of a monomer and a vinyl alcohol, a poly(ethylene-co-maleic anhydride) or a combination thereof. Examples of the decyloxy-latex prepared by radical microemulsification polymerization include the use of a vinyl alkoxy macromonomer, for example,
包含但不限於SiMAA2 DM、OHmPDMS與/或mpDMS 或彼等組合的大分子單體,以簡便合成可調式組成物之 高Dk (透氧係數)粒子,因此控制結構與特性。一般 來說,本實施例包含一微乳液,該微乳液係在水中包含 一上述之介面活性劑或上述組合的介面活性劑、至少一 矽烷氧基大分子單體、一交聯反應單體(例如SiMAA2 DM、EGDMA (二曱基丙烯酸乙二醇酯,ethylene glyc〇1 dimethacrylate)或 DVB (二乙烯苯,divinylbenzene)與 一水溶性自由基起始劑。根據起始劑的選擇,該聚合作 用可經由熱、光化學或氧化還原途徑引發。在一較佳實 施例中,OHmPDMS與SiMAA2 DM之比率可有所變化 以獲得具定製物理特性之最終粒子,包括但不限於所要 之折射率係數值與提高的粒子穩定度。 在上述之實施例中,「水溶性自由基起始劑」係定 義為任何化合物’在特定情況下(例如溫度、光強度和 波長)’產生一個或多個活性基物種。這些化合物係為 23 201105728 本發明所屬技術領域中具有通常知識者所習知。可在實 施例中使用之水溶性自由基起始劑實例包含但不限於 VA-(M4 ( 2,2·-偶氮雙[2-(2-二氫咪唑-2-基)丙烷]二鹽酸 鹽)、V-50 ( 2,2’-偶氮雙(2-曱基苯丙脒)二鹽酸鹽)、 VA-057 ( 2,2'-偶氮雙[N-(2-羥乙基)-2-曱基丙脒]水合 物)、VA-060 (2,2,-偶氮雙{2-[1-(2-羥乙基)-2-二氫咪唑 -2-基]丙烷;二鹽酸鹽)、VA_〇61 (2,2,_偶氮雙[2_(2_二 氫咪嗤-2-基)丙烷])、VA_〇67 (2,21_偶氮雙(1_亞胺小吡 °各咬基·2_乙基丙烷)二鹽酸鹽)、VA-80 (2,2,-偶氮雙{2-甲基-N-[l,l-雙(羥曱基)_2_羥乙基]丙醯胺)、va_〇86 (2,2’-偶氮雙|>甲基_N_(2_羥乙基)丙醯胺])、νρΕ·〇2〇1 (聚(乙二醇)巨起始劑 MW = 2000 g/mole)、VPE-0401 (聚(乙二醇)巨起始劑 MW==4〇〇〇g/in〇ie)、vPE-〇602 ^聚(乙二醇)巨起始劑Mw = 6〇〇〇g/m〇le)、過硫酸鉀 何水〉谷性光起始劑。本發明並不限於使用水溶性自 土起始劑。微乳化系統可經傳統油溶性起始劑而製 在另 擇可本〜交佳之實施例中,水溶性自由基起始劑的: 例如Z,、^由芤化/微乳化聚合所製備粒子的最終特性 該最終ί rt用使用一羥基-或PEG功能起始劑 制表西膠之介面特性可能被修飾而得經; 及因此^ 限於增加表面姉、親水性,」 導致之生物相容性。 面活性劑透氧性聚合粒子可能與其穩定4 合’或可Λ:以二、”°、可能與其穩定表面活性劑相、I 此 J包埋於穩定表面活性劑。該粒子可負 24 201105728 具有一核心/殼結構,在核心包含高Dk (透氧係數)材 料與在外殼中有穩定表面活性劑以及其他穩定性部 伤。一但形成之後,該微胞可能與水凝膠聚合物形成共 4貝鍵結、可能與水凝膠聚合物結合,或可能物理包埋於 水凝膠聚合物内。該微胞可具有一核心/殼結構。可選 擇用以形成微胞塗覆之適合組成物以提供任何上述特 性。例如,當要與傳統水凝膠反應混合物具有相容性, 適合的微胞組成物包括終粒子的產率,陰離子、陽離 子兩性離子或不具極性的微胞表面。該位於微胞顆粒 表面之部份,可在乳化/微乳化過程中藉由使用一矽氧 樹脂-反應性覆蓋劑或表面活性劑方式引入。 此處所揭露作為塗覆化合物之任何陰離子、陽離子 或兩性離子聚合物可被使用於形成微胞塗覆,只要其一 ^包έ於此揭露之陽離子、兩性離子或陰離子官能基’ 另一端與該透氧性粒子相容。包含在疏水端之部份的實 例,包括烷氧基矽烷、多氯·矽烷、乙烯基矽烷、多官 能基稀丙基部份(p〇lyfuncti〇nal allyl moieties)、聚石夕烧-氫化物(polsilyl-hydrides)、脂族黏合劑(aliphatic linker,通常為丙基或丁基)等。單體與寡聚物在本發 明中也可被用以形成微胞塗覆。特定實例包括由Wacker Metroark Chemicals Ltd.之 IN 2003K000640 所揭露之 方法製備之烷基苯磺酸鹽與烷基乙氧基鹽。其他包含矽 氧樹脂ME聚合作用之專利包括美國專利第5661215號 與美國專利第6316541號。 形成一微胞塗覆之適合方法包括終粒子的產率,陰 離子、陽離子、兩性離子或不具極性的微胞表面。此微 25 201105728 胞表面上之部份,在乳化過程巾可藉使时氧樹脂_反 應覆蓋劑或介面活性劑來引人。該覆蓋劑亦為具表面活 性’且在-端包含-疏水性錢樹脂_反應性部份(包含 但不限定於燒氧基石夕烧、多氣_矽烷、乙烯基矽烷、多 官能烯丙基部份與聚矽烷-氫化物(p〇lsilyl_hydrides) 等)、脂族黏合劑(通常為丙基或丁基)與在其他端之 所要極性或離子官能基。該微胞之表面化學可藉由選擇 適當的覆蓋劑或其組合與類似物輕易地操控。 一般來說,乳液的形成乃是藉由於一適合溶劑中混 合高於臨界微胞濃度之介面活性劑,較佳濃度為高於 10%(重量百分比)’在一些實施例中,為介於約15到約 250/❶(重量百分比),在一些實施例中介於約15到約 20%(重量百分比)。本發明可使用乳液及微乳液兩者, 不論所揭露者為何種乳液,也可根據所選之粒子與介面 活性劑形成微乳液。加熱乳液並加入透氧性粒子。在一 些實施例中可加入交聯劑以形成交聯微胞。 在另一實施例中,透氧性粒子被包封入脂質體中。 可選擇合適的組成物以提供任何上述之特性。例如,若 欲得到所要的與傳統水凝膠反應混合物間之相容性,可 以使用磷脂與其他脂質體_形成化合物。適合的脂質體 形成化合物可包含但不限於 DSPC (distearoylphosphatidylcholine) ' HSPC ( hydrogentated soy phosphatidylcholine)以及與膽固醇、脂肪和磷脂結 合之聚(乙二醇)其組合與類似物。 26 201105728 合適的脂質體形成方法包括習知方法,例如但不限 於混合該所要成分、超音波法與膜擠製(membrane extrusion)與類似者。 包封固體透氧性粒子實例包括自Shin Etsu,Inc· (曰本)取得的X-52-7030以及Dow Corning所售之 9701化妝品粉(Cosmetic Powder) ’這是由二曱基聚石夕氧 院 /乙烯基二曱聚矽氧烧(dimethicone/vinyl dimethicone)交聯形成,並經石夕塗覆之交聯聚合物,所 製備的交聯聚(二甲基矽氧烷)核心與聚(倍半矽氧 烧)(poly(silsesquioxane))殼,其平均粒子尺寸分佈為800 nm ’ 範圍為 0.2-2000 nm。 透氧性粒子可以一具有效增強透氧氣量納入本發 明之水凝膠聚合物。此處之「有效增強透氧氣量」係指 與沒有含透氧性粒子之水凝膠聚合物之透氧性相比,可 有效增加聚合物透氧性至少約10%之量,至少約25% , 在一些實施例為至少50%,在其他實施例為大於 100%。在一些實施例中,本發明之組成物透氧性至少 25 barrer,至少約40 barrer,在一些實施例中至少約6〇 barrer ’在其他實施例中至少約80 barrer ’在其他實施 例中至少約100 barrer。 被加入反應混合物中之透氧性粒子的量,可由所要 之組成物透氧性與不包含任何透氧性粒子之聚合物的 透氧性輕易決定。這可藉由製備具有不同透氧性粒子濃 度之聚合物薄膜、測量該薄膜之Dk(透氧係數)與以外插 法得到透氧性粒子為佔100%濃度時之透氧性標的,輕 易達成。另外,針對空心奈米構造,要加入反應混合物 27 201105728 中之奈米構造量,可由利用描述於Journal of Biotechnology 77 (2000) 151-156 "Evaluation of oxygen permeability of gas vesicles from cyanobacterium Anabaena flos-aquae”之習知滲透理論,由系統之標的氧 滲透性決定。 被包封之透氧性粒子的透氧性決定於透氧性粒子 與包封材料兩者之特性,包含但不限於粒子大小、被包 封粒子表面積、表面組成物、包封材料硬度與該殼與核 心的交聯程度。 例如’在一實施例中,該水凝膠聚合物係為一曱基 丙稀酸經乙 S旨(hydroxyethyl methacrylate,HEMA)與約 2%(重:g:百分比)曱基丙烯酸(methacrylic acid,MAA)(透 氧性約20 barrer)共聚物,PDMS粒子(透氧性約600 barrer)作為透氧性粒子,該透氧性粒子可被加入至少佔 15°/。(重量百分比)的量,在一些實施例則介於2〇到約 70%(重量百分比)。 該透氧性粒子加入量可能不足,對所得組成物之其 他特性產生不要的影響。例如,當該組成物被使用來製 備使用時一定要乾淨才有用之物體,例如隱形眼鏡,該 聚合物應該在所要厚度下不發生可見的渾濁。在這些實 施例中,使用下述方法之聚合物具有小於約15%之霧度 (haze),在一些實施例中小於約1〇0/〇,在一些實施例中 小於約5%。在另一實施例中,該物體為一隱形眼鏡而 5玄透氧性粒子主要在光學區外。此法允許填充粒子、包 括導致終鏡片渾濁之粒子、粒子濃度或兩者。 28 201105728 本發明之功效為使透氧性粒子可被加入至用以製 備傳統水凝膠的反應混合物中。傳統水凝膠為習知且包 含聚HEMA與聚乙烯醇之均聚物與共聚物。適合的共 聚單體包括曱基丙烯酸、N-乙烯基础σ各烧酉同 (N-vinylpyrrolidone )、Ν-乙烯基乙醯胺(Ν_νίηγ1 acetamide )、N-乙細曱基乙酿胺(N-vinyl methyl acetamide)、N,N二曱基丙烯醯胺、丙烯酸、單曱基丙 烯酸甘油酯、MPC (2-曱基丙烯氧乙基磷酸膽鹼)、曱 基丙烯酸曱酉旨、丙稀酸經乙@旨(hydroxyethyl acrylate )、 Ν-(1,Γ-二曱-3-氧代丁基)丙烯醯胺、聚乙二醇單曱基丙 烯酸酉旨(polyethylene glycol monomethacrylate)、聚乙 一醇,一曱基丙細酸西旨(polyethylene glycol dimethacrylate )、曱基丙烯酸-2-乙氧乙酯(2-ethoxyethyl methacrylate )、2-甲基丙烯氧乙基磷酸膽鹼 (2-methacryloxyethyl phosphorylcholine )其組合與類 似物。聚HEMA之均聚物與共聚物包括etafilcon、 polymacon、vifilcon、bufllcon、crofllcon、genfilcon、 hioxifilcon 、lenefilcon 、methafilcon 、ocufilcon 、 perfilcon、surfilcon、tetrafilcon。也可使用聚乙烯醇均 聚物與共聚物,包括atlafllcon與nelfilcon。也可使用 甲基丙烯酸甲酯與親水性單體,例如N,N二曱基丙烯 醯胺或N-乙烯π比洛咬酮例如lidofilcon。然而,也可使 用透氧性粒子以增加任何水凝膠配方之透氧性,包括矽 氧樹脂水凝膠例如但不限於balafilcon、lotrafilcon、 aquafllcon、senofllcon、galyfilcon、narafilcon、 comfilcon、oxyfilcon 或 siloxyfilcon 等石夕氧樹脂水凝 29 201105728 膠。列出之USAN命名其包括同名之所有變異。舉例來 說,lotrafilcon 包括 lotrafilconA 與 B 兩者。 本發明之透氧性粒子可直接加入形成水凝膠聚合 物之反應混合物’也可被之後固化的水凝膠聚合物吸收 或浸潤。 混合反應成分與透氧性粒子以形成反應混合物。反 應混合物可選擇性的包括稀釋液,以幫助製程或提高相 容性。適合的稀釋液係為技術領域所習知,並且可根據 所選之聚合物而決定。例如,傳統水凝膠之合適稀釋液 包括有機溶劑、水或其之混合物。在一實施例中,當選 擇傳統水凝膠作為聚合物,可使用有機溶劑例如醇 (alcohols)、二元醇(diols)、三元醇(triols)、多元醇 (polyols)及聚基乙二醇(polyalkylene glycols)。實例 包括但不限於甘油、二元醇例如乙二醇(ethylene glycol)或二甘醇(diethylene glycol);硼酸多元醇酯 (boris acid esters of polyols )如美國專利 US 4,680,336、4,889,664 與 5,039,459 所揭露;聚乙烯吼咯 烧酮(polyvinylpyrrolidone );乙氧基化烷基糠苷 (ethoxy lated alkyl glucoside);乙氧基雙盼 A;聚乙二 醇;丙氧基與乙氧基化烧基糖苷或酸二氫醇(dihydric alcohol)混合物;丙氧基或乙氧基化烷基糖苷與C2_12 填酸二氫醇(dihydric alcohol)之單相混合物;ε-己内 酯(ε-caprolactone)與 C2_6 烧二醇(alkanediols)或三 元醇加合物(adducts );乙氧基化C3-6烷三醇 (alkanetriol)與描述於美國專利 US 5,457,140; 5,490,059, 5,490,960 ; 5,498,379 ; 5,594,043 ; 5,684,058 ; 30 201105728 5,736,409,5,910,519之混合物。稀釋劑也可選自美國 專利US 4,680,336中所描述,以經限定之黏度與Hans〇n 凝?力參數(Hanson cohesion parameter )組成之群組。 另外也可包括一或多個交聯劑,也被稱為交聯單 體’在反應混合物中例如乙二醇甲基丙烯酸酯 (「EGDMA」)、三烴曱基丙烷三甲基丙烯酸酯 (「TMPTMA」)、甘油三曱基丙烯酸酯(glycer〇1 trimethacrylate )、聚乙二醇二曱基丙烯酸酯 (polyethylene glycol dimethacrylate)(其中該聚乙二醇 具有一分子1較佳為高至例如約5000 ),以及其他聚丙 稀酸S旨和聚曱基丙烯酸g旨,例如上述之包含二個或更多 之丙烯酸曱酯端部份之封端聚氧乙烯多元醇。交聯劑為 以正常用量方式使用,例如,於反應混合物中可高至佔 反應成分2%(重量百分比)。其他選擇為,若使用任何 單體成份作為一交聯劑’可選擇性的於反應混合物中加 入一個別交聯劑。可作為交聯劑,且使用時不需於反應 混合物中加入額外交聯劑之親水性單體實例包括含有 兩或更多末端丙烯酸甲酯部份之多元醇聚氧乙稀。 該反應混合物可能包含額外成分,例如但不限定於 TJV吸收材料、醫樂劑、抗菌化合物、反應染色劑、色 素、可共聚合或非可聚合染料、釋放劑或其組合。 反應合物中也可包含一聚合作用起始劑。聚合作 用起始劑包括在適度高溫產生自由基之十二烷基過氧 化物(lauryl peroxide )、苯甲醯過氧化物(benzoyl peroxide)、異丙基碳酸鹽(iS0pr0pyi percarb〇nate)或 偶氮二異丁腈(azobisisobutyronitrile)等化合物,或者 31 201105728 光起始劑系統例如芳香 α-經基酮(aromatic alpha-hydroxy ketones )、烧氧基氧苯酮 (alkoxyoxybenzone)、苯乙嗣(acetophenone)、醯基膦氧 化物(acylphosphine oxides )、二醯基膦氧化物 (bisacylphosphine oxides)與一加二酮三級胺或其混合 物等系統。光起始劑實例為1-羥基苯基酮、2-羥基-2-曱基-1-苯基丙酮-1-1、雙(2,6-二曱氧苯曱醯基)-2,4-4-三曱基戊基膦氧化物(DMBAPO)、雙(2,4,6-三曱氧苯 曱醯基)-苯基膦氧化物(Irgacure819)、2,4,6-三曱苯曱 聯苯膦氧化物、2,4,6-三曱氧苯曱醯基聯苯膦氧化物、 安息香酸曱酯(benzoin methyl ester ) 以及樟腦酿 (camphorquinone)與乙基4-(N,N-二曱胺基)苯曱酸鹽 之組合市售可見光起始系統包括Irgacure 819、Irgacure 1700、Irgacure 1800、Irgacure 819、Irgacure 1850 (皆 購自 Ciba Specialty Chemicals)與 Lucirin TPO 起始劑 (可購自BASF)。市售UV光起始劑包括Darocur 1173 與 Darocur 2959 ( Ciba Specialty Chemicals)。這些與 其它可能被使用之起始劑於Volume III,Photoinitiators for Free Radical Cationic &amp ; Anionic Photopolymerization, 2nd Edition by J.V. Crivello K. Dietliker ; edited by G. Bradley ; John Wiley and Sons ; New York; 1998中被揭露,在此被併入作為參考資料。 反應混合物中使用具有效量的起始劑,以引發反應混合 物之光聚合作用,例如,每100反應部分單體中佔約 0.1到約2(重量百分比)。反應混合物聚合作用可藉由適 當選擇以加熱、可見光、紫外線光或其他根據使用聚合 32 201105728 作用起始劑之方式起始。其他選擇為,起始作用可在沒 有光起始劑的情況下進行,例如電子束。然而,在一實 施例中,當使用一光起始劑,較佳之起始劑包括雙醯基 膦氧化物(1^&〇71卩11〇5卩出116(^(^),例如雙(2,4,6-三甲 氧苯曱酸基)-苯基膦氧化物(Irgacure 819®)或一 1_ 羥基環己基苯基酮與雙(2,6-二曱氧苯甲醯基)_2,4_4_三 甲基戊基膦氧化物(DMBAPO)之組合,而較佳之起始 聚合作用方法為利用可見光。較佳之實施例為雙(2,4,6_ 三曱氧笨曱醯基)-苯基膦氧化物(Irgacure 819®)。 例如生醫裝置或在一些眼用裝置實施例中之物 體,可藉混合反應成分與稀釋液(若使用的話)與一聚 合作用起始劑混合’之後經適當條件硬化,以製備產 品,其可藉由形成板條或切割與類似方式形成適當形 狀。其他選擇為,為可將該反應混合物置於一具有所要 物體形狀之模型,之後將之固化為該所要物體。 例如’當反應混合物被使用來形成隱形眼鏡,任何 已知在隱形眼鏡製造中固化反應混合物之製程,包括自 旋鑄造與靜態鑄造皆可能被使用。美國專利第3,408,429 號與第3,660,545號揭露了自旋鑄造方法,美國專利第 4,113,224號與第4,197,266號揭露了靜態鑄造方法。在 -實施例中,製備隱形眼鏡的方法包括藉由直接鑄模反 應混合物以產生本發明之聚合物’其經濟實惠且能夠精 確控制水合鏡片之最終形狀。針對該方法,反應混合物 被置於一具有最終所要鏡片形狀之模型内,並且’反應 混合物受到反應條件控制,使其反應成分聚合,以產生 一具有最終所要鏡片形狀之聚合物/稀釋液混合物。 33 201105728 本發明之組成物具有平衡的特性使得其特別有 用。在一實施例中’該組成物被用來製備鏡片,特別是 隱形眼鏡’該特性包括清晰度、水含量、透氧性與接面 角。因此,在一實施例中’該生醫裝置為具有大於約 20%水含量之隱形眼鏡,在一些實施例中大於約30%。 此處之清晰(clarity)係指幾乎不其有可見渾濁。 乾淨鏡片相較於一 CSI鏡片具有小於約15〇〇/0之霧度 值,較佳小於約100°/〇。 以傳統水凝膠作為聚合物對於所產生之物體例如 隱形眼鏡具有額外益處’包含低於約100。之接面角與低 於約lOOpsi之模數。 在一實施例中,自本發明之組成物形成之隱形眼鏡 具有小於約80°之平均接面角(前進),小於約75。,及在 一些實施例中小於約70。。在一些實施例中本發明之物 體具有上述透氧性、水含量與接面角組合。所有上述範 圍之組合皆被認為屬於本發明所揭露者。 霧度(haze)測量 此處之清晰係指幾乎不具有可見渾濁。清晰度可經 由%霧度來測量,其係由透射值計算而得。透射可由 ASTM D1003,使用一積分球測霾計測量。進行此測量 係取得4次不同連續讀值,並以如下方式測量光電池輸 出 Τ!=離開位置之試樣與光阱,在位置之反射率標準 丁2=在位置之試樣與反射率標準,離開位置之光阱 丁3-在位置之光阱,離開位置之試樣與反射率標準 34 201105728 Τ'4 =在位置之试樣與光啡’離開位置之反射率知;_ 每個讀值之數量分別代表入射光、試樣傳送〜 光、儀器造成之光散射、儀器與試樣造成之光散射 e 總透射率(Total transmittance)Tt及漫透射率成 transmittance)Td計算方法如下 ^t=T2/TlMacromonomers including, but not limited to, SiMAA2 DM, OHmPDMS and/or mpDMS or combinations thereof, for the simple synthesis of high Dk (oxygenation coefficient) particles of the tunable composition, thus controlling structure and properties. In general, the present embodiment comprises a microemulsion comprising an above-mentioned surfactant or a combination of the above-mentioned surfactants, at least one decyloxy macromonomer, and a crosslinking reaction monomer in water ( For example, SiMAA2 DM, EGDMA (ethylene glycol oxime dimethacrylate) or DVB (divinylbenzene) and a water-soluble radical initiator. According to the choice of initiator, the polymerization It can be initiated via a thermal, photochemical or redox pathway. In a preferred embodiment, the ratio of OHmPDMS to SiMAA2 DM can be varied to obtain final particles with tailored physical properties including, but not limited to, desired refractive index coefficients. Values and increased particle stability. In the above examples, "water soluble free radical initiator" is defined as any compound that produces one or more activities under certain conditions (eg, temperature, light intensity, and wavelength). Base species. These compounds are known to those of ordinary skill in the art to which the present invention pertains. Free water solubility can be used in the examples. Examples of initiators include, but are not limited to, VA-(M4(2,2.-azobis[2-(2-dihydroimidazol-2-yl)propane] dihydrochloride), V-50 (2,2) '-Azobis(2-mercaptophenylpyrene) dihydrochloride), VA-057 (2,2'-azobis[N-(2-hydroxyethyl)-2-mercaptopropene] Hydrate), VA-060 (2,2,-azobis{2-[1-(2-hydroxyethyl)-2-dihydroimidazol-2-yl]propane; dihydrochloride), VA_ 〇61 (2,2,_azobis[2_(2-dihydroimidon-2-yl)propane]), VA_〇67 (2,21-azobis (1_imine)咬-·2_ethylpropane) dihydrochloride), VA-80 (2,2,-azobis{2-methyl-N-[l,l-bis(hydroxyindenyl)_2_hydroxyl) Base] propylamine 、, va_〇86 (2,2'-azobis|>methyl_N_(2_hydroxyethyl)propanamide]), νρΕ·〇2〇1 (poly(B) Glycol) giant initiator MW = 2000 g/mole), VPE-0401 (poly(ethylene glycol) giant initiator MW==4〇〇〇g/in〇ie), vPE-〇602 聚聚( Ethylene glycol) giant initiator Mw = 6〇〇〇g/m〇le), potassium persulfate, water, gluten-based photoinitiator. The invention is not limited to the use of water-soluble self-priming agent. Traditional oil soluble starter In an alternative embodiment, a water-soluble radical initiator: such as Z, ^, the final characteristics of the particles prepared by deuteration/microemulsion polymerization, the final ί rt using a hydroxy group - or The interface properties of the PEG functional starter taboo may be modified; and thus limited to increasing surface enthalpy, hydrophilicity, resulting in biocompatibility. The surfactant oxygen permeable polymer particles may be stable with or may be Λ: at a temperature of two, "°, possibly with a stable surfactant phase, I J is embedded in a stable surfactant. The particles may be negative 24 201105728 A core/shell structure containing a high Dk (oxygen permeability coefficient) material in the core with a stable surfactant and other stability in the outer shell. Once formed, the microcell may form a total with the hydrogel polymer. 4 shell bonds, may be combined with a hydrogel polymer, or may be physically embedded in a hydrogel polymer. The micelle may have a core/shell structure. Optional to form a suitable composition for cell coating To provide any of the above characteristics. For example, when compatible with a conventional hydrogel reaction mixture, suitable microcell compositions include the yield of the final particles, anionic, cationic zwitterionic or non-polar microcellular surfaces. The portion located on the surface of the microcell particles can be introduced during the emulsification/microemulsification process by using an epoxy resin-reactive covering agent or a surfactant. An anionic, cationic or zwitterionic polymer can be used to form the microcapsule coating as long as it is compatible with the cation, zwitterionic or anionic functional group disclosed herein and the other end is compatible with the oxygen permeable particle. Examples of the moiety at the hydrophobic end include alkoxydecane, polychlorinated decane, vinyl decane, polyfunctional propyl moiety (p〇lyfuncti〇nal allyl moieties), polyglycol-hydrogenate ( Polsilyl-hydrides), aliphatic linkers (usually propyl or butyl), etc. Monomers and oligomers can also be used to form micelle coatings in the present invention. Specific examples include by Wacker Metroark. The alkylbenzene sulfonate and the alkyl ethoxylate prepared by the method disclosed in IN 2003 K000640 of Chemicals Ltd. Other patents comprising the polymerization of the oxime resin ME include U.S. Patent No. 5,612, 215 and U.S. Patent No. 6,316,541. Suitable methods for microcapsule coating include the yield of the final particles, anionic, cationic, zwitterionic or non-polar microcapsule surface. This micro25 201105728 is a part of the cell surface that is emulsified. The towel can be introduced by the oxy-resin _reactive coating or the surfactant. The covering agent is also surface-active and contains at the end-hydrophobic resin _ reactive part (including but not limited to Anthracite, polyoxane, vinyl decane, polyfunctional allyl moiety and polyfluorene-hydride (p〇lsilyl_hydrides, etc.), aliphatic binder (usually propyl or butyl) and The desired polarity or ionic functional group at the other end. The surface chemistry of the micelle can be easily manipulated by selecting an appropriate covering agent or a combination thereof and the like. Generally, the emulsion is formed by a suitable solvent. Mixing the surfactant above the critical cell concentration, preferably at a concentration greater than 10% by weight 'in some embodiments, from about 15 to about 250 / ❶ (by weight), in some embodiments It is between about 15 and about 20% by weight. Both emulsions and microemulsions can be used in the present invention, and depending on which emulsion is disclosed, microemulsions can be formed from the selected particles and the surfactant. The emulsion is heated and oxygen permeable particles are added. Crosslinkers can be added to form crosslinked micelles in some embodiments. In another embodiment, the oxygen permeable particles are encapsulated into a liposome. A suitable composition can be selected to provide any of the above characteristics. For example, if a desired compatibility with a conventional hydrogel reaction mixture is desired, a phospholipid can be used with other liposomes to form a compound. Suitable liposome forming compounds can include, but are not limited to, DSPC (distearoylphosphatidylcholine) 'HSPC (hydrotated soy phosphatidylcholine) and poly(ethylene glycol) combined with cholesterol, fat and phospholipid, combinations and analogs thereof. 26 201105728 Suitable liposome formation methods include conventional methods such as, but not limited to, mixing the desired components, ultrasonic methods, membrane extrusion, and the like. Examples of the encapsulated solid oxygen permeable particles include X-52-7030 available from Shin Etsu, Inc. (Sakamoto) and 9701 Cosmetic Powder sold by Dow Corning 'This is a bismuth-based polysulfide Formed by dimethicone/vinyl dimethicone cross-linking, and cross-linked polymer coated with Shi Xi, prepared cross-linked poly(dimethyloxane) core and poly ( Poly(silsesquioxane) shells with an average particle size distribution of 800 nm 'range from 0.2 to 2000 nm. The oxygen permeable particles can be incorporated into the hydrogel polymer of the present invention in an amount effective to enhance oxygen permeation. As used herein, "effectively enhances oxygen permeation" means an amount effective to increase the oxygen permeability of the polymer by at least about 10%, at least about 25, compared to the oxygen permeability of a hydrogel polymer having no oxygen permeable particles. %, in some embodiments at least 50%, and in other embodiments greater than 100%. In some embodiments, the compositions of the present invention have an oxygen permeability of at least 25 barrers, at least about 40 barrers, and in some embodiments at least about 6 barrer 'in other embodiments at least about 80 barrers' in other embodiments at least About 100 barrer. The amount of oxygen permeable particles to be added to the reaction mixture can be easily determined by the oxygen permeability of the desired composition and the oxygen permeability of the polymer not containing any oxygen permeable particles. This can be easily achieved by preparing a polymer film having a different oxygen permeable particle concentration, measuring the Dk (oxygen permeability coefficient) of the film, and obtaining an oxygen permeable particle at 100% concentration by extrapolation. . In addition, for the hollow nanostructure, the amount of nanostructure in the reaction mixture 27 201105728 is added, which can be used as described in Journal of Biotechnology 77 (2000) 151-156 "Evaluation of oxygen permeability of gas vesicles from cyanobacterium Anabaena flos-aquae The conventional permeation theory is determined by the oxygen permeability of the system. The oxygen permeability of the encapsulated oxygen permeable particles is determined by the properties of both the oxygen permeable particles and the encapsulating material, including but not limited to particle size, The surface area of the encapsulated particles, the surface composition, the hardness of the encapsulating material and the degree of crosslinking of the shell with the core. For example, in one embodiment, the hydrogel polymer is a mercapto acrylate acid (hydroxyethyl methacrylate, HEMA) with about 2% (weight: g: percentage) methacrylic acid (MAA) (oxygen permeability about 20 barrer) copolymer, PDMS particles (oxygen permeability about 600 barrer) as oxygen permeability The oxygen permeable particles may be added in an amount of at least 15% by weight, and in some embodiments, from 2 Å to about 70% by weight. The amount added may be insufficient to exert an undesirable effect on other characteristics of the resulting composition. For example, when the composition is used to prepare an object that must be clean and useful when used, such as a contact lens, the polymer should not be at the desired thickness. Visible turbidity occurs. In these embodiments, the polymer using the method described below has a haze of less than about 15%, in some embodiments less than about 1 〇0/〇, and in some embodiments less than about 5%. In another embodiment, the object is a contact lens and the 5 osmotic particles are predominantly outside the optical zone. This method allows for the filling of particles, including particles that cause turbidity of the final lens, particle concentration, or both. The efficacy of the present invention is such that oxygen permeable particles can be added to the reaction mixture used to prepare conventional hydrogels. Conventional hydrogels are conventional and comprise homopolymers and copolymers of polyHEMA and polyvinyl alcohol. The comonomers include mercaptoacrylic acid, N-vinyl base σ N-vinylpyrrolidone, Ν-vinylacetamide (Ν_νίηγ1 acetamide), N-ethyl fluorenylamine (N-viny) l methyl acetamide), N,N dimercapto acrylamide, acrylic acid, glyceryl monomethacrylate, MPC (2-mercapto propylene oxyethylphosphocholine), mercapto acrylate, acrylic acid乙乙的( hydroxyethyl acrylate ), Ν-(1, Γ-dioxin-3-oxobutyl) acrylamide, polyethylene glycol monomethacrylate, polyethylene glycol, Combination of polyethylene glycol dimethacrylate, 2-ethoxyethyl methacrylate, 2-methacryloxyethyl phosphorylcholine analog. HEMA homopolymers and copolymers include etafilcon, polymacon, vifilcon, bufllcon, cromllcon, genfilcon, hioxifilcon, lenefilcon, methafilcon, ocufilcon, perfilcon, surfilcon, tetrafilcon. Polyvinyl alcohol homopolymers and copolymers can also be used, including atlafllcon and nelfilcon. It is also possible to use methyl methacrylate with a hydrophilic monomer such as N,N-dimercaptopropenylamine or N-vinylpyrrolidone such as lidofilcon. However, oxygen permeable particles may also be used to increase the oxygen permeability of any hydrogel formulation, including butadiene resin hydrogels such as, but not limited to, balafilcon, lotrafilcon, aquafllcon, senofllcon, galyfilcon, narafilcon, comfilcon, oxyfilcon or siloxyfilcon, and the like. Shi Xi Oxy Resin Water Condensation 29 201105728 Glue. The USAN names listed include all variations of the same name. For example, lotrafilcon includes both lotrafilconA and B. The oxygen permeable particles of the present invention can be directly added to the reaction mixture forming the hydrogel polymer' and can also be absorbed or infiltrated by the hydrogel polymer which is subsequently cured. The reaction components are mixed with oxygen permeable particles to form a reaction mixture. The reaction mixture can optionally include a diluent to aid in the process or to improve compatibility. Suitable diluents are well known in the art and can be determined by the polymer selected. For example, suitable diluents for conventional hydrogels include organic solvents, water, or mixtures thereof. In one embodiment, when a conventional hydrogel is selected as the polymer, organic solvents such as alcohols, diols, triols, polyols, and poly(ethylene) can be used. Polyalkylene glycols. Examples include, but are not limited to, glycerol, glycols such as ethylene glycol or diethylene glycol; boric acid esters of polyols as disclosed in U.S. Patent Nos. 4,680,336, 4,889,664 and 5,039,459; Polyvinylpyrrolidone; ethoxylated alkyl glucoside; ethoxy bis, A; polyethylene glycol; propoxy and ethoxylated alkyl glucoside or acid a mixture of dihydric alcohol; a single phase mixture of a propoxy or ethoxylated alkyl glycoside with a C2_12 dihydric alcohol; ε-caprolactone (ε-caprolactone) and C2_6 Alkanediols or triad adducts; ethoxylated C3-6 alkanols are described in U.S. Patent Nos. 5,457,140; 5,490,059, 5,490,960; 5,498,379; 5,594,043; 5,684,058; 30 201105728 a mixture of 5,736,409,5,910,519. The diluent may also be selected from the group consisting of a defined viscosity and a Hanson cohesion parameter as described in U.S. Patent No. 4,680,336. It may also include one or more crosslinkers, also referred to as crosslinkers' in the reaction mixture, such as ethylene glycol methacrylate ("EGDMA"), trihydrocarbyl propane trimethacrylate ( "TMPTMA"), glycerol trimethacrylate, polyethylene glycol dimethacrylate (wherein the polyethylene glycol has one molecule 1 preferably up to, for example, about 5000), and other polyacrylic acid S and poly(methacrylic acid) g, such as the above-mentioned blocked polyoxyethylene polyol containing two or more decyl acrylate end portions. The crosslinking agent is used in a normal amount, for example, in the reaction mixture, up to 2% by weight of the reaction component. Alternatively, if any monomer component is used as a crosslinking agent, an additional crosslinking agent may be optionally added to the reaction mixture. An example of a hydrophilic monomer which can be used as a crosslinking agent and which does not require the addition of an additional crosslinking agent to the reaction mixture in use includes a polyol polyoxyethylene containing two or more terminal methyl acrylate moieties. The reaction mixture may contain additional ingredients such as, but not limited to, TJV absorbent materials, medical agents, antibacterial compounds, reactive dyes, colorants, copolymerizable or non-polymerizable dyes, release agents, or combinations thereof. A polymerization initiator may also be included in the reactant. The polymerization initiator includes lauryl peroxide, benzoyl peroxide, isopropyl carbonate (iS0pr0pyi percarb〇nate) or azo which generates radicals at a moderately high temperature. a compound such as azobisisobutyronitrile, or 31 201105728 photoinitiator system such as aromatic alpha-hydroxy ketones, alkoxyoxybenzone, acetophenone, Systems such as acylphosphine oxides, bisacylphosphine oxides and mono-diketone tertiary amines or mixtures thereof. Examples of photoinitiators are 1-hydroxyphenyl ketone, 2-hydroxy-2-indolyl-1-phenylacetone-1-1, bis(2,6-dioxabenzophenyl)-2,4 -4-tridecylpentylphosphine oxide (DMBAPO), bis(2,4,6-trioxalylphthalenyl)-phenylphosphine oxide (Irgacure 819), 2,4,6-triphenylbenzene Biphenylphosphine oxide, 2,4,6-trioxabenzoquinonebiphenylphosphine oxide, benzoin methyl ester, and camphorquinone and ethyl 4-(N,N A combination of -diammonium benzoate commercially available visible light starting systems including Irgacure 819, Irgacure 1700, Irgacure 1800, Irgacure 819, Irgacure 1850 (both available from Ciba Specialty Chemicals) and Lucirin TPO starter (available From BASF). Commercially available UV light starters include Darocur 1173 and Darocur 2959 (Ciba Specialty Chemicals). These and other possible starters are used in Volume III, Photoinitiators for Free Radical Cationic & Anionic Photopolymerization, 2nd Edition by JV Crivello K. Dietliker; edited by G. Bradley; John Wiley and Sons; New York; 1998 It is disclosed and incorporated herein by reference. An effective amount of an initiator is used in the reaction mixture to initiate photopolymerization of the reaction mixture, for example, from about 0.1 to about 2 (by weight) per 100 parts of the reaction monomer. The polymerization of the reaction mixture can be initiated by heating, visible light, ultraviolet light or other means depending on the use of the polymerization initiator 32 201105728. Alternatively, the initial action can be carried out without a photoinitiator, such as an electron beam. However, in an embodiment, when a photoinitiator is used, preferably the initiator comprises bis-decylphosphine oxide (1^&〇71卩11〇5卩出 116(^(^), for example, double (2,4,6-trimethoxybenzoate)-phenylphosphine oxide (Irgacure 819®) or a 1-hydroxycyclohexyl phenyl ketone with bis(2,6-dioxabenzoguanidinyl)_2 a combination of 4_4_trimethylpentylphosphine oxide (DMBAPO), and a preferred initial polymerization method is to utilize visible light. A preferred embodiment is bis(2,4,6-trioxanoxy). Phenylphosphine oxide (Irgacure 819®). For example, biomedical devices or objects in some ophthalmic device embodiments can be mixed with a polymerization initiator by mixing the reaction components with the diluent (if used). Hardening under appropriate conditions to prepare a product which can be formed into a suitable shape by forming slats or cutting and the like. Alternatively, the reaction mixture can be placed in a model having the desired shape and then cured into The desired object. For example 'When the reaction mixture is used to form a contact lens, any known in contact lens system Processes for the production of a solidified reaction mixture, including both spin casting and static casting, may be used. U.S. Patent Nos. 3,408,429 and 3,660,545, the disclosure of which are incorporated herein by reference. A static casting process. In an embodiment, the method of making a contact lens comprises by directly molding a reaction mixture to produce a polymer of the invention 'which is economical and capable of precisely controlling the final shape of the hydrated lens. For this method, the reaction mixture It is placed in a mold having the shape of the final desired lens, and the 'reaction mixture is controlled by the reaction conditions to polymerize the reaction components to produce a polymer/diluent mixture having the final desired lens shape. 33 201105728 Composition of the Invention The balanced nature of the material makes it particularly useful. In one embodiment, the composition is used to make lenses, particularly contact lenses, which include clarity, water content, oxygen permeability and junction angle. In one embodiment, the biomedical device is a contact lens having a water content greater than about 20%. In some embodiments, greater than about 30%. Clarity herein means that there is little visible turbidity. A clean lens has a haze value of less than about 15 Å/0 compared to a CSI lens, preferably. Less than about 100°/〇. Using a conventional hydrogel as a polymer has the added benefit of producing an object such as a contact lens' comprising a junction angle of less than about 100 and a modulus of less than about 100 psi. The contact lens formed from the composition of the present invention has an average junction angle (advance) of less than about 80°, less than about 75, and in some embodiments less than about 70. In some embodiments, the invention The object has the above oxygen permeability, water content and junction angle combination. All combinations of the above ranges are considered to be within the scope of the invention. Haze measurement The clarity here means that there is almost no visible turbidity. The sharpness can be measured by % haze, which is calculated from the transmission value. Transmission can be measured by ASTM D1003 using an integrating sphere oximeter. Performing this measurement is to obtain 4 different continuous readings, and measure the photocell output Τ! = the sample and the optical trap at the exit position, the reflectance standard at the position is 2 = the sample at the position and the reflectance standard, Leaving the position of the light trap D - 3 in the position of the light trap, leaving the position of the sample and reflectance standard 34 201105728 Τ '4 = the reflectance of the sample at the position and the light brown 'away position'; _ per reading The number represents the incident light, the sample transmission ~ light, the light scattering caused by the instrument, the light scattering caused by the instrument and the sample, the total transmittance (Tt and the diffuse transmittance into the transmittance) Td is calculated as follows ^t= T2/Tl
Td= [T4 _ Kivm/T! 霧度(haze)百分比計算方法如下 霧度百分比=Td/Ttxl00 含水量 含水量隱形眼鏡計算方法如下:三套三鏡片被置於 填充溶液中24小時。以濕布塗抹每一鏡片並种重。在 6〇 C壓力為G.4英寸采柱條件下使鏡片乾燥4小時 量乾燥鏡片的重量。含水量計算方法如下: %含水量=U重〜乾重)xl00 濕重Td= [T4 _ Kivm/T! The haze percentage is calculated as follows. Haze percentage = Td/Ttxl00 Water content The water content contact lens is calculated as follows: Three sets of three lenses are placed in the filling solution for 24 hours. Apply each lens with a damp cloth and plant the weight. The lens was dried for 4 hours under a 6 〇 C pressure of G. 4 inch column to dry the lens. The water content calculation method is as follows: % water content = U weight ~ dry weight) xl00 wet weight
計算並報告樣品含水之平均值和標钱L 201105728 使用配有一被降低至初始測量高度之測力傳感器 的運動式拉伸試驗機,以具一固定率之十字頭計算模 數。適合的測量機器包括Instron model 1122。將取自 _1.00鏡片’具有0.522英寸長、0.276英寸「耳朵」寬 與0.213英寸「脖子」寬之狗骨形樣品置入夾中,並以 2 in/min恆定速率拉長,直到破裂為止。測量樣品初始 測量長度(Lo)與樣品斷裂時長度(Lf)。測量每種組成物 之12個試樣並報告其平均值。伸長百分比為=[(Lf _ Lo)/Lo] χ 100。在應力 / 應變曲線(stress/strain curve)之起 始線性部份測量拉伸模數。 前進接觸角(Advancing Contact Angle) 使用如下具-1.00屈光度的鏡片測量前進接觸角。 在鏡片中心地帶裁剪大約5mm寬之條狀物,並在填充 溶液中使之平衡’以製備每套的4個樣品。當樣品被浸 入或移出緩衝液時,於23°C使用Wilhelmy微平衡測量 介於鏡片表面與硼酸鹽緩衝液間之潤濕力。使用下面的 等式 F = 2 gpcosq 或 q = cos-1(F/2 gp) 其中F為潤濕力,g為探針液體之表面張力,p為在樣 品半月板之週長,q為接觸角。該前進接觸角係得自當 樣品被浸入填充溶液中時,溼潤之實驗部份。每個樣品 被循環4次,平均結果以得到鏡片之接觸角。 36 201105728 透氧性(Dk,透氧係數)Calculate and report the average value of the sample moisture and the standard L 201105728 Calculate the modulus with a fixed crosshead using a kinematic tensile tester equipped with a load cell that is lowered to the initial measured height. Suitable measuring machines include the Instron model 1122. A dog bone sample taken from a _1.00 lens having a 0.522 inch length, a 0.276 inch "ear" width and a 0.213 inch "neck" width was placed in the clip and elongated at a constant rate of 2 in/min until it broke. The initial measurement length (Lo) of the sample and the length (Lf) of the sample when it is broken are measured. Twelve samples of each composition were measured and the average value was reported. The percentage of elongation is =[(Lf _ Lo)/Lo] χ 100. The tensile modulus is measured linearly at the beginning of the stress/strain curve. Advancing Contact Angle The advancing contact angle was measured using a lens with a -1.00 diopter as follows. A strip of approximately 5 mm width was cut at the center of the lens and equilibrated in the filling solution to prepare 4 samples per set. When the sample was immersed or removed from the buffer, the wetting force between the lens surface and the borate buffer was measured using a Wilhelmy microbalance at 23 °C. Use the following equation F = 2 gpcosq or q = cos-1(F/2 gp) where F is the wetting force, g is the surface tension of the probe liquid, p is the circumference of the sample meniscus, and q is the contact angle. The advancing contact angle is derived from the experimental portion of the wetting when the sample is immersed in the filling solution. Each sample was cycled 4 times and the results were averaged to obtain the contact angle of the lens. 36 201105728 Oxygen permeability (Dk, oxygen permeability coefficient)
Dk (透氧係數)計算方法如下。將鏡片置於一由4 mm直徑黃金陰極和銀環陽極組成之極譜氧氣感應器, 接著以一支撐網蓋在上端。使鏡片曝露於一含2.1%之 增溼氧氣(〇2)之大氣中。使用感應器測量擴散通過鏡片 之氧氣。一鏡片疊放於另一鏡片之上,以增加厚度或使 用一較厚鏡片。測量4個具有顯著不同厚度值之樣品之 L/Dk ’並針對厚度繪製圖表。回歸斜率之倒數為樣品之 Dk (透氧係數)。使用此法測量市售隱形眼鏡作為參考 數值。購自 Bausch &amp ; Lomb 之 Balafilcon A 鏡片 (-1.00)經測量’為大約 79 barrer。Etafilcon 鏡片為 20 到 25 barrer。(1 barrer = ΙΟ·1。(cm3 of gas X cm2)/(cm3 of polymer x sec x cm Hg))。 以中子活化之矽含量 藉中子活化以測量矽含量。輻照所有樣品、標準品 與品質控制品15秒’使其衰變120秒並計數300秒。The Dk (oxygen permeability coefficient) is calculated as follows. The lens was placed in a polarographic oxygen sensor consisting of a 4 mm diameter gold cathode and a silver ring anode, followed by a support mesh cover at the upper end. The lens was exposed to an atmosphere containing 2.1% humidified oxygen (〇2). The sensor is used to measure the oxygen diffusing through the lens. One lens is stacked on top of the other to increase the thickness or to use a thicker lens. The L/Dk' of 4 samples with significantly different thickness values was measured and plotted against the thickness. The reciprocal of the regression slope is the Dk (oxygen permeability coefficient) of the sample. Commercially available contact lenses were measured using this method as a reference value. The Balafilcon A lens (-1.00) purchased from Bausch & Lomb was measured to be approximately 79 barrer. Etafilcon lenses are 20 to 25 barrer. (1 barrer = ΙΟ·1. (cm3 of gas X cm2) / (cm3 of polymer x sec x cm Hg)). The content of strontium activated by neutrons was activated by neutrons to measure the strontium content. All samples, standards and quality control products were irradiated for 15 seconds to decay for 120 seconds and count for 300 seconds.
測量 28A1 ( tl/2 = 2.24 minutes)衰變發射之 1779 keV 伽瑪射線以決定矽濃度。28A1係經由28Si之(n,P)反應 而產生。在此樣品批次中一並分析三個幾何上相當的矽 標準品。標準品係由在紙漿内加石夕製備,石夕為來自1 〇 ±〇.〇511^/11^認證溶液標準品(高純度標準品)。以自空 白高密度聚乙烯輻照樣品小瓶之28A1訊號結果,對結 果進行空白校正(blank corrected)。NIST SRM 1066a 八 苯基環四矽氧烧(Octaphenylcyclotetrasiloxane)與樣品 一併分析’作為該分析之品質控制查核。SRM中之認 37 201105728 證矽濃度為14.14±0.07%Si(重量百分比)。分析三個10 mg SRM等分試樣之平均值為14.63 ± 0.70%Si (重量百 分比)。 表面粗链度 使用 Digital Instruments 的 Nanoscope 於掃描尺寸 20 μπι及掃描速度7.181Hz下以原子力顯微鏡(AFM)測 量表面粗糙度。每個樣品經過256次掃描,使用之數據 規模為1000 μιη。使用之X與Y之位置分別為-19783.4 與一42151.3 μπι。 扣描電子顯被鏡鏡片(Scanning Electron Microscopy oi Lenses ) MM表面#尨.·自所有樣品之凹面及凸面在三位 置(左、右與中)捕捉表面影像。使用FEI Quants Environments SEM,以25 kv加速電壓(咖咖加㈣ voltage)與5nA掃描束電流,在8£和BSE成像模 於所有位置,以5000倍放大方式呈現影像。、 /册#/續# ·.使用與表面影像相同之掃摇束條 件捕捉輪廓(戴面)影像H纖片之整體截面無法名 5千倍放大下成相’必_造鑲纽合影像 鏡片之整體截面。在5千倍放大下自鏡片凹面(上面= 3步:方式捕捉影像,以-畫面接-晝面方式通過tl :別影像終成相。接著使用 201105728 下述實施例描述但不限制本發明。其只是為了表示 一種實現本發明之方法。在隱形眼鏡領域中知識淵博者 以及其他專家可由其他方法實現本發明。然而,那些方 法仍被視為在本發明之範圍内。 一些使用於實施例中之材料定義如下: BAGE ·· 甘油棚酸酯(Boric acid glycerol ester ) DBS : 十二院基苯績酸(^-Dodecylbenzenesulfonic acid) 購自 Sigma Aldrich HEMA : 曱基丙烯酸2-羥乙酯(99%純度) MAA : 甲基丙烯酸(99%純度) OHmPDMS : 單-(3-甲基丙烯醯氧基-2-羥基丙氧基)丙基终止,單 •丁基終止聚二曱基矽氧烷(612分子量),DSM Polymer Technology Group SiMAA DM : 甲基-雙(三甲基矽氧基)-矽烷-丙基甘油二甲基丙烯 酸醋 ’ DSM Polymer Technology Group,根據 US US2005/0255231中之製備實施例所製成。 Si微粒子: 交聯之聚(二曱基矽氧烷)核心與一聚(倍半矽氧烷) 殼(Shin Etsu,Inc.(曰本)χ_52-7030 在 0.2-2000 nm 的範圍中’其平均尺寸分佈為800 nm,由製造商通 過SEM所測定)。 實施例1-11 在BAGE稀釋液中,單體混合物包含94.90 %HEMA ' 1.94 %MAA ' 0.95 %Norbloc ' 1.33 %Irgacure 1700、0.77 %EGDMA、0.09 %TMPTMA 與 0.02 %Blue HEMA (w/w) ( 52:48單體··稀釋液),被稱為反應單體 混合物(RMM) ’其被製備與使用於實施例。 在實施例1-10之製備中,為於琥珀色閃爍小瓶中 加入所要矽微粒質量,接著加入etafilcon RMM(10 g)。 在真空中vac⑽)脫氣(i〇分鐘)之前,蓋住並滾動 該閃爍小瓶2小時,用其製備鏡片。每個配方所使用之 39 201105728 由吸量管將每 早體劑魏入混合於個別前弧,以製備鏡片。 衣備表1中之實施例1卜為沒有BAGE存在下, 使一半之所要微粒懸浮於2.4 g乙二醇,另外—半則縣 沣於5.2—g單體混合物製備。進—步以bage稀釋該混 合物並藉尚剪力機械攪拌使之均質化。在真空中(h vacwo)使所得單體混合脫氣10分鐘。實施例11具高黏 度需要經由一加壓注射器配入前弧。 使用Zeonor(Zeon Chemical)前/後弧,製備屈光 度-1.0之鏡片。在一氮氣(N2-)沖洗手套箱中於5〇°c, 利用一 TL03燈(400 nm),在亮度為3·4 mW/cm2下進行 硬化10分鐘。在儲存至裝有硼酸鹽缓衝液的個別捲曲 (crimp)密封玻璃小瓶中前,於90°C下,將鏡片去模與 釋放至一去離子水浴。分析前在121°C下在一高壓鍋中 消毒所有鏡片30分鐘。 表1 實驗編號 SiMP 量(g) 稀釋液 量(g) 反應單體 (g) 鏡片中之 %Si MP.heo 鏡片中之 %SlTheo 1 0.000 4.8 5.2 0.0 0.0 2 0.125 4.8 5.2 2.4 0.9 3 0.250 4.8 5.2 4.6 1.7 4 0.500 4.8 5.2 8.8 3.3 5 0.750 4.8 5.2 12.6 4.8 6 1.000 4.8 5.2 16.1 6.1 7 1.250 4.8 5.2 19.4 7.4 8 1.500 4.8 5.2 22.4 8.5 9 1.750 4.8 5.2 25.2 9.6 10 2.800 4.8 5.2 35.0 13.3 11 15.600 0.0 5.2 75.0 28.5 40 201105728 測量每副鏡片之Dk(透氧係數)、含水量與Si含量。 一每個混合物之結果列於下表2。由數據可顯而^易里 當矽微粒自0%增加至64.3%,所得Dk(透氧係數)自 增加至76單位。圖1係為Dk(透氧係數)對最終鏡片之 矽微粒濃度之圖表。圖1顯示一正向且非線性多項式趨 勢。 當以Dk(透氧係數)對鏡片中元素Si量繪製圖表(如 圖2所示),可得到一相似非線性多項式。為便於比較, 於圖2中插入兩個分別的數據點,以代表當前SiH基 準、Oasys (%Si = 15.0,Dk = 104)與 Advance (%Si = 13.0 ’ Dk = 60)。藉由將於實施例M1所得之數據與基 準比較,加入矽微粒確實可增加終聚合物之Dk (透氧 係數)。 表2 實驗編號 鏡片之%Si NP 鏡片 %SiThen 鏡片之 %Si〇bS %含水量 Dk (透氧係數) 單位 1 0.0 0.0 0 60.5 20 一_ 2 2.35 0.9 1 60.0 20 3 ------ 4.59 Γ 1.7 h ----- 2 58.7 ND 4 8.77 3.3 3 58.5 22 5 12.61 4.8 5 58.2 23 6 16.13 '~6Λ ~~~~~ 6 57.6 23 7 ---— 19.38 1 7.4 7 57.5 25 8 ------ 22.39 8.5 9 58.5 29 9 25.18 9.6~ 9 56.9 31 10 35.00 一 13.3 -------- 13 57.3 34 11 64.3 28.5 —------- 24 55.7 76 201105728 圖3顯示實施例ι〇之掃描型電子顯微鏡(sem) 顯微照片。由掃描型電子顯微鏡成相之所有位置皆顯示 含有許多顆粒鎮之非常粗縫的表面。一般來說該樣品各 處(在鏡片之兩邊)之形貌與顆粒簇具均一性。由於顆 粒形成簇’個別的顆粒大小無法被測量。經由觀察掃描 型電子顯微鏡影像,可預估該顆粒小大介於約6〇〇到約 1000 nm。 鏡片之掃描型電子顯微鏡橫截面看起來幾乎與表 面影像同質’該表面影像包括由顆粒簇造成粗縫形貌。 實施例12-15 :自OHmPDMS與SiMAA DM之自由基 微乳化聚合作用(Free Radical Micro-Emulsion Polymerization )製備矽氧烷奈米顆粒(Sil〇xane Nano-Particles) 以如同收到時狀態般,使用購自Wako SpecialtyThe 1779 keV gamma ray of the 28A1 ( tl/2 = 2.24 minutes) decay is measured to determine the erbium concentration. 28A1 is produced by a (n, P) reaction of 28Si. Three geometrically equivalent 矽 standards were analyzed in this sample batch. The standard strain was prepared by adding Shishi to the pulp, and Shi Xi was from 1 〇 ±〇.〇511^/11^ certified solution standard (high purity standard). The result of the 28A1 signal from the vial of the sample was irradiated from the white high-density polyethylene, and the result was blank corrected. NIST SRM 1066a Octaphenylcyclotetrasiloxane was analyzed along with the sample as a quality control check for this analysis. The recognition in SRM 37 201105728 is about 14.14 ± 0.07% Si (% by weight). The average of three 10 mg SRM aliquots was analyzed to be 14.63 ± 0.70% Si (% by weight). Surface Thickness The surface roughness was measured by atomic force microscopy (AFM) using a Nano Instruments Nanoscope at a scan size of 20 μm and a scan speed of 7.181 Hz. Each sample was scanned 256 times using a data size of 1000 μηη. The positions of X and Y used are -19783.4 and a 42151.3 μπι, respectively. Scanning Electron Microscopy oi Lenses MM Surface #尨.· Captures surface images in three positions (left, right, and center) from the concave and convex surfaces of all samples. Using the FEI Quants Environments SEM, the 25 kV accelerating voltage (Cigaplus voltage) and the 5 nA scanning beam current were used to image at 5,000 magnifications at 8 £ and BSE imaging. / /册#/续# ·. Use the same sweeping beam conditions as the surface image to capture the contour (wearing the face). The overall section of the H-fiber film cannot be named as 5 thousand times. The overall cross section. From the concave surface of the lens at 5 thousand magnifications (above = 3 steps: way to capture the image, in the - picture-to-face manner through tl: the final image phase. Then use 201105728 to describe but not limit the invention. It is merely intended to represent a method of practicing the invention. In the field of contact lenses, the knowledgeable and other experts may implement the invention by other methods. However, those methods are still considered to be within the scope of the invention. The material is defined as follows: BAGE · · Boric acid glycerol ester DBS : ^-Dodecylbenzenesulfonic acid purchased from Sigma Aldrich HEMA : 2-hydroxyethyl methacrylate (99% Purity) MAA : Methacrylic acid (99% purity) OHmPDMS : Mono-(3-methylpropenyloxy-2-hydroxypropoxy)propyl terminated, mono-butyl terminated polydidecyloxyne ( 612 Molecular Weight), DSM Polymer Technology Group SiMAA DM : Methyl-bis(trimethyldecyloxy)-decane-propyl glycerol dimethacrylate vinegar DSM Polymer Technology Group, according to US US2005/0255 Prepared in the preparation examples of 231. Si microparticles: crosslinked poly(dimercaptononane) core and poly(sesquioxane) shell (Shin Etsu, Inc.) 5252-7030 In the range of 0.2-2000 nm 'the average size distribution is 800 nm, as determined by the manufacturer by SEM.) Examples 1-11 In the BAGE dilution, the monomer mixture contained 94.90 % HEMA ' 1.94 % MAA ' 0.95 %Norbloc ' 1.33 % Irgacure 1700, 0.77 % EGDMA, 0.09 % TMPTMA and 0.02 % Blue HEMA (w/w) (52:48 monomer · dilution), known as Reactive Monomer Mixture (RMM) Prepared and used in the examples. In the preparation of Examples 1-10, the mass of the desired mash was added to the amber scintillation vial, followed by the addition of etafilcon RMM (10 g). vac (10) in a vacuum (i 〇 minutes) Prior to this, the scintillation vial was capped and rolled for 2 hours to prepare a lens. 39 201105728 For each formulation, each early agent is mixed into an individual front arc by a pipette to prepare a lens. In the first example, in the absence of BAGE, half of the desired microparticles were suspended in 2.4 g of ethylene glycol, and the other was prepared in a 5.2-g monomer mixture. Further, the mixture was diluted with bage and homogenized by mechanical stirring with shear. The resulting monomers were degassed for 10 minutes in a vacuum (h vacwo). The high viscosity of Example 11 requires the provision of a front arc via a pressurized syringe. A diopter-1.0 lens was prepared using a Zeonor (Zeon Chemical) front/rear arc. It was hardened in a nitrogen (N2-) rinse glove box at 5 ° C for 10 minutes using a TL03 lamp (400 nm) at a brightness of 3·4 mW/cm 2 . The lenses were demolded and released to a deionized water bath at 90 ° C prior to storage in individual crimped sealed glass vials containing borate buffer. All lenses were sterilized in a pressure cooker at 121 ° C for 30 minutes before analysis. Table 1 Experimental No. SiMP Amount (g) Amount of diluent (g) Reactive monomer (g) %Si in the lens MP.heo %SlTheo in the lens 1 0.000 4.8 5.2 0.0 0.0 2 0.125 4.8 5.2 2.4 0.9 3 0.250 4.8 5.2 4.6 1.7 4 0.500 4.8 5.2 8.8 3.3 5 0.750 4.8 5.2 12.6 4.8 6 1.000 4.8 5.2 16.1 6.1 7 1.250 4.8 5.2 19.4 7.4 8 1.500 4.8 5.2 22.4 8.5 9 1.750 4.8 5.2 25.2 9.6 10 2.800 4.8 5.2 35.0 13.3 11 15.600 0.0 5.2 75.0 28.5 40 201105728 Measure the Dk (oxygen permeability coefficient), water content and Si content of each pair of lenses. The results for each of the mixtures are listed in Table 2 below. From the data, it can be seen that when the particles are increased from 0% to 64.3%, the obtained Dk (oxygen permeability coefficient) is increased to 76 units. Figure 1 is a graph of Dk (oxygen permeability coefficient) versus ruthenium particle concentration for the final lens. Figure 1 shows a positive and nonlinear polynomial trend. When a graph of the amount of elemental Si in the lens is plotted as Dk (oxygen permeability coefficient) (as shown in Figure 2), a similar nonlinear polynomial is obtained. For comparison purposes, two separate data points are inserted in Figure 2 to represent the current SiH reference, Oasys (%Si = 15.0, Dk = 104) and Advance (%Si = 13.0 ' Dk = 60). By comparing the data obtained in Example M1 with the reference, the addition of ruthenium particles does increase the Dk (oxygen permeability) of the final polymer. Table 2 Experimental No. Lens of the lens Si NP Lens %SiThen %Si〇bS of the lens % Water content Dk (oxygen permeability coefficient) Unit 1 0.0 0.0 0 60.5 20 A _ 2 2.35 0.9 1 60.0 20 3 ------ 4.59 1.7 1.7 h ----- 2 58.7 ND 4 8.77 3.3 3 58.5 22 5 12.61 4.8 5 58.2 23 6 16.13 '~6Λ ~~~~~ 6 57.6 23 7 ---- 19.38 1 7.4 7 57.5 25 8 -- ---- 22.39 8.5 9 58.5 29 9 25.18 9.6~ 9 56.9 31 10 35.00 a 13.3 -------- 13 57.3 34 11 64.3 28.5 —------- 24 55.7 76 201105728 Figure 3 shows the implementation A scanning electron microscope (Sem) photomicrograph of 〇. All of the positions formed by the scanning electron microscope showed a very coarse surface containing many particles. Generally, the morphology of the sample (on both sides of the lens) is uniform with the particle clusters. Individual particle sizes cannot be measured due to particle formation clusters. By observing the scanning electron microscope image, it is estimated that the particle size is between about 6 〇〇 and about 1000 nm. The cross-section of the scanning electron microscope of the lens appears to be almost homogenous to the surface image. The surface image includes a rough seam morphology caused by clusters of particles. Example 12-15: Preparation of Sil 〇 xane Nano-Particles from Free Radical Micro-Emulsion Polymerization of OHmPDMS and SiMAA DM was used as if it were received Available from Wako Specialty
Chemical Company 之水溶性起始劑 VA-044。 具有表3所列組成物之每個粒子分散體如下述製 備。加入水與DBS至配有機械授拌和熱探針之1 l的3 口夾套反應燒瓶。水與DBS加熱至44°C,並於一氮封 裝置(Nitrogen Blanket)下攪拌直到透明的微乳液形 成。在300 rpm氮封下攪拌30分鐘後,以注射器加入 一 VA-044水溶液(1 mL DI水中200 mg)混合。一同 混合OHmPDMS與SiMAADM兩者並將所得混合物在 300 rpm攪拌下滴狀加入微乳液。在所有矽混合物都加 入後(約3-4小時),移除加料漏斗並以一通風的橡膠 隔膜密封燒瓶。在44°C下氮氣中維持本反應過夜。隔 42 201105728 天早上,於微乳液中加入額外的於1 mL去離子水中200 mg之VA-044。使該微乳液再反應4小時。 經由Malvern-ZetaSizer Nano-S測量器之動態光散 射(DLS)測量表3所列每個散佈之特點。在每個反應 完成後,移除一個試樣並將其稀釋10倍。由DLS分析 被稀釋之散佈以得到Z-平均粒徑分佈。措施也對每個散 佈透析後進行測量。使用測量器軟體中包含之 CUMULANTS分析功能處理得自DLS之數據。所有產 生數據皆與CUMULANTS曲線相當吻合。每個所得 Silicone ME之相應PDI寬度與%?〇1質與其流體力學上 直徑列於下表4。 表3 實驗編號 OHmPDMS (g) SiMAA DM (g) H20 (g) dbs^ (g) VA-044 (mg) 12 24 96 350 80~~ 400 13 48 72 350 80 400 400 14 72 48 350 80 15 96 广 24 350 80 400 實驗編號 7 Λ ^ r /v / . . PDI 寬度(nm) %PDI 12 46 7 rTPrT^--uH ynm; 16.2 34.7 13 34 8 ΠΊ 〇、 ------— 10.3 29.6 14 44 9 (C\ ---— 15.7 35.5 15 65.1 (0.2) ~~-- 35.5 54.6 " °玄刀政可在水中維持穩定至少兩個月。輕微的攪動 即可使任何下沉物輕易地被再散佈。 43 201105728 在水中具有50:50HO-mPDMS與SiMAA DM之分 散物係由上述方法製成。該分散物使用一 Spectrap〇re 之3500 MWCO再生纖維素透析膜以去離子水進行透 析。所得之該分散物可在水中維持穩定超過兩個月。 實例12-15之頻率直方圖附於此處。得自實例12_15 之數據相案與CUMULANTS fit的使用高度相關,這顯 示粒子大小之Gaussian分佈’並表示出分散物中之聚集 為少量或不存在。此結果圖示於圖4至7之直方圖。 【圖式簡單說明】 圖1係聚合物中Dk(透氧係數)對矽微粒之濃度作 圖。 圖2係Dk(透氧係數)對矽含量濃度作圖。 圖 3 係一含有 800 nm Shin Etsu POSS/PDMS 微粒 以etafilcon為基底之鏡片的SEM顯微照片。 圖4係SiME-OHmPDMS 20之顆粒尺寸體積分佈 直方圖。 圖5係SiME-OHmPDMS 40之顆粒尺寸體積分佈 直方圖。 圖6係SiME-OHmPDMS 60之顆粒尺寸體積分佈 直方圖。 圖7係SiME_OHmPDMS 80之顆粒尺寸體積分佈 直方圖。Water Company's water-soluble starter VA-044. Each of the particle dispersions having the compositions listed in Table 3 was prepared as follows. Water and DBS were added to a 3-neck jacketed reaction flask equipped with a mechanical stirrer and a hot probe. The water and DBS were heated to 44 ° C and stirred under a nitrogen sealer (Nitrogen Blanket) until a clear microemulsion was formed. After stirring for 30 minutes under a nitrogen seal at 300 rpm, a solution of VA-044 (200 mg in 1 mL DI water) was added by syringe. Both OHmPDMS and SiMAADM were mixed together and the resulting mixture was added dropwise to the microemulsion while stirring at 300 rpm. After all the mash mixtures had been added (about 3-4 hours), the addition funnel was removed and the flask was sealed with a vented rubber septum. The reaction was maintained overnight at 44 ° C under nitrogen. On the morning of 201105728, add an additional 200 mg of VA-044 in 1 mL of deionized water to the microemulsion. The microemulsion was allowed to react for another 4 hours. The characteristics of each dispersion listed in Table 3 were measured by Dynamic Light Scattering (DLS) of a Malvern-ZetaSizer Nano-S meter. After each reaction was completed, one sample was removed and diluted 10 times. The diluted dispersion was analyzed by DLS to obtain a Z-average particle size distribution. The measures were also measured after each disseminated dialysis. The data from the DLS is processed using the CUMULANTS analysis function included in the meter software. All generated data are quite consistent with the CUMULANTS curve. The corresponding PDI width and %?〇1 of each resulting Silicone ME and its hydrodynamic upper diameter are listed in Table 4 below. Table 3 Experimental No. OHmPDMS (g) SiMAA DM (g) H20 (g) dbs^ (g) VA-044 (mg) 12 24 96 350 80~~ 400 13 48 72 350 80 400 400 14 72 48 350 80 15 96 Wide 24 350 80 400 Experiment No. 7 Λ ^ r /v / . . PDI Width (nm) %PDI 12 46 7 rTPrT^--uH ynm; 16.2 34.7 13 34 8 ΠΊ 〇, ------— 10.3 29.6 14 44 9 (C\ ---— 15.7 35.5 15 65.1 (0.2) ~~-- 35.5 54.6 " °Xuandaozheng can be kept stable in water for at least two months. Slight agitation can make any sinking object easy The ground is re-dispersed. 43 201105728 A dispersion of 50:50 HO-mPDMS and SiMAA DM in water was prepared by the above method. The dispersion was deionized with a 3500 MWCO regenerated cellulose dialysis membrane of Spectrap®. The resulting dispersion can be stable in water for more than two months. The frequency histograms for Examples 12-15 are attached here. The data from Example 12-15 is highly correlated with the use of CUMULANTS fit, which shows particle size The Gaussian distribution 'and indicates that the aggregation in the dispersion is small or absent. This result is shown in the histograms of Figures 4 to 7. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a plot of Dk (oxygen permeability coefficient) versus concentration of ruthenium particles in a polymer. Figure 2 is a plot of Dk (oxygen permeability coefficient) versus strontium content concentration. Figure 3 is a graph containing 800 nm Shin SEM micrograph of Etsu POSS/PDMS microparticles based on etafilcon. Figure 4 is a histogram of particle size volume distribution of SiME-OHmPDMS 20. Figure 5 is a histogram of particle size volume distribution of SiME-OHmPDMS 40. The particle size volume distribution histogram of SiME-OHmPDMS 60. Figure 7 is a histogram of the particle size volume distribution of SiME_OHmPDMS 80.
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16493109P | 2009-03-31 | 2009-03-31 | |
US25227909P | 2009-10-16 | 2009-10-16 | |
US12/721,081 US20100249273A1 (en) | 2009-03-31 | 2010-03-10 | Polymeric articles comprising oxygen permeability enhancing particles |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201105728A true TW201105728A (en) | 2011-02-16 |
Family
ID=42785036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099109570A TW201105728A (en) | 2009-03-31 | 2010-03-30 | Polymeric articles comprising oxygen permeability enhancing particles |
Country Status (13)
Country | Link |
---|---|
US (3) | US20100249273A1 (en) |
EP (1) | EP2414443A1 (en) |
JP (1) | JP2012522111A (en) |
KR (1) | KR20120003474A (en) |
CN (1) | CN102378783B (en) |
AR (1) | AR076022A1 (en) |
AU (1) | AU2010235011A1 (en) |
BR (1) | BRPI1014058A2 (en) |
CA (1) | CA2753226A1 (en) |
RU (1) | RU2011143748A (en) |
SG (1) | SG174219A1 (en) |
TW (1) | TW201105728A (en) |
WO (1) | WO2010117588A1 (en) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100249273A1 (en) | 2009-03-31 | 2010-09-30 | Scales Charles W | Polymeric articles comprising oxygen permeability enhancing particles |
CA2777748C (en) | 2009-10-20 | 2017-09-19 | Soane Energy Llc | Proppants for hydraulic fracturing technologies |
US9522980B2 (en) | 2010-05-06 | 2016-12-20 | Johnson & Johnson Vision Care, Inc. | Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same |
US9475709B2 (en) | 2010-08-25 | 2016-10-25 | Lockheed Martin Corporation | Perforated graphene deionization or desalination |
WO2012093774A2 (en) * | 2011-01-07 | 2012-07-12 | 주식회사 케이씨아이 | Cross-linked copolymer containing phosphorylcholine monomer and cosmetic composition containing same |
US9170349B2 (en) | 2011-05-04 | 2015-10-27 | Johnson & Johnson Vision Care, Inc. | Medical devices having homogeneous charge density and methods for making same |
US20130203813A1 (en) | 2011-05-04 | 2013-08-08 | Johnson & Johnson Vision Care, Inc. | Medical devices having homogeneous charge density and methods for making same |
CN102382237B (en) * | 2011-08-12 | 2013-07-10 | 北京自然美光学有限公司 | Radiation-proof light-filtering contact lens and production method thereof |
US9868896B2 (en) | 2011-08-31 | 2018-01-16 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing |
US9297244B2 (en) | 2011-08-31 | 2016-03-29 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer |
US20140000891A1 (en) | 2012-06-21 | 2014-01-02 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing |
RU2602250C2 (en) * | 2011-08-31 | 2016-11-10 | Селф-Саспендинг Проппант Ллс | Self-suspending proppants for hydraulic fracturing |
US20130323295A1 (en) * | 2011-12-08 | 2013-12-05 | Johnson & Johnson Vision Care, Inc. | Monomer systems with dispersed silicone-based engineered particles |
WO2013090780A1 (en) * | 2011-12-14 | 2013-06-20 | Semprus Biosciences Corp. | Surface modified contact lenses |
MX2014007203A (en) | 2011-12-14 | 2015-04-14 | Semprus Biosciences Corp | Imbibing process for contact lens surface modification. |
AU2012352003B2 (en) | 2011-12-14 | 2015-10-01 | Arrow International, Inc. | Redox processes for contact lens modification |
EP2791211A4 (en) | 2011-12-14 | 2015-08-05 | Semprus Biosciences Corp | Multistep uv process to create surface modified contact lenses |
MX2014007211A (en) | 2011-12-14 | 2015-04-14 | Semprus Biosciences Corp | Silicone hydrogel contact lens modified using lanthanide or transition metal oxidants. |
US8937111B2 (en) * | 2011-12-23 | 2015-01-20 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising desirable water content and oxygen permeability |
US9156934B2 (en) | 2011-12-23 | 2015-10-13 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising n-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides |
US9588258B2 (en) | 2011-12-23 | 2017-03-07 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels formed from zero diluent reactive mixtures |
US8937110B2 (en) | 2011-12-23 | 2015-01-20 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels having a structure formed via controlled reaction kinetics |
US9140825B2 (en) | 2011-12-23 | 2015-09-22 | Johnson & Johnson Vision Care, Inc. | Ionic silicone hydrogels |
WO2013112875A1 (en) * | 2012-01-25 | 2013-08-01 | The University Of Akron | Wound dressings with enhanced gas permeation and other beneficial properties |
CN104822772B (en) * | 2012-03-22 | 2019-06-07 | 莫门蒂夫性能材料股份有限公司 | Hydrophilic macromonomer and hydrogel comprising the monomer |
CA2870730A1 (en) * | 2012-04-19 | 2013-10-24 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing |
US9610546B2 (en) | 2014-03-12 | 2017-04-04 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene and methods for use thereof |
US9297929B2 (en) | 2012-05-25 | 2016-03-29 | Johnson & Johnson Vision Care, Inc. | Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers |
US10073192B2 (en) | 2012-05-25 | 2018-09-11 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
US9244196B2 (en) | 2012-05-25 | 2016-01-26 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
US10653824B2 (en) | 2012-05-25 | 2020-05-19 | Lockheed Martin Corporation | Two-dimensional materials and uses thereof |
US9744617B2 (en) | 2014-01-31 | 2017-08-29 | Lockheed Martin Corporation | Methods for perforating multi-layer graphene through ion bombardment |
US9834809B2 (en) | 2014-02-28 | 2017-12-05 | Lockheed Martin Corporation | Syringe for obtaining nano-sized materials for selective assays and related methods of use |
WO2013192634A2 (en) * | 2012-06-21 | 2013-12-27 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing |
US9395468B2 (en) | 2012-08-27 | 2016-07-19 | Ocular Dynamics, Llc | Contact lens with a hydrophilic layer |
US8937133B2 (en) | 2012-09-25 | 2015-01-20 | National Chiao Tung University | Dissoluble PDMS-modified p(HEMA-MAA) amphiphilic copolymer and method for fabricating the same |
WO2014164621A1 (en) | 2013-03-12 | 2014-10-09 | Lockheed Martin Corporation | Method for forming filter with uniform aperture size |
WO2014205252A2 (en) * | 2013-06-20 | 2014-12-24 | Mercy Medical Research Institute | Extended release drug-delivery contact lenses and methods of making |
US9572918B2 (en) | 2013-06-21 | 2017-02-21 | Lockheed Martin Corporation | Graphene-based filter for isolating a substance from blood |
CA2930552C (en) | 2013-11-15 | 2022-12-13 | Ocular Dynamics, Llc | Contact lens with a hydrophilic layer |
AU2015210875A1 (en) | 2014-01-31 | 2016-09-15 | Lockheed Martin Corporation | Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer |
SG11201606289RA (en) | 2014-01-31 | 2016-08-30 | Lockheed Corp | Perforating two-dimensional materials using broad ion field |
US9932521B2 (en) | 2014-03-05 | 2018-04-03 | Self-Suspending Proppant, Llc | Calcium ion tolerant self-suspending proppants |
WO2015138771A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene |
AU2015311978A1 (en) | 2014-09-02 | 2017-05-11 | Lockheed Martin Corporation | Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same |
AU2015360637B2 (en) | 2014-12-09 | 2019-08-22 | Tangible Science, Inc. | Medical device coating with a biocompatible layer |
CN104448407B (en) * | 2014-12-12 | 2015-09-02 | 青岛中皓生物工程有限公司 | Based on high oxygen permeability material and preparation method thereof and the application of marine organisms material |
WO2016138528A1 (en) * | 2015-02-27 | 2016-09-01 | Wayne State University | Methods and compositions relating to biocompatible implants |
AU2016303048A1 (en) | 2015-08-05 | 2018-03-01 | Lockheed Martin Corporation | Perforatable sheets of graphene-based material |
WO2017023377A1 (en) | 2015-08-06 | 2017-02-09 | Lockheed Martin Corporation | Nanoparticle modification and perforation of graphene |
WO2017069763A1 (en) * | 2015-10-22 | 2017-04-27 | Halliburton Energy Services, Inc. | Multifunctional brush photopolymerized coated proppant particulates use in subterranean formation operations |
TW201716832A (en) * | 2015-11-13 | 2017-05-16 | 鴻海精密工業股份有限公司 | Contact lens and manufacture method for contact lense |
TWI636297B (en) * | 2016-02-05 | 2018-09-21 | 逢甲大學 | Hydrogel film of contact lenses and manufacturing method thereof |
US10488677B2 (en) | 2016-03-03 | 2019-11-26 | Verily Life Sciences Llc | Electronics embedded in rigid gas permeable contact lenses |
JP7208345B2 (en) * | 2016-03-11 | 2023-01-18 | イノベーガ,インコーポレイテッド | contact lens |
SG11201808962RA (en) | 2016-04-14 | 2018-11-29 | Lockheed Corp | Method for treating graphene sheets for large-scale transfer using free-float method |
SG11201809015WA (en) | 2016-04-14 | 2018-11-29 | Lockheed Corp | Two-dimensional membrane structures having flow passages |
WO2017180141A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Selective interfacial mitigation of graphene defects |
WO2017180134A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
WO2017180135A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Membranes with tunable selectivity |
JP2019519756A (en) | 2016-04-14 | 2019-07-11 | ロッキード・マーチン・コーポレーション | In-situ monitoring and control of defect formation or defect repair |
EP3446159B1 (en) | 2016-04-20 | 2023-06-14 | CooperVision International Limited | Silicone elastomer-silicone hydrogel hybrid contact lenses |
CN109923137B (en) * | 2016-11-09 | 2022-08-19 | 巴斯夫欧洲公司 | Polyurethane comprising graphene nanostructures |
US20180169905A1 (en) | 2016-12-16 | 2018-06-21 | Coopervision International Holding Company, Lp | Contact Lenses With Incorporated Components |
US10509238B2 (en) | 2017-04-14 | 2019-12-17 | Verily Life Sciences Llc | Electrowetting opthalmic optics including gas-permeable components |
JP2020522534A (en) | 2017-06-06 | 2020-07-30 | ウェイン ステート ユニバーシティWayne State University | Methods and compositions for carnitine-derived materials |
CN110799858B (en) * | 2017-06-21 | 2022-04-29 | 株式会社尼康 | Nanostructured transparent articles having hydrophobic and anti-fog properties and methods of making the same |
EP3678855A4 (en) | 2017-09-08 | 2021-06-30 | Verily Life Sciences LLC | Self healing lead wires in humid environments |
KR20190054906A (en) | 2017-11-13 | 2019-05-22 | 이형교 | Coffee dripper |
TWI640558B (en) * | 2017-11-17 | 2018-11-11 | Benq Materials Corporation | Ophthalmic lens and manufacturing method thereof |
JP7060946B2 (en) * | 2017-11-29 | 2022-04-27 | 住友化学株式会社 | Coating liquid for forming the gas barrier layer |
CN111566517B (en) * | 2018-01-30 | 2023-11-10 | 爱尔康公司 | Contact lens having a lubricious coating thereon |
TW202009013A (en) * | 2018-08-14 | 2020-03-01 | 優你康光學股份有限公司 | Contact lenses with functional components and products thereof |
WO2020106655A1 (en) | 2018-11-21 | 2020-05-28 | Self-Suspending Proppant Llc | Salt-tolerant self-suspending proppants made without extrusion |
WO2020230793A1 (en) * | 2019-05-13 | 2020-11-19 | 国立大学法人東京大学 | Technology for controlling migration of hollow nanoparticles to brain from blood |
JP2022548318A (en) | 2019-09-24 | 2022-11-17 | ジーピーシーピー アイピー ホールディングス エルエルシー | Microencapsulated probiotics and compositions containing same |
CN110935328B (en) * | 2019-11-12 | 2022-02-11 | 南京工业大学 | Preparation method of organic fluorine-containing polymer doped perovskite hollow fiber oxygen permeable membrane |
EP4121802B1 (en) * | 2020-03-19 | 2024-07-17 | Alcon Inc. | High refractive index siloxane insert materials for embedded contact lenses |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL285986A (en) * | 1961-12-27 | |||
NL128305C (en) * | 1963-09-11 | |||
US4197266A (en) * | 1974-05-06 | 1980-04-08 | Bausch & Lomb Incorporated | Method for forming optical lenses |
US4113224A (en) * | 1975-04-08 | 1978-09-12 | Bausch & Lomb Incorporated | Apparatus for forming optical lenses |
US3996187A (en) * | 1975-04-29 | 1976-12-07 | American Optical Corporation | Optically clear filled silicone elastomers |
US4143949A (en) * | 1976-10-28 | 1979-03-13 | Bausch & Lomb Incorporated | Process for putting a hydrophilic coating on a hydrophobic contact lens |
US4478981A (en) * | 1982-03-22 | 1984-10-23 | Petrarch Systems Inc. | Mixtures of polyacrylate resins and siloxane carbonate copolymers |
US4550139A (en) * | 1982-03-22 | 1985-10-29 | Petrarch Systems, Inc. | Mixtures of polyacrylate resins and siloxane-styrene copolymers |
US4701038A (en) * | 1983-01-31 | 1987-10-20 | Bausch & Lomb Incorporated | Cosmetic contact lens |
US4680336A (en) * | 1984-11-21 | 1987-07-14 | Vistakon, Inc. | Method of forming shaped hydrogel articles |
US4701288A (en) * | 1985-06-05 | 1987-10-20 | Bausch & Lomb Incorporated | Method of making articles of dissimilar polymer compositions |
GB8529006D0 (en) * | 1985-11-25 | 1986-01-02 | Highgate D J | Hydrophilic materials |
GB8818217D0 (en) | 1988-07-30 | 1988-09-01 | Polymer Lab Ltd | Contact lenses |
US5039459A (en) * | 1988-11-25 | 1991-08-13 | Johnson & Johnson Vision Products, Inc. | Method of forming shaped hydrogel articles including contact lenses |
US4889664A (en) * | 1988-11-25 | 1989-12-26 | Vistakon, Inc. | Method of forming shaped hydrogel articles including contact lenses |
JPH03294818A (en) * | 1990-04-13 | 1991-12-26 | Seiko Epson Corp | Soft contact lens |
CA2041599A1 (en) * | 1990-06-01 | 1991-12-02 | Michael Gee | Method for making polysiloxane emulsions |
US5457140A (en) * | 1993-07-22 | 1995-10-10 | Johnson & Johnson Vision Products, Inc. | Method of forming shaped hydrogel articles including contact lenses using inert, displaceable diluents |
US5490059A (en) | 1994-09-02 | 1996-02-06 | Advanced Micro Devices, Inc. | Heuristic clock speed optimizing mechanism and computer system employing the same |
US5910519A (en) * | 1995-03-24 | 1999-06-08 | Johnson & Johnson Vision Products, Inc. | Method of forming shaped hydrogel articles including contact lenses using inert, displaceable diluents |
US5661215A (en) * | 1995-07-26 | 1997-08-26 | Dow Corning Corporation | Microemulsions of gel-free polymers |
WO1997010527A1 (en) * | 1995-09-14 | 1997-03-20 | The Regents Of The University Of California | Structured index optics and ophthalmic lenses for vision correction |
US6036940A (en) | 1996-11-12 | 2000-03-14 | The University Of Akron | Compositions and methods relating to the production, isolation, and modification of gas vesicles |
US7052131B2 (en) | 2001-09-10 | 2006-05-30 | J&J Vision Care, Inc. | Biomedical devices containing internal wetting agents |
JP4219485B2 (en) * | 1999-05-21 | 2009-02-04 | 株式会社メニコン | Ophthalmic material composed of optical hydrous gel |
KR100703583B1 (en) * | 1999-10-07 | 2007-04-05 | 존슨 앤드 존슨 비젼 케어, 인코포레이티드 | A silicone hydrogel, a method for preparing the same and contact lenses comprising the same |
AU2001251161A1 (en) * | 2000-03-31 | 2001-10-15 | The Procter And Gamble Company | Leave-in hair cosmetic compositions for enhancing volume containing fluid-encapsulated, flexible microspheres |
US6774178B2 (en) | 2001-01-05 | 2004-08-10 | Novartis Ag | Tinted, high Dk ophthalmic molding and a method for making same |
WO2002078674A1 (en) * | 2001-03-30 | 2002-10-10 | Trustees Of Princeton University | A process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use |
JP2003294818A (en) | 2002-03-28 | 2003-10-15 | Asahi Kasei Corp | Magnetometric sensor and method of manufacturing the same |
DE60320556T2 (en) * | 2002-07-16 | 2009-05-28 | Alcon Inc. | MATERIALS FOR OPHTHALMIC AND OTORHINOLARYNGOLOGICAL DEVICE |
US20040120982A1 (en) * | 2002-12-19 | 2004-06-24 | Zanini Diana | Biomedical devices with coatings attached via latent reactive components |
JP5138218B2 (en) * | 2003-03-07 | 2013-02-06 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | Diluent for forming transparent and wettable silicone hydrogel articles |
US8097565B2 (en) * | 2003-06-30 | 2012-01-17 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels having consistent concentrations of multi-functional polysiloxanes |
US20060063852A1 (en) | 2004-08-27 | 2006-03-23 | Asahikasei Aime Co. Ltd. | Silicone hydrogel contact lens |
CN101163991A (en) * | 2004-08-27 | 2008-04-16 | 旭化成爱目股份有限公司 | Silicone hydrogel contact lens |
US7249848B2 (en) | 2004-09-30 | 2007-07-31 | Johnson & Johnson Vision Care, Inc. | Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents |
US8552100B2 (en) * | 2005-02-23 | 2013-10-08 | The Regents Of The University Of California | Flexible hydrogel-based functional composite materials |
US7723438B2 (en) * | 2005-04-28 | 2010-05-25 | International Business Machines Corporation | Surface-decorated polymeric amphiphile porogens for the templation of nanoporous materials |
WO2007005249A2 (en) * | 2005-06-29 | 2007-01-11 | Hyperbranch Medical Technology, Inc. | Nanoparticles and dendritic-polymer-based hydrogels comprising them |
JP2007077346A (en) * | 2005-09-16 | 2007-03-29 | Masamitsu Nagahama | Composite material, manufacturing method of composite material and use of particulate |
US20070155851A1 (en) * | 2005-12-30 | 2007-07-05 | Azaam Alli | Silicone containing polymers formed from non-reactive silicone containing prepolymers |
WO2007076871A1 (en) | 2006-01-04 | 2007-07-12 | Københavns Universitet | Method and apparatus for effecting complete analgesia |
EP2155165A1 (en) * | 2007-04-20 | 2010-02-24 | BioCure, Inc. | Drug delivery vehicle containing vesicles in a hydrogel base |
WO2008154505A1 (en) * | 2007-06-08 | 2008-12-18 | The Regents Of The University Of California | Biodegradable synthetic bone composites |
US20090092542A1 (en) * | 2007-10-09 | 2009-04-09 | Smyth Stuart K J | Bioinert tissue marker |
TW200927792A (en) * | 2007-12-28 | 2009-07-01 | Far Eastern Textile Ltd | Silicon-containing prepolymer and silicon containing hydrogel and contact lens made therefrom |
US20090275815A1 (en) * | 2008-03-21 | 2009-11-05 | Nova Biomedical Corporation | Temperature-compensated in-vivo sensor |
US20100249273A1 (en) | 2009-03-31 | 2010-09-30 | Scales Charles W | Polymeric articles comprising oxygen permeability enhancing particles |
-
2010
- 2010-03-10 US US12/721,081 patent/US20100249273A1/en not_active Abandoned
- 2010-03-18 SG SG2011063260A patent/SG174219A1/en unknown
- 2010-03-18 JP JP2012503479A patent/JP2012522111A/en active Pending
- 2010-03-18 WO PCT/US2010/027840 patent/WO2010117588A1/en active Application Filing
- 2010-03-18 EP EP10723394A patent/EP2414443A1/en not_active Withdrawn
- 2010-03-18 RU RU2011143748/05A patent/RU2011143748A/en unknown
- 2010-03-18 BR BRPI1014058A patent/BRPI1014058A2/en not_active Application Discontinuation
- 2010-03-18 CA CA2753226A patent/CA2753226A1/en not_active Abandoned
- 2010-03-18 CN CN201080015758.2A patent/CN102378783B/en not_active Expired - Fee Related
- 2010-03-18 AU AU2010235011A patent/AU2010235011A1/en not_active Abandoned
- 2010-03-18 KR KR1020117025619A patent/KR20120003474A/en not_active Application Discontinuation
- 2010-03-30 TW TW099109570A patent/TW201105728A/en unknown
- 2010-03-31 AR ARP100101068A patent/AR076022A1/en unknown
-
2013
- 2013-01-09 US US13/737,364 patent/US8513324B2/en active Active
- 2013-09-16 US US14/028,201 patent/US9062180B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20130131214A1 (en) | 2013-05-23 |
CN102378783B (en) | 2014-11-05 |
US9062180B2 (en) | 2015-06-23 |
AU2010235011A1 (en) | 2011-09-08 |
US8513324B2 (en) | 2013-08-20 |
CA2753226A1 (en) | 2010-10-14 |
US20100249273A1 (en) | 2010-09-30 |
BRPI1014058A2 (en) | 2016-04-12 |
US20140171541A1 (en) | 2014-06-19 |
RU2011143748A (en) | 2013-05-10 |
EP2414443A1 (en) | 2012-02-08 |
JP2012522111A (en) | 2012-09-20 |
WO2010117588A1 (en) | 2010-10-14 |
CN102378783A (en) | 2012-03-14 |
SG174219A1 (en) | 2011-10-28 |
AR076022A1 (en) | 2011-05-11 |
KR20120003474A (en) | 2012-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201105728A (en) | Polymeric articles comprising oxygen permeability enhancing particles | |
JP5622853B2 (en) | Hydrating hydrogel materials used in ophthalmic applications and methods | |
ES2593406T3 (en) | Silicone hydrogel contact lenses and methods for producing silicone hydrogel contact lenses | |
CN103415789B (en) | Hydrogel contact lens containing phosphine | |
JP5355588B2 (en) | Method for manufacturing contact lenses | |
JP4932893B2 (en) | Colored high-Dk ophthalmic molded article and method for producing the molded article | |
TWI531826B (en) | Dimensionally stable silicone hydrogel contact lenses and method of manufacturing the same | |
CN103890044B (en) | Silicone hydrogel contact lenses | |
CN103415802B (en) | Wettable silicone hydrogel contact lenses | |
TWI582122B (en) | Silicone hydrogels formed from zero diluent reactive mixtures | |
CN103959140A (en) | Silicone hydrogel soft contact lens having wettable surface | |
TW200837380A (en) | Process for forming clear, wettable silicone hydrogel articles | |
TW200815501A (en) | Wettable silicone hydrogel contact lenses and related compositions and methods | |
TW200844472A (en) | Process for forming clear, wettable silicone hydrogel articles | |
US20100331443A1 (en) | Silicone hydrogels formed from symmetric hydroxyl functionalized siloxanes | |
CN108976340A (en) | Eye lens and preparation method thereof |